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Abstract

In most trcatments of nonlincar oscillations by perturbation method. only periodic oscillations
are (reated; transients are not considered. Krylov and Bogoliubov lléve used a perturbation method to
discuss transients in the second order autonomous systems with small nonlinearities. The method is
well known as an 'averaging method' in the theory of nonlinear oscillations. Later the method has
been amplified and justificd by Bogoliubov and Mitropolskii. In this disscrtation, we investigate somwe

third order nonlinear oscillations based on the work of Krylov-Bogoliubov-Mitroplskii (KBM).

First, nonlinear oscillation described by a third order ordinary autonomous differential equation
is considered and a ncw perturbation tcchnique is developed. Then a method has been developed to
find asymptotic solution ol a damped nonlinear system. The method is a genceralization of
Bogoliubov's asymptotic method and covers both under-damped and overdamped systems. Later
damped oscillations including critically damped motion have also been investigated in presence of

more significant damping forces.

Third order nonlinear oscillations with damping and time delay, and with varying coeflicients
have been investigated separately. Moreover. a simple overdamped solution has been found for the

third order weakly nonlinear systems.
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Introduction

Many physical, biological and cngincering, and some biomedical (cpidemics). chemical and
cconomical laws and relations appear mathematically in the form of differential or difference-
differential equations. It may be noted that certain linear differential equations have only exact
analytic solutions for some initial or boundary conditions. Most of the nonlinear differential
equations or linear differential equations with variable coefficients and nonlinear boundary
conditions have not such kind of ahalytic solutions. Even if the exact solution of a differential
equation can be found explicitly, it may be useless for mathematical and physical inlerpretatiori
and numerical evaluations. Examples of such problems are Bessel functions of large argument
and large order. and doubly periodic functions. Thus in order to obtain information about
solutions of differential equations, we are forced to resort to approximations. numerical
solutions, or combinations of both. Foremost among the approximation techniques are the
method of perturbations, i.e., asymptotic expansions in terms of a small or a large parameter or
coordinate. According to these techniques, the solutions are presented by the first few terms of an
asymplotic expaunsion, usually the first two (erms. Although these perturbation expansions may
be divergent, they can b¢ more useful for a qualitative as well as a quantitative representation

than expansions that arc uniformly and absolutely convergent.

In this dissertation, we shall discuss problems on oscillations that can be described by the
dynamical systems of third order nonlincar autonomous differential cquations with small
nonlinearities by the Krylov-Bogoliubov-Mitropolskii (KBM) method. An important approach to

the study of such nonlincar oscillations is the small parameter expansion. Two widely spread



methods in this theory are mainly uscd in the literature; the averaging asymptotic method Of

KBM and the multiscale method.

The method of KBM starts with the solution sometimes called the generating solution of the
linear equation, assuming that, in the nonlinear case, the amplitude and the phase in the solution
of a linear equation are lime-dependent functions rather than constants. This procedure
introduces an additional condition on the first derivative of the assumed solution for determining
the solution. The method was originally developed for obtaining analytic solutions of oscillatory-
type of second order nonlinear differential equations. Today, this method is being used in both

oscillatory and non-oscillatory systems of second and third order nonlinear differential equations.

The purpose of this thesis is to study the effects of small parameter perturbation on some
third order nonlinear oscillatory and non-oscillatory systems in the sense of the KBM method.
The results may be used in various oscillatory and non-oscillatory processes in mechanics.

physics, chemistry, circuit and control theory, economics and population dynamics.



Chapter 1

1.1 The Survey

In most treatments of nonlinear oscillations by perturbation methods, e.g., Lindsteadt's [31]
method, Poincare's [46] method, etc. only periodic oscillations are treated; transients are not
considered. Krylov and Bogoliubov [2.7‘! have introduced a new perturbation method to discuss
transients in the cquation

F+oix=¢f(x,%), (1.1)
where ¢ is a small parameter. In this equation the damping terms arc small. Bul in particular it
gives those periodic solutions obtained by Poincare [46]. We may note that, Poincare's method is
a well known perturbation method for obtaining periodic solutions of nonlinear differential

equations with small nonlincaritics.

When € = 0. the solution of the equation (1.1) can be written as
x=hcos(o,/ +9). (1.2)
where b and 9 are arbitrary constants to be determined {rom the initial conditions. Sometimes the

solution (1.2) is called the gencerating solution ol (1.1).

Now to determine an approximate solution of (1.1) for € small but different from zero.
Krylov and Bogoliubov assumed that the solution is still given by (1.2) with time-varying # and
9, and subject to the conditions

f=—ho,sing. =0, + 3. (1.3)



Differentiating (1.2) with respect Lo £ gives

x=-ho,sing +hcosp - b3 sing. - (1.4)

Hence

heosp—h3sing =0, (1.5)

on account of (1.3). Differentiating (1.3) with respect to / gives
f=-0lbcosp—wybsing —w,bdcosp. (1.6)
Substituting (1.6) into (1.1) gnd using (1.2) and (1.3), one obtains
W, bsing + 0,53 cos = —f(b cosQ,—0,bsing). (1.7)

Solving (1.5) and (1.7) for h and § yiclds

b= —isin(pf(bcos P~ hsing),
o
° (1.8)
9 = ———cosq f(hcos p.—m,bsing).
0)”/)

Thus according to Krylov and Bogoliubov's technique the original second order differential
equation (1.1) for x has been replaced by the two first order differential equations (1.8) for the

amplitude b and the phase 9. It is obvious that, the solution is periodic with constant amplitude

. . 2m . . e
and period = as the limit € — 0. But one can not tell about the amplitude and the periodicity of
® v

oscillations when € is small, rather than sufficiently small.

Expressing / in a Fourier series in the total phase ¢ and assuming that the paramcter € is

small, so that the amplitude b and the phase 8 change very slowly during one period of the

oscillation, i.e.,

b 9
— << W,, —<<W,, 1.9) -
b g 0 (1.9)



one obtains to the first order ol & by averaging (1.8) over onc period

<I}>= - I sin(p_/'(bcos(p,.—m(,bsin(p)d(p, |

4]

(1.1

2n

<9>=_ b j- cosq)./'(hcos(p,—(n,,bsin(p)d(p. '
2no,h §

where b and § are assumed to be time independent under the integrals. Higher order effects were
obtained by Volosov [60,61], Musen [42] and Zebreiko [62]. The equations (1.10) are the
differential equations of the first approximation in the form in which they were originally

obtained by Krylov and Bogoliubov [27] and in which they arc generally used in applications.

This method. though it is restricted to differential equations of_the type (1.1), has been used
extlensively in Plasma physics. theory of oscillations, control theory. Kruskal [26] has extended
this method to solve cquations of the type

¥=F(x.x.€). _ (1.11)

The solutions of these fully nonlinear equations are based on recurrent relations and are
given in the forms of power series of the small parameter €. Cap [17] has investigated some
nonlinear systems of the type

¥+ oy f(x) =t F(x.x). (1.12)
using elliptic functions in the sense of the Krylov and Bogoliubov method.

Later this lechnique has been modified and justilied by Bogoliubov and Mitropolskii [3] and -
extended to non-stationary vibrations by Mitropolskii [35]. They have assumed a solution of the
nonlinear dilferential equation (1.1) of the form

x=hcosp+eu (b.p)+ g 4e" u, (b,p)+ O(s'”"), (1.13)



where each w, . k=1,2.--- 1 is a periodic [unction of ¢ with period 2, and » and ¢ vary with

time ¢ according to

b=cB,(h)+&*..+8" B, (h) + O™
(1.14)"
¢ =0y +EC, (h)+e2.+e"C, (h)+ O™ )

where the functions w,, 8, and C, are chosen such that (1.13) and (1.14) satisfy the differential

equation (1.1). In order to determine B, and C, uniquely, it is assumed that no u, contains

cos¢p and sing. This assumption results in the conditions

1, (h.p)ecosp o = 0,

0

2n (1.15)
J-”:( (hop)singpclp =0, k=1,2,---n.

0

Differentiating (1.13) twice with respective to ¢, utilizing relations (1.14), substituting (1.13)

and the derivatives X, ¥ in the original equation (1.1), and equating the coefficients of

g*, k=1,2,---,n one obtains a recursive systems

5] .
( Sl ] F5 5. 0)+ 20 (0, cosp+ B, sing). (1.16)

where

s (byp)= f(hcosq, - w,bsing),

o,

FMb.9)=u, f(bcosp.—w,hsing)+ (B, cos¢p - bC, sinp + w, —a——J (1.17)
Y

5 in C .
x [, (hcosp, —om,hsing)+ (h( V=B, i—-H'Jcostp + (2/3,(.', +bB, -‘--»-'—]sm ¢

b b

0’1 0’

~ | Byl 4 =t |,
ob g op”

- ete.



It is clear that £ is a periodic function of ¢ with period 2n depending also on the

amplitude b. Thus 7% as well as u, can be expanded in Fourier series as

2

FARICRYEF S OFSY [g,(,k_” (h)cos np + h* " (b)sin n(pl

S =) (l ? l 8)
u, (b, ) =vI (B + [v,(,""’ (b) cos ngp + w " (h) sin mpl
where |
gl = El_ J'f("“)(b cos (. — w,hsin @) dep,
T g
in
k- ot _[f“‘")(b CoSs (, — 0, b sin @ )cos np do, (1.19)
0
I 2r
A% = Ij'““"’ (bcosp, - m bsing)sinnodp, n>1
T 0

Here vi*™" =w*™ =0 for all values of k, since both integrals of (1.15) vanish.
Substituting these values into the equations (1.16), we obtain

wovs () + Y og (1= 0 )[v,(,"’” (b)cos ngp + w!*" (b)sin n(p]= gl ")

n=I1

+ (2% (B) + 20006C, Jeos @ + (7" (b) + 20, B, Jsin @ (1.20)

+> [v:,k_” (hycos np + w!* " (h)sin n(p].
n-2
Now equating the coef{ficients of harmonics of the same order, one obtains

g,”‘—”(b) +2m,hC, =0, /1}“‘_”(/)) + 20,8, =0,

1 (b)

M . v (p) = M wy' D (b) = PRI
. 0, (1-n%)

k-1
P VE 5 So
0, (1=n

®,



These are sufficient conditions to obtain the desired order of approximation.

order approximation, one has ‘

RO
B, =- 7'2 ) __ Jf(bcosq’:, o) bsm(p)smcpd(p,
0N 2110)0 3
g
3 () _
Gy = — b cos ¢,—w,bsin @) cosp d
. 2wb 2nbjf( ¢ ¢) cos @ do.

Hence the variational equations (1.14) become

h=—

_[f(b cos ¢p,—m b sin @) sin ¢ de,

27{(;)0 z

p=w, — If(b cos ,—w,b sin @) cos @ d.
0 ;

e
2nw,b

IFor the first

(1.22)

(1.23) .

Note that the equations (1.23) arc similar to cquations (1.10). Thus the 'first order solution’

obtained by Bogoliubov and Mitropolskii [3] method is identical to the original solution obtained

by Krylov and Bogoliubov [27]. In the second method, higher order solution can be found easily.

The unknown function u,, called the first order correction term, is obtained from (1.21) as

go"(b) Z g (b)ycosng + A" (b)cos iy
(D() n=2 0)3(1 n )

(1.24)

The solution (1.13) together with #, is known as the 'first order improved solution’ in which

b and ¢ are given by (1.23). When the values of the functions 4, and B, are substituted from

(1.22) in the second relation of (1.17), one obtains the function f%, and in a similar way one

can find the unknown functions u,, 4, and B,. Hence the determination of the higher order

approximations is sufficiently clear.



Summing up. the conditions (1.15) eliminate the fundamental harmonic in the unknown
functions w,, k 1,2 and this, in turn, guarantees the abscnce ol sectdlar-termys in all

successive approximations.

This new derivation due to Bogoliubov and Mitroplskii represents a considerable
improvement as compared to the carly Krylov and Bogoliubov derivation in which the first
approximation was established by a direct argument and the higher order approximations were

introduced owing to an additional procedure resembling the Lindstedt's method.

The authors (Krylov and Bogoliubov) call this method asymptotic in the sense of the small_
parameler £. Approximate solutions of diffcrential cquations in the form of an asymptotic scrics.
were introduced by Liouville [33] (most probably initiated by Poissons around 1830). Although
the series is not convergent, but for a fixed number of terms, the approximate solution tends to
the exact solution as the small parameter € tends to zero. It should be noted that the ‘asymptotic’
in the theory of oscillations is frequently used also in the sense of € = o0,.in which case thé

mathematical approach is entirely different.

