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Abstract

Most of the perturbation methods are developed to find periodic solutions of nonlinear
systems; transients are not considered. First Krylov and Bogoliubov introduced a perturbation
method to discuss the transients in the second order autonomous systems with small
nonlinearities. The method is well known as an "asymptotic averaging method" in the theory
of nonlinear oscillations. Later, the method has been amplified and justified by Bogoliubov
and Mitropolskii. In this dissertation, we have modified and extended the Krylov-

‘Bogoliubov-Mitropolskii (KBM) method to investigate some fourth order nonlinear systems.

First a fourth order over-damped nonlinear autonomous differential system is considered
and a new perturbation solution is developed. Then a method is developed to find asymptotic
solution of damped oscillatory nonlinear systems. We then again solve the fourth order over-
damped nonlinear systems under some special conditions. Later, unified KBM method is
used to obtain the approximate solution of the fourth order ordinary differential equation with
small nonlinearities, when a pair of eigen-values of the unperturbed equation is a multiple (i.
e., double, triple etc.) of the other pair or pairs. In case of oscillatory processes some of the
natural frequencies of the unperturbed equation may be in integral ratio and thus internal
resonance is introduced, which is an interesting and important part of nonlinear vibrations.
Modified and compact form of KBM method is used to find approximate solutions of fourth

order nonlinear systems with large damping. The methods are illustrated by several examples.
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Introduction

Numerous physical, mechanical, chemical, biological, biochemical and some
economic laws and relations appear mathematically in the form of differential
equations which are linear or nonlinear, autonomous or non-autonomous. Practically,
all differential equations involving physical phenomena are nonlinear. Methods of
solutions of linear differential equations are comparatively easy and well established.
On the contrary, the techniques of solutions of nonlinear differential equations are less
available and in general, linear approximations are frequently used. The method of
small oscillations is a well-known example of the linearizatoin of problems, which are
essentially nonlinear. With the discovery of numerous phenomena of self-excitation
of circuits containing nonlinear conductors of electricity, such as electron tubes,
gaseous discharge, etc., and in many cases of nonlinear mechanical vibrations of
special types, the method of small oscillations becomes inadequate for their analytical
treatment. There exists an important difference between the phenomena which
oscillate in steady state and the phenomena governed by linear differential equations
with constant coefficients, e. g., oscillations of a pendulum with small amplitudes, in
that the amplitude of the ultimate stable oscillation seems to be entirely independent
of the initial conditions, whereas in oscillations governed by a linear differential

equation with constant coefficients, it depends upon the initial conditions.

Van der pol first paid attention to the new (self-excitation) oscillation and
indicated that their existence is inherent in the nonlinearity of the differential
equations characterizing the process. This nonlinearity appears, thus, as the very
essence of these phenomena and by linearizing the differential equation in the sense

of the method of small oscillations, one simply eliminates the possibility of
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investigating such problems. Thus it is necessary to deal with the nonlinear problems
directly instead of evading them by dropping the nonlinear terms. To solve nonlinear
differential equations there exist some methods. Among the methods, the method of
perturbations, i. e., asymptotic expansions in terms of a small parameter, are foremost.
According to these techniques, the solutions are presented by the first two terms to
avoid rapidly growing algebraic complexity. Although these perturbation expansions
may be divergent, they can be more useful for qualitative and quantitative

representations than the expansions that are uniformly convergent.

Now, the perturbation methods are used widely in science to obtain approximate
solutions based on known exact solutions to nearby problems. Such asymptotic
techniques can also be used to provide initial guesses for numerical approximations,
and they can now be generated through clever use of symbolic computation. The
perturbation method is most effectively used to analyze problems in fluid and solid
mechanics, control theory and celestial mechanics, and a variety of nonlinear
oscillation, nonlinear wave propagation, and reaction-diffusion systems arising in

numerous physical and biological contexts.

In this dissertation, we shall discuss problems that can be described by the
dynamical systems of the fourth order nonlinear autonomous differential equations
with small nonlinearities by use of the Krylov-Bogoliubov-Mitropolskii (KBM)
method. An important approach to study such nonlinear oscillatory problems is the
small parameter expansion. Two widely spread methods in this theory are mainly
used; one is averaging, particularly the KBM technique and the other is multi-time
scale method. According to the KBM technique the solution starts with the solution of
linear equation, termed as generating solution, assuming that, in the nonlinear case,

the amplitude and phase of the solution of the linear differential equation are time-

2



dependent functions rather than constants. This method introduces an additional
condition on the first derivative of the generating solution for determining the solution
of a second order equation. Originally, the method was developed (by Krylov-
Bogoliubov) to obtain the periodic solutions of second order nonlinear differential
equations. Now, the method is used to obtain oscillatory, damped oscillatory and non-
oscillatory solutions of second, third, fourth etc. order nonlinear differential equations

by imposing some restrictions to make the solutions uniformly valid.

Most of the authors, found solutions of second order nonlinear systems. Only a
small number of authors investigated solutions, considering a fourth order nonlinear
differential equation. In this dissertation, fourth order nonlinear differential equations,
describing oscillatory, damped oscillatory and non-oscillatory systems are considered

and their solutions are investigated.

It is customary in the KBM method that correction terms (i.e., the terms with
small parameter) in the solution is free from the first harmonics. KBM demanded that
such asymptotic solutions are free from secular terms. These assumptions are
certainly valid for the second and third order equations. But for the fourth order
equation the correction terms sometimes contain secular terms, although the solution
is generated by the classical KBM asymptotic method. As a result, the traditional
solutions fail to explain the real situation of the systems. In order to prevent the
appearances of secular terms and thus to obtain the desired results, we need to impose
some additional conditions. The main objective of this dissertation is to find out these
limitations and determine the proper solutions under some special conditions. The

results may be used in mechanics, physics, chemistry, plasma physics, circuit and

control theory, population dynamics etc.



Chapter 1

The Survey and the Proposal

1.1 The Survey

The characteristics of nonlinear differential equations are peculiar. But
mathematical formulations of many physical problems often result in differential
equations that are nonlinear. However, in many cases it is possible to replace a
nonlinear differential equation with a related linear differential equation that
approximates the actual equation closely enough to give useful results. Often such
linearizatoin is not possible or feasible; when it is not, the original nonlinear equation

itself must be tackled.

During the last several decades a number of Russian scientists, like, Mandelstam
and Papalexi [44], Andronov [7,8], Krylov and Bogoliubov [34], Bogoliubov and
Mitropolskii [13] worked jointly and investigated nonlinear mechanics. Among them,

Krylov and Bogoliubov are certainly to be found most active.

Krylov and Bogoliubov considered primarily equations of the form

¥+ w@’x =g f(t,x,%,€) (1.1)

where ¢ is a small positive quantity and f'is a power series in €, whose coefficients
are polynomials in x, %, sin¢, cost. In fact, generally f contains neither € nor ¢
Similar equations are well known in astronomy and have been the object of
systematic investigations by Lindstedt [41,42], Gylden [32], Liapounoff [39] and,

above all by Poincare [65]. In general sense, it seems that, Krylov and Bogoliubov
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apply the same methods. However, the applications in which they view are quite
different, being mainly in engineering, technology or physics, notably electrical

circuit theory. The method has also been used in plasma physics, theory of

oscillations and control theory.

In the treatment of nonlinear oscillations, by perturbation method, Lindstedt
[41,42], Gylden [32], Liapounoff [39], Poincare [65], discussed only periodic
solutions, transients were not considered. Krylov and Bogoliubov (KB) first discussed
transient response. The method of KB starts with the solution of the linear equation,
assuming that, in the nonlinear case, the amplitude and phase in the solution of the
linear equation are time dependent functions rather than constants. This procedure
introduces an additional condition on the first derivative of the assumed solution for

determining the solution.

Extensive uses have been made and some important works are done by Stoker

[97], McLachlan [45], Minorsky [48], Nayfeh [55,56], Bellman et al [12].

Most probably, Poisson initiated approximate solutions of nonlinear differential
equations around 1830 and the technique was introduced by Liouville [43]. Duffing
[29] investigated many significant results concerning the periodic solutions of the

equation
¥+ 2kk+x=—-ex’ (1.2)

Somewhat different nonlinear phenomena occur when the amplitude of the
dependent variable of a dynamical system is less or greater than unity. The damping is
negative when the amplitude is less than unity and the damping is positive when the

amplitude is greater than unity. The governing equation, like these phenomena is



i-e(l-x")i+x=0 (1.3)

This equation is known as Van der Pol [98] equation. This equation has a very

extensive field of application in connection with self-excited oscillations in electron-

tube circuits.

Since, in general, f contains neither € nor ¢, the equation (1.1) therefore takes the

form
i+o’x=¢f(x,%) (1.4)

The method of KB is very similar to that of Van der Pol and related to it. Van der

Pol applies the method of wvariation of constants to the basic solution

x=acosot+bsinwt of ¥+®°x=0, on the other hand KB apply the same method

to the basic solution x = acos(w? + ¢) of the same equation. Thus in the KB method
the varied constants are @ and @, while in the Van der Pol’s method the constants are

a and b. The method of KB seems more interesting from the point of view of

applications, since it deals directly with the amplitude and phase of the quasi-

harmonic oscillation.

If £ =0, then the equation (1.4) reduces to linear equation and its solution is
x = acos(wt + Q) (1.5)
where a and ¢ are arbitrary constants to be determined from initial conditions.

If & # 0, but is sufficiently small, then KB assumed that the solution is still given

by (1.5) with the derivative of the form

% = —awsin(ot + ¢) (1.6)



where a@ and ¢ are functions of t, rather than being constants. Thus the solution of the

equation (1.4) is of the form
x = a(t)cos(w? + @(¢)) (1.7)
and the derivative of the solution is of the form
x = —a(t)osin(of + @(t)) (1.8)
Differentiating the assumed solution (1.7) with respect to ¢, gives
X=acosy—awsiny—adsiny, v =ot+0 (1.9)
Therefore,
acosy—a@siny =0 (1.10)
by using (1.6).
Again differentiating (1.8) with respect to ¢, gives
¥=—ao siny —a o’ cosy —anpcosy (1.11)
Substituting (1.11) into the equation (1.4) and using equations (1.7)-(1.8), gives
a osiny +ao@cosy = —¢ f(acosy,—awsin y) (1.12)
Solving (1.10) and (1.12) for & and ¢ yields

a=—¢ f(acosy,—ansiny)siny/o
. (1.13)
§=—¢ f(acosy,—ansiny)cosy/aw



Thus instead of the single differential equation (1.4) of the second order in the
unknown x, we obtain two differentia] equations of the first order in the unknowns a
and ¢ . Since ¢ and ¢ are proportional to the small parameter €; @ and @ are slowly

varying functions of the time with the period T = 27/ ® and, as a first approximation,

they are constants.

Expanding f(acosy,—amsiny)siny and f(acosy,—awsiny)cosy in
Fourier series in the total phase v, the first approximate solution of (1.4), by

averaging (1.13) over one period is

2n
([z) = —ﬁ Jf(a cos Y, — awsin y)sin ydy
. (1.14)
: € .
((p) =- —— !f(a COS Y, —awsin y)cos yady

where a and ¢ are independent of time under the integrals.

KB called their method asymptotic in the sense that € — 0. An asymptotic series
itself is not convergent, but for a fixed number of terms the approximate solution
tends to the exact solution as € tends to zero. It is noted that the term asymptotic is
frequently used in the theory of oscillation, also in the sense that £ — co. But in this

case the mathematical method is quite different.

Later, this technique has been amplified and justified mathematically by
Bogoliubov and Mitropolskii [13], and extended to non-stationary vibrations by

Mitropolskii [49]. They assumed the solution of the nonlinear differential equation

(1.4) in the form

x=a cosy +eu (a,y)+e uy(a,y)+...+&" u,,(a,\p)+0(a"“), (1.15)



where u,, k=1,2,..n are periodic functions of v with a period 2mn, and the

quantities ¢ and  are functions of time ¢, defined by

d=eA(a)+e’ 4,(a)+...+8" 4,(a) + O™ )

_ (1.16)
¥ =0+eB,(a)+8? By(a)+...+¢" B,(a) + Oc™)

The functions #,, A, and B,, k=1,2,...,n are to be chosen in such a way that
the equation (1.15), after replacing « and w by the functions defined in equation

(1.16), is a solution of the equation (1.4). Since there are no restrictions in choosing

the functions 4, and B,, that generate the arbitrariness in the definitions of the

functions u, [14]. To remove this arbitrariness, the following additional conditions

are imposed

u,(a,y) cosy dy =0,

N 0
H

(1.17)
juk (a,y) siny dy =0,

0

These conditions guarantee the absence of secular terms in all successive

approximations.

Differentiating (1.15) twice with respect to ¢, substituting x and the derivatives

% %, utilizing the relations in (1.16), and equating the coefficients of

e¥, k=12,...,n results a recursive system

2
mz[a u: +ukJ=f(k'l}(aa‘|’)+2m(aB* cosy + A4, siny), (1.18)
oy



where

f*(a, ) = f(acosy, —0asiny),

f(”(a,\u) =u f,(acosy, —wasiny)+ (A, cosY —abB, siny + m%}

: dA
x fi(acosy, —CMSIHW)+[£IBIZ—A,?Jcosw+(2A,B,—aAl?Jsinw (1.19)
a

a

0’u 0’

~20 4 —+B 2|
oady oy

It is obvious that f* is a periodic function of the variable y with period 2,

which depends also on the amplitude a. Therefore, f*"' as well as u, can be

expanded in a Fourier series as

0 @w) =g @+ )8,  (@)cosny + 1, (@)sinny

o (1.20)
uy(@y) = v (@) + 30,9 @) cosmy +,* " (@)sinny,
n=l1
where
1 2n
go""” . If”“”(a cosy, —wasiny)dy,
21
2n
g, _1 Jf(""’(a cosy, —wmasiny)cosnyady, (1.21)

0
2n

hn(H) _1 j f%V(a cosy, —wasiny)sinnydy, n>1

Ty
Here v,*™ = w,*™" =0 for all values of &, since both integrals of (1.17) vanish.,

Substituting these values into equation (1.18), it becomes

10



2 (k-D) 5
voo (@4 0'(1-n )[v,,“’_” (a)cosny + w “ (a)sin n\u]

n=|

(k=1) y
@)+ (" (@) + 20aB, Jeosy + (1,* (@) + 208 )sin (1.22)

g
+ Z [gn(k—l) (a) Cos ny + h,,(khl) (a) sin n\gl]
n=2

Now equating the coefficients of harmonics of the same order, gives

g @) +20aB, =0, 1%V (a)+204, =0,

(k-1) (k-1)
(-1 _8 (a) (k ) g, (a)
W@ =BT @ = B (1.23)
, 6D B I)(a)
(a)= (l—nz)’ nzl

These are the sufficient conditions to obtain the desired order of approximation.

For the first order approximation, we have

)
A4 =—hl (a)=— If(a cosy, —aasiny)siny dy,

20 2T

o (1.24)
B, o Bl @__ Jf(a cosy, — ®asiny)cosyady.

20a 2na

Therefore, the variational equations in (1.16) become
g .
q=—-—— jf(a cosy, —wasiny)siny dy,
21w §
(1.25)

2n
If(a cosy, —oasiny)cosy dy.
2nwa g

y=o-

The equations of (1.25) are similar to the equations in (1.14). Thus the first order
solution obtained by Bogoliubov and Mitropolskii [13] is identical to the original

solution obtained by KB [34]. In the second case, higher order solution can be found

easily. The correction term u, is obtained from (1.23) as Rajshabi University Librazy
Documeniation Secuo
1 Document No...]R.... ﬁ4

Date... ... Hvt_b‘)f;m_



0 -
u, = 80 @, g,” (@)cosny +h," (a)cos ny
2 .
® n=2 Coz (1 —h 2)

(1.26)

The solution (1.15) together with u, is known as the first order improved solution

in which a and y are the solutions of the equation (1.25). If the values of the
functions 4, and B, are substituted from (1.24) in the second relation of (1.19), the

5 1 s ..
function £, and in the similar way, the unknown functions A4,, B, and u, can be

found. Thus the determination of the higher order approximation is complete.

Volosov [99,100], Museenkov [54] and Zebreiko [101] also obtained higher

order effects.

The KB method has been extended by Kruskal [33] to solve the fully nonlinear

differential equation
¥=F(x,x,8) (1.27)

The solution of this equation is based on recurrent relations and is given as the

power series of the small parameter.
Cap [28] has studied nonlinear systems of the form
P+l f(x)=¢F(x,X%) (1.28)

He solved this equation by using elliptical functions in the sense of Krylov and

Bogoliubov.

Later, the method of Krylov-Bogoliubov-Mitropolskii (KBM) has been extended

by Popov [66] to damped nonlinear systems

12



it2ki+o’x=g f(x,1) (1.29)

where —2kx is the linear damping force and 0 < k < @. It is noteworthy that, because
of the importance of the method [66] in the physical systems, involving damping
force, Mendelson [46] and Bojadziev [24] rediscovered Popov’s results. In case of

damped nonlinear systems the first equation of (1.16) has been replaces by
a=—ka+e 4, (a)+e* 4,(a)+...+&" A, (a)+Oe™) (1.16a)

Murty, Deekshatulu and Krishna [52] found a hyperbolic type asymptotic
solution of an over-damped system represented by the nonlinear differential equation
(1.29) in the sense of KBM method; i. e., in this case k& > ® . They used hyperbolic

function, cosh@ or sinh ¢ instead of the harmonic function, cos, which is used in
[13,34,46,66]. In case of oscillatory or damped oscillatory process cos¢ may be used

arbitrarily for all kinds of initial conditions. But in case of non-oscillatory systems

cosh¢ or sinh¢ should be used depending on the given set of initial conditions

[25,52,53]. Murty and Deekshatulu [51] found another asymptotic solution of the
over-damped system represented by the equation (1.29), by the method of variation of
parameters. Shamsul [87] extended the KBM method to find solutions of over-
damped nonlinear systems, when one root becomes much smaller than the other root.
Murty [53] has presented a unified KBM method for solving the nonlinear systems
represented by the equation (1.29). Bojadziev and Edwards [25] investigated solutions
of oscillatory and non-oscillatory systems represented by (1.29) when £ and @ are
slowly varying functions of time & Arya and Bojadziev [9,10] examined damped
oscillatory systems and time-dependent oscillating systems with slowly varying

parameters and delay. Shamsul, Feruj and Shanta [78] extended the Krylov-

13
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Bogoliubov-Mitropolskii method to certain non-oscillatory nonlinear systems with
varying coefficients. Later, Shamsul [89] unified the KBM method for solving n-th
order nonlinear differential equation with varying coefficients. Sattar [70] has
developed an asymptotic method to solve a critically damped nonlinear system

represented by (1.29). He has found the asymptotic solution of the system (1.29) in

the form

x=a(l+y)+eu(a,y)+...+&"u, (a,y)+ O(""), (1.30)
where a is defined in the equation (1.16a) and vy is defined by

Y =1+eC/(a)+...+€"C,(a) + O(™"), (1.16b)

Shamsul [75] has developed an asymptotic method for the second-order over-
damped and critically damped nonlinear systems. Shamsul [84,90] has also extended
the KBM method for certain non-oscillatory nonlinear systems when the eigen-values
of the unperturbed equation are real and non-positive. Shamsul [77] has presented a
new perturbation method based on the work of Krylov-Bogoliubov-Mitropolskii to
find approximate solutions of nonlinear systems with large damping. Later, he
extended the method to an n-th order nonlinear differential systems [81]. Shamsul,
Bellal and Shanta [79] investigated perturbation solution of a second order time-
dependent nonlinear system based on the modified Krylov-Bogoliubov-Mitropolskii
method.

