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SUMMARY

This thesis studies the nature of n-ideals of a lattice. The
topic arose out of a study on the kernels, around a particular
element n, of a skeletal congruence on a distributive lattice.
The idea of n-ideals in a lattice was first introduced by
Cornish and Noor. For a fixed element n of a lattice L, a
convex sublattice containing n is called an n-ideal. If L has
a 0", then replacing n by 0, an n-ideal becomes an ideal.
Moreover if L has 1, an n-ideal bcomes a filter by replacing
n by 1. Thus, the idea of n-ideals is a kind of generalization
of both ideals and filters of lattices. So any result
involving n-ideals will givé a generalization of the results
on ideals and filters with O and 1 respectively in a lattice.
In this thesis we give a series of results on n-ideals of a

lattice which certainly extend and generalize many works in

lattice theory.

Chapter 1 discusses nQideals, finitely generated n-ideals and
other results on n-ideals of a lattice which are basic to this
thesis. We have shown that, a lattice L is modular
(distributive ) if and only if In(L), the lattice of n-ideals
is modular ( distributive ). We have also shown that the set

of prime n-ideals of a distributive lattice L is unordered by
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set inclusion if and only if Fn(L), the lattice of finitely

generated n-ideals is generalized boolean.

Chapter 2 discusses and generalize the concepts of the
smallest and largest Congruences 8(I) and R(I) respectively of
a distributive lattice containing an n-ideal I as a class.
Also we have given a characterization of distributivity of a
lattice using 6(I). We have shown that in a distributive
lattice L, the mapping I = 8(I) is an imbedding from Ian(L) to
C(L), the 1lattice of congruences of L and there is an
isomorphism if and only if Fh (L) is generalized boolean. Also
we have shown that there is an isomcrphism between C(Fan(L))and
C(L). Finally, we include a result on the permutability of the
congruences ©8(I) and ©6(J) for n-ideals I and J of a

distributive lattice L.

Chapter 3 studies the n-kernels of skeletal congruences on a
distributive lattice. Previously, skeletal congruences have
been studied by Cornish very extensively. This chapter
generalizes several results of his works. Here we have given
a description on 8(J)* for an n-ideal J of a distributive
lattice L. The Skeleton

{8 € C(L) : @

SC(L) &* for some ® € C(L)}

H

{8 € C(L) : & = @x*}.
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We define J+ = {x € L : (x An) V(n A j)V(xAj) =n for
all j € J}, which is of course an n-ideal. We also define

Kern® = { x € L : x =n 8 } and KnSC(L) = { Kern® : 8 € C(L)}.

This chapter establishes the following fundamental results
(i) J*+ is the n-kernel of 8(J)*.

(ii) 8(J) is dense in C(L) if and only if the n-ideal J is
both meet and join-dense and the n-kernels of each
skeletal congruence is an annihilator n-ideal.

(iii) Fn(L) is disjunctive if and only if each dense n-ideal
J is both meet and join-dense.

(iv) Fn(L) is generalized boolean if and only if 9(JT) =
8(J)* for any n-ideal J.

(v) Fau(L) is generalized boolean if and only if the map
8 =+ kern® is a lattice isomorphism of SC(L) onto KnSC(L) whose

inverses the map J = 8(J), where J is an n-ideal.

In chapter 4, we discuss on standard n-ideal of a lattice.
Standard elements and ideals have been studied by many authors
including Gr&tzer. From an open problem given by him,Fried and
Schmidt have extended the idea to standard (convex)
sublattices. In the light of their work we have developed the
notion of standard n-ideals and showed that an n-ideal is
standard if and only if it is a standard sublattice. We have

also given a characterization of a standard n-ideal S interms
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of the congruence 8(S). Then we have proved the following
results: -

(i) for an arbitrary n-ideal I and a standard n-ideal S of a
lattice L, if I VS and I N S are principal n-ideals, then I

itself a principal n-ideal.

(ii) For a neutral element n of a lattice with the proprerty
that both (n} and [(n) are relatively complemented, every
homomorphism n-kernel of L is a standard n-ideal and every
standard n-ideal is the n-kernel of precisely one congruence
relation.

(iii) for a relatively complemented lattice L with 0 and 1,
C(L) is a boolean algebra if and only if every standard

n—ideal of L is a principal n-ideal.

Finally, we prove two Iisomorphism theorems on standard
n—ideals which are extensions of the isomorphism theorems on

standard ideals given by Gratzer and Schmidt (181,
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CHAPTER - 1

n —ideals of a TIl.attice"

Nt
e

ra

Introduction -- The intenﬁion of this chapter is to
outline and fix the notation for some of the concepts
of n-ideals of a lattice which are basic to this
thesis. The idea of n-ideals in a lattice was first
introduced by Cornish and Noor in sBeveral papers
[53, [34], [35]. Since then a little attention has
been paid in these matters. For a fixed element n of
a lattice L, a convex sublattice containing n 1is
called an n-ideal. If L has a "0°, then replacing n
by "0° an n-ideal becomes an ideal. Moreover if L has
1, an n-ideal becomes a filter by replacing n by 1.
Thus, the idea of n-ideals is a kind of
generalization of both ideals and filters of
lattices. So any result involwving n-ideals will give
a generalization of the results on ideals and filters

with ©O and 1 respectively in a lattice.
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The set of all n-ideals of L is denoted by Ina(L),

which is an algebraic lattice under set-inclusion.
Moreover, {n} and L are respectively the smallest and
largest elements o0f In(L) while the set-theoretic

intersecticon is the infimum.

For any two n-ideals I and J of L, it 1is easy to
check that

I NJg={x : x =m(i, n, j) for some i€I, jeJ },
where m(x, v, z) = (x A y) V(y A z) V (z A x)
and I VJ = {x : 41 A j1 = x = i=2 V Jj2,

for some i1,iz € I and Jji, j=z€J }.

The n-ideal generated by ai, az, «.... am 18 denoted
by <ai,az, ... am®n.
Clearly <ai1,az, ... am>n = <ai>nV ... V<am>n.

The n-ideal generated by a finite number of elements
is called a finitely generated n-ideal. The set of
all finitely generated m-ideals is denoted by Fn{(L).
Of course Fn(L) is a lattice. The n-ideal generated
by a single element is called a principal n-ideal.
The set of all principal n-ideals of L is denoted by
Pn(L). We have

<a>n = {x €L : alAn=<x=aVnl}.



The median operation

m(x, vy, z) = (x Ay) V(yAz)V(z A x) is very well
known in lattice theory. This has been used by
several authors including Birkhoff and Kiss [03] for
bounded -distributive lattices, Jakubik and Kalibiar
[26] for distributive lattices and Sholander [44] for

median algebra.

An n-ideal P of a lattice L is called prime if

m(x, n, y) € P, x, y € L implies either x € P or

y € P.

Standard and neutral elements in a lattice were
studied extensively in [18] and [16, chapter-3]. An
element 8 of a lattice L is called standard if for
all x, v € L, x A (y V 8) = (x A yv) V (x A s8). An
element n € L is called neutral if it is standard
and for all x, vy € L, n A (x V y) = (n A x)

V. (n A y). Of course 0 and 1 of a lattice are
always neutral. An element n € L is called central
if it is neutral and complemented in each interval
containing n.

A lattice L with 0 iss called sectionally
complemented if [0, x] is complemented for all x € L.

A distributive lattice with 0, which is sectionally
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complemented 1is8 <called a generalized boolean
lattice. For the background meterial we refer the
reader to the texts of G. Grédtzer [15], Birkhoff [04]

and Rutherford [43].

In section 1, we have given some fundamental results
on finitely generated n-ideals. We have shown that
for a neutral element n of a lattice L, Pn(L) is a
lattice if and only if n is central. We have also
shown that for a neutral element n, a lattice L 1is
modular (distributive) if and only 1if In(L) is
modular (distributive). We proved that, in a
distributive lattice L, if both supremum and infimum
of two n-ideals are principal, then each of them is

principal.

In section 2, we have studied the prime n-ideals of
a lattice. Here we have generalized the seperation
property for distributive lattices given by M.H.
Stone [15, Th. 15, p-74] in terms of prime n-ideals.
Then we showed that in a distributive lattice, every
n-ideal 1is the intersection of prime n-ideals
containing it. We have alsoc shown that, in a
distributive lattice L, the set of prime n-ideals

is unordered by set inclusion if and only if Fn(L) is



5

generalized boolean, which generalizes a well known

result of L.Nachbin [15, Th.22, p»-781].

1. Finitely generated n-ideals.

1.1.1. We start this section with the following

proposition which gives some simpler descriptions of

Fn(L).

1.1.2. Proposition : Let L be a lattice and n € L.
For ai,az,...,am € L,

(i) <ai, a2, ..., am>n € {fy € L : (a1l N ... n
(am] N (n] € (y] « (a2l V ... V (aml V (nl}.

(ii) <ai, az, ., am>n = {y € L : a1 A az A
am A n <y =< ai1V ...V am V n}
(iii) <a1, az2,...,am>n = {y €L : a1z A ... A am A
n<y=(yAai1)V ... V(y A am) V (y A n),

when L is distributive 1}

(iv) For any a € L, <a>n = {y € L : a An =y

= (y A a) V(v An)}
= {(y €L :y=(yAa)V(yAn)V(aAn)}
whenever n is standard.
(v) Each finitely generated n-ideal is two

generated.
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«-«- A am A n,

Indeed <ai, ..., am>n = <ai1 A

alv--- V&mVﬂ)n.

(vi) Fn(L) is a lattice and its members are simply
the intervals [a,b] such that a = n £ b and
for each intervals

[a,b]l] V [a1, b1l = fa A a1, b V bi]

and fa,b] N [a1, bi] = [a V a1, b A bi].
Proof: (i) Right hand side is clearly an n-ideal
containing ai,az, ... ,3m.

(ii) This clearly follows from (i) and by the
convexity of n—-ideals.

(1iii) When L is distributive, then by (ii)

y < ai1 Vaz V ... V am V n implies that
vy =yv A [ar1 Vaz V ... V am V n]l = (y A a1) V
(v AN az2) V ... V (y A am) V (y A n),

and (iii) follows.

(iv) By (ii) <a>n = {y € L : a An <y < a Vnl}.
Then v =y A (a Vn) = (y ANa) V (y A n), when n is
standard. This proves (iv)

(v) This clearly follows from (ii)
(vi) First part is readily verifiable. For
the second part, consider the intervals [a,b] and

[a1,b1] where a < n £ b, and a1 < n = b1.



Then using

(ii), fa, bl V [a1, bi] = <a, ai, b, bi>n
= faAair AbAbiAn, aVaiVbVbi Vn]
= [a A a1, b V b1]l, while

[a,b]l N [a1, bi1]l = fa V a1, b A b1l is trivial. ®

In general, the set of principal n-ideals Pn(L) is
not necessarily a lattice . The case is different
when n is a central element . The following theorem

also gives a characterization of central element of

a lattice L.

1.1.3. Theorem: Let n be a neutral element of a
lattice L. Then Pn(lL) is a lattice if and only if

n is central.

Proof: Suppose n is central. Let <a>n, <b>n € Pn(L).

Then using neutrality of n and proposition

1.1.2. (vi),

<a>n N <b>n = [a A n, &« Vnl N (b A n,b V nl

1l

{[(a Vb) An, (a Ab) Vnl
and <a>n V <b>n = [a A b An, aVbVnl.
Since n is central, there exist c and d such that
c An = (a Vb)) An, c Vn=(aAb) Vn
and dAn=aAbAn, dVn=2aVeb V n.
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Which implies that <a>n N <b>n = <c¢>n and <a>n V <b>n

= <d>n and so Pn(L) is a lattice.

conversely, suppose that Pn(L) is a lattice

and a-S.r1 <= b. Then fa,b] = <a>n V <b>n. Since
Pn(L) is a lattice, <a>n V <b>n = <c>n for some c€ L.
This implies that c is the relative complement of

n 1in {a,b]. Therefore n is central. @

Now, we like to discuss Fn(L) when it is sectionally

complemented.

1.1.4. Theorem : Let L be a lattice. Then Fn(L)
is sectionally complemented if and only if for each
a, b € L, with a = n £ b, the intervals [a, n] and

fn, b]l] are complemented.

Proof : Suppose Fn(L) is sectionally complemented.
Consider a<c=<n and n = d = b. Then <n> ¢
(e, d] € [a, Db]. Since Fn(L) 1is sectionally
complemented, 8¢ there exisats [c”, d°] such that

{e, d1 n [e”, d°] = <n> and [c, d] V [c™, d7]
= [a, b]l]. This implies ¢ V ¢ = n, c A c” = a and
dAd° =n, dVd = b. That is ¢~ is the relative

complement of ¢ in [a, n] and d° is the relative
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complement of d in [n, bl. Hence [a, n] and [n, b]

are complemented for all a, b € L with a < n < b.

Conversely, suppose that [a, n] and {n, b]
complemented for all a, b € L with a < n < b.
Consider <n> ¢ [e¢ ,d] © [a, bl]. Then a < c¢c < n < d
£ b. Since [a, n] and [n, b] are complemented so
there exist c¢” and d° such that ¢ A ¢” = a, ¢ V ¢~
= n and d A d°  =n, dVd = b. Thus

[c, d] n [e”, d°] = [e Ve, d A d°1 = [n, n] = <n>
and [c, d1 V [e”, 4d°] = [e A c”, d Vd°] = [a, b],
which implies that [ec, d] has a relative complement

e, d°]. Hence Fn(L) is sectionally complemented.

The following corollaries follow immediately from

above theorem.

1.1.5. Corollary : For a distributive lattice L,
Fn(L) is generalized boolean if and only if [a, nl

and [n, b] are complemented for each a, b € L with
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1.1.6. Corollary : For a distributive lattice L,

Fan(L) is generalized boolean if and only if both
(n]¢ and [n) are generalized boolean, where (n]<a

denotes the dual of the lattice (n].

In lattice theory, it is well known that a lattice
L is modular (distributive) if and only if the
lattice of ideals I(CL) is modular (distributive).
Our following theorems are nice generalizations of
those results in terms of n-ideals when n 1is a
neutral element. The following Lemma is needed for

the next theorem, which is due to Gr&tzer [17].

1.1.7. Lemma: An element n of a lattice L is
neutral if and only if
m(x, n, v) = (x Ay) V(x An)V (y An)
= (x Vy) A (xVn) A (y Vn).

1.1.8. Theorem: Let L be a lattice with neutral
element n. Then L is modular if and only if In(L)

is modular.

Proof: First assume that L is modular. Let
(I AJ) VKeIA(J V K).
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To prove'the reverse inequality, let x € I A (J V K).

Then x € I and x € J V K. Then jx1 A ki1 € x < jo V ks
for some ji, Jjz € J, ki, k2 € K. since I 2 K so
x AN ki1 € I and x V k2 € I. Then by lemma 1.1.7.

m(x A ki, ﬁ, Ji) A ka2

ki A [((x A k1) Vo) A(nVja) A ((x Aki)V j1)]

[(x A ki) Vnl A(nV ja) A [(x Aki) V (ki A j1)]
as L is modular.
<= x as Jji1 A ki = x.
On the other hand
m(x V k2, n, j=z) V k2
={{(x VEk2) Anl] V (nA j=2) VI(x V kz2) A j21} V k2,
=[(x Vkz) AnlV (nA3jz2)Vi(xVka) A (kzV 32)1,
| as L is modular.
> x as Jjz V kz = x
so0 we have
m(x A ki, n, j2) A k1 < x < m(x V kz, n, jz) V k2
Hence x € (I A J) V K.
Therefore
I A(JVK)=(IAJ) VK with K ¢ I and so

IA(L) is modular.

Conversely, suppose that In(L) is modular. Then for
any a, b, ¢ € L with ¢ £ a, consider the n-ideals

<a V n>n, <b V n>n and <c V n)n. Then of course

Raj.hahi Uuiversity Lib.ary
Coun.equition SeCliog

Dot L:\.cs‘.t/N E : ’_?..C >
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<c¢ V n>n € <a V n>n. Since In(L) is modular,
80 <a V n>n N [<b V n>n V <c V n>n]
= [<a V n>an N <b V n>nl] V <c V n>n.
Then by proposition 1.1.2. (vi) and by neutrality of
n, it is easy to show that

fa A(bVe)l Van=1I0[I(aADb) Vel Vn ... (A)

Again, consider the n-ideals <a A n>n, <b A n>n and
<c AN n>n, ¢ £ a implies <a A n>n € <c A n>n. Then
using modularity of In{L), we have
<a A n>n V (<b A n>n A <c A n>n)
= (<a A n>an V <b A n>n) A <c A nd>n.
Then wusing proposition 1.1.2. (vi) again and the
neutrality of n, it is easy to see that

[aA(bVec)l]An=IcaAb)VelAn  ...(B)

From (A) & (B) we have a A (b V c¢) = (a A b) V ¢,
with c <X a, as n is neutral. Therefore L is

modular. @

From the proof of above theorem, it can be easily
seen that the following corollary holds which is an

improvement of the above theorem.
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1.1.9. Corollary : For a neutral element n of a
lattice L, the following conditions are equivalent:-
(i) L is modular,
(ii) In(L) is modular,

(iii) Fn(L) is modular.

