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Abstract

Most of the perturbation methods are developed to find the periodic solutions
of nonlinear systems with small nonlinearities, transients are not considered. In 1947,
first Russian scientists Krylov and Bogoliubov introduced a perturbation method to
discuss the transient’s response in the second order autonomous differential systems
with small nonlinearities and this method is well known as “an asymptotic averaging
method” in the theory of nonlinear oscillations. Later, this method has been amplified
and justified by Bogoliubov and Mitropolskii in 1961 and this extended method is
known as the KBM method in literature, In this dissertation, we have presented an
analytical technique based on He’s homotopy perturbation technique and the extended
form of the KBM method to investigate the solutions of second order strongly
nonlinear physical and oscillating processes in biological systems with significant
damping effects. Also we have extended the KBM method to investigate the weakly
third and fourth order nonlinear systems with slowly varying coefficients and
damping effects.

Firstly, second order damped nbnlinear autonomous differential systems are
considered and He’s homotopy perturbation and the KBM methods have been
extended to Duffing type strongly nonlinear physical problems with small damping
effects. Then the method has been applied to find the analytical approximate solution
of damped oscillatory nonlinear systems with slowly varying coefficients with strong
nonlinearity. Further, this method has been developed to solve second order strongly
ﬁonlineau' oscillating processes in biological system with small damping effects. We
have also extended the homotopy perturbation technique to find the second
approximation of second order strongly nonlinear differential systems with damping
effects. We have extended the KBM method to determine the second approximation
of third order weakly nonlinear damped oscillatory systems under some special
conditions. Lastly, a unified KBM method has been presented to obtain the analytical
approximate solution of a fourth order ordinary weakly nonlinear differential equation
with varying coefficients and large damping, when a pair of eigen-values of the

unperturbed equation is a multiple of the other pair or pairs. The methods have been

illustrated by several examples.
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Introduction

Numerous physical, mechanical, chemical, biochemical, biological, and some
economic laws and relations appear mathematically in the form of differential
equations which are linear or nonlinear, autonomous or non-autonomous. Practically,
all differential equations involving physical phenomena are nonlinear. The methods of
solutions of linear differential equations.are comparatively essay and well established.
On the contrary, the techniques of solutions of nonlinear differential equations are less
available and, in general, linear approximations are frequently used. The method of
small oscillations is a well-known example of the linearization of problems, which are
essentially nonlinear. With the discovery of numerous phenomena of self- excitation
of circuits containing nonlinear conductors of electricity, such as electron tubes,
gaseous discharge, etc. and in many cases of nonlinear mechanical vibrations of
special types, the methods of small oscillations become inadequate for their analytical
treatment. There exists an important difference between the phenomena which
oscillate in steady state and the phenomena governed by the linear differential
equations with constant coefficients, e.g., oscillation of a pendulum with small
amplitude, in that the amplitude of the ultimate stable oscillation seems to be entirely
independent of initial conditions, whereas in oscillations governed by the linear
differential equations with constant coefficients, it depends upon the initial conditions.

Van der Pol first paid attention to the new (self-excitation) oscillation and
indicated that their existence is inherent in the nonlinearity of the differential
equations characterizing the processes. This nonlinearity appears, thus, as the very
éssence of these phenomena and by linearizing differential equations in the sense of
the method of small oscillations, one simply eliminates the possibility of investigating
such problems. Thus it is necessary to deal with the nonlinear problems directly
instead of evading them by dropping the nonlinear terms. To solve nonlinear
differential equations there exist some methods. Among the methods, the methods of
perturbation, i.e., asymptotic expansions in terms of small parameter are foremost.
According to these techniques, the solutions are presented by the first two terms to
avoid rapidly growing algebraic complexity. Although these perturbation expansions

may be divergent, they can be more useful for qualitative and quantitative

representations than the expansions that are uniformly convergent.



Now the perturbation methods are widely used in science and engineering
problems to obtain the analytical approximate solutions based on known exact
solutions to nearby problems. Such asymptotic techniques can also be used to provide
initial guesses for numerical approximations, and they can now be generated through
clever use of symbolic computations. The perturbation methods are most effectively
used to analyze the problems in fluid and solid mechanics, control theory and celestial
mechanics, a variety of nonlinear oscillations, nonlinear wave propagation and
reaction-diffusion systems arising in numerous physical and biological contexts.
Usually the physical and the biological problems occur with cubic and quadratic
nonlinearities respectively.

The applications of the perturbation methods have been extended to nonlinear
oscillators with strong nonlinearity. However, the algebraic manipulation of the
perturbation procedures involves excessive labour. Recently, He has investigated a
novel homotopy perturbation method for solving strongly nonlinear differential
systems without damping effects. But most of the physical and biological problems
appear in presence of damping with strong nonlinearity in nature and it keeps an
important role to the systems. But He’s homotopy perturbation method is able to
handle the nonlinear systems without damping and the KBM method is also able to
handle nonlinear systems with small nonlinearities. To overcome these limitations, we
have presented an analytical technique based on He’s homotopy perturbation
technique and the extended form of the Krylov-Bogoliubov-Mitropolskii (KBM)
method for solving strongly nonlinear differential systems in presence of significant
damping effects. Our presented method, requiring no small parameters in the
equations, can readily eliminate the limitations of the classical perturbation
techniques. In the other hand, this technique can take full advantage of the classical
perturbation techniques. Homotopy is an important part of differential topology and
this technique is widely applied to determine all roots of nonlinear algebraic
equations. Some interesting results have been achieved by this method. The
confluence of modern mathematics has posed a challenge for developing technologies
capable of handling strongly nonlinear equations which can not be successfully dealt
by the classical perturbation methods. Homotopy perturbation method is uniquely

qualified to address this challenge. The approximations obtained by this method are



valid not only for large parameters, but also for small parameters. The homotopy
perturbation method is proposed wherein the results at the first order of
approximations are much more accurate than the classical perturbation solutions at
second order of approximations

In this dissertation, we shall discuss the problems that can be described by the
dynamical systems of the second order nonlinear autonomous differential equations
with strong nonlinearities by coupling the He’s homotopy perturbation technique and
the extended form of the KBM method. We shall also study the third and fourth order
weakly nonlinear differential systems By the classical KBM method. An important
approach to study such nonlinear oscillatory problems is the small parameter
(homotopy parameter) expansion according to the homotopy perturbation and the
KBM methods. Two widely spread methods in the theory of nonlinear oscillations are
mainly used; one is homotopy perturbation method and the other is averaging,
particularly the classical KBM method. According to the homotopy perturbation and
the KBM techniques, the solutions start with the solutions of linear equations, termed
as generating solutions, assuming that, in the nonlinear cases, the amplitude(s) and the
phase(s) variables of the solutions of linear differential equations are time dependent
~ functions rather than constants. These methods introduce an additional condition on
the first order derivative of the generating solutions for determining the solutions of
nonlinear differential systems. Originally, the homotopy perturbation and the KBM
methods were developed to obtain the periodic solutions of second order nonlinear
differential equations. Now-a-days, these methods are used to obtain oscillatory,
damped-oscillatory and non-oscillatory solutions of second, third and fourth order
nonlinear differential systems by imposing some restrictions to obtain uniformly valid
solutions.

Most of the authors have found the solutions of second order nonlinear
systems for conservative cases by the homotopy perturbation and the KBM methods.
A few number of authors have investigated the solutions of second, third, fourth order
weakly nonlinear differential systems for non-conservative cases by the KBM
method. In this dissertation, some second order strongly nonlinear differential
have been studied with significant damping effects and their solutions are

equations
investigated by coupling the homotopy perturbation and the KBM methods and the



third and fourth order weakly nonlinear differential systems have been studied by the
well known KBM method with significant damping effects. The results obtained by
the presented method may be used in mechanics, nonlinear wave equations, nonlinear
oscillations, mathematical physics, plasma physics, nonlinear problems arising in
various engineering applications, circuit theory, control theory, biology and bio-

chemical systems, population dynamics, boundary layer theory, reaction-diffusion

equations, etc.



Chapter 1

The Survey and The Proposal

1.1 The Survey

The characteristics of nonlinear differential equations are peculiar. But
mathematical formulations of physical and engineering problems often results in
differential equations that are nonlinear. However, in many cases it is possible to
replace a nonlinear differential equation with a related linear differential equation that
approximates the actual equations closely enough to give useful results. Often such
linearization is not possible or feasible; when it is not, the original nonlinear equation
itself must be handled.

During the last several decades a number of famous Russian scientists,
Andronov [38], Andronov and Chaikin [39], Mandelstam and Papalexi [110], Krylov
and Bogoliubov [94], Bogoliubov and Mitropolskii [45] worked jointly and
investigated nonlinear mechanics. Amoﬁg them, Krylov and Bogoliubov are certainly
to be found most active scientists in nonlinear mechanics. Now-a-days, the scientists
and the researchers use their concept to study the nonlinear differential systems.

Firstly, Krylov and Bogoliubov (KB) [94] considered the following nonlinear

differential equation of the following form

d’x .

—> +a’x =g f(xX,1,6), (1.1)
dt

where ¢ is a small positive parameter which characterises the nonlinearity, o is

known as the frequency of the nonlinear system and f is a given nonlinear function

and it can be expanded as a power series in &, whose coefficients are polynomials in

x, %, sint, cost. In fact, f contains neither & nor ¢. Similar equations are well

known in astronomy and have been investigated by Lindstedt [96,97], Gylden [73],
Liapounoff [98] and above all by Poincare [134]. In general, it seems that, Krylov and
Bogoliubov [94] applied the same method. However, the applications in which they
view are quite different, being mainly in engineering, technology or physics, notably
electrical circuit theory. The method has also been used in plasma physics, theory of
oscillations and control theory. In the treatment of nonlinear oscillations by
perturbation method, Lindstedt [96,97], Gylden [73], Liapounoff [98] and Poincare

[134] discussed only the periodic solutions, but they did not consider the transients
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response of the systems. Firstly, Krylov and Bogoliubov (KB) [94] discussed the
transients response of the systems. The KB method starts with the solution of the
linear equation, assuming that in nonlinear case, the amplitude and phase variables in
the solution of the linear equation are time dependent functions rather than constants.
This procedure introduces an additional condition on the first derivative of the
assumed solution for determining the solution. Extensive uses have been made and
some important works are done by Stoker [143], McLachlan [111], Minorsky [112],
Nayfeh [123,124] and Bellman [46].

Most probably, Poisson initiated to determine the analytical approximate
solutions of nonlinear differential equations around 1830 and the technique was
introduced by Liouville [99]. Duffing [68] investigated many significant results
concerning the periodic solutions of the following nonlinear differential equation

Z:f +2k%xt—+a)2x=—z;”x.3 (1.2)

Somewhat different nonlinear phenomena occur when the amplitude of the

dependent variable of a dynamical system is less or greater than unity. The damping is
negative when the amplitude is less than unity and the damping is positive when the

amplitude is greater than unity. The governing equation, like these phenomena is

d’x 9y X

——&(l-x")—+x=0. 1.3

dr’ ( ) dt Kl
The Eq. (1.3) is known as Van der Pol [150] equation in literature. This

equation has a very extensive field of application in connection with self-excited

oscillations in electron-tube circuits. In general, f contains neither & nor ¢, hence

the Eq. (1.1) yields the following form

2

> 0 x=ef(x,%). (1.4)

dr?

The KB method is very similar to that of Van der Pol and related to it. Van der

Pol applied the method of variation of constants to the basic solution
x=acoswt+bsinwt of the linear equation ¥+®w?’x=0. On the other hand KB
applied the same method to the basic solution x = acos(w! + ¢) of the same equation.
Thus in the KB method, the varied constants are a and ¢ while in the Van der Pol’s

method the constants are a and b. The KB method is more interesting, convenient
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and widely used technique from the point of view of applications, since it deals
directly with the amplitude and the phase of the quasi-harmonic oscillation.

If £=0, then the Eq. (1.4) becomes a linear equation and its solution is
obtained in the following form

x =acos(wt + ), (1.5)

where a and ¢ are known as arbitrary constants to be obtained from the given initial

conditions.

If £+£0, but is sufficiently small, ie., g <<1, then KB assumed that the

solution is still obtained by Eq. (1.5) with the first derivative of the following form

E——acosin(a)t+ ) 1.6
o ?), (1.6)

where a and ¢ are functions of time ¢, rater than being constants. Thus the desired

solution of Eq. (1.4) is obtained in the following form

x = a(t)cos(wt + (1)), (1.7)
and the first derivative of the solution Eq. (1.7) takes the following form
% =—a()wsin(a! + @), . (1.8)
Now differentiating Eq. (1.7) with respect to time ¢, it leads to
dx da . do .
— =—cosy —awsiny —a——siny, Cwy=at+e(t). (1.9
dt dt ¥ ¥ dar ¢
Therefore, for Eq. (1.6), one obtains
da do .
i —ag——sinw =0. (1.10)
ar SOV T Y
~ Again differentiating Eq. (1.8) with respect to time ¢, then it yields
d*x da . ) do
Z 2 = psiny —aw” cosy —aa——Cosy/. (1.11)
aa T
Substituting Eq. (1.11) into Eq. (1.4) and then using Egs. (1.7)- (1.8), it gives
iiﬂa)sinq/+aa)%?cosw=—gf(acosy/,—aa)sinz//). (1.12)
dat

By solving Eq. (1.10) and Eq. (1.11) for fgtl and % one obtains

da = —¢ f(acosy,—awsiny)siny / o,

dt (1.13)
iﬂ = —¢ f(acosy,—awsiny)cosy law.

at
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Thus instead of the second order single differential Eq. (1.4) with the unknown

X, we obtain two first order differential equations with the unknown amplitude a and

. da d
phase ¢. Since I and E@ are proportional to the small parameter &, the amplitude

a and the phase ¢ are slowly varying functions with respect to time ¢ with the
period T =27/w and for the first approximation they are assumed as constants.
Expanding f(acosy,-awsin w)siny and f(acosy,-awsiny)cosy in a

Fourier series, the first approximate solution of Eq. (1.4) by averaging Eq. (1.13) over

one period is given by

da £ 27
<—>=—-—"_ — - -
7 Sy 6"f(acosz,z/, awsiny)siny dy,
2 (1.14)
a9 > = ]:f(acos awsiny)cosy d
C¥ o — ’
dt 2rwa v v way

0

where the amplitude a and the phase ¢ are independent of time ¢ under the integrals.

KB called their method asymptotic series in the sense that & — 0. In fact, an
asymptotic series itself is not convergent, but for fixed number of terms, the
approximate solution tends to the exact solution as & — 0. It is noticed that the term
asymptotic is frequently used in the theory of oscillations, also in the sense that
£ — o0, But in the case of the mathematical model is quite different.

Later, this method has been amplified and justified mathematically by
Bogoliubov and Mitropolskii [45], and extended to non-stationary vibrations by

Mitropolskii [113]. They assumed the solution of Eq. (1.4) in the following form

x = acosy +&u,(a,w) +&u(a,y)+-+&"u,(a,y)+ O(e™), (1.15)
where u,, i=12,3,---,n are periodic functions of y with a period 27 and the
amplifude a and the phase y are functions of time ¢, and they satisfy the following

first order differential equations

.@. = SAl(a)+£'2A2(a)+ 53A3(a)_+.,, +8”An(a)+ 0(8"+l),
" (1.16)

ﬁ’dg =w+&eB(a)+ &’B,(a)+ £3B3 (a)+++&"B (a)+0(e"").
t

The functions u,, 4, and B, i =1,2,3,--n are to be chosen in such a way that

the Eq. (1.15), after replacing a and y by the functions defined in Eq. (1.16) is a

solution of the Eq. (1.4). Since there is no restriction in choosing the functions 4, and
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B, , that generate the arbitrariness in definitions of the functions u, [45]. To remove

this arbitrariness, the following additional conditions are imposed
2r

fu,-(aaw)coswdw =0,
0

2 (1.17)
u(a,y)sinydy =0,

]

These conditions guarantee the absence of the secular terms in arising all

successive approximations. Differentiating Eq. (1.15) twice with respect to time f,

2

utilizing the relations Eq. (1.16), substituting %,% together with x into the

original Eq. (1.4) and equating the coefficients of like powers of &',i=1,2,3,-,n

results are obtained in a recursive system as the following form
2 azu (i—]) s
) (a——;+ui)=f (a,)+2w(aB, cosy + 4 siny), (1.18)
4
where
(@) = flacosy,~awsiny),

: ou
FPa,w) =u, f.(acosy,~awsiny)+(4 cosy —a B, siny + wa—yj)

5 dd (1.19)
x f.(acosy,—awsiny)+(aB’ -4 d_y/l) cosy
asb, . . o’u, du
+(2AlBl—aA,d—l/i)Slnl//—20)(Al aaaljy *a?; s

It is clear that f“™ is a periodic function of the variable y with period 27,
which also depends on the amplitude a. Therefore f“" as well as u, can be

expanded in a Fourier series in the following forms
S @) = 8@+ Y (8, @ cosny +h, " (@)sinny),
" (1.20)
u,(a,w) = Vo(H) (a)+ Z v, " (@)cosny +w," " (a)sinny),

n=l

where
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2x
CONINE S oty .
& = by Jf (acosy,—awsiny)dy,

2n
@i-1) - l (i-1y .
&n - 0_[f (acosy,—awsiny)cosnydy, (1.21)
BN _1_2]{]"(;-1)(‘1 co . .
n 7 sy,—awsiny)sinny dy, nx1.
Here v =w,“™ =0 for all values of i, since the integrations in Eq. (1.17)

vanish. Substituting these values into Eq. (1.18), it becomes

2 (! 1)

(a)+Za) (1- n)[v( )(a)cosnt//+w( Y(a)sinny]
=g ”(a)+(g," Y(@)+2waB)cosny + (B (@) +204)sinny)  (1.22)

+ Z (g," " (a)cosny + B (a)sinny).

n=2
Now equating the coefficients of the same order of harmonics, we obtain

(g, (@) +2waB)=0, (@) +204)=0,

(i-1 Gi-1)
1 @) = &t wz(a), N )_fn(l_(a_)) (1.23)
wn(i-l)(a) h, ‘- l)(a) n>1.
o*(1-n?)’

These are the sufficient conditions to find the desired order of analytical

approximations. For the first order analytical approximation, we can find

1 (a) g %

A =—-1 =— jf(acosw,— aosiny)sinydy,

2w 2

(1.24)

Y@
B, =_& =— _[f(acosy/, awsiny)cosy dy.

2wa 27:(0
Therefore, the variational Eq. (1.16) yields
da
= —awsiny)sinydy,
dr 2 @ ; (125)
Wy _

= acosy,—awsiny)cosy dy.
dt “- 2710) jf(

The Eq. (1.25) is similar to the Eq. (1.14). Thus the first order analytical
approximate .solution obtained by Bogoliubov and Mitropolskii [45] is identical to the
original solution obtained by KB [94]. In literature, this method is well known as

Krylov-Bogoliubov-Mitropolskii (KBM) [45,94,113] method. In the second case,

10
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higher order analytical approximate solution can be found easily. The correction term

u, is obtained from Eq. (1 -23) in the following form

The solution Eq. (1.15) combining with u, is known as the first order
analytical (improved) solution in which the amplitude a and the phase ¢ are the
solutions of Eq. (1.25). If the values of the functions A, B, and u, are substituted
from the relation Eqs. (1.24) — (1.25) into the second relation Eq. (1.19), the function

f© and in a similar way, the unknown functions 4,, B, and u, can be found. Thus

the determination of higher order analytical approximation is completed.

Volosov [152,153], Museenkov [114] and Zabreiko [154] also obtained higher
order effects of the nonlinear differential systems. The KBM method has been
extended by Kruskal [95] to solve the fully nonlinear ordinary differential equation of

the following form

d*x dx
= F(x,—,¢). :
i (x & £) (1.27)

The solution of this equation is based on the recurrent relations and is given as

a power series of the small parameter.
Cap [64] has studied the nonlinear differential system of the following form
d’x dx |
ET-HU x=€F(x,E). (1.28)
The solution of Eq. (1.28) has been obtained by using the elliptical functions
in the sense of KBM [45,94,113] method.

Struble [140] has developed a technique for solving weakly nonlinear

oscillatory systems governed by the following equation

d*x

dr?

+w, x =8F(x,£,t). (1.29)
dt
He has assumed the asymptotic solution of Eq. (1.29) in the form

x = acos(@yt — @)+ iaix, (1) +0(e""), (1.30)

i=1
where the amplitude a and the phase ¢ are slowly varying functions of time ¢.

Later, the KBM method has been extended by Popov [135] to damped

nonlinear differential systems of the following from Rajshahi University Library
Documentation Section
Document No. D=3 2.4:4
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d’x dx dr.
—5 +2k—+o’x= Lo
5 G (1.31)

B dx . ; :
where —2k; is the linear damping force and 0 <k <w. It is noteworthy that,

because of the importance of the method [135] in the physical systems, involving
damping force, Meldenlson [1 18] and Bojadziev [57] rediscovered Popov’s results. In

the case of damped nonlinear systems, the first equation of Eq. [1.16] has been

replaced by

iig—__k A 2 3 n n+l
i a+ed(a)+e4(a)+& 4 (a) +--+ "4, (a) + O(e™"). (1.16a)

Murty et al. [115] have found a hyperbolic type asymptotic solution of an
over-damped system represented by the' nonlinear differential Eq. (1.31) in the sense
of KBM method; i.., in the case k > . They have used coshg or sinh¢ instead of
cos@, which is used in [45,94,113,118,135]. In the case of oscillatory or damped
oscillatory processes cosg may be used arbitrarily for all kinds of initial conditions.
But in the case of non-oscillatory systems cosh¢ or sinh¢g should be used depending
on the set of initial conditions [45,94,113,115,117]. Murty and Deekshatulu [116]
have found another asymptotic solution of the over-damped nonlinear system
represented by the Eq. (1.31), by the method of variation of parameters. Alam [18§]
has extended the KBM method to find the solutions of over-damped nonlinear
systems, when one root becomes much smaller than the other root. Murty [117] has
presented a unified KBM method for éolving nonlinear systems represented by the
Eq. (1.31). Bojadziev and Edwards [56] have investigated the solutions of oscillatory
and non-oscillatory systems represented by the Eq. (1.31), when k£ and @ are slowly
varying functions of time ¢. Arya and Bojadziev [41,42] have examined damped
oscillatory and time dependent oscillatory systems with slowly varying parameters
and delay. Alam ef al. [4] have extended the KBM method to certain non-oscillatory
systems with slowly varying coefficients. Later, Alam [19] has unified the KBM
method for solving an nth order nonlinear differential systems with slowly varying
coefficients. Sattar [141] has developed an asymptotic method to solve a critically
damped nonlinear system represented by Eq. (1.31). He has found the asymptotic
solution of the Eq. (1.31) in the following form

x=a(l+y)+sulay)+ & unay)+ - +&"u(ay)+ o™, (1.32)
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where a is defined in the Eq. (1.16a) and v is defined as

¥ =1+£C(a)+ £°C,(a) +--+ £"C, (a) + O(e™). (1.16b)

Alam [5] has developed an asymptotic method for the second order over-
damped and a critically damped nonlinear differential system. Alam [9,20] has also
extended the KBM method for certain non-oscillatory systems when the eigen-values
of the unperturbed equation are real and non-positive. Alam [6] has presented a new
perturbation method based on the work of Krylov-Bogoliubov-Mitropolskii
[45,94,113] to find the analytical approximate solutions of the nonlinear differential
systems with large damping. Later he [11] has extended it to stk order nonlinear
differential systems with large damping effects. Alam et al. [12] have investigated the
perturbation solution of a second order time dependent nonlinear system based on the
modified Krylov-Bogoliubov-Mitropolskii method.

Making use of the KBM method, Bojadziev [47] has investigated nonlinear
damped oscillatory systems with small time lag. Bojadziev [52] has also found the
solutions of the damped forced nonlinear vibrations with small time delay. Bojadziev
[53], Bojadziev and Chan [54] have applied the KBM method to the problems of
population dynamics. Bojadziev [55] has used the KBM method to investigate the
nonlinear biological and biochemical systems. Lin and Khan [101] have also used the
KBM method to study some biological problems. Bojadziev et al. [48], Proskurjakov
[136] have investigated the periodic solutions of nonlinear systems by the KBM and
the Poincare methods and compared the two solutions. Bojadziev and Lardner [49,50]
have investigated monofrequent oscillations in mechanical systems including the case
of internal resonance, governed by hyperbolic differential equation with small
nonlinearity. Bojadziev and Lardner [51] have also investigated hyperbolic
differential equations with large time delay. Freedman et al. [70] have used the KBM
method to study the stability, persistence and extinction in a prey-predator system
with discrete and continuous time delay. Freedman and Ruan [71] have also used the
KBM method in three-species food chain models with group defense. Murty [117] has
presented a unified KBM method for solving the differential Eq. (1.31) by using their
previous solution [115] as a general solution for the un-damped, damped and over-
damped cases, which is the basis of the unified theory and assumed a solution of Eq.