Making use of the KBM method, Bojadziev [15] has investigated nonlinear
damped oscillatory systems with small time lag. Bojadziev [20] has also found
solutions of damped forced nonlinear vibrations with small time delay. Bojadziev

[22], Bojadziev and Chan [23] applied the KBM method to problems of population

14



dynamics. Bojadziev [24] used the KBM method to investigate nonlinear biological
and biochemical systems. Lin and Khan [40] have also used the KBM method to
some biological problems. Proskurjakov [67], Bojadziev, Lardner and Arya [16] have
investigated periodic solutions of nonlinear systems by the KBM and Poincare
method, and compared the two solutions. Bojadziev and Lardner [17,18] have
investigated monofrequent oscillations in mechanical systems including the case of
internal resonance, governed by hyperbolic differential equation with small
nonlinearities. Bojadziev and Lardner [19] have also investigated hyperbolic
differential equations with large time delay. Freedman, Rao and Lakshami [30] used
the KBM method to study stability, persistence and extinction in a prey-predator
system with discrete and continuous time delay. Freedman and Ruan [31] used the

KBM method in three-species chain models with group defense.

Most probably, Osiniskii [57], first extended the KBM method to a third order

nonlinear differential equation

¥+ki+k,x+kx=¢f(x,x%) (1.31)
where £ is a small positive parameter and f is a nonlinear function. Osiniski
assumed the asymptotic solution in the form

x=a+bcosy +eu,(a,b,y)+...+€"u,(a,b,y)+0(e™), (1.32)

where each u,, k=12,..,nisa periodic function of y with period 2n and, a,b

and y are functions of time ¢, given by
b= ha+ed(a)+E® dy(@)+...+e" 4,(a)+Ofe™)
b= —ub+6B,(b) +&2 By(b)+...+&" B, (b)+ Ofe™) (1.33)

\Ij:(l)+8Cl(b)+82 Cz(b)+...+8" C”(b)+0(8”+1)
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where —A, —pto are the eigen-values of the equation (1.31) when & = 0.

Osiniskii [58] has also extended the KBM method to a third order nonlinear
partial differential equation with internal friction and relaxation. Mulholland [50]
studied nonlinear oscillations governed by a third order differential equation. Lardner
and Bojadziev [36] investigated nonlinear damped oscillations governed by a third
order partial differential equation. They introduced the concept of “couple amplitude”

where the unknown functions 4,, B, and C, depend on both the amplitudes @ and

b . Rauch [68] has studied oscillations of a third order nonlinear autonomous system.
Bojadziev [26], Bojadziev and Hung [27] used the method of KBM to investigate a 3-
dimensional time dependent differential system. Sattar [71] has extended the KBM
asymptotic method for three-dimensional over-damped nonlinear systems. Shamsul
and Sattar [73] developed a method to solve third order critically damped nonlinear
systems. Shamsul [82] redeveloped the method presented in [73] to find approximate
solutions of critically damped nonlinear systems in the presence of different damping
forces. Later, he unified the KBM method for solving critically damped nonlinear
systems [96]. Shamsul and Sattar [76] studied time dependent third order oscillating
systems with damping based on an extension of the asymptotic method of Krylov-
Bogoliubov-Mitropolskii. Shamsul [85,87], Shamsul, Bellal and Ali Akbar [94] have
developed a simple method to obtain the time response of second order over-damped
nonlinear systems together with slowly varying coefficients under some special
conditions. Later, Shamsul [83], Shamsul and Bellal [88] have extended the method
[85,87] to obtain the time response of n-th order (n>2), over-damped systems.
Shamsul [86] has also developed a method for obtaining non-oscillatory solution of
third order nonlinear systems. Shamsul and Sattar [74] presented a unified KBM

method for solving third order nonlinear systems. Shamsul [80] has also presented a
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unified KIYIOV'BOgOliUbOV—Mitropolskii method, which is not the formal form of the
original KBM method, for solving a-th order nonlinear systems. The solution contains
some unusual variables. Yet this solution is very important. Shamsul [92] has also
presented a modified and compact form of Krylov-Bogoliubov-Mitropolskii unified
method for solving an n-th order nonlinear differential equation. The formula
presented in [92] is compact, systematic and practical, and easier than that of [80].
Shamsul [93] developed a general formula based on the extended Krylov-Bogoliubov-
Mitropolskii method, for obtaining asymptotic solution of an n-th order time
dependent quasi-linear differential equation with damping. Bojadziev [26], Bojadziev
and Hung [27] used at least two trial solutions to investigate time dependent
differential systems; one is for the resonant case and the other is for the non-resonant
case. But Shamsul [93] used only one set of variational equations, arbitrarily for both
resonant and non-resonant cases. Shamsul, Ali Akbar and Zahurul [95] presented a
general form of the KBM method for solving nonlinear partial differential equations.
Raymond and Cabak [69] examined the effects of internal resonance on impulsive
forced nonlinear systems with two-degree-of-freedom. Lewis [37,38] investigated
stability for an autonomous second-order two-degree-of-freedom system and for a

control surface with structural nonlinearities in surface flow.

Andrianov and Awrejcewicz [6], Awrejcewicz and Andrianov [11] present some

new trends of asymptotic techniques in application to nonlinear dynamical systems in

terms of summation and interpolation methods. In this dissertation, we shall not

discuss this technique.

O'Malley [59] found an asymptotic solution of a semiconductor device problem

involving reverse bias. O'Malley [60,61,63,64] presented singular perturbation
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method for ordinary differential equations with matching and used this singular
perturbation method to stiff differential equations. He [62] also presented exponential

asymptotic for boundary layer resonance and dynamical metastability.

Ali Akbar et al [1,2] found an asymptotic solution of the fourth order over-
damped and under-damped nonlinear systems based on the work of [80]. The authors
[3,4] developed a simple technique for obtaining certain over-damped solution of an
n-th order nonlinear differential equation under some special conditions including the
case of internal resonance. Ali Akbar et af [5] also developed perturbation theory for

the fourth order nonlinear systems with large damping.

1.2 The Proposal

We propose a perturbation system of the fourth order nonlinear differential

equation
x® kX +k i+ kX +hx=¢ f(x, X, X, %) (1.34)

where ¢ is a small positive parameter and /'is a given nonlinear function.

In Chapter 2 a new asymptotic solution is investigated for the fourth order over-
damped nonlinear systems. A perturbation method for the fourth order damped
nonlinear systems 1is developed in Chapter 3. Chapter 4 contains asymptotic

solutions for the fourth order over-damped nonlinear systems under some special

conditions. Unified KBM method for solving the fourth order nonlinear differential
equations with internal resonance is developed in Chapter 5, and finally, perturbation

method for the fourth order nonlinear systems with large damping is presented in

Chapter 6.
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Chapter 2

A New Technique for Fourth Order Over-damped Nonlinear
Systems

2.1 Introduction

Among the methods used to study nonlinear systems with a small non-linearity, Krylov-
Bogoliubov-Mitropolskii [13,34] method is particularly convenient and is the most widely used
technique to obtain the approximate solution. Originally, the method developed for systems
with periodic solutions, was later extended by Popov [66] and Meldelson [46] for damped
nonlinear oscillations. Murty et al [52] extended the method to solve over-damped nonlinear
systems. Murty et al [51] developed a method of variation of parameters to obtain the time
response of a second order nonlinear over-damped system with a small nonlinearity based on
the work of Krylov-Bogoliubov-Mitropolskii. Murty [53] has presented a unified KBM method
for solving second order nonlinear systems. Shamsul [75] developed a new perturbation
technique based on the work of Krylov-Bogoliubov-Mitropolskii to find approximate
solutions, both of over-damped and critically damped nonlinear systems. Shamsul [37]
extended the method of Kry]ov-Bogoliubov-—Mitropolskii to solve certain over-damped
nonlinear systems. Sattar [71] has studied a third order over-damped nonlinear system.
Shamsul [85] developed a method to obtain the time response of third order over-damped
nonlinear systems for some special conditions. Later, Shamsul [83] extended the method to n-
th order over-damped nonlinear systems. Shamsul and Sattar [73] developed a method to solve
third order critically damped nonlinear equations. Shamsul and Sattar [74] has presented a

unified KBM method for solving third order nonlinear systems. Recently, Shamsul [80,81] has
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presented a unified KBM method for solving an 7 -th order nonlinear differential equation and

a perturbation theory for #-th order nonlinear systems with large damping.

The method, presented in [52] is too much laborious and cumbersome. In this Chapter, a
new technique, for a fourth order over-damped system is found. The determination of the
solution is very simple and easier than Murty et al [52]. An example is solved to show the
precision and exactness of the method. The results obtained by the present method compare
very well with those obtained by the numerical method and those presented by Murty et al

[52].

2.2 The Method

Consider a weakly nonlinear over damped system governed by the differential equation

Ak E ek kE+kx =6 (1 5,5), 2.1)

where x™ denotes the fourth derivative of x and over dots are used for the first, the second,

and the third derivative of x with respect to ¢, € is a small parameter, f(x) is the given

nonlinear function and k,, k,, k;, k, are constants defined by

4 4 4 4
k=D s k= DM k3=;3\,.xjxk and k4=1_llk,.. (2.2)
i=1 i,j=1 i k= i
i#j i j#k

Here A, A,, A, and A, are the real negative eigen-values of the characteristic equation of

the unperturbed equation (2.1) for €= 0. The over-damping force in the system is represented

by these real negative eigen-values. The unperturb solution of the equation (2.1) is

4
x(t,0) = a0 (2.3)
J=l
where a,,, j=1,2,3,4 are arbitrary constants.
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When & # 0, we seek a solution of the nonlinear differential equation (2.1) of the form

4
- At
x("s)‘z;af(t)e ! e, (a,a,,ay,0,,1) + €70, (a, ay, 0y, @0, ) +E e (24)
j= !

where each a;, j=1,2, 3, 4 satisfies the differential equation
a(t)= ed,(a,a,,a;,a,,0)+ asz(aI,az,a3,a4,t) +€..., (2.5)
Confining only to a first few terms, 1, 2, 3,...,m in the series expansions of (2.4) and (2.5),
we evaluate the functions u;,u,,...and 4,,B,,j=1,2,3, 4, such that a,(¢), appearing in (2.4)

and (2.5) satisfy the given differential equation (2.1) with an accuracy of £™*'. Theoretically,
the solution can be obtained up to the accuracy of any order of approximation. However,
owing to the rapidly growing algebraic complexity for the derivation of the formulae, the
solution is in general confined to a lower order, usually the first [53]. In order to determine

these functions it is assumed that the functions u,,u,,... do not contain the fundamental terms
which are included in the series expansion (2.4) of order &°.

Differentiating (2.4) four times with respect to f, substituting x and the derivatives

coefficients of &, we obtain

s (d Lol (4 0)
H(z—'ljjul +z€ ! I_I (EE"’AJ'_}‘% Aj =f (als02!a37a4at)’ (26)
t =

Jj=1 k=1, j#k
( & A
where f© = f(x,)and x, =y a;(0)e"” .
=

In general, the function f can be expanded ina Taylor series as

wimimlw

m
f(o) = Z le_nh,nl),nu a a2

=00, =—00,/1y ==00,1ll4 =20

my _ my g e(mlk, +anpA gty mgh N

a, a,
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According to our assumption u, does not contain the fundamental terms, therefore (2.6)

can be separated into five equations for unknown functions u, and 4,,4,,4,,A4,(see [80] for

details). Substituting the functional values of @ and equating the coefficients of

e™, j=1,2,3,4,we obtain

0 0 8
Ayt
R IR RN
2.7)
— le‘mzlml,m‘ a]rmaznzz a3m; 04""e("'x;\-l"'"lez"""sh*'”hh)f; my=m,, m =m,+ 1

0 3}
elzt[_+k2 —?\,l) [—+k2 —)\,J 9_4.)% _;\‘4 A4,

ot ot ot 2.8)
- le,mz,m:,,m4 alml a2m1a3m3 aq’"ae(m;ll+rnzl1+m3h+m41¢)r; my=m,, m = m, -1

0 0 0
eM| —+ A=A, || =+, —lzj(—+k3 —M]Al

ot ot ot 2.9)
= Fmt.mz,m_‘,md a"lmI a2m2 a3m3 a4’"4 e('"x;w+mz3~z+m;;~3+m4l4)f; ml = mza m3 = m4 + 1

0 0

el"[£+k4 —x,](—+x4 —Azj[m+x4 —k3JA4

ot or ot (2.10)
= alm, azmz ast a4l‘l‘l4 e(ml}.,+mzlz+mﬁ.3+m4l4)I; m = m,, my=m, -1

11ty ity My g

and

0 0 0 0 )
L . e [ ==Ay [
(a: l‘) (at kzj(at 3)[& i

/
= Z Enl,mz,m,.m,al a; &

iy =00, My =—00, iy =—0, My =—R

2.11)

a, iy e(mlkl +iyhy iy A Nt

where Z’ exclude those terms for m, =m, £1, my=m, £1.

The particular solutions of the equations (2.7)-(2.11) give the functions 4,,4,,4;,4, and

u,. Thus the determination of the first approximate solution is complete.
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2.3 Example

Consider the fourth order differential equation
XD ¥ 4 hyE kgt kx=ex), (2.12)

For equation (2.12), we have, /@ = (q,e™ +a,e™ +a,e™ +a,e')’

or,
[P =a’e™ +a’e™ +ae™ +a,2e™ + 30 a,e™ M 13 2q,ePHRN

(2R +h,)t (2hy+h) )t (2A, A3 )1 (20, +A )t

2 2 2 2
+3a,"a,e +3a,"ae +3a, a,e +3a,"a,e

(23 +A )t (2A34A5)

2 2 2 2
+3a,"ae +3a,’a,e +3a’a,e® ™M 130,20, (2.13)

(2A4+hy )t (2h+Aa )t (A +A,+A3 )

2 2
+3a, a,e +3a,"a,e +6a,a,a,e

(A +A,+A )t (A+hy 4+t (Aptdy+A g

+6a,a,a,e +6a,a,a,e +6a,a,a,e

Therefore, the equations (2.7)-(2.11) become

0 0 0 2 (e (A +Ag Ay )
*1’(a+xl_}\,zj(a+xl—x3) 5+11—K4)Al =3a,’a,e +6a,a,a,e (2.14)

( 9, Ay — 14] =3a,’a, ™M +6a,a,a,eM M (2.15)

e[ O 0
A8, -, [ S+, -2
¢ [atH\2 M o T\ o
0 0 0 2 (AN (Ay+hgthy )
ew(§+7“ ‘11][5'””3 _xzj(-a—t+x3 MJ =3a,"a,e +6a,a,a,e (2.16)
a O _ 9 2 9 _a J =3a, 0,6 1+ 6a,a,a,eM M (2.17)
e [5‘-+7\,4 A, at+7\,4 2\ g T 4 4 19284

2__7\’ 6 ?\. (-2—}\. )(—a——}\. ]ul =al3 3A,t+a23 3121+a 3 313!"“(143631“
o a )\t ot

2 2k 2 (a0

+3a|2a3e(2h‘+l’)' +3a,2a4em‘+l‘)' +3a, a,e®" N 4 3a, a,e) (2.18)
2 20y A ) 2 (2hgth ) 2 (gt
+3a]2ale(2h+kn)' +3a, aze( wha 430, a,e +3a, a,e ;
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Solving equations (2.14)-(2.18) and substituting, A, = —p, +©,, A, = -}, -0
3 5 - 1 I’

Ay =—H, +@, and A, =—u, —w,, we obtain

1

4

2 =2t
3a,"ae™™

2(“1 —001)(3111 —H, -, +0)2)(3}1| —H; — O _(‘02)

6a,a,a,e™"
21y = 0 ) By + 1y =0, + 0,1y + iy — @, —@,)

2 2uy
3g,a,7e™™

2(py +0)CW, —Hy + 0, 0,31, — 1, + 0, +©,)

6a,a,a,e” "
2(py + 0 )My + iy + 0 —0,)(1y +H, 0 + @) ,

2 ~2pyt
3a,"a,e

2(n, —0,)CR, — 1 — 0, +©)3, — 1 — @, —©))

=21y
6a,a,a,e” ™

2(“1 _0)2)(“1 +H, + 0 _mz)(}ll tH, -0 _(Dz),

2 2pgf
3a,a,7e

2(1, + @,)(3K, — 1, + O, —0,)(3p, i, +0, +o,)

-2t

_ 6a,a,a,e
2(py + @, )1, P — O + @, )(1y HH, + O+ ®,)

Substituting the values of (2.19) into equation (2.5), we obtain

2 -2
3a,“a,e”™

a, =-¢
: [2(H1 - 03K —H; — O +0,)31, — 1, —0, —®,)

6a,a,a,e” " J
+ >
2(1, — @)1y +H, — @ + ;) (1 +H, — 0 — @)

2 -2
3a,a, e ™

C - g
@ [2(],11 + )3 — By T O — @)1 —H, T 0 T ®,)

-2uy
6a,a,a,e )
>

+
2(1y + )1y T Hy T O -0, + 1, +O, +©,)
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s =—6 [ 3a,’a,e™
2(4; ~ @,)(3u, T @ +e )06, -1 -0, —o,)

(2.20)

i 6a,a,a,e M
2(uy —@,)(y, Uy 0 -0, (1 1y —0, —0,) )

2(u, + )31, —p, + 0, —0,)CK, —p, +®, +©,)

6a,a,a,e”
2(u; + @, )(p, + Ha = + 0,1, + 1, + 0, +®,) |

Substituting a, = %e“", a, =%e"”", W =%e“” and a, =_Tbe""Z into equation (2.20)

and then simplifying, we obtain
g =g (lla3e'2“" +Lab’e™ ),
b=¢g (m,b3e'z“” +m,a’be " ),
o, =¢ (n,a%e™" +n,b%e ™), 2.21)
¢, =¢ (rlbze‘z“z' +pate )
where

