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ABSTRACT 
 

We investigate the Hawking radiation from different kind of black holes 

by massive particle tunneling process near the event horizon of the black 

hole in de Sitter and anti-de Sitter spaces. We calculate the imaginary 

part of the action from the relativistic Hamilton-Jacobi equation avoid 

by exploring the equation of motion of the radiation particle in 

Painleav�ôe coordinate system in order to explore the Hawking non-

thermal and purely thermal radiations.  

The thesis is organized as follows: 

In chapter 1 we give a brief discussion about our work of studying of 

massive particle tunneling from black hole spacetime.  

 

In chapter 2 we review the relativistic Hamilton-Jacobi equation to 

perform our prime work. 
 

In chapter 3 to 10 we investigate the Hawking non-thermal and purely 

thermal radiations using massive particles tunneling process by 

employing Hamilton-Jacobi method for Schwarzschild-de Sitter (SdS), 

Schwarzschild-anti-de Sitter (SAdS), Reissner-Nordström-de Sitter 

(RNdS), Reissner-Nordström-anti-de Sitter (RNAdS), Kerr-de 

Sitter (KdS), Kerr-anti-de Sitter  (KAdS), Kerr-Newman-de Sitter 

(KNdS) and Kerr-Newman-anti-de Sitter (KNAdS)   black holes. We 

express the position of all kind of black holes in an infinite series in 

terms of black hole parameters so that the spacetime metric becomes 

dynamical and derive the new line elements. Taking  into account the 

energy   conservation,   the angular   momentum  conservation  and   the 
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unfixed  background  spacetime. When  self-gravitation  interaction  is 

considered, the derived emission/radiation spectrums are not purely 

thermal and the tunneling rates are related to the change of the 

Bekenstein-Hawking entropy, which satisfy an underlying unitary 

theory. Our new process provides an interesting correction to the 

Hawking pure thermal radiation of the black hole and in the limiting 

case, the results are accordant with that obtained by Parikh and 

Wilczek’s method of the black hole. 
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Notations, Conventions and Acronyms 
   

 • Greek indices  µ, ��, ... at tensors cycle  the  numbers 0 to 3 and   

      Latin indices i, j, ... cycle only spatial coordinates from 1 to 3. The 
      temporal index is denoted by t and number 0. 

• M or m �:  Mass of black hole 

• ir   �:  location of the event horizon before the particles 
     emission 

• fr  �:  location of the event horizon after the particles 
     ��emission 

• ADM �:  Arnowitt, Deser, and Misner 

• AdS   �:  Anti-de Sitter 

• CFT �:  Conformal Field Theory 

• dS �:  de Sitter 

• KdS   �:  Kerr-de Sitter 

• KAdS �:  Kerr-anti-de Sitter 

• RN �:  Reissner-Nordström 

• RNdS �:  Reissner-Nordström-de Sitter 

• RNAdS   �:  Reissner-Nordström-anti-de Sitter 

• SdS  �:  Schwarzschild-de Sitter 

• SAdS       �:  Schwarzschild-anti-de Sitter 

• WKB �:  Wentzel–Kramers–Brillouin 

• KN �:  Kerr-Newman��

• KNdS �:  Kerr-Newman-de Sitter 

• KNAdS �:  Kerr-Newman-anti-de Sitter 

• HJE �:  Hamilton-Jacobi Equation 
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Chapter 1

Introduction

General relativity, which was published by Albert Einstein (1879-1955)

in 1915 [1], was almost as epochal as Newton's theory. It is sometimes

maintained that general relativity is di�cult to understand. If so, the

problem is not that the theory itself would be con
icting or complicated.

On the contrary, it may be considered as one of the most beautiful the-

ories ever developed. The problem is that general relativity forces us to

change our classical conceptions of time and space in a very radical man-

ner. Nevertheless, these changes are necessary if one want to achieve a

deeper comprehension of Nature. In general relativity space and time are

no longer separated but together constitute a four-dimensional continuum

called spacetime. Einstein's ingenious idea was that matter interacts with

spacetime in such a way that spacetime becomes curved. This interac-

tion between matter and spacetime is described by Einstein's �eld equa-

tion. Furthermore, the paths of objects are determined by the geometry of

spacetime which can be applied to spacetime of any shape: Objects with

free fall velocity move along geodesics, i.e., routes of stationary length
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between spacetime points. Hence, matter tells spacetime how to curve,

whereas the geometry of spacetime tells matter how to move. In this

sense, gravitation may be considered as a manifestation of the curvature

of spacetime. Thus General relativity describes the e�ects of curved or

accelerated motion and of gravitational �elds on mass, size, and time. It

also states that matter and empty space in
uence each other in a complex

fashion and that the Universe is �nite in size. In classical general relativity,

spacetime is considered as a curved of four dimensional manifold, whose

shape is de�ned by Einstein's �eld equations. The Einstein equations are

unavoidably involved in any matter where the geometry of spacetime is of

consequence. One of the most successful and useful applications of Ein-

stein's General Theory of Relativity is within the �eld of cosmology and it

also part of the framework of the standard Big Bang model of cosmology.

The cosmological constant was �rst introduced into the equations of

general relativity by Einstein himself, who later famously criticized this

move as his `greatest blunder'. In his paper of 1917 [2] he found the

�rst cosmological solution of a consistent theory of gravity. In spite of

its drawbacks this bold step can be regarded as the beginning of modern

cosmology. The relevance of the cosmological constant in modern gravita-

tional physics is manifest, and it is interesting to focus on the solutions of

Einstein's �eld equations with cosmological constant, to investigate its role

on di�erent scales. For instance, the Schwarzschild-de Sitter metric, which

describes a point-like mass in a spacetime with a cosmological constant,

has been recently studied in [3, 4, 5, 6]. In particular, the Schwarzschild-de

Sitter metric has been considered to investigate the in
uence of the cosmo-

2
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logical constant on gravitational lensing in [7, 8, 9, 10]. The cosmological

constant, conventionally denoted by the Greek letter �, is a parameter

describing the energy density of the vacuum (empty space), and a poten-

tially important contributor to the dynamical history of the universe. The

value of � in our present universe is not known, and may be zero, although

there is some evidence for a nonzero value; a precise determination of this

number will be one of the primary goals of observational cosmology in the

near future. In a universe with both matter and vacuum energy, there is

a competition between the tendency of � to cause acceleration and the

tendency of matter to cause deceleration, with the ultimate fate of the

universe depending on the precise amounts of each component. To a good

approximation, the cosmological constant more precisely, the convention-

ally de�ned cosmological constant � is proportional to the vacuum energy

density � � ; they are related by � = 8�G
3c2 � � , where G is Newton's constant

of gravitation and c is the speed of light. It was not until years after Ein-

stein introduced � as a parameter in cosmology that it was realized that

the same parameter measured the energy density of the vacuum.

General relativity has developed into an essential tool in modern as-

trophysics and provides the foundation for the current understanding of

black holes. According to general relativity, a su�ciently compact mass

will deform spacetime to form a black hole. Black holes are very subtle and

mysterious objects in this universe. It can be de�ned as:\black holes

are regions of space where the gravitational e�ects are so strong

that even light cannot escape from those regions" . The existence

of such regions was proposed for the �rst time by Michell and Laplace al-

3
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ready in the late 18th century (and probably independently of each other)

[11, 12]. Their arguments, however, were based on Newton's theory of

gravitation. General relativity also predicts the existence of black holes,

and the �rst black hole solution to Einstein's �eld equation was found by

Schwarzschild in 1916 [13]. At �rst, black holes were thought to be only

theoretical curiosities which would not exist in Nature. However, through

the works of Chandrasekhar, Oppenheimer, Volko�, and Snyder it is also

quite clear that black holes are born, in some situations, as the �nal states

of stars [14, 15]. Therefore, one may indeed expect that there exist black

holes in our universe. Classically, black holes do not emit any type of

radiations and are perfect absorbers.

The topic of black hole thermodynamics has been a subject of interest

since the 1970's when Bekenstein �rst conjectured that there was a fun-

damental relationship between the properties of black holes and the laws

of thermodynamics [16] and is very important in this regard. It is impos-

sible to de�ne a temperature for black holes because, everything goes into

the black hole and as a result of this, there is no any output. If this is

the case, the second law of thermodynamics would be contradicted due to

entry of matter having its own entropy, into the black hole which results

the decrease of the total entropy of the universe and violates the second

law of thermodynamics. In 1972, again Bekenstein showed that black

holes possess entropy similar to its surface area, whose increase overcomes

the decrease of the exterior entropy such that the second law of thermo-

dynamics is preserved. He also related the surface gravity, which is the

gravitational acceleration experienced at the surface of the black hole or

4
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any object, with temperature of the body in thermal equilibrium. Possi-

bly, black holes are the most perfectly thermal objects in the universe, and

yet their thermal properties are not fully understood. They are described

very accurately by a small number of macroscopic parameters (e.g., mass,

angular momentum, and charge), but the microscopic degrees of freedom

that lead to their thermal behavior have not yet been adequately iden-

ti�ed. Strong hints of the thermal properties of black holes came from

the behavior of their macroscopic properties that were formalized in the

(classical) four laws of black hole mechanics [17], which have analogues in

the corresponding four laws of thermodynamics:

The zeroth law of black hole mechanics is that \the surface

gravity( � ) is constant over the horizon (event) [17, 18] for a stationary

black hole". This is analogous to the zeroth law of thermodynamics which

states that \the temperature T is constant throughout a body in ther-

mal equilibrium". So in this sense the surface gravity is analogous to the

temperature.

The �rst law of black hole mechanics is that \the mass of the

black hole changes in terms of its area, angular momentum, and electric

charge". These are all related by the equation:

dM = �
8� dA + 
 �J + � Q,

where M is the mass of the black hole,� is the surface gravity,A is the

area of the horizon, 
 is the angular velocity,J is the angular momentum

of the black hole,Q is the electric charge, and � is the electrostatic po-

tential (� = Q=r for a point charge). This is analogous to the �rst law of

thermodynamics: dE = TdS+ work terms,

5
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whereE is the energy,T is the temperature, andS is the entropy. Notice

that a change in mass is a change in energy (i.e.E = Mc2 and one using

c = 1 units so E = M ). The terms 
 �J +� Q are work terms. This implies

that �
8� dA is analogous toTdS. So the temperature is analogous to surface

gravity and black hole area is analogous to the entropy i.e. this �rst law

is essentially the same as the �rst law of black hole mechanics.(This law

expresses the conservation of energy i.e., the �rst law of thermodynamics

is a statement of energy conservation.)

The second law of black hole mechanics is Hawking's area theorem

[19], that \the area A of a black hole horizon cannot decrease by any

(classical) process (i.edA � 0)". This is obviously analogous to the second

law of thermodynamics which is the fact that the entropyS of a closed

system (or the universe) cannot decrease (dS � 0). So once again area is

seen to be analogous to entropy.

The third law of black hole mechanics is that \the surface gravity

� cannot be reduced to zero by any �nite sequence of operations [20]". This

is analogous to the weaker (Nernst) form of the third law of thermodynam-

ics, that \the temperature T of a system cannot be reduced to absolute

zero in a �nite number of operations". However, the classical third law of

black hole mechanics is not analogous to the stronger (Planck) form of the

third law of thermodynamics, that the entropy of a system goes to zero

when the temperature goes to zero. The only black holes that have zero

surface gravity are extremal black holes.

Thus the four laws of black hole mechanics are analogous to the four

laws of thermodynamics if one makes an analogy between temperatureT

6
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and some multiple of the black hole surface gravity� and between entropy

S and some inversely corresponding multiple of the black hole areaA.

That is, one might say that T = �� and S = �A , with 8��� = 1 , so that

the �dA= (8� ) term in the �rst law of black hole mechanics becomes the

heat transfer term TdS in the �rst law of thermodynamics.

Even before the formulation of the four laws of black hole mechanics,

Bekenstein [16, 21, 22, 23] proposed that a black hole has an entropyS

that is some �nite multiple � of its areaA. He was not able to determine

the exact value of� , but he gave heuristic arguments for conjecturing that

it was (ln2)=(8� ) (in Planck units, ~ = c = G = � = 4�� 0 = 1).

However, for the �rst law of black hole mechanics to be equivalent to

the �rst law of thermodynamics, this would logically imply that the black

hole would have to have a temperatureT that is a corresponding nonzero

multiple of the surface gravity � . E.g., if � = ( ln2)=(8� ) as Bekenstein

proposed, then one would get� = 1=(ln2), so that T = �= (ln2). But since

it was thought then that black holes can only absorb and never emit, it

seemed that black holes really would have zero temperature, or� = 0,

which would make Bekenstein's proposal inconsistent with any �nite�

[17].

A wonderful discovery [24, 25] by Hawking in 1974 that black holes can

radiate thermally reconciled a serious contradiction among General Rel-

ativity, Quantum Mechanics and Thermodynamics at that time and put

the �rst law of black hole thermodynamics on a solid fundament. At a big

cost, however, this discovery also caused another controversial problem:

what happen to information during the black hole evaporation? In the

7
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classical theory, the loss of information was not a serious problem since

the information could be thought of as preserved inside the black hole but

just not very accessible. However, taking the quantum e�ect into consid-

eration, the situation is changed. With the emission of thermal radiation

[24, 25], black holes could lose energy, shrink, and eventually evaporate

away completely. Since the radiation with a precise thermal spectrum car-

ries no information, the information carried by a physical system falling

toward black hole singularity has no way to be recovered after a black

hole has disappeared completely. This problem is now generally known as

\the paradox of black hole information loss" [26, 27], which means that

pure quantum states (the original matter that forms the black hole) can

evolve into mixed states (the thermal spectrum at in�nity). This directly

violates the principle of unitarity for quantum dynamics of an isolated sys-

tem and brings a serious challenge to the foundations of modern physics.

In the past decades, several methods [28, 29, 30, 31] have been suggested

for resolving the \information loss paradox"; none has been successful. In

fact, each failed attempt for a resolution seems to have made the existence

of this paradox more serious and attracted more interest, especially after

the possibility that information about infallen matter may hide inside the

correlations between the Hawking radiation and the internal states of a

black hole was ruled out. While the information paradox can perhaps be

attributed to the semi-classical nature of the investigations of Hawking

radiation [32], researches in string theory indeed support the idea that

Hawking radiation can be described within a manifestly unitary theory,

however, it still remains a mystery how information is recovered. Although

8



CHAPTER 1.

a complete resolution of the information loss paradox might be within a

unitary theory of quantum gravity or string/M-theory, it is argued that

information could come out if the emitted radiations were not exactly

thermal but instead the radiation spectrum contains a subtle non-thermal

correction [33]. On the other hand, the mechanism of black hole radiance

remains shrouded in some degree of mystery. In the original derivation

of black hole evaporation, Hawking described the thermal radiation as a

quantum tunneling process [34] triggered by vacuum 
uctuations near the

event horizon. According to this scenario, a pair of particles is sponta-

neously generated inside the horizon. The positive energy particle tunnels

out to the in�nity while the negative energy one remains in the black hole.

Alternatively, the positive and negative energy pair is created outside the

horizon, and the negative energy particle tunnels into the black hole be-

cause its orbit exists only inside the horizon, while the positive energy one

remains outside and emerges at in�nity.

Indeed, the above viewpoint that regards the radiation as quantum

tunneling out from inside the black hole has been proved very convenient

to explore the issue of dynamics. But, actual derivation [35] of Hawking

radiation did not proceed in this way at all, most of which based upon

quantum �eld theory on a �xed background spacetime without considering

the 
uctuation of the spacetime geometry. Moreover, there is another

fundamental issue that must necessarily be dealt with, namely, the energy

conservation. It seems clear that the background geometry of a radiating

black hole should be altered with the loss of energy, but this dynamical

e�ect is often neglected in formal treatments. Due to this breakthrough
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in the �eld of black hole physics, many research works on the thermal

radiation of black holes have been made [36, 37, 38, 39, 40]. This procedure

provides a leading correction to the tunneling probability (emission rate)

arising from the reduction of the black hole mass because of the energy

carried by the emitted massless or massive quanta.

Wilczek and his collaborators have developed two universal methods to

correctly recover Hawking radiation of black holes. One is the gravitational

anomaly method [41] in which the Hawking radiation can be determined

by anomaly canceled conditions and regularity requirement at the event

horizon. Later on, this method is widely used to calculate the Hawking

radiation for di�erent black holes [42, 43, 44, 45, 46, 47, 48, 49, 50].

The another is the semi-classical tunneling method developed by Parikh

and Wilczek [51] presented a greatly simpli�ed model (based upon the

previous introduced by Kraus and Wilczek [52, 53, 54]) to implement the

Hawking radiation as a semi-classical tunneling process from the event

horizon of the four-dimensional Schwarzschild and Reissner-Nordstr•om

black holes by treating the background geometries as dynamical and in-

corporating the self-gravitation correction of the radiation. The radiant

spectra that they derived under the consideration of energy conservation

give a leading-order correction to the emission rate arising from the loss

of mass of black holes, which corresponds to the energy carried by the

radiated quanta. Their result shows that the actual emission spectrum of

black hole radiation deviates from strictly pure thermality, which might

serve as a potential mechanism to resolve the information loss paradox.

Since the semi-classical tunneling method has been successfully applied to

10
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deal with Hawking radiation of black holes, a lot of work shows its validity

[38, 50, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,

73, 74, 75, 76, 77, 78, 79, 80, 81]. But most of them are focus on studying

Hawking radiation of scalar particles tunneling from di�erent-type black

holes.

Based on semi-classical tunneling picture two new methods have been

employed to calculate the imaginary part of the action, one the null

geodesic method developed by Parikh and Wilczek [51, 82, 83, 84] and

another method proposed by Srinivasan and Padmanabhan [85, 86, 87,

88, 89]. The later method then extended by Angheben et. al [90] and suc-

cessfully presented to derive the imaginary part of the action by solving the

Hamilton-Jacobi equation, which is, later called as the `Hamilton-Jacobi

method' [85, 86, 87, 88, 89]. The di�erence of later method from Parikh's

is mainly that such method concentrates on introducing the proper spatial

distance and upon calculating the relativistic Hamilton-Jacobi equation.

The latter method also involves consideration of a emitted scalar particle,

ignoring its self-gravitation and assumes that its action satis�es the rela-

tivistic Hamilton-Jacobi equation. An appropriate ansatz for the action

can be obtained from the symmetries of the spacetime which is known

as the Hamilton-Jacobi ansatz. Both the methods show that when the

self-gravitational interaction and the un�xed background spacetime are

taken into account, the actual Hawking radiation spectrum deviates from

the purely thermal one, satis�es the underlying unitary theory and gives

a leading correction to the radiation spectrum. Based on the Hamilton-

Jacobi method, Banerjee and Majhi [91] developed the tunneling method

11
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beyond semi-classical approximation to include quantum corrections and

many researches have been made to calculate quantum corrections of black

hole entropy [92, 93, 94, 95, 96, 97]. In 2005, Zhang and Zhao have �rst

proposed the Hawking radiation from massive uncharged particle tunnel-

ing [98] and charged particle tunneling [43, 44, 46, 81, 99, 100, 101]. All

the results supported Parikh's opinion and gave a correction to the Hawk-

ing pure thermal spectrum. Exploiting this work, a few researches have

been carried out as charged particle tunneling [77, 102, 103, 104, 105].

Kerner and Mann [106, 107, 108] extended Kraus and Wilczek's [53, 54]

work and also developed quantum tunneling methods for analyzing the

temperature of Taub-NUT black holes [109] using both the null-geodesic

and Hamilton-Jacobi methods by ignoring the self-gravitation interaction

and energy conservation of emitted particle. This method is also applied

to higher dimensional black holes [110, 111, 112], black holes in String

theory [113], black strings [114, 115, 116, 117], accelerating and rotat-

ing black holes [118, 119, 120], dilation black holes [121, 122], BTZ black

holes [123], black holes with NUT parameter [109, 124] and Kerr-Newman

black hole [125]. Taking the self-gravitation interaction and un�xed back-

ground spacetime into account Chen, Zu and Yang reformed Hamilton-

Jacobi method for massive particle tunneling and investigate the Hawking

radiation of the Taub-NUT black hole [126]. Using this method Hawking

radiation of Kerr-NUT black hole [65], Kerr-de Sitter black hole [127], the

charged black hole with a global monopole [99, 128] have been reviewed.

In fact, a black hole can radiate all types of particles charged, massless or

massive.
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Recently, we have developed a new Hamilton-Jacobi method by re-

formulating the method of Chen et al. [125, 126], for massive particle

tunneling and investigate the Hawking radiation of black holes with cos-

mological constant (SdS black hole [129], SAdS black hole [130], RNAdS

black hole [131]) by considering the self-gravitation interaction and un-

�xed background spacetime. In general relativity, di�erent black holes are

characterized by massM , chargeQ and rotation a parameter. The fourth

parameter is cosmological parameter �, which is taken to be constant

since otherwise the calculations would be too complex to solve analyti-

cally. To proceed analytically, we have solved the position of the black

hole as a series of in�nite terms so that the spacetime metric becomes dy-

namical. By taking self-gravitational e�ect and energy conservation into

account we have shown that the tunneling rate is related to the change

of Bekenstein-Hawking entropy and the emission spectrum deviates from

the precisely thermal one which in accordance with Parikh and Wilczek's

opinion [51, 82, 83] and gives another method to study the Hawking radi-

ation of black hole with cosmological constant. In de Sitter/anti-de Sitter

spaces, very little work have been investigated either for massless/charged

particle or massive particle tunneling from black hole due to tough calcu-

lation. So our present research on black holes with cosmological constant

is important and meaningful.

In recent years, considerable attention has been concentrated on the

study of black holes in de Sitter (dS) and anti-de Sitter (AdS) spaces. The

motivation behind it is based on two aspects: �rst, the recent observed ac-

celerating expansion [132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142,
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143, 144, 145, 146, 147, 148, 149, 150, 151, 152] of our universe indicates

the cosmological constant might be a positive one [132, 153, 154]; Secondly,

like the AdS/CFT correspondence [26, 155, 156], an interesting proposal,

the so-called dS/CFT correspondence, has been suggested that there is

a dual relation between quantum gravity on a dS space and Euclidean

conformal �eld theory (CFT) on a boundary of dS space [157, 158, 159].