(1.31) according to the asymptotic method in the following form

13
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a a _
x:—iew—ae v’+8ul(a’W)+82u2(a:W)+"" (133)

where the amplitude a and the phase g satisfy the following first order differential
equations

@ = Ik A 2 3 n n+l

i at+ed(a)+ed,(a)+ 8 4 (a)++ "4, (a) + O(e™"),

dy
o Ot EB(@+E By (@)+ 8B (a) ++ 4 £"B,(a) + O("),

(1.34)

with 4, — 4, =2, and @, is an unknown function of @ and v, where A, and A, are
the eigen-values of the corresponding linear equation of Eq. (1.31). In his paper,
Murty [117] restricted by himself to only the first approximation. When the eigen-
values of the corresponding linear system are real, i being a real quantity and the
first two terms on the right hand sides of Eq. (1.33) can be combined as

x = asinhy +u, (a,p) + £, (@) + -, (1.35)
which corresponds to over-damped solution of Eq. (1.33). When the eigen-values of
the corresponding linear system are complex conjugates (ie., for un-damped and
under damped cases), instead of real, inserting a = —ia, w =iy, coshiy =cosy and
sinhiy = —isiniy, then the solution of Eq. (1.31) yields

x = asiny + g, (a, ) + luy(a, )+, (1.36)
which corresponds to the periodic and under damped solution of Eq. (1.31). Murty’s
[117] technique is a generalization of the KBM method. Many authors have extended
this technique in various oscillatory and non- oscillatory nonlinear physical and
biological systems. Bojadziev and Edwards [56] have investigated nonlinear damped
oscillatory and non- oscillatory systems with slowly varying coefficients by following

the Murty’s [117] unified method.
Most probably, first Osiniskii [132] has extended the KBM method to handle a

third order nonlinear differential equation of the following form
Pr, i de o d d .
Tl TR e G (137
where & is a small positive parameter, &,/ =1,2,3 are arbitrary constants and f is a

given nonlinear function and he has assumed the asymptotic solution of the following

form
x=a-+ bCOSl,V + &Y, (a,b:W) + 52u2 (a=b5W) +oret :S'Hll"(a,b,lﬂ) + O(g"H): (138)
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where u,, i=1,23,--n are periodic functions of w with period 27 and the

amplitudes a, b and the phase ¥ are functions of time ¢ and they satisfy the

following first order differential equations
z(i - —ﬂ, A 2 3 n n+l
7 ated(a)+e 4, (a)+ e 4 (a)+--+ 8" 4, (a) + O™,

db
- HatreB(a)+e'By(a)+ &’ By(a)+ -+ "B, (a) + O(e™), (1.39)

d
U =@ EC(@) + 80, @) +EC @)+ 4 67C, () + O™,

where —1 and —pu+iw are the eigen-values of Eq. (1.37) for unperturbed case,
ie,e=0.

Alam and Sattar [2] have extended Murty’s [117] unified technique for
obtaining the transient response of a third order nonlinear system. Alam [16] has
presented a unified KBM method to find a general solution of an wsh order
differential equation with constant coefﬁcients, which is not the formal form of the
original KBM method. In his paper, the solution contains some unusual variables. Yet
this solution is very important. He [16] has assumed a weakly nonlinear system of the

following form

(n) (n-1) dx d?
ot S k= e e TS, (1.40)

dr’ di*’
where over-dots denote differentiation with respect to time ¢ and & i J=12,m

are arbitrary constants. He [16] has assumed the solution of Eq. (1.40) in the

following form

n
x(f,b") = Zaje‘j’ +gul(al’aZ"."an’1)+€2u2(al>a2"”9an’r)+“': (1'41)
J=1 '

where 4, j=12:,n are the eigenvalues of the corresponding linear equation of
Eq. (1.40) and each a; satisfies a first order differential equation

a; =cA,(a,a,,,a,) + &7 A,(a,ay, )+ (1.42)
In most of the perturbation techniques an approximate solution is determined

in terms of the amplitude and the phase variables. But the solution of Eq. (1.40) starts

with some unusual variables a,,a,,"-+,a,, such a choice of variables is important to

tackle various nonlinear problems with an easier approach. This technique greatly

speeds up the KBM method to determine the asymptotic solution.
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Osiniskii [132] has also extended the KBM method to a third order nonlinear
partial differential equation with internal friction and relaxation. Mulholland [119] has
studied nonlinear oscillations governed by a third order ordinary differential equation.
Lardner and Bojadziev [103] have investigated nonlinear damped oscillations
governed by a third order partial différential equation. They have introduced the

concept of the “couple amplitude” where the unknown functions A, B, and C,

depend on both the amplitudes g and & . Rauch [137] has studied the oscillations of a
third order nonlinear autonomous system. Bojadziev [57], Bojadziev and Hung [58]
have used the KBM method to investigate a 3-dimensional time dependent differential
systems. Sattar [142] has extended the KBM asymptotic method for three-
dimensional over-damped nonlinear differential systems. Alam and Sattar [1] have
developed a method to solve third order critically damped nonlinear differential
systems. Alam [13] have redeveloped the method presented in [1] to find the
approximate solutions of critically damped nonlinear systems in presence of different
damping forces. Later he has unified the KBM method for solving critically damped
nonlinear differential systems [22]. Alam and Sattar [7] have studied the time
dependent third order oscillating systems with damping based on the extension of the
KBM asymptotic method. Alam [10,14], Alam et al. [23] have developed a simple
method to obtain the time response of second order over-damped nonlinear
differential systems with slowly varying coefficients under some special conditions.
Later Shamsul [14], Alam and Hossain [21] have extended the method [10,18] to

obtain the time response of nmth order (n=2), over-damped systems. Alam [15] has

also developed an asymptotic method for obtaining non-oscillatory solution of the
third order nonlinear ordinary differential systems. Alam and Sattar [2] have
presented a unified KBM method for solving third order oscillating systems. Alam
[24] has also presented a modified and compact form of a unified KBM method for
solving nth order nonlinear ordinary differential systems. The formula presented in
[24] is compact, systematic, practical and easier than that of [16]. Alam [25] has
developed a general formula based on the extended KBM method for obtaining nth
order time dependent quasi-linear differential equation with damping. Bojadziev [57],
Bojadziev and Hung [58] have used at least two trial solutions to investigate the time
dependent differential systems; one is for the resonant case and the other is for the

non- resonant case. But Alam [25] has used only one set of variational equations,
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arbitrary for resonant and non- resonant cases. Alam ef al. [28] have also presented a
general Struble’s technique for solving an nmth order weakly nonlinear ordinary
differential system with damping effects. They have considered the following

ordinary differential equation

Wy d"Vx dx d’x
dr™ +k| dt,(n—l) "t k X = Ef( d R

and assumed the solution of Eg. (1 43) in the folIowing form

=), (1.43)

< At
x(t, €)=Y ae” +eu(a,ay, e a,,0+&u,(a,a,, ,a, )+ (1.44)

J=l

H’

Then they have written the Eq. (1.43) as the following form

Z( H(D 4)(ae‘f’)+H<D A )ew +-)=¢f, (1.45)

J=1 k=lk=j
since (D -4, )(a je'{")zc'zjei" and D=%. Finally, they have used the following

transformations to obtain the formal form of the KBM method
ay =, /2, ay =a,e®/2,1=123, -, (1.46)
where ¢, and 6, are the amplitude and the phase variables respectively.

Raymond and Cabak [138] have examined the effects of internal resonance on
impulsive forced nonlinear systems with two-degree-of-freedom. Lewis [104,105] has
investigated stability for autonomous second order two-degree-of-freedom systems
and for a control surface with structural nonlinearities in supersonic flow. Andrianov
et al. [43], Awrejcewicz et al. [44] have presented some new trends of asymptotic
techniques in application to nonlinear dynamical systems in terms of summation and
interpolation methods. O’Malley et al. [126] has found an asymptotic solution of a
semiconductor device problem involving reverse bias. O’Malley et al. [127-128] has
presented singular perturbation method for ordinary differential equations with
matching and used this singular perturbation method to stiff differential equations.
O’Malley er al. [129] has also presented exponential asymptotic for boundary layer
resonance and dynamical metastability. Akbar er al. [34,35] have found an asymptotic
solution of the fourth order over-damped and under-damped nonlinear systems based
on the work of [18,21]. Akbar el al. [36] have developed a simple technique for
obtaining certain over-damped solution of an st order nonlinear ordinary differential

equation. Akbar e/ al. [37] have also presented the KBM unified method for solving
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nth order nonlinear differential equation under some special conditions including the

case of internal resonance,

Recently, Shamsul er al. [29] have developed an extension of the general
Struble’s technique [28] for solving an nth order nonlinear differential equation when
the corresponding unperturbed equation has some repeated eigenvlues. They have
studied the following nrh order weakly nonlinear ordinary differential equation

d™Mx dUVy dx dx

PG =y Tt k=g f(x, dz""’t)’ (1.47)

where x',j >4 represents a jth derivative of x, ¢ is a small positive parameter,
ki, j=12,--,n are constants and f is a given nonlinear function. They have
considered that the unperturbed equation of Eq. (1.47) has »=1,2,--- pair repeated
eigenvalues, namely A, =4,,/=12,---,r and the rest are distinct. They have

assumed a function of the form of Eq. (1.44) to solve Eq. (1.47). In [22] it is

substituted for variables a;,j=12,--2r,ie., for a,_ =a,,l=12,-r as

Gy = 5T+ 50 (s = ),

1 (1.48)
2= 5‘71(0 = () (A — Ay)-
Therefore, the solution Eq. (1.44) becomes
H(,6) = YT+ +BOE )]
o (1.49)
+ D a0 + (@ T, e BBy Gy B l) o
J=2r+l

Finally they have written the solution of Eq. (1.49) in the following form
x(t,8) =Y @ (e + >a,(t)e™ + eu (@, @, @y By Gyol) + -+, (1.50)
I=1 j=2r+l

where a/([):ﬁ,(t)+t5,(t). In [29], they have used the variables @,,b, or

@,, 1 =12,---r to analyze the case of repeated complex eigenvalues as well as of

repeated real eigenvalues.
There exists a large body of literature dealing with the problems of

approximate solutions to nonlinear equations using various methodologies [1-75,93-
154] but many of them are applicable only to weakly nonlinear ones. To overcome

this limitation, many novel techniques have been proposed in resent years. Cheung et
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al. [65] have proposed a modified Lindstedt-Poincare method. Lim and Wu [107]
have presented a modified Mickens procedure for a certain strongly nonlinear
oscillators. Hu [77] has presented a classical perturbation technique which is valid for
large parameters. Hu [78] has also developed the solution of a strongly quadratic
nonlinear oscillator by the method of harmonic balance. Hu and Tang [79] have
presented a classical iteration procedure valid for certain strongly nonlinear oscillator.
He [80] has investigated an approximate solution of nonlinear differential equations
with convolution product nonlinearities. He [81] has investigated a novel homotopy
perturbation technique to find a periodic solution of a general nonlinear oscillator for
conservative systems. He [81] has considered the following nonlinear differential
equation in the following form

Aw)-f(r) =0, reQ, (1.51)

with the boundary conditions
_ B(u,(’;—z;);"o, rel, (1.52)

where A is a general differential operator, B is a boundary operator, f(r) is a
known analytical function, I is the boundary of the domain Q .Then He [81] has
written Eq. (1.51) in the following form.

L(u)+ N(u)— f(r) =0, (1.53)
where L is linear part, while N is nonlinear part. He [81] has constructed a
homotopy v(r, p): Q2x[0,]] = R which satisfies

HQ, p) = (1= pLE) — L)l + plAW) - f()]=0, pe[0l], reQ (1.54a)
or
HE.p) = L) - L)+ pLEy) + PING) - f(] =0, (1.54b)
where pe[0,1] is an embedding parameter, u, Is an initial approximation of Eg.

(1.51), which satisfies the boundary conditions. Obviously, from Eq. (1.54), it

becomes
Hv,0) = L)~ L(#,) =0, (1.55)
H(v,) = A(v)- f(r) = 0. (1.56)

The changing process of p from zero to unity is just that of v(r,p) from

u,(r) to u(r). He [81] has assumed the solution of Eq. (1.54) as a power series of p

in the following form

19



Chapter 1

V=Vy+ py + pl, 4o, (1.57)

The approximate solution of Eq. (1.51) is given by setting p =1 in the form

U=V +V 4y, 400, (1.58)

He [82] have presented some new approaches to Duffing equation with
strongly and higher order nonlinearity (I) linearized perturbation method. In this
paper, He [82] has considered a typical nonlinear equation, Duffing equation with
higher order nonlinearity of following form

d’u _ 5 )

?+u =—gu’, u(0)= 4, u(0)=0. (1.59)

He has constructed a homotopy Qx[0,1] —» R which satisfies

L(v) = L(uy) + pL(uy) + pev’ =0, (1.60)
where
Lu=g2—g+u. (1.61)
dr
He [82] has assumed the initial solution of Eq (1.59) in the following form
uy(t) = Acosot, (1.62)

where «a(¢) is a nonzero unknown constant with «(0)=1. Supposing the
approximate solution of Eq. (1.60) has the form of Eq. (1.57), by the same
manipulation, He [82] has found the following equations
L(v,)—L(y,) =0, (1.63)
L)+ L(w)+evy =0, v,(0) = v,(0) = 0. (1.64)
Finally, He [82] has obtained the solution of Eq. (1.59) in the following form
u(t) = Acos(1+5¢4" /116)t. (1.65)
Belendez ef al. [59] have developed the approximate solution of a nonlinear
oscillator typified as a mass attached to a stretched elastic wire by homotopy

perturbation method. They have studied the governing non-dimensional equation of

motion for a mass attached to a stretched elastic wire in the following form

2 &
df”ﬂ\/ﬁxﬁo,oszsl‘ (1.66)
dt 1+x

According to the homotopy perturbation method, they have re-written Eq.

(1.66) as
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d*x 1
+olx =0 x—x+ i

7 f ~ 13 %
N = (1.67)
where @ is the unknown frequency of the nonlinear oscillator. For Eq. (1.67), they
have established the following homotopy
d2

d2

Ax

m), (1.68)

where p is the homotopy parameter. When p =0, Eq. (1.68) becomes the linearized

+0’x = plo*x—x+

equation and for the case p=1, Eg. (1.68) returns the original problem. Now the
homotopy parameter is used to expand the solution x(f) in powers of the parameter

p in the following form
x(D)=x()+ px, () + PP x, (1) + . (1.69)

Substituting Eq. (1.69) into Eq. (1.68) and equating the terms with like powers

of p, they found a series of linear equations, of which they have written only the first

two as
d’x, dxy(0)
+ =0, x,(0)= 4,
i @’ x, %,(0) = i =0, (1.70)
and
d N0 x = (@~ 1) x, + ), %,(0) =0, il . (1.71)
dt 1+x0 at

They have obtained the solution of Eq. (1.70) in the following form
x, = Acoswt, (1.72)
where A is the constant amplitude. Substitution of Eq. (1.72) into Eq. (1.71), yields

the following differential equation for x, as

2 A Acoswt
o ‘ +w?x, = (0" -1) Acoswt + SOl . (1.73)
J1+ 42 cos® wt
It is possible to do the following Fourier series expansion
st = a,coswt + a; cos3m! + -+, (1.74)
J1+ 4> cos’ ot

where the first term of this expansion.can be obtained by means of the following

equation
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r/2

Acosé@

cos@da, 6 = wt. .
S o (175

Substituting Eq. (1.67) into Eq. (1 .66) gives

Cﬁ =

d'x 2 Aa 2
a2 Texn=(@ -1+ —A—)A coswt + A a,,. cos[(2n+wt]. (1.76)

n=l
The requirement of no secular terms in particular solution of Eq. (1.76)

implies that the coefficient of the coswr term is zero, i.e.,

w2—1+%=0 (1.77)

Substituting Eq. (1.77) into Eq. (1.76) and reordering, they have obtained the

frequency o as the following form

W= \/1 - 4/112 [E(-4%) - K(-4)], (1.78)
TA

where K(m)and E(m) are the complete integrals of the first and second kind,

respectively and defined as follows

rl2 dg

,,fz ~1=mcos® 6 (1.79)

E(m)= [V1-mcos® 6ae.
0

Then Eq. (1.76) has been written as

K(m) =

2 n :
dx w’x, = 1) @y, cos[(2n+ )] (1.80)

dr?

n=1

The solution of Eq. (1.80) is given by

X = ¢y, c0s[(2n+Dat], (1.81)
n=0

L R ) (1.82)

2 qn(n+1) o’

Thus the first order approximate solution of Eq. (1.66) has been obtained as

x(£) = x, () +x, )+, p=1 (1.83)

Belendez et al. [60] have developed the application of modified He’s
homotopy perturbation method to obtain higher-order approximations to a nonlinear
oscillator with discontinuities. In another article, Belendez, er al. [61] have

determined the solution for anti- symmetric quadratic oscillator by a modified He’s
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homotopy perturbation method. Belendez et al. [62] have used a modified He’s
homotopy perturbation method to calculate the periodic solutions of a conservative
nonlinear oscillator for which the elastjc force term is proportional to x'*.

From our study it is seen that, most of the authors have developed the
analytical method only for conservative systems with strongly nonlinearities by the
homotopy perturbation method and the KBM method for weakly nonlinear

differential systems with constant coefficients with damping effects.

1.2 The Proposal

We propose an analytical technique based on the He’s homotopy perturbation
technique and the extended form of the KBM method modeled by second order
strongly nonlinear autonomous differential equations in presence of damping in the

following form
¥+2kx+vix=gf(x,x), (1.84)
and the perturbation method has been developed to obtain the analytical approximate

solutions of third and fourth order weakly nonlinear autonomous differential systems

with varying coefficients and significant damping effects in the following forms

respectively

¥+ @)X+, ()X +c(r)x = f(x,%,%,7) (1.85)
and

x4 e (D)% + ) (T)E+ o (D)X + oy (D) x = £ f (3, %, %,%,7) (1.86)

In Chapter 2, [145] He’s homotopy perturbation method has been extended to
second order strongly nonlinear differential systems with cubic nonlinearity and
significant damping effects. Also this analytical technique is valid for weakly
nonlinear systems. Chapter 3, [146] deals with a homotopy perturbation and the
KBM methods for second order strongly nonlinear differential systems with slowly
varying coefficients and significant damping effects. In Chapter 4, an extended
approximate technique has been found for solving strongly nonlinear oscillating
processes in biological systems with small damping effects. In Chapter 5, [147]
homotopy perturbation method has been developed to obtain the second approximate
solution of a second order strongly nonlinear differential system with significant
damping effects. In Chapter 6, [148] an asymptotic method has been developed to

obtain the second order approximate solution of a third order weakly nonlinear
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differential equation with slowly varying coefficients and small damping effects. A
unified KBM method has been presented to obtain the analytical approximate solution

of a fourth order weakly nonlinear differential equation with large damping effects
and slowly varying coefficients [149] in Chapter 7.
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An Approximate Technique for Solving Strongly Nonlinear
Differential Systems with Damping Effects

2.1 Introduction

The most common methods for constructing the analytical approximate
solutions to the nonlinear oscillator equations are the perturbation methods. Some
well known perturbation methods are ‘the Krylov-Bogoliubov-Mitropolskii (KBM)
[45,94,113] method, the Lindstedt-Poincare (LP) method [122,125] and the method of
multiple time scales [125]. Almost all perturbation methods are based on an
assumption that small parameter must exist in the equations. In general, the
perturbation approximations are valid only for weakly nonlinear problems. Lim et al.
[107] have presented a new analytical approach to the Duffing-harmonic oscillator.
Recently, He [91] has presented a new interpretation of homotopy perturbation
method for strongly nonlinear differential systems. Belendez et al. [63] have
presented the application of He’s homotopy perturbation method to Duffing harmonic
oscillator. Alam er al. [28] and Ludeke et al. [108] have obtained the solutions of
strongly cubic nonlinear oscillators with large damping effects. Chatterjee [66] has
also presented the solution of a stronély cubic nonlinear oscillator with damping
effects by the harmonic balance based on averaging. But numerous physical and
oscillating systems encounter in presence of small damping in nature. In this chapter,
we have presented an analytical technique by coupling the He’s [63,80-92] homotopy
perturbation technique and the extended KBM [45,94,113] method to solve the
second order strongly nonlinear ordinary differential system with small damping
effects. The advantage of the presented method is that the first order approximate

solutions show a good agreement with the corresponding numerical solutions.

2.2 The Method

Let us consider a conservative nonlinear oscillator in the following form

i+vix=—€f(x), 2.1

25



Chapter 2

where over dots denote differentiation with respect to time ¢, v is a constant, € is a

positive parameter, not necessarily small and S(x) is a given nonlinear function

which satisfies the following condition
Jx)==1(x). 22)

According to the homotopy perturbation technique [63,80-92], we can write
the above equation in the following form

E+(V+A)x=Ax-ex’, (2.3)
where A is an unknown constant which can be found by eliminating the secular terms
and f(x)=x>. Now Eq. (2.3) can be re-written as

i+o’x=Ax-gx’, (2.4)
where

0’ =v?+ A (2.5)

Herein @ is a constant and known as the frequency of the nonlinear oscillator.

According to the He’s [63,80-92] homotopy perturbation method, we have

constructed the following homotopy

¥+ w'x=p(lx—ex’), (2.6)
where p is the homotopy parameter. When p =0, Eq. (2.6) becomes the following
linearized equation

¥+a’x=0, : Q.7
and for the case p =1, Eq. (2.6) becomes the original problem. According to the
homotopy perturbation method, parameter p is used to expand the solution x(¢) in
powers of the parameter p in the following form

x(t) = xo(£) + PR () + Py () ++- 28)

Substituting Eq. (2.8) into Eq. (2.6) and then equating the coefficients of the
like powers of p, we obtain the following linear differential equations

%, + w2 xy =0, x,(0)=a,, %(0)=0 (2.9)

% o', = Axy—£x0 5,(0)=0 5(0)=0, (2.10)
where a, is a positive constant. The solption of Eq. (2.9) is obtained as

x,(t) = a, coswi, 2.11)

Substituting Eq. (2.11) into Eq. (2.10), we obtain
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X, + wx, =(Aao—%aaé)cosa)t-—%gagcosh)t (2.12)

To remove the secular terms from Eq. (2.12), we can set

Aao—%gag=o (2.13)
which leads to

P 3'94“5 (2.14)

By inserting the value of A from Eq. (2.14) into Eq. (2.5), we obtain the

following solution for @ as

2
w(ay) = vt + 334"0 . (2.15)

From Eqg. (2.15), it is seen that the frequency depends on the initial amplitude

a, and independent of time ¢ for conservative nonlinear systems. Now Eq. (2.12) can

be rewritten in the following form
¥ +wix = —%a a; cos3wt, (2.16)

with the initial conditions
x(0)=0, x,(0)=0. (2.17)
The solution of Eq. (2.16) is then

1 3
= ———¢&a,(coswt —cos3wt). 2.18
X 32&)2 0 ( ! ) ( )
Thus we obtain the first order analytical approximate solution of Eq. (2.1) by

setting p =1 in the following form

3
a, COS Ot + ——2_cos 3wt (2.19)
0 32w* ’ '

320° —ga;
320>

X =X, +X =(

where the frequency @(a,) is given by Eq. (2.15).

But most of the physical and oscillating systems encounter in presence of
small damping in nature. So we are interested to consider a nonlinear oscillator with

small damping effects in the following form [28,66,108]
$+2kx+0'x=-¢f(x), k<<l, (2.20)
where 2k is the linear damping coefficients. We can easily return to Eq. (1) from Eq.

(2.20) by setting k& = 0. Now we are going to consider the following transformation
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x=y(t)e™, 2.21)
Differentiating Eq. (2.21) twice with respect to time ¢ and substituting X, x
together with x into the original Eq. (2.20) and then simplifying them, we obtain
JH -E)y=—gé' f(ye™). (2.22)
According to the homotopy perturbation method [63,80-92], Eq. (2.22) can be

written as

y+o'y=Ay-zge* f(ye™"), (2.23)
where

o’ =0’ -k*+ A (2.24)

Herein @ is a constant for undamped nonlinear oscillator and A is an
unknown constant which can be determined by eliminating the secular terms (as it is
eliminated for the undamped problem). However, for a damped nonlinear differential
system @ is a time dependent function and it varies slowly with time ¢. To handle
this situation, we can use the extended KBM [45,94] method by Mitropolskii [113].