__3_ MI{GM-uz)2+mlz_w22}+2(3“| _uz)miz

s 8 [(1—"12 —0)12){(?411 -1,)* = (o, - ©,) HEw, —1,)" — (o, +(1)2)2}J,

_3 1 (1 +15)° + 0" 0, 1+ 201 +1y)0,” )
>4 (sz _wlz){(p'l +l~lz)2 — (o, _mz)z}{(ul +”2)2 - (o, +C°2)2}
3 1, {(3K, _l-ll)z +(D22 _CO]Z} +2(3u, _!-"1)(022 J
"l = 0,){0H, 1) — (@, —0) HBR, — 1) - (0, +0,)7)

_ 3 By + n,)? + 0, -0} + 21, + )0,
e T4 (;,:,12 ---(1)22){(}.1l +},l2)2 - (0, ~OJ;)2}{(M +1,)? - (o, + ml)z}

J,(z.zz)
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n = h%{ 2 2{2“1(3”-] _”2)+(3M1 _”2)2 +(D12 wzz}mt
(" =0 )0~ 1) - (@, - 0, HBR, —1,)* (@, +0,)} )
n, _2( {2H2(“|+Hz)+(“| +p2)2+m,2—0)22}0),
(Ha" = 0" ) (b, + 11307 = (@, ~ 0,) H(y +1,)" — (0, +0,)°} )
n= :_3.[ {21, 3y, )+ G, )+ 0)22 _mlz}mz
2 2 )
8 (1, -0, {3y, —P1)2 —(w, "031)2} {3y, _”])2 - (0, +(D1)2}
r, =—E[ {2""1(“1+“2)+(U1+U2)2+w22_m12}m2 J
2 2 ’
4 (P-l -, ){(H; +l"’z)2 _(C‘)z _m|)2}{(l~ll +F‘-2)2 — (o, +(’31)2}
and
1 2 s
1 =_6_ Z -1+2]b2r‘,f C05h3(0),-t+(P,~)g,»'j€_3"’
2 - . - .
.5 Za"*z’bz’“’ sinh B(ml.t+(p,.)h,.yje'3“'
-
(2.23)
3ab 2 -1 1 (2u+ n
Za’ b™ cosh(Qu,t + @t + 20, cpj)c R
16 I, j=Li#j
2
3ab Za,-nbz— smh(2mt+co 1420, +‘P,)d + —(2p,+u,):,
16 ij=li#j
where
g, = 1 G — )+ 0% —0,) +181,Gp - )o,” +200, - 1y)’ e,
M - 0w, —40,){0r —1,) -G, -0,) HB, — 1)’ - (Bo, +0,)*}
30).'{21-1;'2(3“1 _”j)"' l—li(3l~li —”'J')z + “i(zlmiz —(sz)—4m"2pj} (2 24)

B ; ,
M (l"’.‘z _miz)(“fz —4&)12){(31.!.,. _”j)z “(30),' _mj)z} {(3}-‘-,- "'IJJ-)Z = (3(0‘- +0)j)2}
l"‘iz(”'l +1,)" + “iz(lzmiz 11300, +303j2)+ 2“1”2(5(’312 tiww, + (Djz)

2
o (0] t0,0,)+(© t0,) (3o, to))o,

Y o — @20, 1) (@£ 0)) Hn +1)” - Go, 20,))
dt. . = (20, im,-){Zu,-z(H. + 1)+ (1 +1,)° +P’i(5mi2 t 60,0, +0)j2)+2p.j(1),~((0,- +0,)}
Y T m o — (@, £ 0,7+’ (0, £0,) 1 +1,) - Go, £0,)))
ij=12.
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Equation (2.21) has no exact solution. Since a,b, @, and ¢, are proportional to the small
parameter &, therefore d,b, ¢, and ¢, are slowly varying functions of time ¢, with the period

T, and as a first approximation, we may consider them as constant (see also [80] for details).

Thus, we obtain

a=ag+eflia,’ (1-e™ )/, +Lab (- )/ p,}/2,
b= by +e{mb,*(1-e™)/u, + mya,’b,(1- )/, }/2,
@ =9,0)+e{ma, (1-e™)/n, +nb (1-e)/p,}/2, (2.25)
0, =0, (0)+e{nb, (1~ ™)/, +ra (1-e*)/p,}/2.
Therefore, we obtain the first approximate solution of equation (2.12) as
x=ae™ cosh(w,t +¢,)+be™ sinh(w,t + @,) + e, (2.26)

where a, b, ¢, and @, are given by (2.25) and u, is given by (2.23).
2.4 Murty, Deekshatulu and Krishna's Technique [52]

Murty, Deekshatulu and Krishna [52] considered the equation
P+ KE¥+K i+ Kx+Kox=¢ f(x) (2.27)
Which is similar to the equation (2.1) and these two equations coincide when k = K,
k,=K,, k, =K, and k, = K. Murty et al [52] found a solution of the equation (2.27) in the
form

x(t) = a(t)cosh y, (¢) + b(¢)sinh y, (1) + e 1, (a, ¥, Y+ev (b, y,)+..., (2.28)

where u,(a,y,)...,and v,(b,y,)...,are functions of y, and y, respectively, and the quantities

a,\,,b and v, are defined by the differential equations
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4=-Ka+ed (a)+..,

V, ==K, +eC/(a)+...,

b=-K.b+ €B, (b)+..., (2.29)
V, ==Ky +eD,(b) +...,
and
_A+A A=A Ay +A p - }
Kl_ 2 2’K2= 122’K7=_32_4’K8= 32 4. (2.30)

Differentiating (2.28) four times with respect to ¢, using the relations in (2.29), (2.30),
substituting x and the derivatives %, ¥, ¥ and x™® into equation (2.27), expanding the right-
hand side of equation (2.27), expressing the powers of coshy, and sinhy, in the resulting
expansion in terms of the multiple arguments of coshy, and sinhy,, comparing the
coefficients of equal power of £ on both sides and finally equating the coefficients of simple
and higher arguments of coshy,, sinhy, coshy, and sinhy,, Murty ef al [52] obtained

dA d*4 d*A
m A, +mya—L+mya’ —= + ma’ —=-+msaC,
dt da

2
+m6az§+m7a3 i!a(j =h,(a,b) for coshy,,
a
2 dcC,
nA +n L B azﬁ'—+n4aCl +na*—L
1451 2 3 2
dt da da @.31)
2 3
+nﬁaf’—d—c‘—+n7a4 ¢ C;' =g (a,b) for sinhy,
d*B, , dD,
BB, "‘Bz +Bb’ —5 b7 ——-+B,0°D; +BsbT— 7
dZ
+Béb3 +B,b* db3 =g,(a,b) for coshy,
d’B d’B
a,B, +a b(ﬁ +a,b’—- x ! +a4b3%—31—+a5bDl
(2.32)

d*D

dD b’
“db®

+ab’ —*+ db ——L=h,(a,b) for sinhy,
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and for terms of higher arguments of coshy |, sinhy,, cosh vy, and sinhy,, Murty et al got

o 2 3
[K,*(a %_{_7“22@ +6a3%+a4 647’2')
a a Oa
3 0%u PR 5
+4K, 'K, (a L1302 %% 3 O
1 8 )
aaa\,»” aa a\l]l aa a\ljl
6314 4 4 4
+6(KK,) (a S +a L L) +4K K a au'3+Kz4aui]
aaa“l”l a all]l aaa‘yl awl

6 z 2 3
_K [K (a ul 3az'a—u2l—+ 6 ul)+3K K ( ul +a2 a ul )
a aa aaawl aalawl

3 3 3
+3K1K22a au12+K235u1] K[K ( 6ul zauzl)
1 ] oa oa
2 2
2K K,a 2t k2 4
dady, oy,
ou, Ou, S . (2.33)
—Ki[Kja— -+ Ky 1+ Koy = > [h, (@)coshry, + g, (@)sinh ry, ], :
a a\yl r=2
8%y 8y
K, b 475290 g2 TN
[ b db* b ab4)
0’y 8*
+ 4K, Ky (b—— +3b* Py g T
6b8w2 ob? 5\|12 8B oy,
3 4 4 84
+6(K,Ky)* (b oV, - +b° oy )+ 4K, Kb = e ]
oboy, b’ 6\112 oboy, oy,
0%, v 0%y, , v
-K,[K, b-—+3b2 b3 LY+ 3K, K, (b +b )
LK ( ob* ) dbdvy, ob*dy,
3
+3K7K82b—ai;+1< » & "1+ KK, (b—— 2)
oboy, 2 55
2 a?.
v2K K p 20y k2 S
oboy, vy,
—KS[K7b%vb'— a Z[k (b)sinh sy, + g, (b)coshsy, ] (2.34)
5=2
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here the coefficien ] :
% s m,n;,a,,and B, i=12,...,7 are constants involving the characteristic

roots A, and are given by

==K\’ 6K K, + Ky (K +3K,1) - K K, + K,
m, =-3K,’ 6K K, +2K*K, - K K,,
my,=-4K’ +K’K,,

m, = —K13,

ms =—4K,’ 12K *K, + 6K, K,K, - 2K,K,,
me =-16K 'K, + 3K K,K,,

m, =-4K *K,,

n, =-4K’ -4K 'K, +3K KK, - 2K,K,,

n, =-8K,'K, +3K K,K,,

ny = -4K,'K,,

n, =-4K > -12K,K,” +3K,(K, +K,”) - 2K, K, + K,

n, =-11K,' - 6K K,” +4K 'K, -K K,

ng =—71K,’ +K,’K,,

n, = —K13,

o, =—K,} —6K,K’ +K,(K;" +3K,") - K, K, + K, (2.35)
o, =-3K," 6K, K +3K,"K, - K,K,,

o, =—4K,” +K,'K;,

o, = -k},
oy = 4K, —12K," Ky + 6K, K Ky - 2KK,,
o, = —16K," Ky +3K, KK,

o, = 4K’ Ky,

B, = —4K,' - 4K, Ky +3K,K Ky - 2K K,

B, = -8K,’ K, +3K,K.K;,
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B; =—4K,’K,,
- _ 3
B, =-4K, ~12K,K 43K0(K, + K - 2K, K, + K,
Bs =-11K," -6K,K’ +4K,’K, - K K,
Bs =-7K;’ +K,’K,,
B7 = _K73’
where k; j=1,2,3,4 and X, /=1,2,...8 are defined in (2.2) and (2.30) respectively. The

constants o, and B, are derived from the constants m; and n,, i=12,...,7 respectively, if

K, and K, in them are replaced by K, and K, respectively.

Functions h,, 4., g,,8,,h,,h, and g,,g., r,s=2,3,...,00 are the coefficients of the
fundamental and higher argument terms in coshy,,sinhy, and coshy,,sinhy,
respectively, obtained in the Taylor's expansion.

A particular solution of the two sets of simultaneous equations (2.31) and (2.32) give the
functions 4,, C, B,and D,. Such a solution is not straightforward, since the right-hand sides
of (2.31) and (2.32) are functions of both a and b, whereas the left-hand sides involve a
alone in equation (2.31) and b alone in equation (2.32). Because of this fact the approximate
linear relationship that exists between a and b has been used. Thus Murty et al set €=0 in

equation (2.29) and integrated it to obtain

Ky

a= aoe_ ! )
b=be ™ "
from which Murty et al got
a= EL be—(K.—Kv)f,
by
(2.36)

b= -ﬁ)— ae_(K’_K')'
a,
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Replacing b in terms of 4 in equation (2.31) and a in terms of b in equation (2.32) in

their right-hand sides and using the relations (2.36), Murty et al obtained the particular

solutions for4,, B,, C, and D, of the resulting equations from (2.31) and (2.32). Particular

solutions of equation (2.29) then determine the first approximate solution of (2.27).

For the particular case of (2.27) in which K,=10,K,=35K, =50 and K, =24 and

characteristic roots A, =—4, A, =~1,A; =-3 and A, = -2, Murty e al found a solution [52]

where

x(t) = a(t)coshy, (£) + b()sinh v, (£) + eu, (a,y,) + £v, (B, W),

5
-t

a,e *?
a(t) = L T
[1-(2P/5)+(2P/5)e™]?
3t 13 2P 2P
v () =y _?"'Elog(l_T*’Te ),
3,
b.e ?
b(f) = . T
[1-(2Q/5)+(2Q/5)e™*]?
t 1 20 20
Vo (1) =Wy — 5+ Slogl=—=+—~e "), (2.37)

2
2 =—144o[§-3(b—°] }64,512,
4 2\a,

2
3 3(a
_ 960 22| % | |196,768,
P 0{4 2[1; J ]

0

2

P=sp‘a02, Q=¢p,b,,

ev, = &b’ (g, sinh 3y, —cosh3y,),

and u, is zero in this example.
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2.5 Results and Discussions

To obtain equation (2.36) from equation (2.29) Murty ef al used the relationship that exists

between a and b. But this linear relationship does not present the real situation always. In our

new technique, we do not use such relationship.

The over-damped solution (2.26) can be used to obtain damped oscillatory solution,
replacing o, by io, and ®, by 10>, , which is an importance of our new technique. In Chapter
3, we have found damped oscillatory solution by using this technique.

In order to test the accuracy of an approximate solution obtained by a certain perturbation
method, we sometimes compare the approximate solution to the numerical solution.

Our approximate solution x, evaluated from (2.26) with initial conditions a, =2,
by =-1.0, ¢,(0)=0.5, ¢,(0)=1.0, &=0.1 for various values of ¢, is presented in the second

column of the Table 2.1. Corresponding numerical solution computed by a fourth order Runge-

Kutta method is designed by x,, in the third column of the Table 2.1. Computing result x,, of

Murty, Deekshatulu and Krishna [52] is given in the fourth column of the Table 2.1.

Table 2.1
! X X Xy

0.00 1.080100 1.0801 1.0801

0.40 0.412377 0.41248 0.41238
0.80 0.253258 0.25374 0.25326
1.20 0.175572 0.17635 0.17557
1.60 0.121351 0.12219 0.12135
2.00 0.082533 0.08329 0.08253
2.40 0.055564 0.05617 0.05556
2.80 0.037233 0.03769 0.03723
3.20 0.024910 0.02524 0.02491

Since the perturbation and numerical results are almost same; so, in figure they are not

distinguishable. For this reason, in Chapter 2 and in Chapter 4, the results are presented Tables

instead of Figures.
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From Table 2.1, we see that the new asymptotic solution (2.26) and the solution of Murty
et al [52] are almost the same. But the determination of the solution by Murty et al [52] is too

much laborious and cumbersome, while our new technique is systematic, simple and easier.

2.6 Conclusion

An asymptotic method, based on the theory of Krylov-Bogoluibov-Mitropolskii, is
developed in this Chapter for the transient response of a nonlinear system governed by a fourth
order ordinary differential equation, when the four characteristic roots of the corresponding
linear equation are all real and negative. The solution is presented as a power series in &,
where & is a small parameter. The series itself is not convergent, but for a fixed number of
terms, the approximate solution tends to the exact solution as ¢ tends to zero. The results
obtained by the present method compare very well with those obtained by the numerical

method and is simple and easier than that of Murty et al [52].
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Chapter 3

Asymptotic Method for Fourth Order Damped Nonlinear Systems

3.1 Introduction

Popov [66] has generalized the Krylov-Bogoliubov-Mitropolskii (KBM) [13,34] method.
The method [13,34] is particularly convenient and a widely used technique to obtain the
approximate solution. Originally, the method was developed for systems with periodic
solutions. Murty et al [52] extended this method to over-damped nonlinear systems. Murty
[53] also presented a unified KBM method for solving second order nonlinear systems.
Mendelson [46] rediscovered Popov's results. Bojadziev and Hung [27] developed a technique
based on the KBM method to solve damped oscillations modeled by a 3-dimensional time
dependent differential system. Shamsul [77] developed a new perturbation method based on
the work of Krylov-Bogoliubov-Mitropolskii to find an approximate solution of nonlinear
systems with large damping. Shamsul [81] has also extended the method [77] for n-th order
nonlinear systems with large damping. Shamsul and Sattar [76] studied third order time-
dependent oscillating systems with large damping. Shamsul, Bellal and Shanta [91] has
modified the Krylov-Bogoliubov-Mitropolskii method and applied it to obtain an approximate
solution of a second order damped nonlinear differential system with slowly varying
coefficients. Recently, Shamsul [93] presented a general formula based on the extended (by
Popov [66]) Krylov-Bogoliubov-Mitropolskii method for obtaining asymptotic solution of an
n-th order time-dependent quasi-linear differential equation with damping.

In the present Chapter, we develop a new asymptotic method to solve the fourth order

damped nonlinear systems.
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3.2 The Method

Consider a weakly nonlinear damped oscillatory system governed by the differential
equation

ﬂ”+hf+hi+hi+hx=gﬂa&if) (3.1

where x¥ denotes the fourth derivative of x, over dot is used for the first, the second, and the

third derivatives of x with respect to ¢, € is a small parameter, f(x) is the given nonlinear

function and k,,k,, k;, %, are constants. Let us consider that A, A, A, and A, are four eigen-

values of the unperturbed equation of (3.1). For the damped oscillation, all the eigen-values are

complex.

Therefore, the unperturbed solution becomes
- A
x(6,0)=) a;,e™ (3.2)
j=l

where a ios J=1,2,3,4 are arbitrary constants.
When € # 0, we seek a solution of the nonlinear differential equation (3.1) of the form (as

described in Chapter 2)

4
x(t,€) = Zaj(t)e;‘" +8”1(al.az,asaaut)'*'Szuz(al.avapaut)+£3"" (3.3)
J=l

where each a;, j=1,2,3,4 satisfies the differential equation

a,(t) = gAj(al,az,a3,a4,t)+esz (a,,8,,85,84,8) +€°.... (3.4)

Confining only to a first few terms, 1, 2, 3,...,m in the series expansions of (3.3) and (3.4),

we evaluate the functions u,,u,,...and 4,,B;,j=1,2,3,4, such that a;(), appearing in (3.3)

and (3.4) satisfy the given differential equation (3.1) with an accuracy of €™'. Theoretically,

the solution can be obtained up to the accuracy of any order of approximation. However,
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owing to the rapidly growing algebraic complexity for the derivation of the formulae, the
solution is in general confined to a lower order, usually the first [53]. In order to determine

these functions it is assumed that the functions U,,U,,... do not contain the fundamental terms,

which are included in the series expansion (3.3) of order &°.