Later the asymptotic method of Krylov-Bogoliubov-Mitropolskii has been extended by

Popov [47] to damped nonlinear systems

¥4+2kx+wgx=¢f(x,X), (1.25)

where —2k%, O0<k <w,, is a linear damping force. Mendelson [34] has rediscovered the
Popov's results. In the case of damped nonlincar systems the first equation of (1.14) has been
replaced by

f=—kb+e B, (b)+e..+e" B, (b)+ ()(s'”'). ' ~(L14a)

9



On the other hand, Murty, Deckshatulu and Krisna [39] have developed an asymptotic
method in the sense of the KBM method to obtain approximale solution for an overdamped
system represented by the nonlinear differential equation (1.25) i.e.. when k> w,,. 'l'hc-_v have
used hyperbolic function, coshq or sinh¢ instead of the harmonic function, cos¢, which have
been used in [3,27,34,47]. It is noted that, for an oscillatory or a damped oscillatory system,
cosp may be used arbitrarily for all kinds of initial conditions. But for a non-oscillatory system
either coshq or sinh¢ should be used depending on a given set of initial conditions [14,39,41].
Murty and Decekshatulu [40] have developed another asymptotic mcthod obtaining simple
analylic solutions of the overdamped systems represented by the same cquation (1.25). Murly
[41] has also presented a unified KBM method solving the equation (1.25). Bojadziev and
Iidwards [14] have found some oscillatory and non-oscillatory solutions of (1.25) when & and o,
vary slowly with time ¢. Sattar [51] has developed an asymptotic meihod to obtain approximate
solution of a critically damped system represented by the nonlinear differential equation (1.25)
when &k =, . He has used a simple linear function in @ in the form

x=b(1+¢)+eu, (b,(p) +e’ . 4" u, (b,p)+ ()(s”"), (1.26)
where 4 is defined by the cquation (1.14a) and o is defined by
¢=1+eC (b)+e’..4e" C,(b)+ O(e""), (1.14b)
instead of the sccond cciualion ol (1.14).
Bojadzicv [4] has investigated nonlincar damped oscillatory systems with small time dclay
using the KBM method. Bojadziev [10] has also found damped forced nonlinear oscillations with
small time delay. Rubanic [50], Milropélskii and Martinyuk [37], and Lardner and Bojadziev

[28] have used the KBM method to obtain approximate solutions to second order nonlinear
10



differential cquations with damping and large time delay. Bojadziev | 11,13] has used the KBM
method to investigate certain biological and biochemical nonlinear systems. Bojadzicv and Chan
[12] have uscd the same method Lo biological systems with significant damping and time dclay.

Lin and Khan [30] have also used KBM method to some biological problems.

Proskurjakov [48], and Bojadziev, Lardner and Arya |5] have found periodic solutions for
several nonlinear systems using the KBM thechnique. They have also compared the periodic

solutions obtained by KBM method to Poincare's solutions [46].

Mitropolskii and Moscenkov [36] have extended the KBM method to nonlincar partial
differential equations with small nonlinearities. Bojadziev and_Lardner [6,7] have studied
mmml‘rcqucnf oscillations in  mechanical systems governcd by sccond  order  hyperbolic
differential cquations. Bojadzicv and Lardner [8] have also studied hyperbolic dilferential
equations with damping and large time delay. Arya and Bojadziev [1] has examined a system of

second order nonlincar hyperbolic differential cquations with varying coeflicients.

Firstly, Osiniski [43] has extended the KBM method to a third order nonlincar differential
cquation
¥k o+ kit kyx =g f(x,3.5), (1.27)
where & is a small parameter. e has found an asymptotic solution in the [orm

x=a+bcoso+eu (a,b,e)+ gl +e" u (a,b,p)+ O(e"”), (1.28)
where cach u,, k=1,2,---n is again a periodic function of ¢ with period 2m. and «. b and @

vary with time 7 according to Rajshahi University Libiary

Dotus ..t it Sectiaon
1 D ocavony No 13*2,0,3—5'
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a=-ha+¢ed (a)+ el +e"A (a)+ ()(g""' ),

b=—pb+eB, )+’ e B, () + O™ ) (129)
Peo+eC,(h)yreto " C (h)+ ()(1_:”" ),

where —A, —p* o are the characteristic roots of the equation (1.27) when €=0, and the

functions u,, 4,. B, and C, are chosen such that (1.28) and (1.29) satisfy the differential

equation (1.27). Secondly, Osiniski [44] has extended the KBM method to a third order nonlinear
partial diflerential equation. Later, Lardner and Bojadziev |29] have also investigated nonlinear
damped oscillations governed by a third order partial differential equation, They have introduced
a concept of 'couple-amplitudes’ such that the unknown functions A,, B, and C, depend on
both the amplitudes ¢ and b. Bojadziev [15]. and Bojadzicv and Tung [16] have used the KIBM
method to investigate a.3-dimensional nonlinear mechan_ica[ elastic system. Shamsul and Sattar
[55] have presented a unified KBM mecthod for solving third order nonlinear dilferential
equations. Then a forced nonlinear oscillation modeling by a third order differential equation
with small nonlinearities has been studied by these authors [S3]. Shamsul and Sattar [54] have
also developed an asymptotic method for a third order nonlinear critically damped system in the
sense of the KBM method. Except Osiniski's |43.44] papers. in all the above papers. Lardner and
Bojadziev's concept of 'couple-amplitudes' has been considered. But this concept precludes a
simple analytic solution for a third order nonlincar differential equation. In general, the equations
(1.29) are solved numerically when 4,, B, and C, are functions of both amplitudes i.e., a and

h. Mulholand |38] have used the KBM method to investigate only the oscillatory part of a third

order nonlinear dilferential equation, like a Vander Pol's [59] equation used in control theory.



1.2 The Proposal

We propose a perturbation system of a third order nonlinear differential cquation
X +k ¥+ kyx+kox=gf(x, % ). (1.16)

where € is a small parameter and f'is a given nonlinear function.

In Chapter 2, nonlincar oscillations described by a third order differential cquation are
investigated. Nonlincar oscillations in presence of lincar damping forces arc examined in
Chapter 3. In Chapter 4, nonlinear oscillations in presence of more significant damping forces
are investigated. Third order nonlinear oscillations with retardation effects are studied in
Chapter 5, nonlinclar oscillations described by a third order differential equation with slowly
varying coefficients are investigated in Chapter 6 and lastly, an over-damped nonlinear system is -

considered in Chapter 7.



Chapter 2

Third Order Nonlinear Oscillations

2.1 Introduction

Most of the differential equations involving physical problems are nonlinear and the solutions
of these equations are more complicated. Generally, these équations can be linearized by imposing
certain restrictions and then they are solved in simple approaches. In vibrating processes many
problems are solved by linearzing such differential equations when the amplitude of oscillations are
small. Increasing with the amplitudes, the nonlincarity of the governing cquations also increases.
When the amplitudes are not small cnough, the lincar solutions ar¢ not sufficient to describe the

vibration. In these cases, KBM perturbation, an asymptotic expansion, is a widely used technique.

‘Third order nonlincar oscillations have been studied carlier by some authors, c.g.. Iricdrichs
[22], Rauch [49] etc. Mulholand [38] has found a KBM solution of a third order nonlinear
differential equation, which is similar to the Vander Pol's [59] equation. But he did not consider the
non-oscillatory part of the solution. Shamsul and Sattar [55] have studied by the unified KBM
method adding non-oscillatory part to the solution. However the method developed in [55] is not a
simple analylic one; numerical intcgration has been partly used. Now a new technique is presented
here to find a simple analytic solution of a third order nonlinear differential equation with smail

nonlincaritics.

2.2 The Mcthod
Let us consider a third order nonlincar dif fcrential equation

F+k gk Xrkx =g f(E 3 x). | .



where the dots denote differentiation with respect (o 4, € is a small parameter, &, k, and &, arc
constants. Let equation (2.1) has three characleristic roots —A, *i@, A, @ > 0. when £ =0. Then
cquation (2.1) has the solution

x=a,e™™ +bycoswl+c,sinwt, . (2.2)

where a,, b, and c, are arbitrary constants to be determined from the given initial conditions
[x(0), %(0), £(0)]

We seek a solutibn of the differential equation (2.1) in the form of an asymptotic expansign
that reduces to (2.2) as the limit € — 0. Let us consider
x=ae™ +bcosw ! +csinw(+¢ u,(a,b,c,l)+62---, (2.3)
where a, b and ¢ satisfy the first order differential equations
a=eA(a,b,c,t)+ g’ ---,
b=gB,(a,b,c,t) +€* -, | . (2.4)

¢=gC (a,b,c,)+€% .

It is noted that, for some particular and important cases the equations (2.4) may be solved in a
simple analytic approach, and sometimes it may be solved by an approximation method
independent of the numerical techniques, and thus the solution (2.3) does not depend on the

numerical method.

K

Differentiating (2.3) three times with respect to £ using relations (2.4), substituting (2.3) and

the derivatives %, %, & in the original equation (2.1), and comparing the coefficients of various

powers of g, we get for the coefficient of € :



2 ‘ 2 5
fl—+oﬁ (A,e "')+ —(—J—2+k~(')~—2m2 B, +m(3—(—+2h)(,', cosw/
or? ot ot ot

2
+ —m[3—a— + 20 |8, + a—2+ 7\.2-—20)2 C, |sinw/ (2.5}
of o o

+ i+?») iJr(:)z u, = [ abe,t)
a[ 812 1 - L A B 4]

where [ = f(x,,%,,%,) and x, =ae™ +bhcoswi+csinof. ,

Let the function /'* be expanded in a Fourier series

S =0 (ashae ) cos o 1+ G, (@b e ) sinno I) : (2.0)

n=0

To solve the equation (2.5) for u,, A,, B, and C,, it is assumed according to KBM method,
that the function u, docs not contain secular rerms (i.e.. terms containing the variable 7 out side

the sign of the trigonometric functions), since they grow up indefinitely when ¢ — oo.

The appearance of secular terms in the perturbation theory is a serious difficulty, since it
restricts to oblain a uniformly valid expansion. For an example, in an expansion with two terms.

if secular terms of the form I(cosl. sinl) appear in the second term, the solution breaks down
when 1 = ()(r. ') Several authors have used different techniques, which prevent the appearance

of secular terms in the solution. Krylov, Bogoliubov and Mitropolskii allowed to vary slowly
both the amplitude and the phase for sceond order nonlincar systems in such a manner that cach
correction term u,, i=1,2--- exclude the terms with first harmonic. Thus no secular terms

appear in the KIBM solution. But for a third order nonlincar differential equation. like the secular

terms, another term of the form !cxp(—l) may appear. We may call such a term as a secular-like



term. The solutions together with the secular-like term do not break down, even if 1 is large, since
these terms vanish as the limit 1 — . The appearance of the secular-like term resists only to

obtain the desired perturbation solution compared to those solutions obtained by the numerical
method. So we have to eliminate the terms with ¢ exp(=f) from u,. Substituting /' from (2.6)

into (2.5) and equating the coefficients of cos 0w/, cosw/ and sinaf, we obtain

0 Yy

(a]—z-t-o)z)(/l,e M= F, 2.7)
9’ 0 2

(»-;+k——2m‘)8,+w(3£+2?&]€l =F, (2.8)
o1 o1 ot

2
—0)(3—a—+2k) B, +(£—+l—a——2w2JC, =G|, (2.9)
ot ot o
and

J 9’ 2 :
—+A|| 5ty = Z(F” cosnw [ + G, sinnw l). (2.10)
6! af ~n=2 : .

The particular solutions of (2.7)-(2.9) give the three unknown functions 4,, B, and C,.Itis
obvious that the change of the variables a, b and ¢ are small. When £, F, and G, are given we

may easily solve Lhe equations (2.7)-(2.9) assuming that a, b and c are constants. Substituting the

values of 4,, B, and C; into (2.4) and then solving them, we obtain the first approximate
solution of the nonlinear differential equation. The procedure can be carried to higher orders in

the same way.



2.2.1 Dectermination of the first order correction term u,

‘T'he equation (2.10) is a third order nonhomogencous lincar partial differential cquation and

its particular solution gives the first order correction term ;. When the nonlinear function fof

the equation (2.1) is given, £, and G

n n?

n>2 are specified. Then substituting the values of F,
and G, in (2.10). we may solve it assuming again that a, b and ¢ are constants. Thus the first

order correction term #, is found and we obtain the first improved solution of the equation (2.1).

2.3 Example

Now consider f =x". So,

fO=ale™ +ige™ (bz +c2)+3(crze'“’ 11—%(!)2 +c2))(b cos o/ +csino!)

+3age™ ((b2 ~c’ )cos 201 + 2besin 2ml)+§(b( 2 -3¢? )cos 3ol + c(3b2 -c’ )sin 3(0[)
Therefore the non zero coefficients of F, and G are
Fy=a’e™ +iae™ (b2 +cl), Fy = 3b(aze_“" +}(b2 +c2)),

G, = 3c(aze_“' ~|-%([)2 +c2)), P = %a(b2 —cz)e'“, G, =3abce™, (2.11)

Substituting the values of F,, F, and G, from (2.11) into the equations (2.7)-(2.9) and

solving them, we obtain

La'e™™ + !2(1(1)2 +c’ ).

22 (myb + myc)e ™ + (myb + ngc)(b2 + cz), | (2.12)

A
B,
¢

a
=a’(-nb+mc)e™ +(=nmb+ mzc)(b2 + cz).



where

] 3
T2 o T2 +e?)
B 3(7»2 —o)z) =3
= 2(?»1 +m2)(l2 +(oz)’ a = s + o) 2.13)
3A -3\

T e ) re) P 80 +w’)

Substituting the values of 4,, B, and C| from (2.12) into the equations (2.4) we obtain

gP= s(lla:‘e_“’ + ]za(b2 +¢’ )),
b= S(a2 (12,0 + n,c)e'm & (mzb + 1126‘)([)2 +c? )) _ (2.14)

é=s(a2(— nb+mec)e ™ +(=n,b+ mzc)(b2 +cz))
Replacing a. b and ¢ by their respective values obtained in the linear case, and then
integrating with respect to ¢, we obtain

a=a, + 8(/,(13 (1 —e M )/(22&) +1,a, (1’901 +ch )!)
b=b, + e(aé (m,by + 1ycq )(1 —e M )/(ZK) + (myby + nyc, )(bo2 +cq )tl (2.15)

c=c,+ z:(aé (= n,b, + ’”1%)(1 — e N I@N) + (- myby + ey )be +c? )l)

Hence the first order solution of (2.1) is

2

(2.16)

x=ae " +bcoswl +csinow!,

where a, b and ¢ are given by (2.15).

