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ABSTRACT

This thesis studies some of the nature of Principal n-ideal of a
distributive nearlattice. The n-ideals of a lattice have been studied by several
authors including [4] and [36]. For a fixed element n of a lattice L, a convex
sublattice of L containing n is called an n-ideal of L. If a lattice L has a ‘0’,
then replacing n by 0, an n-ideal becomes an ideal and if L has a ‘1, then it
becomes a filter by replacing n by 1. Thus the idea of n-ideals is a kind of
generalization of both ideals and filters of lattices. Thus the study on n-ideals
generalized many results on lattice theory involving ideals and filters. Then
many authors have extended the concept of n-ideals in a nearlattice. A
nearlattice is a meet semilattice with the property that any two elements
possessing a common upper bound, have a supremum. For a fixed element n
of a nearlattice S, a convex subnearlattice of S containing n is called an
n-ideal of S. For two n-ideals I and J of a nearlattice S, [30] has given a neat
description of I v J, while the set theoretic intersection is the infimum. Hence
the set of all n-ideals of a nearlattice S, denoted by I (S) is an algebraic
lattice. An n-ideal generated by a finite number of elements ay, ay,....,a, 18
called a finitely generated n-ideal, denoted by < ay, ay,....,a, >,, while the
n-ideal generated by a single element a is called a principal n-ideal, denoted
by < a >,. The set of finitely generated n-ideals and the set of principal n-

ideals are denoted by F,(S) and P,(S) respectively.

In this thesis, we devote ourselves in studing several properties of a
distributive nearlattice S. Repllacing n by 0, P,(S) becomes the set of all
principal ideals of S which is isomorphic to S itself. Thus all the results on
P.(S) are generalizations of the corresponding results of S. In this thesis our

results generalize many results on semi-Boolean, generalized Stone, normal,



relatively normal, m-normal and relatively m-normal nearlattices. We have

also generalized some results on annulets and « -ideals in terms of n-ideals.

In chapter 1, we discuss some fundamental properties of n-ideals
which are basic to this thesis. Here we give an explicit description of F,(S)
and P,(S) which are essential for the development of the thesis. Fy(S) is not a
lattice for a general nearlattice S. It is merely a join semilattice. But if S is
distributive and n is medial, then F,(S) is a lattice. For a neutral element neS,
if n is medial, then P,(S) is a meet semilattice. Moreover if n is sesquimedial,

then P,(S) is a nearlattice. What is more, for a central element neS, P, (S) =

(]! x [n). Thus when n is a central element, then Py(S) is sectionally
complemented if and only if the intervals [a, n] and [n, b] are complemented
for each a, beS. In this chapter we also discuss on prime n-ideals. We
include a proof of the generalization of Stone’s separation theorem. We also
include a result that for a central element n of S, P,(S) is semi-Boolean if and

only if the set of prime n-ideals P(S) of S is unordered by set inclusion.

Chapter 2 discusses on minimal prime n-ideals of a nearlattice and on
normal nearlattices. A distributive nearlattice S with 0 is called normal if its
every prime ideal contains a unique minimal prime ideal. We give some
characterizations on minimal prime n-ideals which are essential for the
further development of this chapter. We prove that if n is a central element of
S, then P,(S) is normal if and only if for any two minimal prime n-ideals P
and Q of S, P v Q =S, which is equivalent to the condition that for all

. . * ®
X, YES, <x >, n<y >, = {n} implies <x>;, v<y>;, =8.



In chapter 3, we introduce the notion of relative n-annihilators

< a, b >". We have included several characterizations of < a, b >". We have
also given some characterizations of distributive and modular nearlattices in
terms of relative n-annihilators. We have characterized those P,(S) which are
relatively normal, which are generalizations of several results of [56] on
relatively normal nearlattices. Among many results we have shown that for a
central element n, Py(S) is relatively normal if and only if any two in-
comparable prime n-ideals of S are co-maximul. What is more, this is also
equivalent to the condition, < <a>p, <b>,> v < <b>,, <a>,> =S for all

a, beS.

Pseudo-complemented distributive lattices satisfying Lee’s identities
form equational subclasses denoted by B, , -1< m<w. Cornish and
Mandelker have studied distributive lattices analogues to Bi-lattices and
relatively B,-lattices. Cornish, Beazer and Davey have each independently
obtained several characterizations of (sectionally) B,,-lattices and relatively
B,-lattices. Recently [56] has extended these concepts and studied the
n-normal and relatively n-normal near lattices. In chapter 4, we generalize
the results of [56] by studying principal n-ideals which form a (sectionally)
m-normal and a relatively m-normal nearlattice. We show that for a central
element n, P,(S) is (sectionally) m-normal if and only if for any X¢,X1,--,Xm €
S with m(x;, n, X;) = n (i=j) which is also equivalent to the condition that for
any m+1 distinct minimal prime n-ideals Pg,---,Py, of S, Py v ----- v Pr=S. In
this chapter, we also show that P,(S) is relatively m-normal if and only if any

m+1 pairwise incomparable prime n-ideals are co-maximal.

In chapter 5, we introduce the concepts of n-annulets and « -n-ideals
in S. Then we generalize several results on annulets and e -ideals given in

[12] and [52]. We have shown that the set of n-annulets of S, A4(S) is a join

iii



semilattice of I,(S) if and only if P(S) is normal. We have also shown that
A,(S) is relatively complemented if and only if P,(S) is sectionally

quasicomplemented. Finally, we have given a characterization for P(S) to be

generalized Stone in terms of An(S).

In section 2, we have shown that the n-ideal n(P) where P is a prime
n-ideal is an « -n-ideal. Moreover, all the minimal prime n-ideals are
« -n-ideals. We have shown that P,(S) is disjunctive if and only if each
n-ideal is an & -n-ideal. Also, Py(S) is sectionally quasicomplemented if and
only if each prime «-n-ideal is a minimal prime n-ideal. We conclude the

thesis by proving that P(S) is generalized Stone if and only if each prime

n-ideal contains a unique prime « -n-ideal.

iv
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CHAPTER 1

NEARLATTICES AND NORMAL NEARLATTICES

1.1 Preliminaries

In this section it is intended only to outline and fix the notation for some
of the concepts of nearlattices which are basic to this thesis. We also formulate
some results on arbitrary nearlattices for later use. For the background material
in lattice theory we refer the reader to the text of G. Birkhoff [9], G. Grétzer
[21], D. E. Rutherford [58], V. K. Khanna [32] and G. Szész [64].

By a nearlattice S we will mean a (lower) semi-lattice which has the
property that any two elements possessing a common upper bound, have a
supremum. Cornish and Hickman, in their paper [14], referred this property as
the upper bound property, and a semi-lattice of this nature as a semi-lattice with
the upper bound property. These types of semi-lattices have been studied
extensively by [14], [15], [16], [28], [30], [42] and [43]. They have noticed that
the behaviour of such a semi-lattice is closer to that of a lattice than an ordinary
semi-lattice. So they preferred to use the term ' nearlattice ' in place of semi-

lattice with the upper bound property.

Of course, a nearlattice with a largest element is a lattice. Since any
semi-lattice satisfying the descending chain condition has the upper bound

property, all finite semi-lattices are nearlattices.

Now we give an example of a meet semi-lattice which is not a
nearlattice.



Example. In %? consider the set

S ={(0, 0)} v {(1, 0)} v {(0, D} w {(1, y): y > 1} shown by

the figure 1.1

T oy

+ .
(0,0) (1,0)

Figure 1.1

Define the partial ordering < on S by (x, ¥) < (%}, y1) if and only if
x £ x; and y < y;. Observe that (S;<) is a meet semi-lattice. Both (1, 0) and
(0, 1) have common upper bounds. In fact {(1, y): y > 1} are common upper
bounds of them. But the supremum of (1, 0) and (0, 1) does not exist. Therefore

(S; <) is not a nearlattice.

The upper bound property appears in G. Griitzer and Lakser [24], while
Rozen [57] shows that it is the result of placing certain associativity conditions
on the partial join operation. Moreover, Evans in a more recent paper [18]
referred nearlattices as conditional lattices. By a conditional lattice he means a

(lower) semi-lattice S with the condition that foreachx € S, {y e S:y<x} isa



lattice and it is very easy to check that this condition is equivalent to the upper

bound property of S.

Whenever a nearlattice has a least element we will denote it by 0. If x,
Xy,...,Xn are elements of a nearlattice then by x;v X3 v ... Vv x;, we mean that
the supremum of Xj, Xa,...,%n €Xists and XV X3 V... V Xq is the symbol

denoting this supremum.

A non-empty subset K of a nearlattice S is called a subnearlattice of
S ifforany ab € K,both aAnb and avb (whenever it exists in S) belong
to K (A and v are taken in S) and the A and v are the restrictions of the A
and v of S to K. Moreover, a subnearlattice K of a nearlattice S is called a

sub-lattice of S if a v beK for all a, beK.

A nearlattice S is called modular if for any a, b, ceS with ¢ < a,

an(bvc)=(aab)vc whenever bvc exists.

By [51], a nearlattice S is modular if and only if for all t, x,y,2z € S

with z<Xx, X A(tAY) V(EAZ)=EAtAY)V(EAZ).

A nearlattice S is called distributive if for any X, Xi, X2, Xny X A (X1 V
X2 Vo VX)) = (XA X)) V(X A X)) V. V (X A X,) Whenever X; V Xa V... V Xp

exists.

Notice that the right hand expression always exists by the upper bound
property of S. By [51], a nearlattice S is distributive if and only if for all t, x,
y, 2€S, tA(XAY)VEAZ)=CAXAY)V(EAXAZ).

3



Lemma 1.1.1. A nearlattice S is distributive (modular) if and only (x] =

{y € S:y <x} is a distributive (modular) lattice for each x € S. g

Consider the following lattices:

€ ¢
b
Cc a Cc
a
N5 M 5
d
d
Figure 1.2 Figure 1.3

Cornish and Hickman in [14] has given the following extension of a very

fundamental result of lattice theory.

Theorem 1.1.2. A nearlattice S is distributive if and only if' S does not contain

a sub-lattice isomorphic to N5 or Ms. g

Following result is also an extension of a fundamental of lattice

theory, which is due to [14].

Theorem 1.1.3. A nearlattice S is modular if and only if S does not contain a
sub-lattice isomorphic to Ns. g
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In this context it should be mentioned many lattice theorists e.g. R.
Balbes [5], J. C. Varlet [66], R. C. Hickman [27], [28] and K. P. Shum [62]
have worked with a class of semi-lattices S which has the property that for
each X, aj, 8,....a,€S if a;va,v..va existsthen(XAna))v(xAa)v.yVv
(x A a;) exists and equals X A (a; v a3 V... Vv &). [5] called them as prime semi-

lattices while [27] referred them as weakly distributive semi-lattices.

Hickman in [28] has defined a ternary operation j by j(X, ¥, Z) = (X Ay) Vv

(y A z), on a nearlattice S (which exists by the upper bound property of S). In
fact he has shown that (also see Lyndon [38], Theorem 4), the resulting
algebras of the type (S; j) form a variety, which is referred to as the variety of
join algebras and following are its defining identities.

(D) jx, x,x)=x.

(iD) J% ¥, 0 = (¥, %, ¥).

(i) jO&x, y, x), 2, j(x, ¥, X)) =j(%, (¥, 2, ), %)-

(iv) j(x, ¥, 2) =j(z ¥, %).

) 3G 5 20§50 ¥, %), i (%, ¥, 2) =j(%, ¥, %).

vi) j(G(x, ¥, %), ¥, 2) = j(%, ¥, 2)-

(Vi) j(x, ¥, j(%, 2, X)) = j(%, ¥, X)-

(viil) jGx, ¥, jO, ¥, D)%, ¥, 2), (%, ¥, J(% ¥, 2)) = (%, ¥, 2).

We call a nearlattice S a medial nearlattice if for all x, y, z€S,

m(X,y,z)=(XAy)V(YAZ)V(ZAX) exists.

For a (lower) semi-lattice S, if m(x, y, z) exists for all x,y, z
e S,then it is not hard to see that S has upper bound property and hence is a

nearlattice. Distributive medial nearlattices were first studied by Sholander in
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[60] and [61], and recently by Evans in [18]. Sholander preferred to call these
as median semi-lattices. There he showed that every medial nearlattice S can be
characterized by means of an algebra (S; m) of type < 3 >, known as median
algebra, satisfying the following two identities:

(i) m(a, a, b)=a;

(ii)) m(m(a, b, ¢), m(a, b, d), €) = m(m(c, d, ), a, b).

A nearlattice S is said to have the three property if for any a, b, ceS,

a v b v cexists whenever av b, bvcandcv a exists.

Nearlattices with the three property were discussed by Evan's in [18],

where he referred it as strong conditional lattice.

Following result shows that the Evan's strong conditional lattices are

precisely the medial nearlattices.

The equivalence of (i) and (iii) of the following lemma is trivial, while

the proof of (i)<>(ii) is inductive.

Lemma 1.1.4. (Evan’s [18]). For a nearlattice S the following conditions are

equivalent.
(1) S has the three property.
(i) Every pair of a finite number n (= 3) of elements of S
possess a supremum ensures the existence of the supremum of

all the n elements.

(iii) S is medial. g
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A family 7 of subsets of a set A is called a closure system on A
if (i) AeA4 and

(ii) A is closed under arbitrary intersection.

Suppose @ is a subfamily of 4. B is called a directed system if for any
X, Ye® thereexists Z in ® suchthat X, Y c Z.

If U{X: XeB}e A for every directed system @ contained in the closure
system 4, then 4 is called algebraic. When ordered by set inclusion, an closure

system forms an algebraic lattice.

A non-empty subset H of a nearlattice S is called hereditary if for any
xeS and yeH, x <y implies xeH. The set H(S) of all hereditary subsets of S
is a complete distributive lattice when partially ordered by set inclusion, where
the meet and join in H(S) are given by set theoretic intersection and union

respectively.
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1.2 Ideals of Nearlattices

A non-empty subset I of a nearlattice S is called an ideal if it is

hereditary and closed under existent finite suprema.

We denote the set of all ideals S by I(S). If S has a smallest element 0
then I(S) is an algebraic closure system on S, and is consequently an algebraic
Jattice. However, if S does not possess smallest element then we can only assert
that I(S) W{¢} is an algebraic closure system. For any subset K of a nearlattice

S, (K] denotes the ideal generated by K.

Infimum of two ideals of a nearlattice is their set theoretic intersection.
In a general nearlattice the formula for the supremum of two ideals is not very
casy. We start this section with the following lemma which gives the formula
for the supremum of two ideals. It is in fact exercise 22 of Gritzer [20, P-54]

for partial lattices.

Lemma 1.2.1. Let I and J be ideals of a nearlattice S. Let Ao =1 J,

A= {xeS:x<yvz yvz existsand y, zeA,}, for n=12......... , and

K=|) An ThenK=1v]J. g

n=0

This will be needed for further development of the thesis.

Lemma 1.2.2. Let K be a non-empty subset of a nearlattice S. Then (K] =

0 A, where A= {teS:t= (ki At) v (ky At) for some ki, koeK} and

m=0

An={teS:t=(aat) v (ap At) for some a;, & € Ana}. o

8
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Cornish and Hickman in [14, Theorem 1.1] has given the following

result for distributive nearlattices.

Theorem 1.2.3. The following conditions on a nearlattice S are equivalent.
(i) S is distributive.
(ii) For any H € H(S), (H] = {h;v hy v... v hy: hy,...,h,eH}.
(iii) For any I, JeI(S), I v I = {a;v apv... v ay: a;, a,...,a,€l U J}.
(iv) I(S) is a distributive lattice.
(v) The map H — (H] is a lattice homomorphism of H(S)

onto I(S) (which preserves arbitrary suprema). q

Let I{S) from hence forth denote the set of all finitely generated ideals of
a nearlattice S. Of course, I{S) is an upper subsemilattice of I(S). Also for any

X1, X250, XmES, (X15-.., Xm] 18 clearly the supremum of (x;] v (%2] V... V (Xm]-

When S is distributive,
KiyersXond O Gsers¥d = (1] Veror V Gaal) O (1] Voo V G = Vi (%A ]] for
any Xi,..., Xms Yis--s¥a€S (by Theorem 1.2.3.) and so IS) is a distributive sub-
lattice of I(S), c.f. Cornish and Hickman [14].

A nearlattice S is said to be finitely smooth if the intersection of two
finitely generated ideals is itself finitely generated.
For example, (i) distributive nearlattices,
(ii) finite nearlattices,
(iii) lattices, are finitely smooth.

Hickman in [28] exhibited a nearlattice which is not finitely smooth.
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By Theorem 1.2.3, a nearlattice S is distributive if and only if I(S) is
distributive. But for modular nearlattices, we do not get the similar result. [56]
has proved that for a nearlattice S, if I(S) is modular then S is also modular.

[56] has also provided the example to show that its converse may not be true.

Figure 1.4

Notice that in S, (r] is modular for each reS. But in I(S), {(0], (a], (a, d],
(b, c], S} is a pentagonal sub-lattice.

A filter F of a nearlattice S is a non-empty subset of S such that if f;,

f,eF and xe8 with f; < x, then both f; A f, and x are in F.

A filter G is called a prime filter if G # S and at least one of xj, Xa,...., Xy

is in G whenever X; Vv X3 V... V X, exists and in G.

An ideal P in a nearlattice S is called a prime ideal if P# S andx Ay €

P implies xeP or yeP.

It is not hard to see that a filter F of a nearlattice S is prime if and only if

S-F is a prime ideal.

10
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The set of filters of a lattice is an upper semi-lattice; yet it is not a lattice
in general, as there is no guarantee that the intersection of two filters is non-
empty. The join F; v F; of two filters is given by Fi vF, = {s e S:s>fi A f;
for some f,€F,, f,€F,}. The smallest filter containing a subset H is denoted by

[H). Moreover, the description of the join of filters shows that for all a, be §,
[a) v [b) =[a A D).

A subnearlattice K of a nearlattice S is called a convex subnearlattice if
a<c<b with a, beK, ceS implies ceK.
Now, we study some properties of convex subnearlattices of a

nearlattice.

Theorem 1.2.4. In a nearlattice S, suppose K is a convex subnearlattice. Then

[K)={xeS:x 2k for some keK}. g

In a lattice L, it is well known that for a convex sub-lattice C of L,C =
(C] m [C). Following figure 1.5 shows that for a convex subnearlattice C ina

general nearlattice, this may not be true.

a b

S

Figure 1.5 e
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Chapter 1

Here C = {a, b, ¢} is a convex subnearlattice of S.Observe that (C] =

{a, b, ¢, x}, hence (C] n [C) = [C) # C. But this result holds when the

nearlattice S is distributive.

To prove this we need the following lemma.

Lemma 1.2.5. Suppose C is a convex sub-nearlattice of a distributive

nearlattice S. Then
(C]={xeS:x=(x A C)) V(XA C) V... V (X A ) for some ¢y, cy,..., c,€C}.

Proof. Let x, y € R.H.S. such that x v y exists. Thenx =X A p1)) V(X A
P2) V. VEAPm and y =(y A q1) V (¥ A @) V... V(Y A q,) for some p,
P2,-+-5Pm> q15 92---sqn € C.
Thus X vy=EAPp)VEAP) V. VEADPm) VI AQ) V(YA Q) V...
V(Y A dn)

SEVIAPD Ve VIEVY)AP) VX VY) AqD)

V. V(X VY)A Q)

<x vy implies

XVYy=(EVY)AP) V.. V(X VY)ApPm) V(K VY)AQ)

Vi V(X VY)A Q)
Therefore x v yeR.H.S.

If xeR.H.S. and teS with t<x then
X=XAP1)V(XAP2) V... V(X A Pn) for some py, pa,...,.pmeC.