Differentiating (3.3) four times with respect to ¢, substituting x and the derivatives
x®, %, %, & in the original equation (3.1), utilizing the relations in (3.4) and equating the

coefficients of £, we obtain

4 d 4 Aot 4 d
H(E_hf]ul +Z;e j ( H (d_t-'-;\'-" _k"JJAj = fP(a,,a,,a4,0,,1) (3.5
[

J=l k=1, j=k

4
where f©@ = f(x,)and x, = > a (f)e™ .
=

In general, the function f® can be expanded in a Taylor series as

©0,00,00,00

m, m ar m Ap+mgh,+mgh g +mgh N
f(0)= Z F a la2 za3 ’04 4 gt mghgtmads g )

my My iy, 1
Ny ==00, My ==00, 1l =—00, My =—0

According to our assumption, u, does not contain the fundamental terms, therefore
equation (3.5) can be separated into five equations for unknown functions », and

A, 4,,4;, 4, (see [80] for details). Substituting the functional values of f © and equating the

coefficients of ™, j=1,2,3,4, we obtain

0 0 0
Ay _
=k, =, || =+A -2 ][—H\ k)A
e (6t 1 2)(6: I 3 at 1 4 1 (36)
— Fm I a]'". azmz a3m3 a4m4 e(m,llﬂnzl,+m,k,+m4l4)r; m, = m,, m, =m, £1
0 0 0
MEZ g h, =N || =+A -x)(—m -x4JA2
¢ [at 2T NG T e T 3.7)
=F alm,azml aBm, aqm4 e(m,k,+m;?\.;+m;l,+m,,l,)t; my = m,, m, =nm, -1

Ty ng mymy
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and

Ayt 6 5
=X, =2 0
e (at 3 IJ( t+;\.3—}\.zj(__t+}\’3 l4)A3

(3.8)
- me o my omy omy A+ g iy L Y
F:n,,ml,rn;,nual a, "a;"a, e’ Rathytmdy) yom=m,, my=m, +1
0 0 o)
| Y _ il
e [at”“ R,J[at+k4wkz)(§+k4-l3}14
(3.9)
— Fm,,m,,m;,m, alml a2’"z a}'": a4”’4e(ni|?-1+rrulz+m;1;+nt4?~4)l; mo=m,, m=m, -1
0 0 0 0
e A — =X —_—
(at ‘J(a: 2)[& MJ(fi ?“J“'
o (3.10)

— my oy omy g (mydgdmghg Fnighs +mghg )
Fm, Wy My, My al al a3 a, e
'ml =—cx)'m2 =_°3|’"3 =—(D,D14 =—0

where Y/ exclude those terms for, m, =m, 1, m, =m, 1.

The particular solutions of the equations (3.6)-(3.10) give the functions 4, 4,,4,,4, and

u,. Thus the determination of the first approximate solution is complete.

3.3 Example

or,

As an example of the above method, consider the fourth order differential equation

XD k¥ +hyE+ ki +kx=ex’ (3.11)

. 3 0) _ A At Ayt Agf\3
For equation (3.11), we have, f=x" and [ =(ae™ +a,e™ +a,e™ +a,e #3%

3 3hgt (2 +A, )

3 3 Pt 2 (20 A3 )
fO=gle™ +a,’e™ +ae™ +a, e +3a, aze £

2
+3a,"a,

(2hy+A3 )t (2R, +A, )

2 2y A ) 2 2
+3a,2a,e® ™) 130, a e + 30, aze +3a,"a,e

2 2y +Ag M 2 (2R3 +A )t 2 (2h5+2 )
+3a32ale(2;\.,+ll)t+3a3 aze( 3thy +303 a.e +3a, ae (312)

2 2hg+Ag M (A +hg+25)t
+3a, a,e® +3q, a,e™ ) + 6aja,a5e

(A +A g+ 0 (A Ay +hg ) +6a.a.a e(l;ﬂ,ﬂ,)t.
+6a,a,a,e +6a,a,a,e 20504
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Therefore, equations (3.6)-(3.10) become

[ 0 0
e (57”‘""2)(5”‘"’“ )[ a,

J =3a’a,e®™") | 6g,a,a,e™M (3.13)
0 2}
i =y (5””2“7” (6_“‘2 14)A2 =3a," 0,6 +6a,a,0,eM N (3.14)

0
(5”‘3 ~Ay |4y =3a,"a,e™™) 1 6 q,a,eM* M (3,15)
Agt 0 0 0
M Lan, - || L, -a, || 2 _ 2
5 M (Bt +A, =2, [a: +hy =Ly |4, =32, a,e®M) 4 6q a,a,et i (316)
and
3} 0 0 0
—_ - - ~ _ 33y 3 3 3 3 3 3,
[a: A py A, - A, o 7\.4)u}—al “ta, e +a’e +a, e
2 (2M+03 0 2 20 42 2
+3a, a, ™™ +3a°a,e™ M 130,706 30,7 g, P (3.17)
2 2
+3a, a, ™M 1 3a,%a,e™ Y 1 30,0, 130, a,e PN,

Solving equations (3.13)-(3.17) and substituting, A, = —p, +i®,, A, = -}, —ie,,
by, = —-u, +iw, and A, = -y, —io,, we obtain

2 =2uy
3a,"a,e

4 = , ——
1 2, — o, )3, — By — iy + i, )OK, — M, i, —1®,)

—2pyt
6a,a,a,e

) 2(p, — i) )(1, + By —i0, +i0, MW +Hy — 0, - i®,)’

R ITH
3a,a,7¢ "

2(u, +io, )31, — K, IO —iw,)(3n, — |, +io, +id,)

4y =~

=2pyt
6a,a;a,e

- 2(u, + i, () + 1, + i@, — 0, )(Wy + Ky +i0, +im,) ’
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=2yt
A =— 3a,’a,e

2(u, —10,)(3p, — ~Hy —io, +io,)(3p, - M —io, —in,)

6a,a,a,e™"

Z(Hn 10, )y + 1,y +iw, i) (1, +p, —

4 = 3a,a,’e

1 —iw,)’

Z(u2 +iw,)3R, — 1, +io, —ie, )3y, — +im, +im,)

6a,a,a,e*

2y, 0, )1y + 1y — i) +io, )W, + 1, i, +ie,)

Substituting the values of (3.18) into equation (3.4), we obtain

2 —2pyt
_ 3a,"a,e

a =

=2u,t
6a,a,a,e

(2(“1 —i®, )3y, —p, —i0, +i0,)(GK, —p, — i

| —i®,)

+
200, —io, (W, + 1, —io, +i0,)(1, + 1, —io

=2yt
3a a2

1 —i(z)?_)}

d =_8 . -
’ (2@1 +i0, )3, — by +i0, —i0,)BR, — B, +io, +i0,)

6a,a,a,e” "

2(”2 + 10, (1 + Ry 10, — i@, )(1y + 1, + i, +i(02)}

2 =25t
3a,"a,e

BT (2(”"2 —i0,)(31, — 1, —i0, + i, )Bp, —y — 0,

—-io,)

6a,a,a,e”*" ]
+ . . - 3
2(p, —im, (1, + 1y TI0, — 10, Mpy + 1, =i —io,)
. 3a3a42e"2""
= 2(n, +io, )R, — 1y o, —i0,)(3Y, — B +io, +io))

=2y
6a,a,a.e

" 2y, +iw, ), + By~ +i@, )|y + K, T, +i(’)2)}
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. . o E J-cpl _ a — \ b _b .
Substituting a, > e”, a, _Ee ", a, = € and a, — e™® into equation (3.19) and

then simplifying, we obtain

a=¢g (l ale +1,ab%e ™ )’

b= g(mlbs 2#2’+m2a2be—2plll

(3.20)
?, 8(n ale™m! +n2b2e“z“2‘),
0, =¢ (rlbze'z“z' +r,a’e™™ ),
where
;o3 [ 1 (G —1y) 0" +0,7} - 2060, ~ 1o, J
8Lk + 0, ) {3, —1,)? + (0, —0,) 1B, 1) + (0, +@,)*} )
f =_§( o {( +15) -0, 40,7} =2, + )0, J
Fal (e, o 1) (0~ 0,) (1) + (0 +0,))
o _.3 B {Gu, — 1) — 0, +0,} =203, — o, J
FT8L ey 0, ) B, — )+ (@, — ) HBH, — 1) (0, +©,)°)
m == G +15)* 0,7 0%} =2, + )’ ] (321)
2740 (2 0, ) 1) (0, — @) H (B 1)t + (0, +0)7)
ol 2, Gpy — 1) + By 1) — 0" + 0,7}, ]
=T o 1 o) (Gr — ) + (@~ 0,2 HBH, — 1) + (0, + 0, )}
__3 {2”2(”1+Pz)+(f~h+l"~2)2“(’)12+m22}m1 ]’
nz‘“—— (Hz + @, ){(H|+“z) +(0, - 2)2}{(ul+u2)2+(ml+m2)2}
3 (21, B, —1) + By — 1)’ —0,” +o o, }
TR + 0, {Bs —h)? + (0, —@) HBH, —1)” + (@, + )7
3 20 (1, + 1)+ (1, F11,) —0,” + 0" )o, J
2T T 0,0 )y + ) (0 —0) H( + 1) + (0, + )7}
and
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U, = 16 Za“*”bz’ 7 cos3(w t+0,)g, e ot

i,j=li#f

16 Za x+2/b21 j Sll'l3(0.) t+(p )h e Mt

i, j=li#j
3ah 2 (3.22)
a
o a’'pi 'COS(Z(DI"‘CO t+2(P to, )C (2u,+u;):
16 i, j=)i#j J
3ab
- aj lbl 151n(2m'timjt+2(p' i(PJ)dl,Ji e—(zll["‘p'])f,

16 i, j=Li#j

. where

BB i)’ -1 00,7 -0, 180, Gy -1 o, - 20, - py) e, 200, —0,))e,”
(" + 0,5, + 40, )G, =) + B0, - 0,) HBr, —1,)* + (o, +0,)*}

"3(0;'{211,'2(3“,' —p;)+ 1, G, _P‘j)z “Pi(zm)iz _(Djz)+4(‘0r'z“'j}

by =— PP 2 2 2 2 e (3:23)
T o, ), 40, {Cr, -1, + G, —0,) HGBr, — 1) +(Go, +0,)%}

sz(ul +1,)? _p’iz(lzmiz +130,0, +3w;2)—2uiuz(5®sz + 50,0, +mj2)

—p, (@ £0,0,)+ (0, 0,)’ (G0, £0,)o,

R o +(@,£0,) (1) + (0,20 ) H(w + 1) + G0, £ 0,)7}
dt_‘_-(2® £0,){20, (1 + 1)+ R Gy +11,)7 -, (50, £60,0, +0,°) = 2p,0,(0, T o, Db
@ o) (@ 2 0,) 1)t (0, £ 0) H +1,) + G, t0,)’)

i,j=12.

Equation (3.20) has no exact solution. However, we can integrate equation (3.20) by

assuming that @ and b are constants in the right hand side of (3.20) (see also [80]) and obtain
a=a,+efla,’ (1-e™)/p, + Layb, (1-e)/p,}/2,
b=b, +e{mb, (1-e™¥)/u, + myay by(1—e™ )/ }/2,
0, =0,(0) +efma,” (1-e™ )/, + nyby (1—e™)/ 1,372, (3.24)

) = @,(0)+¢ {rlboz(l - e‘z“”)/u2 + rzaoz(l —e"z”")/ul } 2.
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Therefore, we obtain the first order approximate solution of equation (3.11) as
x = ae™ cos(wt +@,) +be™ sinw,t + ¢,) + e, , (3.25)

where a, b, ¢, and @, are given by (3.24) and u, is given by (3.22).

3.4 Results and Discussions

We have separated equation (3.5) into five individual equations by balancing harmonic
terms in which the variational equations contain the first harmonics and the correction terms
contain harmonics with multiple arguments. These assumptions are certainly valid for the
second and the third order differential equation. But for the fourth order differential equation
these assumptions are not sufficient. As a result, much errors occur. So, to obtain desired
result, theory of large damping is needed. In Chapter 6, we discussed the perturbation method
for the fourth order nonlinear systems with large damping. Also when one of the eigen-values
of the corresponding unperturbed equation is a linear combination of the other eigen-values,
both the variational equations and correction terms contain secular type terms. As a result, the
solutions fail to give desired results. In these cases, to obtain the desired result, the technique
presented in [83,87,88] is needed. In Chapter 4, we have solved the fourth order nonlinear

differential equation with the special conditions presented in [83,87,88].

For k, =025, k, =0.25, o, =1.0, ®, =1.7320508, @, =0, @, =1.570796 and £=0.1,
we have calculated x from (3.25), in which a, b, @, and ¢, are calculated from (3.24) with
initial conditions x(0) =1.000613, %(0) =-0.250442, %(0) =-1.948415, ¥(0) =1.496248 [or

a4, =0.5, b, =0.5] and is plotted in Fig. 3.1 (denoted by —o-). A second solution of (3.11) is
Y

computed by a fourth order Runge-Kutta formula with a small time increment Az =0.05 and
the results are plotted in Fig. 3.1 (denoted by --). From the figure it is clear that the

Perturbation solutions (3.25) together with (3.24) agree with the numerical solutions.
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-0.6 -

Fig' 3-1 SOl i .
demte:tut))n of Eq. (3.11): (i) Perturbation Solution denoted by —o- (ii) Numerical Sol
y --. For k =k, =025, o =1 cal Solution
: =1, ©,=+3, e=0.1. Initial b
Qo = = conditio b =
10 =0 and @, =n/2 or [x(0)=1.00061, £(0) = —0.25044, ¥(0) = ~1.94842 E(O)nfli(; 6;;[; =0.5,
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3.5 Conclusion

An asymptotic method, based on the theory of Krylov-Bogoluibov-Mitropolskii, is
presented for obtaining the transient response of nonlinear systems governed by a fourth order
ordinary differential equation with small nonlinearities, when the four eigen-values of the

corresponding linear equation are all complex numbers. The results obtained by this method

agree with those obtained by the numerical method.
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Chapter 4

Solution of Fourth Order Over-damped Nonlinear Systems Under
Some Special Conditions

4.1 Introduction

Krylov-Bogoliubov-Mitropolskii (KBM) [13,34] method is particularly convenient and is a
widely used technique to obtain the approximate solutions of nonlinear systems with small
nonlinearities. The method obtained by Krylov and Bogoliubov [34], originally developed for the
systems with periodic solutions, was amplified and justified by Bogoliubov and Mitropolskii
[13] and later extended by Popov [66] for damped nonlinear systems. Murty et al [52] extended
the method to over-damped nonlinear systems. Murty [53] has presented a unified method for
solving the second order nonlinear systems. Owing to some limitations of the unified theory of
Murty [53], Shamsul [85,87] has further investigated the second and the third order over-damped
systems under some special conditions. Sattar [71] early studied a three dimensional over-
damped nonlinear system. Shamsul and Sattar [73] developed an asymptotic method to solve
third order critically damped nonlinear equations. Recently, Shamsul [83] has generalized the
technique presented in [85,87] for n-th order over-damped nonlinear systems. Shamsul [80] has

also presented a unified method for solving n-th order nonlinear systems.

However, when one of the eigen-values is a multiple (i.e., double, triple etc.) of the others,
correction terms of the asymptotic solution (found by Murty et al [52] or Sattar [71]) contain
some secular type terms and are thus unable to give desired results. Shamsul [83,85,87] removed
this difficulty and found the desired solutions.
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But more serious problem arises in case of the fourth and more than fourth order nonlinear
systems (see Appendix 4.A), when one obtains an asymptotic solution followed by Murty et al
[52]. For certain damping effect the variational equations contain some secular type terms when

the eigen-values of the corresponding linear equation are in a linear combination.

In this Chapter, we present a solution (based on the works of Shamsul [83,85,87]), which
prevent the appearances of the secular type terms in both the variational equations and the

correction terms.

4.2 The Method

Let us consider the fourth order nonlinear differential equation
x4 kX +kyk+ i+ k=g f(x,x,%%), 4.1)

where x® represents the fourth derivative of x, over-dot is used for the first, the second, and

the third derivatives of x with respect to ¢ € is a small parameter, £, k,, k, and k, are

constants and f is the nonlinear function.
When =0, let us consider that —A,,—A,,— A, and -4, be the four real negative eigen-

values of (4.1). Therefore, the solution of the corresponding linear equation of (4.1) is
- At
x(t0)=Y a;,e” 4.2)
j=l

where a;,, j=1, 2, 3, 4 are arbitrary constants.

When &= 0, we seek a solution of the nonlinear differential equation (4.1) in an asymptotic

expansion of the form
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4
_ -A gt
x(t,€) = Z:.“f(‘) e +eu(a),a,,ay,a,,0) +€* u,(a,,a,,a5,a,,t) + .. 4.3)
J=

where each a; satisfies the differential equations

a,()=¢ 4,(a,,a,,a5,a,,0) +’B(a,,a5,a5,a,,0+... ,Jj=12,34 (44)

Confining only to the first few terms 1, 2, ...,m in the series expansions of (4.3) and (4.4),
we evaluate the functions 4,, j=1,2,3,4 and u,, i=1,2, ....m such that a;(?), j=1 2,3,4
appearing in (4.3) and (4.4) satisfy the given differential equation (4.1) with an accuracy of order
¢™!_Tn order to determine these unknown functions it is customary in the KBM method that the
correction terms #, must exclude those terms (known as secular terms) which make them large.
Theoretically, the solution can be obtained up to the accuracy of any order of approximation.
However, owing to the algebraic complexity for the derivation of the formulae, the solution is, in
general, confined to a lower order, usually the first [53,80].

..... “)

and the dependent variable x in the original equation (4.1), utilizing the relations in (4.4) and

comparing the coefficients of €, we obtain

4 4 4 d
H(%-}-lf]ul +Ze_lj‘ H(E—_M +M) 4 = fay,a;,a3,a4,1) (4.5)
J=1 k

i=1 =1
¢ j=k

4
-\
where £ = f(x,) and x, =Za1'oe £
J=l

In general, £ can be expanded in 2 Taylor series as
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0
0) _ N N
f = ZE[ ipsis e (al . a2 3 aj S a4 ,t) e (i|;~1+lz;~1+l313+i4l4 ) (4.6)

By yig4iy,ig=0

To solve the equation (4.5) for u,, A4,, 4,, 4;, A4,, it is assumed that %, does not contain

! : : =ik gk +ighy +High . ! L., :
the terms involving e hiviha B A where Gy + .t igAy, SZ(I, ot i)+t AY)

| [83,85,87], so that the coefficients of terms of u, do not become large or «, does not contain

!

secular type terms ¢ e’

Substituting (4.6) into (4.5), we have

‘“(——x +A )(i—x +2 )(i—l|+k J
dt dt
+e‘12’(%—?~2 +7\.,][%—7\,2 +x3)[%~l2 +k4)A2
J(;’t ](%-AB +x4]A3 4.7)
+e'*4’(37—x4 +A ][jt Ay +A J[S—I—M +7L3JA4
(kg igh g Fishy High M

Z iluzx,u(a!aaz’abawt)e ?

fyig 503404 =0

+e ™™ (—d— — Ay A
dt

b st ozs
where ik, +iyh, +ighy +ighy S0+ +i)(h + Ay + Ay +Ay),

and

d
d —+ A 4 —+A )(d +A ](—+R4Jul
dt dt dt dt
(4.8)
(i Atk +igh M

Z iy g sy oly (al,az,a3,a4,t)e

i) yigyiyadg=0
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-~ where ihy +ighg ik +iA, >Z(’l th G ) A, Ry +A).

