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ABSTRACT . 

The fast neutron induced reaction cross sections were studied systematically in 

the energy range of 13.82 to 14.71 MeV using the neutron generator facility under 

identical conditions in order to provide real nuclear data required in the fusion reactor 

design and in developing semiconductor technology. In the present investigation, the 

activation cross section data for 64Zn(n,2n)63Zn, 64Zn(n,p)64Cu, 70Zn(n,2n)69mzn, 

70Ge(n,2n)69Ge, 74Ge(n,a)71111Zn, 76Ge(n,2n)7501+gGe, 45Sc(n,2n)44111Sc and 90Zr(n,2n)89Zr 

reactions in the energy range of 13.82 to 14.71 MeV were measured in an unified 

experimental condition. High purity samples of natural isotopic compositions were used. 

Each sample was irradiated separately by neutrons. Monoenergetic neutrons were 

produced via 3H(d,n)4He reaction at J-25 neutron generator facility of the Institute of 

Nuclear Science and Technology, AERE, Saver, Dhaka by the bombardment of the solid 

tritium target with deuteron. The different energies of the neutrons were obtained as a 

function of emission angle to the direction of incoming deuteron beam. The neutron 

activation technique in combination with high resolution HPGe-detector y-ray 

spectrometry was used to measure the activities of the reaction products and to identify 

them. Peak area analysis was done using Multi Channel Analyzer (MCA) system based 

on personal computer. The effective neutron flux densities at the energies of interest 

were determined by the irradiation of monitor Al-foil with sample. The neutron flux 

obtained in the present work was in the range of 7.366xl05 to l.855xl06 ncnf2s-1 using 

known cross section data obtained from H.Vonach. To determine the cross sections of 

the desired reactions, the well known activation equation was used. The total uncertainty 

in cross section was obtained by considering both the statistical errors and possible major 

sources of systematic errors. The overall uncertainties observed in our experiment were 

in the range of 7- 15 %. 



The measured reaction cross section values along with the available literature 

data have been plotted as a function of neutron energy to get the excitation functions of 

the reactions. The theoretical cross section calculations using statistical code 

SINCROS-II in the energy range of 13 to 15 MeV were performed to validate the 

experimental data theoretically. In most cases, the calculated values agree fairly well 

with the experimental r_esults. In the present experiment, it has been observed that the 

cross section values of all the (n,2n) reactions increase with increasing neutron energy. 

The value of (n,a.) reaction cross section also increases with the increase of neutron 

energy whereas the value of cross section of (n,p) reaction decreases with increasing 

neutron energy. The measured data showed significant improvement in accuracy in 

comparison with literature value. The obtained data, therefore, will offer substantial 

nuclear data base for fusion reactor design, current evaluations of neutron activation 

cross section and nuclear model calculations for nuclear technology applications. 
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Abstract 

 

Nonlinear evolution equations (NLEEs) play a noteworthy role in various scientific and 

engineering fields such as applied mathematics, plasma physics, fluid dynamics, optical fibers, 

biology, solid state physics, chemical physics, mechanics and geochemistry. Various effective 

procedure have been developed to solve NLEEs. In this work, we have discussed applications of 

two types methods: first type is modified double sub-equation (MDSE) method which is apply in 

the (1+1)-dimensional Burger equation, the (1+1)-dimensional Gardner equation and the (1+1)-

dimensional Hirota-Ramani equation �D�Q�G�� �V�H�F�R�Q�G�O�\���� �+�L�U�R�W�D�¶�V�� �%�L�O�L�Q�H�D�U�� �P�H�W�K�R�G�� �Z�K�L�F�K�� �L�V�� �D�S�S�O�\�� �L�Q��

(2+1)-dimensional Breaking Soliton, the (2+1)-dimensional asymmetric Nizhnik-Novikov-

Veselov equations, and (3+1)-D generalized B-type Kadomtsev-Petviashvili equation. 

Using Modified double sub-equation method, we have presented some complexiton solutions in 

terms of trigonometric, hyperbolic functions. Finally, the interaction phenomena of the achieved 

complexiton solutions between solitary waves and/or periodic waves are presented with in depth 

derivation.  