For the next theorem we omit the proof of only if
part as it can be proved using the similar technigue

of the proof of above theorem.

1.1.10. Theorem: Let L be a lattice with neutral
element n. Then L is distributive if and only if

In(LL) is distributive.

Proof: First assume that L is distributive .Let I,
J, K € In(L). Then obviously, (I A J) V (I AK) I
A (J V K). To prove the reverse inegquality,

let x € I A (J V K) which implies x € I and

x € J VK. Then ji A ki £ x £ j=2 V kz for some

Ji, J=2 € J, ki, k2 € K. Since L is distributive,

m(x, n, ji) A m(x. n, ki)

"

[(x An) V (x A Jz) V (n A Ja)l A
[(x An) V (x A ki) V(n A ki)l
= (xAn)V(nAjiAki)V(xAJjrs Ak

IA

x V (j1 A ki) = x
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Also, m(x, n, j=z) V m(x, n, k=)

= [(x An) V(x A jJ2) V(n A j2)] V
[(x An) V (x A kz2) V (n A kz2)]

= (nA(xVjz Vik2))V(x A (jzV kz)),
= [n A (j=2 V k2)] V. x = x

Then we have

m(x,n,ji1) A m(x,n,k1) = x £ m(x,n,Jjz2) V m(x,n,k2)
and so x € (I A J) V (I A K). Therefore I A (J V K)

= (I A J) V(I AK), and so In(L) is distributive.

Following corollary immediately follows from the
above proof which is also an improvement of the above

theorem.

1.1.11. Corollary : Let L be a lattice with a
neutral element n. Then the following conditions are
equivalent :

(i) L 1is distributive,

(ii) In(L) is distributive,

(iii) Fn(L) is distributive.

We conclude this section with a nice generalization
of [15 : Lemma-5, p-71]. To prove this we need the

following lemma:
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1.1.12. Lemma: In a distributive lattice L, any
finitely generated n-ideal which is contained in a

principal n-ideal is principal.

Proof: - Let [(b,c} be a finitely generated n-ideal
such that b=n<c. Let <a>n be a principal n-ideal such
that [b,c]l] € <a>n = [a A n, a V n]l. Then
a An <b < n=<c¢c =<aVmn. Suppose t = (a A c) V b.
Then
t An=1[(aAc) Vbl An=(nAaAc)V(nAbhb),
as L is distributive.
= b An="»
and t Vn = [((aAc) Vbl Vn=(aAc)Vn
= (a Vn) A (c Vn),as L is distributive.
= ¢ Vn=oc¢
Hence [b, ¢l = [t A n, t V n]l = <t>n.

Therefore, {b, c¢c] is a principal n-ideal. @

1.1.13. Theorem: Let I and J be n-ideals of a
distributive lattice L. If I VJ and I A J are

principal n-ideals, then I and J are alsoc principal.

Proof: Let I VJ = <a>n and I AJ = <b>n. Then

for all i €I, jeJd, i, <a Vn and 1i,j =z a A n.
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So there exist ii1,i2 € I and ji, jz € J such that

a An= i1 A j1 and a Vn = i2 V j2.

Consider the n—ideal [b A iz A n, b V iz V nj.
Since (b A i1 A n, b Viz Vn] € I ¢ <a>n,

[bA iz An, bV iz Vnl] = <t>n, by lemma 1.1.12. for
some t € L. Then

<a>n JVIaJVIiIibAii An, bV iz V n]

i

2 {jr A n, j2 Vnl] VI(bA i1 A n, bV iz V n]
= [j2 An A b A i1, j2 Vn VDbViz]
2 [a An, a Vnl] = <a>n.
This implies that
I VJ=JVIbAii An, b V iz V. nl = J V <t>n
Further,

<b>n = J NI 2J N (b A izt An, bV iz V n]

It

2J nNn[bAn, bV nl <b>n
which implies that

Jn i

J A I[bA i1 A n, bV iz V nl

= J N <t>n
Since L is distributive, In(L) is also distributive
by lemma 1.1.12., and using this distributivity we
obtain that I = <t>n. Similarly we can show that J is

also principal. ®
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2. Prime n-ideals

1.2_.1. Recall that an n-ideal P of a lattice L
is prime if m(x, n, y) € P, x,y € L implies either
X € P or y € P.

The set of all prime n-ideals of L is denoted by
P(L). The following seperation property for
distributive lattices was given by M._H. Stone

[15, Th. 15, p-74].

1.2.2. Theorem - Let L be a distributive lattice,
let I be an ideal, let D be a dual ideal of L,
and let IND = &. Then there exists a prime ideal

P of L s8uch that P oI and PNnD = &.

From the proof of abvove thecorem given in [15], it can
be eaesily seen that the following result also holds

which is certainly an improvement of above.

1.2.3. Theorem : Let I be a distributive lattice,
let I be an ideal, let D be a convex sublattice
of L, and let IND = &. Then there exists a prime

ideal P of L such that P = I and PND = ¢.
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Our next result gives a seperation Property for
distributive lattices interms of prime n-ideals which

is of course an extension of the above results.

1.2.4. Theorem : In a distributive 1lattice L,
suppose I is an n~-ideal and D is a convex
sublattice of L with IND = ®. Then there exists a

prime n-ideal P of L such that P 2 I and PND =&.

Proof : Let x be the set of all n-ideals of L that
contains I and that are disJjoint from D. Since
I € %, X is non-empty. Let C be a chain in % and
let T = U { X | X e C }. If a, b € T, then a € X,
b € Y for some X, Y € C. Since C is a chain,
either X € Y or Y € X. Suppose X € Y. Then a, b € Y
.and so a A b, a VbeYcT, asa Y is an n—ideal.
Thus, T is a sublattice. ,
If a, b € T and a < r <= b, r € L, then a, b €Y
for some Y € C, and so r € Y ¢ T as Y 1is convex.
Mofeover n € T. Therefore T is an n-ideal.
Obviously T 2 I and T n D = &, which verifies thaé
T is the maximum element of C. Hence by Zorn’'s
‘lemma, x. has a maximal element, say P. We claim

that P is a prime n-ideal.
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Indeed, if P 1i8 not prime, then there exist a, be

L such that a, b ¢ P but m(a, n, b) € P. Then by
the maximality of P, (P V <a>n) N D # & and

(P V <b>n) N D # &. Then there exist x, y € D such
that p1 A a A n=<x < pz2VaVn and pa A b An
=y £ pa VbVn for some pi, p2, pP3a, P4 € P. Since
m(a, n, b) = (aAn) V(b An)V (aAbd) e P, taking
infimum with pi1 A ps A n, we have

(pr AN ps A a An) V(pi1 A ps A b A n) € P.

Choosing r = (p1r A pa A a An) V{(pi Apas Ab An),
we have r = x V y with re P. Since

xs<r Vx=xVy, vy <r Vy <xVy and D is a
convex sublattice, so r Vx, r Vy € D.

Therefore (r V x) A (r V y) € D.

Again, r Vx £<paVaVnz=pzVpaVaVn and

r Vy<pse Vb Vn=<pz2Vps VbVn implies
(r Vx) A (r Vy) £ (p2 VpaVaVn)A

(p2 Vpa Vb Vn) =8 (sBay).

Since m(a, n, b) = {(a Vn) A (b Vn) A (a Vb)e€eP,
taking supremum with pz V ps V n, we have 8 € P.
Also, r < (r V x) A (r V y) < s. Thus, again by
convexity of P, (r Vx) A (r Vy) € P. This implies
PND #» &, which leads to a contradiction. Therefore,

P is a prime n-ideal.®
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1.2.5. Corollary : Let I be an n-ideal of

a
distributive lattice L and let a € I, a € L. Then
there exists a prime n-ideal P of L such that P 2 I

and a € P.

1.2.86. Corollary : Every n-ideal I of a
distributive lattice L is the intersection of all

prime n-ideals containing it.

Proof : Let I =0 { P : P 21, P is a prime
n-ideal of L }. If I # I1, then there is an

a € I1 - I. Then by above corollary, there is a prime
n-ideal P with P 2 I, a € P. But a & P 2 Ia

gives a contradiction. @

For any n-ideal J of a distributive lattice L, we
define

J* = { x € L : m(x, n, j) = n for all j € J 1}.
Obviously, J+ is an n-ideal and J n J+ = { n }. We

will call J+, the annihilator n-ideal of J.

It is well kxnown from [15, Ch.2, Ex.27, P-79]1, that
a distributive lattice with 0 is generalized
boolean if and only if the set of prime ideals is

unordered.
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Our next theorem is a nice generalization of that

result. To prove this we need following lemmas.

1.2.7. Lemma : [B,lemma 3.4] If Li is a sublattice
of a distributive lattice L and Pi1 is a prime
ideal in Li, then there exists a prime ideal P in

. such that Pi = P Nn Li.

1.2.8. Lemma : In a distributive lattice L, a prime

ideal containing n is also a prime n-ideal.

Proof : I£f P is a prime ideal containing n, then
m(x, n, y) = (x Ay)V(xAn)V (y An) €6 P
implies x A y € P and so either x € P or y € P.

Hence P is a prime n-ideal.®

1.2.9. Theorem : Let L be a distributive lattice

and n € L be neutral. Then the following conditions

are egquivalent :
(i) Frn(L) is generalized boolean.

(ii) For each principal n-ideal <xX>n,
<x>: = { yelL : m(x, n, y) = n; x, y€ L }

such that <x>$ V <x>n = L.
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(iii) The set of prime n-ideals P(L) is
unordered by set inclusion.
Proof : (iii) = (i). First suppose that P(L) is

unordered. Consider any interval [n, bl in L. Let
Pi1i, Q1 be two prime ideals of [n, b]. Then by lemma
1.2.7., there exist prime ideals P and @ of L
such that Pi1 = P N [n, b]l] and Q1 = @ N [n,bl]. Since
P and @ contains n, they are also n—-ideals. Then
by lemma 1.2.8., they are also prime n-ideals. Since
P(L) is unordered, so P and @ are incomparable.
This follows that Pa and Q1 are also
incomparable. If not, let Pi c Qi. Then for any

z € P, by [8, lemma 3.4] =z = x for some x € P1 < Q1.
Which implies zZ € Q. Thus, P c Q which is a
contradiction. Then by [15, Ch.2, Ex.271, [n, bl is

complemented.

Again consider the interval [a, n] in L. Since the
prime filters are the complements of prime ideals, 8o
considering two prime filters of [a, n] and using
the same argument as above we see that [a, n] is
also complemented. Hence Fn(L) is generalized

boolean by 1.1.5. Which is (i).
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(i) = (iii). Suppose (1) holds, that is, Fn(L) is

generalized boolean. Then by 1.1.5. the intervals
[x, n] and [n, y] are complemented for seach

x, v € L with X £ n £ y. If P(L) is not
unordered. Suppose there are prime n-ideals P, Q
with P € Q. Let b € Q-P. Now as Q is prime there
exists a € L such that a € Q. Then either a A n€ Q

or a Vn ¢ Q. For otherwise a € Q by convexity of Q.

Suppose a Vn ¢ Q. Then a Vb Vn € Q.

Since [n, a V b V n] is complemented and

n <b Vns=<aVbVn, so there exists

t € [n, a Vb V n] such that t A (b V n) = n

and t VbVn=aVbVn.

So t A (b Vn) = m(t, n, b Vn) € P.

This implies either t € P or b Vn € P. If +t € P
then a Vb Vn = t Vb V n € Q, which 1is a
contradiction to our assumption. Hence b V n € P. So
by convexity, n €< (a A b) Vn=<Db Vn implies that
(a A b) Vn € P. But observe that (a A b) V n =
m(a V n, n, b) and a Vn € P, b € P. This 1is=s
impoessible as P is prime. Thus again we arrive at a

contradiction. Therefore a Vn e Q.
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Now, if a A n € Q. Then a A b An € Q. Since b A n
has a relative complement in [a A b A n, n]J,

proceeding as above again we arrive at a
contradiction. Thus a A n € Q. Since both a A n
and a V n belong to Q, s80o a € Q@ by convexity.
Which gives a contradiction. Hence P(L) must be

unordered which is (iii).

Now, we shall prove (ii) = (i). Suppose (ii) holds.
Consider {n} € [a, b] ¢ [c, d]. Then we have

c £ a<n=<25 = d. Since

+ +
<a>n V <a>n = L, Bo ¢ € <a>n V <a>n. Then

i Aj =2 c s i1 V j1 for some i, i1 € <a>n

and J, Jdi1 € <a>:, which implies
aAnAgj=<oc. That is, a A jJ < c and ¢ = ¢ V (a A J)

= (¢ Va) AN (e V j)y =a AN (cV J), as L is

distributive. Again J € <a>: implies
m(a, n, j) = n, or (a A n) V(n A Jj) V (a A J) = n,

or a V (n A j) = n.

Similarly, d € <b>n V <b>5 implies that

d =dA (b V s8) and

+
b A (nVs) =n for some 8 € <b>n.
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Now, consider an interval
[p, al = [c V (n A 3), d A (n V 8)]. Then
[p, 9l N [a, ] = [c V(n AjJj), dA (nVs)lnr la, b]

(a Ve VinAgj)y, bAdAI((nVs)]

[a V(nA J), b A(nV s8)]

{n}.
and
[p, @] V [a, bl = fc V(n A J), d A (nVs)l VIa, b]
= [a A {ecV(nAJj)}, b V{dA (n V s)}]
= [(a Ac) V((aAnAgjg), (bVd)A(bVnVs)]
= [(aAc)y V(aAj), (bVd) A (b Vs)]
= [a A (cV j), dA (b Vs)]
= [c, d]
Therefore, [p, al is the relative complement of
[a, b] in {n} < [(a, b] e [c.d].

Hence Fn(L) is generalized boolean.

Now, we are to show that (i) = (ii). Suppose (1)

holds, that is, Fn(L) is generalized boolean. Suppose
that <x>: V <x>n * L. Then there exists r € L but

+
r € I = <x>n V <x>n.

This implies either r A x An ¢ I orr VX Vn € I.

Suppose r Vx Vn € I. Now, n € x Vn=1rVx Vn.
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Since Fn(L) is generalized boolean so by 1.1.5, we

have [n, * V x V nl] is complemented. Then there
exists 8 2 n € L, such that 8 A (x Vn) = n
and 8 V(x Vn) =r VxVn.

Also, n = 8 A (x Vn) = (n Vs) A (nV x)
= n V (s A x), as L is distributive
(s An) V (a A x) V (n A x)

m(s, n, x),

which implies that se€ <x>ny Az 8 VxVn=rVxVn

80 we have

r Vx Vn e <x>n V <X>n+: I which is a contradiction.
Similarly, for r AN x An € I, we arrive at a

contradiction.

+
Hence <x>n V <x>n = L. ©®
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CHAPTER - 2

"Congruences Corresponding to

n—ideals in a Distributive IL.attice"™

Introduction : For any ideal I of a distributive
lattice L., congruences 8(I) and R(I) represent
the smallest and largest congruences of L
containing I as a class respectively. These
notations have been appeared in different instances
in the literature; of.(15], (6], (71, [10]. ©(I) is
defined by x = y 8(I) if and only if x Vi = y V i
for some i € I. Again R(I) is defined by x = y R(I)
if and only if for any r € L, x A r € I if and only
if vy A r € I. For any a € L, ©8a denotes the
congruence defined by x =y (8a), (x, vy € L) if and
only if x V a = y V a. Of course 8a = 8((al). Again
¥ denotes the congruence defined by =x =y (¥a),

(x, vy € L) if and only if x A a = y A a. Also 8&(a, b)
denotes the smallest congruence which identifies a
and b. Obviously 8. and ¥Pa are mutually
complementary. Also for a, b € L with a =< b,

8(a,b)=%a N B, while its complement is 8a V ¥,
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Of course 8. = 8 (0, a) = 8 ((al) if L has a 0 and

Ya = © (a, 1), when L has a largest element 1.