Thus t=tAXx

=tA[XAP)VEADP) V... V(XADPmI

12
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={tAap) Vv (EtAp) V.. V(AP as S is distributive, which
implies teR.H.S, and so R.H.S. is an ideal. For any ceC, ¢ =c A ¢ implies
¢ € R.H.S. Hence R.H.S. is an ideal containing C.
Finally, suppose that I is any ideal containing C. Then for any xeR.H.S.
implies X = (X A p1) V (X A P2) V... V (X A pn) for some py, ps....pmeC.
Then (X A p1), (X A P2),...,(X A pm)€l and hence
xel. Therefore, R.H.S. = (C]. g

Thus we have the following result.

Theorem 1.2.6. For a convex sub-nearlattice C of a distributive nearlattice
S, (C]n[C)=C.

Proof. Obviously, C < (C] n [C).

For the reverse inclusion let xe(C] n [C).

Then x€[C) implies x = ¢ for some ceC. By above lemma, xe(C] implies x =
xAac)V(EAC V.. V(X AcC,) for some ¢y, Cy,...,cu€C. Then cAC;<XAC <
¢; and so by convexity of C, x A ¢;eC foreachi=1, 2, 3,....,n. Hence xe C.

Therefore, (C]N[C)=C. g

In case of a convex sub-lattice C of a lattice it is well known that xe(C]
implies x < ¢ for some ceC. Again, xe[C) implies x > c,for some ¢c;eC and
so by convexity of C, C = (C] n [C). But in a general nearlattice xe(C] does

not necessarily imply that x <c¢ for some ceC.

13
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Following figure 1.6 shows that this is not true even in a distributive

nearlattice, although C = (C] n [C) holds there by Theorem 1.2.6.

S

Figure 1.6

Here clearly S is distributive. Let C = {a, b, ¢}. Here (C] = S. Thus x €
(C] but x is not less than equal to ¢ for any ceC. Because of this fact it is very

difficult to study the convex sub-nearlattices of a nearlattice. But it becomes

much easier incase of a medial nearlattice.

Recall that a nearlattice S is medial if for all x,y, zeS, m(x,y,z)=

xXAY)Vv(yAzZ)V(zAX)existsin S.

The following result is due to [43]. But we prefer to include it proof for

the convenience of the reader.

Theorem 1.2.7. If C is a convex sub-nearlattice in a medial nearlattice S

then xe(C] implies x < ¢ for some ceC. Hence C = (C] N [C).

Proof. By Lemma 1.2.2, (C] = O A, where A, are defined as in the lemma.

m=0

If xeA, then x = (x A ¢1) V (X A ;) for some ¢, c,€C. Observe that ¢;A ¢, <

14
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(x Acr) V(1 A ) <cimplies (x A ¢;) V (¢ A ¢;)€EC, by convexity.

Similarly, (x A ¢2) V (1 A ©2)€C. Thus m(cy,X, ¢2) = (X A¢) V(XA CY) V

(ci1 Acy)eCand sox <cwherec= (X Acy) V(X AC)V(c A cy). Now we use
the method of induction. Suppose x€ A,,.; implies x < ¢ for some ceC. Let
Y€An, theny = (y A a1) V (¥ A ap) for some a;, a,€A 1. Now a;, ay€A,,; implies
a; < p and a < q for some p, q€C. Thus, y<(y Ap) V(Y AQ) <y, and soy =

(y Ap) V (¥ Aq). This implies y€A,, and so y < ¢ for some ceC. This completes
the proof. p

From the above theorem we have the following corollary.

Corollary 1.2.8. For a convex sub-nearlattice C of a medial nearlattice S,
(Cl= A for eachm =0, 1, 2,.... where A, are defined as in Lemma 1.2.2. In

other words,

(C]={teS:t=(t Ac)) Vv (t A ) for some ¢, c,€C}.

15



Chapter 1

1.3 n-Ideals of Nearlattices

The n-ideals of a lattice have been studied extensively by [4], [35], [36],
[46], [47] and [48] in different contexts. The idea of n-ideals was introduced by
Cornish and Noor in [16]. The n-ideals have also been used in [43] and [44].

For a fixed element n of a lattice L, a convex sub-lattice containing n is
called an n-ideal. If L has ‘0’, then replacing n by ‘0’ an n-ideal becomes an
ideal. Similarly, if L has ‘1°, an n-ideal becomes a filter by replacing n by ‘1°.
Thus the idea of n-ideals is a kind of generalization of both ideals and filters of
lattice. So any result involving n-ideals of a lattice L will give a generalization

work of the results on ideals and filters of L.

For a fixed element n of a nearlattice S, a convex sub-nearlattice of S

containing n is called an n-ideal of S.

The set of all n-ideals of a lattice L is denoted by I, (L), which is an
algebraic lattice under set inclusion. Moreover, {n} and L are respectively the
smallest and largest elements of I,(L). For two n-ieals I and J of a lattice L,

Iv]={xeL: iinji £x <i; Vv j, for some i, el and j;, j,€ J}

But for nearlattices it is not so easy to define the supremum of two n-
ideals. For two n-ideals I and J of a nearlattice S, [30] has given a neat
description of I v J, while the set theoretic intersection is the infimum. Hence
the set of all n-ideals of a nearlattice S is a lattice which is denoted by I.(S).

IvI={x:inj<x =V (x A a) for some positive integer p where i, jel U J}.

16
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An n-ideal generated by a finite number of elements ay, as,...,a, is called
a finitely generated n-ideal, denoted by < a,, ay,...,a, >,. The set of finitely

generated n-ideals is denoted by F(S).

Clearly, < aj, az,...,an > =<a;>v<a,>v..v<a,>

An n-ideal generated by a single element a is called a principal n-ideal,

denoted by < a >,. The set of principal n-ideals is denoted by P,(S).

Standard and neutral elements (ideals) in lattices have been studied by
several authors including [21], [22] and [25]. Then [15] has studied them very
extensively in nearlattices. By [15] an element s of a nearlattice S is called
standard if for all t, x, yeS,

tA[EAY)VEAS)]=EAXAY)V(EAXAS).
The element s is called neutral if
(1) sis standard and
(ii) forallx,y,zeS,sA[(XAY)V (X AZ)]
=(SAXAY)V(EAXAZ).

In a distributive nearlattice every element is neutral and hence standard.

Following result is due to [30] which gives a description of finitely

generated n-ideals of a nearlattice.
Proposition 1.3.1. Let S be a nearlattice and neS. For a,, a,,..., a,€S,
() <apay.,an>c{ye S:(a]N...Nn(an] N (n] <
(] v..v (am] v (n]};
(i) <ap, ages An>n={yeS: aj A A2 ANSY=(Y A Q) V... V

(y A am) v (Y An)}, provided S is distributive;

17



Chapter 1

(iif) Foranyae S,<a>;={yeS:ann<y=(yAa)Vv(yan)}
={yeS:y=(yaa)v(y An)v (aAn)}, whenever n is

standard in S;

(iv) When S is a lattice, each finitely generated n-ideal is
two generated. In dead, < a,, 2,...,.an >y =< a1 A2y Ave. A 8
AN, QAVaVv.Vv a,vn>,

(V) When S is a lattice, F(S) is a lattice and its members
are simply the intervals [a, b] such that a<n<b, and
Jor each interval, [a, b] v [a;, bj]=[a A a;, b v b]

and [a, b] M [a], b]] = [a vV ai, b A bl]

An element n in a nearlattice S is called a medial element if
m(x, n, y) = (X Ay) vV (X An) v (y A n) exists for all x, yeS. Of course, in a

medial nearlattice every element is medial.

An element n in a nearlattice S is called sesquimedial if for all x, y, ze
S, ((EAan)vyAn]A[yan)v(EzAn])v(EAY) Vv (YAz) existsin S. It is
very easy to see that every sesquimedial element is medial and in a medial
nearlattice every element is sesquimedial. For detailed literature on these

elements see [16] and [43].

An element n of a nearlattice S is called an upper element if x v n exists

for all xeS. Every upper element is of course a sesquimedial element.

An element n is called a central element of S if it is neutral, upper
complemented in each interval containing it. Cornish and Noor have given a

nice description of central elements of nearlattices in [15].

18
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Following result is due to [30].

Lemma 1.3.2. Let 1 and J be n-ideals of a nearlattice S. Suppose A, =

[v], Am={XeS:1Aj<x<iV], where ij Vv j exists and i, iy, j, j1€Am

for m=1,2,..... Then IvJ=OA,,,. O

m=0

Theorem 1.3.3. If n is a medial element of a nearlattice S, then for n-ideals

Land J of S, INnT={m(, n, j): iel, jel}.

Following results are due to [30].

Theorem 1.3.4. If'n is a standard and medial element of a nearlattice S, then
Pn(S) is a meet semi-lattice. In fact, for all a, beS, <a> N<b>, =

<m(a, n, b) >,.

Moreover, when n is neutral and sesquimedial, then P(S) is also a

nearlattice.

Corollary 1.3.5. If'n is neutral and sesquimedial in a nearlattice S, then any

Jfinitely generated n-ideal which is contained in a principal n-ideal is principal.

It should be noted that the set of finitely generated n-ideals Fy(S) is
merely a join semi-lattice for general nearlattices. We have stated in section 2
of this chapter that the intersection of two finitely generated ideals of a

nearlattice is not necessarily finitely generated. Similarly, the intersection of
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two finitely generated n-ideals is not necessarily finitely generated. Thus F,(S)
is not a lattice for a general nearlattice S. But if S is distributive and n is medial
then

Fo(S) is a lattice. In fact, we have the following result due to [30].

Theorem 1.3.6. Let S be a nearlattice with a neutral and medial element n.
Then the following conditions are equivalent.

(1) S is distributive.

(i1) I.(S) is a distributive lattice.

(iii) Fy(S) is a distributive lattice.

The following result which will be needed in proving several results of

this thesis.

Theorem 1.3.7. Let S be a distributive nearlattice with an upper element n
andlet 1,1 be two n-ideals of S. Then for any xel v, xvn=iv] and
xan=iAj forsome i,{ el,jj el with ijzn and {,j <n.

Proof. Let xel v J. Then xe(I U J]. Then by Lemma 1.2.5, x = (X A ¢{) V.... v
(x A ¢ for some ¢, Cp,...,c;el U LThus x vn=(X A c)) V... V (X A C) V I
Without loss of generality, suppose ¢l for some k=1, 2,...., I.

Thenx vn=[xvn)A (¢ vn)]vn.

Now n< (xvn)A(cxvn)<c vn implies (x v n) A (¢ v n)el by
convexity, and nel. Hence (¢ v n)] v n=i, v j, for some icel, jxel, ix > n,
Jk=n for each k. Therefore, x vn=1ivj for some i€l,jel,i=n j>n A
dual proof of above shows that x An=1i A j for some i €I, j'e] with ¥, <

n.pg
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1.4 Prime n-Ideals of a Nearlattice

For a medial element n, an n-ideal P of a nearlattice S is called a prime

n-ideal if P # S and m(x, n, y)eP (x, yeS) implies either xeP or yeP. The set
of all prime n-ideals of S is denoted by P(S).

Following result gives a clear idea about prime n-ideals.

Theorem 1.4.1. If n is a medial element and P is a prime n-ideal of a
nearlattice S. Then P contains either (n] or [n), but not both.

Proof. Suppose P is a prime n-ideal and (n] & P. Then there exists r < n such
that r¢P. Now let se[n). Thenm(r, n,s)=(tAn)v(nAs)v (I As)=
rvnvr=neP. That is, m(r, n, s)eP. Since P is prime, this implies s €P and
so [n) ¢ P. Similarly, if [n) & P, then we can show that (n]  P. Finally if P
contains both (n] and [n) then by convexity of P,

P =S which is impossible. g

Moreover we have,

Theorem 1.4.2. Let n be a medial element of a nearlattice S. Then every prime
n-ideal P of S is either an ideal or a filter. If it is an ideal, then it is also a
prime ideal. If it is a filter, then it is a prime filter.

Proof. By Theorem 1.4.1, P contains either (n] or [n). Suppose (n] < P. Since
any convex sub-nearlattice containing an ideal is clearly an ideal, so P is an
ideal. Now let a A beP (a, beS). Then a A b A neP. Then by convexity of P,

anban<(aan)v(ban)<n implies that (a An) v (b An)eP.
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Hence m(a, n, b)=(a A b) v (a An) v (b A n)eP. Since P is a prime n-ideal, so
either acP or beP. Therefore, P is a prime ideal.
Now suppose [n) < P. Let xeP and t > x. Since (n] & P, so there exists
y <n suchthat y ¢ P. Then x AnePandx An<(tAn)vy<n implies that
(t An) vyeP by convexity.
Now, m(t, n,y)=(tAan)vnAay)v({yat)

=(tAnvyv(yat)

=(tAn)vyeP.
Since P is prime, so teP. Therefore, P is a filter.
Now, let a v b exists and a v beP (a, beS).
Sona(avb)=(aAn)v(ban)eP.But(aann)v(ban)=m(aan,n,ban).
Thus, either a A neP or b A neP as P is a prime n-ideal. Since P is a filter, a
A neP implies a €P and b A neP implies beP. Therefore, P is a prime

filter. g

Following results are trivial.

Lemma 1.4.3. For a medial element n, any prime ideal P containing n of a

nearlattice S is a prime n-ideal. g

Lemma 1.4.4. Let n be a neutral and medial element of a nearlattice S. Then

any prime filter Q containing n is a prime n-ideal.

Proposition 1.4.5. In a distributive nearlattice S, if 1 is an n-ideal and D is
a convex sub-nearlattice with 1 "D = ¢, then either (I] "D =¢ or

[DND=4¢.
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Proof. Suppose (I] N D # ¢. Let xe(I] n D. This implies xeD and
X =X A1) V. V(X A 1y). Again let ye[I) n D. This implies yeDandy >i
for some iel.
SYAXTYA[EALD) VLV (XA L]

=XAYA D V.. VXAY AL

S(yAi) V.. v(yaiy

<y
This implies (y Aip) V... v (y Adn)eD. Nowia i <y Ai; <ip. Since iy, i A i
€l. Then by convexity y A ijel. Similarly, y A i, Y A i3, ¥ A i€l This
implies (y A i1) V... v (¥ A iy)€l. This implies I " D # ¢ which contradicts the
fact that I » D = ¢. Hence (I] n D = ¢. Dually we can show that if I~ D = b,
then [I) D = ¢. Therefore, if I n D = ¢, then either
IJNnD=¢ or[I)nD=1¢. g

In lattice theory, Stone's separation theorem is a well known result.

Following result is an extension of that theorem for nearlattices which is due to
[14].

Theorem 1.4.6. Let 1 be an ideal and D be a convex sub-nearlattice of a
distributive nearlattice S with 1D = ¢. Then there exists a prime ideal

P lsuchthatP "D =¢.

Now we generalize above result for n-ideals.
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Theorem 1.4.7. Let S be a distributive nearlattice and n be a medial element
of S. Let 1 be an n-ideal and D be a convex subnearlattice with 1 N D = 0
Then there exists a prime n-ideal P of S suchthat P>1 and PAD = b.
Proof. SinceIND = ¢, so by Proposition 1.4.5, either IINnD=¢ or

[[) "D =¢.If (I) " D = ¢, then there exists a prime ideal P o (I] such that

P N D = ¢. Since neP, so by Lemma 1.4.3, P is a prime n-ideal.

On the other hand if [T) ~ D = ¢, Then by dually there exists a prime filter
Q[ suchthat Q "D = ¢. Since neQ, so by Lemma 1.4.4, Q is a prime n-

ideal. This completes the proof. g

Following Corollary trivially follows from above results.

Corollary 1.4.8. Let 1 be an n-ideal of a distributive nearlattice S with n as
a medial element and ac$S such that agl. Then there exists a prime n-ideal P

of S suchthat P o1 and agP. 0

Thus we have the following extension of a well known result in terms of

n-ideals. We omit the proof as it is very trivial.

Corollary 1.4.9. Letn be a medial element of a distributive nearlattice S. Then

every n-ideal 1 of S is the intersection of all prime n-ideals containing it. g
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1.5 Semi-Boolean algebras and Principal n-Ideals

An interesting class of distributive nearlattice is provided by those semi-
lattices in which each principal ideal is a Boolean algebra. These semi-lattices
have been studied by Abbott [11, [2], [3] under the name of semi-Boolean
algebras and mainly from the view of Abbott's implication algebras. An
implication algebra is a groupoid (I; .) satisfying:

(i) (ab)a=a.
(i) (ab)b=(b a) a.
(iii) a(bc)=b (ac).

Abbott shows in [1, P-227-23 6] that each implication algebra determines
a semi-Boolean algebra and conversely each semi-Boolean algebra determines

an implication algebra.

Recall that according to [14], a semi-lattice S is a semi-Boolean algebra
if and only if the following conditions are satisfied.
(1) S has the upper bound property.
(i) S is distributive.
(iii) S has a 0 and for any xeS, (x]" = {yeS: yAx=0}

is an ideal and (x] v ] =8.

A nearlattice S is relatively complemented if each interval [X,y] in S is
complemented. That is, forx <t < y there exists a s in [x, y] such that t A s =
X and tvs=y. A nearlattice S with 0 is called sectionally complemented, if
the interval [0, x] is complemented for each xeS. Of course, every relatively

complemented nearlattice S with 0 is sectionally complemented. Thus a
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nearlattice S with 0 is semi-Boolean if and only if it distributive and sectionally

complemented.

In section 3 of this chapter, we have defined the principal n-ideal < a B
generated by aeS. Then set of principal n-ideals of a nearlattice S is denoted
Py(S). By Proposition 1.3.1, if n is a standard element of a nearlattice, then for

any aeS,<a>n={yeS:aAnSy=(yAa)v(y/\n)}.

By Theorem 1.3.4, we know that when n is standard and medial, then the
set of principal n-ideals Py(S) is a meet semi-lattice and
<a>;N<b> =<m(an, b) >, forall a, beS. Also by Corollary 1.3.5, when
n is neutral and sesquimedial, then PyS) is in fact a nearlattice.

Moreover,[50] has proved the following result.

Theorem 1.5.1. If S is a nearlattice and N Is a neutral element of S, then

Py(S) is also a nearlattice. 0

In section 3 of this chapter, we have defined the central element of a
nearlattice. The following theorem gives a characterization of a central element
of a nearlattice which is due to [50]. In fact, this plays the vital role in this
thesis, as it will be used in proving most of the important results for the rest of
the thesis. We prefer to include the proof of this theorem for the convenience of

the reader.

Theorem 1.5.2. For an element n of a nearlattice S, the Jollowing are
equivalent.

(1) nis central in 8.
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(i1) n is upper and the map @: Py(S) - (n]? x [n)

defined by ¢ (< a >)=(@An,avn) isan isomorphism,

where (n]® represents the dual of the lattice (n].
Proof. (i)=(ii). Suppose n is central in §. Then of course, n is upper by
definition. Now let <a>, c<b >n, then [aAan,av n] < [bAn, bvn]. Thus
bAn<aanandavn<bvn. This impliesa An< b A nandavn<bwvn
and so (a A n, avn)<(ban,bvn) in (n]x [n).
Thus ¢ (<a>) c o (<b>).
Again, let ¢ (<a>)c o (<b>,),then (aAn, avn)<(ban,bvn) in
(] x [n). Thus aAn<4bA n in (n]° and avn<bwvn in [n), this implies
baAn<aanand avn<bwvn in S, and
s0 [aan,avn]c [bAn,bvn] Hence < a >n € < b >,. Therefore, @ is an
order isomorphism if we can show that ¢ is onto.
Let (p, @)e(n]’ x [n). This implies p <n < q. Since n is central so there exists r
such that r A n=p, rvn = q. This implies (p, q) = (r A n, rvn)=e¢(<r>).
Thus ¢ is onto and so (ii) holds.
(i)=(i). Suppose (ii) holds, let a<n < b (g, beS). Then (a, b) € (n] x [n).
Since ¢: Py(S) — (n]? x [n) is an isomorphism, so there exists < ¢ >,ePy(S)
such that p(<c>)=(cAn,cv n) = (a, b).This implies that ¢ is the relative

complementof n in a<n<b, Therefore, n is central.

