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PREFACE

The thesis entitled “A Study on Turbulence and MHD Turbulence” is being presented for the award
of the degree of Doctor of Philosophy in Applied Mathematics. It is the out come of my researches
conducted in the Department of Applied Mathematics, Rajshahi University, Rajshahi, Bangladesh
under the guidance of Professor Dr. M. Shamsul Alam Sarker and Dr. M. Abul Kalam Azad,
Department of Applied Mathematics, Rajshahi University, Rajshahi- 6205, Bangladesh.

The whole thesis has been divided into six chapters.

The first chapter is a general introductory chapter and gives the general idea of Turbulence and
Magneto hydrodynamic (MHD) Turbulence and its principal concepts. Some results and theories,
which are needed in the subsequent Chapters, have been included in this chapter. The first order
reaction, rotating system, equation of motion of dust particles, decay law of turbulence before
the final period and in the final period, statistical theory of distribution functions in
turbulence, Fourier transformations of Navier-stokes equation and their principal concepts
and lastly, a brief review of the past researches related to this thesis have also been studied in this
chapter. Throughout the work we have considered the flow of fluids to be isotropic and homogeneous.
The notions generally adopted are those used by Batchelor, Chandrasekhar, Deissler, Kumar and

Patel, Jain and Lundgren in their research papers. Number inside brackets [ ] refer to the references

which are arranged alphabetically at the end of the thesis.

In chapter II-A, we have studied the first order reactant in Magneto-hydrodynamic
Turbulence before the final period of decay in a rotating system. In this part we have studied
the magnetic field fluctuation of concentration of a dilute contaminant undergoing a first
order chemical reaction in MHD turbulence before the final period of decay in a rotating
system. Here, we have considered the two-point and three-point correlation equations and

solved these equations after neglecting the fourth-order correlation terms.

In chapter II-B, we have considered the first order reactant in Magneto-hydrodynamic
Turbulence before the final period of decay in presence of dust particle. Here, we have
considered the two-point and three-point correlation equations and solved these equations

after neglecting the fourth-order correlation terms.

In chapter II-C, we have studied the first order reactant in Magneto-hydrodynamic
Turbulence before the final period of decay under the effect of rotation with an angular

velocity € in presence of dust particles and we obtained the equation (2.17.18). This



vi
equation indicates that the decay law for magnetic energy fluctuation of dusty fluid MHD
turbulence governing the concentration of a dilute contaminant undergoing a first order
chemical reaction before the final period in a rotating system more rapidly. It is an extension

work of the part-A and part-B of this chapter.

In chapter-111-A, the statistical theory of certain distribution function for simultancous
velocity, magnetic, temperature and concentration fields undergoing a first order reaction has

been studied in MHD turbulence in a rotating system.

In chapter-III-B, we have studied the statistical theory of certain distribution function for
simultaneous velocity, magnetic, temperature and concentration fields undergoing a first

order reaction in MHD turbulence in presence of dust particles.

In chapter-111-C, we also have studied the statistical theory of certain distribution function
for simultaneous velocity, magnetic, temperature and concentration fields undergoing a first
order reaction in MHD turbulence in a rotating system in presence of dust particles. It is an

extension work of the part-A and part-B of this chapter.

In chapter IV-A, we have considered the first order chemical reaction in MHD turbulence
before the final period of decay for the case of multi-point and multi-time in a rotating
system.

In chapter IV-B, we have considered the magnetic field fluctuation of concentration of a
dilute contaminant undergoing a first order chemical reaction in MHD turbulence before the

final period of decay for the case of multi-point and multi-time in presence of dust particles.

In chapter IV-C, we have considered the first order chemical reaction in MHD turbulence
before the final period of decay for the case of multi-point and multi-time in a rotating system

in presence of dust particle. It is an extension work of the part-A and part-B of this chapter.

In chapter V, , we have studied the MHD flow of a dusty viscous incompressible fluid in a
rotating frame between two parallel flat plates in presence of a uniform transverse magnetic
field with pressure gradient. The velocities of the fluid and the dust particles for rotating

frame are obtained and the effect of magnetic field on these velocities has been investigated.