In this chapter we generalize the concepts of 8(1)
and R(I) for n-ideals. Here we have shown that for
a neutral element n of a lattice L, every n-ideal
is a class of some congrunces if and only if L is
distributive. Then we have shown that in a
distributive lattice L, the mapping I -+ O(I) is an
imbedding from the lattice of n-ideals to the lattice
of congruehces of L. Then we have generalized a well
known result of J.Hashimoto [20] and showed that for
a neutral element n of a lattice L, In(L) is
isomorphic to the congruence lattice C(L) if and
only if Fan(L) is generalized boolean. We have also
shown that there is an isomorphism between C(Fn(L))
and C(L). Finally, we showed the permutability of
congruences ©(I) and 6(J) for n-ideals I and J
of a distributive lattice L. We showed that the
above congruences permute for all I and J if and
only if n is complemented in each interval containing

it, (i,e. n is central as L is distributive).
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1. Congruences Containing n-ideal as a class.

2.1.1. We start this chapter with the following
theorem which gives a description of the smallest
congruence relation of a distributive lattice L
containing an n-ideal as a class where n is a fixed
element of L.

2.1_.2. Theorem: Let n be a fixed element of a
distributive lattice L. Then for each n-ideal I of

L the relation ©(I) on L defined by x

v 6(I)
if and only if x A i1 = y A i1 and =x V iz = y V iz
for some i1, iz€ I, is the smallest congruence of
L containing I as a class.

Proof: Clearly G(I) is an equivalence relation. Now
suppose x = y O(I). Then x A i1 = y A i1 and x V iz
=y V iz for some ii, iz € I. So for any m € L,
(x Vm) V ig=(x V iz2) V m=(y V i2) V m=(y V m) V iz

and (x V m) A iz

(x A i1) V (m A i1)

= (y A i1) V. (m A i1)

= (y Vm) A iz,
which shows that x Vm =y Vm 8(I). Again clearly
(x Am) A i1 = (y Am) A i1 and using distributivity
of L, (x Am)V iz = (y A m) V iz. This shows that
x Am=y Am 8(I).

Hence @(I) is a congruence relation on L.
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For any i1, iz € I, observe that
i1 V (i1 V iz) = i2 V (i1 V iz2) = i1 V is
and ia A (i1 A iz) = iz2 A (i1 A iz) = i1 A is.

This implies ia

iz O(I). That is the elements of

I belong to the same class of €(I1).

Now, suppose m € L and m = i 8(I) for some i € I.
Then m A i1 = i A i1 and m V i2 = i V iz for some
i1, iz € I, which showe that m A i1, m V iz € I and
80 by convexity of I we get m € I. Hence I is a

congruence class of ©6(I).

Finally, suppose that @ 1is any congruence relation
on L containing I as a class. Let x = y 6(I).
Then x A ii = y A i1 and x V iz = y V iz for some
i1, iz € 1. Since L is distributive,

x = x A (x Viz2) = x A (y V i2)

= (x A y) V (x A i2)
= (x A y) V (x A i1) (9)
= (x AN y) V (y A ix)

vy A (x V i1)

vy A (x V iz) (&)

13

= vy A (y Viz) = y.
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Thus, x =y (%) and so ©8(I) ¢ . Therefore 8(I) is
the smallest congruence relation on L containing

I as a class.®

Following theorem gives a characterization of
distributivity of a lattice when the fixed element n
is neutral in it. This is also a generalization of

well known result.

2.1.3. Theorem: A lattice L with a neutral element
n, is distributive if and only if for each n-ideal I
of L, there exists a congruence on L, having I as a

class.

Proof: If L is distributive, then by theorem 2.1.2,
8(I) is the smallest congruence relation on L

containing I as a class.

To prove the converse, suppose that every n-ideal I
of L is”.a congruence c¢lass of 8some congruence
relations on L. If L is not distributive, then it
contains a sublattice isomorphic to Ns or Ms which
are shown in figure 2.1.1. andg figure 2.1.2.

respectively.



32

d d
b
c a 0 c b
a
e e
Figure 2.1.1 Figure 2,1.2

Here we have either a An # b An or a Vn+#+ b Vn.
For, if a An = b An, aVmn=>5Vn then by
neutrality of n, a = b, which is imposaible. Without
loss of generality, suppose a A n # b A n. Consider
I = <b A n>n = [b A n, nl]. Suppose 8 is a
congruence which contains I as a class. Since
bAn=<=dAn=mn, dAne¢e€Tl.
Thus, d An = b A n 8(1I)
s0 d AnAc=DbAnAc 8(I). That is

c An=e A n 8(I).Then

(c A n) V(a An) = (e An) V (a A n) 8(1),
and so

(¢ Va) An= (e Va) An 8(I) as,n is neutral.
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This implies d A n = a A n 8(I), which shows that

a An € I.Then b A n < a An < n.

Similarly, consider the n-ideal <a A n>n, and
proceeding as above we obtain b A n € <a A n>n. Then
aAn=bAn=n and so a An =b A n, which gives

a contradiction to our assumption. Therefore L must

be distributive.®
Following lemma is needed for our next theorem.
2.1.4. Lemma : Let L be a distributive Lattice.

Then for any two n-ideals I & J of L,

(i) ©8(I n J)

8(I) n 8(J)
(ii) (I V J)

8(I) V 8(J)
Proof : (i) Obviously, 8(I N J) < 8(I) n 6(J).
To prove the reverse inequality, let
x =y 68(I) N &(J). Then x A i1 = y A i1 and =x V iz
= y V iz for some ii, iz € I. Also x A ji1 = y A ja
and x V j2 = vy V jz for some ji, j=z € J. As
m(ii, n, Jji), m(iz, n, j=2) € I N J and since L 1is
distributive,
# A m(ii, n, J1)
= x A [(iz A n) V (n A j1) V (i1 A Jja1)l
= (x A i1 An) V(xAnAji)V(xAiihAJjz)
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(y Aia An) V(y AdiAn) V(yAii A1)

1

H

vy A m(ii, n, Jjui).

Similarly, using distributivity of L, we have
Xx Vm(iz, n, jz) = y Vm(iz, n, j=2), which shows
that x = y 6(I n J).

Hence 8(I n J) = O(I) n 8(J).

(ii) Obviously, 8(I) V 8(J) ¢ 8(1 V J).
To prove the reverse inequality, let x = y 8(1 V J).
Then x Vp =y Vp and x A g = vy A g for some
p,q € I V J. Then there exist i1, iz, iz, ia € I
and
ji, Jz, J=3, Ja € J such that ii A ji1 £ p £ iz V j=z
and is A ja = q £ ia V ja. Thus, we have

x iz V jz =y V iz V jo

Vv
and x A iz A ja = vy A ia A Js.

Observe that, is A js = iz A n 8(J) iz A n 6(I)

= iz V n 6(I)

iz Vi, 6(J),
and s0 is A js = iz V j=z 6(I) V 6(J).Then
x = x AN (x V iz V j=2)
= x A (y V iz V j=)
x A [y V (is A ja)] (8(I) V 8(J))

(x A y) V(x A is A js)

= (x ANy) V (v Ais A §a)
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=y A [x V (ia A ja)]

=y Alx Viz V j=21 (8(I) V 8(J))
=y Ay Viz V j2)
=Y

Thus, x =y 8(I) V 6(J)

Therefore ©(I V J) = 8(I) V 8(J). &

2.1.5. Theorem : For an element n of a distributive
lattice L, the correspondence I =+ ©6(I) is an
imbedding from In(L) to C(L), where In(L) is the

lattice of n-ideals of L.

Proof: By above lemma , the mapping I - 8(I) is a
homomorphism. So it is sufficient to show that the
mapping is one-to-one. Suppose for n-ideals I and J,
8(I) = 8(J). Let 1 € I. Then for any j€ J, it is not
hard tc see that

m(i, n, j) Vi Vn=1i Vn
and m(i, n, ) A i An =1 A n.
This implies i = m(i, n, J) &(I) = 6(J). Then

i A ji1 = m(i, n, §j) A Ja

and iV jz = m(i, n, j) V jz for some ji, Jjz € J.
Now, clearly J A i1 A n = m(i, n, j) A jx = J Vn

andj/\nSm(i,n,j)ijszv;jVn-
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Then by convexity of J, m(i, n, J) A ji1

and m(i, n, J) V j2 € J and so i A i1

and i1 V j=2 € J. Since i A ji1 = 1 = i V 32,

= using
convexity of J again, ied. Therefore I ¢ J.
Similarly J € I, and so I = J. Hence the mapping is

one-to—-one and so it is an imbedding. @

We have already defined
m(x, y, z) = (x A y) V(y Az)V (z A x)
for x, v, z € L, we also define
md(x, y, z) = (x Vy) Ay V z) A (z V x).
In presence of distributivity of L, it is easy to

show that m(x, ¥y, z2) = m9(x, vy, z) for all x,y,z €L.

Now, we give a describtion of the largest congruence
of a distributive lattice containing an n-ideal as a

class.

2.1.6. Theorem : Let n be a fixed element of a
distributive lattice L. For each n-ideal I define
the relation R(I) on L by x = y R(I) if and only if
for any t € L, m(x,n,t) € I if and only if

m(y,n,t) € I. Then R(I) is the largest congruence

containing I as a class.
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Proof : Obviously R(I) is an eguivalence relation. To
prove the substitution property, Let X = y R(I).
consider any r € L. Suppose m(x A r, n, t) € I for
some t € L. Then it is easy to check that
m(x A r, n, t) An =m(x, n, (t A r) V (t A n))
£ m(x A r, n, t) V n.
Then by convexity of I,
m(x, n, (t A r) V(t An)) € I. Since x = y R(I)
80 m(y, n, (¢t A r) V (t A n)) € I. Then using

distributivity of L, a routine calculation shows that

m(x A r, n, t) A m(y, n, (t A r) V (t A n))
= m(y A r, n, t)
< m(y, n, (t Ar) V (t A n)).

Then by the convexity of I, m(y A r, n, t) € I.

Hence x A r v AN r R(I).
Since in a distributive lattice

m(x, v, z) = m3(x, y, 2), a dual proof of above
shows that m(x Vr, n, t) € I for some t € L if and
only if m(y Vr, n, t) € I. Therefore
x Vr =y Vr R(I), and 2o R(I) is a congruence.
Now, for any 1 € 1, and any t € L,

i An < m(i, n, t) £ i V n.

So by convexity m{(i, n, t) € I. Therefore, for any

i, 12 € I, i1 = i2 R(I).
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Moreover, if x = i R(I) for x € L and 1i € I,
then m(i, n, x) € I implies that x = m(x, n, x) € I.
Therefore, R(I) is a congruence containing I as a

class.

Finally, let & ©be a congruence of L containing I as
a clags. Let x = y ®. Suppose m(x, n, t) € I for

some t € L. Then x = y & implies

m(x, n, t) (x A n) V (t An) V (x A t)

(y An) V(t An) V (y A t)?
= m(y, n, t).

Since m({x, n, t) € I and I is a class of ¢, sO0

nm(y,n,t) € I. Therefore, x = y R(I) and so R(I) is

the largest congruence containing I as a class.®

In lattice theory it is well EKnown that the lattice
of ideals is isomorphic to the lattice of congruences
if and only if the lattice is generalized boolean,
c.f.[156.Th.8,p-91]. Our next theorem is a

generalization to that result.

2 1.7. Theorem : For a neutral element n of a

[~

lattice L, In(L) = C(L) if and only if Fn(L) is

generalized boolean.
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Proof : First suppose that Fn(L) is generalized

boolean. Then by 1.2.8., L is distributive. Let us

define a map f : In(L) = C(L) given by £f(J)=8(J).
Then by 2.1.5, f is a homomorphism and one-to-one.

For ontoness, let & € C(L). Consider

It

I ={x e L : x n®}. Then clearly I is an n-ideal.
Since ©8(I) is the smallest congruence containing I
as a class, so ©O(I) ¢ &. Now, let =x = y (®). Then
x ANy =x Vy (). Consider [n, x Vy V n] € Fn(L).
Here n < (x AN y) Vn=xVy Vn. As Fn(L) is

generalized boolean so by 1.1.5. there exists t € L

n

such that t A [(x A y) V n]
Vv

and t V {(x A y) x Vy V n.

nl

Now, n =t A [(x A y) V n]

t A[x Vy Vnl(®) = t.
This implies t € I. Also t V ((x A y) V nl
= x Vy V n. Then

(x A y) V(t Vn) = (xVy)V(tVn) . (1)
Again consider, x ANy An = (x Vy) An = n. Since
[x Ay An, n] is complemented we can similarly show
that there exists an 1r €I such that

(x Ay) A (r An) = (x Vy) A (r An) e..(ii)
combining (i) and (ii) we have x A y = x V y 6(I),

as t Vn, r Ane€I. This implies @ < &(I), and 8O

& = 8(I). Thus f is onto. Therefore In(L) € c(L).
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Conversely, suppose that In(L) = C(L). Then In(L)

is distributive and so by 1.1.10., both L. and

Fn(L) are distributive. Consider the interval [n, b]

with n £ a < b.

Let I = { x e L : x = n B(a, b)}. Then I is an
n-ideal. As ©(I) is the smallest congruence having

I as a class and since In(Ll) = C(L), Bo we have

©(I) = 8(a, b). Then a = b O(I) and a V i1 = b V i
and a A iz = b A iz for some ii, iz € I. Then

i1 = n @&(a, b) and iz = n ©6(a, b).
But 8(a, b) = & Nt Ya. Then i1 Vb = n Vb = b and
iz Aa =n A a = n. This implies 4ii is the relative
complement of “a“ in [n, bl.
Again, considering any interval [c, nl with
c < d=<n and the principal congruence ©(c, d), we
can similarly show that d has a relative complement
in [ec, n]J. Therefore by (1.2.8) Fa(L) is

generalized boolean.@®

Now, we describe an isomorphism between C(Fn(L))
and C(L) in presence of distributivity. We prove

this with the help of the following lemma.
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2.1.8. Lemma : Let n be a neutral element of a

lattice L. For each 8 € C(Fa(L)), define a relation
p(8) on L given by x = y p(8) if and only if
<xX>n = <y>n®. Then p(®) is a congruence relation on
L.

Moreover, for 81 € C(Fn(L)), i€A where A is an
indexed set

(i) p(Nn B1) = N p(B1) and
(ii) p(V 81) = V p(81);

Proof : Clearly p(8) is an equivalence relation. To
prove the substitution property, suppose x = y p(8)
and telL. Then <x>n = <y>n(8), and so

<x>n A [n, x Vnl] = <y>n A [n, x V nl(6). Then
by 1.1.2, (n, x Vnl = [n, (y Vn) A (x Vn)l(e).
Similarly, ([n, ¥y Vnl = [n, (y Vn) A (x V n)l(8).
Thus, fn, x Vnl = [(n, v V nl(®). Then
n, x Vnl V [n, t V n]

(n, vy Vnl] V[In, t Vnl(8).
This implies
[n, x Vt Vnl]=I[n, yVtVnl(8) .. (1)
Again, <x>n N [t A n, n] = <y>n N [t A n, nl(6).
This implies
((x An) V(tAmn), nl] = [(y An) V (t An), nl(8)

... (1i)
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Taking supremum of (i) and (ii), we have

{(x An) V{(t An), xV t V n]

n

((y An) V(t An), vy Vt V nl](8).
Thus, [(x Vt) An, x Vt V n]
= [(y Vt) An, y VtVnl(e,
as n 1is neutral.
That is, <x V t>n = <y V t>n(8), and so
x Vt=y Vit p(8). Similarly, a dual proof of above
shows that x A t = vy At p(9), and so p(8) is a

congruence of L.

For the second part, the proof of (i) is trivial.

For the proof of (ii), since p 1is order preserving,

obviously V p(81) c p(V 81).

To prove the reverse inequality, assume that
x =y p(V 81). Then <X>n = <y>n (V 81). Thus
<€X>n N <y>n = <m(X, N, ¥)>n = <x>n ( V 81) 80 by

using 1.1.12. we have

<m(x, N, ¥)>n = <zZ0>n, <Z1>n, esae 3 KZ2Zxr>n = <K¥Y>n,
with
<Z3-1>n = <Z3O>n (eik); ix €A; J = 1, 2, ... 5 r ;

k=1, 2, ... , r.
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This implies z3-1 = z5 p (Gik), which shows that

m(x, n, y) x( V p (81)), Similarly,

it

m(x, n, y) vy (V p (81)), Hence x

il

y (V p(81)).
So we have p (V 81) c V p(81).