According to this technique, we choose the first approximate solution of Eq. (2.23) in

the following form

Yy =acosg, (2.25)
where the amplitude ¢ and the phase @ vary slowly with time ¢. When damping is
present the amplitude a is a function of time ¢, and approaches zero as ¢ — «. The
amplitude a and the phase ¢ satisfy the following first order ordinary differential
equations

a=kA(a,t)+ k4 (a, )+,

¢ = a)(vl:() + k>B, (G,T;(-l- k2)32 (a,7)+-, 225}
where k is a small positive parameter and 7z = k¢ is the slowly varying time. It is
clear that this solution is similar to the undamped solution if & —0 and
a — a,, p — ot . Differentiating Eq. (2.25) twice with respect to time ¢, utilizing the
relations Eq. (2.26) and by substituting j and y into Eq. (2.23) and then by equating
the coefficients of sing and cos¢, we obtain

A =-0'alQw), B =0, (2.27)
where a prime denotes differentiation with respect to 7. Now putting Eq. (2.25) into

Eq. (2.21) and Eq. (2.27) into Eq. (2.26), we obtain the following equations
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x=ae™* cosg, (2.28)
a=-ko'al2w), (2.29)
¢ = (7). '

Eq. (2.28) represents the first order analytical approximate solution of Eq
(2.20) by the presented method with small damping effects. Usually the integration of
Eq. (2.29) is performed by well-known techniques of calculus [125], but sometimes
they are solved by a numerical procedure [28,57,66,108]. Thus the determination of

the first order analytical approximate solution of Eq. (2.20) is completed.

2.3 Example

As an example of the above procedure, let us consider the Duffing equation
with small damping effects and strongly cubic nonlinearity [28,66,108] in the

following form

¥42kx+0x =—gx°, (2.30)
where f(x)=x’. Now using the transformation Eq. (2.21) into Eq. (2.30) and then
simplifying them, we obtain

J+ (0 —k)y=—ge*'y’. (2.31)

According to the homotopy perturbation [63,80-92] method, Eq. (2.3 1) can be
re-written as

j+o’y=Ay—se'y’, (2.32)
where @ is given by Eq. (2.24). Now according to the extended form of the KBM

[45,94,113] method, the solution of Eq. (2.32) is given by Eq. (2.25) and the
amplitude a and the phase ¢ are obtained by Eq. (2.29).

The requirement of no secular terms in particular solution of Eq. (2.32)

implies that the coefficient of the cos¢ term is zero. Setting this term to zero, we

obtain
3 2kt
Ta=2t9% .y, (2.33)
4
which leads to
2 -2kt
A= ___38046 . (2.34)

Putting the value of A from Eq. (2.34) into Eq. (2.24), yields
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2 =2kt
wz —_ 1)2 _k2 +_3HL4€___' (235)

This is a time dependent frequency equation of the given nonlinear differential

system. As ¢ — 0, Eq. (2.35) gives

3ea}
7
By integrating the first equation of Eq. (2.29), we get

a =a01/%, 2.37)

where a, is a constant of integration which represents the initial amplitude of the

@, = @(0) = \/uz —k* + (2.36)

nonlinear system. Now putting Eq. (2.37) into Eq. (2.35), we obtain the following

equation
3 =
@ +qa)+r—0, : (238)
where
2 =2kt
g=-"-k), r=——38a’°‘;°e . (2.39)

Eq. (2.38) is a cubic equation in @ . It has an analytical solution for every real
value of v. When v >0 (especially v > k), then the solution of Eq. (2.38) becomes
(see also [76] for details)

/3 1/3
I L rort g’
W=|—=+.= +== +| gy s (2.40)
2 V4 27 2 V4 27
Now substituting » = -2R, g =-3Q into Eq. (2.40), we get

or,

w=|R+iJQ* - R? " rR-i QJ—RZ)M, R<Q. (2.42)
(k+ifo =) + (=il

Herein the relations among Q, R, v, k, @, and a, are given by

(L*—k%) R 3ew, a; et

0= 3 2 (2.43)
According to [76], the real form of Eq. (2.42) is obtained as

tan™' (V' / R
o= 2Geof Y1) -
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where
V=40 -R2. (2.45)

The solution of the second equation of Eq. (2.29) becomes
! .

o=+ [w()ar, (2.46)
0

where @, is the initial phase and @ is given by Egs. (2.41) or (2.44). Thus the first
order analytical approximate solution of Eq. (2.30) is obtained by Eq. (2.29) and the
amplitude a and the phase ¢ are calculated by Egs. (2.37) and (2.46) respectively.

The presented method also gives the desired results for second order strongly

cubic nonlinear oscillator in presence of damping without linear term in equation,
ie,X+2kx+ex’ =0 (see also [66]). To handle this case, we had to put v =0 in the
solution of Eq. (2.30). Now substituting » =-2R, ¢ =30 into Eq. (2.40), and then it
yields

o=(r+ )" - ReJE+ Q)" 2.47)

Herein the relations among O, R, k, w,and g, are

2 2 2kt
Q=%3R=§E%§_ﬂ, (2.48)

To obtain more corrected results for the cubic nonlinear oscillator

¥4 2kx+ex’ =0, we obtain the following solutions

x=ae*'(21cosp +cos3p)/22, (2.49)
 21w()

_ , 2.50
=" (2.50)

1lea,’ |
%=y—g F> (2.51)

and a, @ are given by Eqgs. (2.37) and (2.47) respectively.

where

llew.a, e **"
R= 00 : 2.52

2.4 Results and Discussions

In this chapter, an analytic technique has been presented to obtain the first

order analytical approximate solutions for second order strongly cubic nonlinear
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oscillators with small damping effects and the method has been successfully
implemented to illustrate the effectiveness and convenience of the presented method.
The first order analytical approximate solutions of Eq. (2.30) are computed by Eq.
(2.28) and the corresponding numerical solutions are obtained by fourth order Runge-
Kutta method.

This method can also be used to solve the second order strongly cubic

nonlinear system in absence of linear term (i.e., v=0) in the equation. To justify the

effectiveness of this method, we have compared the result obtained by the presented
method to the result obtained by Chatterjee [66] and we have obtained better result
than his [66] result. The solution obtained by the presented method coincides with the
corresponding numerical but the Chatterjee’s [66] solution deviate from the numerical

solution for the same initial conditions (see also Fig.2.5).

In summary, the He’s homotopy perturbation method [63,80-92] is able to
handle the nonlinear systems without damping and the KBM method is also able to
handle nonlinear systems with small nonlinearities [1-37,45,94,113]. The second
order perturbation solution obtained by Alam ef al. [28] shows a good coincidence
with the numerical solution for strongly nonlinear oscillator (when v # 0) with strong
damping effects but it does not give the desired result when the damping effect is
small. Ludeke et al. [108] have also presented the generalized Duffing equation with
large damping effects (when v # 0), but it does not give the desired result when the
damping effect is small. But most of the physical and oscillating systems encounter in
presence of small damping 1n nature. Furthermore, the presented method is simple and
the advantage of this method is that the first order approximations show good
agreement (see also Figs. 1-5) with the corresponding numerical solutions. The initial
approximations can be freely chosen, which is identified via various methods
[28,42,45,57,63,66,80-94,107,108,113]. The approximations obtained by the
presented method are valid not only for strongly nonlinear differential systems, but
also for weakly one with small damping effects. Figs. 1-5 are provided to compare the
solutions obtained by the presented method to the corresponding numerical solutions

with small damping effects and strong nonlinearity.

To obtain the numerical solution of X+2kx+uv*x=—gx®, the initial

conditions x(0),x(0) are computed from the following equations
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x(0) = a, cos g,

. 3ekalw _
x(0) = (2(@3 " kg _°V2) ~ kao}:osqo0 — a, w, sin .

In general, the initial conditions [x(0), x(0)] are specified. Then one has to
solve nonlinear algebraic equation in order to determine the initial amplitude a, and

the initial phase @, that appear in the solution, from the initial conditions equation.
2.5 Conclusion

In this chapter, we have presented an analytical technique by coupling the
He’s homotopy perturbation technique and the extended form of the KBM method.
The presented method has eliminated some limitations of the homotopy perturbation
technique and the KBM method.

33



Chapter 2

Fig. 2.1
1 4
05 - /\
» 0 f\ /\ A K4
0]
-0.5 4
-
t

Fig. 2.1 First approximate solution of Eq. (2.30) is denoted by —e — (dashed lines) by
the presented method with the initial conditions [x(0)=1.0, x(0)=-0.08227] or

a,=1.0, p,=0 when v=10, k=01, £=1.0 and f=x’. Corresponding

numerical solution is denoted by - (solid line).
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Fig. 2.2 First approximate solution of Eq. (2.30) is denoted by —e — (dashed lines) by

the presented method with the initial conditions [x(0)=1.0, *(0)

~0.18320] or

a,=10, ¢, =0 when 0=10, k=02, £=1.0 and f=x’. Corresponding

numerical solution is denoted by - (solid line).
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Fig. 2.3
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Fig. 2.3 First approximate solution of Eq. (2.30) is denoted by —e — (dashed lines) by
the presented method with the initial conditions [x(0)=2.0, x(0)=-0.02667] or

a,=2.0, p,=0 when v=0.0, k=002, £=1.0 and f=x’. Corresponding

numerical solution is denoted by - (solid line).
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Fig. 2.4
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Fig. 2.4 First approximate solution of Eq. (2.30) is denoted by — e — (dashed lines) by
the presented method with the initial conditions [x(0) =2.0, X(0)=-0.02667] or

a,=2.0, p,=0 when 0=00, k=002, £=1.0 and f=x’. Corresponding

numerical solution is denoted by - (solid line).
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Fig. 2.5
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Fig. 2.5 First approximate solution of Eq. (2.30) is denoted by — ¢ — (dashed lines) by
the present method and the Chatterjee’s [66] solution is denoted by ---- (dashed lines)
with the same initial conditions [x(0)=2.0, x(0)=0] when v=0.0, £=0.02,

£=1.0 and f =x’. Corresponding numerical solution is denoted by - (solid line).
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An Approximate Technique to Duffing Equation with Small
Damping and Slowly Varying Coefficients

3.1 Introduction

Most of the physical phenomena and engineering problems occur in nature in
the forms of nonlinear differential systems with damping effects. The common
methods for constructing the analytical approximate solutions to the nonlinear
oscillator equations are the perturbation methods. Some well known perturbation
methods are the Krylov-Bogoliubov- Mitropolskii (KBM) [45,94,113] method, the
Lindstedt-Poincare (LP) method [122,125] and the method of multiple time scales
[125]. Almost all perturbation methods are based on an assumption that small
parameter must exist in the equations. Lim er al. [107] have presented a new
analytical approach to the Duffing- harmonic oscillator. In recent years, He [81] has
investigated the homotopy perturbatioh technique. In another paper, He [83] has
developed a coupling method of a homotopy perturbation technique and a
perturbation technique for strongly nonlinear problems. Recently, He [91] has also
presented a new interpretation of homotopy perturbation method for strongly
nonlinear differential systems. Belendez et al. [63] have presented the application of
He’s homotopy perturbation method to Duffing harmonic oscillator. Recently Roy et
dl. [139] have presented the effect of higher approximation of Krylov-Bogoliubov-
Mitropolskii solution and matched asymptotic differential system with slowly varying
coefficients and damping near to a turning point for weakly nonlinear system. The
authors [63,81,83,91] have studied the nonlinear systems without considering any
damping effects. But most of the physical and oscillating systems encounter in
presence of damping in nature. In this chapter, we have presented an analytical
technique to solve second order strongly nonlinear ordinary differential systems with
small damping and slowly varying coefficients. Figures are provided to compare
between the solutions obtained by the presented method and the corresponding
numerical (considered to be exact) solutions.

3.2 The Method
Consider a nonlinear oscillator [139] modeled by the following equation
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X+ex+ef(x)=0, x(0)=aq,, x(0) =0, (3.1)
where over dots denote differentiation with respect to time ¢, 7 is a slowly varying
time, a, is a given positive constant and Jf(x) is a given nonlinear function which
satisfies the following condition

J(=x)==f(x). (3.2)

According to the homotopy perturbation [63,80-92] technique, Eq. (3.1) can

be re-written as

it +A)x=Ax—¢f(x) (3.3)

Eq. (3.3) yields,

ita’x=Ax—¢gf(x), (3.4)
where

o’ =e" + A (3.5)

Herein @ is a constant for undamped nonlinear oscillator and known as the
frequency in literature and A is an unknown function which can be determined by
eliminating the secular terms. But for a damped nonlinear differential system @ is a
time dependent function and it varies slowly with time ¢. To handle this situation, we
are going to use the extended KBM [45,94] method by Mitropolskii [113]. According
to the He’s [63,80-92] homotopy perturbation method, we have constructed the
following homotopy

X+ a’x = p(Ax—ex’), (3.6)
where p is the homotopy parameter and f(x)= x’. When p =0, Eq. (3.6) becomes
the linearized equation

| i+w’x=0, (3.7)
and for the case p=1, Eq. (3.6) becomes the original problem. The homotopy
parameter p is used to expand the solution x(#) in powers of p in the following
form

xX(t) = %, (1) + px,(6) + PP x, () + -+ (3.8)

Substituting Eq. (3.8) into Eq. (3.6) and then equating the coefficients of the

like powers of p, we obtain the following linear differential equations
%y + @7 xy =0, x,(0)=ay, %(0)=0 (3.9

i +w'x = Ax,— x5, x(0)=0 %,(0)=0, (3.10)
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where a, is a positive constant. The solution of Eq. (3.9) is then obtained as
x,(f) = a, cos wt. (3.11)
Substituting Eq. (3.11) into Eq. (3.10), we obtain
.. 3
X +0'x =(la, - Zf:ag)coswt - %eag cos3amt. (3.12)
The requirement of no secular terms in particular solution of Eq. (3.12)

implies that the coefficient of the coswt term is zero. Setting this term to zero, we

obtain
3 5
lao—zf:ao:O (3.13)

For the nontrivial solution i.e., @, # 0, Eq. (3.13) leads to

_ 3ea,
4

By inserting the value of A from Eq. (3.14) into Eq. (3.5), we obtain the

A

(3.14)

following solution for w as

3 2
o(a,) = 1/e" + 34‘70 . (3.15)

From Eq. (3.15), it is seen that the frequency depends on the initial amplitude

a, and slowly varying time 7. Now using Eq. (3.13), Eq. (3.12) can be rewritten in

the following form
¥ +oix = —%sag cos3wt, (3.16)

with the initial conditions
x,(0)=0, x,(0)=0. (3.17)
The solution of Eq. (3.16) is then obtained as

X, = ——— &a, (coswt — cos3w1). (3.18)
)

Thus we obtain the first order analytical approximate solution of Eq. (3.1) is

obtained by setting p =1 in the following form

320% —ca? £a,
X=X, 4% = [—%{)zﬂ"—}% cosat + -2y cos3a, (3.19)

where the frequency @ is given by Eq. (3.15).
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But most of the physical and oscillating systems occur in presence of damping
in nature and it keeps an important role to the systems. From our study, it is seen that
the most of the authors [63,80-92,107] have presented the analytical technique for
solving nonlinear oscillators without considering damping effects. So in chapter 3, we
are interested to consider a strongly nonlinear oscillator [139] with small damping and
slowly varying coefficients in the following form

X+2k(r)x+e " x=—¢f(x), k<<l, (3.20)
where 2k is the linear damping coefficient which varies slowly with time ¢,7 =kt is
the slowly varying time.

Eq. (3.20) leads to Eq. (3.1) when k=0. Let us assume the following
transformation

x=y)e™". (3.21)

Differentiating Eq. (3.21) twice with respect to time ¢ and substituting ¥, %
together with x into Eq. (3.20) and then simplifying them, we obtain

Y+ (eT —k)y=—ge" f(ye™). (3.22)

According to the homotopy perturbation method [63,80-92], Eq. (3.22) can be
written as

Vy+o’y=Ay—-ge'f(ye™"), - (3.23)
where

w*=e" —k*+ A (3.24)

Herein A is an unknown constant which can be determined by eliminating the
secular terms (as it is eliminated for the undamped problem). However, for a damped
nonlinear differential system @ is a time dependent function and it varies slowly with
time £. To handle this situation, we can use the extended KBM [45,94] method by
Mitropolskii [113]. According to this technique, we are going to choose the analytical
approximate solution of Eq. (3.23) in the following form

y=acosg, (3.25)

where @ and ¢ vary slowly with time ¢, @ and ¢ satisfy the following first order

differential equations

d=kAl(a,T)+k2A2(a,r)+...’ 426
o= (l)('l')+kB|(a,T)+szz(a’r)+...,
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where k is a small positive parameter and A,,B, are unknown functions. It is clear

that, this solution is similar to the undamped solution if ¥ — 0 and ¢ — ay, P —> ot.
Now differentiating Eq. (3.25) twice with respect to timei t, utilizing the relations Eq.
(3.26) and substituting j and y into Eq. (3.23) and then equating the coefficients of
éingo and cos@, we obtain

4, =-w'a/2w), B, =0, (3.27)
where a prime denotes differentiation with respect to 7. Now putting Eq. (3.25) into

Eq. (3.21) and Eq. (3.27) into Eq. (3.26) we obtain the following equations

x=ae™* cosg, (3.28)
and

a=-ka' alw),

b o (3.29)

Eq. (3.28) represents the first order analytical approximate solution of Eq
(3.20) by the presented method. Usually, the integration of Eq. (3.29) is performed by
well-known techniques of calculus [122,125], but sometimes they are solved by a
numerical procedure [28,42,57,78,139,108]. Thus the determination of the first order

analytical approximate solution of Eq. (3.20) is completed.
3.3 Example

As an example of the above prolcedure, we are going to consider the Duffing
equation in the following form [139]

X+2k(r)i+e x=—£x", (3.30)
where f(x)=x>. Now using the transformation Eq. (3.21) into Eq. (3.30) and then
simplifying them, we obtain

(T —k)y=—ge?"y’. (3.31)

According to the homotopy perturbation [63,80-92] method, Eq. (3.31) can be

rewritten as

j+a’y=Ay-ge?My’, (3.32)
where

ol=eT -k + A (3.33)

According to the extended form of the KBM [45,94,113] method, the solution
of Eq. (3.32) is given Eq. (3.25). The requirement of no secular terms in particular
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solution of Eq. (3.32) implies that the coefficient of the coswt term is zero. Setting

this term to zero, we obtain

38a3e-—2k£

A ————=0, (3.34)

For the nontrivial solution i.e., a # 0, Eq. (3.34) leads to -

3ga’e ™!
A=———
1 (3.35)
Inserting the value of A from Eq. (3.35) into Eq. (3.33), it yields
2 -2kt
W met 4 EAE (3.36)

4

This is a time dependent frequency equation of the given nonlinear system. As
t >0, Eq. (3.36) yields

2
@, = a(0) =,/1-k2 +3‘9%. (3.37)

Integrating the first equation of Eq. (3.29), we get

a=ay,2L, (3.38)
w

where a, is a constant of integration which represents the initial amplitude of the

nonlinear system. Now putting Eq. (3.38) into Eq. (3.36), we obtain the following

|
|
l @ +qw+r=0, : (3.39)
|

equation
where
2 =2kt
g=—(e7 k%), r= L L (3.40)

! 4
Eq. (3.39) is a cubic equation in @ . It has an analytical solution for every real

value of e”™. When e™* >k, then the solution of Eq. (3.39) becomes (see also [6] for

details)

1/3 1/3
r rl q 3 r r? q ’ (3.41)
= ==+, +=—= | s ,
O=1727 27 2 V7 27
Now substituting » = —2R, g = =30 into Eq. (3.41), then it becomes

w=(R+1/R2—Q3)m+( J7-2)", r>0, (3.42)

or,
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o=+ iJg =R )"+ (k-1 —R)", R<0. (3.43)

Herein the relations among Q, R, v, k, w, and a, are obtained as

0= -K) o _3emae™ (3.44)
3 8
According to [76], the real form of Eq. (3.43) is given by
-1 -1
w=z@cos[”+ta‘*3 V/R]=2J§cos[‘_af‘_3’”—R], (3.45)
where
V= Q3 ___RZ. (3.46)

The solution of the second equation of Eq. (3.29) becomes
0=+ [0, (3.47)
0

where @, is the initial phase and @ is given by Egs. (3.42) or (3.45). Therefore, the

first order analytical approximate solution of Eq (3.30) is obtained by Eq. (3.28) and
the amplitude a and the phase ¢ are calculated from Eq. (3.38) and Eq. (3.47)

respectively. Thus the determination of the first order analytical approximate solution

of Eq. (3.30) is completed by the presented analytical technique.
3.4 Results and Discussions

In this chapter, an extended form of He’s homotopy perturbation technique has
been presented to obtain the analytical approximate solutions of second order strongly
cubic nonlinear oscillators with small damping and slowly varying coefficients and
the method has been successfully implemented to illustrate the effectiveness and
convenience of the presented method. From our results, it is seen that the first order
analytical approximate solutions (without any correction term) show a good
agreement with the corresponding numerical solutions for the several damping
effects. The analytical approximate solutions of Eq. (3.30) is computed by Eq. (3.28)
with small damping effects and slowly varying coefficients and the corresponding
numerical solutions are obtained by using fourth order Runge-Kutta method. This
method can also be used to solve the second order strongly nonlinear system without
damping (as k — 0). The presented method is very simple in its principle, and is very

easy to be applied to the nonlinear systems. The variational equations of the amplitude
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and phase variables appeared in a set of first order nonlinear ordinary differential
equations. The integrations of these variational equations are obtained by well-known
techniques of calculus [122,125]. In lack of analytical solutions, they are solved by
numerical procedure [1-37,42,57,78,108,113, 125]. The amplitude and phase
variables change slowly with time ¢. So, it requires the numerical calculation of a few
number of points. On the contrary, a direct attempt to solve a strongly nonlinear
differential equation dealing with some harmonic terms requires the numerical
calculation of a great number of points. The behavior of amplitude and phase
variables characterizes the oscillating processes. Moreover, the variational equations
of amplitude and phase variables are used to investigate the stability of nonlinear
differential equations. He’s homotopy perturbation technique is able to handle
nonlinear systems without damping and the KBM method is valid only for weakly
nonlinear systems. The presented method has overcome some limitations of He’s
homotopy perturbation and the perturbation techniques. The advantage of this method
is that the first order analytical approximate solutions show a good agreement with the
corresponding numerical solutions. The method has been successfully implemented to
solve for both strongly and weakly cubic nonlinear oscillators with small damping
effects and slowly varying coefficients. Comparison is made between the solutions
obtained by the presented analytical technique and those obtained by the numerical
solutions graphically in figures.

To determine the numerical solutions of ¥+ 2k(v)x +e"x =—gx°, the initial
conditions [x(0), X(0)] are obtained as

x(0) = a, cos@,,

. ka,(4+3ea}) .
0) = 0 0L _ka, |cosp, —a, w,sing,.
x(0) [8(30)5 -1 0 Py — Gy @y SIN Y,

In general, the initial conditions [x(0), X(0)] are specified. Then one has to
solve nonlinear algebraic equations in order to determine the initial amplitude a, and

the initial phase ¢, that appear in the solutions, from the initial conditions.

3.5 Conclusion

" It may be concluded that the presented method is very efficient and powerful

in finding the analytical approximate solutions for strongly nonlinear systems with

small damping and slowly varying coefficients rather than the classical one.
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Fig.3.1 (a)

0.5

-0.5 +

Fig.3.1 (a) First approximate solution of Eq. (3.30) is denoted by —e — (dashed lines)
by the presented analytical technique with the initial conditions

[x(0) =1.0, #(0)=-0.118879] or @, =10, ¢, =0 with k=0.15 £=1.0 and

f =x*. Corresponding numerical solution is denoted by - (solid line).
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Fig.3.1 (b)

0.5 -

-0.5

Fig.3.1 (b) First approximate solution of Eq. (3.30) is denoted by —e— (dashed lines)
by the presented analytical téchnique with the initial conditions

[x(0) =1.0, #(0)=-0.11302] or a,=10, ¢, =0 with £k=0.15 =01 and

f =x*. Corresponding numerical solution is denoted by - (solid line).
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Fig.3.2 (a)

0.5 -

-0.5 -

4

Fig.3.2 (a) First approximate solution of Eq. (3.30) is denoted by —e — (dashed lines)
by the presented analytical technique with the initial conditions
[x(0)=1.0, X(0)=-0.03969] or a,=1.0, ¢, =0 with £=0.05, £=1.0 and

f =x*. Corresponding numerical solution is denoted by - (solid line).
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Fig.3.2 (b)

0.5 4

-0.5 1

Fig.3.2 (b) First approximate solution of Eq. (3.30) is denoted by —e — (dashed lines)
by the presented analytical technique with the initial conditions

[x(0) =1.0, %(0)=-0.03789] or a,=1.0, ¢, =0 with k=0.05, £=0.1 and

f =x*. Corresponding numerical solution is denoted by - (solid line).
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An Approximate Technique for Solving Strongly Nonlinear

Biological Systems with Small Damping Effects
4.1 Introduction

Nonlinear oscillating processes in nature are of great importance. In the last
several decades there has been increased interest in oscillating processes in physics,
mechanics, circuit and control theory, biology and biochemistry. In particular,
periodic events with constant repetitions have provided a foundation for the
establishment of the very important concept of periodicity. Great achievements in
science have to be attributed to the theory of periodic oscillations. In this connection,
among many branches of science, astronomy has played a significant role. In reality a
purely periodic process is an idealization which in many cases approximates an event
closely enough, either from practical or philosophical point of view. However, there
are also events whose study based on the assumption of no damping or small damping
effects with weak nonlinearity may severely limit their closeness to reality. For the
correct treatment of these events in presence of small damping and strong nonlinearity
has to be incorporated.