Following results are Casy consequences of the above theorem.

Corollary 1.5.3. Let S be a nearlattice and ne S be a central element. Then
Pu(S) is sectionally complemented if and only if the intervals [, n] and [n, b]

are complemented for each a, beS.
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We know by Theorem 1.3.6, that if n is medial in a distributive
nearlattice S, then I,(S) is also distributive and hence Pn(S) (if it is a nearlattice)

is also distributive.

Corollary 1.5.4. Ifnis a central element of a distributive nearlattice S, then
Pu(S) is semi-Boolean if and only if the intervals [a, n] and [n, b] are

complemented for each a, beS (a<n<b). 4

Following results are due to [56]. These will be needed for further

development of the thesis.

Lemma 1.5.5. If S, is a nearlattice of a distributive nearlattice S and P, is
a prime ideal (filter) in S, then there exists a prime ideal (filter) P in S such
that P] =Pn Sl. O

In lattice theory it is well known that [20, Theorem 22, P-76] a
distributive lattice L with 0 and 1 is Boolean if and only if its set of prime

ideals is unordered by set inclusion.

Following result is due to [53] which has generalized above result for a

distributive nearlattice with 0.

Theorem 1.5.6. If'S is a distributive nearlattice with 0, then S is semi-Boolean

if and only if its set of prime ideals (filters) is unordered by set inclusion. 4
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The next theorem gives a generalization of above theorem which is due
to [45].

Theorem 1.5.7. Let S be a distributive nearlattice and nesS be a central
element. Then the following conditions are equivalent.
(1) Pu(S) is semi-Boolean.

(i) The set of prime n-ideals P(S) of S is unordered by set

inclusion.
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CHAPTER 2

SOME GENERALIZATION WORK ON NORMAL

NEARLATTICES

Introduction.

Minimal prime ideals and Normal lattices have been studied by many
authors including [11], [10], [13] and [33]. On the other hand, [56], [49] and [54]
have given the concept of normal nearlattices and generalized many results of
[11] for nearlattices. In this chapter we devoted ourselves in further studies in this
area. We generalized several results of [56] and [49] in terms of n-ideals when n is

a central element,

Here we introduce the concept of minimal prime n-ideals and generalize
some of the results on minimal prime n-ideals. These results are used to generalize

several important results on normal nearlattices in terms of n-ideals.

A prime n-ideal P is said to be a minimal prime n-ideal belonging to
n-ideal I if
(1) IcPand
(ii) There exists no prime n-ideal Q such that Q # Pand I Q c P

A prime n-ideal P of a nearlattice S is called a minimal prime n-ideal if
there exists no prime n-ideal Q such that Q # P and Q c P. Thus a minimal prime
n-ideal is a minimal prime n-ideal belonging to {n}.
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A distributive nearlattice S with 0 is called a normal nearlattice if its every

prime ideal contains a unique minimal prime ideal.

Since the lattice of n-ideals I (S) of a distributive nearlattice S is a
distributive algebraic lattice, so I(S) is pseudo-complemented. If n is a medial

element, then for any n-ideals J of a distributive nearlattice S, we define
J" = {x € S: m(x, n, j) = n for all jeJ}. Obviously, J* is an n-ideal and
J nJ = {n}. We call I', the annihilator n-ideal of J which is the pseudo-

complement of J in I(S).

From chapter one we know that for a distributive medial nearlattice S with
an element n, P,(S) is a distributive medial nearlattice with the smallest element
{n}. Since P,(S) may not have a largest element, so we can not talk on pseudo-
complementation on P,(S). So for any < a >, € P,(S), < a >,  represents the
pseudo-complement of <a>;in I(S). Moreover, if
<a>, c<b>, then <a>," denotes the relative pseudo-complement of < a> in
[{n}, <b>,], which may not be a principal n-ideal. Moreover, for any

n-ideals {n} cJ <1, J* denotes the relative pseudo-complement of J in

[{n},1].

By [56] for a prime ideal P of a distributive nearlattice S with 0, O(P) is used
to denote the set {y € S: y A x =0 for some x € S-P}. It is easy to show that O(P)

18 an ideal contained in P.

Two prime n-ideals P and Q of a nearlattice S are called co-maximal if

PvQ=S.
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In section 1, we have studied minimal prime n-ideals of S. There we have
given some characterization of minimal prime n-ideals. These results give nice
generalizations of several results on minimal prime ideals which will be used to

prove some important results in section 2.

In section 2, we have given several characterizations of those P, (S) which
are normal medial nearlattices in terms of n-ideals. We have also discussed on
0(P) and n(P) and given some properties of n(P). Moreover, we have proved
that Py(S) is normal if and only if each prime n-ideal contains a unique minimal

prime n-ideal, when n is central.
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2.1 Minimal Prime n-Ideals.

Recall that a prime n-ideal P is a minimal prime n-ideal belonging to
n-ideal I if

(i) IcPand

(ii) There exists no prime n-ideal Q such that Q #Pand I < Q c P.

Thus a prime n-ideal P of S is a minimal prime n-ideal if there exists no
prime n-ideal Q such that Q # P and Q < P. In other words, minimal prime n-ideal

is a minimal prime n-ideal belonging to {n}.

Recall that an element n of a nearlattice S is medial if m(x, n, y) exists for
all x, yeS. Since for the definition of a prime n-ideal of S, the medial property of
n is essential, so in talking about prime n-ideals of S we will always assume n as a
medial element. We start this section with the following result which is a

generalization of a well known result in lattice theory.

Lemma 2.1.1. Let S be a nearlattice with a medial element n. Then every prime
n-ideal contains a minimal prime n-ideal.

Proof. Let P be a prime n-ideal of S and let % be the set of all prime n-ideals Q
contained in P. Then 7 is non-void, since p e .If C is a chain in y and

Q=N (X: Xe(), then Q is a non-empty because neQ and Q is an n-ideal, in fact,
Q is prime.

Indeed, if m(a, n,b)eQ for some a, beS, then m(a, n, b)eX for all XeC. Since
X is prime, either ac X or be X. Thus, either Q = (X: aeX) or
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Q =nN(X: beX), proving that acQ or beQ. Therefore, we can apply toy  the dual

form of Zorn’s lemma to conclude the existence of a minimal member of y . g

If S is a distributive nearlattice with neS, then we already know that F,(S)
is a distributive lattice with {n} as the smallest element. So we can talk on the
sectionally pseudo-complementedness of F,(S). F,(S) is called sectionally pseudo-
complemented if each interval [{n}, < ay,...,a, >,;] is pseudo-complemented. That
is for {n} € <by,...,.bs>, < <ay,...,a, >, relative pseudo-complement

<bp,...,.bs>y" in [{n}, <ay,...,a >n] belongs to Fy(S).

Now we give a characterization of minimal prime n-ideals of a distributive
nearlattice S, when F(S) is sectionally pseudo-complemented. To do this we

establish the following lemmas.

Lemma 2.1.2. Let S be a distributive nearlattice and neS be a medial element.

Then for any 1,T7el,(S), AN1) NI=T" N1
Proof. SinceInJcJ.soRH.S.cL.H.S.
To prove the reverse inclusion, let xeL.H.S. Then xe I and m(x, n, t) = n for all

tel n J. Since x€l, so m(x, n, j)el N J. Thus, _rn(x, n, m(x, n, j)) = n. But it can be

easily seen that m(x, n, m(x, n, j)) = m(x, n, j). This implies m(x, n, j) =n for all

j € J. Hence xeR.H.S, andso LH.S.c RH.S. Thus(In)) ' nI=I" N1 g
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Lemma 2.1.3. Suppose n is a medial element of a nearlattice S.If 1c ],
I, J€l(S), then
(@) I'=I"nJand
() I =1"N17.
Proof. (i) is trivial. For (ii), using (i), we have,

" =1)" nI=0 NJ)" "7 Thus by Lemma2.1.2, 7 =1" N1T. g

A characterization of minimal prime ideals in lattices is given in [20,
Theorem 1.3]. [31] has generalized the result for nearlattices. Recently [46] has
provided a characterization of the minimal prime n-ideals in lattices. Here we

generalize the result for nearlattices.

Theorem 2.1.4. Let n be a sesquimedial element of a distributive nearlattice S.
Suppose Fy(S) is a sectionally pseudo-complemented distributive nearlattice and

P is a prime n-ideal of S. Then the following conditions are equivalent.
(i) P is minimal.
(i) xeP implies <x >, & P.
(iii) xeP implies <x Mg

(iv) PND(<t>)=¢ forallteS—P, where D(<t>;) = {xe<t

> <X >n+= {l’l}}
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Proof. (i)=(ii). Suppose P is minimal. If (ii) fails, then there exists xeP such that
<x>," = P. Since P is a prime n-ideal, so by Theorem 2.1.2, P is a prime ideal or

a prime filter. Suppose P is a prime ideal. Let D = (S — P) v [x). We claim that
ngD. Ifn € D, then n =q A x for some qeS — P. Then
<g>N<x>3=<(QAx)v(qAan)vEan)>={n} implies
<q>,c<x>, cP. Thus qeP, which is a contradiction. Hence ngD.

Then by Theorem 1.4.7, there exists a prime n-ideal Q with Q "D =¢ . Then

QcP as QNn(S-P)=¢ and Q = P, since x ¢ Q. But this contradicts the

minimality of P. Hence <x >n* c P.

Similarly, we can prove that <x >"cPifPisa prime filter.

(i))=>(iii). Suppose (ii) holds and xeP. Then <x >, & P. Since

<x >n* N<x >n" = {n} c P, and P is prime, so <x >n** c P.

(ili))=(iv). Suppose (iii) holds and teS — P.

Letx € PN D (<t>,). Then xeP, xeD(<t>,). Thus, <x>," = {n} and so
<x>"=<t>.By (iii), x € P implies<x>, < P. Also by Lemma 2.1.3,
<x>T=<x>"Nn<t>.Hence<x>"Nn<t>=<t>and so
<t>,c<x>," cP.Thatis, teP, which is a contradiction.

Therefore, PN D (<t>,)=¢ forallteS -P.

(iv)=(i). Suppose P is not minimal. Then there exists a prime n-ideal Q < P. Let
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x eP-Q. Since <x >, N<x> = {n} cQ, so<x>n*chP. Thus,

<x>,v<x>"cP.Choose any teS —P. Then <t>, N (<x >, v<x>,) cP.

Now <t>, N (KX > V<X>)=(<t>N<x>) vI(St> N (<x>,")
=<m(t,n,x) > v (Kt> N (<x>) N<t>) (by Lemma2.1.2)
=<m(t, n, x) >, v (<mt, n, x) > N<t>)
=<m(t,n, X) >, v<m(,n,x)>, (byLemma2.1.3.)

where <m(t, n, x) >," is the relative pseudo-complement of <m(t, n, x) >, in

<t >,. Since Fy(S) is sectionally psuedo-complemented, < m(t, n, X) >," is finitely
generated and so < m(t, n, X) >, v <m(t, n, X) >, is a finitely generated n-ideal

contained in <t >,. Therefore by Theorem 1.3.7,

<m(t,n,X) >, v<m(t,n x)>, =<r>, forsomer e<t>,. Moreover, <r>, =
<m(t,n x)> N <mn x) > = {n}.Thus, reP N D (< t >,), which is a

contradiction. Therefore, P must be minimal. g
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2.2 Nearlattices whose Principal n-Ideals form Normal Nearlattices.

Recall that a distributive nearlattice S with 0 is normal if every prime ideal

of S contains a unique minimal prime ideal.

We already know from Theorem 1.5.2 that for a central element ne§,

P.(S) = (n]° x [n).

Thus we have the following result.

Lemma 2.2.1. Suppose n is a central element of a distributive nearlattice S. Then

P(S) is normal if and only if (n]* and [n) are normal. g

A distributive lattice L with 1 is called dual normal if its every prime filter
is contained in a unique ultra-filter (maximal and proper). In a general lattice, this
condition is also equivalent to the condition of normality, that is, every prime ideal
contains a unique minimal prime ideal. Thus obviously the concept of dual

normality coincides with the normality in case of bounded distributive lattices.

Therefore from above lemma P,(S) is normal if and only if [n) is a normal

nearlattice and (n] is a dual normal lattice. Following theorem is needed to prove

the main results of this chapter.
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Theorem 2.2.2. Suppose S be a distributive nearlattice and neS. Let X, YES with
<X >y N <y >y ={n}. Then the following conditions are equivalent.
(i) <x>"v<y>"=§,
(ii) ForanyteS, <m(x,n, t)>," v <m(y, n, t) >, =<t >, where
<m(x, n,t)>," denote the relative pseudo-complement of
<m(x, n, t)>, in [{n}, <t>]].
Proof. (i)=>(ii). Suppose (i) holds. Then for any teS,
<m%, 0, 1) > v <m(y, 0, ) > = (<x > N <t>) v (Ky > n <ty
(x> N <t>) N<t>) vy > n<t>) n<t>) [by
Lemma 2.1.3.]
=(<KX> N<t>) v (<Ky > N<t >,) [by Lemma 2.1.2.]
=(<x> v<y>)n<t>,
=SN<t>,
=<t>,
Hence (ii) holds.
(ii))=(i). Suppose (ii) holds and teS.
By (ii), < m(x, n, t) >," v <m(y, n, t) >," = <t >, . Then using Lemmas 2.1.2. and
2.1.3. and the calculation of (i)=(ii) above, we get,
(<x>'v<y>)N<t>=<t>, Thisimplies<t> c<x>, v<y> and

* * * *
so te <x>, v<y>,.Therefore,<x>, v<y>, =8. g

Cornish in [11] has given some characterizations of normal lattices. Then
[49] extended those results for nearlattices. [49] has given the following

characterizations for normal nearlattices.
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Theorem 2.2.3. Let S pe g distributive nearlattice with 0. Then the following
conditions are equivalent.

(1) Any two distinct minimal prime ideals are co-maximal.
(ii) S is normal.

(iii) O(P) is a prime ideal Jor each prime ideal P.

(iv) Forallx, yeS,x Ay =0 implies (x]” v (y]" =S.

M) GAY =G v ol 4

Now we generalize a part of the above result in terms of n-ideals.

Theorem 2.2.4. Let S be a distributive nearlattice and n be a central element of
S. The following conditions are equivalent.

(1) Pu(S) is normal.

(ii) Every prime n-ideal of S contains a unique minimal prime

n-ideal.

(iii) For any two minimal prime n-ideals P and Q of S, P v Q=S.
Proof. (i)=>(ii). Let P,(S) be normal, since P(S) = (n]cl X [n), so both (n]d and [n)
are normal. Suppose P is any prime n-ideal of S. Then by Theorem 1.4.1, either
P 5 (n] or P o [n). Without loss of generality, suppose P o (n]. Then by Theorem
1.4.2, P is prime ideal of S. Hence by Lemma 1.5.5, P, =P N [n) is a prime ideal
of [n). Since [n) is normal, so by definition P; contains a unique minimal prime
ideal R; of [n). Therefore, P contains a unique minimal prime ideal R of § where
R; =R N [n). Since neR, so n € R and hence R is a minimal prime n-ideal of S.
Thus (ii) holds.
(ii)=(i). Suppose (ii) holds. Let P, be a prime ideal in [n). Then by Lemma 1.5.5,

Pi=Pn[n) for some prime ideal P of S.Since neP; c P, so P is prime n-ideal.
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Therefore, P contains a unique minimal prime n-ideal R of S. Thus by Lemma
1.5.5 Py contains the unique minimal prime ideal R; = R n [n) of [n). Hence by
definition [n) is normal. Similarly, we can prove that (n]d is also normal. Since
Py(S) = (n] x [n), so Pa(S) is normal.

(i) (iii) is trivial by Stone’s separation Theorem.

Recall that for a prime ideal P of a distributive nearlattice S with 0, [56]
has defined 0(P) = {xeS:xAy=0 for some y€S —P}. Clearly, O(P) is an ideal
and O(P) < P. [56] has shown that O(P) is the intersection of all the minimal

prime ideals of S which are contained in P.

For a prime n-ideal P of a distributive nearlattice S, we write
- n(P)={yeS: m(y, n,x) =n for some xeS— P}. Clearly, n(P) is an n-ideal and
n(P)cP.

Lemma 2.2.5. Let n be a medial element of a distributive nearlattice S and P be a
prime n-ideal in S. Then each minimal prime n-ideal belonging to n(P) is
contained in P.

Proof. Let Q be a minimal prime n-ideal belonging to n(P). If Q & P, then choose
y€Q —P. Since Q is a prime n-ideal, so by Theorem 1.4.2, we know th Q is either
an ideal or a filter. Without loss of generality, suppose Q is an ideal. Now let

T = {teS: m(y, n, t)en(P)}. We shall show that T & Q.

if not, letD=(S— Q) v[y). Thenn(P)nD=¢.

For otherwise, y A ren(P) for some reS — Q. Then by convexity,

YAr<m(y,n,r)<(y Ar) vn implies m(y,n,r) € n(P).
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Hence reT < Q,which is a contradiction. Thus by Theorem 1.4.7, there exists a
prime n-ideal R containing n(P) disjoint to D. Then R Q.

Moreover, R # Q as y¢R, this shows that Q is not a minimal prime n-ideal
belonging to n(P), which is a contradiction. Therefore, T & Q. Hence there exists
z¢Q such that m(y, n, z)en(P). Thus m(m(y, n, z), n, X) =n for some xeS —P.
It is easy to see that m(m(y, n, z), n, X) = m(m(y, n, X), n, z).

Hence m(m(y, n, X), n, z) = n. Since P is prime and y, x¢P so m(y, n, x)&P.

Therefore, z € n(P) c Q, which is a contradiction. Hence QcP. g

Proposition 2.2.6. If n is a medial element of a distributive nearlattice S and P is
a prime n-ideal in S, then n(P) is the intersection of all minimal prime n-ideals
contained in P.

Proof. Clearly, n(P) is contained in any prime n-ideal which is contained in P.
Hence n(P) is contained in the intersection of all minimal prime n-ideals contained
in P. Since S is distributive, so by Corollary 1.4.9, n(P) is the intersection of all
minimal prime n-ideals belonging to it. Since each prime n-ideal contains a

minimal prime n-ideal, above remarks and Lemma 2.2.5.establish the proposition.

O

Thus we have the following result which gives a generalization of

Theorem 2.2.3.

Theorem 2.2.7. Let S be a distributive nearlattice and let n be central element in
S. Then the following conditions are equivalent.

(i) Pu(S) is normal.