In chapter VI, an over all review of the works with conclusions based on the findings of the thesis
has been discussed.
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CHAPTER-I

General Introduction

1.1. Basic Concept of Turbulence:

Turbulent motions are very common in nature. The theory of turbulent motion has received
considerable attention in recent developments of high-speed jet aircraft, plasma physics and
chemical engineering. The formation of a turbulent boundary layer is one of the most
frequently encountered phenomena in high-speed aerodynamics. Turbulence occurs nearly
everywhere; in the oceans, in the atmosphere, in rivers even in stars and galaxies. It occurs
when an airplane hits an air pocket. Much like there are currents in the ocean, there are
currents in the air. Winds disturbed by thunderstorms or mountains are just one of the many

causes of turbulence.

In turbulent flow, the motion of the fluid is steady so far as the temporal mean values of
velocities and the pressures are concerned where as actually both velocities and the pressures
are irregularly fluctuating. The velocity and pressure distributions in turbulent flows as well
as the energy losses are determined mainly by turbulent fluctuations. The essential
characteristic of turbulent flows is that the turbulent fluctuations are random in nature. It is
common experience that the flow observed in nature such as rivers and winds usually differ
from stream flow or laminar flow of a viscous fluid. The mean motion of such flows does not
satisfy the Navier-Stokes equations for a viscous fluid. Such flows, which occur at high

Reynolds numbers, are often termed turbulent flows.

Atmospheric scientists define "turbulence" as "a state of fluid flow in which the instantancous
velocities exhibit irregular and apparently random fluctuations." Those "irregular
fluctuations” of the flow create the bumps. With sufficient disturbances the result is known as
turbulence. The instability of laminar flow at a high Reynolds numbers, are causes disruption
of the laminar pattern of fluid motion. In fluid dynamics, turbulence or turbulent flow is a
fluid regime characterized by chaotic, stochastic property changes. Turbulence is one of those

few things that many don’t understand. It’s not a hard concept at all. At least, the technical
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Chapter 1

people understand the meaning of turbulence. The use of the word “Turbulence” to
characterize a certain type of flow, namely, the counterpart of streamline motion is
comparatively recent. Reynolds, O. [112] made the first systematic experimental
investigation of turbulent flow. The turbulent motion of fluid was described by Reynolds
[112], one of the pioneers in the study of turbulent flows as “sinuous motion™ because fluid

particles in turbulent flow appeared to follow sinusoidal or irregular paths.

The word “Turbulence™ means: agitation, commotion, disturbance etc. Turbulence is rather a
familiar notion; yet it is not easy to define in such a way as to cover the detailed characteristic
comprehended in it and to make the definition agree with the modern view of it held by
professionals in this field of applied science. Taylor and Vonkarman [146] suggested that,
“Turbulence is an irregular motion which in general makes its appearance in fluids, gaseous
or liquid, when they flow past solid surface or even when neighbouring streams of the same
fluid flow past or over one another”. According to this definition, the flow has to satisfy the
condition of irregularity. But this irregularity is a very important feature. Because of
irregularity, it is impossible to describe the motion in all details as a function of time and
space co-ordinates. But fortunately turbulent motion is irregular in the sense that it is possible
to describe it by laws of probability. It appears possible to indicate distinct average values of
various quantities, such as velocity, pressure, temperature, etc and this is very important. It is
not sufficient just to say that turbulence is an irregular motion yet we do not have clear-cut
definition of turbulence.

In 1975, Hinze [51] gave the definition, “Turbulent fluid motion is an irregular condition of
flow in which various quantities show a random variation with time and space co-ordinates,
so that statistically distinct average values can be discerned”.

Turbulence is a form of movement which is characterized by an irregular or agitated motion.
Both liquids and gases can exhibit turbulence, and a number of factors can contribute to the
formation of turbulence. The addition “with time and space co-ordinates’ is necessary; it 1s
not sufficient to define turbulent motion as irregular in time alone. For instance, the case in
which a given quantity of a fluid is moved bodily in an irregular way; the motion of each part
of the fluid is then irregular with respect to time to a stationary observer, but not to an
observer moving with the fluid. Nor is turbulent motion, a motion that is irregular in space
alone, became a steady flow with an irregular flow pattern might then come under the

definition of turbulence.
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Different Types of Turbulence:

According to the definition of Taylor and Von Karman, “Turbulence can be generated by the
friction forces at fixed walls (fluid flow through conduits, fluid flow past solid surfaces) or by
the flow of layers of fluids with different velocities past or over one another”.