The most common methods for constructing the analytical approximate
solutions to the nonlinear oscillator equations are the perturbation methods. Some
well known perturbation methods are the Krylov-Bogoliubov-Mitropolskii (KBM) [1-
37,45,94,113] method, the Lindstedt-Poincare (LP) method [122-125] and the method
of multiple time scales [125]. Almost all perturbation methods are based on an
assumption that small parameter must exist in the equations. In general, the
perturbation approximations are valid only for weakly nonlinear problems. Recently,

He [91] has presented a new interpretation of homotopy perturbation method for
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strongly nonlinear differential systems. Belendez ef al. [63] have presented the
application of He’s homotopy perturbation method to Duffing harmonic oscillator.
Alam et al. [28] and Ludeke et al. [108] have obtained the solutions of strongly cubic
nonlinear oscillators with large damping effects. Chatterjee [66] has also presented the
solution of a strongly cubic nonlinear oscillator with damping effects by the harmonic
balance based on averaging. Bojadziev [55] have presented the weakly nonlinear
damped oscillating processes in biological and biochemical systems. Akhter et al.
[30] have developed an asymptotic method for over-damped processes in biological
and biochemical systems Azad et al [32] have developed the KBM asymptotic
method for over-damped processes in biological and biochemical systems. Recently
Uddin ez al. [145] have presented an approximate technique for solving strongly cubic
nonlinear differential systems with small damping effects.

Four well-known biological and biochemical models are mentioned bellow:
(1) A modified Lotka-Volterra model. In absence of predation and logistic growth
for prey one obtains the well known equétions

N,=N,(a,= BN, -yN,), N,=N,(-e, +BN,), (4.1)
where N, and N, are two populations, ¢, 5,,&,,5, and y are positive constants and
o B>ra,.
(ii) A generalized Lotka-Volterra model. Consider the following equations

N, = N,[-(N, —a)(N, - B) -y N,], N, = Ny(=c+N)), (4.2)
where N, and N, are two populations, a, B,y and ¢ are positive parameters which
are supposed to satisfy the relations a<c<f and (a+ fB)/2<c. The model Eq.
(4.2) describes a situation where the prey N, in absence of predators N, has an

asymptotic carrying capacity S and a minimum density ¢, below which successful
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mating cannot overcome the death processes. The stability properties of the nontrivial
equilibrium position of Egs. (4.1) and (4.2) have been studied by Gatto and Rinaldi
[74].
(iii) The FitzHugh equations. To investigate the physiological sates of nerve
membranes, FitzHugh [72] introduced a theoretical model described by the following
equations

=a+x+x,—-x/3, X, =p(y —x - Bx,), 4.3)
where it is assumed that «, ¥ € (—w,) and B.peO]).If @=p=y=0, then Eq.
(4.3) becomes to a Van der Pol equation. Recently this model has been studied by
Troy [144] and Hsu and Kazarinoff [93]. FitzZHugh investigated the model
qualitatively in the phase plane while Hsu and Kazarinoff [93] dealt with periodic
solutions using Poincare-Hopf bifurcation theory.
(iv) Oscillating chemical reactions. Lefever and Nicolis [102] have considered a set
of chemical reactions modeled by the following chemical kinetic equations

X=A+XY-BX-X, Y=BX-X?Y, (4.4)
where X and Y are two concentrations, 4 and B are initial product concentrations.
Lefever and Nicolis [102] have studied the phase portrait in the phase plane (X,Y)
both analytically and numerically, and shown the existence of a limit cycle.

It has been shown [30,32,55,72,74,75,93,101,102,145,144,150] that all
modeling Eqs (4.1)-(4.4) can be represented in the neighborhood of the equilibrium

position by a second order nonlinear differential system of the following form

$+2bi+x=sf V0, 0)+ &2 fP(x, %)+, 4.5)

where ¢ is a constant, 25 is the significant linear damping coefficients, ¢ is a small

positive parameter, f"(x,%) and f®(x,%) are given functions with quadratic

nonlinearity. In particular for £=0 in Eq. (4.5), one obtains the unperturbed
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equations X+2b%+c’x=0 with two complex eigenvalues 4, ,=—btim,

w=+c*—b*. Then the solution of the linearized equation of Eq. 4.5) is
Xy = ayexp(—bt)cos(wr + ¢,) , where a, and ¢, are constants of integration which are

also known as the initial amplitude and phase variables respectively. This solution
describes the oscillating processes, decreasing for 5> 0 and increasing for & < 0.

In our observation, based on various known models, it is noticed that the most
of the authors [30,32,55,72,74,75,93,10l,102,144,150] have studied the weakly
nonlinear biological oscillating and hon-oscillating systems. But numerous of
biological oscillating systems encounter in presence of small damping with strong
nonlinearity in nature. The aim of this chapter is to fill this gap. So we have presented
an analytical technique by coupling the He’s [80-92] homotopy perturbation
technique and the extended KBM [1-38,45,94,113] method to solve second order
strongly nonlinear oscillating processes in biological system with small damping
effects.

4.2 The Method

We are interested to consider strongly nonlinear biological oscillating systems
with small damping effects in the following form [78]

¥+2kx+0x =—¢ f(x,%), k<<], (4.6)
where over dots denote differentiation with respect to time ¢, v is a constant, 2k is

the linear damping coefficients, & is a positive parameter which is not necessarily

small and f(x,%) is a given nonlinear function which satisfies the following

condition
S(=x,— %) =f(x,%). 4.7)
Now we are going to use the following transformation
(4.8)

x=y()e™.
Differentiating Eq. (4.8) twice with respect to time / and substituting the

values of ¥, ¥ and x into Eq. (4.6) and then simplifying them, we obtain
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JHO =Ry =-e f(ye* (- ky)e"). (4.9)

According to the homotopy perturbation method [59-63,80-92], Eq. (4.9) can
be written as

Jro’y=Ay—ge f(yet (5 -ky)et), (4.10)
where

@’ =v'-k*+ 4. 4.11)

Herein @ is a constant for undamped nonlinear oscillating processes in
biological systems and A is an unknown constant which can be determined by
eliminating the secular terms. However, for a damped nonlinear differential systems
@ is a time dependent function and it varies slowly with time ¢. To handle this
situation, we can use the extended KBM [45,94] method by Mitropolskii [113].
According to this technique, the first approximate solution of Eq. (4.10) can be

assumed in the following form
y=acose, (4.12)
where the amplitude @ and the phase ¢ vary slowly with time . In presence of

damping, the amplitude a is a function of time ¢ and approaches zero as t — . The
amplitude a and the phase ¢ satisfy the following first order ordinary differential
equations
a=kB(a,7)+k*B,(a,t)+--, 4.13)
¢ =w(t)+kC/(a,7)+ k> Cy(a,r)+,
where k is a small positive parameter and 7 =kt is the slowly varying time. It is
noticed that this solution is similar to the undamped solution if & —0 and
a—> a,, ¢ = ot . Differentiating Eq. (4.12) twice with respect to time ¢, utilizing the
relations Eq. (4.13) and substituting  and y into Eq. (4.10) and then equating the
coefficients of sing and cos¢g, we obtain
B =-0'al/QQw), C, =0, (4.14)
where a prime denotes differentiation with respect to z . Now putting Eq. (4.12) into

Eq. (4.8) and Eq. (4.14) into Eq. (4.13), we obtain the following solutions of Eq. (4.6)

x=ae ¥ cosg, (4.15)
a=-kao'al/(2w), (4.16)
¢ =w(r). '
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Eq. (4.15) represents the first order analytical approximate solution of Eq (4.6)
by the presented method with small significant damping effects. Usually, the
integration of Eq. (4.16) is obtained by Well-known techniques of calculus [122,125],
but sometimes they are solved by a numerical procedure [1-37]. Thus the
determination of the first order analytical approximate solution of Eq. (4.6) is

completed by the presented method.
4.3 Example
Let us assume the strongly nonlinear oscillating processes in biological systems [78]
with linear damping effects in the following form
¥+2kxi+x=-£x?, 4.17)
where f(x,%)=x* and v=1. By using the transformation Eq. (4.8) into Eq. (4.17),
we obtain
J+(A-ky=—gyle™, (4.18)
According to the homotopy perturbation [59-63,80-92] method, Eq. (4.18) can
be re-written as
V+oly=Ay—eyle™, (4.19)
where
| @) =1-k%+ A (4.20)
For x >0, Eq. (4.19) can be written as
Jray=Ay-e|y|lye™, (4.21)
Now according to the extended KBM [45.94,113] method, the solution of Eq.
(4.21) is given by Eq. (4.12) and thel amplitude a and the phase ¢ satisfy the

following first order differential equations

a=-kw, alCa,), @.22)
¢ = @, (7).
Assume the following Fourier series expansion [78]
|acosg|acosp =c cos@+cycosd@+---. (4.23)
Here,
" E. (4.24)

3r

" 4a
c =£_|-|acos¢|acoszq)dqo=—- cos’ pdop =
7 T
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For avoiding the secular terms from the right hand side of Eq. (4.21), we

obtain
8eae™*!
A= 5, (4.25)
In this case, Eq. (4.20) yields
8cae !
o =1-k%+ o (4.26)

From Eq. (4.26), it is clear that the frequency of nonlinear oscillating

processes in biological systems depends on time . As ¢ — 0 » Eq. (4.26) leads to

8ea,

@, =w,(0)=.[1-k* + (4.27)

3z

By integrating the first equation of Eq. (4.22), we obtain

a=ay.o,,/0,. (4.28)

where a; is a constant of integration which represents the initial amplitude of the

nonlinear systems for x > 0. Now substituting Eq. (4.28) into Eq. (4.26), we obtain

ki

-2
> =1-k + 85‘;0—‘3 [0,4]a,. (4.29)

7
From Eq. (4.29), it is clear that it has no analytical solution. But for a definite

value of ¢ it can be easily solved by an iteration procedure. Now integrating the

second equation of Eq. (4.22), it is found that
!
9=p, + [, (), (4.30)
0

where ¢, is the initial phase and @, is given by Eq. (4.29). Herein, the integration of

Eq. (4.30) is also carried on by the numerical procedure. Thus the first order
analytical approximate solution of Eq. (4.17) for x > 0 is obtained by Eq. (4.15) and
the amplitude a and the phase ¢ are calculated by Egs. (4.28) and (4.30)

respectively.
For x <0, we replace x by —x, and then Eq. (4.17) becomes

¥+2kx+x=—€ex’ (4.31)

Utilizing the transformation Eq. (4.8) into Eq. (4.31) and then simplifying

them, we obtain

j+A-ky=eye™. L
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According to the homotopy perturbation [59-63,80-92] method Egq. (4.32)
yields

J+agy=2Ay+eyte™, (4.33)
where

o} =1-k*+ A, (4.34)

According to the above method, we can casily determine the following
solutions of Eq. (4.17) for x <0 by replacing a by b, @, by @, and € by —¢ in the

following forms

x=be™* cosg, (4.35)

b=b, \/%" (4.36)

w? =1-k? _ifi’;lm, (4.37)

@, 5 =wb(0)=1/1~k2—%. : (4.38)

@ =g, + ]wb ()dt. (4.39)
;

To study the strongly nonlinear oscillating processes in biological systems, we
have to change the parity. This presence has a consequence a shift of the amplitude.
Now we are interested to determine the relation between the amplitudes @ and 5

which are varying slowly with time ¢. Now Eq. (4.18) can be written as

vy +{(1-k)y +ey’e™*'}dy =0. (4.40)
By integrating Eq. (4.40), it yields
.2 2y .2 -kt 3
P UKy By gy . (4.41)
2 2 3

where 4 is a constant of integration. Let us assume that the systems oscillate [78]

between asymmetric limits [a,—b], & > 0. Then from Eq. (4.41) we obtain

(=)@ -8  ec'@+b) (4.42)
2 3

By solving Eq. (4.42) for b, we obtain

b=-a, (4.43)

58



Chapter 4

kit

b, =—
Y27 4e

{3(1 —k*)+2¢qe™* + 3\/(1 —k*)? —g-eae""(l ~k*+eae™ )]. (4.44)

Since it is assumed that 5> 0 and b — 0 for g —s 0, £ — 0 [78], then we get

the relation between the amplitudes @ and & as the form

kt

e
b =E[3(1 —k*)+2gae™ -3\/(1 —k*)? -f;gae-’”(l -k? +£ae""):l, (4.45)

where
4
ggae"" (1-k* +eae™) < (1- k), (4.46)

When k£ — 0, Eq. (45) agrees to Hu’s [78] results.
4.4 Results and Discussions

In this chapter, He’s [80-92] homotopy perturbation method has been
extended to obtain the approximate solutions for second order strongly nonlinear
oscillating processes in biological systems with small damping effects and the method
has been successfully implemented to illustrate the effectiveness and convenience of
the presented method. The complete analytical approximate solutions of Eq. (4.17) are
computed by Egs. (4.15) and (4.35) according to the cases respectively and the

corresponding numerical solutions are obtained by fourth order Runge-Kutta method.

We have also compared the results obtained by the presented method to the
results obtained by the perturbation method for strongly nonlinear oscillating
processes in biological systems with damping effects and it is presented graphically.
Figs. 1-2 are provided to compare the results obtained by the presented method to the
corresponding numerical solutions. The solution of Eq. (4.17) agrees with Hu’s [78]
solution when k& — 0. The analytical approximate solutions deviate from the
numerical solutions as ¢ increases, while the second order classical perturbation
solutions approach toward the numerical solutions for that time. On the contrary, the
perturbation solutions quickly deviate from the numerical solutions when ¢ increases
from 1 to 2 or 3. Thus the matched solutions of Eq. (4.17) (by the presented method)
and the second order perturbation solutions of that equation can be successfully used
in this situation (see Fig. 2) [139]. The presented method gives much better

approximations for strongly nonlinear oscillating processes in biological systems with

small damping effects than the perturbation solutions.
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In summary, He’s homotopy perturbation method [59-63,80-92] is able to
handle the nonlinear systems without damping and the KBM method [1-38,45,94,113]
is also able to handle nonlinear systems with small nonlinearity. Hu [78] has also
obtained the solution for strongly nonlinear oscillating processes in biological systems
without damping effects by the harmonic balance method. But most of the physical
and biological oscillating systems encounter in presence of damping in nature. It is
observed that there is no suitable method [30,32,55,72,74,75,93,101,102,145,144,150]
for solving strongly nonlinear oscillating processes in biological systems with small
damping effects. The proposed coupling method has eliminated these limitations and
plays an important role in the solutions. Furthermore, the presented method is as
simple as the straightforward expansion and the first order approximations show good
accuracy (see also Figs. 1-2) with the corresponding numerical solutions. The initial
approximations can be freely chosen, which is identified via various methods [1-
37,59-63,78,80-92]. The approximations obtained by the presented method are valid
not only for strong nonlinearity, but also for weak one with small damping effects.
Therefore, the presented method is suitable for strongly nonlinear oscillating
processes in biological systems with small damping effects where the He’s homotopy

perturbation and the KBM methods fail to give the desired results.

4.5 Conclusion

The determination of amplitude and phase variables is a crucial question in
strongly nonlinear oscillating processes in biological systems. In this chapter, we have
presented an analytical technique based on He’s homotopy perturbation technique and
the extended form of the KBM method to tackle the strongly nonlinear oscillating
i)rocesses in biological systems with small damping effects. It is also noted that some

limitations of He’s homotopy perturbation technique and the KBM method have been

overcome by the presented method.
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Appendix 4.A
Perturbation solution by extended Struble’s technique [8]

In this appendix, we have extended the perturbation method to obtain the
second order approximate solutions of second order strongly nonlinear oscillating

processes in biological systems with damping of a point of view of a general Struble’s
technique [28].

Let us assume that the unperturbed (g =0) equation of Eq. (4.17) has two
eigenvalues, say 4, =—k+im, o> =1-k’ » k <1 and then the solution of Eq. (4.17)
becomes

x(t,0) = ae™’ + ae®’, (4.A.1)
where g, and a, are arbitrary constants. If g = 0, then the analytical approximate
solution of Eq. (4.17) has been chosen in the following form

x(t,e)=a (et +a,(H)e™' + suy(t) + &'u, () +---. (4.A.2)

In this situation, Eq. (4.17) can be written as [28]

(D= A)(&e™ ) +(D =4 )de™ ) +(D - 4)(D - L) Eu + e, +--)

A+4 At At (4A3)
=—g(a'e’™ +aje™ +2a,a,e"* M) + 2eu (a e’ +a,e) 4.0,
where D = i
dt
According to the separation rules [details can be found in [28]), we obtain
(D - A)@e"") =0, (4.A.4)
(D= 24)(de™") =0,
(D=2)D - 2)u, =—(ale’*' +aZe*™" +2a,a,eM*)), (4.A.5)

In order to determine the first order approximate solution, it can be assumed

that 4, and @, are constants; so that (4.A.4) has no non trivial solution
Le.a, =0, a, =0 and the particular solution of (4.A.5) is then
=Cale®™' +C ale*™' +C,a,a,e'M*™), (4.A.6)
1
where

_ 1 N S P @.A7)
Y Ny U NG NS} L R ¥

Now putting the value of u, from Eq. (4.A.6) into Eq. (4.A.3) and then

simplifying them, we obtain
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(D=4 )ae" )+ (D~ 2,)(a,e 2+ A, (24, - A,)Caleh!
+84,Q24, - 4)Caje’™ + e, 4,C,a,a, e“'”?)’+(D—/11)(D-11)(82u2+---)
=-g(afe™ +aje™' +2aq 8Ny 262 (C aleth ! +C, a,alehih

24 t 2
+C,a; aze( 1+4,) +C]a] aze( A+ )1 +C, a;e“*' +C2ala§e“’+“1)' +-).

(4.A.8)

All  the terms with & of the left side and the terms
are’',aie’™' 2a,a,e* ) of the right sides of Eq. (4.A.8) are cancelled, since
C,,C,",C, satisfy Eq. (4.A.7). Thus we obtain

(D - /11)(&1 eﬂl!) = '"282((:1 + Cz)alz aze(u'mz)':

(D= A)dye™"y=—28%(C, + C,)a,aleh 2, (4.A.9)
and
(D= A)D=)u, =-2(Cale™ " +C'ale™"). (4.A.10)
Now the particular solutions of Egs. (4.A.9)- (4.A.10) are given by
& =¢&’la’ a,eH ), A ID
a, = &’l'ajal et
where
I=—(C,+C,)/ 4, I"=—(C,'+C,)/ 4, (4.A.12)
and
=Ea e + E'a’ e, (4.A.13)
where |
;= N E’ - & (4.A.14)
4G4 —4,) 230 — 1)
By using the following transformation equations
a,=be" /2, a,=be?/2 (4.A.15)

into Eq. (4.A.11) and then equating the real and imaginary parts, we obtain the
following variational equations of amplitude and phase variables
b=g’mbe™, 4.A.16)
gb — 6'271 b2e-2k!
- 1
where _
k(K +110%) ____ o0k +150%) @A17)

AR v o) K +907) 4K + o))k + 90

Now integrating Eq. (4.A.16), it yields
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kb?
b=5h 0
¢ \/[k +e’mbi(e - 1) J’

(4.A.18
goza)t—ﬂ—ln k+e’mbl(e™ -1) )
2m, k '
Also the correction terms are reduced in the following forms
U, =b2e'2k‘(1’1c032¢/+lein2w+Pz), W =wt+ @, 4A19
U, = be*" (B cos 3w + Q, sin3y), wA13)
where
B = (3(02 _kZ) Q = 4kw P = 1
DO2R 0K +90Y) T T 2+ o)k +907)° 2T 20k + w?)’
(4.A.20)

(@® —E*)(Kk* - 60)

P ko(k? - 170%)
P8k + 0*) (K + 40P)(k + 907

8K + @)k + 40" ) (kK2 +907)

Qll =

Thus the second order approximate solutions of Eq. (4.17) by the general
Struble’s technique [28] is given by

x =be™' cos(wt + @) + gu, + &%u,, (4.A.21)
where b, ¢ are calculated from Eq. (4.A.18) and u,, u, are given by Eq. (4.A.19)
fespectively.

Further, we assume that g, and b, are the initial amplitudes for the solutions
by the presented method and the classical perturbation method respectively. To
establish the relation between these amplitudes, we consider that

X0 (0) = x,,,(0), : (4.A.22)

where x,, and x,, represent the solutions by the presented method and the

perturbation method respectively. Then Eq. (4.A.22) leads to
by + (B, + B + B,b} = a,. (4.A.23)
To solve Eq. (A.23), let us consider
b, =a, +ha. +ha,, (A.24)
where h, and h, are unknown coefficients. Now putting Eq. (4.A.24) into Eq.
(4.A.23) and then simplifying them, we obtain
h =—(P,+P), hy=2(B+P) -P,. (4.A.25)
Thus we obtain the following relation between the amplitudes a, and b, as

by = a, — (P, + P)ag + (2P, + P,)* - P)a;. (4.A.26)
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Fig.4.1
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0.25 -
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_05 J

Fig. 4.1 First approximate solution is denoted by ---e--- of Eq. (4.17) by the
presented method with the initial conditions [x(0)=0.45, x(0)=-0.03874] or

a,=0.45, ¢,=0 and the second approximate solution is denoted by —x— of Eq.
(2.54) by the perturbation method with the initial  conditions
[x(0) = 0.44322, %(0)=-0.02459] or a, =0.53615, ¢, =0 with k=0.1, £=1.0

and f =x?. Corresponding numerical solution is denoted by — (solid line).
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Fig. 4.2

0.5 -

0.25 -

-0.25 -

-0.5 -

Fig. 4.2 First approximate solution is denoted by ---e--: of Eq. (4.17) by the present
method with the initial conditions [x(0)=0.45, %(0)=-0.03874] or a, =0.45,
@, =0 from r=0 to £ =3.44339 and the second approximate solution is denoted by
.-x-- of Eq. (4.17) by the perturbation method with the initial conditions
[x(0) = 0.44322, #(0)=-0.02459] or 4 =0.55337, @, =—0.601258  from
{=3.44339 1o t=10.0 with k=0.1, ~£=1.0and f =x". Corresponding numerical

solution is denoted by — (solid line).
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Second Approximate Solution of Duffing Equation with Strong
Nonlinearity by Homotopy Perturbation Method

5.1 Introduction

The study of nonlinear differential system is of great interest in engineering and
physical sciences and many other branches of applied mathematics. The solutions of
nonlinear problems are very complicated and, in general, it is more difficult to get an
analytical approximation than a numerical one to a given nonlinear problem. There exists
a wide body of literature dealing with the problem of approximate solutions to nonlinear
differential equations with various different methodologies. Many different approaches
have been proposed, such as Struble’s techniques [28,140], Kryloff-Bogoliuboff-
Mitropolskii (KBM) [45,94,113] method, multiple time-scales [124] procedure, the
modified Lindstedt-Poincare method [85], He’s homotopy perturbation method [63,80-
92], etc. Most of these methods have been originally formulated to get the periodic
solution of second order nonlinear differential systems for weak or strong nonlinearity

without considering any damping effects in the following form

i+wix=—¢€f(x,%), € <<, £>0. (5.1

Several authors have extended these methods to investigate similar nonlinear

problems with a strong linear damping effect —2k%, k=0(1) and k>0 modeled by

the following equation

i42kx+w’x =—¢f(x,%), € <<1,£>0. (5.2)

Popov [135] was well known among them. He extended the KBM method and
investigated the under-damped case of Eq. (5.2).Then Mendelson [118] reproduced
Popov’s results. Bojadziev [57] investigated a third order nonlinear problem with internal
friction and relaxation based on the KBM technique. Following Popov [135], Murty et al.
[115] investigated the over damped case of Eq. (5.2).They used Popov’s formula by
replacing the trigonometric functions with the corresponding hyperbolic functions. In

their investigation, they also examined a fourth order over-damped system. Murty [117]
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presented a unified method for solving Eq. (5.2). Such a unified solution is a general one
and covers the three cases viz. under-damped, undamped and over-damped situations. It
is seen that the unified solution represents the original KBM solution [45,94] as the limit
k — 0. Alam [16] has generalized Murty’s [117] technique for solving an nth, n=2,3....
order nonlinear differential equation. Recently, Alam et al, [28] have presented a
generalized Struble’s technique for solving an nth order weakly nonlinear differential
system with damping effects. Thus we observe that a considerable amount of research
activities have been carried out by several authors [1-37,45,57,94,113115,1 17,140] for
the solution of the damped or undamped nonlinear systems with small nonlinearity.
Therefore, the small parameter plays a very important role in the perturbation methods. It
determines not only the accuracy of the perturbation approximations, but also the validity
of the perturbation technique itself. In Ref. [85,87], He has presented Modified Lindstedt-
Poincare method for some strongly non-linear oscillations and the homotopy perturbation
method for some strongly nonlinear oscillations without damping effects. But in science
and engineering, there exist many nonlinear problems in presence of damping effects
which do not contain any small parameter, especially those with strong nonlinearity. Thus
it is necessary to develop and improve some nonlinear analytical techniques which are
| independent of small parameters. The main goal of this chapter is to find the second order
approximate solutions for general nonlinear systems with strong nonlinearity in presence
of damping effects. The method has been illustrated by applying it to a typical nonlinear
problem of practical importance in this chapter. To get our desired result, we have re-

written Eq. (5.2) in the following form:

54 2k% + (0 +sl)x=£(%x—f(x,5c)), £>0, (5.3)

where ¢ is a positive parameter which measures the strength of nonlinearity of the
system, &, is an artificial constant, 0 <&, < 1, the significant damping term is expressed
by the linear term 2 k% . The damping coefficient 2k which is of the order of unity and
also the nonlinear frequency @ of the syétem are constants. The assumption @* > k* or

@® <k guarantees the oscillating or non-oscillating character of the systems. In most of
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the nonlinear dynamical systems, the quantity £ is small compared with @* and its

solutions may be shown to converge with the numerical results,

5.2 The Method

In this chapter, we are going to consider a general second order nonlinear ordinary

differential equation in following form
v £ ,
x+c1x+(c2+al)x=g(;_x+f(x=x)), (5.4)

where over dots denote derivatives with respect to time ¢, & is a positive parameter
which plays an important role to the nonlinear systems, g, is an artificial constant,
0<¢g <1, the coefficients ¢;, J=1,2 are constants and f is a given nonlinear

function.