(ii) Every prime n-ideal contains a unique minimal prime n-ideal,

(iii) For each prime n-ideal P, n(P) is prime n-ideal.
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(iv) Forall x,y € 8, <xX>N<y> ={n}
implies <x>," v < y>, =8.
(V) Forallx,yeS, (<x> n<y>) =<x>"v<y>,

Proof. (i)=>(ii) holds by Theorem 2.2 4.
(if)=>(iii) is a direct consequence of Proposition 2.2.6.
(1ii)=>(iv). Suppose (iii) holds.
Consider x, yeS with<x > n<y> = {n}.
If <x>"v< y > # S, then by Theorem 1.4.7, there exists a prime n-ideal P
suchthat <x>," v < y>," c P, then <x >"cP and < y>, cP imply
x¢ n(P) and y¢n(P). But n(P) is prime and so m(x, n, y) =n e n(P) is
contradictory. Therefore, <x>," v<y>,"=8§.
(iv)=>(v). Obviously, <x>," v<y>'"c(<x> N< y >
Conversely, let we(<x>, N<y >n)*. Then, <w>N<x> N<y> = {n}

or, <m(w, n, x) >, N <y>, = {n}
So by (iv), <m(w, n, x) >, v <y>, =8.
So, we<m(w, n, x) >"v < y >
Therefore, w A n, w v ne< m(w, n, x) >"v < y >n*. Here w v n exists as n is an
upper element. Then by Theorem 1.3.7, w v n=r v s for some re< m(w, n, x) >,
and se<y>," with r,s>n.
Now re< m(w, n, x) >, implies
TA[(WADVWAX)VEAD]VIADV(WAND) VAN V(WAX)] An=n.
Observe that above left hand expression exists as S is medial. That is,rAwWA n)
VEAWAX)V(EAXADV(IANDV(WAN) YV (XAND)=n,and so TAWAX)V
n=n. This implies r vR)A(Wvn)A(Xvn)=n,s0 (rvn)A(xvn)=n as
rvn<wvn. Thus, (r AX)vn=n. Hence(r/\x)v(X/\n)v(r/\n)=n,which
implies re< x > .

43



Chapter 2

Therefore, w vn € <x>"v<y>"
A dual proof of above shows that w An e <x >,” v <y >,". So by convexity,
we<x > v < y > Therefore, (<x >, n<y >) c<x>, v<y>,andso
(x> N<y>)'= <x>"v<y>' whichis ).
(V)=(v). Let<x> Nn<y> = {n}, for some x, yeS.
By (v), $={n} =(<x>n<y>) c<x> v<y>
Thus (iv) holds.
(iv)=(i). Consider [n). Let X,y € [n) withx A y =n.
Then <x>, N <y>; = {n}. Thus, by (iv), <x >, v<y>"=S§.
This implies [n) = (<x>," v<y > M [n)
=(<x> N) v (<y>," N [n)
=<x>"v<y>"
Notice that both <x >, and <y >, are ideals in [n) and <x>,", < y>" are
annihilator ideals of < x >; and < y >, respectively in [n). This implies by
Theorem 2.2.3 that [n) is a normal nearlattice. A dual proof of above shows that

[n)* is also a normal nearlattice. Therefore P,(S) is also normal as

P,(S)=m]* x [n). g
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CHAPTER 3

ON NEARLATTICES S WHOSE P,(S) FORM RELATIVELY

NORMAL NEARLATTICES

Introduction.

Relative annihilators in lattices and semi-lattices have been studied by
many authors including [39], [65], [48] and [51]. Also [11] has used the
annihilators in studing relative normal lattices. In this chapter we introduce the
notion of relative annihilators around a fixed element n of a nearlattice S which

is used to generalize several results on relatively nearlattices.

In chapter 2, we have already discussed on relative annihilators. For

a, b €8, <a, b > denotes the relative annihilator. That is < a,b>=

{xeS: x A a < b}. In presence of distributivity, it is easy to show that each
relative annihilator is an ideal. Also note that < a, b>=<a, aAb> For
detailed literature on this see [39] and [51]. Again for a, beL, where L is a
lattice, recall from chapter two, that < a, b >3 = {xeL: x v a > b} is a relative
dual annihilator. In presence of distributivity of L, < a, b >4 is a dual ideal
(filter).

In case of a nearlattice it is not possible to define a dual relative
annihilator ideal for any a and b. But if n is an upper element of S, then x v
exists for all xeS by the upper bound property of S. As we have mentioned jn

chapter 2, then for any ae(n], we can talk about dual relative annihilator ideal
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of the form < a, b > for any beS§. That is, foranya<nin S,<a, b>;=

{xeS:xvax=b}.

For a, beS and an upper element nes,
we define, <a, b>"= {xeS: m(a, n, X)e<b>;}
= {xeS: bAn< m(a, n, Xx)<bvn}.
We call <a, b >" the annihilator of a relative to b around the element n or
simply a relative n-annihilator. It is easy to see that for all a, beS, <a, b>"is
always a convex subset containing n. In presence of distributivity, it can easily

be seen that < a, b >" is an n-ideal. If 0SS, then putting n =0, we have, < a, b >"

=<a,b>.

For two n-ideals A and B of a nearlattice S, <A,B> denotes
{xeS: m(a, n, x)eB for all acA}, when n is a medial element. In presence of

distributivity, clearly < A, B > is an n-ideal. Moreover, we can easily show that

<a,b>"=<<a>, <b>, >,

A distributive nearlattice S is called a relatively normal nearlattice if
each closed interval [x, y] with x <y (x, yeS) is a normal lattice. We have
already mentioned in Chapter 2 that the concept of normality in a bounded
distributive lattice is self dual. So the concept of relative normality in a

nearlattice is also self dual.

In section 1 of this chapter, we have given several characterizations of
< a, b>". We have also given some characterizations of distributive and

modular nearlattices in terms of relative n-annihilators.
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In section 2, we have characterized those P,(S) which are relatively
normal in terms of n-ideals and relative n-annihilators. These results are
certainly generalizations of several results on relatively normal nearlattices
given by [54]. At the end, we have shown that, for a central element n, P,(S) is

relatively normal if and only if any two incomparable prime n-ideals of S are

co-maximal.
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3.1 Relative Annihilators around a central element of a

Nearlattice.

We start with the following characterization of < a, b>"

Theorem 3.1.1. Let S be a nearlattice with a central element n. Then for all
a, be8, the following conditions are equivalent.

(1) <a,b>" is an n-ideal.

(i) <aAan,ban>, is a filter and <avn,bvn> isanideal.
Proof. (I)=(ii). Suppose (i) holds. Let x, ye<avn,bvn> and
X vy exists. Then x A (a v n) < (b v n). Thus (x A (avn)) vn<(bvn), then
by the neutrality of n, (x vn)A(avn)<(bv n).
Alsom(x vn,n,a) = (xvn)A(avn)<bvn. This implies x v ne< a, b >",
Similarly, y v ne<a, b >". Since <a, b>"is an n-ideal,
SOXVYVn e <a,b>" Thisimplies m(xvyvn,n,a)<bwvn, That is,
xvyvn)Aa(avn)<bvnandso(xvy)Aa(avn)<bvn. Therefore,
Xvye<avnbwvn>,
Moreover, for xe <avn,bvn>andt< x (teS).
Obviously, tA(avn)<bwvn,andso te<avn,bvn>.
Hence <awvn,bwvn>isanideal.
A dual proof of above shows that <aAn,b An>y is a filter.
(i)=(i). Suppose (ii) holds and x, ye<a, b>".
Thenban< (xAa)v(xan)v(aan)<bvn,and
ban<(yaa)v(yan)v(@an<bvn So,bvn<[xaa)v(xan)v(an

n)]An=(xAn)v (aan). Thisimpliesx Ane<aan,ban>, Similarly,
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ynne<aan,ban>, Since <aAn,bAn>y is afilter, so we have, X Ay
AN e <aAn,ban>; Thus, (XAyAn)v(aan)=(bAn).
Butm(xAyAn,n, a)=(xx\y/\n)v(a/\n)2(b/\n), and
SOX A Y ANE<a, b>" Again, by neutrality of n, xvn)A(avn)=
(xAa)vn<(bvn). Similarly, (y vn) A (avn) < (bwvn).

Thus ((X/\y)vn)/\(avn)s(bvn).

But (xAy)vn)A(avn)=m((x A ¥) v n, n, a), as n is neutral.

There fore, (x A y) v ne<a, b>"and so by the convexity of < a, b >",
XAye<a, b>"

A dual proof of above also that x v ye<a, b>". Clearly, < a, b >" contains n.

Therefore, <a, b >"is an n —ideal. 5

Proposition 3.1.2. Let S be a nearlattice with a central element n. Then Jor all
a, beS, the following conditions hold.
(i) <awvn,bvn>isanideal if and only if [n) is a distributive
subnearlattice of S.
(ii) <a An, b An>y is afilter if and only if (n] is a distributive
sublattice of S.
Proof. Suppose for all a, beS, <avn,bvn>isan ideal. Thus for all
P, 9€[n), <p, ¢ > M [n) is an ideal in the subnearlattice [n).Then by [39], [n)
is distributive.
Conversely, suppose [n) is distributive. Let x, ye<awvn, bvn>and x v y
exists. Then x A (a v n) <b v n. Since n is neutral, so (x vn) A (av n) =
[xA(avn)]vn<bvn implies that X vne<avn,bvn>,
Similarly, y vne<avn,bvn> Then(xvy)A(avn)
< xvyvna(avn)=[xvna(@avn)]v[(yvn)A(avn)]

as [n) is distributive.
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Therefore, x v ye<awvn, bvn > Since < avn,bvn> has always the

hereditary property, so <a v n, b v n>is an ideal.

(ii) can be proved dually.

By Theorem 3.1.1. and above result and using Theorem 1.5.2, we have

the following result.

Theorem 3.1.3. Let S be a nearlattice with a central element n. Then for all

a, beS, <a,b>"is an n-ideal if and only if P,(S) is distributive nearlattice. g

Recall that a nearlattice S is distributive if for all X, Y, ZES,
XAy VZ)=EAY)V(XAzZ provided y vV z exists.[48] has given an
alternative definition of distributivity of S. A nearlattice S is distributive if and
only if for all t, x, y, z€S, EAXAY)VEAD)=(EAXAY)V(EAXAZ).
Similarly, by [51], a nearlattice S is modular if and only if for all t, X, ¥, zeS
with z<X, XA((tAY)V(EAZ)=EALAY) V(LA 2).
Since for a sesquimedial element n, S is distributive if and only if P.(S) is
distributive, we have the following Corollary, which is a generalization of
[39, Theorem 1] and a result of [46]. This also generalizes a result of

[4, theorem 3.1.3.].

Corollary 3.1.4. Suppose S is a nearlattice. Then for a central element nes,

<a,b>"is an n-ideal for all a,beS ifand only if’ S is distributive. ,

[39] gave a characterization of distributive lattices in terms of relative

annihilators. Then [51] extended the result for nearlattices. [48] generalized the
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result for n-ideals in lattices. Following result gives a generalization of that
result for n-ideals in nearlattices,

Theorem 3.1.5. Let n be a central element of a nearlattice S. Then the

Jollowing conditions are equivalent.

(1) S is distributive.

(i1) <avn, bvn>isanideal and <aAn,baAn>,isafilter

Wwhenever <b>, c <a>

Proof. (i)=(ii). Suppose (i) holds. That is, S is distributive. Then by Corollary
3.1.4,<a, b>"is an n-ideal for all a, be S. Thus by Theorem 3.1.1, (ii) holds.
(i)=>(i). Suppose (ii) holds and let x, y, ze[n) and y v z exists.
Clearly, (X Ay) v (xA2) <X. S0, <X, (X AY) V(X A Z) > is an ideal as
<EAY)VEAZ) > C<x>, Since X AYS(XAY)V (XA Z),
80 YE<X, (X AY) V (X A Z)> Similarly, ze<x, (X Ay) v (X A Z) >
Hence y vze<x,xAy)v(xaz)>andso xA(YVZ)SXAY)V(XAZ).
This implies x A (y v z) = (X A Y) Vv (x A Z) and so [n) is distributive. Using the
other part of (ii) we can similarly show that (n] is also distributive. Thus by

theorem 1.5.2, P,(S) is distributive and so S is distributive. g

Theorem 3.1.6. Let n be a central element of a nearlattice S. Then the

following conditions are equivalent.
(i) P«(S) is modular.

(ii) For a, beS with<b>, c <a>, xe< b>,and ye<a, b>"
imply x Ay, X vye<a,b>"if x vyexistsin S.
Proof. (i)=>(ii). Suppose Py(S) is modular. Then by Theorem 1.5.2, [n) and

(n] are modular. Here <b>yc<a>;,s0 aanns<bAans<ns<bvn<awvn,

: < .
Since xe<b >, sobAan<x<bvn
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Hence aAnSbAnSX/\nvansbvnSavn.

Now, ye< a, b >" implies m(y, n, a)e<b >,
Thus, (y Aa) v (y A n)v@an)<bv n, and so by the neutrality of n,
((Gra)vyAmv@an)van=(yvn)a@vn)<bvn.
Thus, using the modularity of [n) and the existence of x v Y,
m(XVvyvn,n, a)=(XVvyvn)a(avn)
=[(avn)/\(yvn)]v(xvn)as xvn<bwvn<avn.

This implies m(xvyvn,n a)<bvn and so Xvyvne<a, b>" Sincen
is neutral, S0 a An<b An<x A n implies that
bAan<(xAan)v(yan)v(aan)

=((xvy)Aan)v(aan)

=m((xXVvy)An,n,a)

<bvn
Therefore, (x v y) A ne<a, b>". Hence by convexity of < a, b>",
Xxvye<a,b>".
Again, using the modularity of (n], a dual proof of above shows that
X Aye<a, b>". Hence (ii) holds.
(ii)=>(i). Suppose (ii) holds. Let x, y, ze[n) with x <z and whenever x v y
exists. Then x v (y A z) £ z. This implies <x v (yAz) >, c<z>,.
Now, x <x Vv (¥ A z) implies xe<x v (y A Z) >,
Again, yAz<x Vv (y Az)implies m(y,n, z2) =y Aze<xV(y A zZ) >,
Hencey € <z, x v (y A z) >". Thus by (ii), x v ye<z, x v (¥ A z) >". That is,
Xvyaz<xv(yaz) andso (X Vy)Az=xV(yAz). Therefore, [n) is

modular.

Similarly, using the condition (ii) we can easily show that (n] is also modular,

Hence by Theorem 1.5.2, P,(S) is modular. g
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We conclude the section with the following characterization of minimal

prime n-ideals belonging to an n-ideal. Since the proof of this is almost similar
to Theorem 2.1.4, we omit the proof.

Theorem 3.1.7. Let S be a distributive nearlattice and P be a prime n-ideal of
S belonging to an n-ideal J. Then the Jollowing conditions are equivalent.
(1) P is minimal prime n-ideal belonging to J.

(i) xeP implies <<x>, J>z P.q
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3.2 Some characterizations of those P,(S) which are Relatively

Normal Nearlattices,

Recall that a distributive nearlattice S is relatively normal if each interval
[x,y]in S (x, yeS) x <y, is normal.

When n is a sesquimedial element of a distributive nearlattice S, then
Pu(S) is also a distributive nearlattice. Thus, P.(S) is a relatively normal

nearlattice if each interval [<a>,, <b>,] in P(S) is normal.

The following result will be needed for the further development of this
chapter, which is due to [59].

Theorem 3.2.1. Let S be a distributive nearlattice with an upper element n.
Then the following conditions hold.
() <K<X> Vv <y>, <X>>=<<y >, <x> >
(i) <<x>,J>=V ey <<KX>,, <Y >, >, the supremum of
n-ideals < < x>,, <y >,> in the lattice of n-ideals of S, for any

xeS and any n-ideal . g

Following lemma is dual of [11, Lemma 3.6] and is very easy to prove.

So we prefer to omit the proof.
Lemma 3.2.2. Let L be distributive lattice. Then the following conditions hold.

() <XAY,X>a=<Y, X
(ii) <[x), F>a=Vyer<X ¥ > whereF is afilter of L.
(111) {<X=a>dV<ysa>d}ﬁ[a:b]={<X,a>df\[a,b]}

v{<y,a>aN [a, b]},where [a, b] represents any interval in L. g
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Lemma 3.2.3. and Lemma 3.2.4. are essential for the proof of our main
result of this section, which are also due to [59].

Lemma 3.2.3. Let S be a distributive nearlattice with an upper element n.

Suppose a, b, ceS.
(1) If a,b, ¢ > n, then <<m(a,nb)>,<c>>=<<a>, <c>>
v<<b>n,<c>n>isequivalentto<a/\b,c>=<a,c>v<b,0>.
(ii) Ifa, b, c <n, then <<m(a, n,b) >, ,<c> >=<<a>, <c>,>
v<<b>n,<c>n>isequivalentto<avb,c>d=<a,c>dV

<b,c>d.[]

Lemma 3.2.4. Let S be a distributive nearlattice with an upper element n.
Suppose a, b, ceS.
(i) Ifa, b, ¢ = n and a v b exists, then
<<c>p,<a>v<b> >=<<c>,<a>;>v<<c>, <b> >
is equivalent to <c,avb>=<c,a>v<c,b>.
(i) Ifa,b,c<n, then<<c>,<a>v<b>>=
<<c>, <a>,>v<<c>, <b>>isequivalent to <c,a Ab>,

=<c,a>dv<c,b>d.g

The following result is due to [59], which a generalization of

[11, Lemma-3.6]. This plays an important role in proving our main result in

this section.

Theorem 3.2.5. Let S be a distributive nearlattice. Then the following

conditions hold.
(i) <<KX>pV<Y>n <X >=<<YZn X2
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i) <<x> =
(i1) X >, J> Vyej<<x>n,<y>n>,thesupremumof

N-ideals < < x “n <Y>> in the lattice of n-ideals of L, for any
XeL and any n-idea]

Following lemma will be needed for further development of this chapter.

This is in fact, the dual of [11, Lemma-3.6] and very easy to proof. So we
prefer to omit the proof,

Lemma 3.2.6. Let L be a distributive lattice. Then the Jollowing hold.
() <xAy,x>3=<y, x>,
(i) <[x),F>;=v yeF <X,y >q where F is filter of L.
(i) {<x,a>3v <y a>) N [a, b] = {<x,a>"[a,b]} v

{<¥,a>3N[a,bl}.q

Recall that a distributive lattice L with 1isa dual normal lattice if L9 js
a normal lattice. In other words, a distributive lattice L with 1 is called dual
normal if every prime filter of L is contained in a unique ultra filter
(maximal and proper) of L. As we mentioned earlier that this condition in a

lattice is self dual. Thus for a bounded distributive lattice, the concept of

normality and dual normality coincides.

Following technique of the proof of [11, Theorem 2.4], we can similarly
prove the following result, which gives some characterization of dual normal

lattices. These results are in fact, the dual result of Theorem 2.2.3.

Theorem 3.2.7. Let L be a distributive lattice with 1. Then the following

conditions are equivalent.
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(D) L is dual normal.

(i) Each prime filter of L is contained in a unique ultra-filter

(maximal and proper).
(iii) For eachx, yeL, [x vy)d= [x)" v [
(iv) Ifxvy=1,x, YEL, then [x)" v [y)“ =L. 5

Corollary 3.2.8. Let L be a bounded distributive lattice. Then the following

conditions are equivalent,
(1) L is normal.
(ii) Foreachx,yeL,(x ny] = ] v (y]".
(iil) Ifx Ay =0, then (x]" v (y]' =L.
(iv) For eachx,yeL, [x vy)“=[x)"v [y)"
V) Ifxvy=1,then [x)%v [y)¢=L.g

Ayub in [4, Theorem 3.2.7.] has given a nice characterization of
relatively normal lattices in terms of dual relative annihilators, which is in fact,
the dual of [11, Theorem 3.7]. As we have mentioned earlier that in nearlattices
the idea of dual relative annihilators is not always possible. But when n is an

upper element in S then x v n exists for all xeS. Thus for any a € (n], x v a

exists for xeS. Hence we can define < a, b >4 for all ae(n] and beS.

When n is a central element in S, then by Theorem 1.5.2,

P, (S) = (n]? x [n).

Thus we have the following result.
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Proposition 3.2.9. For a distributive nearlattice S with a central n, P,(S) is

relatively normal if and only if (n] and [n) are relatively normal. g

Now we prove the following important result,

Theorem 3.2.10. Let n be a central element of a distributive nearlattice S such
that (n] is relatively normal. Let a, b, ce(n] be arbitrary elements and A, B be
arbitrary filters on (n]. Then the Jollowing conditions are equivalent.