Now substituting the values of F,, F;, G, and G, from (2.11) into the equation (2.10) and

then solving it, we obtain

u, =ae™” ((b2 ~c? )(c, cos 20/ + d,, sin 201 )+ 2bc(= d, cos 201 + ¢, sin 20)!)) .
h (2.17)

& (b(b2 -3c? )(c3 cos 3w/ + d, sin 30)+ ¢:(3b2 ~c? )(— d, cos3w! + ¢, sin 3(1)!))



where

3n
¢, = 5
. (P +0’ )(?»2 +90)2)
3(%2 —0)2)
d? = 2 2 2 2\
4@)(?» + o )(l + 9w )
(2.18)
o = -A
Y3207 (M +907)
-3
i — .
> 3200 +90° )
Therelore, the [irst improved solution of (2.1) is
x=ae ™ +hcoswl+csinwl+eu,, (2.19)

where a, b and ¢ are given by (2.15) and z)l is given by (2.17).

2.4. Discussion

In general, the straightforward expansion of Poincare [46] type such as

X(,8) ~ 3.8, (£, (1),

m=0

where & (g) is an asymptotic sequence in the term of the parameter &, is non-uniformly valid

m

and breaks down in the regions called regions of non-uniformity. One of the main sources of

non-uniformities is the 'infinite domain'. In the case of nonlinear oscillations the non-uniformity

manifests itself in the presence of secular terms such as (" cost and ¢" sin/, which make

). unbounded as f approaches to infinity. In the method of KBM such type of non-

x (1)

m=1

uniformity is prevented.
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A type of non-uniformity has occurred when a first order approximate solution of the set of
equations (2.14) is found in the form (2.15). It is obvious that, in the solution (2.15) @, b and ¢
increases monotonously as  increases and they tend o infinity as ¢ approaches to infinity. So the
second and third terms of (2.19) where & and ¢ are given by (2.15) oscillate with large amplitude
when ¢ is large. Thus the solution (2.19) is not a uniformly valid solution. It is noted that, when
the equations (2.14) are solved numerically, the function x in the solution (2.19) oscillates with
decay and vanishes as  — oo. Therefore, one should obtain an approximate solution of (2.1) by
solving the equations (2.14) numerically, rather than by choosing the analytic solution (2.15)
when 1 is large. Ilowever, in this case, the present method facilitates only the numerical method.
The variables a. b and ¢ change slowly with time. So, it requires the numerical calculation of a
few number of points (i.c., one may compute it by choosing normal step size). Contrary, a direct
altempt to solve the equation (2.1} dealing with harmonic terms in the solution (2.3), namely

bcosw t+csinm {, requires the numerical calculation of many number of points (i.e., one mus't
choose small step size) and it needs more computing time.

The present solution (2.15) is fairly used until ¢ = %e" . Therefore, one can know the nature
of oscillation when € is very small (see Fig 2.1). If one obtains a second order solution of (2.1) in
the form (2.3), one can use it until 1 = 1e7 and knows the complete picture of oscillations, since
the function x oscillates Mth decay.

It is also noted that, for most of the physical problems the lincar terms dominate the system.
The nonlinear term € x* decays the oscillatory terms, while the linear decay-term is absent in the

oscillatory part. If we add a small linear decay-term in the oscillatory part of the system described
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by the nonlinear cquation (2.1), similar solutions for @, b and ¢ to (2.15) are found and the

solution of (2.1) is uniformly valid. Let us add the small damping forces —28(5:' + b‘r) to the right
hand side of the equation (2.1) with the same nonlinearity € x*. Therefore f = —Z(jf +7L\")+x3.

For this reason the set of equations (2.14) become
a= a(l,a}e'z’" +12a(b2 +c’ )),
B=a(—b+a2(m]b+nlc)e'”" +(mzb+n2(:)(b2 +(:2)), | (2.20)

¢= 8(—- c+a’(-nb+mc)e™ + (—nyb+ ch)(b2 +c? ))
If we replace b and ¢ respectively by he™ and ee™ in the second and third cquations of

(2.20), they become

b= a(az (m, b+ nlc)e'n' + (mzb * nzc)(bz Lo? )e—Zu )
(2.20b)
g= s;(u2 (=n,b +mlc)e"2“ +(— Hb + mzc)(b2 ket )e”zﬂ’ )

The solutions of the equations (2.20b) together with the first equation of (2.20) are

a=a, +el,al(l—e™ )N +la, (b2 +¢2 (1= )12,
b =b, +eal (mb, +nc, )(1 —e )/(21) + (m,b, + 1,0, )(bo2 +ce )(l e )/ 2, (2.21)
¢=c, +eag(—nby +me, )(1 —g ™M )/(21) + (= 1,0, +myc, )(boz +cq )(1 —e )/ 2. '

In this case, the solution (2.19) reduces to
x=ae™ +e™ (beosw (+csinw () +eu, (2.22)

where

i, = ae M ((b;1 —c? )(c2 cos 201 +d, sin 201)+ 2bc(= d,, cos 201 + ¢, sin 20)1)) -

+e ™ (b(b2 ~3c? )(c3 cos 3o +d, sin 3o/ )+ c(3b2 ~c? )(— d, cos 3wl +c, sin 30)!))



For small values of € the solution (2.22) where a, b, ¢ and u, are given by (2.21) and (2.23)
respectively agree with the numerical solution (see Fig. 2.2).

When A = ()(I) the non-oscillatory part in the solution (2.3) dies-out quickly. On the other
hand, the coefficient 77, becomes small when both & = (1) and @ = O(1). In this case, we may

obtain an approximate solution of (2.14). Let a=a,b=pcosp,c=Ppsing. Here B and ¢ are

respectively the amplitude and the total phase of the oscillatory part of the solution. So the

equations (2.14) transform to

& = s(l,oc"e’z’" +lza[32),

b =e(m,a?pe™ + ) (2.24)

¢ = —s(n,onze‘”’ +m,p° )

An approximate solution of (2.24) may be lound. The first and second relation ol (2.24) may

be wrilten as

do s(llaze"”" +!2BZ),
o

i’g=e m,(g) e ™M +m, |
B B

Since m, is small, we may replace o and B by their respective linear values in the right hand

(2.24a)

side of the second relation of (2.24a). Then integrating with respect to ¢, we obtain

p= Bo
\Elloc(z,(l ~exp(-M))/ A +z

(2.25b)

where z=1-2&em,B3! .
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Now substituting the values of B in the first relation of (2.24a) and in the third relation of

(2.24) and integrating with respect to 7, we obtain

=0 (1 +el,02 (1—exp(- A))/(2A) -1, 1n(z)/(2n:2)),
(2.25)
o=, +emal(l- exp(—A1))/(20) -, In(z)/(2m, ).

In this case, the solution (2.19) becomes

x = o+ cos(wt —¢) +E U, (2.26)

where
u, =of’ (c2 cos2(w! — @) +d, sin 2(o1 — (p)) +p’ (c3 cos3wr— @) +d, sin3(wf - (p)). (2.27)

The solution (2.26) with the approximate solution (2.25) and (2.25b) for o,  and ¢ also

agree with the numerical solution (see Fig. 2.3).

To obtain the numerical solution, the initial conditions [x(O), x(0), 5:'(0)] are computed from

x(0)=a, +b, +¢ (cgao (b2 —c2)=2d,agbycy +cy(bg - 3b,c) - d, (3b(32c0 -c; )),

%(0)=-Aa, +@cg +8(1,ag +1ya, (b2 +c2)+ad (mby +mey) +(myby +n,¢,)(bs +c§))
+a((—?\c2 +20d,) a, (b, —c2)+2Quwc, +Ad,)aghyc,)

+30d, (b2 —3byc2)+3oe, (3blc, —ci))

(2.28)
#(0) =2 a, —02b,

—25(2?»1100‘ + AL a,(hd +cl)+ap ((An1, +wn, )by + (—om, +An, )¢o)
+2(wn,by —wmycq ) (by +c§))
M:((kz — 40’ )cz —4rad,)a, (b —cé)—2(47L(oc2 +(7L2-—40)2_ )a’2)a(,boc0

—9w2e, (b —3bycl) +90’d, (3blc, — )
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Usually, in a problem the initial conditions [.\'(()), x(0). ,'\‘(())] arc specified. Then onc has to

solve the nonlincar algebraic equations in order to determine the arbitrary constants «,, h,and
¢, that appear in the solution. In thosc cascs. the cquations (2.28) arc solved for a,. hyand ¢,

by a numerical [ormula.
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o

Fig. 2.1 Solution of equation (2.1) obtained by perturbation theory (solid lone) in
which a, b and c are evaluated by (2.15), and numerical integration (doted line) for
A=0.8, u=0, ©®=1.0, &=0.1 and f=x' with the initial conditions ao=0.5, by =1.0
and ¢, =0 or, [x(0)=1.50733, x (0)=-0.40049, ¥ (0)=—-0.76434].
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1.75
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-0.75 A

-

Fig. 2.2 Solution of equation (2.1) obtained by perturbation theory (solid lone) in
which a, b and ¢ are evaluated by (2.21), and numerical integration (doted line) for
2=0.8, ®=1.0, e=-0.1 and f= -2(x+7\x)+x3 with the initial conditions ao =0.5,
by =1.0 and ¢o =0 or, [x(0)=1.49203, x (0)= -0.49000, ¥ (0)=-0.58204].
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Fig. 2.3 Solution of equation (2.1) obtained by perturbation theory (solid lone)- in
which a, B and ¢ are evaluated by (2.25) and (2.25b), and numerical integration
(doted line) for A=0.8, u=0, ®=1.0, €= 0.1 and f=x3 with the initial conditions
o =0.5, Bo =1.0 and ¢ =0 or, [x(0)=1.50733, % (0)= —0.40049, ¥ (0)=—0.76434].
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I EIRINNS

Chapter 3

Third Order Nonlinear Oscillations with Damping Forces

3.1 Introduction
Popov [47] has extended the KBM method to second order nonlinear damped oscillatory
systems. Using the same purturbation method, Osiniski [43] and Bojadziev [15] have studied a
nonlinear mechanical system with internal friction and relaxation governéd by
mi+oc=0,

3.1

G+co=ax+bx+ex’,
where x is the delormation, » is the mass of the system, and ¢, a, b and ¢ arc positive constants. The
terms with the coefficients a and e (small) represent respectively the linear and nonlinear elasticity,
the term with the coefficient b corresponds to linear viscous damping, and the term with the

coefficient ¢ reflects the linear relaxation.

It is obvious that the above equation can be written as

Yrci+be mi+ac mx+ex® =0, e=ec”. (3.2)
which is the form of the equation (2.1) in chapter 2. For stability, the characteristic roots of the
linear equation of (3.2) must be negative or complex with non-positive real parts. Osiniski [43]
has found an asymptotic solution of the form

x=a+bcosp+eu (a,b,@)+e’, (3.3)

where the amplitudes a, b and the phase ¢ satisfy the first order differential equations



d=—haked (@) re’ e,

h=-pb+eB (h)y+&° -, 3.4
('p=(1)+z3(,',(b)+i;2
Since Osiniski's solution docs not always agree with the numerical solution, later Bojadziev

[15] has found another solution of (3.1) in the form (3.3) with (3.4) where the unknown functions

A,, B, and C, are functions of both the amplitudes a and b, i.e.,

& =-ha+ed (a,b)+& -,

h=—pb+eB,(a,b)+e” -, (3.4b)
p=0+ sC,(a,b)+s2
But Bojadzicv's solution is not a simple analylic solution; the equations (3.4b) for amplitudes a
and b and phase ¢ are solved generally by a numerical method. However, the method of Bojadziev
facilitates numerical analysis, since it is less costly to use computer in solving the truncated
equation (3.4b) instead of solving directly (3.1). A direct attempt is not justified to solve
numerically the equation (3.1) because it leads to dealing with a harmonic term in the solution (3.3),

namely b cosq . which requires the numerical calculation of a great number of points, and also is
not practical [15].
In this chapler, we obtain a new asymplotic solution of a third order nonlincar autonomous

differential equation which is fully independent of the numerical method. The solutions obtained

for different initial conditions are in good agrecment with those obtained by the numerical method.

3.2 The Method

Let us consider the third order nonlinear differential equation
¥4k g4k, x+hx=¢ (%X, x), (3.5)
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with the generating solution

x=aee " +e™ (b, cosw [ +¢,sinm 1), (3.6)

where —A, —p%iom, A, p, o >0 are three characteristic roots of (3.5) when € =0, and a,. b,

and c, are arbitrary constants.
Now we seek a solution of the differential equation (3.5) in the form of an asymptotic
expansion
x=ae ™ +e™ (beoso r+csinw 1)+, (a,b,c,()+€% -, (3.7
where a, b and ¢ salisfy the differential equations
a =sAl(ar,b,c,.i)+s2 e

b=geB,(a.b,c,)+g> -+, (3.8)

(}=8Cl(n,b,c,l)+s-:2

Differentiating (3.7) three times with respect to 1, using relations (3.8), substituting (3.7) and

the derivatives ¥, ¥, ¥ in the original equation (3.5), and comparing the coefficients of various

powers of €, we get for the coefficient of € :

2 2
[[% + p) + U)ZJ(4,6'*' )+ e""[[g[—z + (- p)g -2’ )Bl

+ m(Baﬁ + 2\ - 2u]C| }cosml + (— m(?;% +2A - ZMJB, (3.9
/s

5 2
[(57 + (- u)gawﬂﬁw JS“’“” {5 *)[(;f— g ‘”] = /().

where f© = f(x,,%,%,) and x, =ae™ +e™ (bcosw (+csinw ().
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[Let the function f” be expanded in a Fouricr scries

27

70 =3 (F, (a,b,c.t)cosnot + G, (a,b.c,t)sinnor). (3.10)

s

To solve the equation (3.9) for u,, 4,, B, and C,, it is assumed, according to KBM
method, that the function u, does not contain secular terms as the limit p — 0. This assumption
is allowed according to Popov [47]. We also assume that like a secular term, u, does not contain
a term of the form texp(—t) as the limit p — 0. Substituting (3.10) in (3.8) and equating the

coefficients of cosOm, coso/ and sino/ we obtain

2
(%*P‘) +0)2J(A[e'“)=1’0, | (3.11)
2
gt—z— + (?» - u) 2’ - 20’ jl), + m(B g’ 42\ - ZHJ(" =1, (3.12)
; 0
~ m(3§ + 2~ 2@3, + [27 +(n - [.l)—a—’-—sz]G =G,, (3.13)
and
K o Y
(5— + K)((a— + p) +o }J, =5 (F, cosnof + G, sinnor ). (3.14)
3 ! f n=2 ‘

The particular solutions of (3.11)-(3.13) give the threc unknown functions 4,. B, and C,. It
is obvious that the change of the variables a. b and ¢ are small. When /4, F; and G, are given,

we may casily solve the cquations (3.11)-(3.13), assuming that a. b and ¢ arc constants.