The above definition indicates that there are two distinct types of turbulence.

(i) Wall turbulence

(i1) Free turbulence

(1) Wall turbulence: Turbulence which is generated by the viscous effect due to presence of a
solid is called wall turbulence.
(i) Free turbulence: Turbulence in the absence of walls, generated by the flow of layers of

fluids at different velocities is called free turbulence.

In the case of real viscous fluids, viscosity effects will result in the conversion of kinetic
energy of flow into heat; thus turbulent flow, like all flow of such fluids, is dissipative in
nature. If there is no continuous external source of energy for the continuous generation of
the turbulent motion, the motion will decay. Other effects of viscosity are to make the

turbulence more homogeneous and to make it less dependent on direction.

Isotropic Turbulence:

The turbulence is called isotropic if its statistical features have no preference for any specific
direction and minimum number of quantities and relations are required to describe its
structure and behavior. No average shear stress can occur and consequently, no velocity
gradient of the mean velocity. This mean velocity, if it occurs, is constant throughout the

field.

Since it is very complicated problem and it is also a hypothetical type of turbulence, because
no actual turbulent flow shows true isotropy, though conditions may be made such that
isotropy is more or less closely approached. In order to bring out the essential features of the
turbulence problem we have to study the simplest type of turbulence. In isotropic turbulence
the mean value of any function of the velocity components and their derivatives is unaltered

by any rotation or reflection of the axes of references. Thus in particular,

u =v = W‘z
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Isotropy introduce a great simplicity into the calculations. The study of isotropic turbulence

may also be of practical importance, since far from solid boundaries it has been observed that

2 2 2 . . :
uy, uy, uy tend to become equal to one another, e.g. in the natural winds at a sufficient

height above the ground and in a pipe flow the axis.

From theoretical considerations and experimental evidence it is known that the fine structure
of most actual non-isotropic turbulent flows is nearly isotropic (local isotropy). Hence many
features of isotropic turbulence may apply to phenomena in actual turbulence that is

determined mainly by the fine-scale structure, where local isotropy prevails.
Homogeneous Turbulence:

The turbulence which has quantitatively the same structure in all parts of the flow field is
called homogeneous turbulence. In a homogeneous turbulent flow field the statistical
characteristic are invariant for any translation in the space occupied by the fluid. Most of the
theoretical works in turbulence and MHD turbulence in homogeneous and isotropic field in

an incompressible fluid at rest.

The conception of homogeneous turbulence is idealized, in that there is no known method of
realizing such a motion exactly. The various method of producing turbulent motion in a
laboratory or in nature all involves discrimination between different parts of the fluid, so that
the average properties of the motion depend on position. However, in certain circumstances
this departure from exact independence of position can be made very small, and it is possible

to get a close approximation to homogeneous turbulence.
Non-isotropic Turbulence:

In all other cases where the mean-velocity shows a gradient, the turbulence will be non-

isotropic or an isotropic.
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1.2. Method of Averages:

To describe a turbulent flow mathematically, it is necessary to consider an instantancous
velocity such as u is the sum of the time average part & and momentary fluctuation

(fluctuating velocity) u’ i,e

u:’b_t-{—u.' -------------- (1‘21)

where u is average value or mean value, ' is fluctuating velocity and u is velocity of

motion

In a steady flow u does not change with time. In talking the average of a turbulent quantity.
the result depends not only on the scale used but also on the method of averaging. These are
four different kinds of averaging procedure introduced by Pai [100] that are found to be
useful for the study of turbulent flows. These are

(i) time average, (ii) space average, (iii) space-time average and (iv) ensemble average or

the statistical average.

If the turbulent flow field is quasi-steady, time average can be used. For a homogeneous
turbulence flow field, space average can be considered. If the flow field is steady and
homogeneous, space-time average is used. Lastly, if the flow field is neither steady nor
homogeneous, we assume that averaging is taken over a large number of experiments that
have initial and boundary conditions. This type of average is called ensemble average or
statistical average. Ensemble average is more general than the time and space averages and
very useful for the study of in homogeneous, non-stationary turbulent flow. This type of
averaging can be applied to any flow. Most of the modern theories have used the ensemble
averaging procedure for describing the statistical properties of turbulence. However, like the
time and space averages, the physical interpretation of the ensemble average is not so simple.