(1) (n] is relatively normal.

(i) <a,b>;v<b,a>3=(n].

(i) <c,anb>3=<c,a>v<c,b>,

(iv) <[e), AvB>;=<[c), A>3 v<[c), B>,

(v) <avb,c>=<a,c>;v<b,c>,
Proof. (i)=(ii). Suppose (i) holds. Let ze(n] be arbitrary. Consider the interval
I=[z,avbvz]. Thenavbvz is the largest element of I. Since by (i), I is
normal, then by Theorem [11,Theorem2.4], there exists r, sel such thata v s =
avbvz=bvzvrandz=sAr Now,avs>bimpliesse<a, b>;and
bvr=bvzvr=avbvz=xa impliesre<b, a >4 Hence (ii) holds.
(ii)=>(iii). Suppose (ii) holds. In (iii), R.H.S. € L.H.S. is obvious.
Let ze<c,a A b >y then z v c2>aAb. Since (ii) holds, so z = x A y where
Xe<a,b>jand ye<b,a>ys. Thenxvazbandyvb>a.
Thus,x vc=xvzve

>xv(anb)

= (x v a) A (x v b) 2 b, which implies xe<c¢, b >
Similarly, ye< ¢, a >4 Hence z=X Ay € <¢,a>yVv <c, b>gand
s0<c,anb>4c <c,a>gVv<c,b>y Thus (iii) holds.

(iii)=(iv) follows from Lemma 3.2.2 (ii).
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(iv)=(iii) is trivial,
(li)=(ii) follows from Lemma 3.2.2 () by puttingc=a A b.
(ii)=(v). Suppose (ii) holds. Let ze< a v b, ¢ >4. Then by (ii), z = x Ay,
wherexva>b and yvb>a. Alsoxva=xvavb>zvavb>c.
This implies xe< a, ¢ >4. Similarly, ye< b, ¢ >,.
Hence z=x Anye<a, c>;v<b,c >4 and
so<avb,c>dg<a,c>dv<b,c>d.
Since the reverse inequality is obvious, so (v) holds.
(v)=(i). Consider an interval [a, b] in (n]. For x € [a,b], a<b,
let [x)™ = {ye[a, b]: Y v x =b}. Clearly [x)*! = <x,a >4 [a, b].
Then Lemma 3.2.6. for any X,y € [a, b], we have,
[<x%a>sv <y, a>gN[ab]=(<x,2> N [2,b]) v (<y, a>sN[a, b]).
Then by (v), <x vy, a>4 N [a, b] = [x)* v [y)*, which implies
[x v y)® = [x)*? v [y)®. Therefore, by Corollary 3.2.8, [a, b] is normal.

Therefore (n] is relatively normal. g

Now we prove our main results of this chapter, which are generalizations
of [11, Theorem 3.7], [39, Theorem 5] and a result of [17], also see [51]. These

give characterizations of those P,(S) which are relatively normal.

Theorem 3.2.11. Let n be a central element of a distributive nearlattice.
Suppose A, B are two n-ideals of S. Then for all a, b, ceS the following

conditions are equivalent.
() P(S) is relatively normal.
(i) <<a>p <b>>Vv<<b>,<a>>=S.
(iii)<<c>,,,<a>,,v<b>n>=<<c>n,<a>n>.v

< < ¢ >, <b>,>, whenever a v b exists.
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(iv) <<C>n,AVB>=<<C>mA>V<<c>n,B>-
(V) <<m (a, n, b) >, <c>>=<<a> <c>>v
<<b>,<c> >,
Proof. (1)=(ii). Let zeS. Consider the interval [=[<a>N<b> N
< Z7n, <Z>,] in Py(8). Then<3>nﬁ<b>nﬁ<z>n is the smallest element of
the interval I. By (i), I is normal. Then by Theorem 5.2.5, there exist principal
n-ideals < p>,, < q >,€l such that, <a> N<z>N<p>=<a>N<b
>nﬁ<Z>n=<b>nm<Z>nm<q>nand
SZ=<p>Vv<q . Now,<a>N<p>=<a>N<p>N<z>,
=<a>N<b>nN<z>c<b>,
implies <p>,c<<a>, <b>, >
Also, <b> Nn<q>=<b>nN<z>nN<q>,
=<a>N<b>nN<z>c<a>,
implies<q>,c<<b>, <a>>
Thus<z>, ¢ <<a>, <b>>v<<b>,<a>> and
soze <<a>,<b>>v<<b>,<a>>
Hence<<é>n,<b>n>v<<b>n,<a>n>=S.
(i))=(iii). Suppose (ii) holds and a v b exists. For (iii), R.H.S. < L.H.S. is
obvious. Now, let ze<<c >, <a>;v<b>;>
Thenz vne<<c¢>,<a>;v<b>> and
m(z v n,n,c)e <a>,v<b>,
Thatis, m(z vn,n,c)elanban,avbvn]
This implies (zvn)A(cvn)<avbvn.
Now, by (ii), z v ne<<a>,, <b>>v <<b>, <a>p.
So zvn<(pvn)v(qvn)forsome pvne<<a>;, <b>;>and
qvne<<b>, <a>.

Hence,zvn=(zvn)A@vn)Vv({zvna(gvn)=rvt (say).
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Now, m(p v n, n, a)=(pvn)/\(avn)s(bvn).

SobAans<ra(avn)<bvn, Hence,rA(cvn)=ra(zvn)A(cvn)
<rA(avbwvn)
=(tAa(@vn)v(abvn)
<(bvn).
This implies re<<c >, <b>, >, Similarly, t e<<¢ >, <a>,>.
Hence zvn e<<c>;,<a> >v<<c>, <b> >
Again,z e <<c>,<a> v<b> > implies
ZANES<C >y, <a>;v<b> > Then a dual calculation of above shows that
ZANES < C >y, <a>, > v <<c>, <b>,> Thus by convexity,
ZES S C >y <a>p > v <<c>,<b> >andso L.H.S. c R.H.S. Hence (iii)
holds.
(ii))=(iv). Suppose (iii) holds. In (iv), R.H.S. < L.H.S. is obvious.
Now let xe<<c>, AvB> Thenxvne<<c>, AvB>
Thus m(x v n,n, c)eAvB. Nowmxxvnnc)=xvnaAa(mve)=n
implies m(x v n, n, c)e(A v B) n [n). Hence by Theorem 3.2.1(ii),
xvne<<c>, (An[n)vBnIn)>
=VicAnm)vBnm) < <C>y <r>;> Butby Theorem 1.3.7,
re(A N [n)) v (B N [n)) impliesr=s vt for some seA,teB and
s, t>n. Then by (iii), << ¢ >y, <r>p>=<<C>p, <SVi> >
=<< >, <S> Vv<L>, >
=<<C>n,<5>n>V<<C>m<t>n>
c<<c>, A>v<<c>,B>
Hence x v ne< < ¢ >, A > v <<c>, B> Alsoxe<<c>, AvB>implies
XAne<<c>, AvB>
Since m(x A n, n, c)=(xAmV(EAC)SD,

S0 X Ane< < ¢ >y, (AvB)n(n]>.
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Then, by Theorem 3.2. 1(ii),

XAane<<e>,(An@)v®n@])>
“Vie@nmveam) <<C >y, <>,
Again, using Theorem 1.3.7, we see that | = p A q where peA, qeB and
p, 4 < n. Then by (iii),
<<C>na<1>n>=<<C>n,<p/\q>n>
=<<e>, <p>v<q>,>
=<<e>, <p>,>v<<ce>, <q>,>
c<<c>,A>v<<c>,B>
Hence x Ane<<c>, A>v<<c¢c>, B>, Therefore, by convexity,
XE<S<C>, A>v<<c>,B>andsoLH.S. c RH.S. Thus (iv) holds.
(iv)=(iii) is trivial.
(i)=(v). Suppose (ii) holds. In (v), R.H.S. c L.H.S. is obvious.
Now let ze< <m(a, n, b) >,, <c>,> which implies
zvne<<m(a, n,b)>, <c>,>
By (ii), zwvne<<a>,<b>>v<<b>,<a>> Thenby
Theorem 1.3.7, zvn=x vy forsomexe<<a>, <b>> and
ye<<b>, <a>;>andx,y=n. Thus, <x> nN<a>c<b>, and
so<x> N<a>=<x>N<a>3N<b>c<zvn>nN<a>nN<b>,
=<zvn>N<m(anb)>,
c<c>p,
This implies xe< < a >, < ¢ > >, Similarly, ye<<b >,, <c>,> and so
Zvne<<a>, <c>>Vv<<b>, <c>, > Similarly, a dual calculation
above shows that z A ne< < a >, <¢>;>v <<b >, <c> > Thus by

convexity, ze < <8 >p, <€ >p> V< <b>, <c>,>and so LHS. c R.H.S.
2

Hence (v) holds.
(v)=(i). Suppose (v) holds. Leta, b, c = n.
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By (v), <<m(a, n, b)>m<°>n>=<<a>n,<c>,,>v<<b>n,<c>n>- But
by Lemma 3.2.3(i), this is equivalent to < a A b,c>=<a, c>v<b,c> Then
by [56, Theorem 3.3.5], this shows that [n) is relatively normal. Similarly, for
a, b, ¢ < n, using Lemma 3.2.3(ii) and Theorem 3.2.10, we find that (n] is
relatively normal. Therefore by Theorem 1.5.2, P,(S) is relatively normal.
Finally we need to prove that ()= (i).
Suppose (iii) holds. Let a, b, ceS M [n).
By (iii), < < ¢ >, Sa>pVv<b>>=<<c¢>, <a> v<<c>, <b>, when
ever aVv b exists.
But by Lemma 3.2.4(i), this is equivalent to

<¢,avb>=<c¢,a>v<e, b>.
Then by [11, Theorem 3.7], this shows that [n) is relatively normal.
Similarly, for a, b,c < n, using the Lemma 3.2.4(ii) and Theorem 3.2.10, we

find that (n] is relatively normal. Therefore by Theorem 1.5.2, Py(S) is

relatively normal. 4

By [11], [39], and [17] we know that a lattice is relatively normal if and
only if any two incomparable prime ideals are co-maximal. [54] extended this
result for nearlattices. We conclude this chapter by proving the following

result, which is a generalization of [56, Theorem 3.3.10].

Theorem 3.2.12. Let S be a distributive nearlattice. If n is central in S, then

the following conditions are equivalent.
(i) P«(S) is relatively normal.
(i) Any two incomparable prime n-ideals P and Q are
co-maximal, i.e. P v Q=S8.

Proof. (i)=>(ii). Suppose (i) holds. Let P and Q be two incomparable prime
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n-ideals of S. Then there exist a, beS such that aeP-Q and beQ-P.

Then <a>, c P-Qand <b >n S Q-P. Since by (i), P.(S) is relatively normal,
so by Theorem 5.2.8,

<<a>m<b>n>V<<b>n,<a>n>=S.
But as P, Q are prime, so it is casy to see that <<a>;, <b>,>c Q and
<<b>p, <a>,>c P. Therefore, S C P v Q and s0 P v Q = S. Thus (ii) holds.
(ii)= (). Suppose (ii) holds. Let Py and QI be two incomparable prime ideals
of [n). Then by Lemma 1.5.5, there exist two incomparable prime ideals P and
Q of S such that P; = P N [n) and Q1 = Q M [n). Since neP, and neQ;, so by
Lemma 1.4.3, P and Q are in fact two incomparable prime n-ideals of S. Then
by (ii), PvQ=S.
Therefore, Py v Q= (P v Q) N [n)

=S N [n)

= [n).
Thus by [56, Theorem 3.3.10], [n) is relatively normal.
Similarly, considering two prime filters of (n] and proceeding as above and

using the dual result of [56, Theorem 3.3.10] we find that (n] is relatively

normal. Therefore, by Theorem 1.5.2, P(S) is relatively normal. g
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CHAPTER 4

CHARACTERIZATION OF THOSE P,(S) WHICH FORM
m-NORMAL AND RELATIVELY m-NORMAL

NEARLATTICES

Introduction.

Lee in [37] also see Lakser [34] has determined the lattice of all
equational subclasses of the class of all pseudo-complemented distributive
lattices. They are given by BicB,c...cB,c ... c B » ,where all the
inclusions are proper and Bw is the class of all pseudo-complemented
distributive lattices, B.; consists of all one element algebra, B, is the variety of

Boolean algebras while Bp, for -1 <m < @ consists of all algebras satisfying

. * n *
the equation (X; AXz A ... AXm) Vv RIAXIA b AXLIAK] A Xl A

i=1
A Xp) =1 where x* denotes the pseudo-complemented of x. Thus B,

consists of all Stone algebras.

He also generalized Gréatzer and Schmidt's theorem by proving that for

-1 <m < » the mth variety consists of all lattices such that each prime ideal

contains at most m minimal prime ideals.

Cornish in [11] and Mandelker in [39] have studied distributive lattices
analogues to B-lattices and relatively B)-lattices. Cornish [13], Beazer [7] and

Davey [17] have each independently given several characterizations of
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(sectionally) By, and relatively B,-lattices. Moreover, Gritzer and Lakser in

[23] and [24] have obtained Some results on this topic.

Comish in [13] have studied distributive lattices (without pseudo-
complementation) analogues to Bo-lattices and relatively B,-lattices. These are

known as m-normal and relatively m-normal lattices. Then [42] and [56]

extended the concept for nearlattices.

By [13], a distributive nearlattice S with 0 is called m-normal if each

prime ideal of L contains at most m-minimal prime ideal.
A distributive nearlattice S is called relatively m-normal if each interval

[x, ¥], X, yeS is m-normal.

In section 1 we will study principal n-ideals which form a (sectionally)
m-normal nearlattice. We will include several characterizations which
generalize several results of [13], [17], [42] and [56].We shall show that for an
clement neS, P,(S) is m-normal if and only if for any x;, x,,...., X,€S,

<Xo™p Voeewn V<Xn>, =S which is also equivalent to the condition that for

any m+1 distinct minimal prime n-ideals P,...., P, of S, Pyv ... vP,=S.

In section 2 we will study those P,(S) which are relatively in m-normal.
Here we will include a number of characterizations of those P,(S) which are
m-normal nearlattices and these are generalizations of results of [13], [17]
and[56]. We shall show that for a central element n, P,(S) is relatively

m-normal if and only if any m+1 pairwise incomparable prime n-ideals are

co-maximal.
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4.1 Nearlattices whose P n(S) form m-Normal Nearlattices.

The following result is due to [13, Lemma 2.2]. This follows from the
corresponding result for commutative semi-groups due to Kist [33].This is also
true in case of a distributive nearlattice,

Lemma 4.1.1. Let M be a prime ideal containing an ideal J in a distributive
medial nearlattice. Then M is a minimal prime ideal belonging to 1 if and

only if for all xeM, there exists x'e¢M such that x A x' el. g

Now we generalize this result for n-ideals.

Lemma 4.1.2. Let n be a medial element and M be a prime n-ideal containing
an n-ideal J. Then M is a minimal prime n-ideal belonging to I if and only if
Jor all xeM there exists x'¢M such that m(x, n, x')€J.

Proof. Let M be a minimal prime n-ideal belonging to J and xeM. Then by
Theorem 3.1.8, < <a >,, J] > ¢ M. So there exists x” with m(x, n, x') €J such
that x'gM.

Conversely, suppose xeM, then there exists x'¢M such that m(x, n, x"eJ.

This implies x'¢M, but X'e<<x >, ] >, thatis <<x >, J>& M. Hence by

Theorem 3.1.7, M is a prime n-ideal belonging to J. g

Davey in [17, Corollary 2.3] used the following result in proving several
equivalent conditions on Bp-lattices. On the other hand, Cornish in [13] has

used this result in studing n-normal lattices. [56] generalized the result for

nearlattices.
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Proposition 4.1.3. Let M,,.., M, be nt1 distinct minimal prime ideals of a

distributive nearlattice §. T, hen there exists 80, A1,...., €S such that a; A a; €

J(i#’-‘j) and ajEMj,j;‘O, | —-—% O

The following result is a generalization of above result in terms of
n-ideals.

Proposition 4.1.4. Let S be a distributive nearlattice and neS is medial.
Suppose Mo,.., My be m+1 distinct minimal prime n-ideals containing n-ideal
J. Then there exists a,, ay,..., a,eS such that m(a;, n, a)) €J (i#j) and
aeM; (=0, 1,...., m).
Proof. For n =1. Let x,eM, - M, and X1€M, — M,. Then by Lemma 4.1.1,
there exists x,'¢M,, such that m(X,, 0, X;")€J. Hence a;=x,, a, = m(X,, n, X;") are
the required elements.
Observe that m(a,, 0, a;) = m(m(x,, n, x;"), n, x;)

=X AXIAX) V(X ANV (X AD) V(X' AD)

= (Xo Am(x1, 10, X17) V (X0 AN) Vv (m(xy, 1, X1') A1)

= m(X,, n, m(Xj, n, X;"))
Now, m(xi, n, x;") A n < m(x,, n, m(xy, 1, x;'))

< m(x;,n,X')vn
and m(x,, n, x;,")€J, so by convexity m(a,, n, a;)el.
Assume that, the result is true for n = m-1, and let M,,...,M;, be m+1 distinct

minimal prime n-ideals. Let b; =0, 1,...., m-1) satisfy

m
m(b; n, b;)eJ (i#j) and bjgM;. Now choose bneMn - ngj and by Lemma

4.12, let by satisfy bw@Mn and m(bm,n, bw)€el. Clearly,

a,=m(byn, by) (=0,..., m-1) and a,, = by, establish the result.
J Jot1s Um e
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Let J be an n-ideal of a distributive lattice L. A set of elements  —_—

e L is said to be pairwise in J if m(x;, n, Xj) =n forall i#].

The next result is due to [56, Lemma 3.4.1]. In case of lattice it was

proved by [13, Lemma 2.3] which was suggested by Hindman in [29, Theorem
1.8].

Lemma 4.1.5. Let J be an ideal in a distributive nearlattice S. For a given
positive integer n = 2, the following conditions are equivalent.
(i) For any Xi,..., Xn€S which are 'pairwise in J' that is
Xi AXj€] for any i#], there exists K such that xc€l.
(ii) For any ideals J,,...,Jn in S such that J;nJ; ] for any i#],
there exists k such that I, J.

(iii) J is the intersection of at most n-1 distinct prime ideals. n

Our next result is a generalization of above result. This result will be
needed in proving the next theorem which is the main result of this section. In

fact, the following lemma is very useful in studing those P,(S) which are

m-normal.

Lemma 4.1.6. Let ] be an n-ideal in a distributive nearlattice S and nes is

medial. For a given positive infeger m 2 2, the following conditions are

equivalent.
(i) For any Xi,..., ¥n € S withm(x;, 0, X;) € I (that is, they are

pairwise in 1) for any i#]j, there exists k such that x, € J.
(ii) For any n- ideals 11, Jmin S suchthat nJ;cJ for any

i#], there exists k such that Jx C J.
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(iii) J is the intersection of at most m-1 distinct prime n- ideals.
Proof. (i) and (ii) are casily seen to be equivalent.

(iii)=>(). Suppose P,, P,,....P, are k (1 £k £m-1) distinct prime n-ideals
suchthat J=Py NP ... "P.Letx), x,,...., xu S be such that

m(x;, 0, X;)€J for all i# j. Suppose no element x; is a member of J.Then for
each r (1 <r<Kk) there is at most one i (1<i< m) such that x;eP; . Since

k < m, there is some i suchthat x;e PP, ....NP,.