Substituting the values of 4,, B, and C, into (3.6) and then solving them. we obtain the first
approximate solution of the nonlinear differential equation. The procedure can be applied to

higher orders in the same way.



3.2.1 Determination of the first order correction term u,'
The particular solution of (3.14) gives the first order correction term «,. When the nonlinear
function fof the equation (3.5) is given, I, and G,, n2>2 are specified. Then substituting the

values of F, and G, in (3.14), we may solve it by assuming again that a, b and ¢ are constants.

Thus the correction term u, is found and we obtain the first improved solution of the equation
(3.8).
3.3 Example

. 3
Now consider /= x". So,

L +'—;ae‘(“2")' (b2 L )+ 3((120'(““‘” +Lem (bZ +c? )) (b cos wi +¢ssin wl)

L=
+3ae g b ((b A g )cos 201 + 2he sin 2001 )+

(f’)(l;r2 -3¢’ )cos 3or + (;(3!72 ~¢’ )sin 3(:)!)

Therefore the non zero coefficients of F, and G, are
Fe =gt~ M +__:_ae-(;.+zu): (bz +cz), F, =3b(a2e"“"“)’ +-j—e_3’” (172 _’_cz))!
G, = 30((126'(2“")' + LW (I’J2 +c’ )) F, =%af(b2 -cz)e'(“z“)’. (3.15)

G, =3ahce ™) |, = h(bz ~3¢? )6’_3'”, G, =%c(3b2 —cz)c S

1
4

Substituting the values of F,. F, and G, from (3.15) into the equations (3.11)-(3.13) and
solving them we obtain

A =la'e™ +1a(p? +c*)e™,
B, =a*(mb+nc)e™™ +(mzb+nlc)(b2 e )e-lur’ G.16

- . 2 2 -2t
C, =a*(-nb+mc)e ™ +(—nzh+mzc)(b +c )e .
where
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1

l = - I = 3
1 (3l_L02*102, 2 2&K+;02+nf)’
_ 3(&z +ML—0)2) ‘ B _3(”(}\_:”[)“02)
m, 2()“2 +0)2)((k+u)2 +(J)2), m, = 8(}.[2 +0)2)((A.—3},l)2 +(D2), (3.17)
o= 30(21 + 1) o 3 (A + 4p)
l 2(%2 +c02)((k+u)2 +(D2)’ a@

g2 +0? (A -3p)? +0?)
Substituting the values of 4,, 3, and C, from (3.16) into the equation (3.8), we obtain
a= E(IIaJG'Z“ +l2a(b2 +c’ )e'z'”)
b= s(az(m,b—knlc)e'n' +(mzb+,,2¢.)(/)2 +c2)e'2“’)

(3.18)
&= S(av2 (—nb+ me)e” ™ (= nb+ mzc)(bz +¢? )e“z“’ )

Replacing «, b and ¢ by their respective values obtained in the linear case, and then
integrating with respect Lo £, we obtain
a=ay +elal(l-e ) h+Lay (b2 +c2 )(1-e™ )2,
b=by +elag (mby +m,co )1 = e ) A+ (myby +mycy )2 +c2 1= )plr2,  (3.19)
c=cy +elal (- mby +mcy 1= e )/ A+ (= myby +mycy )b + 2 )1 - e )2,

Hence the first order solution of (3.5) is

x=ae™ +eM (h cos o/ + ¢ sin ml).

(3.20)
where a, b and ¢ are given by (3.19).

Now substituting the values ol /5, I, ¢, and ¢, [rom (3.15) into the equation (3.14) and

then solving it we obtain

u, = ae” 2 ((172 ~c? )(c2 cos 20! + d, sin 201)+ 2b¢(~d, cos 2wt + ¢, sin 2(0!))
(3.21)
+e ™ (b(b2 —_’ch)(c3 cos 30! +d, sin 3w/ )+ c(.“&b2 -c? )(— d, cos3mi +c, sin 3w/ )

where
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3RO )+ @n 47 o’)
4t +07 (e py? +0° )(A+p)? +907)’
d. = 3((14’}1)(7»'*5}1)—0)2)0)
a4l +0)2)((?\.+p)2 +0? (A +p)? +(m,

¢y, =

2 3.22
. - A =31+ (20 + 15 o et
! 16(;12 +o)2)(u2 +4032)((k—3u)2 +9mq’
-~ 3(;1(% — 4 +20° )m
d3 = 2 2 2 2 ’
16(u +o )(p +4o )((?&—?m)2 +9m2)
Therefore, the first improved solution of (3.5) is
x=ae™ +e"”(bcoswt+csinw1)+eu,, (3.23)

where a, b and ¢ are given by (3.19) and u, is given by (3.21).

3.4 Discussion

A simple analytical method has been developed to obtain the time response of a third order
nonlinear differential equation with small nonlinearities when the damping forces are significant.

The method is independent of the numerical techniques. Bojadziev [15] has obtained a solution

of a 3-dimensional system, equivalent to a third order equation, which depends partly on the

numerical method.

: imi in the present
One can find the solution, obtained in Chapter 2, if one takes the limit p— 0 inthep

i > ! » undamped or
solution (3.23). Thus the present method 1s a gcncrallzcd method for all the amj

cribed by the third order nonlinear differential

significantly damped oscillatory systems des

i 3.21) and (3.22) may be
cquations. Morcover, the solution (3.20) or (3.23) with (3.19), 3.17). 3.21) and (

. : -oshw and
. 2 by iw, cosi® by cos
used in the case of an over-damped system replacing simply @ Dy

SINi® by i sinhw.
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As a check on the solution (3.23) obtained in section 3.3, a second solution was obtained by

numerical integration by using a fourth-order Runge-Kutta formula, The results are plotted in
Fig. 3.1 for A=0.8,1=0.1, o=1, £ =-0.1 with the initial conditions a, =05, b, =1, ¢, =0.
The two curves agree very closely in the region where the function is changing rapidly.
However, in the case of strong damping forces, i.e., when p is increased, the two curves almost

coincide even in the region where the function is changing slowly (sce Fig. 3.2).

The solution (3.23) is not expressed in terms of amplitudes and phase. But one can easily
transform it to various usual forms [15,55]. One can transform the solution (3.23) together with
(3.18) and (3.21) as

At -t

x=oe™ " +fle cos(m(—(p)+8u,, (3.24)

o= z;(/,(x"e"z"’ +/2(1[51¢ -2 )
p=elma’pe +mpe™ ) (3.25)
¢= —S(nlaze'n' + nzﬁze"z”' l

and

u, =opie ™™ (¢, cos2(wf - ¢)+d, sin2(wf - ¢))

(3.26)
4pre ™ (c_, cosH ! —(p)+ d, sin3(ml —(p)).
under the transformations
a=a, X 77‘
h=cosp, (324)

c =psing.
The equations (3.25) may be integrated by assuming that a and [ arc constants in the right

hand side as
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U = Uy -t s:(/,u.:,(l —c )/ ?x-t-lztx”ﬂf,(l N )/“)/ Z.
B=p, +:;(m,(1r2,[3” (l g )/ ?L+mz[3;‘,(1 —e )/ 1.1)/ 2 (3.28)

P =0, —s(nlaé (l —e7 M )/ ?H-nz[if,(l —e )/u)/ 2.

But when the amplitudes o and B and the phase ¢ are computed by (3.28), the solution
(3.23) gives more accurale results than the solution (3.24). The solution (3.24) is given in the

Fig. 3.3 for the same values of A, 1, © and €, and as well as the same initial values of «,, b, and
¢, Comparing the two figures 3.1 and 3.3, we may say that the solution (3.23) together with

(3.19) and (3.21) is better than (3.24) with (3.28) and (3.20).

Now one can obtain Bojadziev's form of the solution, if one transforms again the equations

(3.24), (3.25) and (3.26) under the transformations

i

we T =,
[ie W=, (3.29)
@©=ol—-\.

It is obvious that, under these transformations,the solution (3.24) becomes

x=a+bcosy+eu,, (3.30)
where a, b and \p satisfy the equations
i =—Aa + s([,a" +1ab?)
h=-pb+ s(mlazb + mzb") (3.31)
=0+ e(nla2 + nzbz),
and
u, = ab’ (¢, cos2y +d, sin2yr)+b" (c; cos3y +d, sin3y). (3.32)
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Note that, the solution (3.30) together with (3.31) and (3.32) is identical to Bojadzicv's
solution [15]; since the set of equations (3.31) for a, b and y is a type of (3.4b). It has been

mentioned above that, Bojadziev solved the equations (3.31) by a numerical method

On the other hand, if one transforms the equations (3.24), (3.25) and (3.26) under the

transformations
oe M =eb,
Pt =e, (333)
©=wl—1, .
one obtains
x=e"+e"cosd+eu,, (3.34)

= —?\,-l-'e.-:(llezé +l232"),
= -—p+ﬁ(m,e2§ +mzez"), (3.35)

b= (1)+s(n|ez‘g +nzez")

and
u, =e*?"(c, cos2d +d, sin2¢) +e’" (¢, cos3p+d, sin3¢). (3.36)

The above form of the solution was obtained by the unified KBM method in [55] in the case

of an under-damped systen. It is noted that, Bojadzicv's solution is always identical to the under-

damped solution obtained by the unificd KBM method. In the unificd method, the under-damped

solution has been used as an over-damped solution simply by transforming harmonic functions to

their corresponding hyperbolic functions. It is also noted that, in the unificd method the

equations (3.35) are solved by a fourth-order Runge-Kutia formula.
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To obtain the corresponding numerical solution, the initial conditions [.\‘(0). x(O). .'\:(())J are

computed from
x(0)=ay +hy +¢ (Czclo (b(? = cg ) =2 i by ¢, (/,(: _ 3”0"(:) e (3[)(; o - C(: ))‘
x(0)=-ha, —pb, +mc,
+8(1,c13 +1ay(by +ci)+al (mb, e+ (myby +nycg b2 + ¢ ))
+e ((—(?» +21)cy +20d,) dy (b —¢5)+2Q2wc, + (M +2u)d,) agb,c,) (3.37)

+3(—pcy +ody )by —3byed) +3wce, +pd, )3, — ¢! )),

¥0)=2"a, +(1n’ —0’) b, —2no e,
—28(2kllag +(A+ ) lag (b +c2)+al (A +)m, +on, ) by +(~om, +(A+p)n,)¢,)
+2((um, +on, ) by + (—wm, +pn, ) e, )(be +cl ))
re(((+21)2 =40 )e, —4+ 20 0d, ) ag (b —cl)
—2(4(n+ 2 c, + (A +20)7 —d0? ), Jagbyc,

+9((].L2 -0’)e, —2;10)613)(1)3 —3[;0c§)—9(2pw)03 +(p? —(02)(,13)(3[)500 -c, ))
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Chapter 4

Third Order Nonlinear Oscillations with More Significant Damping Forces

4.1 Introduction

Murty [41] has presented a unified KBM method for solving second order nonlinear

differential equations. The method of Murty is a generalization of Bogoliubov’s asymptotic method

and covers three cases when the roots of the linear equation are real and unequal, complex
conjugate and purely imaginary. Thus the unified KBM method of Murty can not be used when the
roots of the linear equation are real and equal, which represents the critical damping. Moreover.
Murty’s overdamped solutions do not always agree with those solutions obtained by the numerical
method. On the other hand, Murly's under-damped solutions are similar to Popov’s [47] or
Mendelsons’s |34] solutions and become the original KBM [3,27] solutions when the coelTicient of
linear damping force vanishes. However, Popov’s [47] and Mendelsons’s [34] solutions, and
Murty’s [41] under-damped solutions for different initial conditions are in good agreement with

those obtained by the numerical method when the damping forces are significant. But when the

damping forces are more significant, i.e., when the discriminant of the linear equation is much

smaller than unity (not only ()(8) ), the solutions obtained in [34,41,47] do not agree with the

nel) g -th order approximation.
numerical solutions. In these cases errors occur more than 0(8 ) for an r-th 0 He

asymptotic solution of a sccond order nonlincar
[41n

Recently, Shamsul and Sattar [57] have obtaincd an

» i \ g ion may be used when the
damped systems with more significant damping [orces. The solution may

amped. Thus this is a more generalized

e 115 ‘s crill wped or overd
corresponding linear system 1s critically damp

method than the unified method of Murty [41].



The method of Bojadziev [15] and the unificd KBM method of Shamsul and Sattar [55] are not
sufficient to obtain desired results of a third order nonlinear differential cquation, when the
damping forces are 100 strong that the discriminant of the linear equations are much smaller than
unity. In this chapter, we have developed a generalized asymptotic method for solving a third order
nonlinear autonomous differential equation when the damping forces are more significant. The

method can also be used for a critically damped system as a limit.