When & — 0, then the corresponding linear equation of Eq. (5.4) has two eigen
values, say 4, j=1,2. Hence the general solution of the unperturbed equation of Eq.

(5.4) leads to

2
x(t,0)=>Y a,e", (5.5)
j=1

where a;, j=1,2 are arbitrary constants. For ¢ =0, we are seeking an approximate

solution of Eq. (4) in the following form

2
x(t,8)=2aje"' +eu (t,6) + Uy (1,8) ++ - (5.6)
J=1

According to both Struble’s [28,140] technique and KBM [45,94,113] method,
the solution Eq. (5.6) is differentiated twice with respect to time ¢, to obtain the
derivatives of x, i.e., x and %. Then inserting the values of X, ¥ together with x into
Eq. (5.4) and after simplifying one obtains a needful formula. Clearly, this is a very
difficult and tedious task. On the basis of mathematical induction, Alam [16] has
presented such a general formula in terms of the variables a,(f), j=1,2,---n, for
determining the KBM type solution. Further, Alam [24] has investigated a simple

technique to derive the noted general formula. In this chapter, we are going to present the
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generalized formula for the second order nonlinear differential systems with strong

nonlinearity in presence of significant damping effects. This formula is used arbitrarily

for the different damping effects. Now the Eq. (5.4) can be re-written as

2 81 d
H(D—/'Lj)x=s(;x+f), DEE' 5.7)

By substituting Eq. (5.6) into Eq. (5.7), we obtain

2 2 i
[TP-4)C a,e™ +eu +e%u, +--)=e(Ex + 1),
J=1 J=1 L2

or

2

(TTO-AD-)a,e)+ [ [(D-4)em + 5 +) =6+ 1)

k=1k#j Jj=I g

M

~.
1l
—

or

2

S (JI-A)a,e™)+ .2 (D—/lj)(eul+82u2+---)=8(%x+f), (5.8)

2
R
since (D -1 ,)(a,e™)=a,e"".

5.3 Example

As an example of the above procedure, let us consider the following autonomous
nonlinear differential equation [28]

¥+ 2kx+o'x=—£x . (5.9)

The Eq. (5.9) occurs in the theory of nonlinear vibrating systems and in a certain
type of nonlinear electrical circuit theory. We have re-written Eq. (5.9) in the following

form
5c'+2k5c+(a)2+g])x=£(%x—x3). (5.10)

In particular, when & — 0 from Eq. (5.10) one obtains the unperturbed equation

$+2ki+(w?+8)x=0 with two eigen-values, say A, =—ktiwn,, where

wy = [(@® +& -k>) or A,=-k*am, where w, =k’ —(®® +¢&). Here w, is
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known as the reduced frequency of the systems and the physical character of the motion
depend on the nature of it, Thus depending on the values of & and (@® +¢,), the solution
becomes under-damped, over-damped or critically damped. However, we are able to find
a general solution in terms of the variables @, and a, as well as of the eigen-values A,
and A,. Then by putting the values of A and 4, the desired solution can be found for
all real or complex values of 4, and 1,. Then the solution of the linearized equation of

Eq. (5.10) is obtained by
x(1,0) = ae™ + a,e™, (5.11)

where a, and a, are arbitrary constants. ‘When ¢ # 0, we seek a general solution of Eq.
(5.10) in the following form
x(1,6) = e + aye™' + gu(a,a,,0) + 8%, (a,a,,1) + 6. (5.12)
Here
f(xX)=gx—ex’= £l(a,el" +a,e” +eu)—e(a et +a,e™ +eu,)’
=g (a,e™ +a,e™ +su)—e(a’ e +3a,2a2e‘“‘”2)’ (5.13)
+3a,a;e MR 1 @M 4 3eu (g et +a,e™) +--0).

Eq. (5.10) can be re-written as

(D= A)(@ ey +(D=4)dye™) + (D= 4D~ A )suy + %1y ++-)

=g (g e +ae™ +eu)—e(ae* +ae™ +eu)’ (5.14)

=g (ae* +ae™ +eu)—e(a e +3al a, e
+3a,ale™ + aje’! +3euy, (ae* +a,e™) +--).

Now we are going to consider the terms up to O(g). According to the separation
rules (details can be found in [28]), we can equate the various terms of Eq. (5.14) and we
get the following equations

(D - A)ae"") =g ae™ - 3.v3a,2 I (5.15)

(D - A )(a,e™") = g,a,e™" —3sa a4, (5.16)

This leaves the following perturbational equation

(D= AXD - A =—(a e +ae™). (5.17)
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To determine the first order approximate solution, it can be considered that a,

and a, are constants. Hence the particular solutions of Egs. (5.15)- (5.17) yield

& =glya +¢elala,ethh

a, =Eilg a, +£l a, ay e(1;+/l,)r (5.18)
where

[ Eae—— l =SSa— l.=-._.“.._ l‘=_i

C-w) T Ty T
and

=Cae™ +Clale™, (5.19)
where
I S 1
O 2464-4) T 2464-4)

Now substituting the values of u, from Eq. (5.19) into Eq. (5.14) and then
simplifying, we obtain
(D= A)&eh" )+ (D=4 )ae"" )+ (D= 4D = 4)Cal e +C aje™™")
HO-AXD=A)E )
=g (ae™ +a,e™ +eu)-e(a) e +3a’a,e +3aale

+ayet)-3e’ (g et + a,e™ ) (Cial et + Clay ).

(5.20)

QA+, (4, +24, )

Eq. (5.20) can be written as

(D= )™)Y+ (D= A)dye™) + 253 = ) Gt
+264,(34, — A)Cral e —27£°Ca) a, e
~278%Cla,ate™ " +3g5,(54 — L)I,C a) e
+388,(54, — AL Claze™ + (D - A4)(D - AU, +...)

*3342)

(5.21)
=g (ae™ +a,e™ )+f:f:,(Ca3 A C

—8(a3 341 +3q; a2€(2z,+12): +3a, az (h+242)t azeu")
-3g? (C aS At +2C, afa2 elh+al L C a,3c122 b2yl

+C,a]2a; QA +34,) +2C‘-ala§e(ﬂ.,+4iz)l +C¢ 5 51!).
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All the terms with & of the left side and the terms @™, aye*™ of the right

b

side of Eq. (5.21) are cancelled since C,. and C; satisfy Eq. (5.19). According to the
separation rules (in Ref [28]), u, excludes the terms g} ay AR and g2 gl e+ 4pg
they will be added to the equations of a, and a, respectively. Therefore, we obtain the
equations for a, and &, up to O(¢?) and u, in the following forms

(D= ,)ae™) =gae™ —3eat a,e® ) _3g%C s g (5.22)

(D= A)dye™)=g.a,e™" - 3ea a2 _ 3620702 g3 (RAR (5.23)
and

(D=A4)D - A)u,

= 97 al a, PSRV +27C; g, a4 (4+42,) 36‘,

- GA-HG @

3
25 5k~ A5G a; S B (Ca3 3y Crgl e (5.24)

—3(C as 54t +2C’a a, e(41,+42): +Ca3 2 eBh A +C¢a]2aze(u,+3a,)r
+2C; a,a} e 4 Gl ade),
Now we are going to assume that the particular solutions of Egs. (5.22)- (5.23) in

the following forms

. 2 A+4 2
a, =gll a + el adla,e ™ y 2Ll ale™ M v eg Lala, et + gl ay, (525)
=g lia, + &l ayae™ ™ + L a’ P v gg L ayale ™ v el a,,

where 1,,1,I; and I’ are given in Eq. (5.18) while J,, L, /,, ; 5 and Ij are to be
determined. Now substituting the values of 4, and &, from Eq. (5.25) into Egs.

(5.22)- (5.23), and then simplifying them, we get

& (4 — A,aet +2e Al ala, e + &2 {12 +1))

* . (24, +43)t
+ (A4 + L)LYt aeCh ) kg {31, + 1) + 24k )67 age 5:26)
+a¢+w—4ﬂmy
=g an - 35“1 ae lhrh) _ 320 a?azz Ba+24)

and
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& — )l a,e™' + 26 4,1 a a? 2 +eX {07 (217 +1)
+ (4 +34)0 )0l aePh3h) e {l] 3l + 1) + 21,1} }a, a2 e+ 24
+ € {lo +(4 = A }a,e™!

=g]aze’12’_3gala§e(in+2lz)r 362C" o a2 @he3i)

(5.27)

All the terms with & of Eqs. (5.26) - (3.27) are cancelled since I,,],/; and I’

0% 9%

satisfy Eq. (5.18).By comparing the coefficients of &2 , €€, and &' from both sides of

Egs. (5.26)- (5.27), we get the following algebraic equations

and

L+ 1)+ (34, + Ay, = -3C,
l] (3[0 +lg)+2/11[3 =O, (528)
i+ (=)l =0,

QI +1)+ (A +34,) =
QL +1)+ 24,10 =0, | (5.29)

2 ,
B+ (4, ~ A = 0.
By solving Eqgs. (5.28)- (5.29) and then substituting the values of 7, /] ,C, and

C; from Egs. (5.18)- (5.19) and then by simplifying, we have

_3(=94 1344, +621) 3 1
TR0 EG R GA) .
p 36 901 —134, 4, +6/12) 3 g |

BTTZeE-A T EG A BAY
On simplification Eq. (5.24) gives

(D"'/ll)(D"/lz)uz
{1 3(54 - L) Cal et l{1 3(54, — A )5 3Claze™™! (5.31)

A +44 5 _SA4t 5 54yt
+21Ca1 a, e 1 21C aaye (” M _3Ca et -3Ca,e .

By solving Eq. (5.31) for u,, we obtain the particular solution as
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81{ —-3(54, - 'z'z)lo}CGB 34t { =354, -4 1O !

24GAH-4) 22,034, - 2.)
21C’lal 4, gthra + 21C;a| a; B(AHM’)’ 3C as St
44 G4+ 4,) A4 +3%)  4A(5A - =75 (5.32)
3C1 5 51.2
412(5/77 &)

Finally, inserting the values of ly,15,C, and C; from Egs. (5.18)- (5.19) into Eq.
(5.32) and simplifying, we obtain

_¢€
u, =—(E,a} &4 + E o) +E,al a,eh+h
5

(5.33)
+Eyaa, et 1 C 0t et 4 C gl
where
Th-4 £ 73, - A,
227 (A =~ B)34 - 4 D R4 (L= A)Bh-4)
7, JO. . S E=-— 2 , (5.34)
847 (94" - 4,°)] - [84,°(94," - 47)]
C, = : c = 3 .
847 (34 = )54 ~ 4] 84 B~ A)Sh, - 4)]
Thus the second order approximate solution of Eq. (5.10) is obtained as
x(t,€) = ae™' +a,e™ +eu(a,a,,0) + £uy(ay,a,,1), (5.35)

where @, and a, are the solutions of Eq. (5.25) and #, , u, are respectively given by

Egs. (5.19) and (5.33).This solution can be carried out to the usual form by using the

suitable transformations. For the under-damped system, the variables should be

transformed by

a=3ac’, a =%ae'f‘9. (5.36)

Now inserting Eq. (5.36) into Eq. (5.25) and simplifying them, we obtain the

following variational equations for the amplitude and phase variables respectively

s 5 -4k 3 -2kt
a=ema‘e™ +e’mya’e™ +eemae™, (5.37)
Akt 2 -2kt

2
. .
O=¢gn,+ena’e™ +e’n,a'e™ +egnsate™ t e ny,

Where
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2
M= my =SSR T ~200) - (T} k)8’ +502))
8(k* + wg) 128(k" + 0)* (K* + 4002 )(4k + @2)
3k 1 3w 1
My S——————, H; =— , M, = 4 =
TR +e) 20 TR raly T o
3y n. = 39 {15k* Ty —2k*) + (Th? — 2002 )(8K? +50?))
b8kt + ) P 128(k* + 0) (k* + 4l )4k + w?) ’
3(k* — w?) 1

ny=— , My=——,
T 16w ) T 20

u, can be written in the following forms

and

where

and

u, =a’e”* (P cos3p + O, sin3p),

Uy = %cﬁ e (P, cos3¢ + Q, sin3¢) + a’e ' (P, cos3p + O, sin3¢)

+a’e " (P, cosSp + O, sin5¢),

_ (K —2a7)

(5.38)

By using Eq. (5.36) and assuming that @ =yt + 06, the correction terms u, and

P = 0. =
7160k + 02) (K +4ad) o

(Tk* + 8k20? —8a’)
T TI6(k + R ) (K + A
_ 3k(k* -5k} -120y)
Q4 __32a)0(k2 +a)§)2(k2 +4a)02)2 s
21" - Tk w; + ;)
T T 2560k + o) (K + 4l )4k + o)
189w, (k* —wg)
O = S 1 00 (K + AW+ )
3k — 11k, +30,")
© T 0560k + gl YL (K + das, Y4k +9,)
3k, (1% —190;)
Os = =32 1+ 2)2 (i + 4l (4K +9a7)
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Hence the second order approximate solution of Eq. (5.10) for damped oscill
processes is given by

atory

x=ae™ cosp+eu +%,, p=a+o. (5.43)
where a and & are the solutions of Eq. (5.37) and u,

from Egs. (5.39) and (5.40).

and u, are respectively obtained

5.4 Results and Discussions

The obtained approximate solutions are compared with the numerical solutions
graphically. Also to show the effect of second order approximate solutions, graphs are
drawn for both first and second order approximations.

In Fig. 5.1 (a), comparison is made between the first order approximate solution
and the numerical solution obtained by using Runge-Kutta fourth order formula for
strong nonlinearity with large damping effects. Here we notice that with the increase of
time ¢ the analytical result deviates from the numerical one. Fig. 5.1 (b) represents the
same for the second order approximate solution within the same time domain and it is
observed that the deviation from the numerical result is very small in the case of second
order approximate solution. In Fig. 5.2 (a), comparison is made between the first order
approximate solution and the numerical solution obtained by using Runge-Kutta fourth
order formula for strong nonlinearity with small damping effects. Here we notice that
with the increase of time ¢ the analytical result deviates from the numerical one. Fig. 5.2
(b) represents the same for the second order approximate solution within the same time
domain and it is observed that the deviation from the numerical result is very small in
case of the second order approximate solution. In Fig. 5.3 (a), comparison is made
between the first order approximate solution and the numerical solution obtained by using
Runge-Kutta fourth order formula for strong nonlinearity without damping effects. From
this figure we notice that with the increase of time ¢, the analytical result deviates from
the numerical one. Fig. 5.3 (b) represents the same for the second order approximate
solution within the same time domain and it is observed that the analytical solution has
good agreement with the numerical result in the case of second order approximate

solution. It may be mentioned that if we consider & = 0, then our result becomes the

same as that of Alam et al, [28]. To check this, we have plotted the Figs. 5.4 (a, b). In
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Fig. 5.4 (a), comparison is made between the first order approximate solution and the

numerical solution obtained by using Runge-Kutta fourth order formula for strong

nonlinearity with large damping effects. Here we notice that with the increase of time ¢
the analytical result deviates from the numerical one. Fig. 5.4 (b) represents the same for
the second order approximate solution within the same time domain and it is observed
that the deviation from the numerical result is very small in the case of second order
approximate solution by setting &, = 0. From the Figs. 5.1 (a, b) and Figs. 5.4 (a, b), it is

notified that, our new homotopy perturbation technique gives better results than that of
Alam et al. [28].

5.5 Conclusion

In this chapter, a new kind of analytical technique for a general second order
nonlinear differential systems with constant coefficients is presented. From the figures, it
is clear to us that the first order approximate solutions continuously deviate from the
numerical solutions with the increase of time ¢. Thus we are forced to determine the
second or higher order approximate solutions. The approximate solutions and the
numerical solutions of Eq. (5.10) are obtained for the different damping effects and for
several artificial constants with £ =1.0. Comparison is made between the solutions
obtained by the homotopy perturbation method (dashed lines) and those obtained by the
numerical procedure (solid line) in figures. This method shows effectively and accurately
that large classes of second order approximate solutions converge rapidly to the
numerical solutions in presence of significant damping effects with strong nonlinearity.
Also this new homotopy perturbation technique is valid for strongly damped, weakly
damped and undamped cases with strong nonlinearity. Moreover, it is also valid for
wéakly nonlinear differential systems. The variational equations are very important in a
homotopy perturbation solution whatever the relations of them with g. We conclude
that, this new homotopy perturbation method is effective and accurate for nonlinear
problems where the approximate solutions converge rapidly to the exact solutions. In a

similar way, the method can be used to determine the higher order approximate solutions

to the nonlinear systems.
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Fig. 5.1 (a)

-0.5 -

Fig. 5.1 (a) First order approximate solution —e— (dashed lines) of Eq. (5.10) is

compared with the corresponding numerical solution (solid line) obtained by Runge-

Kutta fourth-order formula when a,=1.07073, ¢, =-0.31590, k = Js ,w=1.0,

£ =0.2 and £=1.0.
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Fig. 5.1 (b)
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Fig. 5.1 (b) SECOnd order approximate SOIUtiOH —o — (dashed lines) of Eq (510) is

compared with the corresponding numerical solution - (solid line) obtained by Runge-

Kutta fourth-order formula when @, =1.04923, ¢, = ~0.27983, k = ‘/'—5—’ @ =10,

€=02 and £=1.0.
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Fig. 5.2 (a)

0.5 1

-0.5 -

i i . (5.10) is
Fig. 5.2 (a) First order approximate solution —e-— (dashed lines) of Eq. (5.10)

; - ; "
compared with the corresponding numerical solution - (solid lines) obtained by Rung

— =.1,0=1.0, §=075
Kutta fourth-order formula when g, = .98{177, @, =—0.05055, k 4
and ¢£=1.0.
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Fig.5.2(b)
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£

Fig. 5.2 (b) Second order approximate solution —e— (dashed lines) of Eq. (5.10) is

compared with the corresponding numerical solution - (solid line) obtained by Runge-

Kutta fourth-order formula for a, =0.98313, @, = -0.05200, k=0.1, » =1.0,

£ =075 and ¢=1.0.
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Fig. 5.3 (a)
—
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Fig. 5.3 (a) First order approximate solution —e- (dashed lines) of Eq. (5.10) is

compared with the corresponding numerical solution - (solid line) obtained by Runge-

Kutta fourth-order formula when a, = 0.98304, ¢, =0.0,k=0.0, 0 = 1.0,¢ =0.75 and
€=1.0.
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Fig. 5.3 (b)
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Fig. 5.3 (b) Second order approximate solution —e— (dashed lines) of Eq. (5.10) is

compared with the corresponding numerical solution - (solid line) obtained by Runge-

Kutta fourth-order formula when a, =0.98164, 9, =0.0,k=0.0,#=1.0,5 =0.75
and £ =1.0.
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Fig. 5.4 (a)

-0.2 -

Fig. 5.4 (a) First order approximate solution —e— (dashed lines) of Eq. (5.10) is
compared with the corresponding numerical solution - (solid line) obtained by Runge-

Kutta fourth-order formula when @, =1.06008, ¢, =—0.26899, k =+.5, 0 =10,

8] =00 and E‘:]__O.
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Fig. 5.4 (b)

0.5

-0.5 -

Fig. 5.4 (b) Second order approximate solution —e— (dashed lines) of Eq. (5.10) is

compared with the corresponding numerical solution - (solid line) obtained by Runge-

Kutta fourth-order formula when a, =1.04049, g, =-025712, k=5, =10,

€ =0.0 and £=1.0.
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Chapter 6

Second Approximation of Third-Order Nonlinear Differential
Systems with Slowly Varying Coefficients

6.1 Introduction

From the beginning of modern developments in the theory of oscillations, it is
seen that the asymptotic method has not been used in the investigations of second
approximate solution of non-stationary. phenomena, particularly, in all the cases in
which the coefficients of differential equations are varying slowly with time 7. The
oscillations of this nature are not necessarily periodic. The asymptotic method in
nonlinear problems has been developed by scientists and engineers day by day,
because this method transforms the difficult problem under study into a simple
problem which is easy to solve. The method has been extended to damped oscillatory
and purely non oscillatory systems with slowly varying coefficients by Bojadziev and
Edward [56]. Arya and Bojadziev [42] have studied a time-dependent nonlinear
oscillatory system with damping, slowly varying coefficients and delay. Feshchenko,
Shkil and Nikolenko [69] have presented a brief way to determine Krylov-
Bogoliubov-Mitropolskii (KBM) [45,94,113] solution (first order) of an wth,

n=2,3,.... order differential systems. Arya and Bojadziev [41] have also studied a

system of second order nonlinear hyperbolic differential equations with slowly
varying coefficients. Alam [19] has investigated a unified Krylov-Bogoliubov-
Mitropolskii method for solving stk order nonlinear systems with slowly varying
coefficients. In another paper, Alam and Sattar [27] have presented an asymptotic
method for third order nonlinear system with varying coefficients. Recently, Roy and
Alam [139] have studied the effect of higher approximation of Krylov-Bogoliubov-
Mitropolskii’s [45,94,113] solution and matched asymptotic differential systems with
slowly varying coefficients and damping. Sometimes the first approximate solution
obtained in [1-37,45,56,57,69,94,113] gives desired result when the linear damping
effect is absent or very small. Otherwise the solution gives incorrect result after a long
time ¢ >>1 where the reduced frequency becomes small. The more difficult and no
less important case, the second approximate solution of a third order nonlinear

ordinary differential equation with slowly varying coefficients has remained almost
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untouched. The main goal of this chapter s to fil] this gap. In this study, a new kind of

analytical technique has been presented for a third order nonlinear systems with
slowly varying coefficients. The method has been illustrated by applying it to a

typical nonlinear problem of practical importance.

6.2 The Method

We have considered the following weakly nonlinear ordinary differential

equation with slowly varying coefficients governed by [19]
X +k(0)% + k,(2)% + ky (7)x =& f(%,x,x,17), 6.1)

where the over-dots denote differentiations with respect to time ¢, £ is a small
positive parameter which plays a very important role in the perturbation method,
k(7), ky(r) and k() are slowly varying coefficients, z=gt is the slowly
varying time and, in general, 7 is assumed to be a nonlinear function of x,x,%¥ and

7, which may be expanded in Fourier series. The coefficients of Eq. (6.1) are slowly
varying in the sense that their time derivatives are proportional to ¢. In the case of
variable coefficients, an extended form of KBM [1-37,45,56,57,69,94,1 13] solution is

needed even if the damping is very small, especially when @(z) is in a decreasing
order.

Let us assume that the auxiliary equation of the unperturbed equation of Eq.
(6.1) has three roots 4, =-A4, A3 =—MEio, where 4, u and @ are constants. But if
e+#0, A and u are constants and w(7) is assumed to be the reduced frequency of
the nonlinear problem which varies slowly with time ¢. Hence the solution of the

unperturbed equation of Eq. (6.1) can be written as

x(t,0) = ae™*' + by cos(wt + @), (6.2)
where q,, b, and g, are arbitrary constants.