We need to show (i)=>(iii). Suppose (i) holds for m = 2, then it implies that J is
a prime n-ideal. Then (iii) is trivially true. Thus we may assume that there is a
largest integer t with 2 <t <m such that the condition (i) does not hold for J
(consequently condition (i) holds for t+1, t+2,..., m). Then for some 2 <t<m
we may suppose that there exist elements ay, a,...., a:€L such that
m(a,n,a)e ] for i#j,i=1,2,..,t, j=1,2,...t, yet aj, ay..., 4 & J.

As S is a distributive lattice, < < a; >, J > is an n-ideal for any i€ {1, 2,..., t}.
Each < < a; >,, J > is in fact a prime n-ideal. Firstly

<<a>,]>=#S, since a ¢ J. Secondly, suppose that b and ¢ are inS and
m(b, n, ¢) € < < a; >,, J >. Consider the set of t+1 elements {a;, ay,.....,

a..;, m(b, n, a;), m(c, n, a;), i+ts---» a,}. This set is pairwise in J and so, either
m(b, n, a;) € J or m(c, n, &) € J. Since condition (i) holds for t+1. That is,
be<<a; >, J>orce<<a;>,J>andso <<ai>, J > is prime. Clearly,

Jc N<<a>, J>If we N <<a~”n J>. Thenw, a, a,..., a; are pairwise
T sist 1Sist

.. J = < < a; >, J > is the intersection of t < m
in j and so wel. Hence n i 7w

prime n-ideals. p

An ideal J # S satisfying the equivalent conditions of Lemma 4.1.5. is

called an m-prime ideal.

70



Chapter 4
Similarly,

an n-ideal J # S satisfying the equivalent conditions of Lemma
4.1.6. is called an m-prime n-ideql.

Now we generalize a result of Davey in [17, Proposition 3.1.].

Theorem 4.1.7. Let ] be an n-ideal of a distributive nearlattice S and n be a
central element of S. Then the following conditions are equivalent.
(i) For any m+1 distinct prime n-ideals P,, Py, ..., Py, belonging to
I, Pov Pyv...vP,=8.
(ii) Every prime n-ideal containing J contains at most m distinct
minimal prime n-ideals belonging to J.
(iii) If ao, @1,..., aneS with m(a;, n, a)el (i #])

then \j/<<aj->n,J>=S.

Proof. ()=(ii) is obvious.
(ii)=>(iii). Assume a,, ai,..., an€S With m(a; n, a;)elJ and

v <<a; >, J>=#S. It follows that a; ¢ J, for all j. Then by Theorem 1.4.7,
j
there exists a prime n-ideal P such that v <<y >, J > < P. But by Theorem

1.4.2, we know that P is either a prime ideal or a prime filter.
Suppose P is a prime ideal. For each j, let Fj = {x Ay: X2 8, X,y 2D,y ¢ P).
Let x| A y1, X2 A Y2€F;.

Then (x; A Y1) A (X2 A ¥2) = (X1 A%2) A (Y1 AY2):
Now, X; A X, > a; and y1 A'y2 =m(y1, B, ¥2). Sot > x Ay implies
t=(tvx)A(tvy) Sincey ¢ P,sotVv yeP. Hence teFj, and so F; is a dual
ideal.
We now show that F; N J = ¢, for all j=0, 1, 2,..., m. If not let beF; N J, then
b=xAy,x>2,XxyZnYy¢# P. Hence m(a;, n, ¥) = (g An) vnv (g Ay)

=(aAy)vn=(g vn) Ay Vv But (3 v ) A (Y v )€EF; and
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n<(@Ay)vns<b implies ma, n, y)el. Therefore, m(a;, n, y)eF; N J.
Again, m(a;, n, y)eJ with ygPp implies < < a; >, J > ¢ P, which is a

contradiction. Hence F; N J=¢ for all j. For each J> let P; be a minimal prime

n-ideal belonging to J and F; N P;=¢. Let yeP;. If yg P, then y v ngP.

Then m(aj, n, y v n) = (a; v n) A (y v n)eF;.

Butm(a, n,y vn)e<yvn> c<y> c P;, which is a contradiction.

So yeP. Therefore Py c P, and 2;¢P;. For if a;eP;, then a; v neP;. Now, a; v n =
(3 v n) A (3 v nvy)eF for any ygP. This implies P; N F; # ¢, which is a
contradiction. So, a;¢P;. But m(a;, n, a;)eJ < P; (i # j) which implies a;eP;
(i#])as P; is prime. It follows that P; form a set of m+1 distinct minimal
prime n-ideals belonging to J and contained in P. This contradicts (ii).

Therefore, v <<aj>,, J>=8.
J

Similarly, if P is filter, then a dual proof of above also shows that

v <<aj>, J>=S8, and hence (iii) holds.

Finally, we need to show (iii))=(i). Let P, Py,..., Pn be m+1 distinct minimal
prime n-ideals belonging to J. Then by Proposition 4.1.4, there exists

a,, aj,...,an€S such that m(a;, n, aj)e] (i#]j) and a; ¢ P;. This implies
<<g >, J>cPj forall j. Then by (iii),

<<ao>mJ>v<<al>mJ>V___\/<<am>mJ>_C__'. POV PIV...V Pm,

which implies Pov P1v ...V Pn=3S. o

The following result is due to [36, Theorem 3.4.2], also see [42], which

is a generalization of a result in [13]. For lattices this result characterizes the
distributive lattices analogues to Bn-lattices.

Beazer [7], Davey [17] have each independently obtained a version of

this result. Gritzer and Lakser in [23] (also see [20, Lemma-2 page-169]) have
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shown that condition (iii) of the theorem is equivalent to Lee's condition which

chargierize te nih variety for O<n < @, of distributive lattices. Thus, this

theorem should be compared with Lee's Theorem 2 of [37].

Recall that for a prime ideal P of a distributive nearlattice S,

0P)={x:xAy=0 forsome ye S- P}, which is an ideal contained in P.

Theorem 4.1.8. Let S be a distributive nearlattice with 0 and n be a central
element of S. Then the following conditions are equivalent.
(1) For any m+1 distinct minimal prime ideals P, Py, ..., Pn,
PovPiv...vP,=S.
(ii) Every prime ideals contains at most m minimal prime ideals.
(iii) For any Xo,X1,..., Xm€S such that xiAx;=0 for (i#]),1=0,
1,2,...m, j=0,1,2,....m, (%] v (xi]'V ... v (xm] = S.

(iv) For each prime ideal P, 0(P) is mt1 prime. g

Our next result is a nice extension of above result in terms of n-ideals.
Recall that for a prime n-ideal P of S, n(P) = {xeS: m(x, n, y) = n for some

yeS-P}. Of course, n(P) is an ideal and n(P) cP.

Theorem 4.1.9. Let S be a distributive nearlattice with a central element n.

Then the following conditions are equivalent.

(i) For any m+1 distinct minimal prime n-ideals Py, Py, ....., P,

POVP1V....VPm=S.

(ii) Every prime n- ideal contains at most m minimal prime

n- ideals.
(iii)) For any @, aiy:-+> am € S with m(a;, 0, ;) =n for (i#]),

* *
i= 0: 132:---7m’j = 07 1:27_--5m’ <a°>n V= aj >n V.V

< am >n* = S.
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(iv) For each prime n- ideal P, n(P) is an mt1- prime n-ideel.

Proof. ()=(ii), (i)=>(iii) and (iii)=(i) easily hold by Theorem 4.1.7,
replacing J by {n}.

To complete the proof we need to show that (iv)=(iii) and (ii)=>(iv).

(iv)=(iii). Suppose (iv) holds and x,, Xl5-..,¥m are m+1 elements of S such
that m(x;, n, X;) =n for (i # ). Suppose that <x, >, v ... v < Xm >n # S. Then
by Theorem 1.4.7, there is a prime n-ideal P such that < Xo>n V.o V< Xnm >y
c P. Hence X, X1,...,Xn€S — n(P). This contradicts (iv) by Lemma 4.1.6, since
m(x;, 1, Xj) = nen(P) for all i+ j. Thus (iii) holds.

(i)=(iv). This follows immediately from Proposition 2.2.6. and Lemma 4.1.6.

above. O

Following result is due to [56, Theorem 3.4.5].

Proposition 4.1.10. Let S be a distributive nearlattice with 0. If the equivalent
conditions of Theorem 4.1.8. hold, then for any m+1 elements Xo, Xi,...5 Xm

* *
Ko AXIA oo AXn] =V (Xo A X1 A e e AXilA Xl A oo AXm] o0
<isn

Proposition 4.1.11. Let S be a distributive medial nearlattice and neS is a

central element. If the equivalent conditions of Theorem 4.1.9. hold, then for

L 3
: < > =
any m+1 elements Xo, Xi5--+> Xm (KXo Zn N <X >n N oo N <X >p)

*
- <Xm>n) .
v (<xo>nm<xl>nn_..n<xi_1>nn<x,+1>nm...m P,

0<isn

Proof, Let <b;>p, =<Xo>n N <X1ZnM N <XiPn N <Xip1 Pn M e N

*
i <X >N e N <Xy ) .
<x,>, for each 0 <i<m.Suppose XE(< Xo >n N < X1 >n A < X >n)

Then < x >, "< Xe > N <X1Zn M -+ A< Xy >n = {n}. Foralli#],

(<x>nr\<bi>n)m(<x>nﬂ<bj>n)={n}-

.V(<X>nm<bm>n)*=s-

S0 (<x >, M <bo>n) V- )
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Thus Xe(S X > N <by>)" v v (< x> A< by 3", Henes by Thesem

137, Xxvn=a,V....va, where a e (x> N<b;>,)" and a;>n for
i=0,1,....,m. Thenx vn=(a, A xvn)v..v(agA (x v n)).

Now aie(<X >y M <b;>,)" implies <a; >, N <x >, A <b; >, = {n}. Then by
a routine calculation we find that (a; A x A b)vn=n

Thus <aj A (X V1) >y N <b; >, = [n, (a A X A by) v n] = {n} implies that
aA(xvn)e<b> andso xvne<b,>' v<b > v..v<b,>, . Bya
dual proof of above and using Theorem 1.3.7, we can easily show that
xAane<b,>, v< by >, V..V <by >, .
Thus by convexity, xe< b, > v < by >, V ...v <by, >, This proves that

L.H.S. < R.H.S. The reverse inclusion is trivial. g

Theorem 4.1.12. Let S be a distributive nearlattice and neS is central. Then
the following conditions are equivalent.
(i) Pn(S) is m-normal.
(ii) Every prime n-ideal contains at most m minimal prime
n-ideals.
(iii) For any m+1 distinct minimal prime n-ideals P.,...., P ;
Pl 3 s ¢ Py =B
(iv) Ifm(a;, n, a;) =, this implies < 8,>n V. V<ap>, =S8,
(v) For each prime n-ideal P, n(P) is an m+1 prime n-ideal.
Proof. (i)=>(ii). Let P(S) be m-normal, since n is central, so by Theorem 1.5.2
both (n]* and [n) are m-normal. Suppose P is any prime n-ideal of S. Then by

Theorem 1.4.1, either P 2 (n] or P 2 [n). Without loss of generality, suppose

P o [n). Then by Theorem 1.4.2, P is prime ideal of S. Hence by Lemma 1.5.5,

P, =P A [n) is a prime ideal of [n). Since [n) is m-normal, so by definition P,

contains at most m minimal prime ideals Ry, Ry,..., Rm of [n). Therefore, P

contains at most m minimal prime ideals Ti, Tzs.-» Tm Of S where
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Ri=Tin [n), R=T, N [n),..
Ty,..., Tm, hence T,..

-» Ra= T M [n). Since n € Ry,..., Ry, N €
+» T are minimal prime n-ideals of S. Thus (ii) holds.
(ii)=>(i). Suppose (ii) holds. Let P, be a prime ideal in [n). Then by

Lemma 1.5.5, Py =P N [n) for some prime ideal P of S. Since

n e Py cP,so P is prime n-ideal. Therefore, P contains at most m minimal
prime n-ideals Ry,..., R, of S. Thus by Lemma 1.5.5, P, contains at most m
minimal prime ideals T,= R; " [n), Ty= R, N [n),....... , Tw= Ry M[n) of [n).
Hence by definition, [n) is m-normal. Similarly, we can prove that (n] is also
m-normal. Hence by Theorem 1.5.2, P,(S) is normal.

(ii) & (iii) easily hold by Theorem 4.1.7 replacing J by {n}.Other conditions

follow from Theorem 4.1.9.
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4.2 Generalizations of some results on Relatively m-Normal
Nearlattices

Several characterizations on relative Bp- lattices have been given by
Davey in [17]. Also Cornish have studied these lattices in [13] under the name

of relatively m-normal lattices. Then [56] have given the concept of relatively

m-normal lattices.

Recall that a distributive nearlattice S is called relatively m-normal if

each interval [x, y], X, yeS is m-normal.

Following result gives some characterizations of P,(S) which are
relatively m-normal nearlattices which is a generalization of [56, Theorem

3.5.1 and Theorem 3.5.2]. This also generalizes an analogues result in [17].

Theorem 4.2.1. Let S be a distributive nearlattice withn as a central element
of S. Then the following conditions are equivalent.
(i) Pu(S) is relatively m-normal.
(ii) For all X, Xi5--+5 Xn€ES
< <X >nm<x2>n_,_ ﬁ<xm>n,<x0>n>v<<xo>nr\<xz>n
N <XnZp <X Zn~ V.. v<<X,ZpMN...M
<Xm-1 7 <Xm>n~ = S.
(iii) For all Xo, X15--+5 Xms A
<< X Zp N <X Zn M- N<Xp2n <Z>>=<<X>pN..
A < Xm >m<z>n>v<<xo>nﬂ N <X 2, <Z>,> V...
V<X >N <X 2 e N < Xmel 2y <Z 23 > 2

(iv) For any m+1 pairwise incomparable prime n-ideals P,, Py,...,

P, PovVEP1V e VP =8,
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\4 ; ¥ '
(V) Any prime n-idea] contains at most m mutually incomparable
prime n-ideals.

Proof. ())=>(ii). Let zeS, consider the interval

[=[<X>n N <x1>nﬁ...ﬁ<xm>nm<z>m<z>n>] in P,(S). Then

<X Zn N <X Zn NN <Xp >N <z>, is the smallest element of the

interval 1. For 0 <i < m, the set of elements < t;>,=<x,>, N <x; >, N ....

M<Kl Zn N < Xit1 Zn N oo N <Xy >; N <z >, are obviously pairwise disjoint

in the interval 1. Since I is m-normal, so by Theorem 4.1.12, <t, >, v .... v

<tn >, =<z >, So by Theorem 1.3.7, zv n = Po V ... V pm Where p; = n.

Thus, <pe >n N <t > =<p; > N <t > =...=<pp>, N <ty >, =The

smallest element of [=<Xx,> N <x1> N ....N<Xp >N <Z>,.

Now, <po>n N <te > =<X,>n N <X >N ..o N <Xy >p N <z >, which

implies < p, >y N <to >p © <X >

Again,<po>nm<to>n=<po>nm <X 2N . N<Xp>pN<Z>
=<Pe>n M <X1>n N .o N <Xy >p, 88 <Po >y
c<z>,

This implies < po >y N <X >p N ooe N<Xm > E<Xo n

and $0, < po>n€ <<X1 >p M ... N <Xm > <Xo”n~>

<p;>q€ << Xy Py N <Xy > N oo N <Xy <X Zn =

ses
ceesssseesesscscsssactnesconsisRane

assssesecssseve st
...l‘l....'...ll.U‘ll'.0.-ll...!!..'....l.!.."..

< > >,
<pm>ne<<xo>n('\ <X1>nm---m<xm-l>n: Xm ~n

Therefore, zvnc <<Xj > M e OV <X 20, <Xo 70~
V<<Xo>nﬁ<X2>nﬁ---m<xm>n,<xl >n >

v v << Xo>n M <x1>nm...n<xm_1>n,<xm>n>,

By a dual proof of above we can easily show that

Z/\ﬂC<<X1>nm... m<Xm>n,<X0>n>

v<<X >n('\<X2>nf\...m<Xm>n,<X1>n>
0
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V..v<<x >
)(0 n N < }(] :>n m. .M < )(n1.l :>n, < ){HI :>n :>'
Hence by convexity,

ZE<<X1>nf‘\...ﬁ<xm>m<xo>n>
VSSXoZn N <X >N M < Xy Sy, <X Sp >
Ve VSSX 2N <X120 0 N < Xipp Sy < X S >
This implies (ii) holds.
(i)=>(iii). Suppose b € <<x,> N <x; >N ... "< Xy >y, <Z > >
Then by (ii) and Theorem 1.3.7, bvn=s,vs; V... vs,, for some
Soe E<<X1ZnN ... N <Xy >y, <Xy > >
S1 € <<X>nN<X2>1N ... N\<Xp >, <X >p>
Sm € <<Xo>nMN <X1>p N ... N <Xm1~n <Xm~n>
andso s;=n, i=0,1,2,...,m.
Thus <x;>, N ... N <Xp>nMN <S8 2p ©<Xo”n
<X PN <X >N oo N <Xy >y N <8 >yC <X~

.C.l.llll.llIl.l!.'..l.l‘...'..lll.lI"!.’l-II.I“...C.IIC'UI’.O'.l..l".'ll‘...l.!.

<Xo>nM <x1>nm...m<xm.1>nm<sm>g<xm>n.
This implies <X; >p N ... N <Xm Zn N <S8 ”n
BRI NP IE NN aES *E Y a R e
g<xo>nm<x1>nm...m<xm>nm<bvn>ng<z>n_
Hence, 50 So€ <<X;>nM ... N<Xnn <zZ>p=>

Similarly, s; € <<Xe>n N <X2Zn M .- N <X <Z>p >

Ooan-.a!uono.v-o.a.oio--onol.cv-c--ono-acono-tlololoulonic-ola‘loonc.‘.--oo-.

..'............'.......'.......uoco-n.o..uo--obnoln.tc--nnu.cnonoo'oo--ooo--c

sme<<xo>nr\<x1 >nr\...m<xm_1>n,<z>n>_

Therefore, bvn € <<X;ZnMN e M <X Py <2707
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V<<x, >
X0 n N <X >N .. A<x, >, <25, >

V..v<
VESX >N <X >N ... N <Xy > <Z
The dual proof of above gives

bAne<<xi>N...N<x,>, <zZ> >

VESKPnN<X> N A< Xy Sy, <25 >

Voo VSSX > N<x > nN... N <Xmg =p <Z>p>
Thus by convexity,

be<<xi>N...N<Xy>, <z>,>
VIS<X>nN<XH>N ... N<Xy>, <z>,>
Voo V<X >nN<X1 >N N <X S, <22, >
Therefore, << Xy, 20 T <Ry 25 5V s FY S 20, € B B0 B
<X PO e N <Xy >y, <2, >
VS<X>aN<X>N... N<Xpy>p, <Z>,>
V.o V<X, >N <X>p N N <Xyl Zpy <Z2p 2
Since the reverse inequality always holds, so (iii) holds.
(iii)=>(i). Suppose n<b <d.

Let X, X1,..., Xm€[b, d] such that x; A x;=b, for all i#].