4.2 The Method

Let us consider the third order nonlinear differential equation
X+ki+k,x+kx=¢f(¥ % x), @.1
with the generating solution
x=age ™ +e™ (b, cosm [ +¢ysinw 1. 4.2)
where —A, —ptio, A>0, p= O(l), o <1 are three characteristic roots of (4.1) when e =0,

and a,, b, and ¢, are arbitrary constants.

Now we seek a solution of the differential equation (4.1) in the form of an asymptotic

expansion
s 2
x=ae ™ +e™ (bcoso [ +csin® ()+ewm{abe,)+e" (4.3)
where a, b and c satisfy the differential equations
2
a=ced (a,b,c,)+E
4.4)

b':sB,(a,b,c,l’H—s2 e

c':gcl(a,b,c,f)+g2
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Differentiating (4.3) three times with respect to using relations (4.4), substituting (4.3) and
the derivatives x, ¥, X in the original cquation (4.1), and comparing the coefficients of various

powers of g, we get for the coelficient of ¢ :

a ? 2 -\t = az a
[(5+LLJ +® ](Ale )+e . [[BI—ZJF(X_H);??—Z(DZJB'

d ( G
+ m[f& o +2A - ZMJQ Jcosml +| - m[3 5 + 20— 2;4)31 4.5)

8? 5 ) ? 5V
2 "
+ ((a’-—z + (k — .u)a -2w J]Cl sinw/{ + (;37 + l)((a + “J + ol ]Hl - f(o) (a,b,c,l),

®

where f© = f'(x,.%,.%,) and x, =ae™ +e™ (hcosm/ + csinwt).

To solve the equation (4.5) for u,, A4,, B, and C, it is assumed that the function u, does

" not contain the first harmonic terms which are produced from (cosml)r(sinwl)"', rzl,s=10
only. We also assume that », does not contain a term of the form t exp(—t). In this case all the

terms of (cosm {)r, r=1of f‘o) can be expanded in various harmonic terms, e.g.,

wn, o

F© =F, + F, cosot + G, sinof + F, cos 20f + -+ > & (cosar) (sinwr)",

r=l, 5=2

(4.6)

while the higher order terms of (cos o) (sinwr)', r21, 522 have remained unchanged.

Substituting (4.6) in (4.5) and equating the coefficients of cosOw!, coswf and sinw/, we

oblain

2 4.7
(@ i .
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9’ g )
A—)——=20" |, + ( ] - A
(DI + (7 ”0{ ) L tw|3 e F2A 21‘)(1 =%, (4.8)

m(3—a--+2x—2 )13 i 0,
o Hs, + 52—4-(7\.—“)5[-—2(1) ]C] =Gl' (49)

and

r=1, §=2

(-a—t+k)((a+u) +u)2]u,=172 cos2mf + -+ + Z g,. (cosml smwl) (4.10)

The particular solutions of (4.7)-(4.9) give the three unknown functions 4,, B, and C,. Itis
obvious that the change of the variables a, b and ¢ are small. When F,, F, and G, are given we
may casily solve the equations (4.7)-(4.9) by assuming that a, b and ¢ arc constants. Substituting

the values of A4,, B, and C, into (4.4) and then solving them, we obtain the first approximate

solution of the nonlinear differential equation. The procedure can be carried to higher orders in

the same way.

4.2.1 Determination of the first order correction term ,
The particular solution of (4.10) gives the first order correction term %, . When the nonlinear

function 7/ of the equation (4.1) is given, £y, Iy, and G, G,, - are specified. Then

v 2 - 1 7 ¢ 1 4
substituting the valucs of 7, Fyyee and G,. Gy, in (4.10), wec may solve it by assuming

again that a, b and ¢ are constants. Thus the correction term u, is found and we obtain the first

improved solution of the equation (4.1).

4.3 Example

i 3
Now consider /= x". So,
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) _ 3 -3Mm _1._ 2 -(h+2p)r 2 -(2x -
S =a"e™ +1ab’e + 32 2hen) +1hle 3"’)(IJcosml + csin of)

=(r+2u) 2 . y
+3ae™rm) (%b cos 2w/ + besin 20! + ¢ sin? mt)

ETILE R 3.2 . 2 - . .
+e (1" cos 3o + G0 csin3wr + 3he? coswrsin? wr + ¢ sin’ ml).
Therefore the non zero coefficients of Fo,F - and G,,G,, - are

y

Fy=a'e™ +3ab P F =3b(aze'(2"+“)' +}bze‘3"')

G, =3c'(aze"(2’“"'“)’ +H)2e_3”'), 15 =3ab’e Rl (4.11)
R Y] 3 -Ius
G, =3abce ™™™ | [, = b e4 . G, =3b%

Substituting the values of [, F, and G, from (4.11) into the equations (4.7)-(4.9) and

solving them we obtain

A =la'e™ + Lab*e™,
B, =a*(mb+nc)e™ + (m,b +n,yc)b*e™, _ (4.12)
B, =a’(=nb+mec)e™™ +(=mb+myec)bie™,
where
- L 1 e
oo ol P 2 o)
_ 3(7\.2 + Ap —002) 5 —3(;,1(?»—3u)+r:)3) . @.13)
R FENPE) | FRPITENIG) B (1 rol (-3 +o)
30(2h + 1) _ 3(—A + 4u)’ |
M= 2(%2 +u)2)((k+u)2 +o?)’ . 8(;12 +(oz)((k—3;z)' +(uz)

Substituting the values of 4;, B, and C, from (4.12) into the equatiuns (e WeabRm
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a= 5(’1”33_2M + izubze'z"’)’
b= 8((12 (m,b + n‘c)e—z)u + (mzb + ”2C)bze_2”,) o

¢ = 8(02 (= nb+me)e™™ + (- nyb + myc)bies )
Replacing a, b and ¢ by their respective values obtained in the linear case, and then
integrating with respect to f, we obtain
a=a, + g([,aé (l —e M )/l +1,a,b; (1 —e )/ p)/Z,
b=b, + a(ag (m,by + n,c, )(l —e M )/ A+ b2 (myby + nyc, )(l —e™ )/ u)/ 2, (4.15)
c=c, + 8({/5 (- n,b, +mc, )(l —e )/ A+ b (= nyby + mye, )(l —e )/ u)/ 2;
Hence the [irst order solution of (4.1) is
x=ae ™ +e”"'(bcosmH-csinm /). _ (4.16)

where «, b and ¢ are given by (4.15).

Now substituting the values of F,, F;, G, and G, into the equation (4.10) and then

solving it, we obtain

wy = g (c“”c2 + (b —c?) (e, cos 2ar +d, sin 20)
+ 2bc(— d, cos 2wt + ¢, sin 201)) @17
+e " (b(c, cos et +d, sin wt)+ (- d, cos i + ¢, sin wl)

+ b(b2 —3¢? )(03 cos 3wl + dy sin 3ot ) + (:(3b2 ~c’ )(— d, cos 3wt + ¢; sin 3(01)),

where
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RON 3
4“((?\, +1)? +o?)

3O =3 + 02 )

s Toplp® + 02 (A = 3)* + o)’
d; = 3o - 4p)
' l6p(u2 +o’ )((k -3u)? + mzj’
s = 3(— RO+ ) + (40 + T o )

o oo fw e r07)

J = 3((7u+ u)(?\,+5u)—mz)m
? 4(LL2 +u)2)((7»+p)2 +m2)((k+u)2 +9mz)’

(A =30 + (<22 + 150) @°

Cy =
P + 0% ) 407 (M- 3w +907)
3 — 3(;1(?& —4p) + 20* )o)
i, = > —r— - - -1 (4.18)
l()(p +m )(p‘ + 4oy’ )((k —31)° + 90)‘)
Therefore, the first improved solution of (4.1) is
x=ae™ +e™ (beosw(+csinwl)+eu, (4.19)

where a, b, ¢ are given by (4.15) and «, is given by (4.17). The solution (4.19) may be used even
when © is very small. When o is sufficiently small, i.e., in the case of critical damping forces,
similar solution may be found from the equation (4.5). Let

beoswi=b" (1),

(4.20)
csinor =c ()1,
where 4" and ¢ satisfy the differential equations
bt =eB (a.b’ et ) +Ed 4.21)

+ . L A 2
& =gl (@b’ e ) e
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Differentiating (4.20) three times with respect to 1, using second and third relations of (4.4) and

the relations (4.20), and then comparing the coefficients of ¢ we obtain the following relations for

the unknown functions B, and C,, and B’ and C as

0?2 oB
——2——203 B, coswl =30 —Lsinof = o»? B, +?—i
ot ot o’

B,
—Lcoswl — 208, sinal ="' o' +6B ,
ot ot
, N (4.22)
L] 2 L]
3o-—"cosol +| — =20 |C, sinor =—"0’c" +0'C +3a—C—'~+{ o°G
or or e A

oB, .
20C, cosmt+a—l'smw! e w’c’1+2C, +ta—c—

or
By (4.22) we can easily eliminate the functions B, and C, from the equation (4.5) and

obtain
2 * L ] a L]
e aip] 4 re™ ﬁ[ﬁ“_p]gl + 0B +(3—+27\.—2}1 C.
ot or\ ot ot

2
+J.’i i+?\—u C, +(2+?\] (i+u) +o’ |y, (4.23)
or\ of ot ot
=8"'a)ze"‘”(b' = —c'l)+ £ a,b,c,1)

As the limil ® — 0, the above equation (4.23) reduces to
[ 0 2 e O 9 +A—p|B +(3—?—+ 21 - ZHJC;
5;_?%” Arela\a ol
. 2
o0 0 ](l J = /-'(0)(::1.1)‘.0‘,1)~
o(o L p]u ="
+ta[() +A— u](, J+(8’ Y

where £ = |im f“_’)(a,b,c,r).

w—0

Q

(4.24)
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[Tere we assume that the function £ can be cxpanded ina M

J?m) =g, (a,h' )+ 'ZI: g,.(a,b‘,c')l". (4.25)

acluarin series as

PR 70 ; .
Substituting £ from (4.25) into equation (4.24) and equating the coefficients of various

powers of £, we obtain

(@ ’ 8(0 3
e "'(——-7»+ Ll A +e™| = Z4+A-ulB 9 _ 3.
= L | +e Py a{+?\, BB+ 36[+2?» 21 (C) =g, (4.26)
u O[O0 .
e’ E[a—frk—“)q =g, - (4.27)

9 o Y .
—+ A —+ u, = a,b ,c 1. - (4.2
B8 ORI - s
We also assume that the coefficient g, can be written as
gy = e’ "'/1, (a, b, I)-l- hle "'h, (a, b ,l). (4.29)

Now substituting g, from (4.29) into the equation (4.26) and equating the coefficients of

At

e and e™', we obtain
a 2
(— - A+ pl] A, =ah,, (4.30)
ot
§[9-+x_u)13; +(3—a—+2l—2pJC,' ¥, (431)
ot \ o1 ot

Solving equations (4.30), (4.31) and (4.27) we obtain the functions A, B and C).ltis

. 5 ' i . 4.2. In the case of
noted that the function 4, is similar to ils previous value obtained in Sec. 4.2. In

; ' * are different form B, and C').
critical damping o vanishes only. While the functions B, and C, are different form B, |

: G - i -ate it, we consider
One or more terms may be inserted for the cause of critical damping. To illustrate it,
5 T 4

again the nonlinear function f =x . Therefore
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by LI § 2. . . ) )
L =q e w3ath e By +3(,(/, )ze—(mzu): +(b')2e‘-""
+ (3"2"‘””(-2&"“” +0ab’cle Iy 3(1:')2c'e'3"') +3afe"f 2e- o
=3l % ¢ \2 2 + \3 3
+e”M@Bb e )T+ )17
So, the nonzero coefficients of g, are
- . « \2 R ’
go=a‘e™ +3a%b’¢ Iy +3a(b ) o~ +(b )2e—3m, '

’

* - A . * . L) 2 ]
B = 3alc e M 4 Gap et et 3(1) ) cle M

A e (4.32)
g, =3a(c ) g R . 3 (c ) e,
g=e(c).
From the cxpression of g, by (4.32) we easily obtain
hy=a'e™ + Sa(l)')ze_z‘", hy, =3a’b e +(b')3e‘2'".
Hence the equations (4.30), (4.31), (4.27) and (4.28) become respectively
2
LN p] A =a'e™ + 3a(b°)'e'2‘" , (4.33)
ot
. 2p% =2 \2 o
a{e s Fe “JB; + (3i +2\ - 2;1)6‘, =3a’h’e™ + (b ) 2™, (4.34)
or\ o o1
918 a- LJC.' —3ate e 4 Gab'c et 4 3(b"f cte ™, (4.35)
or\ ot '
and
) ? PP VP MR Y Couy (0 LVE BN Ao WL | (4.36)
(;_FKJ[;;EL*_“J " =3a(c ) (Lo g g (3[, (c ) r +(c ) )
! !

Solving the above four equations, we obtain



LI B AT
ae 3u([) ) e H
= +

! (3 - u)z 2(k + u)z

()

; —i(lz( b + (2}\'+“)C' e"n’ +M
7\'()\' + l»l) 7\2 (}\. + }.l)2 2”2 ()\' + H)Z
(4.37)

R=A+3p) P (= +3p)? ’

. Joate™ gbte ey ib')ze'z’”
=3¢ + |

= +
‘ 2MA+) R+ (A + 3w

and '
u = a(c‘ )Ze““z“)' (do +dt+d,t )+ e (6((:' )2 (elb' + eoc')

(4.38)
+ ()(c')2 (ezh' +e,c‘)t +3(c')2(e_‘b' +ezc')l2 +e_1(c')313).

where

b

302 + 6Ap + 1707 g m30sy) -3

d = ) = ) =1
’ 4’ (7&, + u)d ! 2u° (}\. + u)] ? Zp(l + p)z

2N — 27+ 760 9T 3N 220+ 43 (4.39)
16p° (b —3p)’° e (- 3p)’

€y =—

- 1
e2=—}\‘4L2_, e3=-_7_—__’ ki?’}l
4’ (A - 3p) ap’ (- 3p)
Substituting the values of 4,, B, and C; in the first cquation of (4.4) and in (4.21) and

then integrating with respect to t, we obtain the solutions similar to (4.15).