Hence p (V 81) =V p(8+).0

2.1.9. Theorem : Let I be a distributive lattice.
The map p : C(Fn(L)) =- C(L) 1is an isomorphism where

for each © € C(Fn(L)), p(®) is defined by x = y p(8)

if and only if <x>n = <y>n(9).

Proof : By above lemma, it is sufficient to prove

that p 1is one - one and onto. Suppose p(8) = p(3).

n

(c, d1(®). Then
[a, bl N <c>n = [c, d1 N <e>n (6).Thus by

1.1.2. we have [a V ¢, nl = [c, nl(8). That is

<a V ¢>n = <c>n(8), and so

aVecs=c p(8) = p(%). Then

<a V c>n = <c>n(®), and 8o

(a Vc, nl] = [c, nl(®)
Similarly, considering

fa, bl N <a>n & [c, dl N <a>n(0),

we get [a, n] fa Ve, nlJ(®). Therefore

(a, n]l = [c, nl(2).
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Again considering

[c, d] V <b>n(8) and
[a, bl V <d>n

[e, d]l V <d>n(8), we obtain
{n, bl = [n, d] (®). Therefore [a, bl = [c, d] (9),
and so ® ¢ ®&. Similarly & < 8. Hence 6 = ®, and so

p 1is one—-to-one.

For ontoness, let @& € C(L). Define 8 € C(Fn(L)) by

8 =V {8 (<a>n, <b>n) : a = b & }.

n

If x =y (&), then <x>n <y>n O (<x>n, <y>n),
and 80 <X>n = <y>n (8). This implies x = y p(8)

and so0 @& < p(8)

To prove the reverse inegquality, let
x =y p (8 (<a>n, <b>n) : a =Db & ). Then
<X>n =E <y>n O (<a>n N <b>n, <a>n V <b>n).
This implies <xX>n N <a>n N <b>n = <y>n N <a>n N <b>n
and <x>n V <a>n V <b>n = <y>n V <a>n V <b>n. Then by
some routine calculation, we get
(x An) V(a An) V (b An)
= (y An) V(aAn)V (bAn)
(x Vn) A (a Vn) A(b Vn)

(y Vn) A (aVn)A (b Vn)
v Aa Ab An
vy VaVbVn

and x ANaAbAn

x VaVbVn
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Now, x/\n=(x/\n)/\[(x/\n)V(a/\n)V(bA.n)]

= (xAn) Al(y An) V(aAn)V (b A n)l
= (x An) Ay An) V (b A n)j 8(a, b)
= (x Ay An)V(zxAbAn,

as L is distributive
= (x Ay An) V(xAaAbAn) 8a, b)
= (x Ay An)y V(yvAaAbAn

= (y An) AM(x An) V(aAbAn)j
= (y An) Al(xAn)V(aAn)V(bAn)l] 8(a, b)
= (y An) ANl(y An) V(aAn)V(bAn)l =y A n.

Thus, x A n

v A n 8(a, b). Similarly, we can show

that x Vn

v Vn 8(a, b). Hence by distributivity
x =y B8(a, b). Also ©8(a, b) € . Thus x = y (¥).
Therefore by lemma 2.1.8. (ii), p(®) ¢ 3.

Hence p(B®) = & and so p is onto. @

Since the lattice of ideals of a lattice L is
isomorphic to the lattice of congruences if and only
if L is generalized boolean, so using 2.1.7. and

above theorem, we obtain the following corollary

2.1.10. Corollary : For a fizxed element n of a

distributive lattice L, In(L) & I(Fa(L)) if Fn(D)

is generalized boolean.
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We now turn our analogue to the rermutability of the
congruences 8(1) and e(J) in a distributive
lattice L, where I and J are n-ideals of L. In
a lattice L, two congruences ©® and & permute if
for a, b, ¢ € L with a = b (8) and b = ¢ ()

jmply that there exists some d € L. such that

a=d (8) and d = c (8).

It is well known in lattice theory that for any two
ideals I and J of a distributive lattice L, 6(I)
and 8(J) always permute. But this is not true in
general for n-ideals. For example, consider the
3—element chain L = {0, n, 1}.

Let I = {0, n} and J = {n, 1}. Here O = n 6(I)
and n = 1 68(J). But there exists no x € L such that

0 = x 8(J) and x = 1 8(I).

The following theorem shows that the permutability of
those congruences hold when n is complemented in
each interval containing it (i.e., n is cetral when

L is distributive).

2.1.11. Theorem : Let L be a distributive lattice
and n € L. Then for I, J € Ia(L), the following

conditions are eguivalent :
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(i) ®©(I) and ©(J) permute :

(ii) n 1is complemented in each interval
containing it

-
H

(iii) Pn(L) is a lattice.

Proof : (ii) + (iii) follows from 1.1.3.

(ii) = (1i). Suppose (ii) holds. That is
n is complemented in each interval containing it.
Let x, y, 2z € L with x 2 y 2 z, and =x = y ©8(I)

and y = z 8(J). Then

x A iz =y A ia, x Viz = y V iz
and v A jir =z A Ja, vy V iz =z V j2
for some ii, iz € I, i, Jz € J. Now consider an

interval [x A (zV jr)y An, z V (x A iz) V n] and
let t be the relative complement of n in this
interval such that t A n = x A (z V ji1) A n and

t Vn=2zV (x A iz) V n.

Now, t AnA ji =x A (zV Jjai) AnA jr =xAnAj1,
and t VnVjz =2z V (x A i2) Vn V je

y V j2 V (x A iz) V n

jz V I[(y Vx) A (y V i2)] Vn
dz V I[x A (x V iz2)] V n

i

x VnV jz,

1]

which implies x t 8(J).
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Again, t A n A i1 = x A (2 V ji1) An A i,

vy Aix A (2 V j1) A n

ia Ay A z) V (y A ji)l An

"

iis A [z V (z A ju)l A n

=2 An A i1,

and t Vn V iz = 2 V (x A i2) Vn V iz =2z VnV iz,

which implies that t = z &(I).

Moreover, t A n £ x A n and t V n =<

< x Vn implies

t £ x, and t An 2z 2 An and t Vn 2 z Vn implies
z < t. Thus, z £t = x

Now, for any x, v ,z € L, suppose x = y 8(I) and
vy = z 8(J). Then x = x V y 8(1) and

x Vy=xVy Vz 686(J). Then by above there exists
u with x £ u £ x Vy V 2z such that x = u (J) and
u=xVyVz 8(I). Similarly, z =y V z 8(J) and
y Vz=z=yVzVx 8(I) implies there exists v with

< v £y Vz Vx such that =z = v 6(I) and

vy Vz Vx 8(J). Set 8 = u A v. Then

s = u A v=uA(yVzVx) 68J) =u @(J).

But u = x 8(J). Thus, 8 = x 8(J).

Again, s = v Au=v A (xVyVz) 6I) =v 6(I).

But v = z ©(I). Thus, 8 = z 8(I). Therefore 8(I)

and ©6(J) permute which is (i).



49

Now we are to show that (i) = (ii). Suppose (i)
holds, ©(I), 6(J)

permute for all n-ideals 1 and

J. Let Xx £ n £ y. Then 8(x, n), 6(n, y) permute.

Now,

"
I

n 8(x, n) and n =y 8(n, y), so there

exists t with =x = t =< vy

such that x = tle(n, y)

and t = y 8(x, n). This implies x A n =t A n and

t Vn =y Vn, and so t 1is the relative complement

of n in x = n £ y, which is (ii) @
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CHAPTER - 3

"The n—kermnels of Skeletal
Congruences on a Distributive

L.attice”

Introduction : For any © € C(L), 8* denotes the
pseudocomplement of ®. By its very definition

6N % = w, ( the smallest congruence ) if and only if
d < O, & € C(L). A subset T of a lattice L 1is
called join-dense if each =z € L is the join of its
predecessors in T, while a meet—dense subset of L
is defined dually. & € C(L) is called dense if

6* = w. A distributive lattice L with O is called
disjunctive if O £ a < b implies that there is an

element x € L s8uch that x A a = 0 and 0 < x < b.

For a distributive lattice L with 0, I(L) is
pseudocomplemented. The pseudocomplement J* of an
ideal J is the annihilator ideal

J* = {x € L : x AN jg =0 for all j € J}. For any
n—ideal J of a distributive lattice L, we already
defined J+ = {x € L : m(x, n, j) = n

*
for all J € J }.
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Obviously J+ is an n-ideal and J n J+ = {n}. We
call J+, the annihilator n-ideal of J. We define
the n-kernel of a congruence 6 by

Kern® = {x € L : x = n (8)}, which is clearly an

n—ideal.

In [9], Cornish has studied the skeletal congruences
extensively and gave several characterizations of
disjunctive and generalized boolean lattices in terms
of s8keletal congruences. In this chapter we have

extended several results of [9].

In section 1, we have studied the skeletal
congruences ©&* of a distributive lattice L, where
¥ represents the pseudocomplement. Then we have given
a neat description of 8(J)*, where 8(J) is the
semallest congruence of L containing n-ideal J as
a class and showed that J+ 1is the n-kernel of
®(J)*. We have also shown that the n-kernels of the
skeletal congruences are precisely those n-ideals
which are the intersection of relative annihilator
ideals and dual relative annihilator ideals. Finally,
we have shown that for any n-ideal J, &(J) is dense
in C(L) if and only if J is both meet and Jjoin-

dense.
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In section 2, we have shown that Fn(L) is
disjunctive if and only if each dense n-ideal J 1is
both meet and join-dense. Moreover, the n-kernels of

each skeletal congruence is an annihilator n-ideal.

We have also shown that Fa(L) is generalized
boolean if and only if B8(J+) = 6(J)* for any
n—ideal J. Finally, we 8s8how that Fn(L) is

generalized boolean if and only if the map © -+ Kern®
is a lattice isomorphism of S C(L) onto KnSC(L)
whose inverses the map J - 6(J) where J is an

n—ideal.
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1. Skeletal congruences.

For any 8 € C(L), the existence of ©* is guaranted
by the fact that C(L) is a distributive algebraic
lattice. The skeleton

SC(L)

I

{ e C(L) : ® = 8* for some & € C(L)}
{ 8 € C(L) : 8 = 8=* 3}

1

The kernel of a congruence 68 € C(L) is

Ker® = { x € L : x = 0 (8) }. Of course,

Ker (8 (J)) = Jd. For a, b € L, <a, b> denotes
the relative annihilator. That is,

<a, b> = { x € L : x A a £ b }. In the presence
of distributivity, it is easy to show that each
relative annihilator is an ideal. Also note that
<a, b> = <a, a A b>. Dual relative annihilator ideal
<a, b>a can be defined dually. For details on

relative annihilator ideals, we refer the reader to

consult [33].

The following theorem gives a neat description of the
pseudocomplement ax* of 8 € C(L), which is due to
Cornish [9, Th.1.2., 1.3.]. This could also be
deduced from Paperts description in [40, Th.2]1, also

c.f.[2, 3.1. 3.2.1].
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3.1.1. Theorem : For a congruence e on a
distributive lattice L, the following conditions are

equivalent

(i) For x, vy € L, x = y (6*x)

3

(ii) For each a, b € L with a € b and a

b (8),
(x Ab) Va=+(y Ab) V a
(iii) 8x N ® = B8y N O.

If L has a 0, then of course 8. = 8(0, x). Here
our following theorem gives a nice generalization of

a portion of the above result for a lattice L with

0.

3.1.2. Theorem : Let L be a distributive lattice

and n € L. Then for any @8 € C(L), x y (8*) if and

only if @(n, x) N & = 8(n, y) N 8.

Proof : Define a relation ¢ on L as x =y (®) if
and only if ®(n, x) N & = B(n, y) N OB. First we
shall show that ¢ is a congruence relation.
Obviocously, ® is an equivalence relation. Let x = y &.

As ©(a, b) = 8(a A b, a V b) = Oa v p N Ya A b.

So by definition of & we have

8n V x n ?n A x ne = 9n V n vy

v n Ayl 8.
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Now, suppose P =g &(n, x A t) N ® for some t € L.

Then P = g ?n A x At and so

pAnAx At =qgAnAzxAct

This implies p A t A n

a At An® (n, x) n 6

® (n, v) n 8,
and so P At An Ay =qagA+t An A y. Thus
q ¥

P n Ay At )

Again, p =g 8 (n, x A t) N ® implies
pVnV(xAt) =gVnV(xAzt), and so
pVnVx=9gVnVx and p VnV+t=qgVnyVt.
Thus, p Vn= g Vn 8n, x) N 8 = &(n, y) N 6.
Therefore, pVnVy=9gVnVy

and p Vn Vt =9 VnV4t, and so,
(p Vn Vy) AlpVnV=<t)=(gqgVnVy)A (gVnVit)
That is, p»p Vn V (y A t) =g Vn V (y A t).
qQq 8

Thus, yo) anV (y At)  -ttc- (ii)

Combining (i) & (ii), p = q 8(n, v A t).

Hence ©®(n, x A t) N 8 ¢ &(n, v A t) n 8.
Similarly, ®(n, vy A t) N ® ¢ 8(n, x A t) Nn 8,

and so ©O(n, x A t) N ® = B(n, ¥y A t) n 8,

which impliesa x A t = y At (3).

A dual proof of above also gives

x Vt=y Vit (83) for all t € L. Therefore @& is a

congruence
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Now, suppose X = y (8 n ). Then X = y (8) and

8(n, x) N ® = 8(n, y) N 8. Observe that

(x Ay) Vn=xVmn 8(n, x) N ® = 8(n, y) n e,
and so y V n = x V y V n. Thus, x Vn s y V n.
Similarly, we get y V n = x V n, and
hence xVn=yVn ... (1ii)
Again, observe that
(x Vy) An=xAn®Hn, x) N 8 = 8(n, y) N 6.
Thie implies y A n = x Ay An and so y An £ x A n.

Similarly, we get x A n <= y A n,

and so x An=vyAn ... (iv)
Combining (iii) & (iv) we obtain X = y, as L is
distributive. Therefore, e n ¥ = .

To show that & = 6*, let ¥ be any other congruence
such that 8 N ¥ = ®. Suppose x =-y (¥).

Let a

b 8(n, x) N ®. This implies

aVnVx=DbVnVx and aAnAx=5b An A x.

Then a An Ay =aAnAx (¥
= b An A x
=b AnAy (9)
and aVnVy=aVnVzx (9
= b VnVx
= b VnVy (¥).
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Proof : (i) For any two n-ideals I and J of L, we
have ©8(I N J) = &(I) n 6(J). Also,
8(n, x) = 8(n A x, n V x) = O(<x>n).

Then by 3.1.2., x = y (8(J)*) if and only if
8(n, x) N B8(J)

8(n, y) N 8(J) if and only if
8(<x>n) N B8(J) = B(<y>n) N O(J) if and only if
O(<x>n N J) = B(<y>n N J) if and only if

<X>n N J = <y>n N 8, by 2.1.5. if and only if
m(x, n, j) = m(y, n, j) for all j € J.

Hence (i) holds.

(ii) If =x € Kern (® (J)*), then x = n (6(J)*). Then
by (i) above, <x>n N J = <n>n N J i1f and only if
m({x, n, j) = m{n, n, Jj) = n, for all jJ € J and so

x € J+, and thus (ii) holds.

{iii) Consider a, b € L with a =< b. Since 8(a, b)*
= &(a, b)), 0o by [9. lemma 1.1.]1, x € Kern ©8(a, b)*
if and only if (x A b) Va = (n A b) V a

Now, we shall show that (x A b) Va= (nADb) Va is
equivalent to x € <b Vn, a Vn> N <a A n, b A n>a.
Since (x A b) Va = (n A b) Va implies

x AN b < aVn, we have x A (b V n)

(x A b) V (x A n)

1A

a V n,
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x € L and {js1} are its predecessors in J. Let t be an
upper bound of {ji}. Clearly, for any j € J, ji A 3
< x A j = j and so by convexity of J, x A 3 € J.
Thus, x A j= Jx for some k.

Hence, x A j = t for all j € J which shows that

x AN jJ At for all j € J. Since J is larege,

x A j

x At = x, i.e., x £ t. This implies that x is the

supremum of {ji} @

Similarly, a dual proof of above shows that a convex
sublattice J of a lattice L is meet-dense if and only

if x VJj =y VJ for all j € J implies x = y. @
Thus, we have the following corollary.