Lett,=X1 VX2V evvrrnnenn V Xm
] = Xg W Xg MV s comusions V X
tn =Ko VXLV cevrereennne V Xmi

Clearly, n<b<t;<d and

XO_tI/\tZA .............. /\tm
X St Aty Avcieeerineenes Atm
Xm =L ATIA i A tmel
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'Ihen[b,d]f\{<<Xo>n,<b>n>V.....v<<x >n, <b >, >}
m ~ n» n

=[b,d] N {<<
[b,d]n{<<ti>n<ty> ... A <ty>,<b> >

<
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Hence PovPivPyv . o vP,=
(iv)=(v) is trivial by Stone's separation theorem.
(iv)=>(i). Let any m+1 pairwise incomparable prime n-ideals of S are
co-maximal. Consider the interval [b,d] in S with d=n, let P, P/, ..., Py
be m+1 distinct minimal prime ideals of [b, d].Then by Lemma 1.5.5, there
exist prime ideals P, Py,...., P, of S such that P, =P, [b, d], ;=
Py, M [b, d]. Since each P; is an ideal, so be P;. More over, n < b implies that
neP;. Therefore each P; is a prime n-ideal by Lemma 1.4.3, i=1, 2,....... , m.
Since Py, Py, ....,Py' are incomparable, so P,, Py,..., P, are also incomparable.
Now by (iv), Pov Piv...... v P, =S. Hence
Polv Bilv oot P! =P, Py o Py) i [ d]

=S N [b,d]

= [b, d].
Therefore, by Theorem 4.1.12, [b, d] is m-normal. Hence [n) is relatively m-
normal.

A dual proof of above shows that (n] is relatively (dual) m-normal. Since

P.(S) = (n]* x [n), s0 Py(S) is relatively m-normal.

We conclude this chapter with the following result which is also a

generalization of [17, Theorem 3.4.].

Theorem 4.2.2. Let S be a distributive nearlattice with neS as an upper
element. Then the following conditions are equivalent.

(i) Pu(S) is relatively m-normal.

(i) Ifb, 2, a15-++5 a,e€S with m(a, n, a) €<b>, (i#]j), then

<< <D TV v<<ay>,<b>>=S§.
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Proof. (1)=(ii). By Theorem 4.2.1(v), any prime n-ideal containing b contains

at most m minimal prime n-ideals belonging to < b >,. Hence by Theorem
4.1.7, with J = <b >, we have,

SE 10 S0 4, b L S vV <<ap>, <b>,>=8. Thus (ii) holds.
(ii)=(). Consider be[n) with b<c. Let g, Al,..., an€[b, c] with

aiAa=b (i#]), then by m(a;, n, a) =b € <b >,. Then by (ii),

<<y >, <b>>v ... v<<ap>,<b>>=§
So, [b,c] =(<<a,>, <b>>n[b,c]v....... V(<< ap >, <b>> N [b, c])
=<ao,b>[bc]v ....... v<am,b>[bc]

Hence by Theorem 4.1.8, [b, c] is m-normal. Therefore, [n) is relatively

m-normal.
A dual proof of above shows that (n] is relatively dual m-normal. Therefore, by

Theorem 1.5.2, Py(S) is relatively m-normal. g
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CHAPTER 5

n-ANNULETS AND  o-n-IDEAL OF A DISTRIBUTIVE

NEARLATTICE

Introduction.

Annulets and a-ideals in a distributive lattice with 0 have been studied
by W. H. Cornish in [12]. In a distributive lattice I with 0, the set of ideals
of the form (x]" can be made into a lattice Aq(L), called the lattice of
annulets of L. Ay(L) is a sub-lattice of the Boolean algebra of all annihilator
ideals in L. While the lattice of annulets is no more than the dual of the so-
called lattice of filets (carriers) as studied in l-groups and abstractly for
distributive lattices in [6]. From the basic theorem of [11] it follows that
A(L) is a sub-lattice of the lattice of all ideals of L if and only if each

prime ideal in L contains a unique minimal prime ideal.

Subramanian [63] studied h-ideals with respect to the space of
maximal I-ideals in an f-ring. Of course Cornish’s o -ideals and his h-ideals
were both suggested by the z-ideals of Gilman and Jerison [19]. On the other
hand, Bigard [8] has studied a -ideals in the context of lattice ordered

groups.

By [12], for an ideal J in L we define a(J) = {(x] : xeJ}. Also for a

filter F in A(L) E(F) ={xel: (x] eF}. It is easy to see that a(J) is a

filter in A(L) and & () is an ideal in L. Anideal J in L 1is called an
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aideal if o ofJ) =J. Recently [52] has studied the annulets and o-ideals in
a distributive nearlattice with 0 and generalized most of the results of

[12]. By [52], the set of all annulets of a distributive nearlattice S with 0 is
denoted by A,(S), which is a dual sub-nearlattice (join sub-semilattice with

the lower bound property) of A(S), the Boolean algebra of annihilator
ideals of S. Also by [52], for an ideal J of a distributive nearlattice S with 0,

we have a()) = {(x]": xeJ} and ;(F) ={xeS: (x] eF}, where F is a filter in

Aq(S). [52] have shown that a(J) is a filter in A(S), while ;(F) is an

ideal. By [52] an ideal I of a distributive nearlattice S is called an o-ideal if

aofl)=1.

In this chapter we have generalized these concepts around a central
element n of a distributive nearlattice. We have introduced the notion of
n-annulets and a-n-ideals in S. For an element n of a distributive nearlattice
S, the lattice of n-ideals I(S) is a distributive algebraic nearlattice, and so it
is pseudo-complemented. We denote the set of annihilator n-ideals (the n-

ideals J such that J=1"") by S«(S).

By [20, Theorem 4, P-54], (Ss(S); My ¥, *, {n], 8) is a Boolean

algebra which is not necessarily a sublattice of I(S).

We denote the set of all n-ideals of the form < x>, by A(S). We

call the n-ideals of the form < x>, by n-annulets. For a central element n this

is a join sub semi-lattice of Sy(S). In fact it has the lower bound property.

The set of all n-annulets is denoted by Ax(S).
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In section 1, we have studied n-annulets when n is central and

generalized several results of [52]. We have proved that A,(S) is a join sub

semi-lattice of I,(S) if and only if Py(S) is normal. We have also shown that
Aq(S) is relatively complemented if and only if P(S) is sectionally quasi-

complemented. Finally, we have given a characterization for P,(S) to be

generalized Stone in terms of A,(S).

In section 2, we have introduced the notion of a-n-ideals. We have
shown that the n-ideal n(P) where P is a prime n-ideal is an a-n-ideal.
Moreover, all the minimal prime n-ideals are a-n-ideals. Then we have
generalized all the results of [12] and [52] in terms of a-n-ideals. We have
shown that P,(S) is disjunctive if and only if each n-ideal is an o-n-ideal.
Also, P(S) is sectionally quasi-complemented if and only if each prime
o-n-ideal is a minimal prime n-ideal. We conclude the thesis by

characterizing P,(S) to be generalized Stone in terms of a-n-ideals.
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5.1 n-Annulets of a distributive Nearlattice

For a distributive nearlattice S with 0, I(S), the lattice of ideals of S is

pseudo-complemented. Recall that an ideal J of L is an annihilator ideal
1=J". The pseudo-complement of an ideal J is the annihilator ideal

' = {xeL: x A j =0 for all Jel}.It is well known by that the set of
annihilator ideals A(S) is a Boolean algebra, where the supremum of J and
K in A(S) is givenby J v K=" nK")". Ideals of the form (x]" (xeS) are
called the annulets of S. Thus for two annulets (x]" and (y]", ]" v (y]" =
((x]M 7y (y]“)* =(x A y]“)* =X A y]'. Hence the set of annulets Ay(S) is
join sub-semi-lattice of A (S). In fact [52] has shown that A,(S) has the
lower bound property. Therefore it is a dual subnearlattice of A(S). In
general A(S) and A(S) are not join subsemi-lattices of I(S). It is mentioned
in [52] that (x]" N (y]" may not exists in Ay(S). So Ay(S) is not necessarily a
meet semilattice. But for x, yeS if x v y exists then (x]" n (y] =

(x v y] €Aq(S).

For a distributive nearlattice S with neS, the lattice of n-ideals I,(S)
is a distributive algebraic lattice with {n} and S as the smallest and largest
elements respectively. If n is a medial element, then for an n-ideal J of S, the
pseudo-complement is the annihilator n-ideal
J' = {xeS: m(x, n, j)=n for all jeI}. We denote the set of annihilator
n-ideals by S,(S), where the supemum of J and K in Sy(S) is given by
IvkK=( e K*)*. Recall that the n-ideals of the form < x >, (xeS) are the

n-annulets of S. We denote the set of n-annulets of S by Ax(S). Thus for two

- *
n-annulets < x>, and <Y >n,

ook
* *E ™y = <X>pM >)
<x>, v <y >, =(<xZ NSY 7 ) =(€XZn Y7
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=<m(x, n,y)>,.

Thus for a medial element n, Ax(8) is a join sub-semi-lattice of

Sa(S). Su(S) is a Boolean algebra with {n}" = S as the largest element and
S" = {n} as the smallest element. Of course, S
lattice of I(S).

a(S) is not necessarily a sub-

We start this section with the following result.

Proposition 5.1.1. Let S be a distributive nearlattice with n as a medial
element. Then the set of n-annulets A,(S) of S is a dual nearlattice and it
Is a dual sub-nearlattice of the Boolean algebra {Sa(8) ; N, v, *, {n}, S}.
Moreover, A«(S) has the same largest element S ={n}" as Su(S).
Proof. We have already shown that A(S) is a join subsemilattice of
Sa(S). Now suppose <x >, D<t>; and<y>, o<t>, for some
X, y, teS. Then <x>, N <y>n*=(<x>n'ﬁ <y>) v <t>)

=(<xX> v <t>)N(Ey> v <t>y)

=(<x> A<t ) Ny > n<t>")

=(<x>N<t>) ARy N<t>)"

=<m(x,n, t) >, N <m(y,n,t)>,

= (<m(x, n, t) >, v <m(y, n, t) ) »
Since <m(x, n, t) >; v < m(y, 0, t) >, € <t >y, 50 by [30, Corollary 1.7]
<m(x, n, t) >, v < m(y, 0, t) > = <r>, for some res. Therefore,

A.(S) is a dual nearlattice. Since S = <n >p € Ax(S), so it has the same

largest element as Sy(S). o
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Proposition 5.1.2. Let S pe g distributive nearlattice with n as a medial

element. Then Ay(S) has a smallest element (then of course it is a lattice) if
and only if S possess an element d such that <d>." = {n}.

Proof. If there is an element de$ with < d >." = {n}, then clearly {n} is the

smallest element in A,(S).

Conversely, if Ay(S) has a smallest element < d >,". Then for any xeS,
<X>, =<x> v <d>'=<m(x, nd)>,"
Thus for any ye< d >, implies <y >," = < m(y, n, d)> =<n> =8, so

that y = n. Therefore, <d >, = {n}. g

Now we generalize [12, Proposition 2.2] and [52, Theorem 1.3].

Theorem 5.1.3. Let S be a distributive nearlattice with n as a central
element. Then P(S) is normal if and only if Ax(S) is a dual sub-nearlattice
of 1.(S).
Proof. Let <x >, , <y >, €Aq(S). Then by Theorem 2.2.7, P(S) is normal
if and only if <x>, V<y>n*=(<X>nﬁ<Y>n)*

=(<x>N<y>)

= (<x> A<y> )

=<x>" v <y>.

That is, v in Ay(S) is same as Vv in I,(S), which proves the proposition. g

A distributive nearlattice S with 0 is called disjunctive if for

0 <a<b(a bel) there is an element xeS such that a Ax=0 where
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<x <Db. This i -
0 his is also known as sectionally semi-complemented distributive

nearlattice. It is easy to check that S is disjunctive if and only if (a]" = (b]’
implies a=b for any a, be§.

Similarly, a distributive lattice I, with 1 is called dual disjunctive if for

c<d<1(c, deL), there is an element Y€L such that d v y = 1 where

¢ <y < 1. Since for a central element n of S, Py(S) = (n]® x [n), so Py(S)
is disjunctive if and only if (n] is a dual disjunctive lattice and [n) is a
disjunctive nearlattice. By [59], we know that P,(S) is disjunctive if and only

. ¥k
if<a>,=<a>, foreachaes.

Following result is a generalization of [12, Proposition 1.3] and [52,

Proposition 1.4].

Proposition 5.1.4. For a distributive nearlattice S with a central element
n, if Py(S) is disjunctive and normal, then P\(S) is dual isomorphic to
AL(S). Hence 0, 1€S (then of course S is a lattice) if and only if there is an
element deS such that <d>, = {n}.
Proof. Defineg: Py(S) — An(S) by ¢ (<a>p)=<a >, . Then for
<a>, <b>,ePy(8), ¢ (<a>N<b>)=0¢ (<m(,n, b))

=<m(a, n, b) >

=(<a>N<b>)

=<a>"v<b>

=p(<a>)Vve(<b>),as P,(S) is normal.

Moreover, suppose < a>; V <b>n exists in P,(S) and

Y
- SsY=@(<c>)=<c>, =
<a>,v<b>, < ¢ >, Then q)(<a>nV<b =0 ( n) n

* ¥ =
(ca>;v<b>; =<a~ N<b.
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Therefore, ¢ is a dual homomorphism from P,(S) onto A,(S). Now let (0]

(<a>)=¢(<b>,). Then<ga > =<b >, ,andso <a >, =<b>,

Thus by [59], <a>,=<b>,_ as Pi(8) is disjunctive. Therefore, P,(S) is dual
isomorphic to A,(S).
Finally, if 0, 1€S, then [0,1] is the largest element of Py(S) as n is

central. Thus from the dual isomorphism, A,(S) has a smallest element. Then
by Proposition 5.1.1, there is an element deS such that

<d>'= {n}. Conversely, if for some deS, <d>,"= {n}, then

Aq(S) has a smallest element and so P,(S) has a largest element which

implies 0, 1€8S. g

Following result is a generalization of [12, Proposition 2.5].

Proposition 5.1.5. For a generalized Stone nearlattice S, AyS) is a
relatively complemented dual sub-nearlattice of 1(S).

Proof. From [52(a), Theorem 1.7] a generalized Stone nearlattice S is
normal. So by [52, Theorem 1.3], Ay(S) is dual sub-nearlattice of I(S). We
therefore write v as v. As Ay(S) is distributive with largest element S,
Ay(S) will be relatively complemented if and only if each interval of the
form [I, S], IeAy(S) is complemented. Thus let J = [(x]*, S] be an interval
in Ao(S) and let (y] €J. As S is generalized Stone G v =S and

(]’ N (y]" = (0] always holds. Hence ((x] N G V(N1 =(x]and

(]~ (1) ~ (x] A (v]™ = (0]. Thus by [30, Theorem 1.9],

(x] " (y]" = (a] for some aeS. Asa<X (x]" < (a]’, and so(a] €J. Also (a] c
O s0 (51" < (a]". Thus (&I’ v (y1" = 8. Now (@' Vi aYel Rl CINYCY

*
.

= (0]. This implies (a]’ N (Y] < (x]
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But (x]" < (a]’, (¥]". Hence (x]' = (@]’

Nyl Therefore, (a]" is the required
complement of (y] in the interval J.

Now we generalize the above result for n-annulets.

Theorem 5.1.6. Let n be a central element of a distributive nearlattice S. If

P.(S) is generalized Stone, then Au(S) is a relatively complemented dual sub-
nearlattice of 1(S).

Proof. Since every generalized Stone nearlattice is normal so by Proposition
5.1.3, Ax(S) is a dual sub-nearlattice of I(S). We therefore replace v for v.
Since Aq(S) is a distributive dual nearlattice with largest element S, so A,(S)
will be relatively complemented if and only if each interval of the form

[, 8], IeAL(S), is complemented. Thus let J = [< x >,", S] be an interval in
Ax(S) and let <y >," € I. As P,(S) is generalized Stone, so by [59, Theorem
246],<y>"v<y> =Sand <y>, N <y>, ={n}always holds.
Hence (KX > N <y >, )V (KX> N <y>,")=<x>,and

(<KX>N<y> )N (Kx>nN<y >.) = {n}. Then by [30, Theorem 1.9]
both <x> N<y > and<x>,N<y >, are principal.

Let<x>, N<y>, =<a>, Then<a>;< <x>;and S0<x>, C
<a>, . Thus <a>, €J. Also, <a>c <y >, implies <y > c<a>,,and
SO <a>n'v<y>n*=S.Now<a>n*ﬁ<y>n*ﬁ<X>n=

<a>, n<a>,= {n} implies <a>, N<y>, ©<x> .But
<x>'c<y>,,<a>,.Hence<a > A <y>y =<x>,andso<a>, is

the required relative complement of <y >n inJ. o
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Conside i = . ]
r the interval I = [0, X], n < x in a distributive nearlattice.

+ —
For any ael, we define (a]" = {sel: s n a = n}. This is of course an ideal in I

and is the annihilator of a with respect to I. Dually for bel = [y, n], we

+d _ ) _ )
define [b)™" = {teJ:tvb= n}. It is easy to check that this is a filter in J and

is the dual annihilator of b with respect to J. Clearly, both I and J are also
n-ideals.

Similarly, we define
(i) Foranyx e(n], [x)™={t<n:tvx= n} and

(i) Foranyxe[n), (x]"'={t>n:tAx=n}.

Following lemmas are needed for the proof of next two results.

Lemma 5.1.7. Let S be a distributive nearlattice and neS be an upper
element of S. Let a <n < b, then for any eS8,

(i) <x>, Nn[an]=[avEna n))", dual annihilator with
respect to [a, n].

(ii) <x >y M [n, b]=((x vn) Ab]", annihilator with
respect to [n, b].

Proof. Let pe<x >, N [a,n]. Thena<p<nandm(p, n,X)=n.

Thus, n=(pvx)/\(pvn)/\(xvn)=(pvx)/\n=pv(xxxn)
=pv(av(x An)),andsope [av (x A n))*d. Here p Vv x exists by the upper
bound property of S and n is an upper.

Conversely, let pe[a v (X A n)). Thenpvav (XA n) =n, and so
pv(xAn)=n as asp=n Thus, n=(p Vv x)A(p VD)
=(pvx)/\n:(pvx)An/\(Xvn)=(PVX)/\(PVH)/\(XVH)
= m(p, n, x), which implies pe<X >, andsope<x >n N [a 0.

This implies (1).
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A dual proof of (i) proves (ii).

Similarly, we have the following result.

Lemma 5.1.8. Let S be a distributive nearlattice and n be an upper element
of S. Then for any xe8,
@) <x>"Nn@]=xAn" in (n] and

(i) <x>, n[n)=&vn] in [n). g

Lemma 5.1.9. Let S be a distributive nearlattice and n be an upper element
of S.
(1) Suppose 1= [n, x]; n<X. Then for any a, bel,
(a]" < (b]" implies <a>, c<b>,.
(ii) Suppose J =y, n]; y <n. Then for any a, bel,
[2)" < [b)" implies <a>, c<b>,.
Proof. (i) Let pe<a >_". Then m(p, n, a) =n which implies
(@aap)vn=n Now (pvn)axel,andan[(pvn)Ax]
=(arpAx)Vv(@aaxan)=(aAp)vn=n Thisimplies (pvn)Axe (a]"
c (b, and so (p v n) A xAb=n. Thus, (p vn) Ab=n. Therefore, n=(p
vn)/\b=(pvn)/\(bvn)/\(pvb)=m(p,n,b), and so p € <b>,". Hence
<a>'c<b>,.
A dual proof of above proves (ii). o

A nearlattice S with 0 is called quasi-complemented if for each xeS

/= "=0,thatis,x'n X1 =
there exists 'S such that x A X' =0and (x v x] = (0] ]" N (x]

(0]. This also equivalent to the condition that for each x€S there exists
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x’ € S such that (x]" = (x’]*,

Dually we can define a dua] quasi-complemented lattice L with 1.

Since for a central element n of S, P,(S) = (n]" [n), so we have,

Corollary 5.1.10. IfS is a nearlattice with n as a central element of
S, then

(1) P«(S) is quasi-complemented if and only if (n] is dual
quasi-complemented and [n) is quasi-complemented.

(i) Pu(S) is sectionally quasi-complemented if and only if
(n] is sectionally dual quasi-complemented and [n) is

sectionally quasi-complemented.