Thus the first order critically damped solution of the nonlinear equation 4.1) s
. (4.40)
x=qe™ +e'“’(h + ¢ f)+su|.

where 4, is given by (4.38).
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4.4 Discussion

An analytical method has been developed 1o obtain the time response of a third ord
; a third order

ponlinear differential equation with small

nonlinearities when the damping forces are more

significant. T he solution (4.19) can also be used when the damping forces are near critical

damping forces. Similar to the solution (4.19), the critically damped solution (4.38) is found

The solution (3.23) in the previous Chapter 3 is used for the significant damping forces

where 0 <p <o and @ =0(). If the linear damping forces are increased in such a manner that

p>o and o<1, then the solution (4.19) gives better results than the solution (3.23) when
compared to the numerical solution. One can ecasily verify it by computing x by both the

formulae (3.23) and (4.19) for a, =0 and b, =c, =1 (sec Table 4.1).

The solution (4.40) has been applied in nonlinear mechanical elastic system with internal

friction and relaxation described in Chapter 3 by the equation (3.1), in the case of critical

damping forces [54]. In [54] the variables a, b* and ¢" have been transformed by

« . (4.41)

c't=e"o(l),

. , - i rect results.
where ¢, # 0. IFor small values of ¢, the solution in terms of ¢ does not give cort

' ' =n, i.e., in the case of three
However, the solution (4.40) are used for all values of ¢,. When A =p, 1€, 1n

. cince the penerating solution takes
equal characteristic roots, the solution (4.40) can not be used; since the generating

the form

‘ (4.42)
(1,0) = e ™ (agt? +by +Col):
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which is not of the form of (4.40). Shamsul ang Sattar [58] have developed an asymptotic

thod for a critically damped nonlinear System when the three characteristic roots are equal.
me

To obtain the corresponding numerical

solution of (4.19), the initjal conditions

[x(0), x(0), %(0)] are computed from

0) 2 2 3)
x(0) =a, +b, +E(c( agCy +¢,byc, dicg

+8(sz’o (bo2 ‘C;)_Zdzaoboco +c¢y (b, _3boC§)_d3 (31)360 —cg)),

tW(0)=-Aa, —pb, +oc, + 8(— (A +21)cPageq +byeq (<3pe, +0d,) +c) (o, +3pd,)
+e (llag +1,a,by +al(mb, +n,¢,)+b¢ (m,b, +nzco))
re((~(+2p)c, +20d,) ay (b —¢2) +2Q20e, + (L + 20)d,) a,byc,)

2 ; ) -
+3(he, +@d; )by ~3byes )+ 3(oc, +1d,)3b5c, ~¢) (4.43)

X0)=2 ap + (02 =w0?) b, —2uwc, | o ))
+8((7\,+2u)zc(°’a0cg +b,cg ((9;12 —’)e, —6pod, )—c(') (Gpo)cl +0u° —0)d,
—28(2?\.1103 +(A+p)l,a,bl +a; (A +)m, +wn,) by +(—om, +(L+mn)e,)
+2b7 ((pm3 +on,) by + (—om, +pnz)co))
re((+ 21?2 —d0?)e, —40n+ 2w 0d, ) ag (¢ - )
~2(400+ 2m) we, + (0 +20)? — 4w )d, Jaghoc,

2 2 _w?)d, J3bic —C"))-
+9((p'2 _0)2)C3 —2“.0)0’-‘ )(b(; __BbOCO‘)-——()(ZHGJCJ +(“ (O] )(])( 0%o 0
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0 X B
=¥ \

5% 0.089375 0.9 0oL )
03 0.823955 0822332 8'80000
1.0 0.507640 0.507593 0'00598
s 0.236507 0.236555 0'0?527
2.0 0.065116 0.065116 0'055;7(5)
25 20.017699 0017723 0.13542
3.0 20.042788 20.042802 0.0327]
35 20.039037 20.039043 001537
40 20.025816 20025817 0.00387
45 20.01312] 20013121 0.00000
5.0 20.00447] 20.004470 0.02237

Table 4.1(a) SbOlUllOll (4.19) _for A=2, n=o=1and € =0.1 with initial conditions a, =0 and
tlo =¢y =1 or [x(0)=0.989375, x(0) =0.063750, ¥(0)=-2.26625] are given in
he se_cdon.d cdumn. In the third column corresponding numerical results
(considered to be exact) are given. In the fourth column the percentage errors are

given.

t * X |Error] (%)

0.0 0.998750 0.998750 0.00000

0.5 0.826195 0.826198 0.00036

1.0 0.506641 0.506598 0.00849

1.5 0.234718 0.234659 0.02510

2.0 0.063484 0.063435 0.07718

25 -0.018745 -0.018775 0.16004

3.0 | -0.043301 -0.043316 0.03460

3.5 -0.039199 -0.039203 0.01020

4.0 -0.025799 -0.025798 000388 |
45  [-0.013044 _ |-0013041 002300
50 |-0.004395 [20,004393 | 0.04551

8 4.1(b) Solution (3.23) for A=2, p=0 =1and €=
b, =c, =1 or [x(0)=0998750.(0)=0.04

hird column corresponc

the second column. In the t '
rrors are given.

In the fourth column the percentage

Rema :
emark : The crrors in Table 4.1(b) oscill
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ate with more amplitude th

0.1 with initial conditions dq =0 and
5000, ¥(0)= _2.247500] are given in
ing numerical results are given.

an errors in Table 4.1(a).



Chapter 5

Third Order Nonlinear Oscillations with Damping Forces and Delay

5.1 Introduction

Many physical systems possess the feature of having a delayed response, so that the rate at
which processes occur depends not only on the current state of the system but also on past states.
Mathematical models of such processes commonly result in differential equations with time
delay. Examples of such models arise in a wide variety of fields, from the vibrations of
mechanical systems and electric circuit theory to certain bio-medical phenomena and the theory
of economic dynamics.- Besides involving time deléy these systems oflen possess feature which
can not be modeled by linear equations and the resulting difference-differential equations are

noniinear.

The asymptotic solutions of such nonlinear difference-differential equations have previously
been investigated by Rubanic [50], Mitropolskii and Martinyuk [37], Lardner and Bojadziev
[28], Bojadziev and Lardner [9], Linkens [32] for second order systems. Some authors, e.g.,

Pavlidis [45], Dutt, Ghosh and Karmakar [18], Lin and Khan [30], Bojadziev and Chan [12] have

used KBM method in the neighborhood of the cquilibrium of 2-dimensional biological systems

with time delay. Pavlidis [45] has also investigated n-dimensional nonlinear systems. On the

other hand some authors, e.g., Goel, Mitra and Montrol [23], Bojadziev [4,10] have used KBM

. : i c degre frcedom, small
method in nonlinear systems with small time delay. A system with one degree of fi » St

time lag and significant damping has been studied by Kan [24,25], by the means of successive

transformations.



Freedman, Rao and Lakshmi [20], and Freedman and Ruan [21] ete. have studied 3

dimensional biological systems with time delay. However, they dealt mainly with stability

problems. In the present paper, a different approach based on the small parameter expansion is
: XPans S

applied to a third order nonlinear system with significant time delay.

5.2 The method

Let us consider a third order nonlinear difference-differential équalion
X4k X+k,x+kyx+wyx, =ef(%,%,,%,%,,%,x,), (5.1)
where x, =x( —A), A=20.1f A=0, the difference-differential equation becomes an ordinary
differential equation. It is obvious that, the unperturbed equation of (5.1) has a 'non-retarded'
restoring force k,x and a 'retarded’ restoring force «;x. The term 'non-retarded' does not require
further explanation, inasmuch as this is the usual significance of terms X(1), ¥(f), x(0), x(1)

encountered in the ordinary differential cquation. As to the 'relarded’ terms, they are often
encountered in the control problems where a certain control action is produced artificially. In
such a case, in view of inevitable time-lags in a control system, this action does not relate to the

instant / at which it is supposed to be exerted, but to a past instant £ - A.

A differential equation, for instance with constant coefficients, has the property that the

degree of its characteristic equation is always equal to the order of the differential equation. The

: : T i acteristic equation is
fundamental property of a difference-difTerential equation 1S that its characteristic €q

: : -cadi -ertains this peculiarity of
always of an infinite degree whatever IS order may be. One readily ascertains p arity

' T . I " a s {‘
arded' quantily as a laylor scries [n lerms ©

1
difference-differential equation il onc develops a ¢

ities. T - instance
the corresponding 'non-retarded’ quantities. ['hus, for stz



¥, =% ~—A)=x(r)~%x(!)+%2'—x({)—___

=x(r)[1—§£+’i'_‘_”_]

I X 21 x
(5:2)

if one tries to salisfy a difference-differential equation by a solution of the form x = x, ¢, it is

clear that —=2z, =z%,-- and (5.2) becomes

X

= | =

(5.3)

If one substitutes this expression of x, into the unperturbed equation of (5.1), one obtains an

algebraico-transcendental characteristic equation

Oz, A) =2 + k2’ +hyz+ ky +Kye™ =0, | (5.4)

and the problem consists in determining the zeros of the entire function Q(z,A). Since the

degree of (5.4) is infinity, it has infinite number of roots. In a similar fashion one can show that,

every linear equation with 'retarded’ lerms always has infinite number of characteristic roots. So,

the solution of difference-differential equation with constant coefficients is not simple even if it

is linear. However, in the case of monofrequent oscillation, two roots with non-positive real

e . . . o
parts, namely — p % iw, where p is the smallest, are considered to oblain the solution, since oth

uickly. Here, we consider a real root —A, where A is

modes of vibrations will die-out relatively q

. i Therefore, the
the smallest, assuming that as A —0 the solution reduces to the solution (3.7). Therelo

generating solution of (5.1) takes the form

! ' (5.5
x=age™ +e’ (by cOS® 1+ o SINO 1),

iaear differentia ation (3.5) (see Sec. 3.2).
Which is similar to the generating solution of the nonlineat differential equ (35
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Now we seck a solution of the difference-differentjal cquation (5.1) in the form of an

asymptotic expansion

_ =)t .= i
x=ae " +e (bcoso)l+csmo)/)-l—au,(a,h,c/)+82...

(5.6)
where a, b and ¢ satisly the differential equations
a=¢td,(a.b,c,1)+€* -,
[}:sBl(a.b,c,f)-Fsz---, 5.7

¢=¢C,(a,b,c,0)+g* ...

Differentiating (5.6) three times with respect to 1, using relations (5.7), substituting (5.6) and the
derivatives X, X, ¥ in the original equation (5.1), and comparing the coefficients of various powers

of €, we get for the coclTicient of g

[ 8% 4 oA ,
ex[ 29 '+3k‘A,+k,(%—2kA,J+k,A,)
: I *

5
&

or o
a*B oB oC
+e™ Lo3p—L+3(n? —0’)B, + 30 —-—2uC
[( P 2k ar ( )B, [5[ H |J
oB,
+ K, —5——2;18, +20C, [+ k,B, |cosot (5.8)
f

| ¢, . aC, .
o =30 B oup, |+ Z5 o S 3 - 0?)C
ot or o

oC .
+ kl[— 208, + —&'— -2uC, ] + kZC,JSlll(Df

otu, o,

3
L2 + by — + ki, +iyu, (= 4) = [ (a,b,¢,1)
ar’ o

or’

+k,

€ 0 _ S - -k e f+cesinm ). When A=0, one can
where 1 = [(x,.%,,%,) and x,=ae " +¢ (heosw )

easily transform the equation (5.8) to the equation (3.5) obtained in Chapter 3 by utilizing the

telations between roots and cocfficients of the characteristic equation (5.4). Note that in this case the

equation (5.4) has exactly three roots.
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. - (0 .
Let the function /™ be expanded in a Fourier series

o
AR Z (/;‘" (u, h,c, r)cosnml +0, (u, b. c,l)sinm.)/)

=0

(5.9)
To solve the equation (5.8) for u, A, B, and C,, it is assumed that the function w, does

not contain secular terins as well as a term with lexp(—z) Substituting (5.9) in (5.8) and
: . .8) an.

equating the coefficients of cos Owt, coswr and sinwr, we obtain

X ! 1 2 AI
e (——’2 —"3?\._‘[ +30° 4, +kl(—{ —27\Al)+k2Al]_ Iy, (5.10)

il GO oB aC
e™ ( L-3u 6{I +3(0* - 0?)B, +3m(—a;'— _'ZHC'J

o’
5.11
" (5.11)
+k, «(3—['—2;LB,+203CI +k,B =1,
) OB o'C oC
e“’ _30)_.|_._2 B -I— ]—"3 _L+3 2_ :
( (az 3 'J a7 M T Tea (5.12)

oC
+ /f,('— 2005, +a—|"2“C|]+ kzclszl-'
f

and
0’u,
o1}

&*u,

ot

+k, a(;l + kg, + 1, (( = Ay= ) (F, cosnot + G, sinnor). (5.13)
!

n=2

+ Kk,

The particular solutions of (5.10)-(5.12) give the three unknown functions 4, B, and C;.