3.1.7. Corollary : An n-ideal of a distributive
lattice L is large if and only if it is join dense in

L.

3.1.8. Theorem : For any n-ideal J of a distributive
lattice L, 8(J) is dense in C(L) if and only if J is

both meet and join-—-dense.

Proof : Let ©(J) is dense in C(L), i.e., &(J)* = o.

Suppose x A j = y A j for all j € J. Then,
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m(x, n, Jj) = m(y, n, j) for all j € J. Then by
[3.1.4.(1)], we have x =y O(J)* = ©. Hence x = vy.
Again, if x V j = y V j for all j € J, then

m(x, n, J) = (x Vn) A (nV j) A (xVj)

(y Vn) A(nV j) A(y V J), as n € J
= m(y, n, j) for all j € J.

Thus, by [3.1.4.(i)], x = y 8(J)* = © and hence

Xx = y, which s8hows +that J is both meet and

jJoin-—dense.

Conversely, let J be both meet and join-dense and

x =y &J)*. Then by 3.1.4., m(x, n, j) = m(y, n, J)

for all j € J. Thus, (x An) V Jj = m(x, n, j) V J

= m(y, n, j) VJj = (y An) Vjand (x V n) A j

= m(x, n, j) AJj = m(y, n, j) Aj = (y Vn) Aj for

all j € J. These imply x A n = y A n and

x Vn =y V n. Hence by the distributivity of L,

X =y, i.e., 8(J)* = w, and so 8(J) is dense in
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2. "Disjunctive and Generalized Boolean Lattices-

3.2.1. We recall that a distributive lattice L with
0 is disjunctive if 0 £ a < b implies there is an
element x € L such that x A a = 0 and 0 < x < b.
We already know that for any n-ideal J of L, R(J)
denotes the largest congruence having J as its

kernel, where x = y R(J) if and only if for each

r € L, m(r, n, x) € J if and only if m(r, n, y) € J.

The following theorem gives a description of
disjunctive lattices which is mentioned in section 2

of Cornish [8]. We omit the proof as it is very easy

to show.

3.2.2. Theorem : For a distributive laﬁtice L with O,
the following conditions are equivalent :
(i) L is disjunctive.
(ii) For each a € L, (al = (al*=*.
(iii) R(C (0] ) = w. @

We now extend the above result.

3.2.3. Theorem : Suppose L is a distributive lattice
with an element n. Then the following conditions are

eguivalent :
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(i) Fn(L) is disjunctive.

(ii) For each a € L, <a>n = <a>$f

(iii) R({n}) = o.

Proof : (i) = (ii) Suppose Fn(L) is disjunctive and
suppose that <a>n # <a>:+ for some a € L. Then

there exists t € <a>:+ but t € <a>n, which implies
either

aAngst or t £ aVn. In either case

<a»n €€ [t A a A n, ©t V a V n]. S8Since Fan(L) is
disjunctive , there exists (b, c] with

{n} € [b, ¢l ¢ [t A a An, t VaV n] such that

<a>n N [b, ¢J = {n}. This jimplies [b, c] € <a>n4-and

(a An) Vb n = (a Vn) A c. Then

[b, c] [b, cI N [t AaAn, tVaVn]
= [(t AaAn) Vb, (¢t VaVmn) Acl
= [((t An) Vb) AM((a An) Vb),

(¢t Vn) Ac) V((aVn)Aece)l
= [{({t An) Vb) An, ((t Vn) Ac) Vnl
= [(t An) Vb, (t Vn) A c]
= <t>n N [b, c]

++ +
= {n}, as t € <a>n and ({[b, c] € <a>n.

Thus, (b, ¢l = {n}, which is a contradiction.
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Therefore, <ad>n = <a>Sq'for all a € L, which is (ii).
(ii) = (i). Suppose that <a>n = <a>n "for all a € L.

Let {n} € [a, bl € [c, d]l. Then either ¢ < a < n
or n < b < d. Suppose n =< b < d. Then

{n} € <b>n © <d>n. Then <b>n = <b>:§+ and <d>n = <d>;f

. . + + . +
implies <b>n 2 <d>n. So there exists r € <b>n such

that r € <d5;. This implies that m(r, n, b)

L
fa]

and m(r, n, x) # n for some X € <d>n. Since b Z n

and x 2 n, We have m(r, n, b) = (r Vn) A Db

H
o}

and m(r, n, x) = (r Vn) A x. Then
{n} € <m(r, n, x)>n € <d>n,
and [a, bl N <m(r, n, X)>n

= fa, bl N [n, (r V n) A x]

I

[n, (r Vn) A x A b]

i

(n, x A n]
= {n}

which shows that Fn(L) is disjunctive which is (i)

(i) -~ (iii), suppose (i) holds. That is, Fn(L) 1is
disjunctive. Let x = y R({n}). If x # Yy, then

either x Ay < x or x Ay < y. suppose x Ay < x.
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Since L is distributive, either x A YVAn«<xAn
or (x Ay) Vn<xVn. If x Ay An < x A n, then
<X>n € <X>n V <y>n and 80 <X>n N <y>n € <y>n. If
(x A y) Vn < x V n, then <x>n N <y>n € <x>n. Thus
X # y implies either <x>n N <y>n € <X>n oOr

<X¥>n N <y>n & <y>n. Without loss of generality
suppose <X>n N <y>n <C <x>n. Since Fn(L) 1is
disjunctive, there exists {n} c [a, bl € <x>n such
that [a, bl N <x>n N <y>n = {n}. Now, by

1.1.12., [a, b] = <t>n for some t € L.

Thus, <t>n N <x>n N <y>n = {n}, and 80 <t>n N <y>n

= {n}. That is m(y, n, t) = n. Since =x = y R({n}),

80 m(x, n, t) = n, and 80 <xX>n 0N <t>n = {n}. This
implies <t>n = {n}, which is a contradiction.
Therefore, x = y and so R({n}) = @, which is (iii).

Finally, we show that (iii) = (i). Let R({n}) = o.
If Fn(L) is not disjunctive then for
{n} € [a, bl c¢ [c, d], there exists no [e, £f] #+ {n}
such that [a, b] N fe, f£] # {n}. Since
[a, bl ¢ [c, d] so either ¢ < a or b < d, Let c < a.
Chose any t € L. Then for all [t A n, bl,

[t A n, bl n [c, d] # {n} if and only if

{(t An, bl N [a, bl # {n}
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i.e., [t An, bl n [c, d] = {n} if and only if

[t An, bI] n [a, b] = {n}
or [(t An) Ve, b Ad]l = {n} if and only if

((t An) Va, bl = {n}
or [{(t An) Ve, b] = {n} if and only if

{((t An) Va, bl = {n}
i.e., (t An) Ve =n if and only if (t An) Va=n
i.e., m(c, n, t) = n if and only if m(a, n,.t) = n
i.e., ¢ = a R({n}) = ®©, and so ¢ = a, which is a
contradiction. So Fn(L) must be disjunctive, which is

(i). ©®

An ideal J is called dense ideal if J* = (0],
According to Cornish [ 9 ], we have the following

result :

3.2.4. Theorem : In a distributive iattice L with O,
the following conditions are equivalent
(i) L is disjunctive.
(ii) Each dense ideal J is Jjoin dense,
(iii) For each dense ideal J, 8(J*) = 8(J)*.

(iv) For each dense ideal J, 8(J**) = O(J)**.

We call an n-ideal J of L is dense if J* = {n}. The

following theorem is a generalization of above :
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3.2.5. Theorem : Let L be a distributive lattice and

n € L, then the following conditions are eguivalent:
(i) Fn(L) is disjunctive.
(ii) Each dense n-ideal J is both Jjoin and
meet—dense.
(iii) For each dense n-—-ideal J, @(J+) = 8(J)*.

(iv) For each dense n-ideal J, 8(J++) = B8(J)**

Proof : (i) = (ii). Suppose (i) holds. That is,Fn(L)
is disjunctive. Suppose J is a dense n-ideal.
Then J+ = {n}. Let x A j = yv A J
for all j € J, x, y € L.

If x #» y, then either x A y < x or x A y < y.
Without loés of generality suppose X A y < x. Then
either x Ay An < x An or (xAy) Vn<x Vn.
Since n € J, x An=y An. So x Ay An = x A n.
Thus, (x A y) Vn < x V n. Then
{n} € (n, (x Ay) Vnl ¢ [n, x Vn]. Since Fa(L) is
disjunctive, there exists

(n, b] # {n} and fn, bl € [n, x V n]
such that [(n, (x A y) Vnln [n, bl = {n}, which
implies [(x A y) Vnl A b = n. Then for all J € J,

n=mnA (i Vn

= [(x Ay) Vnl Ab A (j V n)

b A [(x Ay AJ) Vnl
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i

b A [(x A J) V n]

b A (xVn) A (i Vn)

= b A (j V n)

= m(b, n, J)
which shows that b € J+ = {n} implies b = n which
is a contradiction. So, X = vy, i.e., J is

join-—dense. Similarly we can show that J is also

meet—dense. Hence (ii) holds.

(ii) = (i). For any a € L, <a>n V <a5; is always a

dense n—-ideal. Since (ii) holds so we have

<a>n V <a>y is both meet and join—dense. Then by

[3.1.81], © = B8(<a>n V <a>:)*

= ( 8(<a>n) V @(<a>m))*

= @ (<a>n)* N O (<a>:)*.
Thus © (<a>m)* ¢ 8 (<a>n)** = 8 (<adn).

Taking the n-kernels on both sides we have
<a>¥t ¢ <a>n due to 3.1.4 (iii). It follows that

<a>:+ = <a>n, which implies that Fn(L) is

disjunctive. Hence (i) holds.
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Since J is dense n-ideal implies J is both meet and

join-dense so we have J* = {n} if and only if
J*+* = L, and J is both meet and join-dense if and only
if 8(J)* = w, so obviously, (ii), (iii) and (iv) are

equivalent. @

The following theorem is a generalization of

[8, Th. 2.2.].

3.2.6. Theorem : Let L be a distributive lattice and
n € L. Then the following conditions are eguivalent:

(i) Fn (L) is disjunctive.

(ii) For each congruence &, 3* = 8 (Kernd)*.
(iii) For each n-ideal J, R(J)* = 8(J)*

(iv) For each congruence %, Keran(®*) = (Kernd®)+.
(v) For each congruence &, Kern(®**) = (Kern®)*+.

(vi) The n-kernel of each skeletal congruence is

an annihilator n-ideal.

Proof - (i) = (ii). Since 8 (Kernd®) < &, so we have
@+ c O8(Kern®)*. So it is sufficient to prove that
N O (KRernd)* = ©. Suppose (i) holds. That is,Fn(L)
is disjunctive. Suppose X =y and

vy (& N 8(Kern®)™) implies x = y ® and

it

X

y @(Kernd)*. If x < v, then either x A n <y An

X
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or x Vn <y V n. Suppose that x V n < y V n. Then
{n} € [n, x V nl e [n, y V nl. Since Fn(L) is
disjunctive so there existe [n, al € Fan(L) with
a >n and [(n, al € [n, ¥ V n] such that
[n, al] N [n, x V n] = {n}. Thie implies
a A (x Vn) = n.

Now, n = a A (x Vn) = a A (y Vn) = a () implies

a € Kern®. Since x = y 8(Kernd)*, so
x Vn =y Vn 8(Kern®)* and since a € Kern®, so we
have m(x V n, n, a) = m(y Vn, n, a). That is,

((x Vn) An) V(a A (xVmn))V(nAa)

= ((y Vn) An) V(a A (y Vn)) V(nAa)
ie., n V((aA(xVn))Vn=mnValVn.
This implies, n = a, which 1is a contradiction.
Therefore, x = y and so & N 8 (Kernd)* = .

Hence (ii) holds.

(ii) = (iii) holds since J is the n-kernel of R(J)

and 8(J).
(iii) = (i). Suppose (iii) holds. Since €({n}) = @
and since (iii) holds so R{({nl})* = 8({n})* = 1

implies, R({n})** = @. Then by 3.2.3. we have Fn(L)

is disjunctive.
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(ii) = (iv) is clear since by 3.1.4.(4ii) O(J)* and

8(J+) have J+ as their n-kernels.
(iv) = (v) and (v) = (vi) are obvious.

(vi) = (i). Suppose (vi) holds. Let {n} ¢ [a, b]

c¢ [c, d], then either ¢ < a = n or n <= b <d. Suppose
c < a £ n. Then by 3.1.4.(1iii)

<c, a»>a = <¢c A n, a A n>a is the n-kernel of a
skeleton congruence. Since (vi) holds, so there is an
annihilator n-ideal K such that <ec¢, a»>a = K = K++.
As a V c 2 a implies a € <c, a>a = K = K++_. Also,
since ¢ < a, c¢c R <c, a>a = K = K++. So there exists
e € K+ such that m(c, n, e) # n. But m(a, n, e) = n
implies a V (n A e) = n. Now, consider the interval
e A n, n]l]. Then fe A n, nl] n [a, bl

) [(e An) Va, n A b]

{n}

Hence Fn(L) is disjunctive, which is (1). ¢

The following theorem is due to Cornish

(9. Th. 2.3.1, which characterizes generalized

boolean lattice; Also c.f.[(28, Th. 61].
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3.2.7. Theorem : Let L be a distributive lattice with

C. Then the following conditions are equivalent
(i) The lattice L is generalized boolean.
(ii) For each congruence &, &* = O(Ker(d*)).
(iii) For each ideal J, O(J)* = O(J*).

(iv) For each ideal J, O(J)** = 68(J**).0®
Now, we extend and generalize the above theorem.
3.2.8. Theorem : Let L be a distributive lattice and

n € L. Then the following conditions are equivalent:

(i) Fn(lL) is generalized boolean.

(ii) For each congruence &, &* B(Kernd®*).

(iii) For each n-ideal J, &(J+)

8(J)*.

(iv) For each n-ideal J, &(J++) = 6(J)**.

Proof : (i) = (ii). Suppose (i) holds. Let ¥ be any
congruence on L. Then by 2.1.7., ¥ = 8 (Kern¥). Thus

with ¥ = ®*, we see that (i) implies (ii).

(ii) = (iii) follows from [3.1.4.] and

(iii) = (iv) is obvious.
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(iv) = (i). Suppose (iv) holds. Put J = <a>n V <a>nt

Since J*+* = L, (iv) implies ©(<a>n V <a>:)** = 1. It
follows that ©8(<a>n)* N 9(<a>:)* = @, and so
8(<a>n)* € B(<a>n)** = 8(<a>n). Now by 3.1.4.

<a>; = Kern®(<a>n)*. Then, 9(<a>§) < B8(<a>n)*, and so
8(<a>n) = B(<a>n)** ¢ 9(<a>$)*. Therefore,

B(<a>n) = 9(<a>:)*. But <a>: = <a>:++, so0 by (iv)
O(<a>n)* = 9(<a>$)** = 9(<a>:++) = 8 (<a>: ).

Now, let n = a < b. Then for all j € <a>n = [n, al,

m(a, n, J) m(b, n, j) = Jj.

Thus a = b 8(<a>n)* = 9(<a>:)_ Then a Vr = b Vr

for some r € <a>sm . So b = a V (b A r). Again
r € <a>h implies (a A r) V (a An) V (r An) = n,
and 80 a A r < n. Thuse a A r = a Ar An=1r An.

Now, put p» = (b A r) Vn. Then n = p = b. Also

p A a = (a bAr) V(aAn)=(aAr)V(aAn)

> >

= (r n) Vn=n,
and p Va = (bAr) VnVa=5bVn=o>».

Hence [n, bl is complemented for each b € L, (b 2 n).
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On the other hand, let b £ a < n. Then for all

J € <a>n, m(a, n, J) = m(b, n, §J) = j. So,

a b O(<a>n)* = 9(<a>;). Then a dual proof of above

shows that [b, n] is also complemented for each

b = n. Hence by [1.1.5.], Fn(L) is generalized

boolean. @

The skeleton SC(L) = { & € C(L) : & = &* for some

¢ € C(L) } = { 8 € C(L) : ® = 8** } is a complete
boolean lattice. The meet of a set {.91 } ¢ 8C(L) is
N ®+ as in C(L), while the join is ¥ 81 = (V 841)=**
= (N 8+1)* and the complement of & € SC(L) is ©*. The
fact that S8SC(L) is complete follows from the fact
that SC(L) is precisely the set of closed elements
associated with the closure operator 6 - 6** on the
complete lattice C(L) and SC(L) is boolean because of
Gliveanko s theorem, c.f. Gridtzer [15, Th.4. p.p.58].
The set KSC(L) = { Ker & : ® € SC(L) } is closed
under arbitrary set theoretic intersection and hence
is a complete lattice. Also, for any n € L,

EnSC(L) = { Kern® : © € SC(L) } is a complete

lattice.
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The following two theorems are due to Cornish

f9, Th. 2.4. & 2.5_.], Which are extensions of the
classical theorem of Hashimoto [15, Th. 8, p-891]1 and
also characterize generalized boolean lattices and

give a one-to-one correspondence between ideals and

congruence relations.