In general any turbulent field is completely determined by the hierarchy of correlations.

<ui(r,t)>, <u;.(r,t)uj (r',t)) ; <u,. (r,t)uj(r’,t)um (r",t) >, where, ( ) denote the ensemble

average defined by Leslie [88]

In homogeneous isotropic turbulence the first correlation represents the mean velocity, and is
. . . ’ ‘ . ~ .
simply zero, the pair correlation <u,(r)uj (r )> is often considered to be a sufficient

description of turbulent flow. The higher order correlations are assumed to give less and less



Chapter 1 6

information so that only a finite number of correlations are required to determine the

statistical properties of turbulence. This is a possible method of reducing the infinite

hierarchy of equations into a closed set.

The double correlation tensor Rj; (f,JAC,l‘) for two points separated by the space vector 7 is

defined by

Similarly, the triple correlation tensor Tjjx or higher correlation tensors can be introduced.

The Fourier transform of Rj; with respect to 7 defined by

%(’Eiaf): (2;) IJ‘T[?”;’HRU(':JJ)C”, -------------- (1.2.3)

(¥

—00

represents the energy spectrum function E(k, t) in the sense that it describes the distribution

of kinetic energy over the various wave number component of turbulent flows and where &
is wave vector.The Fourier transform defined above can be treated as generalized functions or

distributions in the sense of Lighthill [80]. It follows from the inverse Fourier transform that

)-

o | —
o | —

(u, (%), (%)) = %RU (0,%.1) = ?E(!E,t)d!; e —— (1.2.4)

0
So that E(k,f) represents the density of contributions to the kinetic energy in the wave
numbers of space k, thus the investigation of the energy spectrum function E(k,f) is the
central problem of the dynamics of turbulence.

Expressed in mathematical form the four methods of averaging applied for instance.

(a) Time average for a stationary turbulence

+T

ﬁ(x,z): Pﬂ% glids 000 s (1.2.5)
T

In practice the scale used in the averaging process determines the value of the period 2T.
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(b) Space average in which we take the average over all the space at given time, i.e

s

it(x,¢)= lim i J.u(s,t)a’s ------------- (1.2.6)
PRV v,

In practice the volume of space the scale used in the averaging process determines Vb.

(c) Space time average in which we take the average over a long period of time and over the

space i.e.,

!

st l +7
i (x,t)= i P S 5
it (x,1) L Lj u(s, y)dsdy (1.2.7)

In practice the scale used determines both the values of T and of Vb.

(d) Statistical average in which we take the average over the whole collection of sample

turbulent functions for a fixed time, i.e.

@

ulx,t,0)= Iu(x rodde) (1.2.8)

Q

over the whole Q space of ®, the random parameter. The measure is

[aul)=1 (1.2.9)

Q

A random scalar function u(x,f,w) is a function of the spatial coordinates x and time t, which
depends on a parameter w. The parameter w is chosen at random according to some

probability law in a space Q.

1.3. Reynolds rules of Averages:

At first Osborn Reynolds [112] introduced elementary statistical motion into the
consideration of turbulent flow. In the theoretical investigation of turbulence, he assumed that
instantaneous fluid velocity satisfies the Navier-Stokes equations for a viscous fluid and that
the instantaneous velocity may be separated into a mean velocity and a turbulent fluctuating
velocity. u, P, T and p be respectively the instantaneous velocity, pressure time and density,

then the process of averaging we write
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u=u+u', P=P+P', p=p+p', T=T+T etc —ooore. (13.1)

In these expressions the quantities with bars denote mean variables and the quantities with

prime denote the fluctuating variables.

Further more #'=P'=T'=0 (1.332)

In the study of turbulence we often have to carry out an averaging procedure not only on
single quantities but also on products of quantities. Here the over scores have the following

properties.

Let A=A+A4 and B=B+B (1.3.3)

In any further averaging procedure we can show that

I
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A= +A'=4 whence 4'=0 e (1.3.4)
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In the above relations we used the properties that the average of the sum is equal to the sum
of the averages and the average of a constant times B is equal to the constant times the

average of B.