The solutions of black holes in Anti-de Sitter spaces come from the Ein-

stein equations with a negative cosmological constant. Anti-de Sitter black

holes are di�erent from de Sitter black holes. The di�erence consisting in

them is due to minimum temperatures that occur when their sizes are

of the order of the characteristic radius of the anti-de Sitter space. For

larger Anti-de Sitter black holes, their red-shifted temperatures measured

at in�nity are greater. This implies that such black holes can be in stable

equilibrium with thermal radiation at a certain temperature. Anti-de Sit-

ter (AdS) geometry has been considered as a challenging �eld for quantum

�eld theory in di�erent frameworks, including supersymmetry and string

theory. The string /M-theory have also greatly stimulated the study of

black hole solutions in AdS space. So our study on di�erent kinds of black

holes in de Sitter and anti-de Sitter spaces are meaningful and signi�cant.

The outline of this thesis is the following: thesecond chapter is a

review work since it contains a review of work done by others in addition

to extension relativistic Hamilton-Jacobi equation that we have done ( i.e

devoted to recall with the well-known relativistic Hamilton-Jacobi equa-

tion). The remaining chapters will consist entirely of original calculations

partly we have done in the papers [129, 130, 131].
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In the third chapter , we have investigated the Hawking radiation of

Schwarzschild-de Sitter (SdS) black hole [129] by massive particles tun-

neling method. Here we have expressed the radius of the SdS black hole

in terms of mass and cosmological parameter in an in�nite series and the

new line element near the event horizon is derived which are totally new

ideas of this research. Using Hamilton-Jacobi method, we consider the

spacetime background to be dynamical, incorporate the self-gravitation

e�ect of the emitted particles and show that the tunneling rate is related

to the change of Bekenstein-Hawking entropy and the derived emission

spectrum deviates from the pure thermal spectrum when energy and an-

gular momentum are conserved. Our result is in accordance with Parikh

and Wilczek's opinion [51, 82, 83] and gives a correction to the Hawking

radiation of the SdS black hole.

In the fourth chapter , the massive particles tunneling method has

been used to explore the Hawking non-thermal and purely thermal radi-

ations of Schwarzschild-anti-de Sitter (SAdS) black hole [130]. Using the

same view of chapter three we have shown that the non-thermal and purely

thermal tunneling rates are related to the change of Bekenstein-Hawking

entropy and the derived emission spectrum deviates from the pure thermal

spectrum [51, 82, 83].

In the �fth chapter , we have investigated the Hawking purely thermal

and non-thermal radiations of Reissner-Nordstr•om-de Sitter (RNdS) black

hole [160] by including charge parameter to SdS black hole [129]. Consid-

ering the same assumption of SdS black hole [129] we have shown that the

tunneling rate is related to the change of Bekenstein-Hawking entropy and
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the derived emission spectrum deviates from the pure thermal spectrum.

The result is in accordance with Parikh and Wilczek's opinion [51, 82, 83]

and recovered the new result for Hawking radiation of RNdS black hole.

In the sixth chapter , we have generalized our work given in chapter 4

(SAdS black hole [130]) with charge parameter and introduce the Hawking

non-thermal and purely thermal radiations of Reissner-Nordstr•om-anti-de

Sitter (RNAdS) black hole [131] by massive particles tunneling method.

Like SAdS black hole here we have also shown that the non-thermal and

purely thermal tunneling rates are related to the change of Bekenstein-

Hawking entropy and the derived emission spectrum deviates from the

pure thermal spectrum. The results for the RNAdS black hole is also

in the same manner with Parikh and Wilczek's opinion [51, 82, 83] and

explored the new result for Hawking radiation of RNAdS black hole.

In the seventh chapter , we have revised the work given in chapter 3

(SdS black hole [129]) with rotating parameter and investigate the Hawk-

ing non-thermal and purely thermal radiations of Kerr-de Sitter (KdS)

black hole [161] using Hamilton-Jacobi method. The dragging coordinates

transformation have been used to derive the new line element near the

event horizon. Taking self-gravitation e�ect into account we have shown

that the tunneling rate is related to the change of Bekenstein-Hawking

entropy and the derived emission spectrum deviates from the pure ther-

mal spectrum [51, 82, 83]. The explored results gives a correction to the

Hawking radiation of KdS black hole.

In the eighth chapter , using the same opinion as chapter 4 (SAdS

black hole [130]) we have explored Hawking non-thermal and purely ther-
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mal radiations of Kerr-anti-de Sitter (KAdS) black hole by including ro-

tating parameter. Applying the dragging coordinate transformation and

taking self-gravitational e�ect into consideration we have shown that the

tunneling rates are related to the change of Bekenstein-Hawking entropy

and the derived emission spectrum deviates from the pure thermal spec-

trum and also the obtaining results for the KAdS black hole is in accor-

dance with Parikh and Wilczek's opinion [51, 82, 83] and gives a correction

to the Hawking radiation of the KAdS black hole.

In the ninth chapter , we have generalized the work given in chapter

7 with charge parameter and derived Hawking non-thermal and purely

thermal tunneling rates employing Hamilton-Jacobi method. Here, as

KdS black hole we have shown that the tunneling rate of Kerr-Newman-

de Sitter (KNdS) black hole is related to the change of Bekenstein-Hawking

entropy and the derived emission spectrum deviates from the pure thermal

spectrum, which is full consistent with Ref. [51, 82, 83].

In the tenth chapter , we have investigated the Hawking non-thermal

and purely thermal tunneling rates of the Kerr-Newman-anti-de Sitter

(KNAdS) black hole which is the Kerr-anti-de Sitter black hole [81] gen-

eralized with a charge parameter. As KAdS black hole here we have also

shown that the tunneling rate is related to the change of Bekenstein-

Hawking entropy and the derived emission spectrum deviates from the

pure thermal spectrum [51, 82, 83], and gives a correction to the Hawking

radiation of the KNAdS black hole.

Finally, in chapter eleven we give a brief description of the results of

our prime work from chapter three to chapter ten .
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Chapter 2

A Review of the Elementary Formulation of
the Relativistic Hamilton-Jacobi equation

2.1 Introduction

The relativistic Hamilton-Jacobi equation (HJE) is a necessary condition

describing extremal geometry in generalizations of problems from the cal-

culus of variations. It is named for William Rowan Hamilton and Carl

Gustav Jacob Jacobi. The Hamilton-Jacobi equation is particularly useful

in identifying conserved quantities for mechanical systems, which may be

possible even when the mechanical problem itself cannot be solved com-

pletely. The resultant Hamilton-Jacobi theory and later developments

are presented in several famous texts: Arnol'd (1974), Landau and Lif-

shitz (1969), Gantmacher (1970), Born and Wolf (1965), Lanczos (1949),

Carathodory (1982), Courant and Hilbert (1962).

The equations of motion for a relativistic massive particle moving in an

electromagnetic �eld written in a form of the second law of Newton. Which

can be reduced with the help of elementary operations to the relativistic
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Hamilton-Jacobi equation. In turn, the action I obeys the Hamilton-

Jacobi equation. The latter is a partial di�erential equation of the �rst

order. A transition from Newton's second law to the Hamilton-Jacobi

equation can be achieved with the help of the algorithm for transform-

ing a system of ordinary di�erential equations into a partial di�erential

equation. Although the fact that such transformation algorithm is well-

known (e.g., [162]) the actual transformation of the equations of motion of

a charged relativistic particle in the electromagnetic �eld into a respective

PDE (the Hamilton-Jacobi equation) is not quoted in the physical litera-

ture to the best of our knowledge. The usual approach to the problem of

derivation of the Relativistic Hamilton-Jacobi equation is to heuristically

introduce classical action I and to vary it (for �xed initial and �nal times).

The formulation is based on a possibility of transforming the equation of

motion to a completely antisymmetric form.

In the next section, at once time we obtain the principle of least ac-

tion and taking into account it we derive the relativistic Hamilton-Jacobi

equation.

2.2 Formulation of the Relativistic HJ equation

By keeping in mind the momentum as a function of both temporal and

spatial coordinates, we provide an elementary derivation of the Hamilton-

Jacobi where the concept of action emerges in a natural way. This can be

imagined by considering �rst a non-relativistic classical particle moving

from one point A(say) to another point B(say). The particle can do that

by taking any possible paths connecting these two points. Therefore for
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any �xed moment of time, sayt = 1 the momentum would depend on the

spatial coordinate, that is~p= ~p(~x; t). In a sense one have replaced watch-

ing the particle evolution in time by watching the evolution of its velocity

(momentum) in space and time and this situation is in accordance to the

Euler's description of motion of a 
uid (an alternative to the Lagrange

description). The other way, one consider a \
ow" of an \elemental"

path and describe its \motion" in terms of its coordinates and velocity

(determined by a slope of the path at a given point). This permits us

to represent Newton's second law for a particle (massm) moving in a

conservative �eld U(~x) as follows

d~p
dt

=
@~p
@t

+
1
m

(~p� r )~p= �r U: (2.1)

Taking curl on both sides to the Eq.(2.1), we obtain

r �
d~p
dt

=
@
@t

(r � ~p) +
1
m

r � (~p� r )~p= 0: (2.2)

Using the vector formula

(~a� r )~a =
r a2

2
+ ( r � ~a) � ~a: (2.3)

Eq.(2.2) becomes

@
@t

(r � ~p) +
1
m

r � f (r � ~p) � ~pg = 0: (2.4)

The trial solution of Eq.(2.4) is

r � ~p= 0 (2.5)

similar to an irrotational motion in Euler's picture of a 
uid motion. From

Eq.(2.5), one must get

~p= r I; (2.6)

20



2.2. FORMULATION OF THE RELATIVISTIC HJ EQUATION CHAPTER 2.

whereI (�x; t ) is some scalar function. Generally speaking, one can choose

the negative value ofr I . The conventional choice is connected with the

fact that the corresponding value of the kinetic energy has to be positive.

Inserting Eq.(2.6) into Eq.(2.1) and with the help of Eq.(2.3) one obtain

the following equation

r
n @I

@t
+

1
2m

(r I )2 + U
o

= 0: (2.7)

In turn Eq.(2.7) means that

@I
@t

+
1

2m
(r I )2 + U = f (t); (2.8)

where f (t) is some function of time. De�ning a new functionI 0 = I �
R

f (t)dt one get from Eq.(2.7) the Hamilton-Jacobi equation with respect

to the function I 0 (representing the classical action):

@I0

@t
+

1
2m

(r I 0)2 + U = f (t); (2.9)

Using the relation ~p = m~v in Eq.(2.6) and drop the prime at I 0, the

Hamilton-Jacobi equation can be rewritten as follows

@I
@t

+ ~v � r I =
mv2

2
� U: (2.10)

Now using dI
dt = @I

@t+ ~v� r I , the expression for the actionI by integrating

Eq.(2.10) from the point A to B

I =
Z tB

tA

�
mv2

2
� U

�
dt �

Z tB

tA

L(~x;~v; t)dt; (2.11)

whereL(~x;~v; t) = mv2

2 � U is the lagrangian of a particle of massm.

Now we can arrive at the principle of least action (without postulating

it a priori) directly from the Hamilton-Jacobi equation. To this end one
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subject the actionI to small perturbations �I � I and (by dropping the

term (r �I )2) get from Eq.(2.9) the equation with respect to�I

@�I
@t

+
1
m

(r I ) � (r �I ) = 0 : (2.12)

Since r I
m = ~v Eq.(2.12) represents the substantial derivative of�I , so

d�I
dt

= 0: (2.13)

Integrating we get

�I = constant: (2.14)

Thus for a speci�c function I satisfying the Hamilton-Jacobi equation the

respective perturbations�I = constant. On the other hand, according to

Eq.(2.11) the actionI is de�ned on a set of all possible paths connecting

point A and point B . This means that perturbations �I correspond to

perturbations of all these path.

After all one of these paths�I = constant, according to Eq.(2.14).

In order to determine this constant one consider into account that at

the �xed points A and B the paths are also �xed, that is the respective

perturbations �I = 0 at these points. Therefore only for the speci�c path

determined by the Hamilton-Jacobi equation that is by the second law of

Newton �I = 0, thus yielding the principle of least action:

�
Z tB

tA

L(~x;~v; t) = 0 : (2.15)

The formulation given by Eq.(2.15) serves as a guide for a derivation of the

relativistic Hamilton-Jacobi equation for a (relativistic) massive particle

of chargeq and massm moving in the electromagnetic �eld. Our approach

22



2.2. FORMULATION OF THE RELATIVISTIC HJ EQUATION CHAPTER 2.

is to reduce the respective equations of motion to the form which would be

analogous to an irrotational motion in Euler's picture. The very structure

of the spacetime metric allows one to arrive at the required result in a

natural way.

Therefore, one start with the second law of Newton for a relativistic

charged particle of a chargeq and massm moving in the electromagnetic

�eld:

dp�

dt
= q[E � + � ��
 � � B 
 ]; (2.16)

where Greek indices�; �; 
::: take the values 1, 2, 3,� ��
 is the absolutely

antisymmetric tensor of the third rank, p� = m� �

(1� � � � � )1=2 is the momentum

of the particle, E � is the electric �eld , � � = ~v is the velocity of the particle

and B � is the magnetic �eld.

For the subsequent analysis one cast Eq.(2.16) into the standard co -

and contra-variant forms and to this end one use the metricgik = gik =

[1; � 1; � 1; � 1] and use units where the speed of light isc = 1. In this

metric x0 = x0 = t, x � = ~x = � x � , the four- potential A i (A0; A � ) whose

scalar part A0 = � (where � is the scalar potential) andA � � ~A is the

vector potential, and the roman indicesi; j; k; ::: take the values 0; 1; 2; 3:

From the Maxwell equations then follows (e.g.[163]) that the electric �eld

E � intensity and the magnetic inductionB � are

E � = �
�

@A0

@x�
+

@A�

@x0

�
(2.17)

B � = � ��
 @A


@x�
: (2.18)
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In terms of the vector-potential A � � ~A, using Eq.(2.18) one express the

second term on the right-hand side of Eq.(2.16)

� ��
 � � B 
 = � ��
 � 
�� @A�

@x�
= � �

�
@A�

@x�
�

@A�

@x�

�
: (2.19)

Inserting Eq.(2.18) and Eq.(2.19) into Eq.(2.16) yields

dp�

dx0 = q
h

�
�

@A0

@x�
+

@A�

@x0

�
+ � 


�
@A


@x�
�

@A�

@x


� i
; (2.20)

where� 
 = � 
 . In refs.[163], one use in Eq.(2.20) the antisymmetric tensor

F ik such that

F ik =
@Ak

@xi
�

@Ai

@xk
(2.21)

the relation between contra-(A � ) and co-variant (A � ) vectors(A � = � A � ),

introduce the spacetime interval

ds � dt
p

(1 � � � � � ) � dt
p

(1 � � 2)

and the four-velocity

ui (u0 = 1 =
p

(1 � � 2); u� = � u� =
� �

p
(1 � � 2)

:

we get

dp�

ds
= qF�k uk = � qFk� uk: (2.22)

The next step is to �nd the zeroth components of Eq.(2.22). Using the

special relativistic identity for the momentum pi = mui , pi pi = m2 one

�nd

p0
dp0

ds
� � p�

dp�

ds
= p� dp�

ds
: (2.23)
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Using Eq.(2.23) into Eq.(2.22) one obtain

p� dp�

ds
= qp� [F �� u� + F 00u0]: (2.24)

On the other hand, sinceF ik = � F ki (F 00 = F00 = 0) :

p� u� F �� = 0:

Hence from Eq.(2.23) and Eq.(2.24) follows that

dp0

ds
= qu0F � 0 = qF0� u� = qF0i ui : (2.25)

Adding Eq.(2.25) and Eq.(2.22) and using the de�nition ofF ik , Eq.(2.21),

one arrive at the equation of motion in the contra-variant form:

dpi

ds
= qFik uk = q

�
@Ak

@xi
�

@Ai

@xk

�
uk: (2.26)

The respective co-variant form follows from raising and lowering indices

in Eq.(2.26):

dpi

ds
= qFik uk = q

�
@Ak
@xi

�
@Ai
@xk

�
uk: (2.27)

Reducing these equations to a form similar to the condition de�ning an

irrotational 
ow in 
uid mechanics and for one rewrite (2.26) and (2.27)

in the following form

uk

h @
@xk

(mui + qAi ) �
@

@xi
(qAk)

i
= 0

uk
h @
@xk

(mui + qAi ) �
@

@xi
(qAk)

i
= 0 (2.28)

and add to the third term the identity

uk
@uk

@xi
= uk @uk

@xi
�

1
2

@
@xi

(ukuk) = 0 :
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Therefore, one get

uk

h @
@xk

(mui + qAi ) �
@

@xi
(muk + qAk)

i
= 0 (2.29)

or equivalently

uk
h @
@xk

(mui + qAi ) �
@

@xi
(muk + qAk)

i
= 0: (2.30)

The expressionsmui + qAi or (mui + qAi ) in square brackets of the above

equations represent a four-curl of the four-vector. Both equations are

identically satis�ed if this four-curl is 0. Once again, this can be inter-

preted as the fact that the respective vector �eld is irrotational, that is

the four-vector m~u + q~A (here we use notation~a for a four-vector) is the

four-gradient of a scalar function, say� I

mui + qAi = �
@I
@xi

(2.31)

mui + qAi = �
@I
@xi

: (2.32)

This scalar function I ( a potential function) is the classical relativistic

action, and choice of the sign is dictated by the consideration that ex-

pressions Eq.(2.31) must become the expressions for the momentum and

energy in the non-relativistic limit. To �nd the explicit expression for I

one integrate Eq.(2.31) [ or (2.32)] and obtain

I = �
Z b

a
(mui + qAi )dxi � = �

Z b

a
(m + A i ui )ds; (2.33)

wherea and bare points on the world line of the particle,ds = ( dxi dxi )1=2,

and ui = dxi
ds . Here the expression Eq.(2.33) coincides with the conven-

tional de�nition of the action (introduced on the basis of considerations

26



2.2. FORMULATION OF THE RELATIVISTIC HJ EQUATION CHAPTER 2.

not connected to the second law of Newton). It is interesting to note that

in a conventional approach to the action, the termA i dxi \cannot be �xed

on the basis of general considerations alone" [163]. Here however this term

is \�xed" by the very nature of the equations of motion.

Eqs.(2.31)and (2.32) produce the determining PDE for the functionI

(the relativistic Hamilton-Jacobi equation for a massive charged particle

in the electromagnetic �eld) if we eliminateui and ui from this equations

with the help of the identity ui ui = 1:
�

@I
@xi

+ qAi
� �

@I
@xi

+ qAi

�
= m2; i = 0; 1; 2; 3 (2.34)

where one have to retain ( in the classical region) only one sign, either

plus or minus.

Following the well-known procedure of reducing the integration of the

partial di�erential equation of the �rst order to the integration of a system

of the respective ordinary di�erential equations [162]. In particular, given

the Hamilton-Jacobi equation (2.34) one derive (2.26). To this end one

subject action I to small perturbations �I

I = I 0 + �I (2.35)

and �nd the equation governing these perturbations. HereI 0 must satisfy

the original unperturbed Hamilton-Jacobi equation (2.34), and�I � I 0.

Using (35) into (34) one get with accuracy to the �rst order in�I
�

@I0
@xi

+ qAi
�

@
@xi

(�I ) +
�

@I
@xi

+ qAi

�
@

@xi
(�I ) = 0 (2.36)

or equivalently
�

@I
@xi

+ qAi

�
@

@xi
(�I ) = 0 : (2.37)
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Equation (37) is a quasi-linear �rst-order PDE whose characteristics are

given by the following equations
dx0

@I0=@x0 + qA0
=

dx�

@I0=@x� + qA� : (2.38)

Here the repeated indices do not represent summation, and� = 1; 2; 3: It

is immediately seen that the characteristics of linearized Hamilton-Jacobi

equation (2.38) are the four- velocityui :

ui =
1
m

�
@I0
@xi

+ qAi
�

: (2.39)

Inversely, these characteristics are the solutions of the equations of motion

written in a form of the second law of Newton. To demonstrate that one

divide both sides of (2.39) byds, use Eqs. (2.31), (2.32) and the fact that
d
ds = uk

@
@xk

and obtain

mc
dui

ds
1
m

�
@I0
@xk

+ qAk

�
@

@xk

�
@I0
@xi

+ qAi
�

�
1
m

�
@I0
@xk

+ qAk

� h @
@xk

�
@I0
@xi

+ qAi
�

+ q
@Ai

@xk
� q

@Ak

@xi

i

�
1
m

�
@I0
@xk

+ qAk

� h @
@xi

�
@I0
@xk

+ qAk
�

� q
�

@Ak

@xi
�

@Ai

@xk

� i

=
1

2m
@

@xi
(ukuk) +

1
m

quk

�
@Ak

@xi
�

@Ai

@xk

�
= qukF ik (2.40)

that is the second law of Newton, Eq.(2.26). Now one return to the lin-

earized equation (2.37) which one rewrite in the identical form

mui
@

@xi
�I �

d
ds

�I = 0: (2.41)

Which implies that �I = constant along a certain world line, singled out

of a continuous set of possible world lines according to this condition.

Without any loss of generality one can take the aboveconstant = 0.
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For a speci�c function I satisfying the Hamilton-Jacobi equation the

respective perturbations�I = constant: On the other hand, according

to Eq. (2.33) the action I is de�ned on a set of all possible world lines

connecting world pointsa and b. This means that perturbations �I cor-

respond to perturbations of all these world lines. However, only for one

of these world lines�I = constant, according to (2.41). To determine this

constant one take into account that at the �xed world pointsa and b the

world lines are also �xed, that is the respective perturbations�I = 0 at

these points. If one apply condition Eq.(2.41) to the actionI , Eq. (2.31),

the former would choose out of all possible world lines the only one sat-

isfying that condition, that is one arrive at the classical principle of least

action.

�
Z b

a
(mui + qAi )dxi = 0: (2.42)

At last, one demonstrate in an elementary fashion how the same technique

of transforming the equations of motion in the Newtonian form to the

Hamilton-Jacobi equation can be applied to a motion of a charged particle

in general relativity. The equations of motion of a charged particle in

gravitational and electromagnetic �eld are [164].