Solving (4.8), we obtain

o0

ZFI,,iz,i,,iA (a),a;,a5,a,,t)e
i1,03,03,ig=0 (4'9)
f];"4=0 (ilg\'l +i27\.2 +I3?\43 +i4k4 —;Ll)"'([l?\'l +12A.2 +13)v3 +i47\44 _7\-4)

(i +ighy +ighgHigh M

o0

u =

l'l )"2!

However, it is not easy to solve equation (4.7) for the unknown functions 4,, 4,, 4, and

A, if the nonlinear function f and the eigen-values —A,,—A,,—A, and —A, of the

corresponding linear equation of (4.1) are not specified. We can find these functions in the forms

. of
| 3 R WOET YT T
i —(—A i A FiA g Hishy Ay 0
i A = Zle rhinditighHhAs k)t
] 1 LR R
| iy iz iy iy =0
i
|
j el . . . .
i A = Zm e—(ulll—lz+:212+:Jl,+:,,k4)r ,
i 2 RIS
i iy sigriyais =0
: o0
—(i,l,+izlz—h3+!313+i47t4)t (4 10)
A, = Z . .e ,
; 3 halysh00a
1 iy igal i =0
and
< (‘).+H\.+i1+ik Aa )t
= =y
A = zr“ _6'1122)144 g
4 INUT RN
il,l'z,r'],i4=0
i PR ) 4, and
such that the unknown coefficients /; ; i i » Miipicics Miaisia? and r,, ...l e, 4, 4, 4,2

A, do not become large for any time ¢.
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' 4.3 Example

As an example of the above method, we consider a Duffing type fourth order nonlinear

| equation
x(‘”+k15c'+k25c'+k332:+k4x=_gx3 (4'11)
Murty et al [52] found a hyperbolic type asymptotic solution. Shamsul [92] has found an

oscillatory solution of the equation.

Here f=-x" and

| _3 2 i . _
| FO = (e +3a, a,e” PR +3a, e MY 43,7 g7 BRath)

—(hy Ry A 2 - - )
| +6a,a,a,e” MY 430 20, P 4 g %o 430 Mg e M

2 -(2A = 2 - —(A,+A
+3a,"aze” ™M +6a10,0,e Githatha)t | 3 2g o~ h)l 4 6q g,q 6N b

| 2 = 2o o5 - 3 -3
W +3a,"a,e” ™ +3q,%ae @M | 6g,g,a,e” PPN g g e

—(2hg Ayt =34t )

B - 2 - 2
| +3a, a,e” ) 30, e @hsth) 13, %ase +ae

Therefore, (4.7) and (4.8) respectively become

! ol d d d

e 111[5—7\.1 +7\.2)(E—?\4l +?\J3J[E—K] +A.4JA
=gt d A. A

+e ™ ——7& +A, || =Mt A —d;—7\,2+ .
Rl A, d—k +A, |4

+e ?\434‘?\" _—_A.a + —d'; 3 4 3

| ) d
i +e7~4 __7\’44.},1 ——7\, +7\, EE—?\.4+7L3 A4 (412)
|
| ~(A+hy A, 2 -2k +hp)
| = —(3a,2a,e” ™ +6a,a,a,e” U +3a e
‘(l:+13+la)‘ +a336‘313’ +3a4zaze_(214+kz)t

+3a,’qe” P + 6a,a,a,e

2 = 2 —(2A4+A)t 3 -3hgy
+3aa,e” @ 430, a,e M va e 3
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and

d d d d
2 e RN R

3 -3y 2 —(2h+A 2
=—(a, e +3a,"a,e” Y 4 3g g g MM 3 2 o @hatha) a1

R T -
+3a,"a,e wal ta,e A +64a,a,a,e (itdy+hs )

—(A Ay +A —(2A; 42 ) =(2h3+A ) )
2

2
+6a,a,a,e +3a,"a,e +3a,’a,e

Cif A >Ry >Ry >Ry

Solving (4.13), we obtain

—(2A A ) —(2A 40 ) —(2h, A

| 3 -3 2 2 2
| u =da e +d,a ae +d,a,"a,e +d,a, ae

2 —(2h,+Ay ) 3 -3k —(A+Ay+A3)
+dsa a,e” " vdgay e +daa a7 + (4.14)

(e HAg #A g 2. R 2 (AN
dgaa,a,e™™ +dya,"aqe +d,a, ae g

where
d, ==1/[21, (3%, = A, )3, =A;)(3X, = A,)],
d, =3/ [2A, (A, +A,)(2A, + A, —=A3)(2h, + A5 =),
dy =3/[2%, (A, +A3)(2A, + 25 =R, )(2A, +A; —AL)]
d, ==3/[20, (A, +A,)(A, + 2R, —25)(A, +2A, = AL
dg ==3/[20, (A + A, )2 + A, —Ay)2h, + Ay —Ay)]
dy =—1/[2A, (3N, —=A)(BA, —A3)(3A, -A)s

d; = =6/ (A +2,)Ay +2A5)0 +hy)(Ay + Ay + A5 = A (4.15)

dy ==6/[(hy +A,)A, +2)(A +A,)(A Ay Ay —A3)],
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and

d d d d
(Er—'*'?\alj(E"‘?\‘ZJ(EE‘*‘?\-})[EZ—-F}\%JMI

T 2 TRehrtAy =20 +A 0
=—(a, e +3al a,e @Ayt +30|2a3€ (2h+43) +3a22ale—(2lz+k,)1 (413)
+ 3a12a4e"(211+14)’ + azje‘ﬂ*zl + Gaiazaae"(lﬁlﬁ—l])l
+6a,aya,e” T 430, e 4 30 g gy,
if A, >Ay,>A3>A,.
Solving (4.13), we obtain
uw, = dlalse-n.r + dzalzaze-(zlwlz)t +d3aiza36-(21,+x3)r +d4a22a|e"2"’”‘"’
+dgaa,e ™™ 1 dia e ™ +d,aa,a,e M 4 (4.14)
d8a1a2a4e-(l,+lz+l4)t + dgaz2ase—(211+kl)r P dmaSZale—(z;\.,H,)t ’
where
d, =-=1/[2A, (3, = A, )(3A, —A;)(3A, -2
dy = =31 [20, (A, +4,)(@2A, +2y = M)A, +hg =R,
dy =3/20, (A, +A;3)(2N, +A; —A,)(2A, +Xy =),
d, =-3/[20, (A, +A,)A, + 2%, —A3)(A, +20; = Ayl
dy =3/ 20, (b, +Ag)2A, + Ay = A )(2Ay + g = A3l
dg = —1/[2h,(3%, = A, )JBA, —A3)(3A, -2
dy = ~61[(h, +Xy)(hg + A )y +A) + Ay + 2 — )] (4.15)

ds =-6/ [(7"2 F 7\'4)(}"1 +7"4)(?"| +}‘z)(7‘| +?"2 +7\'4 "_}"3)]’
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e

T

dy = =3[20; (y + 13020, +4; —1)(24, +1, =1,)],
dio =3 [20(y +A3)(h + 20, —A,)(0, + 24, — A, )],

To separate the equation (4.12) for 4,, 4,, 4, and A, first we assume that A, ~3A, and

A, ® Ay +A; +A,. In this case, we choose

({d d
e ™ (———Al +xzj(——xl +X3J[i—k, +A, |4
dt dt dt (4.16)

2 —(2A4+Aq)t 2 (A, +20 2 (2 _
=—(3a, a,e ™ +3a, g e M 430 2 e PR | 6 g g,e"PrRROny

e'l"[i—%z +k1)[i—k2 +K3j [i—lz +7»4JA2
dt dt dt (4.17)
- -—(3a42a3e‘m‘”‘3)’ + 3a32a4e'(”"”“)’ + afe'w +6a,a,a,e” )
d o
and
= [g; B M) (% —Ayt ?\'2) [% —A, 7\'3)‘44 = _3‘122“43_(“2“4)‘- (4.19)

Solving equations (4.16)-(4.19), we obtain

(A =2R3- =(Ay+Aq )
>

20— 2 -2y 2 Al
4 =lla42azea‘ el 4 p g 2ge”™ +La aze +1,a,a,a,e

T 2 (A, =2h3-hy )t 3 (Ap-3Ayt —(Ay+Ay )t
4, =maa,e M pmya a7 Fmage +m,a,a,a,e ,

3 (A=A - 2, 4.20
A3=nla4 e(; 4), A4_rla2 a,e 5 ( )

where

53



Ly ==3/2h,(hy +X)(A5 =%, —21,)],

L =3/ + ARy =Ry =20,)(A4 A, —21,)],

I = =3/12%; (A +1)(A, =2, —21,)],

Iy ==6/[(0 + ), + AR, A, =4y —1,)],

my ==3/2%, Ay +1,)(A, =4, —21,)],

my ==3/[2h; (As + 1), =24, —1,)], (4.21)
my = 1[2A, (A, = 3%;)(h, —31,)],

My =—=6/[(My +A3)Ay + AR = Ay —Ag —A,)],

= 1[2h, (A =30 )(Ay =31,

=30y +A)0 = 2h; =LAy =24, =41,

Substituting the values of 4,, 4,, 4; and A, from equation (4.20) into equation (4.4), we

obtain

: 2, M Pt g ] Rk (4.22)
. 2 A=2hg—Ag M 2 204 e +1l,a,a;a,e :
4 =g (ha, a,e™ ™7 +ha, ae™" +hay a, 4@,y

- 3 (A -3 ) —(A3+A )
a2k (a2 h) gy g 7MY L mya,a,a,e ), (4.23)

2
. 2
a, =¢(ma, a, +mya;"ae

INPNETRY (4.24)
a, =g na, e M,

2 21 (4.25)
- By
a,=ena, a,e".

Now, we can solve equations (4.22)-(4.25) by assuming that a,, a,, @, and a, are

. i i 1 tity.
Constants in the right hand sides of the equations (4.22)-(4.25), since € is a small quantity
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R R TR T EEI=,

ey

TR ———

This assumption was first made by Murty et al [52] to solve similar type of nonlinear

equations of (4.22)-(4.25). Thus the solutions of equations (4.22)-(4.25) are

a,=a, +&[0a,, a,, (M _1y /A, — 1, - 20,)
+hag a (e —DI-20,) + Lay  a,,t

+1,a,0a50a,, (e_(lﬁl‘)! =D/(=ky =2,

Ay =0Gyp t+E [m1a4,02a3,0 (MDA, =Ry —24,)
+myay0° a0 (€™ 1) /(h, - 20y - 1,) (4.26)

3 —(Ahy+Ay)
+ Myt +m,a, 00,00, 0(e S VY o T W)
3
@y =030 +EMA,,'L,
2 .
Ay =40+ E R, Ag(e 2 D) H(=22,).

Secondly, we consider the cases A, =3A, and A, =4, +A, +4,. Under these conditions,

we choose

d
e'*"(g;—kl +7L2J [%—x, +x3)(-§-x, +7L4)A,

- _(3a42aze—(zk4+kz)r +6a,a, a4e-(lz+ls+14)f o 3a42ale-(7~|+2?~4)‘ (4.27)
+3a,’a,e P + 6ala3a4e—(l‘+k’d‘)' )
d d d )
B | Pt P A || —=A,+ 2, |4
e (dt A, '*'?“1) [dt A, + 3)(‘# 2 TA | @28)

2 e P 2 —(2A #A N 3 -3y
=—(3a,a,e” ™™ +3a,°a 7 H a5 € );

e d_ 4 5 i ]A g™, (4.29)
e [E—?\,B-{-?\,]J(dt ?\.3+7\.2)(dt 3 4 |43 4
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| + —_— 4
¢ [dt l4 ?\'1] [dt ;\‘4 kzj [_dt - 7\‘4 * ?\'3]144 - 36122(14@_(212'“‘4)’_

Solving equations (4.27)-(4.30), we obtain

— 2 (A=2h 4Ry )t (T e ey 2
A! —-lla4 a,e +12 @y @, a) +13a4 ale-ZMr
J ¢ P YO W, 3
+1,a, 0,6 1l q a,a,e7
= 2, o hamds) 2 (g-2- ¥, (g
Ay, =ma, aze”™ T v myastaett D g mya, e
=2yt

3 (A=3Ag)
b

- _ 2
Ay =maye Ay =na,"ae

where
I, ==3/2hs(Ay +A,)(hs =y —21,)],
L, =6/[(Ay +A3)(Ay +A,)(A5 +A,)],
I =3[0 + A )y — Ay =24, )(A3 =& = 20)),
I, ==3/[2A; Ay +A3)(A4 =2, —245)];
Iy =—6/[(A, +X3)(X, + AR, = A=Ay —A)L,
m, ==3/20,(A; + A, ), —)s -2A)],
m, ==3/[2h; (A5 + X, )M = 2h; —AQ))s
my = 1/[2h; (A, =34;)(Aq - 331
n, =120, (A, = 3R )(, =301

Ho=3/[(A, + 2 — 2%, —A)(As = 2h; = A1
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substituting the values of 4,, 4,, 4, and 4, from (4.31) into the equation (4.4), we obtain

g 8(l|a42a2e(x.—2x,—xz)r +hatae ™ 4 Iy a, a, a ettt

+1,a,°a,eM P g aga,e O, (e
2, = e (m,a, a,e™ M 4 g 2g gtk mya; ey, (4.34)
5= 8n‘a4se(xl—3x4): , 435)
By = era, a,e >, (4.36)

Since £ is a small quantity, we can solve equations (4.33)-(4.36) by assuming that

a,, a,, a, and a, are constants in the right hand sides of (4.33)-(4.36). Thus, we obtain

a, = a,y +e[f,ata0a, o (e 1) /(A A,y —24,)
+1, a4_02a,‘0 (e'n" —D/(-2X,) +hayyasa,t
1,y a, 0 (€M — 1) /(A —hy —24;)

+15 a0, (e—(h+l4)l -D/(=Ay = 2],

A, =08y t+ 8(m|a4,02a3'o (e(xz—zxd—x,): =D/, = Ay = 20)

(4.37)
Tty a5y 0, (€T — 1) (A, =20y —Ry) s )
ay =0, + 8!11614_031‘, a, =4, + ar,az'oza‘,'o(e'”l’ ~1)/(2N\,).
Therefore, we obtain the first approximate solution of equation (4.11) as
Moy gu, (4.38)

X - ~Aat
x=age™ +a,e™ +a,e” +a,.e
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where @, 42> @ and a, are given by (4.26) when A, ~3X, and A, A, +A, +A, and 4 is
given by (4.14). But when A, =3%; and A, =%, +%,+A,, a, a, a, and a, should be
computed by (4.37) instead of (4.26). In the second case u, is also computed by (4.14). The
procedure can be carried out for n-th order in the same way.

4.4 Results and Discussions

In order to test the accuracy of an approximate solution obtained by a certain perturbation
method, we sometimes compare the approximate solution to the numerical solution. First of all,

we consider the case A, =3A; and A, = A, +A, +A,.

For k, =28/3, k,=26, k,=68/3, k,=5 and €=0.1, we have obtained A =5

A, =3, A,=1and A, =1/3. Therefore A, =3k; and A, =&, +1; +4,.

We have computed x(¢) by (4.38) in which @, a,, a, and a, have been evaluated by
(426) with two sets of initial conditions (i) x(0)=0.999952,  x(0) =-2.33483],
#(0) =8.782495, %(0)=—-38.243824[or a, =025, a, =025, a;= 0.25, a, =0.25] and (ii)
x(0)=1.000177, #(0)=—5.667585, %(0) =25.225592, ¥(0)=-113.752365 [or a, =0.75,
a,=-0.25, a, =0.75, a, =-0.25] for various values of ¢, and the asymptotic solution x has
been presented in the second column of the Table 4.1 and Table 4.2 respectively. Corresponding
numerical solutions (designated by x") have been computed by a fourth order Runge-Kutta
method and are given in the third column. Then the percentage €rrors have been calculated and

are given in the fourth column.
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From Table 4.1 and Table 4.2, we see that the percentage errors are much smaller than 1%

erve that the ratio of th i . _
We also obs e coefficient of x and x° in the equation (11) is B and errors

2
. 8 3
occur in an order of 25 (see [77] for details). Thus the new asymptotic solutions almost coincide

with the numerical solution.

Table 4.1
J X x' E%
0.0 0.999952 0.999952 0.0000
0.5 0.439283 0.439290 0.0015
1.0 0.285130 0.285132 0.0007
1.5 0.210338 0.210339 0.0004
2.0 0.162867 0.162869 0.0012
2.5 0.129364 0.129365 0.0007
3.0 0.104495 0.104496 0.0009
3.5 0.085445 0.085446 0.0011
4.0 0.070508 0.070509 0.0014
Table 4.2
t x x E%
0.0 1.000177 1.000177 0.0000
0.5 -0.134410 -0.134392 -0.0133
1.0 -0.228860 -0.228857 -0.0013
1.5 -0.198857 -0.198857 0.0000
20 -0.160484 -0.160484 0.0000
2.5 -0.128923 -0.128923 0.0000
3.0 -0.104468 -0.104468 0.0000
3.5 -0.085499 -0.085499 0.0000
4.0 -0.070572 -0.070572 0.0000
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Now, We consider the case A, =3\, and A, =
3 1 =A,+A, +4,. For k, =26/3
. | = , k,=208/3,
k3=178/3’ k,=13/3 and £=0.1, we have obtained A, =13/3, A,=3, A.=1 and
3 2 = T an

A, =1/3. Therefore A, =3A; and A, =X, + A, +A,.

We have again computed x(f) by (4.38), in which a;, a,, a, and @, have been evaluated
by 4.37) together with two sets of initial conditions (i) x(0)=0.999941, %(0)=-2.167110
#(0)=17.217916, %(0) =-27.282768 [or a, =0.25, a, =025, a,=0.25, a, =0.25] and (ii)
x(0) =1.000175, x(0) =-5.161273, %(0)=20.513668, x(0)=-80.779495, [or a, =0.75,
a, =075, a; =—-025, a, = —0.25] for various values of ¢, and the results have been presented
in the second column of the Table 4.3 and Table 4.4 respectively. Corresponding numerical
solutions (designated by x") have been computed by a fourth order Runge-Kutta method and

given in the third column. Then the percentage errors have been calculated and given in the

fourth column. From Table 4.3 and Table 4.4, we find that percentage errors are less than 1%.