Next

AB=AB =48 (1.3.6)
AB =AB =AB' = B=tli s (1.3.7)
BA'=BA'=BA' = A=l 0 s (1.3.8)
Similarly,

AB=(A+A\B+B)=AB+AB' + AB+AB =AB+ AB  ceeeeeeeeee (1.3.9)

Note that the average of a product is not equal to the product of the averages. Terms such as

A'B" are called correlations.
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1.4. Spectral Representation of the Turbulence:

Theoretical treatment of the turbulence is merely related to the solution of the Navier-Stokes
equations. These equations, however, contain more unknowns than number of equations and
therefore additional assumptions must be made. This is known as  Closure problem”. An
alternative approach is based on the spectral form of the dynamical Navier-Stokes equation.
The spectral form of the turbulence is still under-determined, but it has a simple physical
interpretation and is more convenient. The spectral approach is, however, almost exclusively
used for the description of homogeneous turbulence [94, 95]. The principal concepts of
spectral representation in the study of turbulence are described below:

If ' we neglect the body forces from the Navier-Stokes equation (1.5.2) and multiply the x;-

component of Navier-Stokes equation written for the point P by u, and multiply the x’

component of the equation written for the point P’ by u’; adding and taking ensemble

averages we get.

pe=rn o ou' ' P aZuI.
gu,u'-+u'u,i+u,u,’ : e u;a—pﬂ,.gl—air +vu! I; e B (1.4.1)
e T o, Ox; pl 7 ox, ox) b ox*y

Since in homogeneous turbulence the statistical quantities are independent of position in
space and considering the point P and P’. Separated by a distance vector 7 and applying the

laws of spatial covariances, a simplified form of equation (1.4.1) is obtained as:

opu'.  op' azu,u'
éu,.u' =—i(u,u’fu, —u,u’f;r,t,')+l S A +2v =L, e (1.4.2)
gt "¢ BT | el orn or

The covariance u,u; is not suitable for direct analysis of quantitative estimate of the
turbulent flows and it is better to use the three-dimensional Fourier transforms of uu’, with

respect to r . The variable that corresponds to 7 in the three dimensional wave-number space

is a vector K = (K, K,,K,). We define the wave number spectral density as:

é, (E)z ﬁ Wexp(— i[?.?)df = (2:1_)3 ”Wexp{— i(K]r] * Kopy 4 K )}cf'r,a’rzdr3
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It can be shown that if »,u has a continuous range of wavelength, ¢, (K' )has a continuous

distribution in wave number space. We can rigorously regard ¢, ([Z)dK]dszKg as the

~

contribution of elementary volume dK;dK,dKj (centred at wave number K and therefore

; ir 3 sk % Tl
representing a wave number of length —-, in the direction of vector K) to the value of u 1/
IR ;

hence the name “Spectral density”. This is consistent with the behaviour of the inverse

transform
u,u;irjz °].¢U (Iz)exp(il_(..r)d]_(. ---------- (1.4.4)

The one dimensional wave number spectrum of »,u’, for a wave number component in the x;

direction is

4,(K,)= % ?W(@)exp@ o — (1.4.5)

whose inverse is

wi) ()= [p,(K)explikn)ak, e (1.4.6)

The equation (1.4.2) for unstrained homogeneous turbulence becomes on Fourier
transforming as:
24, (K)

o F,;,-(K)+ H{,-(K)—%Kf.%-(f?) ------------- (1.4.7)

where I and [] are the transforms of the triple product and pressure terms respectively.

1.5. Correlation Functions:

Taylor, G. I. [144] introduced new notions into the study of the statistical theory of
Turbulence, Taylor successfully developed a statistical theory of turbulence which is
applicable to continuous movements and satisfies the equation of motion.The first important
new notion was that of studying the correlation or coefficient of correlation between two
fluctuating quantities in turbulent flow. In his theory, Taylor makes much use of the

correlation between the components of the fluctuations neighbouring points.
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The statistical property of a random variable may be described by the correlation function,

which is defined as follows:

Consider the fluctuating variables u; and u; and assume that there exists certain correlation

between them. The correlation function is defined as

Py=wu, (1.5.1)

where the bar denotes the average by certain process. Some times it is convenient to use the

correlation coefficient such as

By Cauchy inequality, we have

wu, —ful <o (153

hence —ISRtj =1

If we consider uj and u; as the velocity components in a flow field, the correlation of Equation

(1.5.1) as a tensor of second rank.