M (ul @ui

@xl
+ � i

klu
kul ) = qgim Fmkuk; (2.43)

where

� i
kl =

1
2

gim
�

@gmk

@xl
+

@gml

@xk
�

@gkl

@xm

�

is the Ricci tensor.
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The expression �iklu
kul is signi�cantly simpli�ed according to the fol-

lowing identities:

� i
klu

kul � ul 1
2

h
uk

�
@gim gmk

@xl
� gmk

@gim

@xl

�
� ukglm

@gim

@xk
� ukgim @gkl

@xm

i

� �
1
2

h
ulum

@gim

@xl
+ uluk

�
glm

@gim

@xk
+

@gkl

@xi

� i

� �
1
2

h
2ulum

@gim

@xl
+ uluk @gkl

@xi

i
� � ul

�
@gim um

@xl
� gim @um

@xl

�
�

1
2

uluk @gkl

@xi

� � ul @ui
@xl

+ ulgik @uk
@xl

�
1
2

ul
�

@gkluk

@xi
� gkl

@uk

@xi

�

� � ul @ui
@xl

+ ulgik @uk
@xl

�
1
2

�
ul @ul

@xi
� ul

@ul

@xi

�

� � ul @ui
@xl

+ ulgik @uk
@xl

�
1
2

�
ul @ul

@xi
�

@ulul

@xi
+ ul @ul

@xi

�

� � ul @ui
@xl

+ ulgik @uk
@xl

� ul @ul
@xi

� � ul @ui
@xl

+ ulgik
�

@uk
@xl

�
@ul
@xk

�
:

Now inserting this result into (2.43) and use the expression (2.21) forF ik ,

one obtain

gik ul
h @
@xl

(Mu k + qAk) �
@

@xk
(Mu l + qAl )

i
= 0: (2.44)

Equation (2.44) is identically satis�ed if we set

Mu k + qAk = �
@I
@xk

; (2.45)

where I is the action and the negative sign, representing a conventional

choice of positive energies in classical mechanics. Raising and lowering the

indices in (2.45), expressing the respective 4-velocitiesuk and uk in terms
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of @I
@xk , and using the identity gik ui uk = 1, we arrive at the relativistic

Hamilton-Jacobi equation:

gik
�

@I
@xi

+ qAi

� �
@I
@xk

+ qAk

�
= m2: (2.46)

Since it has to retain (in the classical region) only one sign either plus or

minus in the case of relativistic mass, so as our motivation is to perform

our prime work, we replace� m2 in the place of m2 and then Eq.(2.46)

can be written as

gik
�

@I
@xi

+ qAi

� �
@I
@xk

+ qAk

�
+ m2 = 0: (2.47)

Now if we taking into account the charge as �xed, then the electromagnetic

potential A � can be neglected and therefore Eq.(2.47) takes on form as

gik
�

@I
@xi

� �
@I
@xk

�
+ m2 = 0; (2.48)

which is the required relativistic Hamilton-Jacobi equation to perform our

prime work.

||||||||||||||||||||||||||||
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Chapter 3

Hawking Non-thermal and Purely thermal
radiations of Schwarzschild-de Sitter Black

Hole by Hamilton-Jacobi method

3.1 Introduction

Hawking radiation is viewed as tunneling process caused by vacuum 
uc-

tuation near the event horizon of black hole [24, 25]. A method to describe

Hawking radiation as tunneling process was �rst developed by Kraus and

Wilczek [52, 53, 54] and then reinterpreted by Parikh and Wilczek [51]

as quantum tunneling by considering a particle with negative energy just

inside, a positive energy just outside the horizon which can be explained

as a virtual particle pair spontaneously created near the horizon of black

hole and materializes as a true particle. The particle with negative energy

tunnels into the horizon and is absorbed, while the particle with positive

energy left outside the horizon to in�nite distance and forms the Hawking

radiation.

From the past decade the tunneling method has been successfully ap-

plied to deal with Hawking radiation of black holes. A lot of works for
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various spacetimes [38, 50, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,

68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 165] show its validity

and all of these are limited to massless particle. Based on the above tun-

neling picture, two di�erent methods have been employed to calculate the

imaginary part of the action, one by Parikh and Wilczek [51, 82, 83, 84]

and other by Angheben et al. [90] named as null-geodesic and Hamilton-

Jacobi methods respectively. In fact, the method of Angheben et al.

[90] is an extension of the complex path analysis proposed by Padman-

abhan et al. [85, 86, 87, 88, 89]. On the other hand, Hawking radia-

tion from massive uncharged particle tunneling [98] and charged parti-

cle tunneling [100] were proposed by Zhang and Zhao. Following this

work, few researches have been carried out as charged particle tunneling

[77, 99, 101, 102, 103, 104, 105].

Recently, Kerner and Mann developed quantum tunneling methods for

analyzing the temperature of Taub-NUT black holes [109] using both the

null-geodesic and Hamilton-Jacobi methods. The latter method involve

calculating the relativistic Hamilton-Jacobi equation in which the derive

radiation spectrum was only a leading term due to the fact that the self-

gravitation interaction and energy conservation of emitted particle were

ignored. According to the Parikh and Wilczek's opinion the true radiation

spectrum is not strictly thermal but satis�es the underlying unitary theory

when self-gravitation interaction and energy conservation are considered.

It is clear that the background geometry of a radiating black hole should

be altered (un�xed) with the loss of energy. Taking the self-gravitation

interaction and un�xed background spacetime into account Chen, Zu and
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Yang reformed Hamilton-Jacobi method for massive particle tunneling and

investigate the Hawking radiation of the Taub-NUT black hole [126]. Con-

necting this method Hawking radiation of Kerr-NUT black hole [65] and

the charged black hole with a global monopole [99, 128] have been de-

veloped. We apply these method to investigate the Hawking radiation

of Schwarzschild-de Sitter (SdS) black hole. Since our prime concern of

this work is to calculate the imaginary part of action from Hamilton-Jacobi

equation avoid by exploring the equation of motion of the radiation particle

in Painlev�e coordinate system and calculating the Hamilton equation. We

need not di�erentiate radiation particle, although the equation of motion

of massive particle is di�erent from massless particle. After considering

the self-gravitational interaction and the un�xed background spacetime,

the derived radiation spectrum deviates from the purely thermal one and

the tunneling rate is related to the change of Bekenstein-Hawking entropy.

Study of Hawking radiation on black holes with a positive cosmologi-

cal constant become important due to the two reasons. One, the recent

observed accelerating expansion of our universe indicates the cosmological

constant might be a positive one [132, 153, 154], and conjecture about

de Sitter/CFT correspondence [157, 166, 167]. For black hole with posi-

tive cosmological constant particles can be created at both black hole and

cosmological horizon and there exists di�erent tunneling behaviors. The

outgoing and incoming particles tunnel from black hole and cosmologi-

cal horizon respectively and formed Hawking radiation. For black hole

horizon, the incoming particles can fall into the horizon along classically

permitted trajectories but for cosmological horizon outgoing particles can
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fall classically out of the horizon. So our study of black hole in de Sitter

space is important and meaningful.

This chapter is designed as follows: In the section 3.2 of this chapter we

describe the SdS black hole spacetime with the position of event horizon

and also near the event horizon the new line element of SdS black hole

is derived here. Taking the un�xed background spacetime and the self-

gravitational interaction into account, we review the Hawking radiation of

SdS black hole from massive particle tunneling method in section 3.3. In

section 3.4, the Hawking purely thermal radiation is developed and �nally,

in section 3.5, we present our remarks.

3.2 Schwarzschild-de Sitter black hole

The Schwarzschild-de Sitter black hole, which is the solution of Einstein

equations with a positive �(= 3 =`2) term corresponding to a vacuum state

spherical symmetric con�guration of the form

ds2 = g�� dx� dx�

= �
�

1 �
2m
r

�
r 2

`2

�
dt2 +

�
1 �

2m
r

�
r 2

`2

� � 1

dr2 + r 2(d� 2 + sin2�d� 2);

(3.1)

wherem being the mass of the black hole and the coordinates are de�ned

such that �1 � t � 1 , r � 0, 0 � � � � , and 0 � � � 2� . At

large r , the metric (3.1) tends to the dS space limit. The explicit dS

case is obtained by settingm = 0 while the explicit Schwarzschild case

is obtained by taking the limit ` ! 1 . When `2 is replaced by� `2, the

metric (3.1) describes an interesting nonrotating AdS black hole called the
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Schwarzschild-Anti-de Sitter (SAdS) black hole.

The horizons of the SdS black hole are located at the real positive roots

of 1
`2r (r � rh)(r � r c)(r � � r ) = 0, and there are more than one horizon if

0 < � < 1=27 where � = M 2=`2. The black hole (event) horizonrh and

the cosmological horizonr c are located, respectively, at

rh =
2m

p
3�

cos
� +  

3
; (3.2)

r c =
2m

p
3�

cos
� �  

3
; (3.3)

where

 = cos� 1(3
p

3�) : (3.4)

In the limit � ! 0, one �nds that rh ! 2m and r c ! `, and it is obvious

that r c > r h, i.e., the event horizon is the smallest positive root. The

spacetime is dynamic forr < r h and r > r c. The two horizons coincide:

rh = r c = 3m (extremal), when � = 1 =27, and the spacetime then becomes

the well known Nariai spacetime. Expandingrh in terms of mass and

cosmological parameter with � < 1=27, we obtain

rh = 2m
�

1 +
4m2

`2 + � � �
�

; (3.5)

that is, the event horizon of the SdS black hole is greater than the Schwarzs-

child event horizon, rSch = 2m. For � > 1=27, the spacetime is dynamic

for all r > 0, that is, the metric (3.1) then represents not a black hole but

an unphysical naked singularity atr = 0. For the convenient of discussion,

we de�ne � = r 2 � 2mr � r 4

`2 and then the line element becomes

ds2 = �
�
r 2dt2 +

r 2

�
dr2 + r 2(d� 2 + sin � d� 2): (3.6)
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The position of black hole horizon is same as given in Eq. (3.5). Near the

black hole horizon, the line element takes of the form

ds2 = �
� ;r (rh)(r � rh)

r 2
h

dt2+
r 2

h

� ;r (rh)(r � rh)
dr2+ r 2

h(d� 2+sin2�d� 2); (3.7)

where

� ;r (rh) =
d�
dr

�
�
�
r = r h

= 2( rh � m � 2
r 3

h

`2 ): (3.8)

Since the event horizon of SdS black hole coincides with the outer in�nite

redshift surface, here we can apply the geometrical optics limit. Within

WKB approximation [168] the relationship between the tunneling rate and

the action of the radiative particle is as

� � exp(� 2ImI ):

3.3 The Hamilton-Jacobi (HJ) Method

Here we used the method of Chen et al. [125, 126] to discuss the Hawking-

Radiation from the action of radiation particles. As mention before this

method is di�erent from Parikh and Wilczek's method in which the action

mainly relies on the exploration of the equation of motion in the Painlev�e

coordinates systems and the calculation of Hamilton equation. In the

Hamilton-Jacobi method we avoid this and calculate the imaginary part

of the action from the relativistic Hamilton-Jacobi equation.

The action I of the outgoing particle from the black hole horizon sat-

is�es the relativistic Hamilton-Jacobi equation

g��
�

@I
@x�

� �
@I
@x�

�
+ u2 = 0; (3.9)
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in which u and g�� are the mass of the particle and the inverse metric

tensors derived from the line element (3.7).

For the metric (3.7), we get non-null inverse metric tensors

g00 = �
r 2

h

� ;r (rh)(r � rh)
; g11 =

� ;r (rh)(r � rh)
r 2

h
;

g22 =
1
r 2

h
; g33 =

1
r 2

hsin2�
: (3.10)

Using Eq. (3.10), we have from Eq. (3.9)

�
r 2

h

� ;r (rh)(r � rh)

�
@I
@t

� 2

+
� ;r (rh)(r � rh)

r 2
h

�
@I
@r

� 2

+
1
r 2

h

�
@I
@�

� 2

+
1

r 2
hsin2�

�
@I
@�

� 2

+ u2 = 0: (3.11)

It is very di�cult to solve the action I for I (t; r; �; � ). Considering the

properties of black hole spacetime, the separation of variables can be taken

as follows

I = � !t + R(r ) + H (� ) + j�; (3.12)

where! and j are respectively the energy and angular momentum of the

particle. Since SdS black hole is nonrotating, the angular velocity of the

particle at the horizon is 
 h = d�
dt

�
�
�
r = r h

= 0. Using Eq. (3.12) into Eq.

(3.11), we obtain

�
r 2

h

� ;r (rh)(r � rh)
(! )2 +

� ;r (rh)(r � rh)
r 2

h

�
@R(r )

@r

� 2

+
1
r 2

h

�
@H
@�

� 2

+
j 2

r 2
hsin2�

+ u2 = 0:

)
� ;r (rh)(r � rh)

r 2
h

�
@R(r )

@r

� 2

=
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r 2
h

� ;r (rh)(r � rh)
(! )2 �

1
r 2

h

�
@H
@�

� 2

�
j 2

r 2
hsin2�

� u2

)
@R(r )

@r
= �

r 2
h

� ;r (rh)(r � rh)

�

vu
u
t

(

! 2 �
� ;r (rh)(r � rh)

r 2
h

"
1
r 2

h

�
@H
@�

� 2

+
j 2

r 2
hsin2�

+ u2

#)

Therefore,R(r ) yields

R(r ) = �
r 2

h

� ;r (rh)

Z
dr

(r � rh)

�

s

! 2 �
� ;r (rh)(r � rh)

r 2
h

[g22(@� H (� ))2 + g33j 2 + u2]: (3.13)

We consider the emitted particle as an ellipsoid shell of energy! to tunnel

across the event horizon and should not have motion in� -direction (d� =

0) and therefore, �nishing the above integral we get

R(r ) = �
�ir 2

h

� ;r (rh)
! + �; (3.14)

where � sign comes from the square root and� is the constant of inte-

gration. Inserting Eq. (3.14) into Eq. (3.12), the imaginary part of two

di�erent actions corresponding to the outgoing and incoming particles can

be written as

ImI � = �
�r 2

h

� ;r (rh)
! + Im( � ): (3.15)

In the classical limit [169], we ensure the incoming probability to be unity

when there is no re
ection i.e., every thing is absorbed by the horizon.

In this situation the appropriate value of � instead of zero or in�nity can
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be taken as� = �ir 2
h

� ;r (r h ) ! + Re(� ). Therefore, ImI � = 0 and I + give the

imaginary part of action I corresponding to the outgoing particle. Namely,

we get

ImI =
2�r 2

h

� ;r (rh)
!

=
�r 2

h

rh � m � 2r 3
h

`2

!: (3.16)

Using Eq. (3.5) into Eq. (3.16), we get the imaginary part of action as

ImI =
� 4m2

�
1 + 4m2

`2 + � � �
� 2

2m
�
1 + 4m2

`2 + � � �
�

� m � 2
`2 f 2m

�
1 + 4m2

`2 + � � �
�
g3

!: (3.17)

Since the SdS spacetime is dynamic, we �x the Arnowitt-Deser-Misner

(ADM) mass of the total spacetime and allow the SdS black hole to 
uc-

tuate. When a particle with energy! tunnels out, the mass of the SdS

black hole changed intom � ! . Since the angular velocity of the parti-

cle at the horizon is zero (
h = 0), the angular momentum is equal to

zero. Taking the self-gravitational interaction into account, the imaginary

part of the true action can be calculated from Eq. (3.16) in the following

integral form

Im = �
Z !

0

4m2
�

1 + 4m2

`2 + � � �
� 2

2m
�
1 + 4m2

`2 + � � �
�

� m � 2
`2 f 2m

�
1 + 4m2

`2 + � � �
�
g3

d! 0:(3.18)

Replacingm by m � ! we have

ImI = � �
Z (m� ! )

m

4(m � ! 0)2
�

1 + 4(m� ! 0)2

`2 + ��
� 2

2(m � ! 0)
�

1 + 4(m� ! 0)2

`2 + ��
�

+ A
� d(m � ! 0); :(3.19)

40



3.4. PURELY THERMAL RADIATION CHAPTER 3.

whereA = � (m � ! 0) � 2
`2 f 2(m � ! 0)

�
1 + 4(m� ! 0)2

`2 + ��
�

g3:

Within WKB approximation, we can neglect the terms (m � ! 0)n for

n � 5. Therefore, we rewrite Eq. (3.19) of the form

ImI = � 4�
Z (m� ! )

m

(m � ! 0)
�

1 + 8(m� ! 0)2

`2

�

�
1 � 8(m� ! 0)2

`2

� � d(m � ! 0);

= �
�
2

�
4(m � ! )2

�
1 +

8(m � ! )2

`2

�
� 4m2

�
1 +

8m2

`2

��
:

(3.20)

Therefore, the tunneling rate for the SdS black hole is given by

� � exp(� 2ImI ) = expf � [4(m � ! )2
�

1 +
8(m � ! )2

`2

�

� 4m2
�

1 +
4m2

`2

�
]g

= exp[� (r 2
f � r 2

i )]

= exp(� SBH ): (3.21)

Here, r i = 2m
�

1 + 4m2

`2

�
and r f = 2( m � ! )

�
1 + 4(m� ! )2

`2

�
are the lo-

cations of the SdS event horizon before and after the particles emission,

and � SBH = SBH (m � ! ) � SBH (m) is the change of Bekenstein-Hawking

entropy.

3.4 Purely Thermal Radiation

It is clear from Eq. (3.21) that the radiation spectrum is not pure thermal

although gives a correction to the Hawking radiation of SdS black hole.

Expanding the tunneling rate in power of! upto second order, the purely
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thermal spectrum can be derived from Eq. (3.21) as discussed by Liu et

al. [65] of the form

� � exp(� SBH )

= exp
�

� !
@SBH (m)

@m
+

! 2

2
@2SBH (m)

@m2

�
: (3.22)

The derivatives are calculated from

SBH (m � ! ) = 4 � (m � ! )2
�

1 +
8(m � ! )2

`2

�
:

Thus Eq. (3.22) becomes

� � exp(� SBH ) = exp
�

� 8�!
��

m +
16m3

`2

�
�

!
2

�
1 +

48m2

`2

���
:

(3.23)

When ` ! 1 , the pure thermal spectrum can be reduced for Schwarzschild

black hole as � � exp(� SBH ) = exp
�
� 8�!

�
m � !

2

��
. Obviously our

result in accordance with the result of Parikh and Wilczek [51, 82, 83] .

The radiation spectrum given by Eq. (3.23) is more accurate and provides

an interesting correction to Hawking pure thermal spectrum.

3.5 Concluding Remarks

In this chapter, we have presented the Hawking radiation as massive par-

ticle tunneling method from SdS black hole [129]. We have found that

the tunneling rate at the event horizon of SdS black hole is related to

the Bekenstein-Hawking entropy, and the factual radiation spectrum de-

viates from the precisely thermal one when energy conservation and self-

gravitational interaction are taken into account. Specially, wheǹ ! 1 ,
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i.e., � = 0, the SdS black hole reduces to the Schwarzschild black hole. The

positions of the event horizon of Schwarzschild black hole before and after

the emission of the particles with energy! arer i = 2m and r f = 2( m� ! ).

From Eq. (3.21), the tunneling rate of Schwarzschild black hole can be

written as

� � exp(� 2ImI ) = exp
�

�
�
4(m � ! )2 � 4m2�	

= exp[� (r 2
f � r 2

i )]

= exp(� SBH ); (3.24)

which is fully consistent with that obtained by Parikh and Wilczek [51,

82, 83].

||||||||||||||||||||||||||||
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Chapter 4

Hawking Non-thermal and Purely thermal
radiations of Schwarzschild-anti-de Sitter
Black Hole by Hamilton-Jacobi method

4.1 Introduction

According to the information loss paradox [24, 25], the information carried

out by a physical system falling toward black hole singularity has no way to

recover after a black hole has completely disappeared because the state of

the radiation is determined only by the geometry of the black hole outside

the horizon, and the black hole has no hair that records any detailed

information about the collapsing body. With the emission of thermal

radiation [24, 25], a black hole has radiated away most of its mass and

becomes smaller and smaller until evaporate away completely. In this

basis, many research works on the thermal radiation of black holes have

been made [36, 37, 38, 39, 40]. This procedure provides a leading correction

to the tunneling probability (emission rate) arising from the reduction of

the black hole mass because of the energy carried by the emitted massive

quanta.
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In 1974, Bekenstein �rst conjectured was strengthened by Hawking,

who was able to show that black holes can radiate when quantum e�ects

are taken in account [25, 34, 37, 170] and hence the situation is changed. It

seems that an initially pure quantum state (original matter), by collapsing

to a black hole and then evaporating completely, has evolved to a mixed

states (the thermal spectrum at in�nity) that violates the fundamental

postulate of quantum mechanics due to prescribe a unitary time evolution

of basis states. When the black hole has evaporated down to the Planck

size, quantum 
uctuations dominate and the semi-classical calculations

would no longer be valid, as spacetime is subject to violent quantum 
uc-

tuations on this scale. Therefore, it is still mysterious how the information

be recovered. Recent development of string/M theory and the AdS/CFT

correspondence argued that the information could be recovered if the out-

going radiation were not exactly thermal but had subtle corrections [36].

Other possibilities include the information being contained in a Planckian

remnant left over at the end of Hawking radiation or a modi�cation of the

laws of quantum mechanics to allow for non-unitary time evolution.

Wilczek and his collaborators have developed two universal methods to

correctly recover Hawking radiation of black holes. One is the gravitational

anomaly method [41] in which the Hawking radiation can be determined

by anomaly canceled conditions and regularity requirement at the event

horizon. Later on, this method is widely used to calculate the Hawk-

ing radiation for di�erent black holes [42, 43, 44, 45, 46, 47, 48, 49, 50].

The another is the semi-classical tunneling method initiated by Kraus and

Wilczek [52, 53, 54] that has been used to describe Hawking radiation suc-
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cessfully for various spacetimes [38, 50, 55, 56, 57, 58, 59, 60, 61, 62, 63,

64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 165], where a

particle moves in dynamical geometry and all of these works are limited

to massless particle. This method involve calculating the imaginary part

of the action for the process of s-wave emission across the horizon, which

in turn is related to the Boltzmann factor for emission at the Hawking

temperature. Applying this method, two di�erent methods have been em-

ployed to calculate the imaginary part of the action, one the null geodesic

method developed by Parikh and Wilczek [51, 82, 83, 84] and other by

Angheben et al. [90]. In fact, the method of Angheben et al. [90] is an

extension of the complex path analysis proposed by Padmanabhan et al.