Again Eq. (6.1) can be re-written as

FA2ui+ (P o) R+ AFE+2ui+ (0 + w?)x) = g f(3,%,%,7) , (6.3)

where k(v)=A+2u, k,(z) =244 +/12-+ o’ and k(r)= Ay’ +0%). For £#0, we
are going to choose the asymptotic solution of Eq. (6.1) in the following form

[45,94,113]
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x(t,e)=bcosp, %
4)

Bl e eaphiide: BT o e phase ¢(f) are slowly varying functions of time ¢
and these are given by the following first order differential equations

l;=""/ub+5Bl(b,T)+8232(b,z‘)+...’

¢=a(t)+£C(b,7) +&°Cy(b, 1) +- -, (6.5)

In order to find the unknown functions B, »8By,++,C,,C, o0, it was early
restricted in KBM method [45, 94,113] that the functions B ,B,,-.,C,,C,, - are
independent of the phase variable ¢. Now differentiating Eq. (6.4) three times with
respect to time ¢ and by using the relations Eq. (6.5) and by equating the coefficients
of £ and &2 respectively, we obtain the following equations

8’B 0
(1*b? E)z_] —20°B, + 3w b? 3(2—' +2p0bC, -3ww'b)cosg

o°C, oC,
X 2070 —L = L+20*bC, + pw'b)sing

0B,
+ A((—ub—= % L+ uB — 2mbC)cos¢+(,ub2£—2a)B,—a)’b)singo)

0b
= fOb,p,7)

OB,
+QBuowb—-poB - 4’
Guw = HOB — =1 66)

and

2 2
8 _, 08

ac :
B3&bC —6wBC —30bB 0 _30bC —2ubB
( 1 ~00BGC —3wb BT 30bt —2ubB Bs b T

+3ub’C, %+/J Bl' —20° B, +3pob’ %%2 +2uwbC, ~yb(a—l;)2

"h—30B — 3032—‘?—3wa'+3a)bq2

+ubCl+u b2

' op’ ordb b

2 2 0B, G, ' b3ac —2,22 %2 _ B )sin
+20° DG+ pb = +ubC - pE —3 =2u b — poB)sing

2 2
+3ubC, ‘Zz +2up' B G 02 TG e +5be,——ch +3,ua)ba— (6.7)

- +A((uB, -2wbC, +Ba +1i -bC ,ub 2)cos¢+(—2a)Bz—ZB,C,

—bBaai -bC, +,ub2———)smqo) 0,
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(0) _ . .
where /7 = f(%,,%0,%,,7) and Xy =bcosp and the primes denote the

differentiations with respect to slow varying time 7, ie., o' 00 B' _0B and
or’ or’

oC .
C, =6—T‘. When the coefficients of Eq. (6.1) are assumed to be constants, then

' '
o'=0"=B =C, =0. Sometimes the first approximate solution of a nonlinear
differential equation with constant coefficients nicely agrees with the numerical
solution, while the corresponding first approximate solution with variable coefficients
gives desired results for a particular time interval, so that the problem is in its linear

part only. A similar problem has arisen in [139]. Hence our investigation may be

limited to the linear part of Eq. (6.1), i.e., we are interested to find the terms of a

second approximate solution which has appeared for varying the coefficients of Eq.
(6.1).

Let us assume that the function f can be expanded in Fourier series as

FOb.0.0)= Fy(b.0,0)+ 3. (F, (b, 1)c0snp+ G, (bop)sinng). (68)
n=l

Inserting Eq. (6.8) into Eq. (6.6) and by equating the coefficients of cos¢ and

sing and transposing to the right, we obtain the following partial differential

equations
e 862; - bglz‘+(/1y 20*)B, +3uwb2%i “2AA-peb gy
=3wa'b+ K,

and
3;:@1;%’3;—'-(2,“#)@3,—#21; %fw b (A- 2#) ‘+2w bC, (6.10)
=(A-wa'b+G,.

Also by equating the coefficients of cosg and sing from Eq. (6.7) and then

transposing to the right, we obtain the following partial differential equations
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sza Ayba L+(Au-20° )B, +3 595
T Ho a——z(ﬂh—,u)a)bc2
=~(A+ B, +(A-)bC 430 bC +30bC, +2ubB ZbB (6.11)

8°B,
—(1B, - 2B 95
(AB - p ab)ab+2”ba b+6a)BC -3(ubC, - coB)b

and
OB o*C oC.
3,ua)b3b—2— (2.2, + #)Q)Bz —,l.lzb3 Ezz- + (/1 —2#)#[)2 'a—bz— G 2(0sz2

=0"b+30'B, +3a)Bl =30bC+(A-W)bC, +(BwB, -3ubC,

b2 oC,, 0 o'c, 8°C,
L+ (2A+ w)B,C, -2 b*B, —2ub?
6b) an T A KO S~ o

oC,
+(A-5u)bB,—L
(A=5) %

(6.12)

In general, the Fourier coefficients F G,, n=0,1,2-- in Eq. (6.8) can be

expanded in powers of 4. Hence Egs. (6.9)- (6.10) have particular solutions of the

forms
Bi=mb+mb’ +--, C =m+mb’+.--. (6.13)

Now inserting these expressions of B, and C, into Egs. (6.9)- (6.10) and by
equating the coefficients of like powers of &, we get a set of algebraic equations
which are able to give us the unknown coefficients m, ,m,,n, and n, in terms of
A,u and . To determine the second correction terms of the amplitude b and the
phase @, we assume that 1 and u are very small constants and @ is varying slowly
with time f. So we can ignore the product terms of 4 and x4 from B, and C, to
overcome the difficulty arising in the subsequent calculations. Now if we substitute
the reduced values of B, and C, into the right hand sides of Egs. (6.11)- (6.12), then

the right hand sides of these equations appear in polynomials in & and the choice of

particular solution is dependent on the right hand sides. So, Egs. (6.11)- (6.12) have

particular solutions of the forms

; e 6.14)
B, = pb+ p,b’ + psb’ +-+, C,=q,+q:b" +g50" + (

Substituting these expressions of B, and C, into the resulting equations of

(6.11)- (6.12) and by equating the coefficients of like powers of b, we obtain another
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set of algebralc equations which are able to give us the unknown coefficients

PisPisPs»91-9; and g,. Then inserting the values of B,,C,,B, and C, into
Eq.(6.5) and integrating it, we are able to know the amplitude 5 and the phase ¢ in

terms of time ¢ . Hence the determination of second order improved solution of Eq.

(6.1) is completed. The method can also be applied to find the higher order

approximations in a similar way.
6.3 Example

As an example of the above procedure, we may consider the following weakly
nonlinear differential equation [27]
X+ E @Ik (Dx+E(Dx =g, (6.15)

where k(7)== A+24, k,(t)=24p+ 47 +0* and  k(z)=A(® + 0?). Hence
(0) 3,3 1 . . 3,3 13
P =y (Zcosqo+zcosi3go) and the Fourier coefficients are F, = Zb 5 4y = Zb and

the rests are zero. Now inserting the values of F, and G, into Egs. (6.9)- (6.10) and
then solving them, we get
o @A-w) +30%) (A p)
" 20(A-w+0’) T (- + (6.16)

_ MpAed-ed)  _ de(AvAm
T R Y ) S T s (I % e

According to our assumption, Eq. (6.16) can be written as

3k _MA-p 3 3(A+4) G1
ml__ia n = i H 3 8602’ 3 8603

Hence by using Eqs. (6.13) and (6.17) into Egs. (6.11)- (6.12), we obtain

2 B 206, _ _
yzbzéﬁ—mb%uw—zm?)&+3ywb ry 2(A-w)wbC,

ob° ;
= A=) (=A+44)" s
97 {(A—pu) (222-654) | Y
R
_ A=T)(=A+4u) s
64w 64w

(6.18)

and
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OB, 1 0°C
3;1a)b——(2/1+y)a)132 -t =2 v 5 +(A-2mup* 2 oc 2+ 20°bC,
ob

Bo (A- ﬂ) 63h 15(-
=2 TR I_S(Jti#_))bs
™ (6.19)
B2 _(/1—16#)(—/“4;1) .
640’ 640" L

Finally, by solving Egs. (6.18)- (6.19), we obtain the unknown coefficients of
B, and C, in the following forms

= R4 —y)(—% JOA-) (A

80)4 2@5 ):
13 23(A-w)* (A-p)°
= I i A
(860 86{)3 + 2(05 )a
_ h((129,1 447 1) + 3(A — p)(—=A + 4 )(224 — 65;1))
160*
4 3h(=A 4+ 40y =5+ 24— ) (A +4u)+2(1 — ﬂ))
160°
—63+3(A— p)(224 - 65
16w
$3hA+ 4 ~5+2(A- y)(z,+4y))
160°
__81(A-51) 94~ Sp)(TA - 622 +1094%)
’ 64 128
LOA-Tp) (-A+4p)’
128" ’
_ 8l 9BF-T0Au+1254%)  HA-Tu)(=A+4u)’ (6.20)
%= 1280 1280’ 1280°

Since the response of the product terms of 4 and x are very small according

to our assumption, so Eq. (6.20) can be written as

SHY(A — 1) _ 134
=T D=5,
_ h(1294 - 447 ) o S ISHCA ) (6.21)
P 160" ’ 3 16&° l6w
_ 81(A-5p) __ 8
Ps==—gas %" 1280°

Now inserting the values of B,,C,, B, and C, into Eq. (6.5), we obtain the

variational equations for the amplitude b and the phase ¢ in the following forms
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b=—pb+&(mb+mb’) +5* (pb+ p,b* + pp*) ...
¢ =a(r) +e(n +nb*)+ g% (g, £ b Y oen, (6.22)

where m,, my, n,, ny, p,, p,, Ps>4,,9; and g, are given by Eqgs. (6.17) and
(6.21). The variational Eq. (6.22) has not an exact solution. In general, it is solved by

the numerical procedure [1-37,45,56,57,69,94,] 13]. In this situation the perturbation

method facilitates the numerical technique. Numerically, it is advantageous to solve
the variational equations instead of original equations because a large step size can be

used in the integration. In the case of linear equation where f=0 or
my=ny=py=ps =4y =q;s =0, Eq. (6.22) may have an analytical solution. We are
going to consider the special case of Eq. (6.15), where A4 and M are very small
constants and @ is assumed to vary slowly with time ¢ as w(7) = wye™", where w,

and 4 are constants. Hence Eq. (6.22) has the following solutions

S5eh(A— p)(1—exp(2h r))]
2w, ’
(8(A — p) +13eh)(exp(ht) 1)

8w,

b=byexp[(—ut+1.5ht)+

(6.23)

=@, + ia)o (1 —exp(-h1)) +
ch

It is obvious to us that Eq. (6.23) can be reduced to generate solution (6.2) as

h— 0+, i.e., in the case of constant coefficients. But if 4 — 0+ and ~>0, the

amplitude b increases with time ¢. Hence the solution of a linear differential equation
with the variable coefficients may be unstable though its unperturbed solution is

stable. Thus the second order improved solution of Eq. (6.15) for both linear and

nonlinear cases is

x(t,e)=bcosgp, (6.24)

where b and ¢ are given by Eq. (6.23) and x>0 for the linear case, and b and ¢
are computed from Eq. (6.22) by numerical procedure [1-37,45,56,57,69,94,113] for

the nonlinear case. The amplitude » and the phase ¢ change slowly with time f.

Hence it requires the numerical calculation of a few numbers of points. On the

contrary, a direct attempt to solve the Eq. (6.15) dealing with harmonic term in

solution (6.24), it requires the numerical calculation of a great number of points.

Often one is not interested in only the oscillating processes itself, ie., finding the x
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in terms of ¢, but mainly in the behavior of the amplitude 5 and the phase ¢, which

as ¢ increases characterize the oscillating processes [1-45].

6.4 Results and Discussions

For certain special cases, very simple analytical method has been developed to

obtain the time response of a third order weakly nonlinear ordinary differential
equation with slowly varying coefficients. In most of the nonlinear cases, the method
depends on the numerical techniques. It is very well known that the order of errors of
first approximate solution of a nonlinear differential equation with constant
coefficients is &, But in the case of varying coefficients, the order of errors also
depends on time f. However, when the coefficients vary slowly with time ¢, the
perturbation solution shows a good coincidence with the numerical solution (assumed

to be exact). To illustrate this, we have already computed x(¢,&) from Eq. (6.24) by
taking different set of values of A, u, h and w(r)=we™, w, =1, £ =0.1 with

the initial conditions b, =1.0 and ¢, = 0. A second solution of Eq. (6.15) for f =x°
and the same values of A, i, @ and with the same initial conditions is computed by
Runge-Kutta fourth order formula. All the results are shown in Fig. 6.1 -Fig. 6.3 for
h=0.5. From Fig. 6.1 and Fig. 6.2, it is seen that the perturbation results almost
coincide with the numerical results. Moreover, in Fig. 6.3, the perturbation and the
numerical solutions are compared for the corresponding linear case.

It is seen from Fig. 6.1 and Fig. 6.2 that the second approximate solutions
obtained by the presented method are nearly identical with those obtained by the
numerical procedure. From Fig. 6.3, it is again clear to us that when @ change
rapidly, the perturbation results deviate greatly from numerical results. Hence our
derived perturbation solutions show a good agreement with the numerical results
when the coefficients of Eq. (6.15) are varying slowly with time /.

In order to find the numerical solution, we have used the following initial

conditions to determine x(0), %(0) and %(0)
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x(0) = b, cos g, aprer

x(0) = —ub, cos ¢, — @yb, sin g, +&((m +m b )by cos gy — (n, +n3b )b, sin )

+&8((p+ pb® + pyb*) b, cosg, ~ (g, +q;b” +g6*) by sin ),
%(0) = (1? - w, )b COS @, +2 pwyb, sin g, +e(=2(u(m, +2m3b )

+w, (n, + n3b )by cos @, + (hay =20y (m, + m3b0 )

244 + 2m38,") by sin ) + 6% (2, + (my + myby” Y, +3myb,%)

O+ mb) =200(p + 28" +3p,b,") - 20, (g, + 4;b* + 4,5°)

% by cOs @y — (h(m, +3nm,b," )+ 2(m, +myby)(m, +2m,5,)
+20, (py+ psb® + pd*) = 241(q, + 2, +3g,b*))b, sin ,),

(6.25)

where b, and @, are the initial values of 5 and ¢. Usually x(0), %(0) and ¥(0) are
given, so that one can determine the initial amplitude b, and the initial phase @, by
solving the equations of initial conditions Eq. (6.25). On the other hand, if b, and ¢,

are given, one can also find x(0), X(0) and %(0) from the above equations.
6.5 Conclusion

Usually, second or higher order approximate solution is used for obtaining
better results. In this chapter, a new kind of analytical technique has been presented
for a third order nonlinear differential equation with slowly varying coefficients. A
general formula is presented by the unified KBM method [1-37,45,56,57,69,94,113]
to obtain the first approximate solution. It is very difficult to find the formula for
second or higher order approximation and it is a laborious and tedious task. But
sometimes the first approximate solution does not give us good results. Then we need
to determine the second or higher order approximations. Here we have developed a

new technique which is easy to carry on the subsequent calculations for the second or

higher order approximate solutions and it also gives us better results than the first

approximate solutions. Also this solution converges nicely to those obtained by the

numerical procedure when the coefficients become constant (i.e., A —> 0).
However. the second or higher order solution diverges faster than the lower

order solution when the reduced frequency becomes small. It has been shown

effectively and accurately that large classes of second approximations converge

. . : i ' solutions
rapidly to the numerical solutions. Comparison 1S made between the

obtained by the perturbation method (dashed lines) and those obtained by the

numerical procedure (solid line) in figures.
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Fig. 6.1(a)

0.5

-0.5 1

Fig. 6.1 (a) First approximate solution —e— (dashed lines) of Eq. (6.15) is compared

with the corresponding numerical solution - (solid line) obtained by Runge-Kutta
fourth-order formula for A=0.15, #=0.05, @, =1.0,=0.5,6=0.1 and f=x
when [x(0) =1.00000, x(0) =—0.01250, %(0) =-1.01125] or b, =1.0 and @,=0.
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Fig. 6.1(b)

0.5 -

-0.5 |

Fig. 6.1 (b) Second approximate solution —e— (dashed lines) of Eq. (6.15) is

compared with the corresponding numerical solution - (solid lines) obtained by

Runge-Kutta fourth-order formula for A =0.15, 4 =005, @, =1.0, =0, &= 0.1

and f=x’ when [x(0)=1.00000, £(0) =—0.01342, #(0) =—0.99746] or b, =1.0

and @, =0 .

97



Chapter 6

Fig. 6.2(a)

0.5

-0.5 1

Fig. 6.2 (a) First approximate solution —e - (dashed lines) of Eq. (6.15) is compared

with the corresponding numerical solution - (solid lines) obtained by Runge-Kutta

-
fourth-order formula for A =03, £=0.1, @, = 1.0, h=0.5,£=0.1 and f =x"when

[x(0) =1.00000, x(0) = -0.06250, ¥(0) = ~1.01750] or b, =1.0 and ¢, =0.
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Fig. 6.2 (b)
1.
0.5 1
> 0 ‘
) 3 1 15, 20
-0.5 -
-1 4
t

Fig. 6.2 (b) Second approximate solution —e— (dashed lines) of Eq. (6.15) is

compared with the corresponding numerical solution - (solid lines) obtained by

Runge-Kutta fourth-order formula for 4= 0.3, u=0.1,0,=1.0,h=05,6= 0.1 and
f=x* when [x(0) =1.00000, £(0) = ~0.06434, ¥(0) = ~1.00358] or b, =1.0 and

(0():0 .
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Fig. 6.3 (a)

1.5 1

0.5 1

-0.5 4

1.5

Fig. 6.3 (a) First approximate solution —®— (dashed lines) of Eq. (6.15) is compared

with the corresponding numerical solution - (solid lines) obtained by Runge-Kutta

I
fourth-order formula for 4 =0.15, £ =0.05, @, =1.0,#=05,£=0.1 and f=x

when [x(0) =1.00000, (0) = 0.02500, %(0) = ~1.01500] or b, =1.0 and @,=0.
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Fig. 6.3(b)

1.5

0.5 4

-0.5 -

-1.5

Fig. 6.3 (b) Second approximate solution —e— (dashed lines) of Eq. (6.15) 1s

compared with the corresponding numerical solution - (solid lines) obtained by

= = =0.5,6=0.1
Runge-Kutta fourth-order formula for A=0.15, = 0.05, w, =1.0, =05, ¢

¢ ¥(0) =-1.01740 b, =1.0 and
and f=x’ when [x(O)=1.00000,x(0)=0.02375,x(0) 1.01740] or b,

¢o=0.
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An Approximate Solution of a Fourth Order Weakly Nonlinear
Differential System with Strong Damping and Slowly Varying
Coefficients by Unified KBM Method

7.1 Introduction

The method of KBM is convenient and one of the widely used techniques to
obtain the analytical approximate solutions of nonlinear differential systems. It is
perhaps noteworthy that because of importance of physical process involving
damping, Popov [135] extended this method to damped oscillatory systems. Murty et
al. [117] used Popov’s method to obtained over-damped solutions of nonlinear
differential equations, which were the basis of unified theory of Murty [115]. Later
this method has been extended to damped oscillatory and purely non oscillatory
systems with slowly varying coefficients by Bojadziev and Edwards [56]. Arya and
Bojadziev [42] have studied a time-dependent nonlinear oscillatory system with
damping, slowly varying coefficients and delay. Feshchenko et al. [69] have
presented a brief way to determine KBM [45,94,113] solution (first order) of second
and third order nonlinear differential systems. Arya and Bojadziev [41] have also
studied a system of second order nonlinear hyperbolic partial differential equation
with slowly varying coefficients. Alam [2] has investigated a unified Krylov-
Bogoliubov-Mitropolskii method for éoiving nonlinear system of order nz2 .
Further, Alam [16] has investigated a unified Krylov-Bogoliubov-Mitropolskii

method for solving of second and third order nonlinear systems with constant

coefficients. In another paper, Alam [19] has also investigated a unified Krylov-

Bogoliubov-Mitropolskii method for solving nonlinear systems of order n2>3 with

slowly varying coefficients. Recently Alam and Sattar [27] have also presented an

asymptotic method for the third order nonlinear systems with slowly varying
coefficients. Recently Akbar et al. [37] have studied a fourth order nonlinear
differential equation with constant coefficients. Most of the authors have studied the

second and third order nonlinear differential systems for both constant and varying

. . . - ated
coefficients to obtain the first order analytical approximate solutions. The complicate

and no less important case of a fourth order nonlinear differential equation with strong
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damping and slowly varying coefficients has remained almost untouched. The aim of
this chapter is to fill this gap.

7.2 The Method

Let us consider a fourth order weakly nonlinear ordinary differential equation
with slowly varying coefficients in the following form

D 4e,(DF +c, (@i + ey ()i + e, (D)x = ¢ F(x,%,%,%,7) (7.1)

where the over dots represent the time derivatives, & is a small positive parameter
which measures the strength of the nonlinearity, 7 = ¢s is the slowly varying time,
c;(r)20, j=1,2,3,4 are slowly varying coefficients and f is a given nonlinear

function. The coefficients are slowly varying in the sense that their time derivatives

are proportional to & [19].

By setting & =0, 7 = 7, =constant in Eq. (7.1), then we obtain the solution of
the unperturbed equation. We assume that the unperturbed equation of Eq. (7.1) has
four eigenvalues A, (z,), j=1,2,3,4, where 4,(7,) are constants, but if €0 then

A,(z) are varying slowly with time ¢. The solution of the linearized equation of Eq.

(7.1) has the following form

4
x(t,0) = Zaj_oezf(r"){, (7.2)
J=1
where a,,, j=1,2,3,4 are arbitrary constants.

Now we are going to choose a solution of Eq. (7.1) that reduces to Eq. (7.2) as
alimit & — 0 in the following form according to the KBM [45,94,113] method
) 3
X(f, 6‘) = zaj(f) + EH] (al ,02,03,614,7) + €2u2 (a15a2 ’aJ?aci ’T) e, (73)
Jj=1

where #, is a function of a,, j=1,2,3,4 and each 4, satisfies the following first

order differential equation

3. 4
a. =;,J_aj+gAj(a],a2,a3,a4,r)+gZBj(a|,az,as,a4,T)+g ] (7.4)
J

Confining only to the first few terms, 1,2,3... in the series expansions of

Eq.(7.3) and Eq.(7.4), we evaluate the functions u,, #, and A, B,,J =1, 2; 3,4
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such that each a, () appearing in Eq.(7.3) and Eq.(7.4) satisfies the given differential
equation (7.1) with an accuracy of 5””'_ [19]. In order to determine these functions it

is assumed that the functions w,, u,,:- do not contain the fundamental terms

[2,19,56,117] which are included in the series expansions (7.3) at order £°. Now

differentiating Eq. (7.3) four-times with respect to time ¢ and using the relations Eq.
(7.4) and by substituting the values of x, ¥, X, % and x into the original Eq. (7.1)
with the slowly varying coefficients ¢,(z) = —(4, () + A@)+ 2,(7) + A, (1)),

¢,(7) = 4 (D)4, (7) + L () A (2) + A (2) A4 (7) + 4, (2) A4 (2) + Ay (D) 4, (7) + Ay (2) A, (2),
¢5(7) = (4 (D) A, (D) A (2) + 4 () A, (D) A, (2) + 4, () A5 (2) A, () + Ay (2) A5 (£) 4, (7))
and c¢,(r) = 4,(r)A,(r)A,(r)A,(r) and expanding the right hand side of Eq. (7.1) by

Taylor series and equating the coefficients of & on both sides, we obtain the

following equation

H(Q ﬂ)ul+;(k1115§2 /I)A)+Z (2(4 DE-Bed e

= f(O)(alsaz:a;;:auT):

4
Q=>1aq, 0 A= =124, fOa,05,05,0,,7)= f (6, %o, Xo, %, 7) and
T

We have already assumed that u, does not contain the fundamental terms and

for this reason the solution will be free from secular terms, namely fcos?, fsinf and

te™'. Under these restrictions, we are able to solve Eq. (7.5) by separating this into

i th
five individual equations for the unknown functions u, and A4, In general, the

functions f© and u, are expanded in Taylor’s series in the following forms [19]
o, o, d.’ o0 - (7-6)
0 m M am; a™
f( ) = Z My, my my, m4( )a "3 4 s
my=0,m, =0,m;=0u1, =0
@, 00,00,0 _ (7-7)

my M
21 aa;’ay’
U = U J— (7)q, L dy

my=0,my=0,my=0m, =0
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The eigen-values of the unperturbed equation can be written as

— U AT tiw (7 Whe - EI‘ .
[( 0) l( 0)’ re l 15 2- or the above reStrICthIls, it gl[aranties that 1
1

must exclude all terms with aj g ©)
0
£ /™, where m,_, - my, ==x1. Since

according to the linear approximation (i -
g pproximation (ie. € = 0), a,_,"*" @, becomes e*' when

_ — -t . '
My —My =1 or e™" when m,_, —m, =-1. It is noticed that e** are known as

the fundamental terms [2,19,56,117]. Usually these are included in equations A,
-

Also, it is restricted [45,94,113] that the functions A , are independent of the
fundamental terms.