The following theorem is a generalization of [52, Theorem 1.7].

Theorem 5.1.11. Let S be distributive nearlattice with n as a central
element. Then A,(S) is relatively complemented if and only if Py(S) is
sectionally quasi-complemented.

Proof. Suppose Ay(S) is relatively complemented. Let I = [n, x]. Consider
acl. Then < x >n* c<a >n* c {n}* = S. Since [< x > S] is complemented
in A,(S), there exists weS suchthat < a>, N<w>,"=<x>, and
<a>'v<w>, =S

Now, S=<a>y v <W> =(<a>" n<w>")

—(<a>,n<w>) = (Kaxmn<w >.). This implies

<a>nﬁ<W>n={n},andso<a>nn<w>nm<x>n={n}_
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But<w>nﬂ<x>n=<(w/\x)v(wx\n)v(xx\n)>n=<(W/\X)Vn>n'
Thus,n=(aAn) v (an (WAX)vn) v ((WAX)vn)

=a A ((WAX)Vvn), where (w A X) v nel. On the other hand,

<a>; N<w> =<x>" implies <a>; N<w>," " <x>,={n} and so
by Lemma 5.1.7, (a]' » (W A x) v n]* = {n}. This implies I is quasi-
complemented and so [n) is sectionally quasi-complemented. A dual proof of

above shows that (n] is sectionally dual quasi-complemented, and so by

Corollary 5.1.10, Py(S) is sectionally quasi-complemented.

Conversely, suppose P,(S) is sectionally quasi-complemented. Since

A, (S) is distributive, it remains to prove that the interval

[<x >n*, S] is complemented for each xeS. Let <y > e [<x >.". S
Then<y>, =<x>, v < y >, =<m(x, n,y) >, . Now consider

I=[n, x v n]in [n). Then (x v n) A (y v n)€l. Since by Corollary 5.1.10,

I is quasi-complemented, so there exists wel such that

WAV A(yvn)=n and W' N ({(xvn)Aly v =

{n} = (x v nJ". Thus by Lemma 5.1.9, <w v ((x vn) A (y v D)) >
=<xvn>,andso <w> N<EVNOA(VI)> =<xvn>,.
Dually considering the interval [x A n, n] in (n] and using some argument
there exists ve[x An, n] such thatv v (x A n)v(yAn)=n

and<w>, N<EA D)VFA n)) >p =<XA n>,.

Then [v, w] N <y >, = [v, w] n<m(x,n,y) By, =

[v, w]' M [m(x,n,y) A D, m(x, 0, y) vV n]' =<y, N<W>, N

<m(xX,n,Y) AD>, N<mX,n, y)vn>n'=<V>n*ﬂ<W>n' M

<A DVEA D) N<SEY WA Y M) =
<X/\n>n*m<xvn>n‘=[XAD:XVH]*=<X>n*-

Also, [v, w]' v <y>n =[vs W] v <m(x 10,¥) >

= (v, Wl N [xA) v An), kv AL v))
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= [vv(X/\n)v(y/\n),W/\(xvn)/\(yvn)]*
={n} =8.
Since n is central, 50 [v, w] = <t >, where <t >," e [<x>,,S]

which is the required relative complement of <y >,". g

In [52, Theorem 1.5] Cornish has proved that if S is a distributive
nearlattice with 0, then S is quasi-complemented if and only if A4(S) is a
Boolean sub-algebra of A(S). But we are unable to get such a result for
Aq(S), when Py(S) is quasi-complemented. We could not prove that there
exists deS with <d >," = {n}, when P.(S) is quasi-complemented. We leave
it to the reader as an open question. Does A,(S) possess a smallest element

when P,(S) is a quasi-complemented nearlattice with n as a central element?

But following the same technique of proof of Theorem 5.1.11, we can

establish the following result.

Theorem 5.1.12. Let S be distributive nearlattice with n as a central

element. Then,
(i) Pu(S) is Boolean implies P(S) is quasi-complemented.
(ii) IfPA(S) is quasi-complemented and Ax(S) has a

smallest element, then AL(S) is Boolean. g

By [52(a), Theorem 2.3] we know that a distributive nearlattice with 0
is a generalized Stone nearlattice if and only if it is both normal and
sectionally quasi-complemented. So we conclude this section with the

following result. This also gives a nice characterization of P,(S), which are

generalized Stone.
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Theorem 5.1.13. Let S be q distributive nearlattice with n as a central
element. Then P(S) is generalized Sione if and only if A\(S) is a relatively
complemented dual sub-lattice of L.(S).

Proof. Suppose Py(8) is generalized Stone. Then it is normal and sectionally
quasi-complemented. Thus by Proposition 5.1.3. and Theorem 5.1.11, Ax(S)
is a relatively complemented sub-lattice of I1,(S).

Conversely, if Ay(S) is a relatively complemented dual sub-nearlattice of
I4(S), then again by Proposition 5.1.3. and Theorem 5.1.11, P,(S) is normal
and sectionally quasi-complemented. Therefore, by [52(a), Theorem 2.3],

P.(S) is generalized Stone. g

98



Chapter 5

5.2 a-n-Ideals in a distributive Nearlattice

Recall that for an ideal J in a distributive nearlattice S with 0,
al) = {(x]": xeJ }, which is a filter in A,(S), and conversely
o "(F) = {xeS: (x]"€F} is an ideal in S, when F is a filter in Ay(S). Clearly
for any ideal I, I € a“a(I). An ideal I is called an a-ideal if 1 = o a(l).

Now for any n-ideal J in a distributive nearlattice S with a central
element n, we define a(J) = {< x >,": xeJ} and conversely
a“(F) = {xeS: < x >, €F}, where F is any filter in A(S). Note that here
A(S) is a dual nearlattice (i.e. a join semi-lattice with the lower bound
property). A non-empty subset F of a dual nearlattice A is called a filter if
(i) for any x,yeF if x Ay existsthen x nyeF and
(ii) xe€F and t2x (teA) implies teF.

We start this section with the following result which is a

generalization of [52, Proposition2.1].

Proposition 5.2.1. Let L be a distributive nearlattice and neSs is central.
Then
(a) For any n-ideal J, a(J) is a Sfilter in Ay(S).
(b) o (F) is an n-ideal in S, when F is any filter of A(S).
(c) IfLy, L are n-ideals, then 1, c 1 implies that o(I;)
a(lp); and if F1, Fy are filters in Ay(S), then
F, c F, implies o (F1) < o (Fa).
(d) For any filter F of ALS), oo (F)=F.

(€) The map1—» a"a(l)= o (a(l)) is a closure operation
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on the lattice of n-ideals. That is,

®) o« (@ a(D) = o o).

(i) I < aoyl).

(i) T< T implies o o(l) € o o(I) ; for any n-ideals 1

and] in S.

Proof. (a) Let<x>," <y >,"ea(]) with x, yeJ.
Suppose < x>, N < y >, exists in A.(S) and suppose  <x >, N
<y > =<t >, for some teS. Then from the calculation of the proof of
Proposition 5.1.1,< x> "<y >,"=(<m(x, n, t) >, v <m(y, n, t) >,)°
=([xAan)v(an),xat)yva]v[yAan)v(tan),(yAt)vn])
=[xAyAD)V(EAD), @EA)V(yA)vn] =<r>]
as n is central, where rAn=(XAyAn)v (tAn)
andrvn=xAt)v(yat)vn.
Observe that x Ay A n, nel. So by convexity X Ay An <r An<nimplies
r Anel. Again, x vnel. Son < (x At) vn <xvnimplies
(x At) v nel. Similarly, (y A t) v nel. Therefore,r vn=(xAt)v
(y A t) v nel, and so again by convexity of J, rel. Hence <x >"n< y > '
ea(J). Now suppose < x >n*eoc(J) with xeJ and < s >, D <x >, for some
<s>,"eA(S). Then <s >'=<g> v<x> =<m(,n,X) >’ andx An
< m(s, n, X) < x v n implies by convexity that m(s, n, x)el.
Hence < s >, ea(J), and so a(J) is a filter.
(b) Since S is the largest element of An(S), so SeF. Then
S = {n}" implies neo" (F). Letx <t <y with x, yea (F).
Now x < t implies <t An>p &€ <X AN>p € <X > and S0<X>p C
<tAn >n‘.
Similarly, t < y implies <y >"c<tvn>,.Thus<tAn > <tvn>, eF

as F is a filter. Therefore, <t>; =(<tAn>v<tvn >0)
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= > * * .. .
tAn>y N<tvn>.eF. This implies tea"(F) and " (F) is convex.

Now let X, yea " (F). Then < x >, <y>"cF. Now <xAn > o<x >,
and <yAn>'o<y>" imply<x an >, <yAn>, eF.

Thus <XAy/\n>n"=(<x/\n>nv<y,\n>n)'=<x,\n>n"m<y,\n>n'
€ F andso X Ay A nea“(F). Similarly, <x vn>," 5<x >, and
<yvn> o<y>, imply <xvn>,,<yvn>,"eF, andso xvn,

y v nea(F). Then by convexity XAyAn<xAy<xvn implies x A ye
o (F). Also if x v y exists, then <x vyvn>, =
(<xvn>v<yvn>)=<xvn>'n<yvn>, eF. This implies
xvyvnea (F). Thenx AyAn<xvy<xvyvn implies x v ye
a“(F), and hence o (F) is an n-ideal.

(¢) This is trivial.

(d) Suppose < x >, €F. Then xea(F) and so < x >, ea(a(F)).
Therefore, F — a(a"(F)). Conversely, let <x >, ea(a(F)).

Then <x>," =<y>, for some yea (F). Thus <y >,"€F,

and so <x >, eF. That is a(a“(F)) c F, and so F = oo (F)).

(e) (i) Since o(l) is a filter in AL(S), so by (d) aa™ () =o(l).
Therefore, o (aot (o)) = o o(l) ;

That is, o o(a" a(l)) = a“a (I).

(ii) is obvious.

(iii) follows from (¢). o
An n-ideal I is called an o-n-ideal if a“ol) = I. Thus a-n-ideals are

simply the closed elements with respect to the closure operation of

Proposition 5.2.1.
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Following result is a generalization of [52, Proposition 2.3] in terms of
n-ideals.

Proposition 5.2.2. Let S be a distributive nearlattice with n as a central
element. Then o-n-ideals of S form a complete distributive nearlattice
isomorphic to the nearlattice of filters, ordered by set inclusion of Aq(S).
Proof. Let {I;} be any class of a- n-ideals of S. Then o a(l;) = I; for all i.
By Proposition 5.2.1, N T; € o“ o I)). Again, a“ (N L) < a“a(l;) = I; for
each i. Thus a“a(N L) = N 1;, and so a“a(n ) =N ;. Hence N I;is an
a-n-ideal. Therefore, by [20, Lemma 14, P-29], set of

a-n-ideals is a complete nearlattice, and it is distributive as S is so.

Now o is onto and both a, o are isotone by proposition 5.2.1(c).
Moreover, for a-n-ideals I, o o(I)=1I and by Proposition 5.2.1 (d),

aa"(F) = F for any filter F of Ay(S). Therefore the map o is an

isomorphism from the nearlattice of a-n-ideals to the nearlattice of filters of

An(S) O

Following theorem gives a nice characterization of a-n-ideals which

also generalizes [12, Proposition 3.3] and [52, Proposition 2.5].

Theorem 5.2.3. For a central element n of a distributive nearlattice S, the
following conditions are equivalent.

(i) 1is an o-n-ideal.

(ii) For %,y € S, <X > =<y>n' and x €1 implies y € L.

ok i . i
(iii) 1=J<x>n where \ Issel theoretic union.

xel

Proof. (i)=>(ii). Suppose I is an o-n-ideal. Then a“a (I)=1. Let
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X, YES with <x >n‘ =<y >,,* and xel. Then < x >n'eon(I)

and so <y>," e ofI). This implies ye o (o) =1.

(i)=>(1)- Suppose (ii) holds and I is any n-ideal. I c oo (I) always holds.
Thus suppose xea“a (I). Then < x >n*ea(I). This implies

<x>, =<y>."for some yel. Then by (ii), xel. Therefore

a“a()cT andso a“a (I) =1I; in other words I is an o-n-ideal.

(i) = (iii). Clearly I c | J<x >.". Now let xeI and ye<x >, .

xel
* * * * * *
Then<x>, c<y>,. Thus <y >, =<x>, v <y> =<m(x,n, y)y>, .
Since xe€l, so by convexity x A n < m(x, n, y) < x v n implies m(x,n,y)el.

Hence by (ii) yel which implies<x>," cI andso | J<x>, cL

xel

Therefore, (iii) holds.
(iii)=(ii). Suppose (iii) holds and < x >, =<y >, with xel.
Then < x >, =<y >,". This implies ye<y >, =<x >,"". Hence by (iii),

yel J<x >"" =1 and so (ii) holds. g

xel

By [12] and [52], we know that every minimal prime n-ideal is an o-

ideal. Here we extend the result.

Proposition 5.2.4. For a central element n of a distributive nearlattice
every minimal prime n-ideal is an o-n-ideal.

Proof. Let P be a minimal prime n-ideal. Suppose xeoa (P). Then <x >,
co(P). So <X >' =<y >, for some yeP. Since P is minimal so by
Theorem 2.1.4, <y >n" c P. Thus, <X >,," c P. This implies

xe< x >  P. Therefore, o (P) < P. Since the reverse inclusion is
TP

trivial, so oo (P) = P. Hence P is a-n-ideal. g
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Recall that for prime n-ideal P of a distributive nearlattice S,

n(P) = {yeS: m(y, n, x) = n for some x e S — P}. Clearly n(P) is an n-ideal

and n(P) c P. We already know from [12] that O(P) is an a-ideal. Following
result is an extension of it.

Proposition 5.2.5. For a prime n-ideal P, n(P) is an a-n-ideal.

Proof. Let xea” a(n(P)). Then <x >, ea. (n (P)). Thus <x >, =<y >, for
some yen(P). Then m(y, n, t) =n for some t € S — P. This implies
<y>N<t>={n}andso<t> c<y >"=<x>,". Therefore,

<xX>, c<t>. Thus, x e<x >, < <t>, which implies m(x, n, t) =n
and so xen(P). Hence a“a(n(P)) < P. Since the reverse inclusion is trivial,

so " a(n(P)) = n(P). Therefore, n(P) is an a-n-ideal. g

Following lemma is needed to prove our next theorem. Latif [35] and
Akhter [59] have proved that for a central element n of S, Py(S) is disjunctive
if and only if <x >, =<x >, for each xeS. Here is a slight improvement of

that result.

Lemma 5.2.6. For a central element n of a distributive nearlattice S,

P.(S) is disjunctive if and only if <X > =<y > implies <x >, =<y >, for
some X, YES.

Proof. Suppose <X > =<y >," implies < x >, = <y >. Since for xeS
<x>, <X >_*" always holds, so suppose yE< X >."". Then

<y >, 5 < x>, . Thus, x> =<x> A<y >,

=[XKAYADXVYV n]' =<t >n', as n is central. Then by the given

condition,<x>n=<t>n.Thus<x>n=[X/\y/\n:XVyvn]andSOby

convexity, ye< X >p.
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Therefore, <x >," < x >p, and s0 <x >, =<x > ",

Hence by [59], P(S) is disjunctive.

Conversely, let P.(S) be disjunctive. Then for each X€S, < X >, =< X >, .
Therefore, for x, yeS, <x>,"=<y>"implies <x >, =<y >,", and

SO<X>,=<y>.

Now we given a generalization of [52, Proposition 2.6].

Theorem 5.2.7. Let S be a distributive nearlattice with n as a central

element. Then the following conditions are equivalent.
(i) Each prime n-ideal is an o-n-ideal.
(i) Each n-ideal is an o-n-ideal.
(ii1) P.(S) is disjunctive.
Proof. (i)=(ii). Suppose I is an n-ideal. Then by [59],
I=n {P: P o1, P prime n-ideals}. Then a“a () =a " a["{P P o 1}]
=N {a“aP): P} =n{P: P21} =1(by (1)).
Therefore, (ii) holds.
(i)=>(i) is trivial.
(ii)=(iii). Suppose < x>, =<y>, for somex,yeS.
Since by (ii), < X >, is an a-n-ideal and Xxe<X >y, 50 by Theorem 5.2.3,
ye< X >,. Thus <y >, € <x > Similarly, <x>, € <y >n.
Therefore, < x >, = <Y >, and so by Lemma 5.2.6, Px(S) is disjunctive.
(iii)=>(ii). Let I be an n-ideal. Suppose x& a."a. (I). Then <x >, € a(l) and
s0<x>, =<Y > for some yel. Thus by (iii), < x >;= <y >,, which implies
xel. Therefore, a“a () c L. Since the reverse inclusion is trivial,

so ata()=1I and I isan a-n-ideal. g
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Proposition 5.2.2. implies that there is an order isomorphism between
the prime o-n-ideals of S and the prime filters of A,(S). It is not hard to

show that each o-n-ideal is an intersection of prime o-n-ideals.

Following theorem is a generalization of [12, Theorem 3.6] and [52,
Theorem 2.9]. For this we need the following lemma. It was proved for

bounded lattices in [41] and announced in general in [40] ; an explicit proof
is given in [26, P-276].

Lemma 5.2.8. A4 distributive nearlattice with 0 is relatively complemented if

and only if its every prime filter is an ultra-filter (proper and maximal).

Theorem 5.2.9. Let S be a distributive nearlattice with n as a central
element. Then the following conditions are equivalent.
(i) Pu(S) is sectionally quasi-complemented.
(ii) Each prime a-n-ideal is a minimal prime n-ideal.
(iii) Each a-n-ideal is an intersection of minimal prime
n-ideals. Moreover, the above conditions are equivalent fo
P.(S) being quasi-complemented if and only if there is an
element deS such that <d 3 = {n}.
Proof. (i)=>(ii). Suppose Py(S) is sectionally quasi-complemented. Then by
Theorem 5.1.10, Ay(S) is relatively complemented. Hence its every prime
filter is an ultra-filter. Then by Proposition 5.2.2. each prime a-n-ideal is a
minimal prime n-ideal.
(ii)=(iii). From the isomorphism between the prime a-n-ideals of S and the

prime filters of Aq(S). We see that each a-n-ideal is an intersection of prime

o-n-ideals. This shows (i)=>(iii).
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(iif)=>(ii) is obvious,
(i)=(i). suppose (ii) holds. Then by Proposition 5.2.2, each prime filter of

Ax(S) is maximal. Then by Lemma 5.2.8, A\(S) is relatively complemented,

and so by Theorem 5.1.11, P,(S) is sectionally quasi-complemented. g

We conclude the thesis with the following result which is a

generalization of [12, Theorem 3.7] and [52, Theorem 2.9].

Theorem 5.2.10. Let S be a distributive nearlatt'ice and neS is central.
Then Py(S) is generalized Stone if and only if each prime n-ideal contains a
unique prime o-n-ideal.

Proof. Since minimal prime n-ideals are a-n-ideals, so by a given condition,
every prime n-ideal contains a unique minimal prime n-ideal. Hence by
Theorem 2.2.7, P,(S) is normal. Also, by the given condition each prime
a-n-ideal contains a unique prime o-n-ideal. Since each minimal prime
n-ideal is a prime o-n-ideal, so each prime a-n-ideal is itself a minimal
prime n-ideal. Hence by Theorem 5.2.9, P,(S) is sectionally quasi-
complemented. Therefore, by [52(a), Theorem 2.3], Pu(S) is generalized

Stone.
Conversely, if P,(S) is generalized Stone, then by [52(a), Theorem 2.1.7],
P,(S) is normal, and so by Theorem 2.2.7, each prime n-ideal contains a

unique minimal prime n-ideal. Thus the result follows as each minimal prime

n-ideal is a prime a-n-ideal. o
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