[85, 86, 87, 88, 89]. The latter method involves consideration of a emitted

scalar particle, ignoring its self-gravitation and assumes that its action sat-

is�es the relativistic Hamilton-Jacobi equation. An appropriate ansatz for

the action can be obtained from the symmetries of the spacetime which is

known as the Hamilton-Jacobi ansatz. Both the methods show that when

the self-gravitational interaction and the un�xed background spacetime

are taken into account, the actual Hawking radiation spectrum deviates

from the purely thermal one, satis�es the underlying unitary theory and

gives a leading correction to the radiation spectrum.

On the other hand, Hawking radiation from massive uncharged particle

tunneling [98] and charged particle tunneling [100] from black hole was �rst

proposed by Zhang and Zhao. Exploiting this work, a few researches have

been carried out as charged particle tunneling [99, 101, 102, 103, 104].

Recently, Kerner and Mann developed quantum tunneling methods for
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analyzing the temperature of Taub-NUT black holes [109] using both the

null-geodesic and Hamilton-Jacobi methods. In the latter method the

self-gravitation interaction and energy conservation of emitted particle

were ignored to calculate the thermal radiation spectrum. Parikh and

Wilczek have shown that these radiation spectrum is not strictly thermal

but satis�es the underlying unitary theory when self-gravitation inter-

action and energy conservation are considered. Considering Kerner and

Mann's process Chen, Zu and Yang reformed Hamilton-Jacobi method

for massive particle tunneling and investigate the Hawking radiation of

the Taub-NUT black hole [126]. Using this method Hawking radiation of

Kerr-NUT black hole [65], the charged black hole with a global monopole

[99, 128] and Schwarzschild-de Sitter (SdS) black hole [129] have been re-

viewed. We apply these method to investigate the Hawking radiation of

Schwarzschild-anti-de Sitter (SAdS) black hole.

The solutions of black holes in Anti-de Sitter spaces come from the

Einstein equations with a negative cosmological constant. Anti-de Sitter

black holes are di�erent from de Sitter black holes. The di�erence consist-

ing in them is due to minimum temperatures that occur when their sizes

are of the order of the characteristic radius of the anti-de Sitter space. For

larger Anti-de Sitter black holes, their red-shifted temperatures measured

at in�nity are greater. This implies that such black holes can be in stable

equilibrium with thermal radiation at a certain temperature. Moreover,

recent development in string /M-theory greatly stimulate the study of

black holes in anti-de Sitter spaces. One example is the AdS/CFT corre-

spondence [155, 156, 171] between a weakly coupled gravity system in an
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anti-de Sitter background and a strongly coupled conformal �eld theory

on its boundary. So our study on the Schwarzschild-anti-de Sitter black

holes is reasonable and meaningful.

The next section will outline the position of event horizon of SAdS black

hole. In section 4.3, we then consider the un�xed background spacetime

and the self-gravitational interaction into account, we review the Hawking

non-thermal radiation of SAdS black hole from massive particle tunneling

method. The new line element of SAdS black hole near the even horizon

is also derived in this section. In section 4.4, we have derived the Hawking

purely thermal radiation from non-thermal rate. Finally, in section 4.5,

we present our remarks.

4.2 Schwarzschild-anti-de Sitter black hole

The Schwarzschild-anti-de Sitter black hole with massM and a negative

cosmological constant � = � 3=`2 is given by

ds2 = � f (r )dt2 +
1

f (r )
dr2 + r 2(d� 2 + sin2�d� 2); (4.1)

where the lapse functionf (r ), is given by

f (r ) = 1 �
2m
r

�
� r 2

3
; (4.2)

and the coordinates are de�ned such that�1 � t � 1 , r � 0, 0 � � � �

and 0 � � � 2� . The lapse function vanished at the zeros of the cubic

equation

r 3 + `2r � 2m`2 = 0: (4.3)
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The only real roots of this equation is

r+ =
2
3

p
3` sinh

�
1
3

sinh� 1
�

3
p

3
m
`

� �
: (4.4)

Expanding r+ in terms of m and ` with 1=`2 << m 2=9, we obtain

r+ = 2m
�

1 �
4m2

`2 + ::::
�

: (4.5)

Therefore, we can writer+ = 2m�; with � < 1. The event horizon of the

SAdS black hole is smaller than the Schwarzschild event horizon,rH = 2m.

4.3 The HJ Method for Non-thermal Radiation

We next consider the method of Chen et al. [125, 126] for calculating the

imaginary part of the action making use of the Hamilton-Jacobi equation

[90]. We assume that the action of the outgoing particle is given by the

classical actionI satis�es the relativistic Hamilton-Jacobi equation

g��
�

@I
@x�

� �
@I
@x�

�
+ u2 = 0; (4.6)

in which u and g�� are the mass of the particle and the inverse metric

tensors derived from the line element (4.1). Since the event horizon of

SAdS black hole coincides with the outer in�nite redshift surface, here we

can apply the geometrical optics limit. Using the WKB approximation

[168], the tunneling probability for the classically forbidden trajectory of

the s-wave coming from inside to outside of SAdS event horizon is given

by

� � exp(� 2ImI ): (4.7)
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As mention before, this method is di�erent from Parikh and Wilczek's

method (Null geodesic) in which the action mainly relies on the exploration

of the equation of motion in the Painlev�e coordinates systems and the

calculation of Hamilton equation. But in the Hamilton-Jacobi method

we avoid this for calculating the imaginary part of the actionI . For the

convenient of discussion, we de�ne � = r 2 � 2mr + r 4

`2 and then the line

element (4.1) can be written as

ds2 = �
�
r 2dt2 +

r 2

�
dr2 + r 2(d� 2 + sin � d� 2): (4.8)

Near the event horizon, the above line element can be rewritten as

ds2 = �
� ;r (r+ )(r � r+ )

r 2
+

dt2 +
r 2

+

� ;r (r+ )(r � r+ )
dr2

+ r 2
+ (d� 2 + sin2�d� 2); (4.9)

where

� ;r (r+ ) =
d�
dr

�
�
�
r = r+

= 2( r+ � m + 2
r 3

+

`2 ): (4.10)

For the metric (4.9), the non-null inverse metric tensors are

g00 = �
r 2

+

� ;r (r+ )(r � r+ )
; g11 =

� ;r (r+ )(r � r+ )
r 2

+
;

g22 =
1
r 2

+
; g33 =

1
r 2

+ sin2�
: (4.11)

The Hamilton-Jacobi equation (4.6), with the help of Eq. (4.11) becomes

�
r 2

+

� ;r (r+ )(r � r+ )

�
@I
@t

� 2

+
� ;r (r+ )(r � r+ )

r 2
+

�
@I
@r

� 2

+
1
r 2

+

�
@I
@�

� 2

+
1

r 2
+ sin2�

�
@I
@�

� 2

+ u2 = 0: (4.12)
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It is crux to solve the action I for I (t; r; �; � ). Considering the properties

of black hole spacetime, the separation of variables can be taken as follows

I = � !t + R(r ) + H (� ) + j�; (4.13)

where! and j are respectively the energy and angular momentum of the

particle. Since SAdS black hole is nonrotating, the angular velocity of the

particle at the horizon is 
 + = d�
dt

�
�
�
r = r+

= 0. Using Eq.(4.13) into Eq.

(4.12) and solvingR(r ) yields an expression of

R(r ) = �
r 2

+

� ;r (r+ )

Z
dr

(r � r+ )

�

s

! 2 �
� ;r (r+ )(r � r+ )

r 2
+

[g22(@� H (� ))2 + g33j 2 + u2]:(4.14)

We consider the emitted particle as an ellipsoid shell of energy! to tunnel

across the event horizon and should not have motion in� -direction (d� =

0) and therefore, �nishing the above integral we get

R(r ) = �
2:�ir 2

+

� ;r (r+ )
! + �

= �
i4�m 2

(r+ � m + 2 r 3
+

`2 )

�
1 �

4m2

`2 + ::::
� 2

! + �; (4.15)

where� sign comes from the square root and� is the constant of integra-

tion. Inserting Eq. (4.15) into Eq. (4.13), the imaginary part of actions

corresponding to outgoing and incoming particles can be written as

ImI � = �
4�m 2

(r+ � m + 2 r 3
+

`2 )

�
1 �

4m2

`2 + ::::
� 2

! + �: (4.16)

According to the classical limit given in Ref. [169], we ensure that the in-

coming probability to be unity when there is no re
ection i.e., every thing
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is absorbed by the horizon. In this situation the appropriate value of� in-

stead of zero or in�nity can be taken as� = 4�m 2

(r + � m+2
r 3
+

` 2 )

�
1 � 4m2

`2 + ::::
� 2

! +

Re(� ). Therefore, ImI � = 0 and I + give the imaginary part of action I

corresponding to the outgoing particle with the help of Eq. (4.10) to the

form

ImI =
4�m 2

(r+ � m + 2 r 3
+

`2 )

�
1 �

4m2

`2 + ::::
� 2

!: (4.17)

Substituting Eq. (4.5) into Eq. (4.17), the imaginary part of action takes

the form

ImI =
4�m 2

�
1 � 4m2

`2 + ��
� 2

!

2m
�
1 � 4m2

`2 + ��
�

� m + 2
`2

�
2m

�
1 � 4m2

`2 + ��
�	 3:

(4.18)

Since the SAdS spacetime is dynamic due to the presence of cosmological

constant, we consider the ADM (Arnowitt-Deser-Misner) mass of the total

spacetime to be �xed and permit the SAdS black hole to 
uctuate. When

a particle with energy ! tunnels out, the mass of the SAdS black hole

changed into m � ! . Since the angular velocity of the particle at the

horizon is zero (
+ = 0), the angular momentum is equal to zero. Taking

self-gravitation interaction into account it has been shown in refs. [53, 172]

that the black hole radiation is no longer thermal and therefore in view of

this assumption, the imaginary part of the true action can be calculated

from Eq. (4.18) in the following integral form

ImI = 4�
Z !

0

m2
�

1 � 4m2

`2 + � � �
� 2

2m
�
1 � 4m2

`2 + � � �
�

� m + 2
`2 f 2m

�
1 � 4m2

`2 + � � �
�
g3

d! 0:
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Replacingm by m � ! , we have

ImI = � 4�
Z (m� ! )

m

(m � ! 0)2
�

1 � 4(m� ! 0)2

`2 + ��
� 2

2(m � ! 0)
�

1 � 4(m� ! 0)2

`2 + ��
�

+ A
� d(m � ! 0);(4.19)

whereA = � (m � ! 0) + 2
`2 f 2(m � ! 0)

�
1 � 4(m� ! 0)2

`2 + ��
�

g3:

Employing WKB approximation, we neglect the terms (m � ! 0)n for

n � 5, and rewrite Eq. (4.19) as

ImI = � 4�
Z (m� ! )

m

(m � ! 0)
�

1 � 8(m� ! 0)2

`2

�

�
1 + 8(m� ! 0)2

`2

� � d(m � ! 0)

= �
�
2

�
4(m � ! )2

�
1 �

8(m � ! )2

`2

�
� 4m2

�
1 �

4m2

`2

��
(4.20)

Therefore, from Eq. (4.7) the tunneling probability for the SAdS black

hole is given by

� � exp(� 2ImI ) = expf � [4(m � ! )2
�

1 �
8(m � ! )2

`2

�

� 4m2
�

1 �
4m2

`2

�
]g

= exp[� (r 2
f � r 2

i )]

= exp(� SBH ); (4.21)

where r i = 2m
�

1 � 4m2

`2

�
and r f = 2( m � ! )

�
1 � 4(m� ! )2

`2

�
are the lo-

cations of the SAdS event horizon before and after the particle emission,

and � SBH = SBH (m � ! ) � SBH (m) is the change of Bekenstein-Hawking

entropy.
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4.4 Purely Thermal Radiation

The radiation spectrum described by Eq. (4.21) is not pure thermal al-

though gives a correction to the Hawking radiation of SAdS black hole.

The purely thermal spectrum can be derived from Eq. (4.21) by expand-

ing the tunneling rate in power of! upto second order as discussed by Liu

et al. [65] of the form

� � exp(� SBH ) = exp
�

� !
@SBH (m)

@m
+

! 2

2
@2SBH (m)

@m2

�
: (4.22)

It is clear from Eq. (4.21) that

SBH (m � ! ) = 4 � (m � ! )2
�

1 �
8(m � ! )2

`2

�
; (4.23)

which gives

@SBH (m � ! )
@m

= 8� (m � ! )
�

1 �
16(m � ! )2

`2

�
;

@2SBH (m � ! )
@m2 = 8�

�
1 �

48(m � ! )2

`2

�
; (4.24)

with ! = 0, the above equation takes the following simple form

@SBH (m)
@m

= 8
�

m �
16m3

`2

�
;

@2SBH (m)
@m2 = 8

�
1 �

48m2

`2

�
: (4.25)

The purely thermal spectrum described by Eq. (4.22) can be reduced with

the help of Eq. (4.25) of the form

� � exp(� SBH )

= exp
�

� 8�!
��

m �
16m3

`2

�
�

!
2

�
1 �

48m2

`2

���
: (4.26)

If we replace`2 with � `2, the Hawking non-thermal spectrum and pure

thermal spectrum agree with these of SdS black hole [129].

54



4.5. CONCLUDING REMARKS CHAPTER 4.

4.5 Concluding Remarks

In this chapter, we have presented an extension of the classical tunnel-

ing framework [58, 65, 128] for the spherically symmetric black hole cases

to deal with Hawking radiation of massive particles as tunneling process

through the event horizon of SAdS black hole. By treating the background

spacetime as dynamical, the energy and the angular momentum as conser-

vation, we have found the non-thermal and purely thermal tunneling prob-

abilities of SAdS black hole when the particle's self-gravitation is taken

into account. The non-thermal tunneling probability of particle emission

is proportional to the phase space factor depending on the initial and �nal

entropy of the system (the change of the Bekenstein-Hawking entropy),

which implies that the emission spectrum actually deviates from perfect

thermally but is in agreement with an underlying unitary theory. The

similar results have been shown under the same assumption for massive

particles tunneling across the event horizon of SdS [129] and Taub-NUT

[126] black holes. Our motivation also indeed support the results ob-

tained by massless or massless charged particles tunneling from di�erent

spacetimes such as charged black hole with a global monopole [99, 128],

Kerr-NUT black hole [65] and Kerr and Kerr-Newman black holes [103]

as well as other cases [48, 172]. We therefore come to the conclusion that

the actual radiation spectrum of SAdS black hole is not precisely ther-

mal, which provides an interesting correction to Hawking pure thermal

spectrum.

In the limiting case, i.e., when � = 0, our results for non-thermal and
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purely thermal radiations are reduced to

� � exp(� 2ImI ) = exp
�

�
�
4(m � ! )2 � 4m2�	 ; (4.27)

and

� � exp(� SBH ) = expf� 8�! (m �
!
2

)g: (4.28)

These are the non-thermal and purely thermal tunneling rates of Schwar-

zschild black hole, wherer i = 2m and r f = 2( m � ! ) are the positions of

the event horizon of Schwarzschild black hole before and after the emission

of the particles. Obviously, both the results are fully consistent with that

obtained by Parikh and Wilczek [51, 82, 83].

||||||||||||||||||||||||||||
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Chapter 5

Hawking Non-thermal and Purely thermal
radiations of Reissner-Nordstr•om-de Sitter

Black Hole by Hamilton-Jacobi method

5.1 Introduction

A wonderful fact of black hole radiation [24, 25] have discovered by Hawk-

ing in 1975 and several works have been done to calculate this quantum

e�ect [34]. Nowadays, the radiation of black holes is called `Hawking ra-

diation'. Furthermore Hawking proposed that the radiation of black holes

can be shown as tunneling and the emission spectrum in light of quantum

�eld theory in curved spacetime with the exception of following the tun-

neling picture. The tunneling phenomenon has been extensively studied

[169, 173, 174, 175, 176, 177, 178, 179, 180] and a lot of work has already

been successfully applied on various black hole spacetimes in references

[38, 50, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73,

74, 75, 76, 78, 79, 80, 81, 165, 181]. Here, a particle moves in dynamical

geometry and all of these works are limited to massless particle and gives a
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correction to the emission rate arising from loss of mass of the black hole

crresponding to the energy carried by radiated quantum. The method

delineated Hawking radiation as tunneling process was �rst disclosed by

Kraus and Wilczek [53, 54] and then reinterpreted by Parikh and Wilczek

[51]. In this method the tunneling rate is related to the calculating of the

imaginary part of the action for the process of s-wave emission across the

horizon, which in turn is related to the Boltzmann factor for emission at

the Hawking temperature. In general, based on semiclassical tunneling pic-

ture two universal methods are applied in references to derive the action.

One method is called as the Null Geodesic method developed by Parikh

and Wilczek [51, 82, 83] and another method, proposed by Angheben et

al. [90] known as Hamilton-Jacobi methods and it is an extension of the

complex path analysis proposed by Padmanabhan et al.[85, 86, 87, 88, 89].

In 2005, Zhang and Zhao have proposed the Hawking radiation from

massive uncharged particle tunneling [98] and charged particle tunneling

[100]. Following this work several researches have been carried out as

charged particle tunneling [99, 101, 102, 103, 104]. Kerner and Mann have

developed quantum tunneling methods for calculating the thermal radia-

tion spectrum of Taub-NUT black holes [109] using both the null-geodesic

and Hamilton-Jacobi methods by ignoring the self-gravitation interaction

and energy conservation of emitted particle. However, according to the

Parikh and Wilczek's opinion [51], the radiation spectrum is not strictly

thermal but satis�es the underlying unitary theory when self-gravitation

interaction and energy conservation are considered. Considering Kerner

and Mann's process Chen, Zu and Yang reformed Hamilton-Jacobi method
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for massive particle tunneling and investigate the Hawking radiation of the

Taub-NUT black hole [126]. Using this method Hawking radiation of Kerr-

NUT black hole [65], the charged black hole with a global monopole [99]

have been reviewed.

Recently, we have reformed Hamilton-Jacobi method and investigate

the Hawking radiation of the SdS black hole [129] where the position of

the black hole horizon is taken in a series of black hole's parameters so that

the spacetime metric becomes dynamical and self-gravitation interaction

are taken into account. Here, we also assume that the changed of back-

ground geometry can be treated as the loss of radiated energy of the black

hole. In this chapter, the same method have been applied to investigate

the Hawking radiation of Reissner-Nordstr•om-de Sitter (RNdS) black hole

[160]. In order to narrate Hawking-Radiation from the action of radiation

particles the method of Chen et al. [125, 126] is used. Our chief purpose

concerned of this work is to calculate the imaginary part of action from

Hamilton-Jacobi equation avoid by exploring the equation of motion of

the radiation particle in Painlev�e coordinate system and calculating the

Hamilton equation. Though the equation of motion of massive particles

are di�erent from massless particle, We no need di�erentiate radiation

particle. Above all as the self-gravitational interaction and the un�xed

background spacetime are not assumed, the derived radiation spectrum

deviates from the purely thermal one and the tunneling rate is related to

the change of Bekenstein-Hawking entropy.

The cosmological constant with positive sign plays a prominent role in

two reasons. First, the accelerating expansion of our universe indicates the
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cosmological constant might be a positive one [132, 153, 154]. Secondly,

conjecture about de Sitter/CFT correspondence [166, 167] has been sug-

gested that there is a dual relation between quantum gravity on a dS space

and Euclidean conformal �eld theory (CFT) on a boundary of dS space

[157, 159]. The outgoing particles tunnel from black hole horizon and in-

coming particles tunnel from cosmological horizon and formed Hawking

radiation and the incoming particles can fall into the horizon along classi-

cally permitted trajectories for black hole horizon, but outgoing particles

can fall classically out of the horizon for cosmological horizon.

The latter section of this chapter describes the RNdS black hole space-

time with the position of event horizon. Near the event horizon the new

line element of RNdS black hole is also derived here. The un�xed back-

ground spacetime and the self-gravitational interaction are taken into ac-

count, we review the Hawking radiation of RNdS black hole from massive

particle tunneling method in section 5.3. In section 5.4, we have devel-

oped the Hawking purely thermal rate from non-thermal rate. Finally, in

section 5.5, we present our remarks.

5.2 Reissner-Nordstr•om-de Sitter black hole

The line element of Reissner-Nordstr•om-de Sitter black hole, which is the

Schwarzschild black hole generalized with a charge parameter and a posi-

tive cosmological constant �(= 3=`2) has the form

ds2 = � f (r )dt2 +
1

f (r )
dr2 + r 2(d� 2 + sin2�d� 2); (5.1)
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where the metric functionf (r ) is given by

f (r ) = 1 �
2m
r

�
r 2

`2 +
q2

r 2:

Here,m being the mass,̀ the cosmological radius,q the total charge(elec-

tric plus magnetic) with respect to the static de Sitter space are de�ned

such that �1 � t � 1 , r � 0, 0 � � � � , and 0 � � � 2� . At large

r , the metric (5.1) tends to the dS space limit. The explicit dS case is

obtained by setting m = 0 while the explicit Reissner-Nordstr•om case is

obtained by taking the limit ` ! 1 . When `2 is replaced by� `2, the

metric (5.1) describes an interesting nonrotating AdS black hole called

the Reissner-Nordstr•om-Anti-de Sitter (RNAdS) black hole.