3.2.9. Theorem - Let L be a distributive lattice with
0. Then the following conditions are egquivalent :
{i) The lattice L is disjunctive.

(ii) The map ® - Ker® of SC(L) onto KSC(L) is
one-to-one and so is a one-to-one
correspondence.

(iii) The map 8 - Ker® of SC(L) onto KSC(L)
preserves finite joins.

(iv) The map © - Ker® is a lattice isomorphism of

SC(L) onto KSC(L), whose inverse is the map

J = 8(J)** @

3.2.10. Theorem : Let L be a distributive lattice
with 0. Then the lattice I is generalized boolean if
and only if the map & - Ker® is a lattice isomorphism

of SC(L) onto KSC(L), whose inverse is the map

J - 68(J). ®
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We conc lude this section with the following
generalizations of the above theorems.
3.2.11. Theorem : Let L be a distributive lattice

with an element n. Then the following conditions are
equivalent
(i) Fn(L) is disjunctive.

(ii) The map 8 = Kern® of SC(L) onto KaSC(L) is
one-to—-one and so is a one-to-one
correspondence.

(iii) The map ® =+ Kern® of SC(L) onto KaSC(L)
preserves finite Jjoins.

(iv) The map @ - Kern® is a lattice isomorphism
of SC(L) onto KnSC(L), whose inverse is the

map J = 8(J)** for any n-ideal J in L ¢

Proof - Firstly, we show that (i) = (iv). Suppose (i)
holds, i.e., Fn(L) is disjunctive. Then by 3.2.6.(iv)
we have KnSC(L) = { J : J = J+*+ , J is n-ideal 1}.
Also, by 3.2.6.(ii) for any & € SC(L),

§ ~ p** = @(Kern®)*r. Thus, the map 8 - Kern® of
SC(L) onto KnSC(L) is one-to-one. Clearly this map
preserves meets and it also preserves joins since for
any 8, & € SC(L) 8 Y & = (8 n &*)*

and Kern(® ¥ &) = Kern (8* N &*)x*
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[Kern (8* N $*)]+ = [(Kern®)+ n (Kernd )+ ]+

H

(Kern®)++ V (Kern®)++ = Kern(8**x) V Kern(®*=*)

Kern® V Kernd.

Thus, 8 =~ Kern® is a lattice isomorphism. Also, note
that, Kern(®8(J)**) = (Kern®(J))++ = J++ = J for any
n-ideal J € KnSC(L), while 8(Kernd®)** = &** = & for
any ® € SC(L). Thus J - 8(J)** is the inverse of

8 - Kern®. Hence (iv) holds.

(iv) = (ii) is obvious.

(ii) = (iii). Suppose (ii) holds, i.e., 8 = Kern® is
one .to-one. Then it is a meet isomorphism of the
lattice SC(L) onto the lattice KnSC(L). It follows
that @ - Kern® is a lattice isomorphism and so (iii)

holds.

Lastly, we shall show that (iii) = (i). Suppose (iii)
holds. Then © -+ Kern® is a lattice isomorphism of
SC(L) onto KnSC(L). Hence KnSC(L) must be boolean. It
is not hard to see that Fn(L) 1is a join-dense
sublattice of KnSC(L). Since KnSC(L) is boolean, so

Fn(L) is disjunctive. Hence (i) holds.
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3.2_.12. Theorem : For a distributive lattice L with

an element n, Fn(L) is generalized boolean if and
only if the map 8 + Kern® is a lattice isomorphism of
SC(L) onto KnSC(L), whose inverse is the map

J - 8(J), J is an n-ideal of L.

Proof : Suppose Fn(L) is generalized boolean. Then
Fn(L) is disjunctive and so by 3.2.11. the inverse of
® - Kern® is J - 8(J)**. But due to 3.2.8.,

8(J)y** = 8(J*+*+) for any J € KnSC(L). So due to
3.2.6., J = J++. Hence J =+ 8(J) is the inverse of

8 ~ Kern®.

Conversely, let J = 8(J) is the inverse of 8 - Kern®.
Then by 3.2.11., PFn(L) is disjunctive and so by
3.2.6., Kern(8(J)**) = [Kern(8(J))]*++ = J*++ for any
n—-ideal J of L. Then by 3.1.4., we have J++ € En8SC(L)
We must also have, 8(J*++) = 8(Kern(8(J))**) = O(J)*=*.

Then due to 3.2.8., Fn{(L) is ieneralized boolean.@®
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CHAPTER-4
Standaryrd n—ideals
Introduction : Standard elements and ideals 1in a

lJattice were introduced by Gradtzer and Schmidt (18].
Some additional work has been done by Janowitz [29].
While Fried and Schmidt [14] have extended the idea

of standrad ideals to convex sublattices.

According to Grdtzer and Schmidt {18], if a is an
element of a lattice L, then
(i) a is called distributive if a V (x A y)
= {a Vx) A (a Vy), for all x, y € L.
(ii) a is called standard if x A (a V y)
= (x A a) V(x Ay), for all x, y € L.
(iii) a is called neutral if for all x, ¥ € L,

(a) x A (a V vy) (x A a) V. (x Avy),

i,e, a is standard

(a A x) V (a Ay).

and (b) a A (x V y)

Gratzer [17] has shown that an element n in a lattice

L is neutral if and only if
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(n A x) V(n A y) V (x A y)

= (n Vx) A (nV v) A (x V V),
for all x, y € I,.
An ideal S of a lattice L is called standard if it is

a standard element of the lattice of ideals I(L).

Fried and Schmidt [14] have extended the idea of
standard ideals to convex sublattices. Moreover,
Nieminen in ([37] has discussed on distributive and
neutral (convex) sublattices. On the other hand, in
a more recent paper Dixit and Paliwal [12], [13] have
established some results on standard, neutral and
distributive (convex) sublattices. But their
technique is guite different from those of the above
authors. We denote the set of all convex sublattices
of L by Csub(L). According to [14] and ([37], we
define two operations A and V (these notations have
been used by Nieminen in [37] on Csub(L)) by

A AB=<{a ADb : ae€ A, b € B}>
and AVEB=<{aVb: aeA, be B}>
for all A, B € Csub (L), where <H> denotes the convex

sublattice generated by a subset H of L.

If A and B are both ideals then A V B and A A B are

exactly the join and meet of A and B in the ideal
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in general case neither A ¢ A V B
and A A B ¢ A are valid.

lattice. However,

For example if A = {a} and

B = {b}, then both inequalities imply A = B.

According to [18], a convex sublattice S of a lattice

L is called a standard convex sublattice (or simply

a "standard sublattice") if
I A <§,K> = <I A S, I A K>
and I V<S,KE> = <I VS, I VK> hold for any pair
{I,K} of Csub (L) whenever neither S N K nor
I N <S,K> are empty, where N denotes the set

theoretical intersection.

We call an n-ideal of a lattice L, a standard n-ideal
if it 1is a standard element of the lattice of

n—ideals In(L).

In section 1, we give a characterization of standard
n—-ideals using the concept of standard sublattice
when n is a neutral element. For a neutral element n
of a lattice L, we prove the following :

(i) an n-ideal is standard if and only if it is
a standard sublattice.

(ii) the intersection of a standard n-ideal and

n-ideal I of a lattice L is a standard n-ideal in I.
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(iii) the Principal n-ideal <a>n of a lattice L

is a s8tandard n-ideal if and only if a V n is

standard and a A n is dual standard.

(iv) for an arbitrary n-ideal 1 and a standard

n-ideal S of a lattice L, if I V § and I N S are

principal n-ideals, then I itself is a principal

n—ideal.

In section 2, we have shown that if n is a neutral
element and (n] and [n) are relatively complemented,
then every homomorphism n-kernels of L is a standard
n-ideal and everﬁ standard n-ideals is the n-kernel
of precisely one congruence relation. We have also
shown that for a relatively complemented lattice L
with 0 and 1, C(L) is a boolean algebra if and only
if every standard n-ideal of L 1is a principal

n—ideal.

Finally, we prove two isomorphism theorems on
standard n—-ideals which are extensions of the
isomorphism theorems on standard ideals given by

Gritzer and Schmidt [18].
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1. “"Standard n--idealg"”

According to Fried and Schmidt £14, Th.-13 we have

a fundamental characterization theorem for standard

convex sublattices

4.1.1. Theorem - The following conditions are

egquivalent for each convex sublattice S of a lattice

L

(a) S is a standardg sublattice,

(B) Let K be any convex sublattice of I such
that K N S # 8. Then to each x € <5,K>, there exist
81, 82 € 5, ai, az € K such that

x = (x A s1) V (x A ai1) = (x V s2) A (x V az)

(B”) For any convex sublattice K of L and for
each s2, s81” € S, there are elements si,sz2" € §, a1,
az € K such that x = (x A 81) V (x A (a1 V s2))

= (x Vs2") A (x V (az A B817)),

(y) The relation O[S] on L defined by
x = y (O8[S]) if and only if x A y = ((x A y) V t) A
(x V y) and x Vv = ((x V y) A s) V (x A y) with

suitable t, s € S, is a congruence relation.



Following result which is due to [14] shows that the

concept of standard sublattices and standard ideals

coincides in case of ideals.

4.1.2. Proposition. [14, Pro.2] An ideal S of a

lattice L is standard if and only if it is a
standard sublattice.

Recall that an n-ideal I of a lattice L is called a
standard n-ideal if it is a standard element of

In(L), the lattice of n-ideals.

The following theorem gives an extension of

proposition 4.1.2. above.

4.1.3. Theorem : For a neutral element n of a lattice
L, an n-ideal is standard if and only if it is a

standard sublattice.

Proof : First assume that an n-ideal S of a lattice
L is a standard sublattice. That is, for all convex
sublattice I & K of L with S n K # & and I n <S, K>
# &, we have, I A <S, K» = <I A S, I A K> and

I V <S, kK> = <I Vs, I V K>.

We are to show that § is a standard n-ideal in Ia(L).
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That is, for all n-ideals I, K € In(L)

I N (S VZK) = (1In S) V(I n K).
Clearly, (I N 8) V (I NXK)cIn(sYVK).
So, let x € I N (S VK). Then x € I and x ¢ S VK, so
by theorem 4.1.1., we have

x = (x A s81) V (x A ai) = (x V g2z) A (x V az),

for some 81, 82 € S and a1 az € K.

Now, X

(x A s1) V (x A ai1)

A

[(x A s1) V(x An) V (81 An)l V [(x A a1)
V(x An) V (a1 A n)]
= m(x, n, 81) V m(x, n, ai),
that is, x € m(x, n, 81) V m(x, n, azi)
Again, x = (x Vs82z) A (x V az)
> [(x Vaz) A (x Vn) A (82 Vn)l A
[(x V az) A (x Vn) A (az V n)]
= me(x, n, 8z2) A md(x, n, az)
= m(x, n, 82) A m(x, n, az), as n is

neutral.

Hence m(x, n, sz) A m(x, n, az) £ x = m(x, n, s1) V
m(x, n, ai). Which implies x € (I n S) V (I n K).

Thus, I n (S V K) = (L n S) V (I n K) and so S is a

standard n-ideal.
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Conversely, suppose that n-ideal S of a lattice L is
standard. Consider any convex sublattice K of L such
that S N K = &. Since S is an n-ideal, clearly
<S8, K> = <8, <K>n>. Let x € <S8, K>. Then
x € <8, <K>n> = S V <K>n. Then x € <x>n N (S V <K>n)
= (<x>n N 8) V (<x>a N <K>n),as S is a standard
n—ideal. This implies
<X>n = (<xX>n N 8) V (<x>n N <K>n)  ........ (1)
Since x V n is the largest element of <x>n, 80 we
have x Vn = m(x Vn, n, 81) Vm(x Vn, n, t)
for some 8 € 5, t € <K>n.
= ((x Vn) A s1) V ((x Vn) At) Vn
= (x A s1) V (x t) V n, as n is neutral.
< t1 V n for some ti1 € K.

Now, t € <K>n implies

= (x A B1)

A
t
Then x Vn < (x A s1) V (x A (t2 V n}) V n
V (x A t1) Vn
V

< (x A (82 n)) V(x A t1) Vn = x V n.
which implies that
«x Vn=(x A (81 Vn)) V (x A ti) V n.

Then x = x A (x V n)

"

«x A [(x A (81 Vn)) V (x A ti) V nl

[x A {(x A (81 V n)) V (x A t1)}31 V (x A n),

as n is neutral.
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]

(x A (81 Vn)) V. (x A t1) V (x A n)

I

(x A (81 V n)) V (x A t1),

where 81 Vn € §, t1 € K.

Since x A n is the smallest element of <X>n, using
the relation (1) a dual proof of above shows that

x = (x V (82 An)) A (x V t2) for some s82 € S,
tz € K. Hence from Th. 4.1.1. (B) we obtain that S is

a standard sublattice. @

Now, we give characterizations for standard n-ideals
when n is a neutral element. We prefer to call it the

Fundamental Characterization Theorem” for standard

n—-ideals.

4_.1.4. Theorem : If n is a neutral element of a
lattice - L. Then the following conditions are
egquivalent
(a) S is a standard n-ideal;
{b) For any n-ideal K,
S VK= {x : x = (x A s1) V (x A ki)
= (x A 81") V (x A kr1") V {(x A n)

(x V s82) A (x V k2)

and X

(x Ve2") A (x V kz2") A (x V n)

I

for some si, 82, B1 , 82 € 5; ki, kz, ki7, k2" € K }.
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(c) The relation 8(S) on L defined by x =y 8(S)

if and only if x Ay = ((x A y) V t) A (x V y) and
x Vy=((xVy)As)V(xAy), for some t, s ¢ S,

is a congruence relation.

Proof : (a) = (b). Suppose S is a standard n-ideal
and K be any n-ideal. Let x € S V K. Since K is also
a convex sublatice of L, we have from the proof of
theorem 4.1.3., x = (x A (81 Vn)) V (x A t1)

= (x V(s2z An)) A (x V tz) for some s1,
8z € S; ti1, t2z € K. Since n is neutral, from above we
also have x = (x A 81) V (x A t1) V (x A n)

= (x Vsez) AN (x V tz2) A (x Vn).

Thus (b) holds.

(b) = (c).

Let (b) holds. Let 8(S) be defined as x = ¥ 8(s) if
and only if x Ay = ((x A y) Vt) A (x V y) and

x Vy = ((x Vy) As) V(x Ay). For x 2 vy,

v = (y Vt) Ax and x = (x A 8) V vy, for some

t, s € S, with s 2 t.

Obviously, 8(S) is reflexive and symmetric. Moreover,
x = y 68(8) if and only if x Ay = x Vy 8(8). Now

suppose x = y 2 z wWith x =y 8(s) and v = z 8(85).
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Then x

(x A s1) V y,

«
I

(y V ti1) A x and

<
H

(y A B2) V z, z

(z V t2) Ay for some

81, B2, ti1, tz € §.

Then =x = (x A s1) Vy = (x A s1) V (y A sz) V z
£ (x A s1) V (x A s2) V z

A

(x A (81 V s82)) V z < x,
which implies x = (x A (s1 V s82)) V z.
Similarly, we can show that z = (z V (t1 A t2)) A x.
This shows that x = z 8(S).
For the substitution property , suppose x Z y and
Xx =y 8(S). Then x = (x A s8) Vy and ¥y = (y V t) A x,
for some 8, t € S. From these relations it is easy to
find 8, t € 8 with t £ s satisfying the relations.
Then for every z € L, vy ANz = x A z
and vy Az =t V (y AN z2).
Therefore, v A z = (t V (y A z)) A (x A z)

< (t Vy) A (x A 2)
((t Vy)y Ax) A z

=y A z.
This implies, vy A z = (t V ( ¥y A z)) A (x A z).
Let K be the n-ideal <t A y A z, y>n.
Since 8, t Ay Az € SV K, so by the convexity of

S VK, tAyAz=stAy=t Ax=e=s A x = 8 as

t £ s.
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This implies that

8 A x € S V K. Hence x = (8 A x) Vye s vVvKk.

Also, by the convexity of § V K, t Ay Az <y Az <

x Az = x, implies y A z, x ANz € S VK. Then by (b)
we have
x ANz = (x ANz As1) V(xAzAKki)V (x Az A n)
for some 81 € S, ki € K.
= (xAzAs1) V(xAzA(yVn)) V(xAzAn),
as y V n is the largest element of K.
= (x Az As1) V(v Az)V ((x Az An),
as n is neutral.
= ((x A z) A (81 Vn)) V (y A z),

where 81 V n € 8. Therefore, x A z = y A z 8(S).