Based on the bilinear formalism and with the aid of symbolic computation, we determine multi-

solitons, breather solutions, rogue wave, lump soliton, lump-kink waves and multi lumps using 

�Y�D�U�L�R�X�V�� �D�Q�V�D�W�]�H�¶�V�� �I�X�Q�F�W�L�R�Q���� �:�H notice that multi-lumps in the form of breathers visualize as a 

straight line. Besides this, the breather wave degenerate into a single lump wave is determined by 

using parametric limit scheme. Also, we reflect a new interaction solution among lump, kink and 

�S�H�U�L�R�G�L�F���Z�D�Y�H�V���Y�L�D���µ�U�D�W�L�R�Q�D�O-cosh-�F�R�V�¶���W�\�S�H���W�H�V�W���I�X�Q�F�W�L�R�Q�����7�R���U�H�D�O�L�]�H���G�\�Q�D�P�L�F�V�����Z�H���F�R�P�P�L�W���G�L�Y�H�U�V�H��

graphical analysis on the presented solutions. Obtained solutions are reliable in the mathematical 

physics and engineering.
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Chapter Two 

Literature Review of Some PDEs 

In this chapter, we will discuss the literature review of some nonlinear evolution equations 

(NLEEs) such as (1+1)-D Burger, Gardner and Hirota-Ramani equations, (2+1)-D Breaking 

Soliton and asymmetric Nizhnik-Novikov-Veselov equations, and (3+1)-D generalized B-type 

Kadomtsev-Petviashvili equation. 

2.1 The (1+1)-dimensional Burger Equation 

Nonlinear evolution equations (NLEEs) play a noteworthy role in various scientific and 

engineering fields such as applied mathematics, plasma physics, fluid dynamics, optical fibers, 

biology, solid state physics, chemical physics, mechanics and geochemistry. Burger equation is 

one kind of Diffusion reaction model.  

Let us consider the (1+1)-dimensional Burger equation [52-54], in the following form, 

       (2.1) 

Burgers equation (2.1) is a model for nonlinear wave propagation, especially in fluid mechanics. 

The equation arises in various characteristic areas of applied mathematics, such as modeling of 

gas dynamics and traffic flow. 

Burger equation [52-54] are solved by many researcher for finding complexiton solutions. On the 

other hand, Burgers equation with space-and time-fractional order and and time-fractional 

Boussinesq�±�%�X�U�J�H�U�¶�V���H�T�X�D�W�L�R�Q�V���>����-57] are solved for soliton solutions which arise in propagation 

of shallow water waves.  
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In this section, the modified double sub-equation method is proposed for constructing complexiton 

�V�R�O�X�W�L�R�Q�V���R�I���Q�R�Q�O�L�Q�H�D�U���S�D�U�W�L�D�O���G�L�I�I�H�U�H�Q�W�L�D�O���H�T�X�D�W�L�R�Q�V�����3�'�(�V�������:�H���D�S�S�O�\���W�K�L�V���P�H�W�K�R�G���W�R���W�K�H���%�X�U�J�H�U�¶�V��

equation [52-54]. 

2.2 The (1+1)-dimensional Gardner equation (or combined KdV-mKdV)  

In this section, the modified double sub-equation method is proposed for constructing complexiton 

solutions of nonlinear partial differential equations (PDEs). We apply this method to the Gardner 

equation.  

Let us consider the (1+1)-dimensional Gardner equation (or combined KdV-mKdV) [58-60], in 

the form 

     (2.2) 

where and are arbitrary constants. The Gardner equation has two nonlinear 

terms in the quadratic and cubic forms and the dissipative term is of third order. This is an 

significant model to realize the propagation of negative ion acoustic plasma waves [60] and can 

be derived from the structure of plasma motion equations in one dimension with arbitrarily charged 

cold ions and inertia neglected isothermal electrons. This equation can also be a good explanation 

of internal waves with large amplitudes [61]. 

2.3 The (1+1)-dimensional Hirota-Ramani equation 

Nonlinear evolution equations (NLEEs) play a notable role in scientific and engineering fields 

�V�X�F�K�� �D�V�� �P�D�W�K�H�P�D�W�L�F�V���� �E�L�R�O�R�J�\���� �P�H�F�K�D�Q�L�F�V���� �S�K�\�V�L�F�V�� �D�Q�G�� �J�H�R�F�K�H�P�L�V�W�U�\���� �1�R�Z�� �D�� �G�D�\�¶�V�� �P�D�Q�\��

mathematicians and physicists are engaged in the study of soliton solutions of nonlinear partial 

differential equations (PDEs). 