The spacetime causal structure depends strongly on the singularities

of the metric given by the zeros off (r ). Depending on the black hole

parametersM , q and `, the function f (r ) may have three, two, or even

no real positive zeros. For the RNdS black hole case we are interested in

which f (r ) has two simple real, positive roots:rh and r c. Here we indicate

rh as the outer (event) horizon andr c the cosmological horizon. To get

these zeros off (r ), we haver 4 � `2r 2 + 2m`2r � `2q2 = 0. The black hole

event horizonrh and the cosmological horizonr c are located, respectively,

at

rh =
`

p
3

sin
h1
3

sin� 1 3m
p

3

`
q

1 + 4q2

`2

i

�
�

1 +

vu
u
t 1 �

q2`
p

3m
:

2
1 + �

cosec
h1
3

sin� 1 3m
p

3

`
q

1 + 4q2

`2

i�
; (5.2)
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r c =
`

p
3

sin
h1
3

sin� 1 3m
p

3

`
q

1 + 4q2

`2

i

�
�

vu
u
t 1 +

(1 + � )`3m

2
p

3
cosec3

h1
3

sin� 1 3m
p

3

`
q

1 + 4q2

`2

i
� 1

�
; (5.3)

where

� =

vu
u
t 1 �

4q2

3m2sin2
h1
3

sin� 1 3
p

3m

`
q

1 + 4q2

`2

i
: (5.4)

Expanding rh in terms of m, ` and q with 27m2

`2 < 1 as well as3
p

3m
`� < 1

and setting � = 1, we obtain

rh =
m
�

�
1 +

4m2

`2� 2 + � � �
�  

1 +

r

1 �
q2�
m2

!

; (5.5)

which can be written as

rh =
1
�

�
1 +

4m2

`2� 2 + � � �
� �

m +
p

m2 � q2�
�

; (5.6)

where� =
q

1 + 4q2

`2 .

that is, the event horizon of the RNdS black hole is greater than the

Reissner-Nordstr•om event horizonrRN = m +
p

m2 � q2.

Again it gives the Reissner-Nordstr•om (RN) black hole [99] for̀ ! 1

and Schwarzschild-de Sitter black hole [129] forq = 0. The metric (5.1)

represents an interesting asymptotically de-Sitter extreme RN black hole

for q2 = �m 2, while for q2 > �m 2 it does represent any black hole but an

unphysical naked singularity atr = 0. We now de�ne � = r 2+ q2� 2mr � r 4

`2

and then the line element (5.1) becomes

ds2 = �
�
r 2dt2 +

r 2

�
dr2 + r 2(d� 2 + sin2�d� 2): (5.7)
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The position of black hole horizon is same as given in Eq. (5.6). The line

element near the black hole horizon becomes

ds2 = �
� ;r (rh)(r � rh)

r 2
h

dt2+
r 2

h

� ;r (rh)(r � rh)
dr2+ r 2

h(d� 2+sin2�d� 2); (5.8)

where

� ;r (rh) =
d�
dr

�
�
�
r = r h

= 2( rh � m � 2
r 3

h

`2 ): (5.9)

The relationship between the tunneling rate and the action of the radiative

particle using the WKB approximation [168] is as

� � exp(� 2ImI ):

5.3 The Hamilton-Jacobi Method

In the Hamilton-Jacobi method we avoid the exploration of the equation

of motion in the Painlev�e coordinates system. To calculate the imaginary

part of the action from the relativistic Hamilton-Jacobi equation, the ac-

tion I of the outgoing particle from the black hole horizon satis�es the

relativistic Hamilton-Jacobi equation

g��
�

@I
@x�

� �
@I
@x�

�
+ u2 = 0; (5.10)

in which u and g�� are the mass of the particle and the inverse metric

tensors derived from the line element (5.8).

The non-null inverse metric tensors for the metric (5.8) are

g00 = �
r 2

h

� ;r (rh)(r � rh)
; g11 =

� ;r (rh)(r � rh)
r 2

h
;

g22 =
1
r 2

h
; g33 =

1
r 2

hsin2�
: (5.11)
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We can write Eq. (5.10) with the help of Eq. (5.11) as

�
r 2

h

� ;r (rh)(r � rh)

�
@I
@t

� 2

+
� ;r (rh)(r � rh)

r 2
h

�
@I
@r

� 2

+
1
r 2

h

�
@I
@�

� 2

+
1

r 2
hsin2�

�
@I
@�

� 2

+ u2 = 0: (5.12)

It is not easy to done to solve the actionI for I (t; r; �; � ). Considering

the properties of black hole spacetime, the separation of variables can be

taken as follows

I = � !t + R(r ) + H (� ) + j�; (5.13)

where! and j are respectively the energy and angular momentum of the

particle. Since RNdS black hole is nonrotating, the angular velocity of the

particle at the horizon is 
 h = d�
dt

�
�
�
r = r h

= 0. Inserting Eq. (5.13) into Eq.

(5.12) and solvingR(r ) contains an expression of

R(r ) = �
r 2

h

� ;r (rh)

Z
dr

(r � rh)

�

s

! 2 �
� ;r (rh)(r � rh)

r 2
h

[g22(@� H (� ))2 + g33j 2 + u2]:(5.14)

We consider the emitted particle as an ellipsoid shell of energy! to tunnel

across the event horizon and should not have motion in� -direction (d� =

0) and therefore, �nishing the above integral we get

R(r ) = �
�ir 2

h

� ;r (rh)
! + �; (5.15)

where � sign comes from the square root and� is the constant of inte-

gration. Inserting Eq. (5.15) into Eq. (5.13), the imaginary part of two

di�erent actions corresponding to the outgoing and incoming particles can
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be written as

ImI � = �
�r 2

h

� ;r (rh)
! + Im( � ): (5.16)

In accordance with classical limit [169], we make certain the incoming

probability to be unity when there is no re
ection i.e., everything is ab-

sorbed by the horizon. In this situation the appropriate value of� instead

of zero or in�nity can be taken as� = �ir 2
h

� ;r (r h ) ! +Re(� ). Therefore, ImI � = 0

and I + give the imaginary part of actionI corresponding to the outgoing

particle of the form

ImI =
2�r 2

h

� ;r (rh)
!

=
�r 2

h

rh � m � 2r 3
h

`2

!: (5.17)

Using Eq. (5.6) into Eq. (5.17), we get the imaginary part of action as

ImI =
1

� 2

�
1 + 4m2

`2� 2 + ��
� 2

(m +
p

m2 � q2� )2

1
�

�
1 + 4m2

`2� 2 + ��
�

(m +
p

m2 � q2� ) � m � A
!; (5.18)

whereA = 2
`2� 3

�
1 + 4m2

`2� 2 + ��
� 3

(m +
p

m2 � q2� )3.

ImI =
1

� 2 (m +
p

m2 � q2� )2

1
�

h�
1 � 4m2

`2� 2 + ��
�

(m +
p

m2 � q2� ) � m�
�
1 � 8m2

`2� 2 + ��
�

� B
i !;

whereB = 2
`2� 2

�
1 + 4m2

`2� 2 + ��
�

(m +
p

m2 � q2� )3.

Now for the simplicity, neglecting m3 and its higher order terms, we

then get

ImI =
1
�

:
(m +

p
m2 � q2� )2

(m +
p

m2 � q2� ) � m�
!: (5.19)
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In presence of cosmological constant, RNdS spacetime is dynamic, we

�x the ADM(Arnowitt-Deser-Misner) mass of the total spacetime and al-

low the RNdS black hole to 
uctuate. When a particle with energy!

tunnels out, the mass of the RNdS black hole changed intom � ! . Since

the angular velocity of the particle at the horizon is zero (
h = 0), the

angular momentum is equal to zero. Taking the self-gravitational interac-

tion into account, the imaginary part of the true action can be calculated

from Eq. (5.19) in the following integral form

ImI = �
1
�

:
Z !

0

(m +
p

m2 � q2� )2

(m +
p

m2 � q2� ) � m�
d! 0 (5.20)

ImI = �
1
�

:
Z !

0

(m +
p

m2 � q2� )2

p
m2 � q2� + (1 � � )m

d! 0: (5.21)

For the maximum value of integration, neglecting (1� � )m. Equation

(5.21) becomes

ImI = �
1
�

:
Z !

0

�
m +

p
m2 � q2�

� 2

p
m2 � q2�

d! 0: (5.22)

Replacingm by m � ! we have

ImI = � �
1
�

:
Z (m� ! )

m

�
m � ! 0+

p
(m � ! 0)2 � q2�

� 2

p
(m � ! 0)2 � q2�

d(m � ! 0) (5.23)

ImI = � �
1
�

:
Z (m� ! )

m

2(m � ! 0)2 + 2( m � ! 0)
p

(m � ! 0)2 � q2� � q2�
p

(m � ! 0)2 � q2�
� d(m � ! 0): (5.24)
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Finishing the integral we get

ImI = � �
1
�

:[(m � ! )
p

(m � ! )2 � q2� + ( m � ! )2 � m
p

m2 � q2� � m2]:

(5.25)

Therefore, the tunneling rate for the RNdS black hole is given by

� � exp(� 2ImI ) = expf �:
1
�

[2(m � ! )2

+2( m � ! )
p

(m � ! )2 � q2� � 2m
p

m2 � q2� � 2m2]g

= exp[� (r 2
f � r 2

i )]

= exp(� SBH ): (5.26)

Here, r i = 1p
� [m +

p
m2 � q2� ] and r f = 1p

� [(m � ! ) +
p

(m � ! )2 � q2� ]

are the locations of the RNdS event horizon before and after the parti-

cles emission, and �SBH = SBH (m � ! ) � SBH (m) is the di�erence of

Bekenstein-Hawking entropy.

5.4 Purely Thermal Radiation

The radiation spectrum is not pure thermal although gives a correction

to the Hawking radiation of RNdS black hole as point out by Eq. (5.26).

In the form of a thermal spectrum, using the WKB approximation the

tunneling rate is also related to the energy and the Hawking temperature

of the radiative particle as � � exp(� � !
T ). If � ! < 0 is the energy of

the emitted particle then due to energy conservation, the energy of the

outgoing shell must be� � ! , then above expression becomes

� � exp(
� !
T

):
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Now using the �rst law of thermodynamics, we can write � � exp(� S),

which is related to the change of Bekenstein-Hawking entropy as follows

� � exp(� SBH ) = expf SBH (M � ! ) � SBH (M )g: (5.27)

We establish Eq.(5.27) as developed by Rahman et al. [129] in power of!

upto second order using Taylor's theorem of the form

� � exp(� SBH ) = exp
�

� !
@SBH (m)

@m
+

! 2

2
@2SBH (m)

@m2

�
: (5.28)

Using Eqs. (5.26) and (5.27), we obtain from Eq. (5.28) as follows

� � exp(� SBH )

= exp
h

�
2�!
�

f (2m +
p

m2 � q2� +
m2

p
m2 � q2�

)

�
!
2

(2 +
3m

p
m2 � q2�

�
m3

(m2 � q2� )
3
2

)g
i
: (5.29)

When ` ! 1 , then � = 1 the pure thermal spectrum can be reduced

for the Reissner-Nordstr•om black hole [99]. It is clear that the result in

accordance with the result of Parikh and Wilczek [51, 82, 83]. The radia-

tion spectrum given by (5.29) is more accurate and provides an interesting

correction to Hawking pure thermal spectrum.

5.5 Concluding Remarks

Hawking radiation as massive particle tunneling method from RNdS black

hole [160] have been presented in this chapter. By taking into account the

self-gravitational interaction, the background spacetime as dynamical and

the energy as conservation, we have recovered that the tunneling rate
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at the event horizon of RNdS black hole is related to the Bekenstein-

Hawking entropy. Specially, wheǹ ! 1 , then � = 1 the RNdS black

hole reduces to the Reissner-Nordstr•om black hole [99]. The positions

of the event horizon of Reissner-Nordstr•om black hole before and after

the emission of the particles with energy! are r i = m +
p

m2 � q2 and

r f = ( m � ! ) +
p

(m � ! )2 � q2. From Eq. (5.26), the non-thermal

tunneling rate of Reissner-Nordstr•om black hole can be written as

� � exp(� 2ImI ) = expf � [f (m � ! ) +
p

(m � ! )2 � q2g2

�f m +
p

m2 � q2g2]g

= exp[� (r 2
f � r 2

i )]

= exp(� SBH ); (5.30)

and the purely thermal rate of Reissner-Nordstr•om black hole can be writ-

ten as

� � exp(� SBH ) = exp
h

� 2�! f (2m +
p

m2 � q2 +
m2

p
m2 � q2

)

�
!
2

(2 +
3m

p
m2 � q2

�
m3

(m2 � q2)
3
2

)g
i
: (5.31)

It is interesting that when q = 0, Eq. (5.26) gives the result of SdS black

hole [129]. Also, wheǹ ! 1 andq = 0 our results coincide with that ob-

tained by Parikh and Wilczek [51, 82, 83] for spherically symmetric black

holes.

||||||||||||||||||||||||||||
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Chapter 6

Hawking Non-thermal and Purely thermal
radiations of Reissner-Nordstr•om-anti-de

Sitter Black Hole by Hamilton-Jacobi
method

6.1 Introduction

By the information loss paradox [24, 25], the information carried out by

a physical system falling toward black hole singularity has no way to re-

cover after a black hole has completely disappeared. The loss of informa-

tion was considered as preserved inside the black hole and so was not a

serious problem in the classical theory. In 1976 a semi-classical calcula-

tion of black hole radiance was proposed by Hawking and showed that the

emitted radiation is exactly thermal. In particular, the detailed form of

the radiation does not depend on the detailed structure of the body that

collapsed to form the black hole. With the emission of thermal radiation

[24, 25], black holes could lose energy, shrink, and eventually evaporate

and becomes smaller and smaller until disappears completely. In this ba-

sis, many research works on the thermal radiation of black holes have been
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made [38, 51, 52, 53]. It seems that an initially pure quantum state, by

collapsing to a black hole and then evaporating completely, has evolved to

a mixed state and in this situation it is impossible for one to predict about

certainty what the �nal quantum state will be even if the initial quantum

state were precisely known and therefore violates the fundamental princi-

ples of quantum theory due to prescribe a unitary time evolution of basis

states. When the black hole has evaporated down to the Planck size,

quantum 
uctuations dominate and the semi-classical calculations would

no longer be valid, as spacetime is subject to violent quantum 
uctuations

on this scale. There are various ideas about how the paradox is solved.

Since the 1997 proposal of the AdS/CFT correspondence, the predom-

inant belief among physicists is that information is preserved and that

Hawking radiation is not precisely thermal but receives quantum correc-

tions. Other possibilities include the information being contained in a

Planckian remnant left over at the end of Hawking radiation or a modi-

�cation of the laws of quantum mechanics to allow for non-unitary time

evolution.

Hawking radiation from massive uncharged particle tunneling [98] and

charged particle tunneling [100] from black hole was �rst proposed by

Zhang and Zhao. Accomplishment this work, a few researches have been

carried out as charged particle tunneling [99, 101, 102, 103, 104]. By the

null-geodesic and Hamilton-Jacobi methods, for analyzing the temperature

of Taub-NUT black holes [109], Kerner and Mann developed quantum tun-

neling methods and Hamilton-Jacobi method is rolled up for calculating

the relativistic Hamilton-Jacobi equation. Here the radiation spectrum
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was only a heading term because the fact that the self-gravitation interac-

tion and energy conservation of emitted particle were ignored. Parikh and

Wilczek's opinion the true radiation spectrum is not strictly thermal but

satis�es the underlying unitary theory when self-gravitation interaction

and energy conservation are considered. Clearly the background geome-

try of a radiating black hole should be altered (un�xed) with the loss of

energy. Self-gravitation interaction and un�xed background spacetime are

taken into account Chen, Zu and Yang reformed Hamilton-Jacobi method

for massive particle tunneling and investigate the Hawking radiation of

the Taub-NUT black hole [126] and using this method Hawking radiation

of Kerr-NUT black hole [65] and the charged black hole with a global

monopole [99, 128] have been developed. These method have been ap-

plied to investigate the Hawking radiation of Reissner-Nordstr•om-anti-de

Sitter (RNAdS) black hole [131]. Our chief purpose concerned of this work

is to calculate the imaginary part of action from Hamilton-Jacobi equa-

tion avoid by exploring the equation of motion of the radiation particle in

Painlev�e coordinate system and calculating the Hamilton equation. Many

scientist have developed two universal methods to correctly recover Hawk-

ing radiation of black holes. One is the gravitational anomaly method [41]

in which the Hawking radiation can be determined by anomaly canceled

conditions and regularity requirement at the event horizon. Later on, this

method is widely used to calculate the Hawking radiation for di�erent

black holes [43, 44, 45, 46, 47, 48, 49, 50]. Other is the semi-classical

tunneling method initiated by Kraus and Wilczek [52, 53] that has been

used to describe Hawking radiation successfully for various spacetimes
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[38, 50, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73,

74, 75, 76, 78, 79, 80, 81], where a particle moves in dynamical geometry

and all of these works are limited to massless particle. This method in-

volve calculating the imaginary part of the action for the process of s-wave

emission across the horizon, which in turn is related to the Boltzmann fac-

tor for emission at the Hawking temperature. Two di�erent methods have

been employed to calculate the imaginary part of the action, one the null

geodesic method developed by Parikh and Wilczek [51, 82, 83] and other

by Angheben et al. [90]. Actually, the method of Angheben et al. [90] is

an extension of the complex path analysis proposed by Padmanabhan et

al. [85, 86, 87, 88, 89].

Recently, Rahman et al. [130] have developed the Hawking radiation

of Schwarzschild-anti-de Sitter black hole by Hamilton-Jacobi method. In

this method, the imaginary part of the action come from the relativistic

Hamilton-Jacobi equation when the self-gravitational interaction and the

un�xed background spacetime are taken into account, the actual Hawking

radiation spectrum deviates from the purely thermal one, satis�es the

underlying unitary theory and gives a leading correction to the radiation

spectrum. In this chapter, we have investigated the hawking radiation of

RNAdS black hole by Hamilton-Jacobi method.

In the last few years, people have growing interest to investigate hawk-

ing radiation in anti-de sitter space due to AdS/CFT correspondence

[166, 167]. According to the AdS/CFT correspondence, a large static

black hole in asymptotically AdS spacetime corresponds to an (approx-

imately) thermal state in the CFT. So the time scale for the decay of
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the black hole perturbation, which is given by the imaginary part of its

action, corresponds to the timescale to reach thermal equilibrium in the

strongly coupled CFT [158]. Further, recent development in string /M-

theory greatly stimulate the study of black holes in anti-de Sitter spaces.

Thus our study on the Reissner-Nordstr•om-anti-de Sitter black hole is

plausible and worthwhile.

In the remainder of this chapter we describe the RNAdS black hole

spacetime with the position of event horizon in section 6.2 and also near

the event horizon the new line element of RNAdS black hole is derived here.

In section 6.3, the un�xed background spacetime and the self-gravitational

interaction are taken into account, we review the Hawking non-thermal

radiation of RNAdS black hole from massive particle tunneling method.

In section 6.4, we have derived the Hawking purely thermal radiation from

non-thermal rate. Finally, in section 6.5, we present our remarks.

6.2 Reissner-Nordstr•om-anti-de Sitter black hole

The line element of Reissner-Nordstr•om-anti-de Sitter black hole with a

negative cosmological constant � term is given by

ds2 = �
�

1 �
2m
r

+
r 2

`2 +
q2

r 2

�
dt2 +

�
1 �

2m
r

+
r 2

`2 +
q2

r 2

� � 1

dr2

+ r 2(d� 2 + sin2�d� 2); (6.1)

wherem being the mass,̀ is the cosmological radius,q the total charge(ele-

ctric plus magnetic) with respect to the static anti-de Sitter space are

de�ned such that �1 � t � 1 , r � 0, 0 � � � � , and 0 � � � 2� . At

large r , the metric (6.1) tends to the AdS space limit.
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7.2. KERR-DE SITTER BLACK HOLE CHAPTER 7.

horizon. Thus our study of black hole on Kerr-de Sitter black hole [161]

is of great consequence and signi�cant.

We arrange this chapter as follows. The later section describes the

KdS black hole spacetime with the position of event horizon. The new

line element of KdS black hole near the event horizon is derived in sec-

tion 7.3 and the un�xed background spacetime and the self-gravitational

interaction are taken into account, we review the non-thermal radiation

of KdS black hole from massive particle tunneling method. In section 7.4

we discuss the pure thermal radiation. Finally, section 7.5 includes our

remarks.

7.2 Kerr-de Sitter black hole

The line element, describing Kerr-de Sitter black hole solution with a

positive cosmological constant �(= 3=`2), rotating black hole in four-

dimensional spacetime with asymptotic-de Sitter behavior in the Boyer-

Lindguist coordinates [185] is given by

ds2 = �
f (r ) � f (� )a2 sin2 �

� 2 dt2 +
f (� )(r 2 + a2)2 � f (r )a2 sin2 �

� 2� 2 sin2 �d� 2

+
� 2

f (r )
dr2 +

� 2

f (� )
d� 2 �

2a[(r 2 + a2)f (� ) � f (r )] sin2 �
� 2�

dtd�; (7.1)

where

� 2 = r 2 + a2 cos2 �; f (� ) = 1 +
a2 cos2 �

`2 ; � = 1 +
a2

`2 ;

f (r ) = ( r 2 + a2)(1 �
r 2

`2 ) � 2Mr = (1 �
a2

`2 )r 2 � 2Mr + a2 �
r 4

`2 : (7.2)

Here ` is the cosmological radius,M and a are the mass of the black hole

and angular momentum per unit mass. The speci�c angular momentum
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a = ( J � 2)=M is kept as a constant through this chapter. The de Sitter

space are de�ned such that�1 � t � 1 , r � 0, 0 � � � � , and

0 � � � 2� . The metric (7.1) describes an interesting rotating AdS black

hole called the Kerr-Anti-de Sitter (KAdS) black hole if we replacè 2

by� `2.

The only single positive real root is obtained byr 4 � (`2 � a2) + 2 M` 2r �

`2a2 = 0 and which is located at the black hole (event) horizonrh such

that

rh =
`�
p

3
:sin

h1
3

sin� 13M
p

3
`� �

i

�
�

1 +

s

1 �
a2`

p
3M�

:
2

1 + �
cosec

h1
3

sin� 13M
p

3
`� �

i�
; (7.3)

where

� =

s

1 �
4a2� 2

3M 2 sin2
h1
3

sin� 13
p

3M
`� �

i
; � = 1 +

a2

`2 ; � =

r

1 �
a2

`2 :

(7.4)

Expanding rh in terms of `, M and a with a2(1 + a2

`2 ) < M 2 and setting

� = 1, we obtain

rh =
M
�

�
1 +

4M 2

`2� � 2 + � � �
�  

1 +

r

1 �
a2�
M 2

!