When £, F ay easily solve the equations. Substituting the values of

. and G, are given, we m

A, B, and C, into (5.7) and then solving them, we obtain the first approximate solution of the

nonlinear differcnce-differential equation (5. 1). The procedure can be applied to higher orders in

the same way.
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5.2.1 Determination of the first order correction term y
I

The particular solution of (5.13) gives the first order correction term u,. When the nonlinear

function f'of the equation (5.1) is given, F, and G,, n22 are specified. Then substituting the
values of [, and G, in (3.13), we may solve this equation. Thus the correction term u, is found

and we obtain the first improved solution of the equation (5.1).

5.3 Example

Now consider f =x*. So

SO =ate™ 43 gem(e (b2 + c2)+ 3(020*(2“")' +de7m (b +c ))(b cos ! + ¢sin w/)

=3

+ %ae g ((b?' —c? )cos 2w + 2bc¢sin 20)/) +- (f’)([:v2 -3c¢? )cos Jof + c(31_’)2 -¢? )sin 3(0/)

Therclore the non zero cocfficients of /7, and G, are

F,=a’e™ +3ge M) (b2 4 cz), I3 =3b(aze"m”')' +de M (b2 +c2)),

G, =3c(c12e'(2““)' +le7W (b2 +c2)), F, = a(b2 wc2)e'(’“2“)’, (5.14)

[T

G, =3abce™ ™M | F, =%b(bz —352)@_3wv G, =qyc (3172 ) A

Substituting the values of Fy, F, and G, from (5.14) into the equations (5.10)~(5.12) and

solving them, we obtain

A =la'e™ 4 Lalp? +ct)e™,

B =a*(mb+n e + (m,b + nzc)(l)2 +c2)e—2'", (5.15)_

=2

C, =a*(-nb+mce ™ + (- n,b+ mzc)(b2 +c? e,

where
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1

KTy por la :
1302 —dk A +k, 2 2bkz+6ku+4p2~2kdk+p)+kﬂ’
3
my = _21)| 7y M, = 3])2 ’
2p? +q7) 8(p2 +47) o0
3, 34,

and

Py =AM+ 6ML+ 307 =30 = 2k, (0 + ),
g, =6w(A + ) -2k 0,

5.16
P, =137 =30’ — 4k, (. 162)

q, =121w -2k .

Substituting the values of A, B, and C, from (5.15) into the equation (5.7). we obtain
= s(/]a"e"z"’ + J,'2a(b2 +c? )e '2'")
b= s(a"‘ (m,b+ n,c)e™™ + (m,b + nzc)(bz +c’ )e‘z“’) (5.17)

. = 2 2) -2
¢ e(az(—n[b+m,c)e . +(—nzb+mzc)(b +c )e "’).

1

Replacing a, b and ¢ by their respective values obtained in the linear case, and then
Integrating with respect to /, we obtain
a=a, + e(/, a; (l —e M )/?\. + 1,4, (bg +¢Cq )(1 —e )/ Ll)/ 2,
2 2w
b=b, + 8(5’67 (b, + n,Co)(l —e )/ A+ (myhg + 16y )(bo2 +Co )(1 —e™ )/”)/2= (5.18)

c=c¢, + g(aé (= n,b, + m,cq )(1 e )/k + (= myby + mzco)(bo2 +cg )(l —e )/}1)/2.

0

Hence the first order solution of (5.1) is

in o) (5.19)
x=ae™ +e™ (b cos o/ + csinf ),

where g, b and ¢ are given by (5.18).
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Now substituting the valuc A
’ ves of fo 1. Gy and G, from (5.14) into ‘the equation (5.13) and
@ 13) an

then solving it, we obtain

—(A+2p) 2 2
u, =dae b =G c, COS 2 i
: ( ( (( ) )( 2 of +d, sin2w¢) + 2b¢(- d, cos 2wt + c, sin 2(1)/))
+e ™ (hlh7 = 3¢? (e, cos3amr i
+d, sin 3 - e(3h? = 2 20
3 dy s -('3’)“* C(3b g )(— d; cos3w/ + ¢, sin 3(0!)). 20
where
¢, = 30y d, =
EG‘{ + 57 ) 2 2‘1'22 + 52 ;
.- 1,.3 s (5.21)
| 4‘/‘; + 532 ) : 4@;'32 + S_f ) |
and
. § pas
ry ==+ 20" + 1207 (M4 20) + , (A + 207 — 402 )= ky (b +20) + &,
+1c,e M cos 2mA,
5, =6m(A +21)7 -8’ — 4k (A +2p) + k0 — ke sin 204, (5.21a)
ry ==27p° + 81p0® + 9%k, (1° = 0) =3k, + k; + k™™ cos3wA,
sy =810 — 270" — 18k, po + 3k,0 — k™" sin 3wA.
Therefore, the first improved solution of (5.1) is
(5.22)

o -3 = f
x=ae ' +e "’(bcoswl+csmm()+eu|,

where a, b and ¢ are given by (5.18) and #, is given by (5.20).

5.4 Discussion
onse of a third order weakly

as been found to obtain the time resp

An asymplotic solution h
the extended KBM method. While the

nonlincar difference-difTerential cquation on the basis ol
al ones, they are important in various oscillating

solution of the type (5.22) is not the most gener
and control theory.

Systems in mechanics, electrical circuits
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The principal difficulty in the studics of the difference-differential cquations is in the linca
L ¢ ar

problem itsell, which is of a special transcendental character. Generally, a linear problem has a
bl [ d

simple solution. Here, on the contrary, the linear problem leads always to an infinite spectrum of

frequencies with which such a system can oscillate. The determination of this spectrum requires
a corresponding determination of zeros of certain analytic functions Q(z,A) . Some roots of tl.1e
characteristic ecuation (5.4) are given in Table 5.1 for different values of A. When A — 0 lh.e
solution (5.22) is identical to the solution (3.23) obtained in Chapter 3. Moreover, when
A=0(g), i.e., in the case of small retardation effects, one can find a simple solution similar to

(3.7) by transforming the difference-differential equation (5.1) to the differential equation

¥ 4y eyt + (kg + k) =6(f (1, %) + KA, £), (5.23)

where A=¢€A |, A, =0(l) and x, is expanded in a Taylor serics as

A

154 0(e%). - (5.24)

X, =x({—€A)=x~—

For the case of retarded damping forces, similar solutions can be found, but it becomes more

complicated and laborious.
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A Real root or roots Complex roots
0 -2.20409.. -0.89795.. + /1.11145..
0.5 -2.53021.., -18.42054... ... -0.79703.. £ i1.08401.., -24.86568.. + i44.18732... ...
0.75 -2.95135..,-9.17368.., ... “0.74681.. £ 11.05272.., -11.96837.. + {11.70767... ..
-

Table 5.1 Roots of the algebraico-transcendental char

acteristic equation (5.4) are given
for different values of A when k= k=4, k,

=6 and k,=0.5.
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Chapter 6

Third Order Nonlinear Oscillations with Varying Cocfficients

6.1 Introduction

Flrom the beginning of modern developments in the theorylof oscillations the asymptotic
method has been neglected to the investigations of nonstationary phenomena, meant all the cases in
which the coefficients of differential equations are varying slowly with time. The oscillations of this
nature are not necessarily periodic. Mitropolskii [35] has first used asymptotic method to
investigate nonstationary solutions of the second order nonlinear systems. Bojadziev and Edwards
[14] have studicd some damped-oscillatory and non-oscillatory second order systems with slowly
varying coefficients. Feshchenko, Shkil and Nikolenko [19] have used asymptotic method to linear
differential equations with slowly varying coefficients. Arya and Bojadziev [2] have studied a time-
dependent nonlinear oscillatory system with damping, slowly varying .cocl‘"ﬁcients and delay. Arya
and Bojadziev [1] have also studied a system of second order nonlinear hyperbolic differential
rying coefficients. However, the more difficult and no less important caée

equations with slowly va

. ; . : ing ficients has
of third order nonlinear differential equations with damping and slowly varying cocll :

) s st ‘ ap.
remained almost untouched. The aim of the present woxk is in part to ﬁ_U that gap .

6.2 The method

it i i i varying cocllicicnts
Consider the third order nonlinear differential equation with slowly varying

(6.1)

§ 4k (T)E+hy (D + (DX = g f(1. % %,%),



where & <<l, and T=g/( is the slowly varying time. It is assumed that, for a certain interval

(0<r= T), the slow time T is in the interval (0<r< T/e) and in this interval the coefTicients

k, (1), s =1,2,3 are conlinuously differentiable for an infinjte number of times for all finite values

of their arguments.

Let the unperturbed equation of (6.1) has three roots -, —ptio, where A, p and o are

constants, but when eli 0, A, p and o are functions of 1. Therefore the generating solution of
equation (6.1) is

x=da,e™ +bye™ cos(wf +¢,), (6.2)
where a,, b, and ¢, are arbitrary constants. The generating solution (6.2) is identical to (3.0)

(discussed in Chapter 3). We look for a solution of (6.1) in the form

X =a+bcosp+eu (a,b,o, D+el-, (6.3)
where a, b and ¢ satisfy the first order differential equations
a=-M1)a+ed (a,b, )+ele,

b=-p(t)b+eB, (a,b,7) +glee, . (6.4)

2
p=w(t)+eC (.0, T)+€ .
ing relati ituting (6.3) and
Differentiating (6.3) three times with respect 1o 1, using relations (6.4), substituting (6.3)
i i Ticients of various
the derivatives ¥, #, ¥ in the original equation (6.1), and comparing the coeflicien

powers of g, we get for the cocfficient of € :

68



0 o\
_ 3 At — bh— _ 2
2%(7» H)k a *(( a 2 + 1o b Ll) +m }A, +(~ Ap/ +].l’u—3om)’)b Cos(

e, 0 3, )
M—+puh——A | Aa——+up 2 . 1 5.2
-{(( aaa i ob J( C Ou “751) “] 20 JB‘

A | |
+ mb(3(7xa e b Ej ~2A+ 2HJC| ] cosp + (3LL’m - X0 +po’ )b sing

3xa+bax 20— |B (6.)
+U)(aa p.ab — kB,

[

o 0 ’ 0 0
b~ | Aha—+ub—-) + (A - At —— +1p —— — 2 .
- [ ( aaa L 2 J : ( p{ a 5‘a+u % l)+2m JC,]sm(p

2
+ —kai—;tl)i+o)i+7x —7\.((—6—-—‘1/)‘6—4'(0—(2- +0’ |y, = /""’(a,b,(p,T),
oa ob o da ob op '

where /9 = f(x,,%,,%,,7) and x, = a+bcosg.

Let the function /™ be expanded in a Fourier scrics

SO =F (ah,t)+ Fi(ah,t) cosp+G,(a,b, t) singp+ F,(a,b, 1) cos2q +---. (6.6)

To solve the equation (6.5) for u,, A,, B, and C, it is assumed that the function u, does
not contain secular ferms as well as the terms with fe™". Substituting (6.6) into (6.5) and

equating the coefficients of cosOp, cosq and sin¢g, we obtain

2
i =F 6.7
2)\,()\."“)}\/0'{*((),0;4'“/75"‘}.[} +m2JA,—I"O, (6.7)
a

%, 2
0 0 2 . lJ—'Z(D ]b’
(‘;"H/ +HIH*30)0)/)l7+((}“ag_-+”h5;ukJ(M’ 6(!+H)51) t I

a (6.8)

a a . =I:‘
+mb| 3| A - b — —2x+2ch, s
o [( aaa-iu abj
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0
(3“/0) - +;,m)’)b +w[3(7na-+ub iJ—ZK—uJB,

Sa ob
E) 2 2 9 ' %)
bl —| e —+ub— - 2 se
+ { ( "aa i abj +(\ p)(}kaaa+pba_b-—kj+2w2]q=Gl,
and
8 a 0 3 3 oY
—Xa———pb——+m——+7t} (—Aa——— b-—+w0—| +n?
( éa " ab g a M O%) tO (6.10)

=COS2( +Sin2¢p +---,

The particular solutions of (6.7)-(6.9) give the unknown functions A, B and C,.
Substituting these values into (6.4) and integrating numerically we obtain the first approximate

solution of the equation (6.1). The procedure can be carried to higher orders in the same way.

6.2.1 Determination of the correction term u,
The equation (6.10) is a third order non-homogeneous partial differential equation. Its

particular solution gives the first order correction term u, . Thus the first order improved solution

of (6.1) can be found.

6.3 Example

Now consider F= x*. So,
SO =at+2ab® + (3rt-zb + %b")cosq) +3ab? cos2q ++0" cos3p.
Therefore the nonzero coefficients of F, and G,, n=0,1,--- are
Ry=a’ +3ab®, F =3a’b +2p%, 1, =3ab’ and 1 =30’

i btai
Substituting the values of F,, F, and G, =0 in (6.7)-(6.9) and then solving them, we obtain
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_2(-p)Aa
M= By vt T e,

1 = —2()w—u)u’0)+((k_“)2 + 30)2)(0/ 2
| 20 ((k‘ll)z +m7r\b+ nmyath+mb?, 611

o= (( -p)’ +30)2)u’ +20 1) oo
20 ((7\.—;1)2 +o)2)

. 2
! +na’ +n,b?,

where
I 3
[' = 2 2 12 = >
Gr-p)’ +o 2Ar+p)? +o?) |
e 3(7Lz *”L.Ll—(ﬂz) B 3(u(k—3u)+w2)
m, 2 +o? e +0?) o[-t rel) 512)
P 30)(27\.+].l) 30(=A +4p)
| =

2(?\.2 +0)2)((k+p)2 +n)27’ " = 8(u2 +mz)((7\.—3p)2 +n)2).