We study the (1+1)-dimensional Hirota-Ramani equation [62-66], in the form 

      (2.3) 
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Chapter Three 

ALGORITHMS  

In this Chapter, we will give a short overview of the Modified Double Sub-Equation Method and 

�+�L�U�R�W�D�¶�V���E�L�O�L�Q�H�Dr method.  

3.1 Description of the Modified Double Sub-Equation Method 

In the following, we described the main steps of modified double sub-equation method. 

Step 1: Consider a nonlinear partial differential equation (NLPDE), say in two independent 

variables  and , is given by  

       (3.1) 

where is an unknown function,  is a polynomial of and its partial 

derivatives in which the highest order derivatives and nonlinear terms are involved. 

Step 2: For the suggested method, we assume that the solutions of Eq. (3.1) are as follows: 

 

       (3.2) 

where  and are all functions of  and  and  are arbitrary nonzero constants 

to be determined later. The new functions  and satisfy 

       (3.3) 

and ,        (3.4) 

where  and  respectively, which are known as wave transformation of 

Eq. (1). 

Step 3: The general solutions of the Riccati Eq. (3.3,3.4) [21] are as follows: 

 

i. When  

    (3.5) 

ii.  When  



,
2
1

,
2
1

11 ��� � pq



nm�\�M



nm,
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  (3.6) 

iii.  When  

      (3.7) 

iv. When  

       (3.8) 

v. When  

 (3.9) 

vi. When  

                   (3.10) 

Step 4: By setting Eq. (3.2) into Eq. (3.1) along with Eq. (3.3) and Eq. (3.4) yields a system of 

equations with respect to then set all coefficients of  in the 

obtained system of equations to be zero, we obtain a set of over-determined PDEs with respect to 

and  

By solving the over-determined PDEs with the aid of symbolic computation system Maple, we 

obtain the subsequent solution in terms of  Using the results obtained 

in the above steps and the various solutions of Eq. (3.3, 3.4), we can derive many solutions for Eq. 

(3.1). 

���������'�H�V�F�U�L�S�W�L�R�Q���R�I���W�K�H���+�L�U�R�W�D�¶�V��Bilinear Method 

�,�Q���W�K�L�V���V�X�E�V�H�F�W�L�R�Q�����Z�H���E�U�L�H�I�O�\���G�H�V�F�U�L�E�H�G���W�K�H���P�D�L�Q���I�H�D�W�X�U�H�V���R�I���+�L�U�R�W�D�¶�V���E�L�O�L�Q�H�D�U���P�H�W�K�R�G���W�K�D�W���Z�L�O�O���E�H��

used in this work. Firstly, we substitute 

         (3.11) 

into the linear terms of any differential equation under discussion to determine the dispersion 

relation among  and  Secondly, substitute the Cole�±Hopf transformation 

        (3.12) 

into the equation under discussion, where the auxiliary function  is given by 

      (3.13) 

Where     
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where and 

. 

Family-3: When  then we can some complexion solutions: 

i. When , then 

 

ii.   When , then 

 

 

 

 

where  and 
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where  Substituting Eq. (4.71) and into Eq. (4.67), the amplitude of  is 

attained  Max from which we observe that the amplitude of the lump 

solution is depend on the values of  and  As we seen from Eq. (4.71) the lump soliton is 

centered at the origin when    

4.5.3 Interaction of lump waves with solitary waves 

To get the interaction phenomena between lumps and solitary waves solutions of Eq. (4.49), 

assuming  in the following new form 

        (4.72) 

with 

 and   (4.73) 

 where are all real parameters to be determined. Substituting Eq. (4.72) along 

with Eq. (4.73) into Eq. (4.54) with the aid of symbolic computation system Maple, we can gain 

the following relations among parameters:    

   (4.74) 

which should satisfy  

Therefore, substituting Eq. (4.74) into Eq. (4.72), we can get a class of quadratic function solutions 

to the bilinear equation (4.54). Then, the resulting exact rational solution for Eq. (4.49) are obtained 

through the transformation, 

 (4.75) 

    

(4.76) 

where and are defined in Eq. (4.73). 
for example, the resulting solutions of  Eq. (4.74)  are as follows 



,sin 221
11 �\�\�\ hehef ����� ��
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 (4.77) 

where and      (4.78) 