; (7.5)

which can be written as

rh =
1
�

�
1 +

4M 2

`2� � 2 + � � �
� �

M +
p

M 2 � a2�
�

: (7.6)

It is clear that the event horizon of the Kerr-de Sitter black hole is greater

than the Kerr event horizon rKe = M +
p

M 2 � a2. Again it also shows

that Kerr [81] event horizons for` ! 1 (� ! 1) and Schwarzschild-de

Sitter [129] event horizons fora = 0.
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7.3 The Hamilton-Jacobi Method

Two new methods have been employed to calculate the imaginary part of

the action, one the null geodesic method developed by Parikh and Wilczek

[51, 82, 83] and the other method is called Hamilton-Jacobi method [85,

86, 87, 88, 89]. The di�erence of later method from Parikh's is mainly that

such method concentrates on introducing the proper spatial distance and

upon calculating the relaivistic Hamilton-Jacobi equation. For calculating

the imaginary part of the action for the process of s-wave emission across

the horizon, which in turn is related, using the WKB approximation [168],

satis�es � � exp(� 2ImI ), where I is the action of the outgoing particle

and � is the emission rate.

In the Hamilton-Jacobi method we avoid the exploration of the equa-

tion of motion in the Painlev�e coordinates systems. In order to calculate

the imaginary part of the action from the relativistic Hamilton-Jacobi

equation, the actionI of the outgoing particle from the black hole horizon

satis�es the relativistic Hamilton-Jacobi equation

gab
�

@I
@xa

� �
@I
@xb

�
+ m2 = 0; (7.7)

in which m and gab are the mass of the particle and the inverse metric

tensors respectively.

We now de�ne _� = d�
dt = � g14

g44
on the line element (7.1) and hence the

Kerr-de Sitter black hole can be written as

ds2 = �
f (r )f (� )� 2

f (� )(r 2 + a2)2 � f (r )a2 sin2 �
dt2 +

� 2

f (r )
dr2 +

� 2

f (� )
d� 2: (7.8)

The position of the event horizon is same as given in Eq. (7.6). The action
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can be derived from the line element (7.1) and (7.8) respectively. For the

convenience, we select the line element (7.8) and make a treatment to it.

Near the event horizon, the line element (7.8) takes on form as

ds2 = �
f ;r (rh)(r � rh)� 2(rh)

(r 2
h + a2)2 dt2 +

� 2(rh)
f ;r (rh)(r � rh)

dr2 +
� 2(rh)
f (� )

d� 2: (7.9)

In which � 2(rh) = r 2
h + a2 cos2 � and f ;r (rh) = df

dr

�
�
�
r = r h

= 2
� 2 (� 2rh � M � 2r 3

h
`2 ).

The non-null inverse metric tensors for the metric (7.9) are namely

�g11 = �
(r 2

h + a2)2

f ;r (rh)(r � rh)� 2(rh)
; g22 =

f ;r (rh)(r � rh)
� 2(rh)

; g33 =
f (� )

� 2(rh)
: (7.10)

We can write Eq. (7.7) with the help of Eq. (7.10) as

�
(r 2

h + a2)2

� 2(rh)f ;r (rh)(r � rh)

�
@I
@t

� 2

+
f ;r (rh)(r � rh)

� 2(rh)

�
@I
@r

� 2

+
f (� )

� 2(rh)

�
@I
@�

� 2

+ m2 = 0: (7.11)

To �nd the solution of the action I for I (t; r; �; � ) in a easy way, we consider

the properties of black hole spacetime, the separation of variables can be

taken as follows

I = � !t + R(r ) + H (� ) + j�; (7.12)

where ! is the energy of the particle,R(r ) and H (� ) are the generalized

momentums, andj is the angular momentum with respect to� -axis.

So we have@I
@t = � ! + j 
 h; @I

@r =
@R(r )

@r , @I
@� =

@H
@�, where 
 h = d�

dt

�
�
�
r = r h

=
a�

r 2
h + a2 is the angular velocity at the event horizon andj = ( Ma)=� 2.

Therefore, inserting above values into Eq.(7.11) and solvingR(r ) yields

an expression of

R(r ) = �
r 2

h + a2

f ;r (rh)

Z
dr

(r � rh)
�
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s

(! � j 
 h)2 �
� 2(rh)f ;r (rh)(r � rh)

(r 2
h + a2)2

�
f (� )

� 2(rh)
:(

@H
@�

)2 + m2

�
:

Finishing the above integral we get

R(r ) = �
�i (r 2

h + a2)
f ;r (rh)

(! � j 
 h) + �; (7.13)

where� sign comes from the square root and� is the constant of complex

integration. The imaginary part of the action arising due to pole at the

event horizon can be obtained from the complex constant� and therefore,

we can write the probabilities of ingoing and outgoing particles whenever

crossingrh as follows:

Pin = exp( � 2ImI ) = exp[ � 2(ImR� + Im � )];

Pout = exp( � 2ImI ) = exp[ � 2(ImR+ + Im � )]: (7.14)

In the classical point of view [169], when there is no re
ection for the in-

going waves, the incoming probability \Pin " be unity that is everything

is absorbed by the black hole for any ingoing particles passing its hori-

zon. In this case, we take Im� = � (r 2
h + a2)

f ;r (r h ) (! � j 
 h), which implies that

the imaginary part of the action I for a massive tunneling particle can

only come outR+ . Therefore, we obtain the imaginary part of actionI

corresponding to the outgoing particle of the form, namely

ImI = Im R+ + Im �

=
2� (r 2

h + a2)
f ;r (rh)

(! � j 
 h)

=
� 2� (r 2

h + a2)

� 2rh � M � 2r 3
h

`2

(! � j 
 h): (7.15)
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We now focus on a classical treatment of the associated radiation and

adopt the picture of a pair of virtual particles spontaneously created just

inside the horizon. The positive energy virtual particle can tunnel out

while the negative one is absorbed by the black hole resulting in a de-

crease in the mass. We consider the emitted particle as an ellipsoid shell

of energy! and �x the Arnowitt-Deser-Misner(ADM) mass and angular

momentum of the total spacetime since in presence of cosmological con-

stant KdS spacetime is dynamic and allow the KdS black hole to 
uctuate.

When a particle with energy! and angular momentumj tunnels out, the

mass and angular momentum of the KdS black hole changed intoM � !

and J � j . Assuming the self-gravitational interaction into account, the

imaginary part of the true action can be calculated from Eq. (7.15) in the

following integral form

ImI = � � 2:
Z (!;j )

(0;0)

(r 2
h + a2)

� 2rh � M � 2r 3
h

`2

(d! 0� 
 hdj 0)

= � � � 2:
Z (M � !;J � j )

(M;J )

(r 2
h + a2)

� 2rh � (M � ! 0) � 2r 3
h

`2

�

[d(M � ! 0) �
a�

r 2
h + a2d(J � j 0)]

= � � � 2:
Z (M � ! )

M

r 2
h

� 2rh � (M � ! 0) � 2r 3
h

`2

d(M � ! 0)

� � � 2:
Z (M � ! )

M

a2

� 2rh � (M � ! 0) � 2r 3
h

`2

d(M � ! 0)

+ � � 3:
Z (J � j )

J

a

� 2rh � (M � ! 0) � 2r 3
h

`2

d(J � j 0);

: (7.16)
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whereJ � j 0= ( M � ! 0)a=� 2 and M will be replaced byM � ! in rh.

Using Eq. (7.6) we evaluate the following

ImI =
� 2� (r 2

h + a2)

� 2rh � M � 2r 3
h

`2

(! � j 
 h)

=
� � 2(r 2

h + a2)

� 2rh � M � 2r 3
h

`2

! �
�a � 3

� 2rh � M � 2r 3
h

`2

j: (7.17)

ImI =
�

�
1 + 4M 2

`2� � 2 + ��
� 2

(M +
p

M 2 � a2�) 2

� 2

�

�
1 + 4M 2

`2� � 2 + ��
�

(M +
p

M 2 � a2�) � M � A
!

+
� 2�a 2

� 2

�

�
1 + 4M 2

`2� � 2 + ��
�

(M +
p

M 2 � a2�) � M � A
!

�
� 3�a

� 2

�

�
1 + 4M 2

`2� � 2 + ��
�

(M +
p

M 2 � a2�) � M � A
j;

whereA = 2
`2� 3

�
1 + 4M 2

`2� � 2 + ��
� 3

(M +
p

M 2 � a2�) 3:

ImI =
� (M +

p
M 2 � a2�) 2

� 2

�

h�
1 � 4M 2

`2� � 2 + ��
�

(M +
p

M 2 � a2�) � M �
� 2

�
1 � 8M 2

`2� � 2 + ��
�

� B
i !

+
� 2�a 2

� 2

�

h�
1 + 4M 2

`2� � 2 + ��
�

(M +
p

M 2 � a2�) � M �
� 2 � � A

� 2

i !

�
� 3�a

� 2

�

h�
1 + 4M 2

`2� � 2 + ��
�

(M +
p

M 2 � a2�) � M �
� 2 � � A

� 2

i j;

whereB = 2
`2� 2� 2

�
1 + 4M 2

`2� � 2 + ��
�

(M +
p

M 2 � a2�) 3:

Now for the simplicity, neglectingM 3 and its higher order terms, we

then get

ImI =
� �
� 2 :

(M +
p

M 2 � a2�) 2

(M +
p

M 2 � a2�) � M �
� 2

! +
� 3�a 2

� 2
h
M +

p
M 2 � a2� � M �

� 2

i !
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�
� 4�a

� 2
h
M +

p
M 2 � a2� � M �

� 2

i j: (7.18)

To obtain the maximum value, neglecting (1� �
� 2 )M . Equation (7.18)

becomes

ImI =
� �
� 2 :

(M +
p

M 2 � a2�) 2

p
M 2 � a2�

! +
� 3�a 2

� 2
� p

M 2 � a2�
� !

�
� 4�a

� 2
� p

M 2 � a2�
� j: (7.19)

Now if we replaceM by M � ! and j by J � j in the integral form of Eq.

(7.19), then from Eq. (7.16), we obtain [second and third integral vanish]

ImI = �
� �
� 2 :

Z (M � ! )

M

(M � ! +
p

(M � ! )2 � a2�) 2

p
(M � ! )2 � a2�

d(M � ! 0)

= �
� �
� 2 :

Z (M � ! )

M

2(M � ! )2 + 2( M � ! )
p

(M � ! )2 � a2�
p

(M � ! )2 � a2�
d(M � ! 0)

+
� �
� 2 :

Z (M � ! )

M

a2�
p

(M � ! )2 � a2�
d(M � ! 0): (7.20)

Doing the ! 0 integral �nally yields

ImI = �
� �
� 2 f (M � ! )

p
(M � ! )2 � a2�

+( M � ! )2 � M
p

M 2 � a2� � M 2g

= �
� �
2� 2f 2(M � ! )

p
(M � ! )2 � a2�

+2( M � ! )2 � 2M
p

M 2 � a2� � 2M 2g

= �
1
2

exp[� (r 2
f � r 2

i )]

= �
1
2

exp(� SBH ); (7.21)
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where the Bekenstein-Hawking entropy of the black hole isSBH (M ) = �r 2
i

and SBH (M � ! ) = �r 2
f , and � SBH = SBH (M � ! ) � SBH (M ) is the dif-

ference of Bekenstein-Hawking entropy. Settingr i =
p

�
� [M +

p
M 2 � a2�]

and r f =
p

�
� [(M � ! )+

p
(M � ! )2 � a2�], which are the locations of the

KdS event horizon before and after the particles emission respectively.

Utilizing WKB approximation [168], the relationship between the tun-

neling rate and the imaginary part of the action of the radiative particle

for the KdS black hole is given by

� � exp(� 2ImI ) = exp(� SBH ): (7.22)

7.4 Purely Thermal Radiation

From Eq. (7.22) we observe that the tunneling rate at the event horizon is

related to the Bekenstein-Hawking entropy, and is consistent with an un-

derlying unitary theory. Again the radiation spectrum is not pure thermal

although gives a correction to the Hawking radiation of KdS black hole.

In the form of a thermal spectrum, using the WKB approximation the

tunneling rate is also related to the energy and the Hawking temperature

of the radiative particle as � � exp(� � !
T ). If � ! < 0 is the energy of the

emitted particle then due to energy conservation, the energy of the outgo-

ing shell must be� � ! , then above expression becomes �� exp(� !
T ). By

the �rst law of thermodynamics, it can be written as � � exp(� S), which

is related to the change of Bekenstein-Hawking entropy as follows

� � exp(� SBH ) = expf SBH (M � ! ) � SBH (M )g: (7.23)
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We establish Eq.(7.23) as developed by Hossain et al. [131] in power of!

upto second order using Taylor's theorem of the form

� � exp(� SBH ) = exp
�

� !
@SBH (M )

@M
+

! 2

2
@2SBH (M )

@M2

�
: (7.24)

From Eq.(7.21), we can write

SBH (M � ! ) =
� �
� 2 [(M � ! ) +

p
(M � ! )2 � a2�] 2: (7.25)

At ! = 0,

@SBH (M )
@M

=
2�
� 2

�
2M +

p
M 2 � a2� +

M 2

p
M 2 � a2�

�
; (7.26)

@2SBH (M )
@M2 =

2�
� 2

�
2 +

3M
p

M 2 � a2�
�

M 3

(M 2 � a2�)
3
2

�
: (7.27)

Therefore, the tunneling rate in power of! upto second order, the

purely thermal spectrum can be revealed from Eq. (7.24) as follows:

� � exp(� SBH ) = exp[ � (� !
 +
! 2

2
� )]; (7.28)

where
 = 2�
� 2

h
2M +

p
M 2 � a2� + M 2

p
M 2� a2�

i
and

� = 2�
� 2

�
2 + 3Mp

M 2� a2�
� M 3

(M 2� a2�)
3
2

�
:

The radiation spectrum given by (7.28) is more accurate and provides

an interesting correction to Hawking pure thermal spectrum.

7.5 Concluding Remarks

In this chapter, we have discussed the purely thermal and non-thermal

Hawking radiations as massive particle tunneling process from KdS black
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hole by taking into account the self-gravitational interaction, the back-

ground spacetime is dynamical and the energy as conservation by em-

ploying standard Hamilton-Jacobi method. We have explored that the

tunneling rate at the event horizon of KdS black hole is related to the

change of Bekenstein-Hawking entropy. In the limiting case � = 1; � = 1

the KdS black hole reduces to the Kerr black hole [81]. The positions of

the event horizon of Kerr black hole before and after the emission of the

particles with energy ! are r i = M +
p

M 2 � a2 and r f = ( M � ! ) +
p

(M � ! )2 � a2. From Eq. (7.22), the tunneling rate of Kerr black hole

can be written as

� � exp(� 2ImI ) = exp
n

�
h
f (M � ! ) +

p
(M � ! )2 � a2g2

�f M +
p

M 2 � a2g2
io

= exp[� (r 2
f � r 2

i )]

= exp(� SBH ): (7.29)

Again Eq.(7.22) reduced to our previous result of SdS [129] black hole when

a = 0 and also which is fully consistent with that obtained by Parikh and

Wilczek [51, 82, 83] from spherically symmetric black holes.

In addition, our discussion made here can be directly to the anti-de Sitter

case by changing the sign of the cosmological constant to a negative one,

which have been discussed in later chapter.

||||||||||||||||||||||||||||
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Chapter 8

Hawking Non-thermal and Purely thermal
radiations of Kerr-anti-de Sitter Black Hole

by Hamilton-Jacobi method

8.1 Introduction

About four decades ago, an extraordinary invention made by Stephen

William Hawking that black holes radiate thermally. By the black hole

thermodynamics, the thermal radiation with the Hawking temperature

determined by the surface gravity at the event horizon [24, 25] is taken as

entropy [16, 17, 21] and surface gravity is the acceleration measured at the

spatial in�nity that a stationary particle should undergo to withstand the

gravity at the event horizon. The two important case, one is the informa-

tion lost and the other one is the technical problem arisen during the study

of Hawking thermal radiation. The loss of information was not a serious

problem in the classical theory, since the information could be thought of

as preserved inside the black hole but just not very accessible. However,

taking the quantum e�ect into consideration, the situation is changed. On
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the thermal radiation of black holes [38, 51, 52, 53], the emission of Hawk-

ing radiation [24, 25], black holes could lose energy, shrink, and eventually

becomes smaller and smaller until disappears completely. It seems that

pure quantum states (the original matter that forms the black hole) can

evolve into mixed states (the thermal spectrum at in�nity) and such an

evolution violates the fundamental principles of quantum theory, as these

prescribe a unitary time evolution of basis states. Derivations in string

theory support the idea that Hawking radiation can be described within

a manifestly unitary theory, it remains a mystery how information is re-

turned. Moreover, when Hawking �rst proved the existence of black hole

radiation, he described it as tunneling triggered by vacuum 
uctuations

near the horizon [24, 25] but actual derivation of Hawking radiation did not

proceed in this way at all. This method also gives a leading correction to

the emission rate arising from loss of mass of the black hole corresponding

to the energy carried by the radiated quantum. Carrying this method, the

Hawking radiation from AdS black holes have investigated by Hemming

and Keski-Vakkuri [38] and Medved has studied those from a de Sitter

cosmological horizon [67]. All these spherically symmetric investigations

are successful.

Many researchers developed two universal methods to correctly recover

Hawking radiation of black holes. First one is the gravitational anomaly

method [41] in which the Hawking radiation can be determined by anomaly

canceled conditions and regularity requirement at the event horizon. Fol-

lowing, this method is widely used to calculate the Hawking radiation

for di�erent black holes [42, 43, 44, 45, 46, 47, 48, 49, 50]. The other
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is the semi-classical tunneling method initiated by Kraus and Wilczek

[52, 53, 54]. Actually their development is not advanced since that the

method applied, is limited to discuss the tunneling rate of the uncharged

massless particles only [38, 55, 57, 58, 59, 60, 61, 62, 64, 65, 67, 70, 71, 72,

73, 74, 75, 76, 78, 79, 80, 81]. For black holes with a charge, the emitted

outgoing particles can be charged also, not only should the energy con-

servation but also the charge conservation be considered [34, 54]. This

tunneling picture can be described in another way, that is, a particle/anti-

particle pair is created just outside the horizon, the negative energy parti-

cle tunnels into the horizon because the negative energy orbit exists only

inside the horizon, the positive energy \partner" is left outside and emerges

at in�nity.

Parikh's [83, 84] and Parikh-Wilczek' s [51] original calculation only

considered the tunneling process of a massless and uncharged particle,

recently it is shown that such tunneling method can be easily extended

to study the massive [79] and charged particle's tunneling process [63].

Zhang and Zhao was �rst proposed by Hawking radiation from massive

uncharged particle tunneling [98] and charged particle tunneling [100] from

black hole and in 2005, Zhang and Zhao et al. extended their work to the

Hawking radiation of massive and charged particles and made a great deal

of success [99, 101, 102, 103, 104], which has e�ective signi�cance on the

further cognition and research on black holes and also in the same year,

a di�erent method was introduced by Angheben et al. [90]. It is called

Hamilton-Jacobi method. In fact, the method of Angheben et al. [90] is

an extension of the complex path analysis proposed by Padmanabhan et
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al. [85, 86, 87, 88, 89]. Using the null-geodesic and Hamilton-Jacobi meth-

ods, for analyzing the temperature of Taub-NUT black holes , Kerner and

Mann [109] developed quantum tunneling methods and Hamilton-Jacobi

method is rolled up for calculating the relativistic Hamilton-Jacobi equa-

tion. Parikh and Wilczek applied the semi-classical quantum tunneling

model to research on the Hawking radiation of the static Schwarzschild

and Reissner-Nordstr•om black holes [51, 82, 83] and them opinion the

true radiation spectrum is not strictly thermal but satis�es the underlying

unitary theory when self-gravitation interaction and energy conservation

are considered. It is clear that the background geometry of a radiating

black hole should be altered (un�xed) with the loss of energy. Chen, Zu

and Yang reformed Hamilton-Jacobi method for massive particle tunneling

and investigate the Hawking radiation of the Taub-NUT black hole [126]

and using this method Hawking radiation of Kerr-NUT black hole [65] and

the charged black hole with a global monopole [99, 128] developed using

Painlev�e coordinate system. In this chapter, this method is applied to in-

vestigate the Hawking radiation of Kerr-anti-de Sitter (KAdS) black hole

and to calculate the imaginary part of action from Hamilton-Jacobi equa-

tion avoid by exploring the equation of motion of the radiation particle

in Painlev�e coordinate system and calculating the Hamilton equation. In

this method tunneling rate is related to the change of Bekenstein-Hawking

entropy [51, 82].

Recently, Rahman et al. [129, 130] developed the Hawking radiation

of Schwarzschild-de Sitter and Schwarzschild-anti-de Sitter black holes by

Hamilton-Jacobi method when the self-gravitational interaction and the
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un�xed background spacetime are taken into account. In this method, the

imaginary part of the action come from the relativistic Hamilton-Jacobi

equation and the actual Hawking radiation spectrum deviates from the

purely thermal one, satis�es the underlying unitary theory and gives a

leading correction to the radiation spectrum. The imaginary part of the

action for the process of s-wave emission across the horizon, which in turn

is related to the change of Bekenstein-Hawking entropy and using WKB

approximation we get

� � exp(� 2ImI ); (8.1)

where � is the emission rate,I is the action for an outgoing positive energy

particle.

Properties of black holes in anti-de Sitter (AdS) spaces especially those

of thermodynamics [109] investigated thoroughly in recent years within the

context of the AdS/CFT correspondence [166, 167] and a large static black

hole in asymptotically AdS spacetime corresponds to an (approximately)

thermal state in the CFT. So the time scale for the decay of the black

hole perturbation, which is given by the imaginary part of its action,

corresponds to the timescale to reach thermal equilibrium in the strongly

coupled CFT [158]. The accelerating expansion of our universe indicates

the cosmological constant might be a positive one [132, 153, 154] and

the recent development in string /M-theory greatly stimulate the study of

black holes in anti-de Sitter spaces and hence our study on the Kerr-anti-de

Sitter black holes is plausible and meaningful.

In order to carry-over this chapter we describe the KAdS black hole

spacetime and near the event horizon the new line element of KAdS black
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hole is derived in the later section. In section 8.3, the un�xed background

spacetime and the self-gravitational interaction are taken into account,

we review the Hawking non-thermal radiation of KAdS black hole from

massive particle tunneling method. In section 8.4, we derived the Hawking

purely thermal radiation from non-thermal rate. Finally, in section 8.5,

we present our remarks.