2
Further, we see that the errors occur as the ratio of (—8—? Thus the new asymptotic
A,

solution is in good agreement with the numerical solution.

Table 4.3
t X x‘ E%
0.0 0.999941 0.999941 0.0000
0.5 0.447440 0.447448 0.0027
1.0 0.286720 0.286722 0.0006
1.5 0.210570 0.210571 0.0004
2.0 0.162899 0.162900 0.0006
2.5 0.129370 0.129371 0.0007
3.0 0.104498 0.104499 0.0009
3.5 0.085447 0.085447 0.0000
4.0 0.070509 | 0.070510 0.0014
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Table 4.4

¢ e & E%
0.0 1.000175 1.000175 0.0000
0.5 -0.109503 -0.109483 -0.0182
1.0 -0.223839 -0.223835 -0.0017
12 -0.198046 -0.198046 0.0000
2.0 -0.160335 -0.160336 0.0006
2.5 -0.128873 -0.128875 0.0015
3.0 -0.104437 -0.104438 0.0009
33 -0.085473 -0.085474 0.0011
4.0 -0.070550 -0.070550 0.0000

In general, KBM are useful when € <<1. Sometimes solution may be used even & =1.0 (see
[46,87] for details). For the case A, =3k, and A, =&, +X; +4,, we have again computed x(¢)
by (4.38), @,, a,, a, and a, are computed by (4.26), when A =5 A, =3, A;=1,4,=1/3
and £=1.0 with initial conditions x(0)=0.999516, i(0)=-2.348314, %(0) = 8.824944,
¥(0)=-38.104900 [or a, =0.25, a, =025, a,=025 a,= 0.25] for various values of ¢
and have been presented in the second column of the Table 4.5. The corresponding numerical
solutions (designated by x") have been computed by 2 fourth order Runge-Kutta method and are

given in the third column of the Table 4.5. Percentage errors have been calculated and are given

in the fourth column of the Table 4.5. In this case, theoretically, errors occur 4%, but from Table

4.5, we see that errors occur less than 1%.
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Table 4.5

! X x E%
0.0 0.999516 0.999516 0.0000
0.5 0.436823 0.436865 0.0096
1.0 0.284190 0.284216 0.0091
1.5 0.210402 0.210446 0.0209
2.0 0.163297 0.163356 0.0361
2.5 0.129848 0.129912 0.0492
3.0 0.104919 0.104981 0.0600
3.5 0.085782 0.085840 0.0675
4.0 0.070765 0.070817 0.0734

The solution presented in this Chapter covers the case when one of the eigen-values of the
corresponding unperturbed equation is a linear combination of the others. But this solution
cannot be used for oscillatory, damped oscillatory or for large damping effects. In Chapter 5, a
unified KBM method is presented for solving fourth order nonlinear differential equations with

internal resonance.

4.5 Conclusion
For some particular damping effects in which one of the eigen values of the unperturbed

equation is a multiple of the others or there exists 2 linear combination of the eigen values, the

Previous asymptotic solution found by Murty et al [52] is unable to give correct results. In this

case, the over-damped solution, based on the works of Shamsul [83,85,87], is found. The

. . : i g is small and
solutions sometimes almost coincide with the numerical solutions when

Sometimes the solution is useful even if € =1.0
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Appeﬂdix 4.A
Murty, Deekshatulu and Krishna's solution [52]

Murty ef al [52] obtained an asymptotic solution of (4.1) in the form

x(1) = a(t) coshy, (1) + BB sinh g, (1) + 1, (o, w,) + € v, (B, v,), (4.A.1)

where a(?), B(t), v, () and y,(¢) satisfy the equations

& =Ko+ () +--,
v, ==K, +85I(a’)+"'a
p=—-K,B+eB(B)+-,

W, ==Ky +eD(B)+-,

(4.A.2)

whereKl=K';k2, K2=K‘_k2,K7= y K& =

Murty et al [52] determined the unknown functions u,, v, Zl , B,, C, and D, subject to the
conditions that u,, v, exclude the terms e**' and e*¥* . But it is a too much laborious process to

determine these unknown functions. In Chapter 2, we rediscovered Murty's et al [52] solution
following Shamsul's [80] technique under the same assumptions (imposed by Murty et al [52]).
The method presented in Chapter 2 is equivalent to Murty et al [52] technique but simpler than
that of [52]. Following the restrictions imposed in [52], the variational equations in Chapter 2

take the form

(A +Ag )t
3a,a, gttt 6aaa, e

a, = %
| 8(2xl(2xl+xz-x3)(le+x2—x4) (b +Aq)Ay +A)A, —Ay +R3 +R)

J, (4.A.3)

m, =m,; m =m,+1
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3a, a grtha¥ 6a,a,a, e**
G2 =8| 2Ry + 28y AR, + 20, —Ay) | (g My 4 A, 44 Dy + A0, +4 )J( A4)

my=m,; m =m,—1

Sy, @Y 6a,a,a, eM*
e
a3 20 (A =205 =LA, =21, x) g+ Xy + Xy =), 2,0, +45) (4:4.5)

my=m,; my=m, +1

3‘14 a, et 6 a,a,a, e™*
;=g (4.A.6)
Do =Ry — 20 )0, — Py —2h;)  (h ot hy =Ry + A0 )y + Ag)(hy +20)

m o=my; my=m,—1

1 . — 1 —9
Under the transformations, a, =iae®,a, =1ae™, a; =4be™ and a, =-7be™, the

variational equations are transferred to

. - A 2 _—(Ay+hy)t
a=¢(pa’e ™ 4 pable” M ™),

L 3 _—(Ry+d Nt 27 ~(A+hy )t
b=¢g(pbe + p,a be ), n

—(A+A ) bze-(hﬂ.,)z )’

¢, = (Psaze + Ps

—(Ay+hg )t =(A A ) )

(P2=8(P7bze T Pgd ‘e

where

3
3
= + oy’
B T @M 2y Ag)@hy Ay —h) 16k (A + 28y = AR+ 2y =)

3
0 )+ )y Ay Ay Ay’

-3
A0, + Ay, + A, =g T TR

Py =

64



-3
3
= +
Py =160, (0 = 2h; =2 =205 =R,) 160, (A, -4, “2h )%, R, 20,

3 -3
= +
Pa=400 +05)hg + A0 +R, +25—4,) 4, AR, A, +hy =4y +14,)

3 -3
= +
Ps T 160, (20, + Ay —=A3)2M, +A, =) 16A, (A, +2A, —A3)(\, + 24, —1,)

, (4.A.8)

-3 -3
P T a0 000 F A =Ry + Ay +0y) A, + 200, + As)A, — Ay — Ay —Ay)

-3 -3
= +
1= T6hy (=20, ~Ag)(hy = 2h; —Rg) | 16h, (A, = Ay = 20)(hg —Ag —21y)

3

3 3
- + :
LT W e W Y7 W Y W U S Te W W T N WS T WY W WY W)

By the substitutions of o=e " a, p= e b, y, =-K,t+9,, ¥, =-K+0,, together
with A, = K, £ K, and A, , = K, £ K, we obtain Murty's [52] solution in the form (4.A.1) and

(4.A2).

Clearly p, and p, become indefinite when 2, =L, +A; +A,, while p; and p, become

indefinite when A, = A, +2A,. Thus Murty's first order solution (with out gu,), as well as the

solution presented in Chapter 2 is unable to give the desired results.
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Chapter 5

Unified KBM Method for Solving Fourth Order Nonlinear Systems

with Internal Resonance

5.1 Introduction

Recently, Shamsul [80] has presented a unified Krylov-Bogoliubov-Mitropolskii (KBM)
[13,34] method for solving an n-th order (n22) ordinary differential equation with small
nonlinearities. It is noted that the unified technique was introduced by Murty [53] to obtain an
approximate solution of a second-order equation when the unperturbed equation has two real or
complex or purely imaginary eigen-values. Shamsul [80] has generalized the technique of Murty
for the second-, third-, fourth-order etc. equations. Recently, Shamsul [93] has modified and used
the formula (derived in [80]) to investigate time-dependent differential systems. Shamsul [89] has

also extended the method [80] to similar nonlinear systems with slowly varying coefficients.

On the contrary, Shamsul [83] has observed that the unified solution gives incorrect results

when one of the real eigen-values of unperturbed equation becomes a multiple of the others. But

more difficulties arise when a pair of eigen-values becomes a multiple of the other pair or pairs or

some of the natural frequencies of the unperturbed equation are in integral ratio. Thus the problem

appears not only in a nonlinear over-damped process, but also in damped and undamped

Processes (including the internal resonant vibrations). The former procedure [83] is limited to

Certain over-damped systems.
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In this Chapter, we tackle the general case, which covers undamped, damped and over
dJamped processes. However, the new unified solution described in this chapter does not cover the

gituation considered in [83] as well as the solution presented in Chapter 4.

5.2 The Method

Consider a nonlinear differential equation

(4)+kx+kx+kx+kx g f(x,%,%,%), 5.1)

where x®, represents the 4-th derivative of x, over-dot is used for the first, the second and the

third derivatives of x with respect to 4 ¢ is a small parameter, k;, j=1,2, 3, 4 are constants and
f is a nonlinear function.
When € =0, equation (5.1) has four eigen-values, say A, j=1,2, 3,4 and the solution

becomes

4
X(t,0)= D a0, (5.2)
j=l
where a;,, j=1,2, 3,4 are arbitrary constants.

An asymptotic solution of equation (5.1) has been found in the form [80]

4
©(t,e) = a,(t)e +eu, (a1, 05,85, 80,0+ 0(e?), (5.3)
j=1

i i i i ntial equation
Where u, is a function of a,, a,,a;, 9, and ¢, and each a; satisfies a differential eq

a; =SAj(al,az,a3,a4,t)+O(82), (5.4)

and 4., j=1 2, 3,4 are also function of @, @,, @3, % and .

For obtaining a first order solution, Shamsul [80] has presented the following formula
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Z ( H (D—?»,‘)(el”./lj)]+]_—I(D—?Lj)ul =f(°)(a1,a2,a3,a4,t), (5.5)

j=1 k=1,k=J j=1

0 0 _ & @ W 4
where D =a, S = (x5 %0, %0, %) and x, = Zaj(t)el" . Following [80], equation (5.5)

J=l

can be separated into five individual equations to determine #, and A4 i» J=1,2, 3,4 subject to

the condition that u, excludes all fundamental terms (see [13,34,53] for details). On the
contrary, the special over-damped solution [83] is determined under the restriction that u,

excludes the terms involving lititihatihyrigda) of Fo when

ZL'} A, |52;=1ij xz;l A |/4.

Clearly, solution (5.3) starts containing some unusual variables, a;, j=1,2, 3,4 rather

than amplitudes and phases. Yet this form is very important. The construction of equation (5.5)

is simple and it can be brought to the usual form by the transformation a,_, =1,

s ==l2a,e"""", [=1,2, where o, and ¢, are amplitude and phase variables (see [92] for

details). The transformed formula [92] is straightforward and it is used to obtain undamped,
damped and over-damped solutions quickly. But some special over-damped solutions are
directly determined from equation (5.5) [83]. Naturally, it needs two steps to obtain the unified
solution (which covers undamped, damped and over-damped cases) from equation (5.5)

according to the principle of [80]. First, #, and 4;, J= 1,2, 3,4 are obtained from equation
(5.5) and then substituting these into equations (5.3)-(5:4) and transforming the variables a,,

J=1,2, 3,4 by amplitude and phase variables (mentioned above) the desired solution is found.

On the contrary, similar unified solution can be found directly form the transformed formula [52].

But the transformed formula [92] is unable to determine the special over-damped solutions [83],

when one of the eigen-values is a multiple of the other eigen-value or eigen-values. It is
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interesting to note that the transformed formula [92] is useful when one pair of eigen-values is
a multiple of the other pair or pairs (considered in this Chapter). However, we use both
formulae [80,92] for determining the first order solution of a fourth order equation to clear the

matter and also compare the two formulae. In this Chapter, we shall discuss briefly the

transformed formula [92].

Let us consider the situation when » is an even number and rewrite equation (5.5) as

1=l k=1, k#21-1,21

> ( [T  @=A)ID =2y )" Ay )+ (D =y, )™ Ay, )]J
(5.6)

4
+1_I(D—7Lj)ul = f9a,,a,,a,,a,,!).

J=

With the change of the variables a;, j=1,2,3,4 by a,, =30,e", ay=30,e™",
I=1,2, together with the substitutions A,,_, = —it, +i,, Ay =M, —i0,, Ay, =+(4, +iB)),
A, = E(Z, - i§,), equation (5.6) becomes

2 n g 5 . N
Z [ H (D=2 )e™ {cosy, (D4, - 2,048, —siny, (20,4, +a!DBI)}]]
i\ k=1, kedl-1,21 5.7)

4
s TID =2 ), = FO (0,00, W0st) Wi =00

Jj=l
It is noted that the transformed equations of equation (5.4) for a,, @, is
&, =ed, +0@E?), ¢ =B +0(E"). et

Equation (5.7) is the transformed formula of equation (5.5), which has been derived in [92]

and is used directly to obtain undamped, damped and over-damped systems subject to the

condition that u, excludes all first harmonic terms or hyperbolic terms (in case of an over-damped

System). The method can be carried out for higher order differential equations in the same way.
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5.3 Example
First of all, we consider the undamped case of a fourth order differential system as [92]

(D +o})(D* +0})x=ex>. (5.9)

_ fayt —ioy iwqt —jwqyl . .
Here xo =@ ge " +a30¢ " +a;,e"" +a,,e”" . In accordance with [80], equation (5.5)

can be written as

(D? + @)D +io, )€™ 4) + (D + 0} (D -iw, e ™" 4,)
+(D? + @)D +i0,)(e" 4,) +(D* + 0’ )(D - io,)(e ™" 4,)

2 2 i i —i o
+(D* + 02)(D* + 0l)u, =3a,°a,e™" +6a,a,a,e™ +3a, a,e”

2 —iat —iwyt 2 i(20,—0, )
+3a,"a,e™" +6a,a,a,e”" +3a, a,e”

(5.10)

2 i, iyt 3 iyt
+3a,"a,e™ +6a,a,a,e”* +a,e

2 —i —il 3 =3
+3a, a,e™ +6a,a,a,e7 +a, e

3 3 3 3 2 i@ 2 —i2o+oy)t
+a. e +a,) e +3a,a," +3a,"a e 1oyl

i(20,=0y )t —i(2my - M

{ —i 2 2
+3a,%q,e’ ) 430, q, e 430, °ae +3a, ae

We can obtain equations for A, 4,, 43, 4, and u, from equation (5.10), subject to the
condition that #, excludes the terms of €™, ™ together with gl | gFom) The later
terms are usually included in u,. But in case of internal resonance [i.e., 30, —®, = O(€) for

equation (5.9)] u, becomes O(s™") or eu, = O(l) provided that u, includes the terms e**™ and

+i3 Fi(20,-w;
g (see Appendix 5.A). Therefore, u, must exclude the terms e*""', e ¥ and we
have
. R 2 —i(20, =03 )t
(D* + 02)(D +iw, )™ 4,) = 3a,}a,e™ +6aa,a,e”" +3a; € ’ 5-10)
Y i 2 (20, ~03 )t
(D? + 02)(D —iow e ™ 4,) = 3a,’a,e”™" +6a,a,a,€ 4 3a ae (5.12)
2 1
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2 2 . io o )
(D? + 0 YD +1i0,)(e" 4;) =3a,’a,e™" + 6a,a,a,e™ + g3 (5.13)
4 g 1 —iwy -in ;
(D* + @y YD ~iw,)(e™ 4,) =3a, a,e™ +6a,a,a,e" + a,’e™er (5.14)

and

2 2 2 2 _ 3 3iwys 3 _a; 2 )
(D + O, )(D +0)2)l£| =a,e 02 +a,e 3iwnyt +3al a3ef(20’|+mz)’ +3a22a4e—l(2m[+wz)l

: 5.15)
2 20+ ) 2 —i(2 2 ; _ i ( .
+3a, a,e Y +3q, g e 0o +3a, q,e/ 0o +3a, a6 0o
The particular solutions of equations (5.11)-(5.15) are
2 2 —i(3a, -
Al _ —3(‘11 a, +zala3a4)+3a2 a,e HEOETPT
: 2 2 .
2w, (0, —,") dio (0, -0,)*’
2 2 (30, -0, )
4, = 3(a, a, +2a,05a,) 3a,’a, e
. 2 2 . H
2io,(0," —~m,") 4io (0 -,)
(5.16)
3( 2 5% 3 i3oy-0,)
4 =3aa, a,a,a;)  ae
3T . 2 2 . B 3
2io,(0, —®,") 8io, (3w, +0,)
-3 2 +2 3 -i(3o-0, )
4 = (a,"a, alaza4)+ a, e
4 ; 2 2 . 2 ’
2io,(0,"—0,") 8in, (o, +0,)
and
a33e3imzr + a43e_3m" 3a12a3€i(2m'+m2 )i +3a22a4e—i(2m|+mz)t
U, =
! 22 72
8w2(902 —0?) [, +®,)’ -0/ ][Ce, + ;)" —o;] 5.17)
7 . i s 2 =i - )
3a32aler(2m2+m|)l +3a42aze—i(2mz+m|)l 36132023'(2&2 o) +3a4 a,e (200 )

[Qo, +0,)? —0?][20, +©,)* - 03] 2w, -0,) -0 ][, -0,)’ —2]

Substituting the values of 4,,-+, 4, from equation (5.16) into equation (5.4), we obtain
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2
C.l _ 8(—3(a1 az + 2a1a3a4) i 3a22a3 e—i(Jml“wz)f
1" ; 2 2 :
210)1(0)1 —0)2 ) 410)'(0)[_('02)2

(3(a22al = 2[1203&4) _ 3alza4 e’”"’l“"z)l
(20,0 -0,")  4io(0,-0,) )
(5.18)

2
(3(a’a, +2a,a,8) g oo J

\ 2i0)2((1)12—(022) 810)1 (3ml+m2) :

2 :
_3(614 a, + 2a|a2a4) 1 azje"”‘"l—mz)i
;. 2 2 i 2 ’
L 2i0,(0,"-®,")  8iw, (o, +a,)
: e ~ _ i ‘
Under the transformations a, = ;ae'™, a, =1ae™, a, =1be™, a, = Lhe™ | equation

(5.18) readily becomes

a =gl a’bsin(3o,t — o, +30, —9,),
b=gm, a’sin(30,t - w,t +3¢, - ¢,),

(5.19)
¢, =en, (a®+2b*) +el; abeos(3ot — @, + 3¢, —@,),

¢, =er, (2a* +b*)—em, (a* /b)cos(3w,t — @, + 3¢, - @,),

where

I =-3/[16w, (0, ~®,)"], n =3/[80(0," -0,")] (5.20)

m’ =-1/320"C0, +0,)], # =-3/80,(0"-0,").
By similar transformations (mentioned above), equation (5.17) becomes

b* cos(3w,t +3¢,) g 3a2hcos(20,t + @, +2¢, +9,) :
2
32090 -0) 4o, +0,)" - 0] [0, +0,)" —0;]

1 =

(5.21)

3ab’ cos(20,t + 0,1 +20, + Q1) 3ab® cosQw,t — o, +2¢, = ¢,)

+4[(2m +0,)? -0’ ][2o, +©,)’ - 03] 420, -0,)* -0 (2o, ~0,)° — 3]’

Thus, the first order improved solution of equation (5.9)is
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x=acos((olt+(p|)+bcos(cozt+(p2)+su,, (5.22)
where a, b, ¢,, ¢, are solutions of equation (5.19) and u, is given by equation (5.21).