Then the equations for u, and 4, j=1,2,3,4 are written as

4 ™, 0
H(g — Ay = ‘02 maprmy (YRGS, My —my # 0, %1 (7.8)

My

and

( 1‘[(9 AN Ay +— (2(4 BB -k, A Ay
k=1k=2/-1 (79)

0,0

— My M3y _ —
= ZFI.:Z,_,mz,azl pay, my, —my =1,

My =0,my,;=0

(H(Q AN Ay += (Z(4 K@ —ke A A ay
k=1,k=2! (710)

o, a0
= ""zl—l My wy i
= Z Mgy migy 211 Ay My — My 1.
iy

myy_ =0,my, =0

To determine the particular solutions of Egs. (7.8) - (7.10), we have to replace

m TR
the operator Q by Zm since we know that Q(a5™ ay') = Z m, A, (agiag).

s

Hence the determination of the first order analyt

is obtained. We notice that the solution Eq. (7.3) is not a standard form of the KBM

unusual variables. Therefore, the solution

ical approximate solution of Eq. (7.1)

method and is presented in terms of some

obtained by formula of Eq. (7.1) is transfo
es variables in the forms

rmed to the formal form by replacing the

unusual variables by amplitudes and phas

| 7.11
o, =t=be’®, 1=1,2 (&L

2

1, i
az,l Ebew
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Thus the first order approximate solution of Eq. (7.1) can be found as a
standard form of the KBM method. The method can be carried out to higher order

approximations in a similar way. However, owing to the rapidly growing algebraic
complexity for the derivation of the formulae, the solution is in general confined to a

lower order, usually the first order [1-37,45,94,113].

7.3 Example

To obtain the practical working of the above method, we consider the
following fourth order weakly nonlinear differential equation with slowly varying
coefficients in the following form

X+ (T)X + ¢, (r)E+c (7)) X+ c,(Dx=¢ex, (7.12)
where f(x,X,%,%,7) = x° and X, =a,+a,+a;, +a,.

Now
fO=d+d+a+a,+3ala, taal +ala, +2aa,a, +aya;+a;a, +2a,6,0, a13)
+ala, +a,a} +20,0,a, + 4,0} + 0,0 +20,0,0,+ 0,0, + a3, +a;0). '

Substituting the values of f‘® in Eq. (7.5) and according to the above
restrictions, we obtain five equations for 4, 4,, 4;, 4, and %, whose solutions are

respectively given by

y =_(3212 —2A A =24 A = 2A A+ A+ A A+ ARG
‘ (A = ) = )4 = &)

3ala, N 3a,a;
+2’11(2’11+’I{2—X3)(221 F Ay —A) (A +A)A+24 =AY A +24,-4,)
3ala3 6(114513614

i (A + A (A +24, = ) (A4 +24, —ﬂs)+ (A + A+ A + A+ A= A) ’
(BB -244 244244 + A2+ A+ A ) Gy

s o= 20) o — )y = )
3a,a; 3a,a;
¥ T * 20— Ay + 2~ 24)
120, — A+ 2= ha) (ot A)at
2 6a,a.a
3a,a; 2%

A T2A e T 2h =) Ut ds)a Al a A=)
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BR=2hA =22 =242 + A 4y + 4,4, +hA)Aa,

A= (= 2)( = 1) (% - 2,)
3ala, 3aia,
(21 + )24+ A = 2,)24 + 4, - i) (o + B)2%4 + 25 = 4) 24, + A - 4,)
3ala, 6a,a;a,

2;13(2/13+1 = A)QA4+ 4, - ﬂz) L+ L)+ B) A+ 24, + 4= 4)

4o BAm2h A 2 A =20 A+ Ay + A A+ Ay A g,
) ()b ’11)(14—"{2)(/14"’13)

3a; a, 3dla,
TR A ANt A= A+ =) ¥ AN+ g~ 2N Ay )
303(14 6(1161204

21(/?3+2/?« ~ A A +24, - 4) (&M)(%M)(ﬂﬁ-ﬂwﬂ -4)
(7.14)

and

ul=C1a13+Dla;+C2a;+D2a:, (7.15)

where
g = 1 . I
S RO R)Gh Bk A 20k - Ok )3k~ 4)
! _ 1 |
= I Oh A =)0k A T 20— M)A~ )R~ )
(7.16)

Now by substituting the values of 4,, 4,, A, and 4, from Eq. (7.14) into

Eq. (7.4), we get
BB =244, =242 =244 + Ay Ay + Ay + A )0,

et G Ay —25) o — )
3aa, 3a,a;
S AOA T A YO T I R) Cat A + 27~ ) + 20 = )
3ala4 6(11(13614

T oA i)k s 2 AaTs) | Gt A+ A+ Ao+ B A
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i, =ﬂqaz+5(‘"(3/1§ —244 —212/13—2/12/14 + A4+ A2, + LA,
(G =AY A = 24, - 4,)

3a,a’ 2
" 19 361203
2+ 2 = BN+ 2 = 2) " (hy+ Aoy + 20~ AN T2 A
3a,a? 6a,a,a,

Ot A+ 20 = )+ 2= 2 Gt A+ Ay 7 A s A )

a; = 4,05 +E(_(32§ —2A4% =244 - 22,4, tAh+ A4+ LA
(A = A)(A = )4~ 4,)

. 3a! a s 3ala,
(A+A)RAL+ A4 -4+ 4= 4) (L +4)24 +4-A)24 +4 - 4,)
3aia, 6a,a,a,

At Aot )t AT YA A A A
GR =203 = 2y~ 20 Ay + Ay + Ay + Ao )AL,
(i~ ) — ) 2

a, =Aa, +e(—

N 3ala, . 3ala,
(N +A)QRA+ A, = )24+ A4 —4) (4L + )24+ 4, - 4)2L+ 4~ 1)
3a,a; 6a,a,a, )

D 20— )y + 20— )t A A+ Ayt A= )
| (7.17)
For a damped solution of Eq. (7.12), we may substitute

Ay == @) i (), Ay, == (r)Lioy(7) and using the transformation

. . ,. 1, gy s
equations @, = %ae"”", a, =%ae””" , Oy =5be oa, = Ebe ® into Eq. (7.17) and

by separating the real and imaginary parts, weé obtain the following variational

equations for the amplitudes and phases variables:
a=—pa+elia+ld +hab’ + ab*(E, cos2p, + Fisin2¢,)),
b, = o,(T) + £(m, +myd® +m;b* + b2 (E, c0s2¢, + F,Sin2,)), (7.18)

b=-wb+e(pb+p,ab+ pyb* +a’ b(E;cos2p, + F,sin2¢,)),

b, =, () +&(q, + @ + g,b* +a*(E,cos2p + F,sin2¢,)),

and the first correction term # is obtained as
i 7.19
u, = a*(c, cos3g, +d,sin3¢) + b*(c, cos 3@, + d, sin3¢,); (7.19)

where

108




Chapter 7
(o, (14 — /12)2 = Sa)fz + a)zz)((ﬂl ~15) - a)l +ta, )

__ +12a)| (4 — 11’ )+4.U150|(M ~ 1) — 11,)? +a)1+a72))
! 20,((4 ﬂz) +(0, - w,)’ Xy = 1) Hoto)?)

4&),(0[ 7 — 1) (4 :uz) + oy +a)22) H (((/‘1 ,uz)

_ —5601 +602)((/11 ) —ay +a’2)+12a’1 (= 1)")
20,((44 4“2) + (o, - &)2) ) (072 ,uz) +(a)|+w2))

m =

__ 3 By = 4)" - 0 +07) - 20! B, - 1,))
T8 0B~ )" + (0, - 0,) NGy - 1) + (0, +0,)7)

30, (G — 1)1 — 1) — 0} + w3)

"= 8(#12 F a)l2 J[(E€)7 _/uz)z + (o, _mz)z)((?’#l —14,)* + (@, + a’z)z),
__ 302, (14 +/u2)2'"w12 +a)22)~2a)§(;“1 +145))
TA ol ) (s + )+ (@0 - 0,) )+ 1)+ (@, 9,)7)
_ 3o, (g + 1)y +31) _a)l2 + (‘)22)
m, =—

4(/”3 + 0312)((,“1 '*',u:z)2 + (@, _wz)z)((ﬂl +.U2)2 + (o, + wz)z)’

_ 3(/"2 (g + ﬂz) — (@, + »,) (@, +30,)) - 20 + )@ + 0, @, + 2602))
TR + (0, + 0,)0) (i + )7+ (@ + 0) ) (g + 1) + (@, +30,)%)

4

32, (1 + py @) + 20,)+ (o, + @, (4, + .Uz) — (o, +@,)(, + 30)2)))
TR + (@, + @) Nt + 1)+ (@, + @) )t + 1) (@ +30,)")

-
m, =-1, ,m4 =1,

3(.”2 (4, +ﬂz) —(w, —a, )@, — -3w,)) — 2(4 + 4y )0, — @, )@, — 2(02))

%S 8(#2 + (@, — a)z) (44 +}12) +(w, — (1)2) Y4 +ﬂ7) +(o, - 3("2) )
. 32u,(u +,Uz)(a)1 2m,) + (o, - wz)((,u] ""/“2) —(o, - -, Y@, - 302)))
== ¥y + 1) + (o, - 3a)2) )’
8(u; + (o, - @,)* Y (&4 + )+ (0 - @,) W4 + #2 1

u =lst’m4* = -1,
2
(w{(«u. Y b0 = 02N~ ) 0] =501 41205 G = )')

4/12 @, (1, — 1 ) (44 ~ /‘2) ! }+@;))

hi=s 20, (4, — #2) + (@, — 502) (02 — )" + (@, +,)")
(4602602 (py = X4 — .uz) + 0 D+ @;) (((/J] 'uz)
g, =- +a)l a’z)((ﬂ /"2) + o, —5a)2)+12m2(,u, ,uz) )

20,((14 ,uz) + (@, — (02) (4 .uz) +(a)1+a)z))
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3 (U +14)" + 0} ~ ) 203 (s, + 1))

P24l + 0]+ 1) 4 (@, + 03) Yty 4 12, +(o, - @,)%)’
Z - 300, (i + 14,)3B 1, + i)+ of - ol)
T+ o))+ 1) (04 0, Ny + 1)+ (@, —y))
e 304, (4, “3ﬂ2)2+a’12‘a’22)+2w22(/1|—3/"2))
T8 + @)t = 3) + (@) - 0,) ) (1 —304,) + (0, + 0,)7)
g = 30, (4, =301, _5/‘12)"'@2 - wzz)
. 8(/-122 + a); (073 _3/"2)2 + (o, “wz)z)((/ﬁ _3/12)2 +(@, +a’2)2) ’
= _3(/"; (07 +,u2)2 — (2, + »,)(Gw, +0,)) = 2(p + 1)@, + 0,) o, +0,))
y ==

8(/”12 + (@, +wz)2)((,u1 +ﬂ2)2 +(w, +w2)2)((;u1 +.u2)2 + (o, +w2)2) ’

+_ 32 (1 + 4,)20, + @,) + (@) + 0, (1 +/”2)2 — (0, + @,)Bo, +,)))
! 8(.“12 + (@, + a’z)z)((ﬂ; +‘”2)2 +(o +a’z)2)((ﬂ| '*'/uz)z + (B, +w2)2) ’

4y =—P4 44 = Ps>

_ _3(,U1 (4 +/"2)2 — (o, — 0,)C0, —@,)) = 2(y, + i, )@, — 2,)(2, —(02)),
8(.”12 + (@ — 0)2)2)((#1 + /12)2 + (@, —wz)z)((/—ﬁ +/12)2 + (B, _0)2)2)

5

. 3Cu (1, + 1, )2, _w2)+(a)l — @, )((4, +/"2)2 — (o, - ,)3w, -,))) ,
S TR 1 (@, — @) ) (i + 1) + (@, =0, )y + 112)” + By~ @,)7)

qS =p5.aq5‘ =—P5,
E =1+l R =l4‘+ls‘= E,=m,+ms, F, =m, +m;, (7.20)
E,=p,+ps, F; =P4*+P5" E4=‘74+‘I5:F4 =q; T4

and

(1 =20 )G —th)’ -9, +a’22)—18/11a)12(3/”| — H) —,
T 7+ 40 74 Go, —0,) )G — )" +(Boy +2,))
1607 + @ )(p? + 400 YBn = o) + By = @) NE =4

)~ 907 + @)+ 20 — ) ~200)) ,
3, (p (B — )" =79 zl)((m‘y2)2+(3wl+wz)2)

LS TT6( + o) (1 + A0t (B — ) + (B0~ @)

2 —_
(443 - 207 (4 =345’ +ay ~9w;) +1844,0; (t —34)

- 2 ~3u,)’ +30,)%)
“ = To(a2 + o)l + 4wty — ) +(@ =30 N 3p)? + (@ +30,))
o7 —0w2) — 2044, =34 )443 = 205))
-3 )2'|'GJ2 9w, ) — 24 2 —.
A == 2 37@2 (é’z ((lulz ” -3 l)2 + (@ -3m,) ) (&4 —34,)" + (@ +30,) )
16(u, +wy)(K; + 4w, Y(f — 2 (721)
i impr 12)i
Thus the first order analytical approximate solution (improved) of Eq. (7.12) 1s
obtained by
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x(t,€) = acos@, +bcosp, + su,, (7.22)

where the amplitudes @, b and the phases ¢,, g, are the solutions of Eq. (7.18) and

u, is given by Eq. (7.19).
7.4 Results and Discussions

A standard form of the KBM method is presented to obtain the analytical
approximate solution of a fourth order nonlinear differential equation with strong
damping and slowly varying coefficients with small nonlinearity. The KBM method
was originally developed for obtaining the periodic solutions of second-order
nonlinear systems by Krylov and Bogbliubov [45] and later it was amplified and
justified by Bogoliubov and Mitropolskii [94]. The method is not only limited to
second-order nonlinear problems, but also useful in third-order [16,19] and fourth
order [37] nonlinear systems. A general solution has been found for the damped
nonlinear differential equation with slowly varying coefficients based on the unified
KBM [2,16,19,45,94,113,117] method.

We have solved four simultaneous differential equations for amplitude(s) and
phase(s) variables and a partial differential equation for %, involving four independent
variables of amplitudes and phases. Also we are able to solve all the equations of

4,,j=1,2,3,4 and u, by a unified formula. In a particular case, we are forced to

~ht
assume that y,(z), / =1,2 are constants, w,(z) =2 w,(r) and w,(r)=w,e " are

varying slowly with time ¢, where @, and % are constants. Figures are drawn to

compare between the first order analytical approximate solutions obtained by the

perturbation method and those obtained by the fourth-order Runge-Kutta method for

several damping effects. Moreover this method is able to give the required results

given nonlinear differential equation become constants

it is seen that the new analytical approximate

when the coefficients of the

(h=0). From the Figs. (1)- (2);

solutions show a good agreement with the corresponding numerical solutions

(considered to be exact).

7.5 Conclusion

A unified KBM [2,16 19,45,94,113,117] method is presented to obtain the

analytical approximate solutions of fo el
. g coefficients with small nonlinearity. The later

urth order nonlinear differential systems with

strong damping and slowly varyin
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form of the solution of Eq. (7.12) is presented in terms of amplitudes and phases
variables. This form is very important in physical problems, since amplitudes and
phases variables characterize the oscillating processes. Moreover the variational
equations of amplitudes and phases variables are important to investigate the stability
of differential systems. In general, the variationa] equations for the amplitudes and
phases variables, namely Eq. (7.18) is solved numerically. In this case, the

perturbation method facilitates the numerical method. The variables a, ¢, b and g,

change slowly with time f. So it requires the numerical calculation of a few numbers
of points. On the contrary, a direct attempt to solve Eq. (7.12) dealing with some
harmonic terms in the solution Eq. (7.22), requires the numerical calculation of a great

number of points.
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Fig. 7.1

1.5 ¢

-0.5 -

Fig. 7.1 First approximate solution is denoted by —e— (dashed lines) of Eq. (7.13)
with the initial conditions [x(0)=1.49992, %(0)= —1.43242, %(0)=-1.43652,
%(0)=8.76772] or a, =.5, @ =0, b=1.0, ¢, =0, with 4, = 1.5, p,=.75, @, =1.0,

h=0.5, £=0.1,0, =20, ®, = wye", =gt and f =x’. Corresponding numerical

solution is denoted by - (solid line).
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Fig. 7.2

1.5 ¢
1 4
» 0.5
0 .
-0.5 -
t

—e— (dotted lines) of Eq. (7.13)

Fig, 7.2 First approximate solution is denoted by
~1.55988, ¥(0)=-1.01827,

with the initial conditions [x(0)=1.50000, x(0)=

X(0)=927141] or 4, =_5’ ) =O, b =1.0, @, =0, with M= 175, Hy =.75, @, =1.0,

h=.5,¢=.10 =20, ©, = e r=gt and f= x*. Corresponding numerical

solution is denoted by - (solid line)-

114



References

1.

10.

11.

12.

Alam, M. Shamsul and M, A. Sattar, An Asymptotic Method for Third Order

Critically Damped Nonlinear Equations, J. Mathematical and Physical
Sciences, Vol. 30, pp. 291-298, 1996.

Alam, M. Shamsul and M. A. Sattar, A Unified Krylov-Bogoliubov-
Mitropolskii Method for Solving Third Order Nonlinear Systems, Indian J.
Pure Appl. Math. Vol. 28, pp. 151-167, 1997.

Alam, M. Shamsul, Generalized Asymptotic Method of KBM for Nonlinear
Systems, Indian J. Pure Appl. Math. Vol. LI, No. 1-2, pp. 43-55, 2000.

Alam, M. Shamsul, M. F. Alam and S. S. Shanta, Approximate Solution of
Non-Oscillating Systems with Slowly Varying Coefficients, Ganit, J.
Bangladesh Math. Soc., Vol. 21, pp. 55-59, 2001.

Alam, M. Shamsul, Asymptotic Methods for Second Order Over-damped and
Critically Damped Nonlinear Systems, Soochow Journal of Mathematics, Vol.
27, pp. 187-200, 2001.

Alam, M. Shamsul, Perturbation Theory for Nonlinear Systems with Large
Damping, Indian J. Pure Appl. Math., Vol. 32, pp. 1453-1461, 2001.

Alam, M. Shamsul and M. A. Sattar, Time Dependent Third Order Oscillating
Systems with Damping, J. Acta Ciencia India, Vol. 27, pp. 463-466, 2001.
Alam, M. Shamsul, Oscillating Processes of Third-Order Non-linear
Differential Systems, Indian J. Theoretical Physics, Vol. 50, pp.99-108, 2002
Alam, M. Shamsul, Approximate Solutions of Non-oscillatory Systems,
Mathematical Forum, Vol. 14, pp. 7-16, 2001-2002.

Alam, M. Shamsul, On Some Special Conditions of Third Order Over-
Damped Nonlinear Systems, Indian J. Pure Appl. Math., Vol. 33, pp. 727-742,
2002.

Alam, M. Shamsul, Perturbation Theory for nth Order Nonlinear Systems

with Large Damping, Indian J. Pure Appl. Math., Vol. 33, pp. 1677-1684,

2002.
Alam. M. Shamsul, M. B. Hossain and S. S. Shanta, Krylov-Bogoliubov-

Mitropolskii Method for Time Dependent Nonlinear Systems with Damping,
Mathematical Forum, Vol. 14, pp. 53-59, 2001-2002.

115



13.

14.

15.

16.

17

18.

19.

20.

21.

22.

23,

24,

Alam, M. Shamsul, Bogolubov’s Method for Third Order Critically Damped
Nonlinear Systems, Soochow Journal of Mathematics, Vol. 28, pp. 65-80
2002. |

Alam, M. Shamsul, Method of Solution to ##4 Order Over-Damped Nonlinear

Systems Under Some Special Conditions, Bull. Cal. Math. Soc., Vol. 94, pp.
437-440, 2002.

Alam, M. Shamsul, Asymptotic Method for Non-Oscillatory Nonlinear
Systems, Far East J. App. Math., Vol. 7, pp. 119-128, 2002,

Alam, M. Shamsul, A Unified Krylov-Bogoliubov-Mitropolskii Method for
Solving nth Order Nonlinear Systems, J. Franklin Inst., Vol. 339, pp. 239-
248, 2002.

Alam, M. Shamsul, M. B. Hossain and S. S. Shanta, Perturbation Theory for
Damped Nonlinear Systems with Varying Coefficients, Indian J. Pure Appl.
Math., Vol. 34, pp. 1359-1368, 2003.

Alam, M. Shamsul, On Some Special Conditions of Over-Damped Nonlinear
Systems, Soochow Journal of Mathematics, Vol. 29(2), pp. 181-190, 2003.
Alam, M. Shamsul, Unified Krylov-Bogoliubov-Mitropolskii Method for
Solving nth Order Nonlinear Systems with Varying Coefficients, J. Sound
and Vibration, Vol. 265, pp. 987-1002, 2003.

Alam, M. Shamsul, Asymptotic Methods for Certain Third-order Non-
Oscillatory Nonlinear Systems, J. Bangladesh Academy of Sciences, Vol. 27,

pp. 141-148, 2003.

Alam, M. Shamsul and M. B. Hossain, On Some Special Conditions of nth

Order Non-Oscillatory Nonlinear Systems, Communication of Korean Math.
Soc., Vol. 18, pp. 755-765, 2003.
Alam, M. Shamsul, Unified KBM Meth

Franklin Inst., Vol. 341, pp 533-542, 2004. | 3
Alam. M. Shamsul, M. B. Hossain and M. Ali Akbar, On Special Conditions

of Over-Damped Nonlinear Systems with Slowly Varying Coefficients,
ry Mathematics, Vol. 7, pp. 255-260, 2004,

od Under a Critical Condition, J.

Journal of Interdisciplina |
Alam. M. Shamsul, A Modified and Compact form of Krylov-Bogoliubov-

Mitropolskii Unified KBM Method for Solving an nth  Order Nonlinear
Differential Equation, Int. J. Nonlinear Mechanics, Vol. 39, pp. 1343-1357, 2004.

116



23

26.

21

28.

29.

30.

31.

32.

33.

34,

Alam, M. Shamsul, Damped Oscillations Modeled by an n-th Order Time

Dependent Quasi-Linear Differentia] System, Acta Mechanica, Vol. 169 p
111-122, 2004. -

Alam, M. Shamsul, Method of Solution to Over-Damped Nonlinear Systems

with Varying Coefficients under Some Special Conditions, Bull. Cal. Math.
Soc., Vol. 96, pp. 419-426, 2004.

Alam, M. Shamsul and M. A. Sattar, Asymptotic method for third-order
nonlinear systems with slowly varying coefficients, Southeast Asian Bulletin
of Mathematics, Vol. 28, pp.979-987, 2004.

Alam, M. Shamsul, M. A. K. Azad and M.A. Hoque, A general Struble’s
Technique for Solving an nth Order Weakly Non-Linear Differential System
with Damping, Int. J. Non-linear Mechanics , Vol. 41, pp. 905-918, 2006.
Alam, M. Shamsul, M. Abul Kalam Azad, Kamalesh Chandra Roy and M.
Majedur Rahman, An Extension of The General Struble’s Method for Solving
an nth Order Nonlinear Differential Equation when the Corresponding
Unperturbed Equation has Some Repeated Eigenvalues, Journal of the
Franklin Institute, Vol. 346, pp. 112-125, 2009.

Akhter, Most. Nasrin, M. Shamsul Alam and M. A. Sattar, Asymptotic
Method for Critically Damped Processes in Biological and Biochemical
Systems, Ganit: J. Bangladesh Math. Soc., Vol. 20, pp. 37-44, 2000.

Akhter, Most. Nasrin, M. Zahurul Islam and M. A. Sattar, Asymptotic Method
for Over-Damped Processes in Biological and Biochemical Systems, Journal

of Bangladesh Academy of Sciences, Vol. 20, pp. 93-100, 2004,

Azad, M. A. K., M. Samsuzzoha, M. Ali Akbar and M. Alhaz Uddin, KBM
in Biological and

p. 1-10,

Asymptotic Method for Over-Damped Processes
Biochemical Systems, Ganit: J. Bangladesh Math. Soc., Vol. 26, p

2006.