Substituting these values of 4,, B, and C, from (6.11) into (6.4) we obtain

!
a=-Aha+e M%»/lajwtlzabz}
(7»—“) + o’
2 2),./
b=—ub+s ~20—'o+ (1-p) +30%)o b+m,azb+mzb3], 6.13)
20 ((?x—p)z +m2)

] = (()L—p)z +3(02)p’ +2(A-p)ow’ g’ +”2sz_
2w((k—p)2 +m2)

In general, cquations (6.13) arc solved in a numerical procedure.

Thus the first approximate solution of (6.1) is

(6.14)
x=a+hcosp, _

Where a, b and ¢ are the solutions of (6.13).

) /ing it, we obtain
Substituting the values of 5 and f5 In (6.10) and then Soblng
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, .
u, = ab*(c, cos2qp + d, sin2¢) + b*(c, cos3p + dy sin3p) (6.15)

where

3(— A+ )2+ (A +71) ? )

£, B
A +o? [ +p)? +o? A+ 1) +90? )

d, = 30 (v + o+ 51 -30?))
) [ CRRER) CwReprwey

: (6.16)
a B =30 + (220 +15p) @
€= 2 2\( .2 2 ’
16(;1 + )(u +4w )((k—3u)2’+ 90)23
o = —3(1.)(”(7\.—3}[)-!-2(1)2)
P16 +m2)(u2 +40? ){(L-3p)? +90?)
Thus the first improved solution of (6.1) is

x=a+bcdsq>+eu,, 6.17)

where a, b and ¢ are the solutions of (6.13) and «, is given by (6.15).

0.4 Discussion
For certain special cases, a simple analytic method has been developed to obtain the time

response of a third order nonlinear differential equation with small nonlinearities. The method

g . : ase CASC ethod essentiall
not always independent of the numerical techniques. Yet in these cascs the metho ally

. gl er task ol solving the
replaces the task of solving the nonlinear equations (6.1) by much simpler task o g

: e is not interested in only the
luncated equations (6.4), in particular equations (6.13). Often one is not inte Y

i ’ ai in the behavior of the
oscilluling processes itsell, i.c finding the x mn terms ol ¢, bul mnunly‘
Lot 5 ity

a i i illating processes. This
amplitudes b and the phase ¢ which as f increases characterize the osculating p T
3 ’

‘ i inste " equation (6.1). It is important to
8Ives another merit to dealing with equations (6.13) instead of equ (
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note the following interpretation of equations (6.13) cxprcssin'g the ratec of change of the
amplitudes a, h and the phasc ¢ as sum of the four terms. For & = 0, the unperturbed case, only
first terms are presented and (6.13) reduces 1o three lincar equations of @, b and ¢. The second.,
third and fourth terms with the factor € perturb this simple situation and show that the lincar parts
of (6.13) change slowly in time. Hence in order to have a complete portrait of the oscillating
processes it is suflicient to find numerically only few points. On the contrary, a direct attempt to
solve numerically equation (6.1) leads to dealing with a harmonic term in the solution (6.3),
namely, b cosq . This requires the numerical calculation of a great number éf points, and also is

" not practical.
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Chapter 7
Third Order Overdamped Nonlinear Systems

7.1 Introduction

Though the KBM method was originally developed to obtain oscillatory-type solutions of
weakly nonlinear differemia[ equations; nowadays it is also useful in different types of non-
oscillatory systems. Murty and Deekshatulu [40], Murty, Deekshatulu and Krishna [39], Murty [41],
Bojadziev and Edwards [14], Sattar [51,52], Shamsul and Sattar [54,55,56,58] have found

asymptotic solutions for various overdamped and critically damped nonlinear systems based on the

work of KBM.

In this chapter, we obtain a very simple overdamped solution of a third order nonlinear
differential equation followed by Murty and Deekshatulu [40]. The solutions obtained for different
initial conditions arc also in good agrecement with those obtained by the numerical method and

sometimes give more accurate results than the unified KBM method [55].

7.2 The Method
Let us consider the third order nonlincar differential equation
X+ki+kx+k,x=¢f(%, %, x), (7.1)
with the generating solution

A

- = Ay
x=age™ +he™ e (7.2)

where =\, - X,, -\, arc three characteristic roots of (7.1) when € =0, and «,, b, and ¢, arc
arbitrary constants.

Now we seek a solution of the differential equation (7.1) in the form of an asymptotic

eXpansion



' - 2
v=ae ™ +bhe™ +ce™ +eu (abe,l)+E" (7.3)

where a, b and ¢ satisfy the differential equations

a =s/1,(a,b,c,l)+82 o

B:EBl(CI,[),C,{)+€2"'9 (74)

C:'=€C'I(a,b,cst)+€2 T

Differentiating (7.3) three times with respect to ¢, using relations (7.4), substituting (7.3) and the

derivatives ¥, %, ¥ in the original equation (7.1), and equating the coefficients of €, we obtain

-'l a a ! a a
e (5}"—% +A J(-g-—k +A.]]/1 + e - [5;+?\,|—A.2)(5[——7\.2 +7\,3]B
)—111 a «
4o ( )(al A, = J ! (7.5)
d 5} 0 .
(Or A J[af A J(EH‘-‘]"G = [ P(ab.e.i).

e £ e o w - =
where f —f()to,xos}.o) and x; =ae™' +pe™' o™,

-

Let the function /' be expanded in a Taylor series

0 _
[P =g, +g,(”(b cae™ + g (a, c)be ™ “+g(a,b)ce™

+gP(b,c)ate ™™ 4. (7.6)

2

T
0 solve the equation (7.5) for u, Ay, By and C,, it is assumed, according to Murty and

Deekshaty ' ; i '
ilu [40], that the function u, does not contain the fimdamental lerms, since these are

alrcady included in the firs

rst three terms of the solution (7.3). Subsliluling (7.6) in (7.5) and

eq i e i = -
luating the cocfficients of e™', ¢ and ¢ we obtain

(a A, x)(a
S e + ——=A r“)
o1 Py '+M) =& (7.7)
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(7.8)

ol ot
7.9
(
(2”")[&”2}(5‘*%}“] = gi M (he)a’e P 4 (7.10)
ot ot !

The particular solutions of (7.7)-(7.9) give the three unknown functions 4,, B, and C,. It 1s

. n (2) ) are of
obvious that the change of the variables a, b and ¢ are small. When g,’, g;”’ and g,” are given,

we may easily solve the equations (5.7)-(5.9) by assuming that @, & and ¢ are constants.
Substituting the values of 4,, B, and C, into (7.4) and then solving them, we obtain the first

approximate solution of the nonlinear differential equation. The procedure can be applied to

higher orders in the same way.

7.2.1 Determination of the first order correction term u,
The particular solution of (7.10) gives the first order correction term 1, . When the nonlinear

function f of the equation (7.1) is given, gi" ... are specified. Then substituting the values of

(0 : ; : .
§:"» 1 (7.10), we may solve it by assuming again that a, b and ¢ are constants. Thus the

correction term u, is found and we obtain the first improved solution of the equation (7. 1).

7.3 Example

Now consider / = x?, So,

0 - -
SO = ge (3192(5 Pl 2heeRatha +3c.'2c3'n")
+ ho M 2 -2y (A +A . o
be (3‘7 e+ 2ace ™M 4 302, 2N)'M‘e i (3036"”" + 2abe~ M+ +3b2€_n3‘)

3 -3y

+ae +b36—3121 +cJe—_U_‘{.
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Therefore the non zero cocflicients of g!”, i=1,2--+, j=1,2,3 arc

gl(l) ___3b7.c—2111 + 2/)Ce—()ul+?.|)l +3C2(3_2A‘I,

2 '(l|"'11 v

+3cie™ | (7.11)

o Moy 2ace

g® =3a’e”
gt =3a’e™ 4+ 2abe™ MM 1 3pTe M | gD = g = gD o

Substituting the values of g”, g* and g from (7.11) into-the equations (7.7)-(7.9) and
solving them we obtain
A, =all,p?e ™ 41 bee ™M L c?e M )
B, = b(m,aze'z"" +niyace R +m_,cze"“"), (7.12)
G = c(nlaze‘“" +nyabe it +13bze'“1’),

where

h=3( +2)00 +20, -2 )", 1, =2(Q, + A0 +245))7,

Ly =3((h +1)(A, =X, +20,)), =3((A, +A,)@N, +2, —4,)) ™,

my =2h + )0, +2)), my =3((r, +A3 (A, +A, +245))7, (7.13)
mo=3((h +0)(24, =%, +4,))", =2((A, + )0, +1,))7,

ny =3((h, +4,)(=A, +2A, +1,))7,
provided that A, +2}\.,. #N,, L, j,k=1273.

Substituting the values of Ay, By and C| from (7.12) into the equation (7.4) we obtain
G = a(llbze—“" +1,bee™ Pt +ljcze"“-"),

e 1 -2 - = ‘
b~b(m,a e M wmyace™ ™M i cle n-"l (7.14)

e 2 - —(, -
C_C(”Ia ¢ A +l7zab(3 (l.t).z)f_'_”]ble-ﬂklt).
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Replacing a, b and ¢ by their respective values obtained in the lincar case, and then
H

integrating with respect to /, we obtain
a=ag +eay(l,b2(1=e ™ )I2h,) + by, (1 —e MM i, +2.,)
+hel1-e ™ )i2ny))
b=b, +¢b, (m,ag (] —e ™M )/(27\.| )+ i,a,c, (l —g itk )/(L, +A,) 1)
+m,c. (I —g )/(2?»3 ))
—_— YD — '2)\1’ 1 _ —(KIAP;.J)I )/ ;\‘ k
c=c, +ec,linay\l—e [(2N))+n,a,c)ll—e (A +X3)

bl (i-e ™ )2n,))

Hence the first order solution of (7.1) is

X A

x=ae™ 4he ™M oo, | (7.16)

where a, b and ¢ arc given by (7.1 5}

Now substituting the values of g, ¢/ and g5 from (7.11) into the cquation (7.10) and

then solving it, we obtain

KPS

=3y - -
Uy =cie” " te,e ! wegemM (7.17)

where
¢, =—(24, (3, =2,)(3%, —1,))",
¢, = =20, (=4, +31,)(3%, -2,))", (7.18).
cy = —(2}»3(—3,' +3l3)(—7"2 +3}"3 ))_I‘

provided that A, = 3h,, /=123,

Therefore, the first improved solution of (7.1) is

A

Xx=ae™ +he™' tee™ tgu,, (7.19)

Where @, b and ¢ are given by (7.15) and u, is given by (7.17).
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7.4 Discussion

A simple analytical method has been developed to obtain the time response ol a third order
overdamped weakly nonlincar system. In Chapter 3, we have already discussed that the solution
of an under-damped system may be uscd as an overdamped solution replacing harmonic

functions by their respective hyperbolic functions [55]. But the procedure to obtain the present

overdamped solution is simpler than the method developed in Chapter 3.

As a check on the solution (7.19) obtained in section 7.3, a second solution and a third
solution were obtained by numerical integration using a fourth-order Runge-Kutta formula and
by the unified KBM method respectively. The results are given in Table 7.1 and Table 7.2 for

two sets of the initial _condiiions when A, =2,A, =1.2, A, =0.8. In both the cases the present

method gives more accurale results than the unificd KBM method.,

F'o obtain the corresponding numerical solution, the initial conditions [x(O), x(0). .'\’(())J are

computed from

= — 3
x()=a, +b, +c, +s(c,a0 +c,b; +c3c(':),

50) = =My =hyby =y +eay (b3 +1,6y¢ +1,c2)
2 2
+ b, (m,ao + Iy a,Cy +m;e, )+ ge, (nlaoz +n,agay +nyb; ),' (7.20)

_ L3 3
3 (M0l +hge,h0 +hercd)

X(0) =—Ala, —Mib, —Ale,
=8y (200, +A,),02 + Q0 + 0y + 4, )boc, +200, +4,)c?)
=€y (200, + A, ymal +(h, + 20, Ay ageq + 200, + Ay )il )
= o (200, + 2, ), + (A, + 4y + 20, Inyaiga +200, + Ay )nybe )
+9 (Kzlc,a; +Ale,b] +K%c'3c‘).

0
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{ X X X

0.0 1.395643 1.395643 1.395643
0.5 0.707096 0.707082 0.707320
1.0 0.372571 0.372558 0.372633
1.5 0.203633 0.203655 0.203629
2.0 0.114817 0.114864 0.114807
2.5 0.0606416 0.066471 0.066416
3.0 0.039231 0.039284 0.039239
3.5 0.023580 0.023624 0.023591
4.0 0.014383 0.014418 0.014394

Table 7.1 Solution (7.19) for A, =2, A, =1.2,A, =0.8 and €=0.1 with initial conditions
ag =0.5,0 =0.7,¢, =0.2 or [x(0)=1.395643, %(0) = —1.949025, ¥(0) = 2.903369 ]
is given in the second column. In the third and fourth columns corresponding
numerical solution and the perturbation solution obtained by the unified KBM method
[55] are given.

/ X N Xung | 1
0.0 0.966930 0.966930 0.966930 |
0.5 0.572551 0.572569 0.572306 j
1.0 0.346370 0.346010 0.346470 B
1.5 0.213924 0.213446 0.214130 ]
2.0 0.134408 0.133958 0.134605
2.5 0.085588 0.085216 0.085745 T
3.0 0.055065 0.054778 0.055182
3.5 0.035711 0.035498 0.035794
4.0 0.023304 0.023149 0.023362

Table 7.2 Solution (7.19) for AM =21, =12,1,=08 and g=

ay =0.2,b6,=03,¢, =0.5 or [x(0) = 0.9966930, x(0) = —1.028135, ¥(0)=1.130903 ]
is given in the sccond column. In the third
numerical solution and the perturbation sol
are given.

Remark ;: The solution (7.19) is closer (on the average) to the numerical solution.
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