Dually we can prove x V z =y V z 8(S). Therefore
using [15. Lemma B8.p-74], ©6(S) 1is a congruence

relation. Hence (c¢c) holds.

Finally, we shall show that (c) = (a).
Let (c) holds. For any n-ideals I,K of L, obviously
(I NnsS)YyV(InIK)e<cIn (s VK). To prove the reverse

inequality, suppose x € I n (S V K).
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Then x € I and x € S V K. Since x € S VK, it is easy

to find the elements Bi1, 82 € 5, ki, kz € K with

81 = n = 82 and ki1 < n < ko such that

81 A ki1 £ x <82 V kso.

Now,81 = 82 8(S) implies s2 V k2 = 81 V k2 = ko 8(S).
Since x = 82 V k2, we have x = x A ( 82 V k2)
= x A kz O(S). Then by (c)
x = (x A 8) V(x A kz) for some s € S.

£ m(x, n, 8) V m(x, n, kz).

Also, 81

82 B(S) implies s1 A ki1 = s2 A ki

i

= ki 8(5). So, x = x V (81 A k1) x V ki ©(S).
Applying (c) again we have
x = (x Vt) A (x V ki) for some t € S.

2 md4(x, n, t) A md(x, n, ki)

= m(x, n, t) A m(x, n, ki), as n is neutral.
Hence x € (I n S) V (I n K).
This implies I N (S V K) = (I n S) V (I n K).

Therefore (a) holds. @®

4.1.5. Corollary : Suppose n is a neutral element of
a lattice L. Then for a standard n-ideal S of L, ©(S)

is the smallest congruence relation of L cotaining S

as a class.

Proof - Clearly any two elements of 8 are related by
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8(S). Now suppose X

vy 8(S) with x > y.

Then by theorem 4.l4we have y = (y V t) A x and

x = (x A 8) Vy for some s, t € §. Suppose y € S.

Theny5x=(x/\s)VySst.Then,bythe

convexity of S, x € S. On the other hand ,if x € s,

then x 2 y = (y Vt) A x 2 t A x implies ¥ € S. Hence

8(S) contains S as a class.

Let ® be a congruence relation containing S as a

class. We have x = y 8(S) with x 2 vy,
x = (x As) Vy and ¥y = (y V t) A x for some
8, t € 8.

Now, x = (x As8) Vy = (xAn) Vy2od
= (x Vy) A (nVy),as n is neutral.
=x A (nVy)=xA(yVi)d=y o.
This implies ©(S) ¢ &. Hence ©8(S) is the smallest

congruence containing S as a class. @

4.1.6_ Corollary : If n is a neutral element and S
and T are two standard n-ideals of a lattice L, then

S N T is a standard n-ideal.

Proof : Clearly S N T is an n-ideal. Suprose

x =y (8(8S) n 8(T)) with x 2 y. Since x = V¥ 8(Ss), so
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we have x = (x A 81) V y and y = (y V s82) A x, for

some 81, 82 € 5. Here we can consider sz < n < 81

Now x

]

y 8(T) implies x A 81 = y A s1 8(T), and so
there exists ti € T, ti1 2 n such that x A s1 = ((x A

s81) A t1) V (y A s81). Then x = (x A B1) Vy = [((x A

g1) A t1) V (y A 81)] V ¥y

= (x Asax A ta) Vy=(xA (s1 A t1)) Vy.

Again x = y 8(T) implies x V 82 = y V 82 O(T). Then

we can find tz € T with t2 £ n such that

y V2 = ((y V s2) V t2) A (x V s82). Then

y = (y Vsez) A x = [((y Vsez) Vta) A (x Vs82)] A X
= (y Vsz V tz2) A (x V s2) A x

= (y V (82 V t=2)) A x.

1A

Now, n < 81 A t1 81 and n € 81 A t1 £ ti implies
81 A t1 € S N T. Also B2z < 82 V t2 < n and

tz £ 82 V t2 £ n implies 82 V t2 € § N T. Hence

x =y 6(S N T). Therefore (S N T) = 6B(S) N 6(T).
Hence by 4.1.4. S N T is also a standard

n-ideal. @

4_1.7. Corollary : Let n be a neutral element of a
lattice L and S be a standard n-ideal. Then

x = y @8(S) if and only if <x>n V § = <y>a V S.
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Proof : Let x = y 8(S). Then for x > Y, we have

x = (x A s1) Vyand vy = (y V 82) A x for some
81, 82 € S. This implies x V 81 = y V 81,
x Asz2 = y A s2. Now, vy £ x £ x Vs1 =y V 81, which

implies x € <y>n V S. On the other hand,

Xx A s2 = y AN 82 £ y £ x implies y € <x>n V S. Hence
<X>n V S = <y>n V S. Conversely, suppose that
<x>n V 8 = <y>n V S. As x € <x>n V S = <y>n V S, so0
by 4.1.4., x = (x A y1) V (x A 8),
for some yi1 € <y>n, 8 € S.

= (x A (y Vn)) V (x A 8)

= (x A y)V(xAn)V (x A s)

=y V[I[x A (nV s)]l, as n is neutral.
Also, y € <y>n V S = <x>n V S. Then applying 4.1.4.
again we have y = (v V x1) A (y V 87),

-

for some X € <X>n, 8 € S.
Then v = (y V (x A n)) A (y V 8&87)
= (y Vx)A(y Vn) Ay Ve’
= (x A fy V (n A 8°)]}, as n is
neutral. Since n V s, n A 8~ € S, so we have

x =y 8(S). ®

We know from [18] that the intersection of a standard

ideal with an arbitrary ideal I of a lattice L is

standard in I.
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Following lemma is a generalization of this result.
4.1.8. Lemma : The intersection of a stanaard n-ideal
and an n—-ideal I of a lattice L is a standard n-ideal

in I, where n - is a neutral element.

Proof : Let S be a standard n-ideal of L. We are to
show that 8§ N I is a standard n-ideal in I. Consider
an n-ideal K of I, which is also an n-ideal of L.
Now, let x € (S n I) V K ¢ § V K. Since § 1is
standard, so we have by theorem 4.1.4.,

x = (x N 8) V(x A k), for some s € S, kK € K. By the
monotonity, we cén choose both 8 2 n, k 2 n.

Put 8° = (x V?%){A s. Then 8~ = B ‘

and n = (x Vin) A n =< (x Vn) ANs = 87 = X V n.
Since k V n e'i,gso by convexity of S and I,

s~ € § n I. Aléoﬁx A s” = x A s. Thus

x = (x AN 8°) Vi(x AN k), for some s € S n I, k € K.

Also, by duality we get x = (x Vs °) AN (x VEk’) for
some s~ € SN I, k” € K. Hence by theorem 4.1.4., we

have S N I is standard in I. o
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4.1.9. Lemma : Let n be

a mneutral element of a

lattice L and ¢ is a homomorphism of L onto a lattice

L° such that &(n) = n“, n"€ L~

Then for any standard

n-ideal I of L, &(I) is a satandard n°-ideal of L.

Proof : Clearly &(I) is a sublattice of L~.

Let p £ t = g, where p, q € ¢(I), t € L°. Then
P = ¢(x) and q = ®(y) for some X, ¥y € I. Since ¢ is
onto, t = ®(r) for some r € L.

Then &(r) = &(r) A &(y) = &(r A y)

and &(r) ®(r) V &(x)

d(x) V &(r A y)

Il

2(x V (r A y)).

Now, x = x V (r A y) £ x V y and 8o by convexity we
have x V (r A y) € I. Thus t = &(x V (r A y)) € &(I).
Hence ®(I) is a convex sublattice of L~°.

-

. Moreover (n) = n” implies ®(I) is an n"-ideal of L~.

For standardness, we s8hall prove (b) of theorem
4.1.4. for ®(I). Let K° be any n”"-ideal of L. Then
K- = ®(K) for some n-ideal K of L.

Let y € &(I) V &(K) € (I V K). Then y = &®(x) for
some x € I V K. Since I is a standard n-ideal of L,

using (b) of Theorem 4.1.4.
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we have x

(x A i1) V (x A k1) V (x A n),

for some i € I, ki € K

li

(x Viz) A (x V ka) A (x V n),

for some iz € I, ks € K.

Then vy

P(x)

@(x A i1) V ®&(x A k1) V &(x A n)

= [2(x) A 2(i1)]1 V [&(x) A &(k1)] V [&(x) A &(n)]
= [y A 2(i1)]1 V [y A &(k1)]1 V [y A n"1.

®(x)

Also, y

Ly V &(iz2)] A [y V 3(k2)] A [y V n-].
Then using (b) of theorem 4.1.4. again, &(I) is a

standard n"-ideal of L. @

From Gratzer and Schmidt [18], we know that ideal (s]
is standard if and only if 8 is standard in L. One
may ask the question whether +this is true for
Principal n-ideal when n is a neutral element. In
fact this not even true when L is8 a complemented
lattice. Figure 4.1.1. and Figure 4.1.2 exhibits the
complemented lattice L, where n is neutral. There
<a>n is standard in In(L) but a is not standard in L.

Moreover b is standard in L but <b>n is not standard.
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n

b <a>»n

c
< c»n
ac <b>n d
o
L <n >»
I, (L)
Figure 4.1.1. Figure 4.1.2

But we have the following result :
4.1.10. Lemma : For a neutral element n, the

principal n-ideal <a>n of a lattice L is a standard
n-ideal if and only if a V n is standard and a A n is

dual standard.

Proof : First suppose that a V n is standard and

a A n is dual standard. We are to show that <a>n is
a standard n-—-ideal. Let us define a relation
O(<a>n) on L by x = y 8(<a>n) if and only if

((x A y) Vt)y Aix V y)

x AN vy

and x V vy ((x Vy) As)y V(x A y)

for some t, 8 € <a>n.
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For x 2 y, we have

X = (xAs8) Vyand y = (y V. t) A x. Clearly O8(<a>n)

is reflexive and symmetric. Also x = y B(<a>n) if

and only if x Ay = x V y B(<a>n). Now,let x > y =2 z

and X = y 8(<a>n) and y = z O(<a>n). Then

p.¢

(x As) Vy, vy (y V) A x and

vy =(y Ap)Vaz, 2z = (z Va) Ay,

for some 8, t, p, g € <ad>n.

Now, x = (x A s8) V y
= (x As) V(y Ap) V z
= (xAs)y V(xAp)Vz=z
= [xA (s VopP)]lVz=sx,
which implies x = (x A (s V p)) V =z.
Also, z = (z V g) Ay
= (z Vag) Ay Vt) A x
2 (z Vag) A (z V &) A x
2 (z V (a At)) Ax 2 z,
which implies z = (z V (g A t)) A x.
Hence x = z 8(<a>n).

To prove the substitution property,let x = y 8(<a>n),

x > y and r € L. Then x = (x A 8) V y and
y = (y Vt) A x for some 8, t € <a>n. Since
8, t € <a>n, a A n £ 8, t S aVnn. Set 58 = a V n,

t = a A n.



Then we have

»
1l

(x A s) Vy

= x AN (y V a

Therefore, x A r

On the other hand,

and 8o y A r

e
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y VIx A (aV n)j

Vn), as a V n is standard.

x Ar A(y VayVn)

(x Ar Ay) V [(x A r) A (a V n)j

[(x

Yy =

Il

Ar) A(aVn)lV(y A rj,
(y V. t) A x
(y V. (a A n)) A x

[(y V(a An)) A x] Ar

(v V. (a An)) A (x A )

[y Ar) V(aAn)l A(x Ar)

=2y A r.

Thus, y A r = [(y A r)

Therefore, x A r = y A

Again, y = (y V t) A x
= y V (x A

standard.

Therefore, y V r

n

On the other hand,

and so, x V r

1

1A

A

y V

V.(a An)l] A (x A r).
r 8(<a>n).
= x AN (y V (a A n))

(a A n)), as a A n is dual

r V(x A (a A n))

(y Vr Vx) A ((y Vr) V (aAn)),

(x Vr) A {(y Vr) V (a An)l.

X =

(x A s) V y
(x A (a Vn)) Vvy

(x A (a Vn)) VyVr

[(x Vr) A(aVmn)lV(yVr)

x V r.
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(a V. n)l V (y V r).

y Vr 8(<a>n). Hence B8(<a>n) is a

congruence relation.

Thus x V. r = [(x V r) A

Therefore x V r =

Thus by theorem 4.1.4., <a>n is

a standard n—-ideal.

Conversely, suppose that <a>n is a standard n-ideal.

We shall show that a V n is standard and a A n is
dual standard. Since <a>n is standard so for any
principal n-ideals <x>n, <y>n we have
<x>n N (<a>n V <y>n) = (<x>n N <a>n) V (<xX>n N <y>n).
Then by some routine calculations, we get
[(x An) V {(a An) AN(y An)}, (x Vn)A{(aVmn)V
(y Vn)rl = [{(xAn)V (aAn)}A

{(x An) V(v An)}, {(x Vn) A(aVmn)}

V{(xVn)A(y Vn)}il  ...-. (1)
This implies, (x Vn) A {(a Vn) V (y V n)}
= {(x Vn) AN (a Vn)} V {(x Vn) A (y Vn)l}.

Since n is neutral, so

L.H.S. = (x Vn) A {(a Vn) V(yVn}
= (x Vn) A(aVnVy)
=[x A (aVnVy)lVn,
and

R.H.S. = [(x Vn) A (avn)JV[(xvn)A(yVn)]
- n V (x A (a Vn))V(x Ay) Vn,
=(x/\y)V(x/\(avn))Vn.
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Let A=x/\(yV(aVn))
and B =.(x Ay) VvV (x A (a V n)).
Now, AAn=x A (yV (a2 Vn)) An = x A n

and B An

((x A y) V(x A (aV n)l An =

= x A n.

So by neutrality of n, A = B. That 1is,

x A (y V (a Vo)) = (x A y) V(x A (a V n)).

This implies a V n is standard.

Also, from (1) we get

(x An) V{(a An) A(y An)} = {(x A n) V (a A n)}
A {(xAn) V(yAn)}.

Then applying the similar technique we can show that

x V((aAn) Ay)-= (xV(aAn)) A (xV V).

This implies a A n is dual standard. @

In a distributive lattice, it is well known that if
the infimum and supremum of two ideals are principal,
then both of them are principal. In (18, lemma 8.1,
Grédtzer and Schmidt have generalized that result for
standard ideals. They showed that in an arbitrary
lattice L, if I is an arbitrary ideal and S 1is
standard ideal of L, and if I V 8 and I A S are
principal, then I itself is a principal ideal. The
following theorem is a generalization of their

result. To prove this we need the following Lemma
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4.1.11. Lemma - Let n be a neutral element of a

lattice L. Then any finitely generated n-ideal which

1s contained in a principal n-ideal is Principal

Proof : Let [b, c] be a finitely generated n-ideal

such that b € n £ ¢.

Let <a>n be a principal n-ideal

which contains [b,c]. Then a An < b < n < c £ aVn.

Suppose t = (a V b) A ¢c. Since n is neutral, we have

n At n A {(a Vb)) Acl] =nA (aV b)

(n A a) V (n A Db)

nAb = b,
and n V t

n V {{(a Vb)) A c]

(n VaVb) A(nVec)

1l

(n Va) A c = c.
Hence {b, ¢} = {(n A t, n V t] = <t>n.

Therefore [b, ¢l is a principal n-ideal. @

4_1.12. Theorem : Let I be an arbitrary n-ideal and
S be a standard n—ideal of a lattice L, where n is
neutral. If I V S and I N S are principal n-ideals,

then I itself is a principal n-ideal.

Proof - Let I VS8 = <a»>n = [a A n, a V n]l and
I NS = <b>, =[bAn, bVnl. Since S is a standard

n-ideal, then by theorem 4.1.4.,
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o
<<
ol
]

[(a Vn) A sl V ((aV n) A x)

for some 8 € §, x € I.

s V x.