In general, the first order equations of amplitudes and phases are independent of phase
variables (see also [13,34,80,92]), but in equation (5.19), equations for a,b, ¢, and ¢, depend
on both phases. Thus in case of internal resonance [where 30, —w, =0(e) ], the first order
differential equations of amplitudes and phases are not independent of phases. Clearly equation
(5.19) is valid when a(0)>0 and 5(0) > 0. When 5(0)=0, ¢, becomes indefinite provided
that € # 0. However, for a very small value of 5(0), we can show that the perturbation
solution gives the desired results. It is noted that the resonant (whether internal or external

[93]) and non-resonant cases are investigated from a single formula equation (5.5), which is an

advantage of this method.

Now, we shall apply the transformed equation (5.7) [92] to get the same results as those

obtained in equations (5.19)-(5.21). For the system (5.9), equation (5.7) readily becomes

(D? + 0)[cos(w,t + ¢, (DA, - 2w,aB,) - sin(e,f + ¢, )20, 4, +aDB,)]
+(D? + ©2)[cos(®,¢ + ¢, (DA, — 20,bB,) - sin(@,¢ + ¢, )(20,4, + bDB, )]
(D? +0*)(D? + 02)u, = 3a* cos(w,t +¢,) +2ab’ cos(w,f + @) i
+2 b cos(20,t — 0, + 20, — 9,) + 35’ cos(@,t +¢,) + 2a’bcos(@,t +9,)

+10° cos3(@,¢ + ) + 5% cos3(@,1 + ;) + 3 a’bcos(2,t + 0t +2¢, +¢,)

+2ab? cos(2m,f + o, + 20, +@,) +3ab’ cos(20,1 = 0 + 20, = §,).
Here, we have used the notation ., = a and o, = . From equation (5.23), we obtain

(D? +0?)[cos(w,t + ¢, X(DA, - 20,aB,) ~sin(0,¢ + ¢, )20, 4, + aDB,)] (5.24)

2
=3a2bcos(2m,t — @, + 20, — ;) +5a’ cos(®f + @)+ 3ab? cos(w,t +¢,),
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(D? + 0)eos(@,! + 0, )(DA, ~20,05,) =sin(w, + 0,20, 4, + bDB, )

= %b3 cos(m,¢ +¢,) + %azbcos(mzt +@,)+1a’ cos ot +9,) (5.25)
and
(D* + 0! )(D* + w))u, =1b% cos3(w,t + P2)+5a°bcos2u,t + 0, + 20, + ,)
+3ab? cos(2m,t + ®,1 + 29, +0,) + 2 ab’ cos(2m,t — o, +2¢, — @,). 20
We have already mentioned that u, excludes the terms e**, @) yhen

30, -, =0(¢). In this situation the real forms of these terms, ie.,
cos(20,t —®,t +20, —@,) and cos3(w,t+¢,) are added respectively to equations (5.24)-
(5.25), since cos(2m,f — @,t) =~ cos®,f and cos3w,t = cosw,t . Solving equations (5.24)-(5.25),

we obtain

l

=1 a’bsin(3w,t — w,t + 30, — 9,),

l

LI
m,a” sin(3w,f —w,t+ 3¢, — ¢, ),
2 1 ( 1 2 | 2 (527)

l

B, =n,"(a® +2b%)+1, abcos(3m,t — @, + 3¢, —@,),
§2 = 71‘(2‘12 +b%) - ml.(a:; /b)cos(3m,t — @, + 39, = ¢,),
where //,---1," are given by equation (5.20).

The particular solution of equation (5.26) readily turns out to be the result obtained in
cquation (5.21). Substituting the values of Z, TN Ez from equation (5.27) into equation (5.8),

We obtain the same results obtained in equation (5.19). From equation (5.17) or equation

(5.21), we see that u, is finite when 30, = @,, while u,, obtained in [92], becomes infinite
When 30, — o, (see also Appendix 5.A).

Now, we can obtain similar solution of a fourth order equation when the linear damping

force acts. In this case equation (5.9) becomes (see also [92])
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(D +2w,D+ i + 0] ) (D* + 20, D + 2 +o))x=¢ex’.

(5.28)
In this case equation (5.7) takes the form
[(D+pp)? +03][e™ {cos(et + o, YDA, - 20,aB,) - sin(w, + 0,)(20,4, +aDB,)}]
2 M2 1 n : i n
+[(D +H|)2 + ! J[e™ {cos(w,t +@,)(DA4, - 2w,bB,) -sin(w,t +9,)(20,4, +bDB,)}]
[(D+ ul)z + colz][(D )+ iy, = %aJe':‘”” cos(a,f +¢,) + %abze'”"”“’)' cos(w,t +,)
+%a2be’(2”‘+”’)' cos(2m, = @of + 20, = 0,) +2b°e M cos(w,! + ¢,) (5.29)

-(2 t 3 -3 -
+%a2be @i cos(w,f +@,) +a’e ™ cos3(@,t +¢,) + 15’ cos3(w,t + ¢,)
+3abe™ M cos(2m,1 + 0,1 + 20, +¢,) + 3 abe MM cos(20,1 + @t + 20, + @)
+3abe M) cos(2m,t — 0,2 + 29, — ¢)).

~

For determining 4, El; Zz, Ez; u, from equation (5.29), we can separate the terms
cos(,f+¢,), sin(w,f+@,), cos(w,t+¢,), -+ as mentioned above in which p, =p, =0.
Therefore, in case of a damped system (i.e., p,, pu, # 0) equations similar to the equations (5.24)-
(5.26) take the forms

[(D+4,)* + 02 )™ {cos(e,t + ¢, (DA, —20,aB))

—sin(,t + ¢,)20,4, + aDB,)}]

(5.30)
=2a’e™ cos(wf+9,)+3 able M) cos(m,f + )
+ 2 g2be ) cos(2m,1 — @, +2¢, — 9,),
[(D+p, )2 + 0312][3_M {cos(w,t + 0, D4, - 20,bB,)
—sin(w,t + @, )(20,4, + bD5,)}] 5:31)

N 2 (2t

+1a’e™ cos3(w !+ @),

and
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[(D'*‘l—l])z +0312][(D+M2)2 +(D§]u,

be ™ cos3(0,t + 9, ) + Fab’e M BN cos(2a,1 — @t + 29
2

-
4 - (Pl)
+%a2be—(2u.+uz)t COS(ZCO,L‘ 4 0)2t $ 2(P1 + (pz) (5-32)
+2ab’e M cosa,t + 0t +20, +9,).
The particular solutions of equations (5.30)-(531) are given by
= lae™ 1 Labte ™

+ athe e {l; cos(Bwt — 0, + 3¢, —,) + 1, sin(3w,t - ®,¢ +30, —9,)},
A, =mb*e™" + m,a*be

+ glg Gl {m; cos(3w,t — @,t + 3¢, —@,)+m,sin(30,f — 0,¢ + 3¢, —¢,)},

(5.33)

§1 = nlazedz”" + nzbze-luz'
+ abe-(lilﬂ’-z)’ {14 COS(3(D|t —W,l+ 3([)1 — @2)_13 Sin(303,t —W,f+ 3(P| _'(\02)}:
B, =rb’e ™™ 4 ra’e™

—(a® /1b)e™ M iy cos(Be,t — @, + 30, — 9,) — my sin(3m,f — 0,2 +3¢, —@,)},
where

3[“1{(3“1 Pz) -, 'H’Jz} 2(’31 (Bu, - Hz)]
8(1,2 + 0, )Gy — 1) + (@ —0,) 1GR —H,) + (o, +0,)T

3 p, {(ry +P~z) _'ml +0, } 20, (Pﬂ +1,)]
4(.”2 + O, )[(P-l'*‘l"'z) +(0, - (’)2) ][(P1+l~12) + (o, +C°z) ]

[Hl{ll.(lil +p,)— (0, = ®,)(20, -0, - (M + 1, ), "(02)(01],

L 16(k,” + 0, (1, +1,)* + (0 = ;)7 1[w" + (@, —@,)°]
3 [u'l{(p’l +|,l2)(20)| ’0)2)"'}"'1(“)1 _mz)}_wl(ml _wz)j],
T 600 4 [ + R (@~ ) 1l + (@ = @2)]
3[u2{(3u2 n)? -0, + o}~ 20, (3, — )]
m, = -

8(k,” + 0, )3, ~ —n) + (@, — ;) 1[GH, — -p)’ +(0, +@,)? I
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3[”1{(“1 +Flz) 0)2 +, } 2C02 (1 +p,)]
4w, + 0, ), 1) + (0, —0,)][(y, )"+ (0, +0,)%]

2

H1{P~1(3“| ;) 30,3, +0,)} - 2(’)1 Gpy —p,)
16(“1 + o, )(“1 +40)| By, - l-lz) + (30, +(1)2) ]

3

{4u, Gy, - u2)+3ul —20,(30, +0,}o, ‘Hll @,
16(}-'-1 +®, )(“l +4°)1 NBR, —1,)? + o, +,)’ ]

4 ==

3[2p, (3py —p,) + (3, _Mz)2 _0312 +0)22]0)|

i == 2 2 > >
(K" + o, )[(3111 _P'z)z + (o, - ®,) J[(3u, _uz)z +(0, +®,)°]
o 3 (20, Gy 1)+ (1)~ 0 4 0, o,
T A, 0 (R ) (0, —0,)2 1, + 1) + (@, +,)7]
o 321, Bpy — 1)+ Bpy — 1)’ - 0," +0,'Jo, ,
L8, 0, B, — )+ (0, ) TIGR, — 1) + (0, +0,)"]
= 30120, (yy +“2)+(UI+U2)2“(D22+@12]C‘)2 )
’ 4(“12 +(’)22)[(“1 +J~l2)2 +(, —@1)2][(H| +“2)2 +(w, +m:)z]

In this case equation (5.8) becomes

d=¢e[la’e™ +1,ab’e™

+ alpe tutm) {1, cos(3e,t — @,t + 3¢, — ®,)+1, sin(3w,t —w,¢ +3¢, — ¢4

b=g[mb’e ™" +m,a’be ™™

+q e Crmm) {m, cos(3mw,t —w,t +3¢, — @, )+ m, sin(3w,2 — @,f + 3¢, @)}

s . -2
0, =g[na’e™ +p,ble ™

+abe M (] cos(3m,t — 0yt + 3¢, = 9,) — 1l SiNB0 = 0! +3¢, = )}

¢, =e[nb’e™ +ra’e™

(5.34)

(5.35)

. (a3 /b)e-—(:&pl—pz)l {m4 COS(30)|t - (th + 3(pl - (P2) - m3 Sin(3(&)lt - O)zt + 3(Pl - (I)Z)}])
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Therefore, the first order damped solution (without u,) of equation (5.28) is

x=ae™ cos(@,t+9,)+be™ cos(a,t + 9,) (5.36)

where a, b, @, and @, are the solutions of equation (5.35).

It is noted that equations (5.33)~(5.34) reduce to equations (5.19)-(5.20) when W, —>0.
In this casc 14 —)ll 2 m4 _)ml" nl’%”Z _-)nl‘3 rl!%rz _>r|' and l]: lz, l}s ml’ mz: m3

vanish.

5.4 Results and Discussions

A general formula of KBM method is extended in case of internal resonant vibrations, in
which the natural frequencies are in integral multiple [72]. It is noted that two separate trial
solutions are needed to study resonant (internal) and non-resonant vibrations in accordance
with previous investigations (see [18] for details). But in this method, we have used a single
trial solution for resonant (both internal and external [93], see also Appendix 5.B) and non-
resonant vibrations. The determination of the solution is simple. Damped, undamped and over-

damped processes are treated in a unified approach.

The integration of the transformed form of equation (5.4), i.e., equation (5.8) may be done
by using well-known techniques of calculus [47]. Sometimes, such transformed equation has
no exact solution. For this reason it is solved by an approximate technique [80] or by a

numerical method [26]. In this case, the perturbation method facilitates the numerical method.

The amplitude and phase variables o, ¢, / = 1,2 change slowly with time. So, the numerical

calculation requires only a few numbers of points. On the contrary, a direct attempts to solve

®quation (5.1), the numerical calculation requires 2 great number of points, since the solution

dealing with some harmonic terms. Often one is interested not only in the oscillating processes
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tself, i€ finding x(¢,€) in terms of £, but mainly in the behavior of the amplitudes and phases

which characterized the oscillating processes (see [26] for details). Sometimes the variational

~ equations for amplitudes and phases are used to investigate the stability of a nonlinear system

' described by equation (5.1) [93].

For a small value of g, the perturbation solution shows a good agreement with numerical
solution. As a check, undamped solution [given by equation (5.22)] has been compared with
corresponding numerical solution (computed by Runge-Kutta fourth order procedure) in Fig.
5.1,5.2 and 5.3 when 3w, — @, is small. The determination of a damped solution (significant)
was a difficult task, especially when #>2 [35]. But the new technique [92] facilitates the
KBM method to obtain the damped and over-damped solutions as well as resonant (both
internal and external) and non-resonant solutions. The damped solution has also been
compared with the numerical solution in Fig. 5.4 and 5.5. It is noted that the damped solution
[given by equation (5.36)] can be used to an over-damped system replacing o,, /=1,2 by io,
only, which is the basic principle of the unified theory [53,80,92]. The over-damped solution is

shown in Fig. 5.6.
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Fig. 5.1 Undamped solution Eq. (5.22) has been denoted by -o-. Here a, b, ¢, and ¢, have been evaluated by
Eq. (5.19) with initial conditions ag=58,=0.5, @ =0,0=0 for, x(0)=1.0, (0)=0.0,
¥(0)=-1.615556,%(0)=0.0]; ®, =1/1.7, w, =1.7 and &=0.1. Cormresponding numerical solution
(calculated by Runge-Kutta fourth-order procedure) has been denoted by —.
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Fig. 5.2 Undamped solution Eq. (5.22) has been denoted by -o-. Here a, b, ¢, and @, have been evaluated by
Eq. (5.19) with initial conditions @y =0.5, by =0.05, @19 =039 = 0, [or, x(0)=0.55 x(0)=0.0,
#(0)=-0.315903,X(0)=0.0]; @, =1/1.68, w, =1.68 and €=0.1. Corresponding numerical solution
has been denoted by —.
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Fig. 5.3 Undamped solution Eq. (5.22) has been denoted by -o-. Here a, b, ¢, and @, have been evaluated by
Eq. (5.19) with initial conditions ag = 0.5, by=05, Qo=7/2, Py0=0 [or, x(0)=0.5,
#(0) = -0.281134, X(0) = -1.493474, x(0) = 0.085899]; o, =1/1.72, ®,=172 and £=0.1.
Corresponding numerical solution has been denoted by —.
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Fig. 5.4 Damped solution Eq. (5.36) has been denoted by —. Here a, b, @, and @, have been evaluated by Eq.
(5.35) with initial conditions @y =0.5, by =05, @ 0= /2, @y0=0 [or,x(0)=0.5,
%(0) = -0.289304, £(0) = -1.461226, ¥(0)=0.170034]; p, =0.01, p, =002, o, =1/17,
@, =1.7 and € = 0.15. Corresponding numerical solution has been denoted by —.
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Fig. 5.5 Damped solution Eq. (5.36) has been denoted by -o-. Here a, b, @, and ¢, have been evaluated by Eq.
(5.35) with initial conditions ag = by =05, @0=030=0 [or, x(0) =1.0, x(0) =-0.201534,
#(0)=-1.613776,%(0) = 0.956182]; W =H, = 02, @ =1/173, ©,=173 and e=025.
Corresponding numerical solution has been denoted by —.
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Fig. 5.6 Over-damped solution obtained from Eq. (5.36) replacing @, by i®, and ®, by i, respectively, has
been denoted by -o-. Here a, b, @ and @, have been evaluated by Eq. (5.35) replacing ®, by i®, and
®, by io, respectively, with initial conditions aq =by = 0.5, @ 0=0, @0=0 [or
x(0) = 1.0, %(0) = —1.842748, x(0) = 4537942, X(0)=-13.241129];3p, =, =3 + 3/(2\/5) ;

30, =0y = \[?; - 3/(2~f2—) and € = 0.2 . Corresponding numerical solution has been denoted by —.
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5.5 Conclusion

A method is developed to tackle the case of internal resonance, which is simple,
systematic and easier than Bojadziev [26] and Bojadziev and Hung [27]. The method is the
generalization of the KBM method, which cover the cases, when the eigen-values of the
corresponding unperturbed equation, are real, complex or imaginary. For time dependent
differential systems, Bojadziev [26], Bojadziev and Hung [27] used at least two trail solutions;
one is for the resonant case and the other is for the non-resonant case. But we have used only
one trail solution for both the resonant and non-resonant cases, which is an improvement of

this method.
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Appendix 5.A
When the difference of 3w, and w, is significant, u, excludes only first harmonic terms.