4.5.4 Multi lump solutions of (2+1)-dimensional ANNV equation 

In this section, we will find the multi lump solution of Eq. (4.49). To this aim, the above function 

can be taken as, 

                             (4.79) 

with and                          (4.80) 

where are all real parameters to be determined. Substituting Eq. (4.79) along with 

Eq. (4.80) into Eq. (4.54) with the aid of symbolic computation system Maple, we can obtain the 

following relations among parameters  

           (4.81) 

which should satisfy  

Under the transformation Eq. (4.53), we can get the periodic lump solutions of the (2+1)-

dimensional ANNV equation as, 

    (4.82) 

and 

            (4.83) 

where 

           (4.84) 
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4.6 The (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili (gBKP) equation 

Inspired by the mechanism of interaction solutions, we focus on the interaction solutions of 

the (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili (gBKP) equation [84] 

       (4.85) 

Through the dependent variable transformation 

         (4.86) 

the (3+1)-dimensional gBKP equation can be convert to the bilinear D-operator form 

       (4.87) 

where and the derivatives �D�U�H�� �W�K�H�� �+�L�U�R�W�D�¶�V�� �E�L�O�L�Q�H�D�U�� �R�S�H�U�D�W�R�U�V�� �>���@��

defined in 

   (4.88) 

 

The chief aimed of this paper is to present mixed lump-stripe, breather and various dynamical 

of collision wave solutions for gBKP equation via suitable ansatzes approach. 

2. Interaction phenomena between solitary wave and lump wave 

In this section, we explore the dynamics of collisions between lump soliton and one stripe soliton 

of gBKP model (4.85). For this, we choose as a combination of two positive quadratic 

functions and an exponential function as 

         (4.89) 

where 

  (4.90) 



.07 �za
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where and  are real factors to be later calculated. Plugging Eq. 

(4.89) into Eq. (4.87), and with a direct symbol calculation, we acquire 6 classes of solutions. We 

only select one of them to analyze characters of the similar solutions. 

  (4.91) 

with  

Combining Eq. (4.91) and Eq. ( 4.89), we obtain the expression of :  

  (4.92) 

which, consecutively, produces the interaction of lump and stripe solitons to Eq. (4.85) through 

the transformation (4.86) as: 

  (4.93) 

3. Breather-wave solutions 

In this section, we spotlight on the breather-wave solutions of Eq. (4.85) that comes from the 

collisions between exponential and trigonometric functions. 

Case-1: Here, we take  as a combination of a cosine function with two exponential 

functions: 

        (4.94) 

with 

       (4.95) 
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Chapter Five 

Graphical representation 

In this section we describe some features of the solutions that we obtained from Burger equation, 

Gardner equation (or combined KdV-mKdV), Hirota-Ramani equation, Breaking Soliton (BS), 

asymmetric Nizhnik-Novikov-Veselov (ANNV) and generalized B-type Kadomtsev-Petviashvili 

(gBKP) equations in different cases. We depicted these solutions graphically with the help of 

computational software Maple and explain their behaviors in details. 

5.1 Graphical illustration of the solutions of Burger Equation 

In this subsection, we explain different type of traveling wave solution of Burger equation 

graphically obtained by using Modified Double Sub-Equation (MDSE) method. By implementing 

MDSE method, we obtained Sixty four complexiton solutions of Burger equation and have 

different type periodic shape. Some of these solutions are stated for specific values of the arbitrary 

constants with graphical illustration.  

�7�K�H���F�R�P�S�O�H�[�L�W�R�Q���V�R�O�X�W�L�R�Q�V���W�R���W�K�H���%�X�U�J�H�U�¶�V���H�T�X�D�W�L�R�Q�V���F�R�Q�V�L�V�W���Z�L�W�K���W�Z�R���W�U�D�Y�H�O�L�Q�J���Y�D�U�L�D�E�O�H�V��and 

expressed in-terms of and ; and and and  

gives the kinky �±periodic wave. When coefficients of is greater than that of the gives solution 

with kinky dominate on periodicity (see Fig. 1.1) but when coefficients of is smaller than that of 

the gives solution with periodicity increases and dominate on kink type (see Fig. 1.2).   

  

Fig-1.1: Kinky-periodic wave solution for 

of the real part of . 

Fig-1.1(a): 2D plot shows the wave propagation pattern 

at . 
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