8.2 Kerr-anti-de Sitter black hole

Kerr-anti-de Sitter black hole, which is the exact solution of the Einstein

�eld equations with a negative cosmological constant describes rotating

black hole in four-dimensional spacetime with asymptotic-anti-de Sitter

behavior in the Boyer-Lindguist coordinates [185] with cosmological radius

`, massM and the angular momentum per unit massa has the form

ds2 = �
1
� 2(� r � � � a2 sin2 � )dt2 +

� 2

� r
dr2 +

� 2

� �
d� 2

+
1

� 2� 2[� � (r 2 + a2)2 � � r a2 sin2 � ] sin2 �d� 2

�
2a
� 2�

[� � (r 2 + a2) � � r ] sin2 �dtd�; (8.2)

where

� 2 = r 2 + a2 cos2 �; � � = 1 �
a2 cos2 �

`2 ; � = 1 �
a2

`2 ;

� r = ( r 2 + a2)(1 +
r 2

`2 ) � 2Mr = (1 +
a2

`2 )r 2 � 2Mr + a2 +
r 4

`2 : (8.3)

The coordinates are de�ned such that�1 � t � 1 , r � 0, 0 � � � � ,

and 0 � � � 2� . The only positive real root is obtained from the zeroes

of r 4 + ( `2 + a2) � 2M` 2r + `2a2 = 0 and which is located at the black hole
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(event) horizon r+ such that

r+ =
`�
p

3
:sinh

h1
3

sinh� 13M
p

3
`� �

i

�
�

1 +

s

1 �
a2`

p
3M�

:
2

1 + �
cosech

h1
3

sinh� 13M
p

3
`� �

i�
; (8.4)

where

� =

s

1 �
4a2� 2

3M 2 sinh2
h1
3

sinh� 13
p

3M
`� �

i
; � =

r

1 +
a2

`2 : (8.5)

Expanding r+ in terms of Kerr-anti-de Sitter black hole parameters with

a2(1 � a2

`2 ) < M 2 and setting � = 1, we obtain

r+ =
M
�

�
1 �

4M 2

`2� � 2 + � � �
�  

1 +

r

1 �
a2�
M 2

!

=
1
�

�
1 �

4M 2

`2� � 2 + � � �
� �

M +
p

M 2 � a2�
�

: (8.6)

Therefore, we can writer+ = ( M +
p

M 2 � a2�) � , with � < 1. Obviously,

the event horizon of the Kerr-anti-de-Sitter black hole is less than the

Kerr event horizon rKe = M +
p

M 2 � a2. It also gives Kerr black hole

[81] for ` ! 1 (� ! 1) and Schwarzschild-anti-de Sitter black hole [130]

for a = 0. To study the Hawking radiation of Kerr-anti-de Sitter black

hole e�ectively, we choose dragging coordinate transformation as follows

d�
dt

= �
g03

g33
=

a�[� � (r 2 + a2) � � r ]
� � (r 2 + a2)2 � � r a2 sin2 �

: (8.7)

Now applying (8.7) on the line element (8.2), then the new line element

of the Kerr-anti-de Sitter black hole takes on form as

ds2 = �
� r � � � 2

� � (r 2 + a2)2 � � r a2 sin2 �
dt2 +

� 2

� r
dr2 +

� 2

� �
d� 2: (8.8)
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The position of the event horizon is same as given in Eq. (8.6). We select

the line element (8.8) and make a treatment to it and therefore, near the

event horizon, the line element (8.8) can be written as

ds2 = �
� r;r (r+ )(r � r+ )� 2(r+ )

(r 2
+ + a2)2 dt2 +

� 2(r+ )
� r;r (r+ )(r � r+ )

dr2

+
� 2(r+ )

� �
d� 2; (8.9)

where

� 2(r+ ) = r 2
+ + a2 cos2 �;

� r;r (r+ ) =
d� r

dr

�
�
�
r = r +

=
2
� 2(� 2r+ � M � 2

r 3
+

`2 ): (8.10)

8.3 The HJ Method for Non-thermal Radiation

To calculate the imaginary part of the action from the relativistic Hamilton-

Jacobi equation, we use the method of Chen et al. [125, 126] by giving

up the exploration of the equation of motion in the Painlev�e coordinates

systems. In order to calculate the imaginary part of the action from the

relativistic Hamilton-Jacobi equation, the actionI of the outgoing parti-

cle from the black hole horizon satis�es the relativistic Hamilton-Jacobi

equation

gab(@aI ) (@bI ) + m2 = 0; (8.11)

in which m and gab are the mass of the particle and the inverse metric

tensors derived from the line element (8.9). The non-null inverse metric

tensors for the metric (8.9) are

g00 = �
(r 2

+ + a2)2

� r;r (r+ )(r � r+ )� 2(r+ )
; g11 =

� r;r (r+ )(r � r+ )
� 2(r+ )

;
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g22 =
� �

� 2(r+ )
(8.12)

Using (8.12) in Eq. (8.11), we have

g00(@t I )2 + g11(@r I )2 + g22(@� I )2 + m2 = 0: (8.13)

The action I for I (t; r; �; � ) is too di�cult to solve. To �nd the solution

in a convenient way, the separation of variables can be taken as follows

I = � !t + R(r ) + H (� ) + j�; (8.14)

where ! is the energy of the particle,j is the angular momentum with

respect to the angular� , R(r ) and H (� ) are the generalized momentums.

From Eq.(8.13) and Eq. (8.14), we get

R(r ) = �
r 2

+ + a2

� r;r (r+ )

Z
dr

(r � r+ )
�

s

(! � j 
 + )2 �
� 2(r+ )� r;r (r+ )(r � r+ )

(r 2
+ + a2)2

�
� �

� 2(r+ )
(@� H )2 + m2

�

= �
�i (r 2

+ + a2)
� r;r (r+ )

(! � j 
 + ) + �; (8.15)

where 
 + = d�
dt

�
�
�
r = r +

= a�
r 2

+ + a2 express the angular velocity of the particle

at the event horizon and � sign comes from the square root and� is

the constant of integration. Inserting Eq. (8.15) into Eq. (8.14), the

imaginary part of two di�erent actions corresponding to the outgoing and

incoming particles can be written as

ImI � = �
� (r 2

+ + a2)
� r;r (r+ )

(! � j 
 + ) + Im( � ): (8.16)

With classical limit as mentioned in refs. [169], we make sure the

incoming probability to be unity when there is no re
ection i.e., everything
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is absorbed by the horizon. In this situation the appropriate value of

� instead of zero or in�nity can be taken as� = �i (r 2
+ + a2)

� r;r (r+ ) (! � j 
 + ) +

Re(� ). Therefore, ImI � = 0 and I + give the imaginary part of action I

corresponding to the outgoing particle of the form

ImI =
2:� (r 2

+ + a2)
� r;r (r+ )

(! � j 
 + )

=
� � 2(r 2

+ + a2)

� 2r+ � M + 2 r 3
+

`2

(! � j 
 + )

=
� � 2(r 2

+ + a2)

� 2r+ � M + 2 r 3
+

`2

�
! �

ja �
r 2

+ + a2

�

=
� � 2r 2

+

� 2r+ � M + 2 r 3
+

`2

! +
� � 2a2

� 2r+ � M + 2 r 3
+

`2

! �
� � 3a

� 2r+ � M + 2 r 3
+

`2

j:

(8.17)

Using Eq. (8.6) into Eq. (8.17), we get the imaginary part of the action

as

ImI =
�

�
1 � 4M 2

`2� � 2 + ��
� 2

(M +
p

M 2 � a2�) 2

� 2

�

�
1 � 4M 2

`2� � 2 + ��
�

(M +
p

M 2 � a2�) � M + A
!

+
� � 2a2

� 2

�

�
1 � 4M 2

`2� � 2 + ��
�

(M +
p

M 2 � a2�) � M + A
!

�
�a � 3

� 2

�

�
1 � 4M 2

`2� � 2 + ��
�

(M +
p

M 2 � a2�) � M + A
j; (8.18)

whereA = 2
`2� 3

�
1 � 4M 2

`2� � 2 + ��
� 3

(M +
p

M 2 � a2�) 3:

=
� (M +

p
M 2 � a2�) 2

� 2

�

��
1 + 4M 2

`2� � 2 + ��
�

(M +
p

M 2 � a2�) � M �
� 2

�
1 + 8M 2

`2� � 2 + ��
�

+ B
� !

+
� � 2a2

� 2

�

��
1 � 4M 2

`2� � 2 + ��
�

(M +
p

M 2 � a2�) � M �
� 2 + � A

� 2

� !
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�
�a � 3

� 2

�

��
1 � 4M 2

`2� � 2 + ��
�

(M +
p

M 2 � a2�) � M �
� 2 + � A

� 2

� j; (8.19)

whereB = 2
`2� 2� 2

�
1 � 4M 2

`2� � 2 + ��
�

(M +
p

M 2 � a2�) 3:

Now for the simplicity, neglectingM 3 and its higher order terms, we then

get

ImI =
� �
� 2 :

(M +
p

M 2 � a2�) 2

(M +
p

M 2 � a2�) � M �
� 2

! +
�a 2� 3

� 2
�
M +

p
M 2 � a2� � M �

� 2

� !:

�
�a � 4

� 2
�
M +

p
M 2 � a2� � M �

� 2

� j: (8.20)

Suppose the Arnowitt-Deser-Misner (ADM) mass of the total spacetime

to be �xed and in presence of cosmological constant KAdS spacetime is

dynamic, and hence allow KAdS black hole to 
uctuate. When a particle

with energy! and angular momentumj tunnels out, the mass and angular

momentum of the KAdS black hole should be replaced byM � ! and

J � j respectively. Taking the self-gravitational interaction into account,

the imaginary part of the true action can be calculated from Eq. (8.20) in

the following integral form

ImI =
� �
� 2 :

Z !

0

(M +
p

M 2 � a2�) 2

M +
p

M 2 � a2� � M �
� 2

d! 0

+
� � 3

� 2 :
Z !

0

a2

M +
p

M 2 � a2� � M �
� 2

d! 0

�
� � 4

� 2 :
Z j

0

a

M +
p

M 2 � a2� � M �
� 2

dj 0

=
� �
� 2 :

Z !

0

(M +
p

M 2 � a2�) 2

p
M 2 � a2� + ( M � M �

� 2 )
d! 0

+
� � 3

� 2 :
Z !

0

a2

p
M 2 � a2� + ( M � M �

� 2 )
d! 0
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�
� � 4

� 2 :
Z j

0

a
p

M 2 � a2� + ( M � M �
� 2 )

dj 0: (8.21)

For the maximum value of integration, neglecting (1� �
� 2 )M . Equation

(8.21) becomes

ImI =
� �
� 2 :

Z !

0

(M +
p

M 2 � a2�) 2

p
M 2 � a2�

d! 0+
� � 3

� 2 :
Z !

0

a2

p
M 2 � a2�

d! 0

�
� � 4

� 2 :
Z j

0

a
p

M 2 � a2�
dj 0: (8.22)

Now replacingM by M � ! and j by J � j , we have

ImI = �
� �
� 2 :

Z (M � ! )

M

(M � ! +
p

(M � ! )2 � a2�) 2

p
(M � ! )2 � a2�

d(M � ! 0)

�
� � 3

� 2 :
Z (M � ! )

M

a2

p
(M � ! )2 � a2�

d(M � ! 0)

+
� � 4

� 2 :
Z (J � j )

J

a
p

(M � ! )2 � a2�
d(J � j 0); (8.23)

whereJ � j 0= ( M � ! 0)a=� 2. Therefore Eq. (8.23) becomes

ImI = �
� �
� 2 :

Z (M � ! )

M

(M � ! +
p

(M � ! )2 � a2�) 2

p
(M � ! )2 � a2�

d(M � ! 0)

= �
� �
� 2 :

Z (M � ! )

M

2(M � ! )2 + 2( M � ! )
p

(M � ! )2 � a2�
p

(M � ! )2 � a2�
d(M � ! 0)

+
� �
� 2 :

Z (M � ! )

M

a2�
p

(M � ! )2 � a2�
d(M � ! 0): (8.24)

Finishing the ! 0 integral �nally yields

ImI = �
� �
� 2 :f (M � ! )

p
(M � ! )2 � a2�

+ ( M � ! )2 � M
p

M 2 � a2� � M 2g
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= �
1
2

n � �
� 2 [2(M � ! )2 + 2( M � ! )

p
(M � ! )2 � a2�

� 2M
p

M 2 � a2� � 2M 2]
o

= �
1
2

exp[� (r 2
f � r 2

i )]

= �
1
2

� SBH ; (8.25)

where � SBH = SBH (M � ! ) � SBH (M ) is the change of Bekenstein-

Hawking entropies of the Kerr-anti-de Sitter black hole before and after

the emission of the particles by settingr i =
p

�
� [M +

p
M 2 � a2�] and

r f =
p

�
� [(M � ! ) +

p
(M � ! )2 � a2�] respectively.

Therefore, using Eq. (8.1) the tunneling probability for the KAdS black

hole can be obtained as

� � exp(� 2ImI ) = exp(� SBH ): (8.26)

The result shows the actual radiation spectrum deviates from the purely

thermal one and gives a correction to the Hawking radiation of the black

hole.

8.4 Purely Thermal Radiation

It is obvious from Eq. (8.26) the radiation spectrum is not pure thermal

although gives a correction to the Hawking radiation of KAdS black hole.

The purely thermal spectrum can be derived from Eq. (8.26) by expanding

as discussed by Hossain et al. [131] of the form

� � exp(� SBH ) = exp
�

� !
@SBH (M )

@M
+

! 2

2
@2SBH (M )

@M2

�
: (8.27)
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From Eq.(8.25)

SBH (M � ! ) =
� �
� 2

h
(M � ! ) +

p
(M � ! )2 � a2�

i 2
: (8.28)

Using (8.28) in (8.27) and �nishing the calculation, the purely thermal

emission rate reduces to the form

� � exp(� SBH )

= exp
h� 2� � !

� 2 f (2M +
p

M 2 � a2� +
M 2

p
M 2 � a2�

)

�
!
2

(2 +
3M

p
M 2 � a2�

�
M 3

(M 2 � a2�)
3
2

)g
i
: (8.29)

In the limiting case i.e. when � = 0, then � = 1 ; � = 1 and in this case,

non-thermal and purely thermal tunneling rates for the KAdS black hole

reduces to

� � exp(� 2ImI ) = exp
n

�
h
f (M � ! ) +

p
(M � ! )2 � a2g2

�f M +
p

M 2 � a2g2
io

; (8.30)

and

� � exp(� SBH )

= exp
h

� 2�! f (2M +
p

M 2 � a2 +
M 2

p
M 2 � a2

)

�
!
2

(2 +
3M

p
M 2 � a2

�
M 3

(M 2 � a2)
3
2

)g
i
: (8.31)

Which is consistent to the results for the Kerr black hole [81] and where

r i = M +
p

M 2 � a2 and r f = ( M � ! ) +
p

(M � ! )2 � a2. These are

the positions of the event horizon of Kerr black hole before and after the

emission of the particles respectively.
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For another special case, only whena = 0, the line element (8.2) is

reduced to the SAdS black hole [130]. So the tunneling probabilities for

the SAdS black hole can be written as

� � exp(� 2ImI ) = expf � [4(M � ! )2
�

1 �
8(M � ! )2

`2

�

� 4M 2
�

1 �
4M 2

`2

�
]g (8.32)

and

� � exp(� SBH ) = exp
�

� 8�!
��

M �
16M 3

`2

�
�

!
2

�
1 �

48M 2

`2

���
;

(8.33)

where r i = 2M
�

1 � 4M 2

`2

�
and r f = 2( M � ! )

�
1 � 4(M � ! )2

`2

�
are the lo-

cations of the SAdS [130] event horizon before and after the particles

emission.

Furthermore only when a = 0 and � = 0, the line element (8.2) is

reduced to the Schwarzschild black hole [51] and therefore the non-thermal

and purely thermal tunneling rates can be written as

� � exp(� 2ImI ) = exp
�

�
�
4(M � ! )2 � 4M 2�	

= exp[� (r 2
f � r 2

i )] (8.34)

and

� � exp(� SBH ) = exp
h
� 8�!

�
M �

!
2

�i
; (8.35)

which are full accordant with Parikh and Wilczek's results [51, 82, 83] and

wherer i = 2M and r f = 2( M � ! ) are the locations of the Schwarzschild

black hole event horizon before and after the particles emission.
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8.5 Concluding Remarks

We have been presented Hawking radiation as massive particle tunnel-

ing method from KAdS black hole in this chapter. Considering the self-

gravitational interaction, the background spacetime as dynamical and the

energy as conservation, we have explored the Hawking non-thermal and

purely thermal tunneling probabilities of KAdS black hole at the event

horizon. It is noted that the similar result have been shown taking the

same proposition for massive particle tunneling at the event horizon of

SAdS black hole [129], RNAdS black hole [131] and Taub-NUT black holes

[126] and also agree by massless or massless charged particle tunneling

from various spacetime like as charged black hole with a global monopole

[99, 128], kerr-NUT black hole [65], Kerr and Kerr-Newman black holes

[60, 103] etc. Thus the actual radiation spectrum of KAdS black hole

is not precisely thermal and the tunneling probability is related to the

change of Bekenstein-Hawking entropy but satis�es an underlying unitary

theory and also gives a correction to Hawking radiation.

||||||||||||||||||||||||||||
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Chapter 9

Hawking Non-thermal and Purely
thermal radiations of

Kerr-Newman-de Sitter Black Hole
by Hamilton-Jacobi method

9.1 Introduction

Many researchers have attempt to provide various methods to correctly

�nd out the Hawking radiations of di�erent black holes because Hawk-

ing proved that black holes have emission of thermal radiation [24]. To

describe Hawking radiation as a quantum tunneling process, a new win-

dow �rst opened by Kraus and Wilczek [52, 53, 54] where a particle

moves in a dynamical geometry and then formulated by many researchers

[51, 79, 85, 86, 88, 89, 90]. Recently, several works on rotating black holes

[55, 65, 80, 81, 102, 103, 118, 119, 120, 125, 127, 186, 187, 188] have been

done by using Painleav�e or dragging or tortoise or Eddington-Finkelstein

coordinate transformations but most of them are focus on studying Hawk-

ing radiation of massless/scalar particles tunneling from di�erent rotating
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black holes. Here we have used the dragging coordinate transformation

to obtain the same results from the Kerr-Newman-de Sitter (KNdS) black

hole using massive particle tunneling process by expressing the event hori-

zon of KNdS black hole in terms of black hole parameters in an in�nite

series and is very interesting point in this research.

This chapter is devoted to investigate the Hawking non-thermal and

purely thermal tunneling rates of the Kerr-Newman black hole in the de

Sitter space. To obtain the correct tunneling rates, we use the method

which regards the action of the emitted particles satis�es the relativistic

Hamilton-Jacobi equation and solving it contains the imaginary part of the

action [90, 186, 187]. It is noticed that the analysis of massive particles

tunneling from the Kerr-Newman-de Sitter black hole parallels to the case

that we have made for Kerr-de Sitter black hole. Here the energy as well

as charge conservation are taken into account.

This chapter is arranged as follows: In section 9.2 we describe the

Kerr-Newman-de Sitter black hole spacetime with the position of event

horizon and derive the new line element of KNdS black hole near the

event horizon. In section 9.3 we describe the Hamilton-Jacobi method

for the KNdS spacetime. Again, we consider the spacetime background

as dynamical and self-gravitational interaction of the emitted particles,

the non-thermal tunneling rate of KNdS black hole from massive particle

tunneling process have been reviewed in section 9.4. In section 9.5 we

develop the Hawking purely thermal rate from non-thermal rate. Finally,

in section 9.6 we give our remarks.
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9.2 Kerr-Newman-de Sitter black hole

The most general black hole [188] solution can be expressed in the Boyer-

Lindguist coordinate [185] as an exact solution of the Einstein �eld equa-

tions with a positive cosmological constant �(= 3=`2) describes charged

rotating black hole in asymptotically de Sitter space with cosmological

radius `, massM , chargeq and angular momentum per unit massa of the

form

ds2 = �
f (r ) � f (� )a2 sin2 �

� 2 dt2 +
f (� )(r 2 + a2)2 � f (r )a2 sin2 �

� 2� 2 sin2 �d� 2

+
� 2

f (r )
dr2 +

� 2

f (� )
d� 2 �

2a[(r 2 + a2)f (� ) � f (r )] sin2 �
� 2�

dtd�; (9.1)

where

� 2 = r 2 + a2 cos2 �; f (� ) = 1 +
a2 cos2 �

`2 ;

� = 1 +
a2

`2 ; f (r ) = (1 �
a2

`2 )r 2 � 2Mr + a2 �
r 4

`2 + q2: (9.2)

The de Sitter space are de�ned such that�1 � t � 1 , r � 0, 0 � � � � ,

and 0 � � � 2� . The metric (9.1) describes an interesting charged rotating

AdS black hole called the Kerr-Newman-Anti-de Sitter (KNAdS) black

hole if we replacè 2 by � `2. There are apparent singularities in the metric

at the values ofr for which

f (r ) = (1 �
a2

`2 )r 2 � 2Mr + a2 �
r 4

`2 + q2 = 0 (9.3)

The function f (r ) = 0 with `2 > a 2 has four distinct roots: rh; r � ; rc;

and r �� . The real root rh corresponds to the radius of the black hole's

outer event horizon, while the other real rootr � represents the radius of
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the inner cauchy horizon. Here we indicater c as the cosmological horizon

and r �� the negative root off (r ) another cosmological horizon. Equation

(9.3) can be written as

r 4 � (`2 � a2)r 2 + 2M` 2r � `2(a2 + q2) = 0 : (9.4)

Solving the above equation, the black hole event horizon and cosmological

horizon can be written respectively of the form

rh =
`�
p

3
:sin

h1
3

sin� 13M
p

3
`��

i

�
�

1 +

s

1 �
(a2 + q2)`

p
3M�

:
2

1 + �
cosec

h1
3

sin� 13M
p

3
`��

i�
; (9.5)

and

r c =
`�
p

3
:sin

h1
3

sin� 13M
p

3
`��

i

�
�

s

1 +
1 + �

2
:
3M

p
`

p
3� 2

cosec3
h1
3

sin� 13M
p

3
`��

i
� 1

�
; (9.6)

where

� =

s

1 �
4(a2 + q2)� 2

3M 2 sin2
h1
3

sin� 13
p

3M
`��

i
; (9.7)

� =

r

f 1 +
a2

`2 g2 +
4q2

`2 ; � =

r

1 �
a2

`2 (9.8)

and r �� = � (rh + r � + r c) is the another cosmological horizon. With� � 1

the black hole event horizon can be approximated as

rh �
`�
p

3
:sin

h1
3

sin� 13M
p

3
`��

i
:
�

1 +

r

1 �
(a2 + q2)�

M 2

�
: (9.9)
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Expanding rh in terms of `, M , q and a with ( a2 + q2)� < M 2 , we obtain

rh =
M
�

�
1 +

4M 2

`2� 2�
+ � � �

�  

1 +

r

1 �
(a2 + q2)�

M 2

!