Azad, M. A. K., M. Ali Akbar and M. A. Sattar, Multipl
Mechanics. of Continua

e Time Scale Method

for Over-Damped Processes in Biological Systems, J.

and Mathematical Sciences, Vol. 4(2), pp.472-484, 2010
Akbar. M. Ali, A. C. Paul and M. A. Sattar, An Asymptotic Method of
| Damped Nonlinear Systems, Ganit:

6, 2002.

Krylov-Bogoliubov for Fourth Order Over-
J. Bangladesh Math. Soc., Vol. 22, pp. 83-9

117



33.

36.

37.

38.

39.

40.

41.

42.

43,

44,

45,

Akbar, M. Ali, M. Shamsul Alam and M. A, Sattar, Asymptotic Method for
Fourth Order Damped Nonlinear Systems, Ganit: J. Bangladesh Math. Soc.,
Vol. 23, pp. 72-80, 2003.

Akbar, M. Ali, M. Shamsul Alam and M. A. Sattar, A Simple Technique for
Obtaining Certain Over-Damped Solutions of an nth Order Nonlinear
Differential Equation, Soochow Journal of Mathematics, Vol. 31(2), pp. 291-
299 2005.

Akbar, M. Ali, M. Shamsul Alam and M. A. Sattar, KBM Unified method for
Solving n—th Order Nonlinear Differential Equation Under Some Special
Conditions Including the Case of Internal Resonance, Int. J. Non-linear Mech.,
Vol. 41, pp. 26-42, 2006.

Andropov, A. Les Cycles de Poincare et la Theories des Oscillations Auto-
entretenues (Limit Cycles of Poincare and the Theory of Self-excited
Oscillations), Comptes Rendus, Paris, Vol. 189, 1929.

Andronov, A. and S. Chaikin, Theory of Oscillations, Moscow, (Russian),
1937. |

Arya, J. C. and G. N. Bojadziev, Response of a Nonlinear Vibrator Governed
by a Certain Partial Differential Equation, IEEE Transactions on Automatic
Control, Vol. AC-24, pp. 137-138, 1979

Arya, J. C. and G. N. Bojadziev, Damped Oscillating Systems Modeled by
Hyperbolic Differential Equations with Slowly Varying Coefficients, Acta
Mechanica, Vol. 35, pp. 215-221, 1980. '

Arya, J. C. and G. N. Bojadziev, Time Depended Oscillating Systems with

Damping, Slowly Varying Parameters and Delay, Acta Mechanica, Vol. 41,

pp. 109-119, 1981.

Andrianov, . and J. Awrejcewicz, New Trends of Asympt
Applied Mechanics Reviews, Vol. 54,

otic Approaches:

Summation and Interpolation methods,

pp. 69-92, 2001. | |
Awrejcewicz, J., 1 Andrianov and L. Manevitch, Asymptotic Approaches 1n

Nonlinear Dynamics: New Trends and Applications, Springer-Verlag, Berlin,

1998.

i . Mitropo
Bogoliubov, N. N. and Yu. A. M1 |
¥ ussian), State Press for Physics and

Iskii, Asymptotic Methods in the

Theory of Nonlinear Oscillations (in R

Mathematical Literature, Moscow, 1961.

118




46.

47.

48.

49.

50.

8 Ly

52.

33.

54,

35

56.

57.

Bellman, R., Perturbation Techniques in Mathematics

| | Physics and
Engineering, Holt, Rinehart and Winston, New York, 1966.

Bojadziev, G. N., On Asymptotic Solutions of Nonlinear Differential
Equations with Time Lag, Delay and Functional Differential Equations and
Their Applications (edited by K. Schmit), Academic Press, pp. 299-307, 1972.
Bojadziev, G. N., R. W. Lardner and J. C. Arya, On the Periodic Solutions of
Differential Equations Obtained by the Method of Poincare and Krylov-
Bogoliubov, J. Utilitas Mathematica, Vol. 3, pp. 49-64, 1973.

Bojadziev, G. N. and R. W. Lardner, Monofrequent Oscillations in
Mechanical Systems Governed by Hyperbolic Differential Equations with
Small Nonlinearities, Int. J. Nonlinear Mechanics, Vol. 8, pp. 289-302, 1973.
Bojadziev, G. N. and R. W. Lardner, Second Order Hyperbolic Equations with
Small Nonlinearities in the Case of Internal Resonance, Int. J. Nonlinear
Mechanics, Vol. 9, pp. 397-407, 1974.

Bojadziev, G. N. and R. W. Lardner, Asymptotic Solutions of a Nonlinear
Second Order Hyperbolic Differential Equation with Large Time Delay, J.
Inst. Maths. Applies, Vol. 14, pp. 203-210, 1974.

Bojadziev, G. N., Damped Forced Nonlinear Vibrations of Systems with
Delay, J. Sound and Vibration, Vol. 46, pp. 113-120, 1976.

Bojadziev, G. N., The Krylov—Bogoliubov-Mitropolskii Method Applied to
Models of Population Dynamics, Bulletin of Mathematical Biology, Vol. 40,

pp. 335-345, 1978.

Bojadziev , G. N. and S. Chan, Asymptotic Solutions of Differential

Equations with Time Delay in Population Dynamics, Bulletin of
Mathematical Biology, Vol. 41, pp- 325-342, 1979.

Bojadziev, G. N., Damped Oscillating Processes
ology, Vol. 42, pp. 701-

in Biological and

Biochemical Systems, Bulletin pf Mathematical Bi

717, 1980. - d
Bojadziev, G. N. and J. Edwards, On Some Methods for Non-Oscillating an

_ ] L
Oscillating Processes, J. Nonlinear Vibration Probs., Vol. 20, pp. 69-79, 198
Bojadziev, G. N Damped Nonlinear Oscillations Modeled by a 3-
i i - 1983.
dimensional Differential System, Acta Mechanica, Vol. 48, pp. 193-201,

119




58.

59.

60.

61.

62.

63.

64.

65.

66.

Bojadziev, G. N. and C. K. Hung, Damped Oscillations Modeled by a 3-
Dimensional Time Dependent Differential System, Acta Mechanica, Vol. 53,
pp. 101-114, 1984.

Belendez, A. T. Belendez, C. Neipp, A. Hernandez and M. L. Alvarez,
Approximate Solutions of a Nonlinear Oscillator Typified as Amass Attached
to a Stretched Elastic Wire by the Homotopy Perturbation Method, Chaos,
Solitions and Fractals, xxx (2007) xxx-xxx.

Belendez, A., C. Pascual, M. Ortuno, T. Belendez and S. Gallego, Application
of modified He’s Homotopy Perturbation Method to Obtain Higher-Order
Approximations to a Nonlinear Oscillator with Discontinuities, Nonlinear
Analysis:  Real = World  Applications  (2007), doi:  10.1016/
J.nonrwa.2007.10.015.

Belendez, A., C. Pascual, T. Belendez and A. Hernandez, Solution for an Anti-
Symmetric Quadratic Nonlinear Oscillator by a Modified He’s Homotopy
Perturbation Method, Nonlinear Analysis: Real World Applications (2007),
doi: 10.1016./J.nonrwa.2007.10.002.

Belendez, A., C. Pascual, S. Gallego, M. Ortuno and C. Neipp, Application of
a Modified He’s Homotopy Perturbation Method to Obtain Higher-Order
Approximations of an x'® Force Nonlinear Oscillator, Physics Letter A
(2007), doi: 10.1016/j.physleta.2007.06.042.

Belendez, A., A. Hernandez, T. Belendez, E. Fernandez, M. L. Alvarez and C.
Neipp, Application of He’s Homotopy Perturbation Method to Duffing

Harmonic Oscillator, International Journal of Nonlinear Science and

Numerical Simulation, Vol. 8(1), pp.78-88, 2007. | |
Cap, F. F., Averaging Method for the Solution of Nonlinear Differential

Equations with Periodic Non-harmonic Solutions, Int. J. Nonlinear Mechanics,

Vol. 9, pp. 441-450. 1974.
Cheung YK, SH, Chen and S

for Certain Strongly Nonlinear Oscillators, Int.

26, pp. 367-378, 1991.

Chatterjee, A., Harmonic Balance
An Asymptotic Technique, Journal of N

L, Lau, A Modified Lindstedt-Poincare Method
J. Nonlinear Mechanics, Vol.

Based Averaging: Approximate

onlinear Dynamics,
Realizations Of

Vol. 32, pp. 323-343, 2003.

120



67.

68.

69.

70.

71.

2

73.

74.

75.

76.

71.

78.

79.

Cheng, Hung and Tai Tsun Wu, An Aging Spring, Studies in Applied
Mathematics, Vol. 49, pp.183-185, 1970.

Duffing, G., Erzwungene Schwingungen bei Veranderlicher Eigen Frequenz
und lhre Technische Bedeutung, Ph. D. Thesis (Sammlung Vieweg,
Braunchweig), 1918.

Feshchenko, S.F., N.I. Shkil, and Nikolenko, Asymptotic Method in the
Theory of Linear Differential Equation (Russian), Noaukova Dumka, Kiev
1966 (English translation, Amer, Elsevier Publishing Co., INC., New York,
1967).

Freedman, H.I,, V. S. H. Rao and K. J. Lakshami, Stability, Persistence and
Extinction in a Prey- Predator System with Discrete and Continuous Time
Delay, WSSIAA, Vol. 1, pp. 221-238, 1992,

Freedman, H.I. and S. Ruan, Hopf Bifurcation in Three-species Chain Models
with Group Defense, Math. Biosci. Vol. 111, pp. 73-87, 1992,

FitzHugh, R., Impulses and Physiological States in Theoretical Models of

- Nerve Membrane, J. Biophys., 1, pp. 445-466, 1961.

Gylden, Differentailgleichungen der Storungs Theorie (Differentail Equations
of the Theory of Pertubation), Petersbourg, Vol. 31, 1883.

Gatto, M. and S. Rinaldi, Stability Analysis of Predator-Prey Models via the
Liapunaov Method, Bulletin of Mathematical Biology,Vol. 40, pp. 339-347,
1977.

Goh. B. S., Global Stability in Many Species Systems, The American
Naturalist, Vol. 111, pp. 135-143, 1977.

Hall, H. S. and S. R. Knight, Higher Algebra, Radha Publishing house,
Kolkata, (Indian Edition), 1992. |

Hu, H.,, A Classical Perturbation Technique which is Valid for Large
Parameters, Journal of Sound and Vibration, Vol. 269, pp. 409-412, 2004.

Hu, H., Solution of a Quadratic Nonlinear Oscillator by the Method of
Harmonic Balance, Journal of Sound and Vibration, Vol. 293, pp. 462-468,
2006.

Hu, H. and J. H. Tang, A Classical Iteration Procedure Valid for Certain
Strongly Nonlinear Oscillators, J. Sound and Vibration, Vol. 299, pp. 397-402,

2007.

121



80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

He, Ji-Huan, Approximate Solution of Nonlinear Differential Equations with
Convolution Product Nonlinearities, Journal of Computer Methods in Applied
Mechanics and Engineering, Vol. 167, pp. 69-73, 1998.

He, Ji-Huan, Homotopy Perturbation Technique, J. Computer Methods in
Applied Mechanics and Engineering, Vol. 178, pp. 257-262, 1999,

He, Ji-Huan, Some New Approaches to Duffing Equation with Strongly and
High Order Nonlinearity (I) Linearized Perturbation Method, J.
Communications in Nonlinear Science & Numerical Simulation, Vol. 4, pp.
78-80, 1999.

He, Ji-Huan, A Coupling Method of a Homotopy Technique and Perturbation
Technique for Nonlinear Problems, Int. J. Nonlinear Mech., Vol. 35, pp. 37-
43, 2000.

He, Ji-Huan, A Modified Perturbation Technique Depending upon an
Artificial Parameter, Meccanica Vol. 35, pp. 299-311, 2000.

He, Ji-Huan, Modified Lindstedt-Poincare Methods for Some Strongly Non-
Linear Oscillations, Part I: Expansion of A Constant, Int. J. of Nonlinear
Mechanics, Vol. 37, pp. 309-314, 2002.

He, Ji-Huan, Homotopy Perturbation technique: A New Nonlinear Analytical
Technique, J. Applied Mathematics and Computation, Vol. 135, pp. 73-79,
2003. _

He, Ji-Huan, The Homotopy Perturbation Method for Nonlinear Oscillators
with Discontinuities, J. Applied Mathematics and Computation, Vol. 151, pp.
287-292, 2004.

He, Ji-Huan, Comparison of Homotopy Perturbation Method and Homotopy
Analysis Method, J. Applied Mathematics and Computation, Vol. 156, pp.
527-539, 2004.

He, Ji-Huan, Asymptotogy by Homotopy Perturbation Method, J. Applied
Mathematics and Computation, Vol. 156, pp. 591-596, 2004.

He, Ji-Huan, Application of Homotopy Perturbation Method to Nonlinear
Wave Equations, J. Chaos, Solitons & Fractals, Vol. 26, pp. 695-700, 2005.
He, Ji-Huan, New Interpretation of Homotopy Perturbation Method, Int.
Journal of Modern Physics B, Vol. 20, pp. 2561-2568, 2006.

He, Ji-Huan, Homotopy Perturbation Method for Solving Boundary Value

Problems, Physics Letters A, Vol. 350, pp. 87-88, 2006.

122



93.

94.

95.

96.
97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

Hsu, I. D. and N. D. Kazarinoff, An Applicable Hopf Bifurcation Formula and
Instability of Small Periodic Solutions of the Field-Noyes Model, J. Math.
Anal. Applic., Vol. 55, pp. 61-89, 1976.

Krylov, N. N. and N. N. Bogoliubov, Introduction to Nonlinear Mechanics,
Princeton University Press, New Jersey, 1947.

Kruskal, M., Asymptotic Theory of Hamiltonian and Other Systems with all
Situations Nearly Periodic, J. Math. Phys., Vol. 31, pp. 806-828. 1962.
Lindstedt, A., Asto. Nach. 103, 211, 1882.

Lindstedt, A., Memoires de 1, Ac. Imper, des Science de st. Petersburg 31,
1883.

Liapounoff, M. A., Probleme General de la Stabilite du Mouvement (General
Problems of Stability of Motion), Annales de la Faculte des Sciences de
Toulouse, Paris, Vol. 9, 1907.

Liouville, J., J. De Math. 2, 16, 418, 1837.

Lotka, A. J., The Growth of Mixed Population, J. Wash. Acad. Sci., Vol. 22,
pp- 461-469, 1932.

Lin, J. and P. B. Khan, Averaging Methods in Prey- Predator Systems and

 Related Biological Models, J. Theor, Biol., Vol. 57, pp. 73-102, 1976.

Lefever, R. and G. Nicolis, Chemical Instabilities and Sustained Oscillations,
J. Theor. Biol., Vol. 30, pp. 267-284, 1971.

Lardner R. W. and G. N. Bojadziev, Asymptotic Solutions for Third Order
Partial Differential Equations with Small Nonlinearities, Meccanica, pp. 249-
256, 1979.

Lewis, An Investigation of the Stability in the Large for an Autonomous
Second Order Two-Degree-of-Freedom System, Int. J. Nonlinear Mechanics,
Vol. 37, pp. 153-169, 2002.

Lewis, An Investigation of the Stability in the Large Behavior of a Control
Surface with Structural Nonlinearities in Surface Flow, Journal of Sound and
Vibration, Vol. 256, pp. 725-754, 2002.

Lim C. W, and B. S. Wu, A Modified Mickens Procedure for Certain
Nonlinear Oscillators, Journal of Sound and Vibration, Vol. 257, pp. 202-206,
2002.

Lim, C. W. and B. S. Wu, A New Analytical Approach to the Duffing-
Harmonic Oscillator, Physics Letters A, Vol. 311, pp. 365-373, 2003.

123



108.

109.

110.

111.

112.
113.

114.

115.

116.
117.
118.
119.
120.
121.

122.

Ludeke, C. A. and W.S. Wagner, The Generalized Duffing Equation with
Large Damping, Int. Journal of Nonlinear Mechanics, Vol. 3, pp. 383-395,
1968.

Liao, S. J., An Approximate Solution Technique not Depending on Small
Parameters, a Special Example, Int. Journal of Nonlinear Mechanics, Vol.
30(3), pp. 371-380, 1995.

Mandelstam, L. and Papalexi, Expose des Recherches Resentes sur les
Oscillations Nonlinearies (Outline of Resent Research on Non-linear
Oscillations), Journal of Technical Physics, USSR, 1934.

McLachlan, N. W., Ordinary Nonlinear Differential Equations in Engineering
and Physical Science, Clarendon Press, Oxford, 1950.

Minorsky, N., Nonlinear Oscillations, Van Nostrand, Princeton, N. J., 1962.
Mitropolskii, Yu., Problems on Asymptotic Methods of Non-stationary
Oscillations (in Russian), Izdat, Nauka, Moscow, 1964.

Museenkov, P., On the Higher Order Effects in the Methods of Krylov-
Bogoliubov and Poincare, J. Astron. Sci., Vol. 12, pp. 129-134, 1965.

Murty, I.S.N., B. L. Deekshatulu and G. Kirsna, On Asymptotic Method of
Krylov-Bogoliubov for Over-Damped Nonlinear Systems, J. Franklin Inst.,
Vol. 288, pp. 49-65, 1969.

Murty, I. S. N. and B. L. Deekshatulu, Method of Variation of Parameters for
Over-Damped Nonlinear Systems, J. Control, Vol. 9(3), pp. 259-266, 1969.
Murty, I. S. N., A Unified Krylov-Bogoliubov Method for Solving Second Order
Nonlinear Systems, Int. J. Nonlinear Mechanics, Vol. 6, pp. 45-53, 1971.
Mendelson, K. S., Perturbation Theory for Damped Nonlinear Oscillations, J.
Math. Physics, Vol. 2, pp. 3413-3415, 1970.

Mulholland, R. J., Nonlinear Oscillations of a Third Order Differential
Equation, Int. J. Nonlinear Mechanics, Vol. 6, pp. 279-294, 1971.

Mickens, M. E., Mathematical and Numerical Study of Duffing- Harmonic
Oscillator, Journal of Sound and Vibration, Vol. 244, pp. 563-567, 2001.
Mickens, M. E., Quadratic Nonlinear Oscillators, Journal of Sound and
Vibration, Vol. 270, pp. 427-432, 2004.

Murdock, J. A., Perturbations, Theory and Methods, Wiley, New York, 1991.

124




123.

124.
123.

126.

127.
128.
129.

130.

131.

132.

133.

134,
135.

136.

Nayfeh A. H., Methods in Astrodynamics and Celestial Mechanics, Edited by
R. L. Duncobe and V. G. Szebehely, Astronautics and Aeronautics, Vol. 17,
Academic Press, pp. 139-157, New York, 1966.

Nayfeh, A. H., Perturbation Methods, John Wiley and Sons, New York, 1973.
Nayfeh, A. H., Introduction to Perturbation Techniques, John Wiley and
Sons, New York, 1981.

O’Malley, R. E. Jr. and C. Schmeiser, The Asymptotic Solution of a
Semiconductor Device Problem Involving Reverse Bias, SIAM J. Appl.
Math., Vol. 50, pp. 504-520, 1990.

O’Malley, R. E. Jr., Singular Perturbation Methods for Ordinary Differential
Equations, Springer-Verlag, New York, 1991.

O’Malley, R. E. Jr., Singular Perturbations, Especially Matching, SIAM
Review, Vol. 36, pp. 414-421, 1995.

O’Malley, R. E. Jr., Stiff Differential Equations and Singular Perturbations,
Technical Report, Australian National University, 1996.

O’Malley, R. E. Jr. and M. J. Ward, Exponential Asymptotic, Boundary Layer
Resonance and Dynamic Metastability, Mathematics is for Solving Problems,
L. P. Cook, V. Royburd and M. Tulin, Editors, SIAM, pp. 189-203, 1996.
O’Malley, R. E. Jr., Thinking about Ordinary Differential Equations,
Cambridge University Press, London, 1997.

Osiniskii, Z., Longitudinal, Torsional and Bending Vibrations of a Uniform
Bar With Nonlinear Internal Friction and Relaxation, Nonlinear Vibration
Problems, Vol. 4, pp. 159-166, 1962.

Osiniskii, Z., Vibration of a One Degree Freedom System with Nonlinear
Internal Friction and Relaxation, Proceeding of International Symposium of
Nonlinear Vibrations, Vol. 111, pp. 314-325, Kiev, Izadt, Nauk Ukrz. SSR,
1963.

Poincare, H., Les Methods Nouveles de la Mecanique Celeste, Paris, 1892.
Popov, L. P. A Generalization of the Bogoliubov Asymptotic Methods in the
Theory of Nonlinear Oscillation (in Russian), Dokl. Akad. Nauk. SSSR, Vol.
3, pp. 308-310, 1956.

Proskurjakov, A. P., Comparison of the Periodic Solutions of Quasi-linear
Systems Constructed by the Method of Poincare and Krylov-Bogoliubov (in
Russian), Applied Math. and Mech., Vol.28, 1964.

123

|
13



R i R e e o o e e e e s e

137.

138.

139.

140.

141.

142,

143.

144,

145.

146.

147.

148.

Rauch, L. L., Oscillations of a Third Order Nonlinear Autonomous System, in
Contribution to the Theory of Nonlinear Oscillations, pp. 39-88, New Jersey,
1950.

Raymond, P. Vito and Cabak, The Effects of Internal Resonance on Impulsive
Forced Nonlinear Systems with Two-Degree-of-Freedom, Int. J. of Non-linear
Mechanics, Vol. 41, pp. 93-99, 1979.

Roy, K. C. and M. Shamsul Alam, Effect of Higher Approximation of Krylov-
Bogoliubov-Mitropolskii Solution and Matched Asymptotic Differential
Systems with Slowly Varying Coefficients and Damping Near to a Turning
Point, Vietnam Journal of Mechanics, VAST, Vol. 26, pp. 182-192, 2004.
Struble, R. A., The Geometry of the Orbits of Artificial Satellites, Arch.
Rational Mech. Anal., Vol. 7, pp. 87-104, 1961.

Sattar, M. A., An Asymptotic Method for Second Order Critically Damped
Nonlinear Equations, J. Frank. Inst., Vol. 321, pp. 109-113, 1986.

Sattar, M. A., An Asymptotic Method for Three-dimensional Over-Damped
Nonlinear Systems, Ganit: J. Bangladesh Math. Soc., Vol. 13, pp. 1-8, 1993.
Stoker, J. Journal of Nonlinear Vibrations in Mechanical and Electrical
Systems, Interscience, New York, 1950.

Troy, W. C., Oscillation Phenomena in Nerve Condition Equation , Ph. D.
Dissertation, Suny at Buffelo, 1974.

Uddin, M. Alhaz, M. A. Sattar and M. Shamsul Além, An Approximate
Technique for Solving Strongly Nonlinear Differential Systems with Damping
Effects, Indian Journal of Mathematics, (Submitted, 2010).

Uddin, M. Alhaz and M. A. Sattar, An Approximate Technique to Duffing
Equation with Small Damping and Slowly Varying Coefficients, J. Mechanics
of Continua and Mathematical Sciences (Submitted, 2010).

Uddin, M. Albaz and M. A. Sattar, Second Approximate Solution of Duffing
Equation with Strong Nonlinearity by Homotopy Perturbation Method, Ganit:
Journal of Bangladesh Mathematical Society, (To Appear, Vol. 30, 2010).
Uddin, M. Alhaz and M. A. Sattar, Second Approximation of Third-Order
Nonlinear Systems with Slowly Varying Coefficients, Journal of Bulletin of

Calcutta Mathematical Society, (To Appear, Vol. 102 (03), 2010)

126




149.

150.

151,

152.

133,

154.

Uddin, M. Alhaz and M. A. Sattar, Approximate Solution of a Fourth Order
Weakly Non-Linear Differential System with Strong Damping and Slowly
Varying Coefficients by Unified KBM Method, Journal of Bangladesh
Academy of Sciences, (To Appear, Vol. 34(1), June 2010).

Van der Pol, B., On Relaxation Oscillations, Philosophical Magazine, 7-th
series, Vol. 2, 1926.

Volterra, V., Variazioni e Fluttuazioni Del Numero d’ Individue in Species
Animali Convivent, Memorie Del R., Comitato Talassografico Italiano, Vol.
131, pp.1-142, 1927.

Volosov, V. M., Higher Approximation in Averaging, Sovier Math. Dokl, Vol.
2, pp.-221-224, 1961,

Volosov, V. M., Averaging in Systems of Ordinary Differential Equations,
Russian Math. Surveys, Vol. 7, pp. 1-126, 1962.

Zabrieko, P. P., Higher Approximation of the Krylov-Bogoliubov Averaging
Method, Dokl, Akad. Nauk. USSR, Vol. 176, pp. 1453-1456, 1966.

RaJshabi University Librasy
Documentativn Section
Doctent No... Dursabb

ID&M@%»}-%M o

127