Therefore, equation (5.10) can be separated in the following way [80]

(D* +02)(D+io,)(e“ 4,) =3a,"a,e™ +6a,a,a,e™ (5.A.1)
(D? + 02)(D —iw, e ™ 4,) = 3a,’a,e™" +6a,a,a,e”™", (5.A.2)
(D? +02)(D +im,) e 4,) =3a,"a, e +6a,a,a,e™” (5.A.3)
(D?* + 02 )(D —iw,)(e ™" 4,) = 3a, a,e”™" +6a,a,a,e7, (5.A4)

and

—-i(2o+0, )

2 2 2 2 k} 3 ji 2 ]

(D? +@?)(D* + o)), =a, e +a, dg7dod 3 2g gfROrer) +3a,’a,e
2 (20, +o) ) 2 -i(2 2 (20— 2 —i(2w,-

+3a,2a,e/ ) + 30, a,e” " +3a a,e' @ +3g,a, e (5.A.5)

(20,03 )t 3 3iwy +a, 3e—3rmlr

2 —i &
+3a, a,e” @D 1 43a,"a e +a’e

Solving equations (5.A.1)-(5.A.5), we obtain

2
4= -3(a,"a, +2a,a,a,) A= 3(a2 a +2a a3a4)
1= i ’ 2 »
2100‘(0312 —,") 2io (o, -, %)
, (5.A.6)
3(a3 a, +2a a2a3) _=3a, a3+ 2a,a,a,)
3 = ’ 4 — ¢
2”'32(031 ~o,") 2“‘)2(6012 ~0,")
and
3363@,/ + a43e—3im,r 3al2a3ei(2m|+wz)l & 3a22a4e-—i(2m,+m2)t
= NI 22 72
8w (9w; — ;) [Qo, +®,)" —o;][(2e, +®,) - 3]
3a32alei(2m2+ml)t +3a42aze-i(2mz+m,)t 3(13 a, ez(lmz o ) +3a4 ae -i(20,-0 1t
(5.A.7)

¥ (2o, +(’);)2 - (’)12][(20)2 + m!)z 2] [(20)2 - ) - ][(2(02 _(‘)1)2 —(Dg]

3 3 - &
al 31&)11 +a, e Jioy 3al a4 1(2«»l wy )t +3az a e —-i(2o =0, Mt

860,' (9031 —(’32) [Co, _0)2) ‘(’)2][(2@1 ) O ]
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Substituting the values of 4,,---, 4, from equation (5.A.6) into equation (5.4), and using

nsformations a, =Lae™ e L el _ - -
the tra 1 =74€7, a, =zae™™, a =3be", a, =L1be™™, we obtain

a=0, b=0,
. . ) 5.A.8

where m,' and r, are given by equation (5.20) and u, becomes

b’ COi(3C022t+3q2)2) ‘. 3a’bcos(2m,t + @, + 20, +©,)
320;%w;, —a;) 4o, + ®,)* - o [(20, + ®,)" — ;]

u =

3ab® cos(2m,t + @, +2¢, + ;) . 3ab? cos(2m,t — ¢ + 2¢, — ) (5.A9)
42w, + 031)2 —(DIZ][(Z(DZ '*'0)1)2 —mi] 420, —(’31)2 —0)12][(2(1)2 _(’31)2 _(D;] o

. a’ cos(3a,t +3¢,) . 3a’bcos(20,t — 0,1 +2¢, —9,)
10l —0l) 4R, -0,) -0}][2o, -0,)" - o]

It is obvious that the fifth and sixth terms of », become indefinite when 30, -0, =0, or

these terms become O(e™') when 30, —©, =O(g).

Appendix 5.B
Consider Duffing equation with an external force

¥+ mix=—ex’ +eEsinvt. (5.B.1)

When &=0, equation (5.B.1) has two eigen-values A, =i® and A, =-io;

x() - alek,l +azelzr = a]eimf +aze—;mt and

iof —iwt 3 —3iot
+a,e”).

FO = (g™ +3alae +3a,a5e

We consider the situation when the difference of @ and v is small, i.e., ®—v =0(g). In

this case u, excludes the terms of 3a/a ™ and 3a.a’e”™ . Moreover, in our assumption u
1 1¥2 2 1

excludes Esinvt when @—v =O(g) and the equations of u,, 4, and 4, become

88




d_.\(4 . .
(EZ ) ’“’J (3{ E ’“)]”l = ~(@/e™ +aze™), (5B2)

d
Rl i it E iv
[dt +10)j (Ale ’)=—3af‘aze ‘ +§;e " (5.B.3)
and
d . -, =iw E
(Z—zmj (Aze ’)= —3a,ale™ —-Ee‘m. (5B.4)

Solutions of equations (5.B.3)-(5.B.4) are

A em” _ 3a12azeimt Eeiw
I 2io 2i(iv +iw) ’
| _ (5B.5)
Ao = 3‘1[‘1;@—"’” _ Ee™ .
2 2io  2i(—iv—i)
or,
P 3ala, EC™
: 2ie  2i(iv+io)
(5.B.6)

3a,a’ Eeitv-oX
27 i 2i(-iv-io)

Substituting the values of 4, and A4, from equation (5.B.6) into equation (5.4), we obtain

. 3ala,  Ee™
a = —& - + >
2i  2(v+ )
: 3g,al  Ee
by =8 ———~ I
2io  2(v+w)

Under the transformations, a,¢™ =+tae® and a,e™ =

(5B.7)

1age™™, we shall obtain the

variational equations of @ and @ in the real forms. To do so, we differentiate a,e™ =3ae"
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—iof _ 1 7% i ’ ] .
and a,e” =3 ae™” withrespect to ¢, using the relations in (5.B.7) and simplifying them, we
obtain

__&gEcos(o—vr)

+0(&®
V+® €,
.B.
(.p=0)+38az _gEsin((p—vt)+O( ) (5.B.8)
8w a(v + o) &)

Equation (5.B.8) is similar to that obtained previously by KBM [13,34] method (see [48]
for details). It is noted that the new procedure [93] is similar to KBM method, but the approach

is entirely different. The method is simpler than KBM original technique (see also [93] for

details).
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Chapter 6

Perturbation Method for Fourth Order Nonlinear Differential

Equations with Large Damping

6.1 Introduction

While finding the solutions of nonlinear damped oscillatory systems by perturbation
methods, in most cases the solutions are found near the undamped solutions; and solutions
near the critical damping are not considered. Shamsul [77] has investigated an approximate
solution of the nonlinear differential equation

$+2ki+wix=—€ f(x,%);, O0<k<o, (6.1)
characterized by large damping effects, . e., the damping is less than critical damping. First
Krylov and Bogoliubov [34] developed a technique to discuss the transient response of
equation (6.1), when the damping is small, i. e., k = 0. Then the technique was amplified and
justified mathematically by Bogoliubov and Mitropolskii [13], and later extended by Popov
[66] to damped oscillatory systems. It is noteworthy that, because of the importance of
physical phenomena involving damping, Mendelson [46] and Bojadziev [27] rediscovered
PopoV's results. Murty et al [52] extended the KBM method to discuss the transient response
of an over-damped case. Murty [53] has also presented a unified KBM method to solve a
second order nonlinear differential equation which covers the over-damped, damped and
under damped cases. Osiniskii [57] and Mulholland [50] extended the KBM method to third
order nonlinear systems. Shamsul [80] has presented a unified KBM method to solve n-th

order nonlinear systems. Recently, Shamsul [92] has modified the formula presented in [80].
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Later, Shamsul [81] extended the method of second order systems [77] to solve n-th order

nonlinear systems with large damping. Shamsul, Bellal and Shanta [91] also used the method

presented in [77] to nonlinear systems with varying coefficients.

In case of strong damping force (especially, when the damping force is slightly smaller
than the critically damping force), the solution presented in Chapter 3 do not give desired
results. In this Chapter, an approximate solution is found for strong damping force based on
the work of Shamsul [77, 91]. The results obtained by this method in this Chapter are better
than the solutions obtained in Chapter 3. Actually, the new solution is a complement of the

solution presented in Chapter 3.

6.2 The Method

Consider a weakly nonlinear system governed by the differential equation
P+ k¥ + ki +kx+kx=¢ f(x,%,%%), (6.2)
where x®, denotes the fourth derivative of x, over-dot is used for the first, the second and the
third derivatives with respect to ¢, € is a small parameter, &, j =1, 2,3, 4 are constants and f is
the nonlinear function.
When & =0, equation (6.2) has four distinct eigen-values, say A,,A,, 45,2, and the

unperturbed solution becomes
s At
x(2,0) = Zaj_oe F (6.3)
j=l
where a;,, j=1, 2,3,4 are arbitrary constants.

When ¢ # 0, following [80], an asymptotic solution of equation (6.2) is sought in the

form
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4
B A
x(t,€) = jz_l:aj(t)e "+ eu(a),ay,a5,a,,1) + Oe?), (6.4)

where u, isa functionof a,, j=1,2,3,4 and 4 ; satisfies the first order differential equation

a; =¢d;(a),a,,a,,a,,t)+ O(e?) (6.5)
and 4;, j=1,2,3,4 are also functions of a,, a,,a,,a, and &.

To obtain a first order solution of equation (6.2), Shamsul [80] has presented a formula of

the form

Z { H (D_}\‘k)(elj’Aj)]—*" . (D_kj)lﬁ =f(°)(a],a2,a3,a4,t), (6.6)

J=l \ k=l ke

0 s o 4 : .
where D = L FO = f(xg,%9,%,%,) and x, = a; (t)e™" . According to [80], equation
=

(6.6) can be separated into five individual equations to determine u, and 4;, j=1,2,3,4
subject to the condition that, u, excludes all fundamental terms and 4;, j=1,2,3,4 are

independent of phases (see [13,34] for details). It has been mentioned before that, Krylov,
Bogoliubov and Mitropolskii have studied nonlinear systems with small damping effects.
Popov [66], Murty et al. [52], Murty [53], Bojadziev [27] strictly followed Krylov,

Bogoliubov and Mitropolskii assumptions that 4;, j=1,2,3,4 are independent of phases,

even if the system is strongly damped. But in case of strong damping effects, Shamsul [77]

observed that if %, is independent of phases and first harmonics and 4;, j=1,2,3,4 depend
only on amplitudes, the solutions do not give desired results; and for this reason in this case , is

not independent of first harmonics and 4, j=1,2,3,4 depend on both amplitudes and phases.

Clearly, solution (6.4) starts containing some unusual variables, a,, j=1,2,3,4 rather

than amplitudes and phases. Yet this form is very important. The construction of equation
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(6.6) is simple and it can be brought to the usual KBM form by the transformatio
n

_ _!. P | —".‘PI'
Ay =FTME 5 Ay =50e =12 i
" E » 2, where o, and @, are amplitude and phase variables

(see [92] for details).

Equation (6.6) can also be rewritten as

Z( [T (D=R)ID =Ry )€ Ay)) + (D~ Ry )€ 4 )]J

1= \ k=1, k=21-1,2/

) (6.7
+H(Dh?“j)ul =f(°)(a[,a2,a3,a4,t).

J=1

Changing the variables a,, j=1,2,3,4 by a,,=10,e", a, =1a,e™, =12,
together with the substitutions A,_, =-p, +iow,, A, =-L, —io,, 4, =%(Z, +iB,), and
A4, = %(Z, —iB,), equation (6.7) becomes

2 4
> ( [T @-r)e™ {cosy, (D4, —20,0,B,)-siny, (2w, 4, +a,DB, )}]J
k=1, k=21-1,21
(6.8)

I=1
. 0
+H(D_?"j)ul=f()(a1:a2:w]a\yzst)’ w1=wlt+(Pl'
j=1
Therefore, the transformed equations of equation (6.5) for a,, ¢, are
&, =ed, +0(e?), ¢, =¢B, +0(E?). (6.9)

In accordance with the formal KBM [13,34] method, f(o,,0,,¥,,¥,,) can be

expanded in Fourier series as

f(o)(anaz:\l’n\l’zst) = Z(Fn cosny, +G, sinny,)
=0

Therefore, according to [77], equation (6.8) can be resolved in the way
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2 4
Z[ H (D-X)e™ {cos v, (D4, - 2w,a,§,) —siny, (2co,;f, + a,DE,)}]]

=1 \ k=1, k#2i-1, 21
(6.10)
=[F, cosy, + G, siny, Jcos* (g, (0)).
and
4
[T -2 ,)u, = F, +[F, cosy, + G, siny, Jsin (o, (0))
=l
6.11)

+Z(F,, cosny, + G, sinny,).

n=2
The particular solutions of equations (6.9)-(6.10) give the unknown functions
A, 4,, B,, B, and u,. Thus the determination of first order solution is complete. In this case
A, 4;, B,, B, depend on both amplitudes and phases and u, is not independent of first

harmonics.

6.3 Example

As an example of the above procedure, we consider a fourth order nonlinear differential

equation
XD 4k F+hivkithx=cx, (6.12)
Here f=x".
Therefore, x, = ,,e™ +a,qe™ + a,06™ +a 5™

Here, we have dealt with monofrequent oscillations (see [72] for details), that is oscillations

that are predominantly near one or the other of the linear modes of motion. Therefore,
a, =0, a, =0. Such oscillations arise naturally and are of considerable interest in certain types
of non-autonomous systems and certain autonomous systems. Now using the transformation

=Lloe™, a,=1ta,e™, together with the substitutions A, =, +iw,,

Ay =12
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Ay =~ 0, Ay, =5(4 +iB), and 4, =1(4-iB), 1=1,2, o =a,a,=h, we

obtain
f(o) = {b =Myt 3
e cos(w,! + ¢,)}
or,

b3e—3u11

f(O) -

{3cos(w,f +9,) +cos3(,t +@,)}
3 3 _=3uy 1 3 3yt
Here F, =—b"e™, F, =—hp’e™"
4 4
Therefore, in accordance with [77, 91], equations (6.10)-(6.11) respectively become

e™ {cos(w, + ¢,)(DA, — 20,bB, ) —sin(w,t + ¢, )(2w, 4, + bDB,)}

3b%e M [{(Bp, — 1) — 0, + 0, }cos(@,t + @, )

(6.13)
=20, (3, ~ py)sin(@yf +¢,)]cos’ (9,(0)
HGm, —,)2 + (@), —0,) 1[0 — 1) + (@, +0,)’]
and
(0 +p)? +02)(D 1)+,
(6.14)

3
_ b? M 008 3(0,1 +0,) +%b3e‘”‘1’ cos(@y! + §,)sin (0, (0))

Therefore, comparing the coefficients of cos(@,f +¢,) and sin(w,f +¢@,), we obtain

36%7 (3, — 1) + 0" —©,"} c0s? (0, (0))
4GB, - P'z)z +(w, - (1)2)2][(3;,11 - l’<2)2 +(w, + mz)z]

(DA, - 20,bB,) = (6.15)

3b%7 (20, (3, — ;) } c05* (9,(0)) (6.16)

20,4, +bDB,) = .
(2024, * ) 43, —},12)2 +(0, —0,)" 1[Cw, _Hz)z + (o, +(’)2)2]

The solutions of equations (6.15)-(6.16) are
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Zz =] ble cosz(q)2 (0)),

Ez = mlbze—zu,: COSZ(‘P: (0), i
where
= 3G ) )+ 0’} - 20, G, )]
81, + @, )3y, —H )+ (0, _03[)2][(3“2 -1, + (o, 'HD])Z]’
o 30, (21, B, - )+ B, 1) -0, + 0]
) T T 5 ; > = = (6.18)
(B, +@,")(Bu, —1y) +(0, —0,) ][Cr, —1)* +(0, +,)*]
Substituting the values of (6.17) into equation (6.9), we obtain
b=elb’e™ cos® (0, (0)),
(6.19)
o, =emb’e™ cos’(¢,(0)).
Also the particular solution of (6.14) is
u, = be™* {cos 3(@yt +9,) 8y, +Sin3(@,t+9,) 0y,
(6.20)

+ (Cos(mzt +¢,)c, +sin(®,t+9,)d, , )Si“ : (9,(0))cos(e,)},

where

_ “22(3“2 —!-’-1)2 "'(2@22 _“22)(90)22 —0312)_18“20322(3“2 -1, )—2(3u, ‘Hl)zmzz
o T 6, + @, )1, + 40, ) B, —)* + (B0, —0,) (B, - 1)’ + G0, + )’}

e ~30,[2 10,2 (B, — 1) H 1 Gy — 1) 1,210, — o) +4p,0,°]
! 16(“22 "‘mzz)(HzZ "'4“)22){(3”2 "Hx)z + (3o, _wl)z} {Gu, _“1)2 + (o, +(D|)2}

P 3[u, By, —“1)2 _2(022(3H2 —l"'l)+”'2(m!2 _(022)] 621)
1,2 - 2 ? ¥
161, (1, + @, YK, — 1) +(@, = 0,) HGR, = 1) + (o, +0,)*}

d. = -3, [(3n, _Ht)z +20,(3u, —p‘l)+mlz _(022]
"6, (1, + @, ) {3, — 1) + (0, —0,) HGH, — 1) + (0, +@,)°}
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In general, two equations of (6.19) are solved by numerical method [26]. An
approximate solution of (6.19) may also be found by assuming that b is constant in the right
hand sides of the equations. However, the first equation of (6.19) has an exact solution.

Therefore, the first equation of (6.19) is solved analytically and an approximate solution is
found for the second equation of (6.19).
Therefore, the first order solution of the equation (6.12) is given by

x = be™ cos(w,t +@,) + € u,. (6.22)

6.4 Results and Discussions

In order to test the accuracy of the approximate solutions obtained by this perturbation

method, we compare the approximate solutions to the numerical solutions. For such
comparison, we consider k =0.5, ¥k, =405, o, =05, o, =415, ¢, =0,
®,, =1.570796 and ¢ =0.1. Solutions obtained by equation (6.22), in which & and ¢, are
calculated by (6.19) with initial conditions x(0)=-0.000108, x(0) =-1.219775,
%(0)=1.709554 and %(0)=0.044153 [or a, =0, b, =1.0], and is plotted in Fig. 6.1

(denoted by -o-). A second solution of (6.12) is computed by a fourth order Runge-Kutta
formula with a small time increment Az = 0.05 and the results are plotted in Fig. 6.1 (denoted
by --). From the figure it is clear that the perturbation solutions (6.22) together with (6.19)

and (6.20) agree with the numerical solutions.
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0.2 1

0.1 4

-0.1 -

-0.2

-0.3 1

-0.4 -

Fig. 6.1 Solution of Eq. (6.22): (i) Perturbation Solution denoted by -o- (ii) Numerical Solution
denoted by --. For k =05k, =05, ®, =05 o, =\/E, e=0.1. Initial conditions
2, =0,by=10, ¢0=0 and @,o=mn/2 or [x(0)=-0.000108,  (0)=-1.219775,
#(0) =1.709554, ¥(0) = 0.044153].
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6.5 Conclusion

An asymptotic solution of a fourth order nonlinear differential equation, based on the
theory of Krylov, Bogoluibov and Mitropolskii, has been found for large damping effects.
The solutions obtained in Chapter 3 is useful when the damping force is small, but in the case
of large damping effects the solution gives incorrect result. However, the solution found in
this Chapter is useful for systems with large damping. The solutions obtained by this method

(concerning this Chapter) remain valid before the moment of critical damping.
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