; (9.10)

which can be written as

rh =
1
�

�
1 +

4M 2

`2� 2�
+ � � �

� �
M +

p
M 2 � (a2 + q2)�

�
: (9.11)

Obviously, the event horizon of the Kerr-Newman-de Sitter black hole is

greater than the Kerr-Newman event horizonrKe = M +
p

M 2 � (a2 + q2).

It is interesting to note that it reduced to the Kerr-Newman black hole

[125] for ` ! 1 , Kerr-de Sitter black hole forq = 0, Kerr black hole [81]

for ` ! 1 ; q = 0 and Schwarzschild-de Sitter black hole [129] fora = 0

and q = 0. We perform the following e�ective transformation to obtain

the Hawking radiation of the KNdS black hole.
d�
dt

=
a�[ f (� )(r 2 + a2) � f (r )]

f (� )(r 2 + a2)2 � f (r )a2 sin2 �
: (9.12)

Using (9.12) in the line element (9.1), then the new line element of the

Kerr-Newman-de Sitter black hole becomes

ds2 = �
f (r )f (� )� 2

f (� )(r 2 + a2)2 � f (r )a2 sin2 �
dt2 +

� 2

f (r )
dr2 +

� 2

f (� )
d� 2: (9.13)

The position of the event horizon is same as given in Eq. (9.11). The

action can be derived from the line element (9.1) and (9.13) respectively.

Near the event horizon, the line element (9.13) can be rewritten as

ds2 = �
f ;r (rh)(r � rh)� 2(rh)

(r 2
h + a2)2 dt2 +

� 2(rh)
f ;r (rh)(r � rh)

dr2 +
� 2(rh)
f (� )

d� 2;(9.14)

when

� 2(rh) = r 2
h + a2 cos2 �

f ;r (rh) =
df
dr

�
�
�
r = r h

=
2

� 2(� 2rh � M � 2
r 3

h

`2 ): (9.15)
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9.3 The HJ Method for KNdS Spacetime

In this section, we have applied the standard Hamilton-Jacobi method [85,

86, 87, 88, 89] developed by Angheben et al.[90, 186] which is an extension

of complex path analysis proposed by Padmanabhan et al. [85, 86, 87, 88,

89] to calculate the imaginary part of the true action for the process of

s-wave emission across the horizon. Using the WKB approximation [168],

the emission rate satis�es the following relation

� � exp(� 2ImI ); (9.16)

whereI is the action of the outgoing particle.

In the Hamilton-Jacobi method we avoid the exploration of the equation

of motion in the Painlev�e coordinates systems. The classical action of the

radiation particle tunnels across the event horizon satis�es the relativistic

Hamilton-Jacobi equation

gij
�

@I
@xi

� �
@I
@xj

�
+ u2 = 0; (9.17)

whereu is the mass of the radiating particle andgij are the inverse metric

tensors derived from the metric (9.14), namely

�g11 = �
(r 2

h + a2)2

� 2(rh)f ;r (rh)(r � rh)
; �g22 =

f ;r (rh)(r � rh)
� 2(rh)

;

�g33 = �
f (� )

� 2(rh)
; (9.18)

and others are null. Substituting them in the Eq. (9.17), we get

�g11

�
@I
@t

� 2

+ �g22

�
@I
@r

� 2

+ �g33

�
@I
@�

� 2

+ u2 = 0: (9.19)
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For the HJ equation, to �nd the solution we use the separation of variables

method for the action I (t; r; �; � ) as follows

I = � !t + R(r ) + H (� ) + j�; (9.20)

where! is the energy of the emitted particle,j is the angular momentum

with respect to angular� , R(r ) and H (� ) are the generalized momentums.

The angular velocity of the particle at the event horizon is


 h =
d�
dt

�
�
�
r = r h

=
a�

r 2
h + a2: (9.21)

Using Eq. (9.20) in Eq. (9.19), we obtain an expression as follows

dR(r )
dr

=
q

� �g11 �g22 �

(

(! � j 
 h)2 + �g11

"
�g33

�
dH(� )

d�

� 2

+ u2

#)

R(r ) = �
r 2

h + a2

f ;r (rh)

Z
dr

r � rh
�

vu
u
t (! � j 
 h)2 �

� 2(rh)f ;r (rh)(r � rh)
(r 2

h + a2)2

"
�g33

�
dH(� )

d�

� 2

+ u2

#

: (9.22)

9.4 Non-thermal Tunneling Rate

For the convenience of research, let's the emitted particle as an ellipsoid

shell of energy! to tunnel across the event horizon. The quadratic form

of Eq. (9.19) is the reason of� signatures that summarized in the above

equation. Solution of Eq. (9.22) with \+" signature corresponds to out-

going particles and the other solution i.e., the solution with \-"signature

refers to the ingoing particles. The solution given by Eq.(9.22) is singular
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at r = rh which corresponds to the event horizon. Finishing the above

integral by using the Cauchy's integral formula, we obtain

R(r ) = �
2�i (r 2

h + a2)
f ;r (rh)

(! � j 
 h): (9.23)

Substituting the above result in Eq. (9.20), the imaginary part of the

action I corresponding to the outgoing particle is obtained by� times the

residue of the integrand

ImI =
2� (r 2

h + a2)
f ;r (rh)

(! � j 
 h)

=
� � 2(r 2

h + a2)

� 2rh � M � 2r 3
h

`2

(! � j 
 h): (9.24)

Using Eqs. (9.11) and (9.21) into Eq. (9.24), we get the imaginary part

of the action as

ImI =
� � 2

� 2

�
1 + 4M 2

`2�� 2 + ��
� 2

(M +
p

M 2 � (a2 + q2)� )2

� 2

�

�
1 + 4M 2

`2�� 2 + ��
�

(M +
p

M 2 � (a2 + q2)� ) � M � A
!

+
�a 2� 2

� 2

�

�
1 + 4M 2

`2�� 2 + ��
�

(M +
p

M 2 � (a2 + q2)� ) � M � A
!

�
�a � 3

� 2

�

�
1 + 4M 2

`2�� 2 + ��
�

(M +
p

M 2 � (a2 + q2)� ) � M � A
j;

whereA = 2
`2� 3

�
1 + 4M 2

`2�� 2 + ��
� 3

(M +
p

M 2 � (a2 + q2)� )3:

ImI =
� � 2(M +

p
M 2 � (a2 + q2)� )2

� 2�
h�

1 � 4M 2

`2�� 2 + ��
�

(M +
p

M 2 � (a2 + q2)� ) � B
i !

+
�a 2� 2

� 2

�

h�
1 + 4M 2

`2�� 2 + ��
�

(M +
p

M 2 � (a2 + q2)� ) � M�
� 2 � �A

� 2

i !
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�
�a � 3

� 2

�

h�
1 + 4M 2

`2�� 2 + ��
�

(M +
p

M 2 � (a2 + q2)� ) � M�
� 2 � �A

� 2

i j;

whereB = M�
� 2 (1� 8M 2

`2�� 2 + ��)+ 2
`2� 2� 2 (1+ 4M 2

`2�� 2 + ��)(M +
p

M 2 � (a2 + q2)� )3:

To get the maximum value of the integration, neglecting above second

order terms of black hole parameter `mass' from the denominator, we then

get

ImI =
� � 2

� 2�
:

(M +
p

M 2 � (a2 + q2)� )2

(M +
p

M 2 � (a2 + q2)� ) � M�
� 2

!

+
� 2�a 2�

� 2
h
M +

p
M 2 � (a2 + q2)� � M�

� 2

i !

�
� 3�a�

� 2
h
M +

p
M 2 � (a2 + q2)� � M�

� 2

i j (9.25)

Let us now focus on a semiclassical treatment of the associated radiation

and adopt the picture of a pair of virtual particles spontaneously created

just inside the horizon. The positive energy virtual particle can tunnel

out -no classical escape route exists - where it materializes a real particle

while the negative energy particle is absorbed by the black hole, resulting

in a decrease in the mass and angular momentum of the black hole. If the

particle's self-gravitational interaction is taken into account, equations

(9.1) to (9.25) should be changed. Fixing the ADM mass, charge and

angular momentum of the total spacetime and allow mass and angular

momentum of the black hole to vary. Then we should replaceM by M � !

and j by J � j , and therefore the imaginary part of the true action can be
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calculated from Eq. (9.25) in the following integral

ImI =
� � 2

� 2�
:
Z !

0

(M +
p

M 2 � (a2 + q2)� )2

p
M 2 � (a2 + q2)� + ( M � M�

� 2 )
d! 0

+
� � 2a2�

� 2 :
Z !

0

1
p

M 2 � (a2 + q2)� + ( M � M�
� 2 )

d! 0

�
�a � 3�

� 2 :
Z j

0

1
p

M 2 � (a2 + q2)� + ( M � M�
� 2 )

dj 0: (9.26)

For the maximum value of integration, neglecting (1� �
� 2 )M . Equation

(9.26) becomes

ImI =
� � 2

� 2�
:
Z !

0

(M +
p

M 2 � (a2 + q2)� )2

p
M 2 � (a2 + q2)�

d! 0

+
� � 2a2�

� 2 :
Z !

0

1
p

M 2 � (a2 + q2)�
d! 0

�
�a � 3�

� 2 :
Z j

0

1
p

M 2 � (a2 + q2)�
dj 0: (9.27)

ReplacingM by M � ! and j by J � j , we have

ImI = �
� � 2

� 2�
:
Z (M � ! )

M

(M � ! +
p

(M � ! )2 � (a2 + q2)� )2

p
(M � ! )2 � (a2 + q2)�

d(M � ! 0)

�
� � 2a2�

� 2 :
Z (M � ! )

M

1
p

(M � ! )2 � (a2 + q2)�
d(M � ! 0)

+
�a � 3�

� 2 :
Z (J � j )

J

1
p

(M � ! )2 � (a2 + q2)�
d(J � j 0); (9.28)

where

J � j 0=
(M � ! 0)a

� 2 : (9.29)

Using Eq. (9.29) into Eq. (9.28), and �nishing the integral, the imaginary
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part of the action can be obtained.

ImI = �
� � 2

� 2�
:
Z (M � ! )

M

2(M � ! )2 + 2( M � ! )
p

(M � ! )2 � (a2 + q2)�
p

(M � ! )2 � (a2 + q2)�

� d(M � ! 0) +
� � 2

� 2�
:
Z (M � ! )

M

(a2 + q2)�
p

(M � ! )2 � (a2 + q2)�
d(M � ! 0)

: (9.30)

Doing the ! 0 integral, �nally we get

ImI = �
� � 2

� 2�
f (M � ! )

p
(M � ! )2 � (a2 + q2)�

+( M � ! )2 � M
p

M 2 � (a2 + q2)� � M 2g

= �
� � 2

2� 2�
f 2(M � ! )

p
(M � ! )2 � (a2 + q2)�

+2( M � ! )2 � 2M
p

M 2 � (a2 + q2)� � 2M 2g

= �
� � 2

2� 2�
f (M � ! ) +

p
(M � ! )2 � (a2 + q2)� g2

� (M +
p

M 2 � (a2 + q2)� )2

= �
1
2

exp[� (r 2
f � r 2

i )]

= �
1
2

exp(� SBH ): (9.31)

Here r i = �
�

p
� [(M +

p
(M 2 � (a2 + q2)� ] and r f = �

�
p

� [(M � ! )

+
p

(M � ! )2 � (a2 + q2)� ] are the locations of the KNdS event horizon

before and after the particle emission respectively, and �SBH = SBH (M �

! ) � SBH (M ) is the di�erence of Bekenstein-Hawking entropy.

Utilizing Eq.(9.16), the relationship between the tunneling rate and the

imaginary part of the action of the radiative particle for the KNdS black

hole is given by

� � exp(� 2ImI ) = exp(� SBH ): (9.32)
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9.5 Purely Thermal Radiation

The non-thermal emission rate described by Eq. (9.32) is related to the

change of Bekenstein-Hawking entropy, and is consistent with an under-

lying unitary theory and the radiation spectrum is not pure thermal al-

though gives a correction to the Hawking radiation of KNdS black hole.

The pure thermal radiation spectrum can be derived from Eq.(9.32) by

expanding the tunneling rate in power of! upto second order as follows

� � exp(� SBH ) = exp
�

� !
@SBH (M )

@M
+

! 2

2
@2SBH (M )

@M2

�
: (9.33)

From Eq.(9.31), we can write

SBH (M � ! ) =
� � 2

� 2�
[(M � ! ) +

p
(M � ! )2 � (a2 + q2)� ]2: (9.34)

At ! = 0,

@SBH (M )
@M

=
2� 2

� 2�

"

2M +
p

M 2 � (a2 + q2)� +
M 2

p
M 2 � (a2 + q2)�

#

(9.35)

and

@2SBH (M )
@M2 =

2� 2

� 2�

"

2 +
3M

p
M 2 � (a2 + q2)�

�
M 3

(M 2 � (a2 + q2)� )
3
2

#

:(9.36)

With the help of Eqs. (9.35) and (9.36), the pure thermal emission rate is

of the form

� � exp(� SBH ) = exp[ � (� !� +
! 2

2
� )]; (9.37)

where � = 2� 2

� 2�

�
2M +

p
M 2 � (a2 + q2)� + M 2p

M 2� (a2+ q2)�

�
and � =

2� 2

� 2�

�
2 + 3Mp

M 2� (a2+ q2)�
� M 3

(M 2� (a2+ q2)� )
3
2

�
:
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9.6 Concluding Remarks

We have developed the non-thermal and purely thermal tunneling rates us-

ing massive particles tunneling process from KNdS black hole [161] by tak-

ing into account the self-gravitational interaction, the background space-

time as dynamical and the energy as conservation. We have explored that

the tunneling rate at the event horizon of KNdS black hole is related to

the change of Bekenstein-Hawking entropy. The results are in accordance

with Parikh and Wilczek's opinion [51, 82, 83] from spherically symmet-

ric black holes. We also conclude that the actual radiation spectrum of

KNdS black hole is not precisely thermal, which provides an interesting

correction to the Hawking pure thermal spectrum.

We now like to point out that some of the previous results existed in

this chapter which can be enclosed as special cases. In particular, when

cosmological constant vanishes, then � = � = � = 1 and hence the

pure thermal spectrum can be reduced for the Kerr-Newman black hole

[125]. The position of the event horizon before and after the emission of

the particles with energy ! are r i = M +
p

(M 2 � (a2 + q2) and r f =

(M � ! ) +
p

(M � ! )2 � (a2 + q2) respectively. From Eq.(9.32), the non-

thermal tunneling rate for the Kerr-Newman black hole can be written

as

� � exp(� 2ImI ) = exp[ � f (M � ! ) +
p

(M � ! )2 � (a2 + q2)g2

+ f M +
p

M 2 � (a2 + q2)g2]

= exp[� (r 2
f � r 2

i )]

= exp(� SBH ); (9.38)
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and the purely thermal rate of the Kerr-Newman black hole can be written

as

� � exp(� SBH ) = exp[ � 8�! (� �
!
2

� )]; (9.39)

where� = 1
4

�
2M +

p
M 2 � (a2 + q2) + M 2p

M 2� (a2+ q2)

�
and

� = 1
4

�
2 + 3Mp

M 2� (a2+ q2)
� M 3

(M 2� (a2+ q2))
3
2

�
:

It is interesting that for q = 0 , it reduces to the result of Kerr-de Sitter

black hole (chapter 7), and forq = 0; a = 0, it becomes to the result of

SdS black hole [129]. Finally, if one sets̀ ! 1 , a = 0 and q = 0 gives

the result for the Schwarzschild black hole [51].

In addition, our discussion made here can be directly to the anti-de

Sitter case by changing the sign of the cosmological constant to a negative

one, which have been discussed in later chapter.

||||||||||||||||||||||||||||
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B. MF plant (MF3/BC-T69-88S/) bud-selfed 

The MF plant (MF3/BC-T59-88S/) was bud-selfed during 1987-88. 

From ten bud-selfed flowers only 19 healthy seeds were obtained. When, 

these were sown in 1988-89, 15 plants managed to flower, The plants 

were very weak and produced small number of flowers. Of the 16 plants, 

14 were MF and only one MS. A chi-square test was fitted for 3 : 1 ratio 

supposing that the MF parent was heterozygous for the gene (Msms). 

Test of significant for 3 1 ratio. 

Class Obser- Expec- 0-E (0-E)2 (0-E) 2 /E x2 p 
ved ted 

Male Fertile 14 11.25 2.75 7.56 0.67 

2.69 0.10 

Male sterile 1 3.75 -2.75 7.56 2.02 

A non- significant deviation from expected 3:1 ratio indicated that 

the observed numbers of MF and MS follow monogenic segregation. 

C. MF plant of Family {MF-37BC-T59-88S/) bud selfed. 

The seeds of 10 flowers bud- selfed on another MF plant (MF-

31/BC-T59-88S/) gave 53 seeds in 1987-88 season. The seeds were sown 
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and 49 plants were obtained which flowered. or these 46 were scored for 

MS of which 37 were MF and 8 were MS. A chi-square test was used to 

test the goodness of fit for 3:1 ratio. 

Test of significant for 3:1 ratio. 

. Clase Obser- Expec- 0-E (0-E} 2 (0-E) 2 /E xz p 
ved ted 

Male fertile 37 33.75 3.25 10.56 0.31 

1.25 0.20 

Male sterile 8 11.25 -3.25 10.56 0.94 

The deviation was non-significant and this was a case of 

heterozygote Msms selfed to give 3: 1 segregation. 

D. MF plant (M.F-2tvBC-T59-88S) sib-mated 

The MF plant (MF-21fBC-T59-88S) sibmated to a MF pollen parent 

(MF-ll/BC-T59-88S/), 

Five flowers of the MF plant (MF-2l+'BC-59-88S) were pollinated 

with pollen from MF11/BC.59-88S/ and 72 seeds were obtained. Fifty of 

these were sown in 1988-89 and 47 plants were scored for MS, A total 

38 MF and 9 MS plants were obtained. 

A chi-square test indicated a good fit · to 3:1 ratio. 
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Fig, 3.3. History of MS plants in Yellow Sarson 

Year Summary of results 

1986-87 I 15 plants selfed I 
I 

I 
1987-88 One family with 14 families with 

3 MS plants 7MF all MF plants, 
plants, 

Sib-mated between 
MS and· MF and open 
pollinated 

1988-89 Five families were grown 
with l0 ·plants each: all I MF Selfed and seeds from 
10 plants were grown. MS (from OP) 

crossed with 
these MF 

I 

1989-90 10 families with 6 families with 
3 MF : 1 MS 1 MF : 1 MS 
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Table 3.3 

Crosses made 
1987-88 

BC-Y521/88MS1 

x BC-YS21/88MF5 

BC-YS21/88 MS2/ 

x BC-YS21/88MF8 

BC-YS21/88 MS3/ 

x BC-YS21/88MF9 

Segregation in F2 generation of crosses 

between MS and MF plants of three families 

from BC-YS 21 

F1 in F2 in Number of plants Chi 

I square p 
1988-89 1989-90 MF MS (3:1) 

10 plants 3 Fami- 22 6 0.19 0.50 

all MF lies 7 1 0.67 0,30 

20 8 0,19 0.70 

15 plants 4 Fami- 31 8 0.417 0.50 

all MF lies 11 3 0.095 0,70 

25 8 0.009 0.90 

33 10 0.069 0.80 

10 plants 3 fami- 35 12 0.006 0.90 

all MF lies 13 4 0.019 0,90 

30 11 0.072 0.70 

Total 227 71 
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Table 3. 4 . Segregation of test crosses ma.de during 1988-89 

between MS a.nd F' 1 MF plants 

Test cross progeny X2 
Test crosses : · .. 

in 1989-90 p 

MF I MS 
1 : 1 

25 21 0.35 0.80 

10 14 0.67 0.30 

BC-YS21/88 MS1op/MS3 15 14 0.03 0.80 

Y BC-YS21/88F 1/89MF5 25 20 0.35 0,80 

29 24 0.47 0.30 

32 25 0.43 0.50 

136 118 1.28 0.20 
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3.4. D:i.ffe:ren..ces be-L~eeri. MS a.rid MF p1.o.n.te 

fe>r IDe>rphe>1e>gi.cal. a.:n.d :rep:rc::>d-u.c:tl:ve 

c:h..a.-ra.c:~re 

3.4.L Introducthn 

The successful use of male sterility in hybrid seed production 

depends upon the reproductive performance of the male sterile geno­

types. As the material used in the present study WQS originally 

obta:ined form self-pollination and successive g~nerations of sib-mating, 

the MS and MF lines are subjected to fairly strong inbreeding, This may 

result in inbreeding depression and decrease in vigour of these lines. 

Moreover, in all families examined in Section 3.3, a fewer than expected 

MS plants were observed. It is important to compare the performance of 

MS and MF lines in respect to important morphological and reproductive 

characters. 

3.4.2. Materials and Methods 

The sib-mated Family MS- 21/BC-T59-889 gro~n in 1 x 2 m plots in 

the field of Botany Department during the winter of 1988-89. The families 

were assigned randomly to the plots in rows with 30 cm space between 

rows and 10 cm space between plants. The following morphological and 

r eproductive characters were measured on five randomly chosen plants 

of each of MS and MF phenotypes: 
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