Again, a A n € S V I. So by theorem 4.1.4. again
there exist s1 € S and x1 € I such that
alAn= ((aAn) Vsei)A((aAn)V X1) = 81 A x1.
Now, consider the n-ideal [b A x1 A n, b Vx V nJ.
Obviously, [b A x1 An, bV x Vn]l ¢ I ¢ <a>n. So by
above lemma, [b A x1 A n, b V x V n] is a principal
n—-ideal say <t>n for some t € L.
Then <a>n = I VS 2 S V [b A x1 An, bV x V n]
2 [s1 An, 8 Vnl] VI IbAX1 An, bVxVn]
= sz AnAbA xi1 An, sVnVbdVzxVn]
= [a A n, a V n] = <a>n.

This implies S V I

S VIbAxX1 An, bV x Vn]

1

S V <t>n ..., (A)

Further, <b>n = S NI 2SN {b A x1 An, bpVzxVnl
2SN [(bAn, bVn]l] = <b>n, as

b Ax1 An=<bAn=bVn=5bVxVn. This implies

S NI=8nT([bAx1An, bVxVnl=2:8n<«t>a ...(B)

Since S is standard so we have from (A) & (B),

I = <t>n. Therefore I is a principal n-ideal. ©®
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In this section we shall deduce some important

properties of standard elements and n~-ideals from the

fundamental characterization theorem. If § is a
standard n-ideal, then we call the congruence
relation 8(s), generated by S, a standard
n—congruence relation. If 8§ = <8>n, then 6(S) =

8(<s>n) and so O(<s>n) is a standard n-congruence
relation which we call principal standard
n—-congruence. Firstly, we prove some results on the

connection between standard n-ideals and standard

n—congruence relations.

4.1.13. Theorem : Let n be a neutral element of a
lattice L. Let S and T be two standard n-ideals of L.
Then

(i) (s n T) = B(S) N B(T)
and (ii) (S V T) = 6(S) V &(T).

Proof : (i) This has already been proved in corollary

4.1.6.

(ii) Clearly, ©(S) V 8(T) < 6(S V T). To prove
the reverse inequality, let x =y 8(S V T) with

X 2 Y.
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Then y = (y V p) A x ang x = (x A q) Vy,

for some p, g e § V T.
Then by theorem 4.1.4.,

p=(p As1) V(pAti) and p = (p V s2) A (p V t2),
@ = (a A s3) V (q A ta) and q = (@ Vsa) A (g V ta) -
for some 81, 82, 83, 84 € S and t1,-t2, ta, ta4 € T.

Now, p = (p A 81) V (p A t1)

(p An) V (p A t1) 8(S)

i

(p An) V (p A n) 6(T)

= p A n.
Thus, p =2 p A n (8(S) V 8(T))
Again, p = (p V 82) A (p V t2)
= (p Vn) A (p V tz) 6(8)
= (p Vn) A (p Vn) 8(T)
= p V n.
Thus, p = p Vn (8(S) V 8(T)). This implies
PpAn=pVmn (8(S) V 8(T))

1]

and so p n (8(S) V 8(T)).
Similarly, we have q = n (8(S) V 8(T)).

Now, v = (y Vp) A x

1]

(y V.n) A x (8(S8) V 8(T))

(y AN x) V(n A x), as n is neutral.
-y \ (x A n)
=y V (x A g) (8(5) vV 8(T))

= X.
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This implies x = y (8(S) V 8(T)).

Therefore, 8(S V T) = 8(S) V 6(T),

which proves (ii). @

4.1.14. Lemma : Let 8 be a standard element of a

lattice L and "a” be an arbitrary element of L. Then

m(a, n, s8) is standard in <a>n, where n is neutral in

L.

Proof

Let p, Q@ € <a>n. Then a A n £ p, @ = a V n.
Also p=p A (a Vn) = (p Aa)V (p An), and

g =a A (a Vn) = (a A a) V (aAn)as n is
neutral. Let r = m(a, n, 8).
Now, p A (a Vr)=mpAI0l{(aAa)V(aAn}V
{(a An)Vi(aAs)V(nAs)}]

p A [{{(a A a) V(aAn)rV {(aAs) \
(n A s)}l, as @ A a 2 a A n.

p A [{ga A (a Vn)r V{s A (a V n)}l

]

p A (aVn) A (aqV s),
as 8 is standard.

p A (aqVs), as p = a Vn,

= (p Aag) V(pAs), as s is standard.

- (pAg)V(pAs)V(azAn)y ..... (8)
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Also, P A r = p A m(a, n, s)

P A [(aAn)yV(aAs)yV {n A 8)]
=[P A {(aAn)Vi(aAs)rj v (p AnAs),
as n A s is standard.
= [p A {aA(nVs)l V((pAnA 8),
as s is standard.
= (pAaAn)y V(ipAaAs) V(pAnA 5 )
= {(p A aAn) VI(pAs)A(aVn)l, as

wis neutral.

= (a An) V (p A s8).
Hence from (A), p A (g V r) = (p A q) V (p A r) and

s80 r = m(a, n, 8) is standard in <a>n. @
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2. Homomorphisms and Standard n—-ideals.

4.2.1. According to Grdtzer and Schmidt [18], we know
that a standard ideal of a lattice is a homomorphism
kernel, but the converse is not true in general. For
an example they consider the following figure. In
this lattice, the principal ideal (al] is a
homomorphism kernel because it is a prime ideal, but

it is not standard for

x AN (a Vi) = xbut (x Aa) V(xAt)=y.

X t
&
y
0 Figure 4.2.1.

In this section, we generalized their concepts to
homomorphism n-kernels and standard n—ideals._Let ¢
be a homomorphism of a lattice L, then

n-kernel & = {x € L : ®(x) = n}. Of course, if ® is
a homomorphism induced by the congruence relation 8,

then n-kernel ¢ = {(x € L : x =n (6)7}.
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It is already assured by corollary 4.1.5, that a

Btandard n-ideal is a homomorphism n-kernel, where n

is a neutral element of L. Considering n as the

smallest element in figure 3, we find that the

converse is not true in general. But the converse is

true when L is a relatively complemented lattice. In
this connection, we shall prove some of their
theorems for standard n-ideals and finally we shall

prove two isomorphism theorems for standard n-ideals.

4.2.2. Theorem : Let n be a neutral element of a
lattice L with the property that both (n] and [n) are
relatively complemented. Then every homomorphism
n—kernel of L is a standard n-ideal and every
standard n-ideal is the n-kernel of precisely one

congruence relation.

Proof : Let I be the homomorphism n-kernel of L
induced by the congruence relation 8. That is,

I = {x € L : x = n B}). Clearly I is an n-ideal. We
are to show that I is standard. Let a = b (8).
Consider the interval [n, a V b V n].

Now, (a A b) V n € [n, a V b V n]. Since [n) is

relatively complemented so there exists
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r € [n, a Vb V n] such that (a A b) Vn V p

= a VbVn and ((a A b) Vn) A r = n.

Since a

it

b (8) 80 we have a A b = a Vb (9).

=2 This
implies (a A b) Vn=a VbVn (8). That is,
r =n () and so r € I.

Now, a Vb V n

(a Ab) VnVr=1(aAb) Vr
= (aADb) V{irA(aVbyV n)}
= (aAb) V{(rA(aVb))V (rA n)il,
as n is neutral.
= (a Ab) V{(aVb)Ar}Vn.
Also aVb=(aVb)A (aVbVn)

(a Vb)) A {((a Vb)) Ar) V(aApb) Vn}

= [(a Vb)) A{((aVDb)Ar) V(aAb)}]

V((aVb)An), as n is neutral.
= ((a Vb)Ar) V(aAb) V ((aVb)An)
= ((a Vb)) Ar) V (a A b), where r € I.

Again, consider the interval [a A b A n, n].

Now, (a V b) A n € [a A b A n, n)]. Since (n] is
relatively complemented, so there exists

8 € [a A b A n, nl, such that (a Vb) An A s
=aAbAn and ((a Vb) An) Va=n. Now, a A b =
a Vb (8) implies a A b An = (a V b) An (8). Thus

n (8) and so 8 € I. Then by the dual proof of

s
above it is not hard to show that

a Abz= ((aAb)Vs)ANA (aVb), where 8 € I.
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Thus, a b (8) implies

a Vb= ((aVb)Ar)YV (a A b)
and a A b = ((a Ab) Vse) A (alV b) for some r,s ¢ I.

Hence by theorem 4.1.4. we have I is standard.

At the same time we have proved that if I 1is the
homomorphism n-kernel of L induced by 8, then
® = 8(I) which shows that every standard n-ideal is

the homomorphism n-kernel of precisely one congruence

relation. @

4.2.3. Lemma : Let L be a relatively complemented
lattice with 0 and 1 and n be neutral. Suppose <8>n
is a standard n-ideal, s € L. If t is the complement
of 8, then s An, t An, 8 Vn, t Vn are all neutral

elements (and so they are central elements).

Proof : Since <s8>n is standard so by lemma 4.1.10.
8 Vn is standard and 8 A n is dual standard. Since
L is relatively complemented so by (18 corollary 3,
p-45] both 8 Vn and 8 A n are neutral and hence are
central. Thus, (8 Vn) = s~ An” =t An~

and (s A n)” = 8~ Vn” = t V n” are also central.
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Since n is neutral, t V n = (t Vn) A1

(t Vv n) A (n‘ Vv n)
(¢t An") V n.

This implies t V n is central.

Again as 8 A n is central, so t Vn” = 8° V n-

= (8 A n)” is central. Therefore t A n = (t A n) VO
= (t An) V(nAn") =nA (t Vn") is also central.
Hence s A n, t An, s Vn, t Vn are all central . @
In {181, authors proved that "In a relatively
complemented lattice L with O and 1, C(L) is a
boolean algebra if and only if every standard ideal
of L is a principal ideal”. The following theorem is

a generalization of the above result :

4.2.4. Theorem : Let L be a relatively complemented
lattice with 0 and 1. Then C(L) is a boolean algebra
if and only if every standard n-ideal of L is a

principal n-ideal.

Proof : Suppose every standard n-ideal of L 1is
principal. Now, every congruence relation @ is of the
form © = 6(S), where S is the n-kernel of the

homomorphism induced by 6. Then by theorem 4.2.2.
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S is a standard n-ideal. Since every standard n-ideal

is principal, so 6 = 8(<s>n) for some s ¢ L. Then by

Lemma-4.2.3., both t Vn and t A n are central, where

t is the complemented of s. Thus by lemma 4.1.10,

<t>n is also standard. Hence by theorem 4.1.13., we

have 8(<s8>n) N B(<t>n) = B(<s8>n N <t>n)

8((s An) V(t An), (s Vn) A (t V n))

It

8(n A (8 V t), nV (s A t)),

asa n is neutral.

I

& (n A1, nV 0)
= 8 (n, n) = .
Also, ©8(<s>n) V O(<t>n) = B(<8>n V <t>n)

= 8(a At An, 8Vt Vn)

8(0 A n, 1 V n)

8(0, 1) = 1,
which shows 8(<t>n) is the complement of 8(<s>n).
Therefore, every congruence relation of C(L) has a

complement. In other words C(L) is a Boolean algebra.

Conversely, suppose that C(L) is a Boolean algebra.
By theorem 4.2.2, every congruence relation of L is
of the form ©(S), where S is a standard n-ideal.
Suppose 8(T) is the complement of 8(S). Since C(L) is
boolean, ©(S) has a complement &. Then by 4.2.2.

again, ® = O(T) for some standard n-ideal T.
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Now, from theorem 4.1.13, we have

i

8(s N T) = B(S) N B(T)
Also, 8(S VT) = 8(S) V 8(T)

®.

L.

Thus by theorem 4.2.2, S n T

{n} and S VT = L.

Since L has a unit element, so L = <n">n, where n” is

the complemented of n. So we have S N T and S V T are

both principal n-ideals. Therefore S8 and T are

principal n-ideals. This completes the proof. @

In risl, Gritzer and Schmidt has proved two
isomorphiasm theorems for standard ideals. In the next
two theorems we give a generalization of their
results in terms of standard n—~ideals. For a standard

n—-ideal S of L, we denote the guotient lattice

L/8(S), simply by L/S.

4.2.5. Theorem : [First isomorphism theorem for
standard n-ideals]}. Let L be a lattice. Let S be a
standard n-ideal and I be any n-ideal of L. Then

I N S is a standard n-ideal of I and

(I V S)/s € 1/(I n 8)

Proof - The first part has already been proved in

lemma 4.1.8. For the second part, we use the first



118
isomorphism theorem for Universal algebra. Then it
remains to prove that every congruence class of
I V S may be represented by an element of I. So, let
x € I V S, then by theorem 4.1.4., we have

x = (x A s1) V(x A ax) = (x V s82) A (x V az),
for some si1, 82 € S ; ai, az € 1.
Without loss of generality we can chose s2 = n = sa

and a2 £ n £ ai.
Now, we have s1i = sz 8(S), so x A 81 = x A 82 8(S).
Then x = (x A s1) V (x A az)

= (x A s2) V (x A ax)

= x N ax 8(S).

Similarly, x = x V az 68(S).
Let v = (x A ai) V az. Then az =< y = aai, which
implies vy € I and x = x V az = (x A a1) V az

= y 8(S).

That is, for any x € I V S, there exists y € 1 such

that x = y © (8). That is, [x] = [yl 6(8).
Therefore, (I VS)y/s & 1/(I ns)y. ®

4.2.6. Theorem : [Second isomorphism theorem for
standard n-ideals.] : Let L be a lattice. S be an

n—ideal and T be a standard n-ideal of L such that

S 2 T.
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Then S is a standard n-ideal in L if and only

if S/T ies a standard (n]l-ideal in L/T and in this

case

L/T

L/s = -
S/T

Proof : First suppose that S is a standard n-~ideal of
L. Let ¢ : L - L/8(T) be the natural epimorphism.
Then x - [x] ©8(T) is homomorphism and onto. So by
lemma 4.1.9, &(S) is a standard [n]-ideal of L/O(T).
Now $(8) = S/8(T) = S/T. Hence S/T is a standard
[n]l—-ideal of L/T.
Conversely, suppose that S/T is a standard [n]l-ideal
of L/T. We are to show that S is a standard n-ideal
of L. Let us define a relation on S as follows
x =y 8(8S) defined by x Ay = ((x Ay) Vt)y Aix Vy)
and x Vy = ((x Vy) A s) V (x Avy),

for some t,s € S.
We shall prove that ©O(S) is a congruence relation.
Clearly ©8(S) is reflexive.
Now, let x 2 y 2 z and x = y 8(S), v = z 8(S). Then
from the proof of (b) = (¢) in theorem 4.1.4. we have
x = z ©(S). For the substitution property, let x 2 vy

with x = y ©6(S) and r € L.
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Then x = (x A 8) V y and y = (y V £) A x
for some s, t € §.
Now, x = y O(S) implies [x] = [y] 8(s/T).

Since S/T

is standard, so 8(S/T) is a congruence.

So, [x] A [r]

vyl A [r] 8(S/T). Since [x] A [r] =2

(yl A [r] and S/T is standard in L/T, we have

{yl A lrd = ((Ly]l AIrd) VIsxl) A ([x]1 A [rl) ...(4)
and
[x] A [r]l = (([x] A [rl) A [8=21) V (Ly]l A [r]l) ...(B)

for some [81], (321 € S/T.
From (A) we get vy A r =((y A r) Vei) A (x Ar) 8(T).
Here vy A r = ((y A r) V81) A (x A r) and since T is
standard in L, so we have
v Ar=((y Ar) Vi) AM{(y Ar) Vsi) A(xAr)}
for some t € T.
2 {((y Ar) V(s1 At)) Nx A r 2y Ar.
This implies y A r = ((y A r) V (81 A t)) A (x Ar).

Also from (B) we have

[x] A [rl = (([x) A [rl) A (s=z2]1) V (lyl A [rlD)
implies x A r = ((x A r) A sz) V (v A r) 8(T).
Here x A r = ((x A r) A sz) V (y A r) and since T is

standard in L, so we have
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A ((x A r) Ati) V((x Ar) A sga)V (y A r)

for some ti € T.
<

s {(x Ar) A(ts Vse2)}V(yAr) s (xAr).

This implies x A r = ((x A r) A (t1 Vsz2)) V (y A r).

Hence x A r = y A r 8(S), as 81 A t € S and

t1 V B2 € 5. A dual proof will show that

x Vr =y Vr 8(8S). Therefore 8(S) is a congruence

relation and so by theorem 4.1.4. § is a standard

n—ideal of L. @
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