By a different process of averaging we obtain different kinds of correlation functions. If we
consider u; and u; as the velocity components at a given point in space, u; and u; are functions
of time; hence, we should take the time average in equation (1.5.1) to get the correlation
function Py;. If we consider u; and u; as the velocity components at a given time, u; and uj are
functions of space co-ordinates x(x, X2, x3); hence, we should take the space average in

equation to get the correlation function.

More generally if we consider u; and u;j as functions of both time t and spatial co-ordinates
X(X1, X2, X3), we take a space-time average in equation (1.7.1) to get the correlation
function. The correlation function between the components of the fluctuating velocity at the
same time at two different points of the fluid, first introduce by Taylor, G. I. [144], has been

investigated extensively in the isotropic turbulence.

D- 2447
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The correlation function between two fluctuating velocity components at the same point and

at the same time gives the Reynolds Stress. The correlation function between two fluctuating

quantities may also be defined in a manner similar to above.

1.6. Historical Back Ground of Early Work of Turbulence:

Osborne Reynolds [112] first made the systematic investigations and gave the experimental
results to understanding the facts of turbulent flow. He made the remarkable difference
between laminar and turbulent flows by proposing the Reynolds number and gave the
Reynolds stresses to describe the turbulent phenomena. Reynolds averaged the Navier-Stokes
equations for an incompressible fluid. Thus he established the so-called Reynolds equations
for the mean values. His technique followed closely that used by Maxwell in 1850 when
Maxwell deduced the Navier-Stokes equation from the Kinetic theory of gases. Therefore, the
theory of turbulence was based on analogies with the discontinuous collisions between the
discrete entities studied in Kinetic gas theory. Prandtl [102] developed His “mixing length”
theory based on the problems of practical importance such as pipe flows over boundaries of
specific shapes. Prandtl’s theory was successfully applied to the turbulent flow of a liquid in a
circular pipe and also to the meteorological problem of wind distribution in the layer of air

adjacent to the ground.

The origin of the idea of statistical approach to the problem of turbulence may be traced back
to Taylor’s [143] in which he has advanced the concept of the Lagrangian correlation
coeflicient that provides a theoretical basis for turbulent diffusion. Tailor, G. I. [144,145] and
Von Karman, T. [152,153] broke away from the concept, which described turbulence in
terms of collisions between discrete entities and instead introduce the concept of velocity
correlation at two or more points, as one of the parameters involved in describing turbulent
motion. Taylor, G. L. introduced the so-called “ energy spectrum” method to describe the
probability density function for energy in the turbulent flow field. Von Karman proved that
the correlation of velocities at two points is a tensorial character. He introduced the
“correlation tensor” method. Taylor, G. I. [144] introduces the idea that the velocity of the
fluid of turbulent motion is a random continuous function of position and time. To make the
turbulent motion amenable to mathematical treatment, he assumes the turbulent fluid to be
homogeneous and isotropic. In its supports, he describes the measurements showing that the
turbulence generated downstream from a regular array to rods in a wind tunnel is

approximately homogeneous and isotropic. In spite of the fact that the turbulence in nature is
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not always exactly homogeneous and isotropic, it is essential to study homogeneous and
isotropic turbulence as a first step to understand the more complicated phenomenon of non-

homogeneous turbulence.

Taylor [148] took into account the non-linearity of the dynamical equations and showed that
it results in the skew ness of the probability distribution of the difference between the
velocity components at two points. He showed that the non-linearity of the dynamical
equation is also responsible for the existence of the interaction between components of the
turbulent having different fluctuations. Kolmogoroff's [76, 77] work contributed significantly
to understanding the physics of turbulence. His outstanding works in the theory of local
homogeneous and local isotropic turbulent flow resulted in the “2/3 Kolmogoroff law”, the

analog of which in the language of spectra is the 5/3 law.

1.7. First-order Reactions:

Chemical Reaction:

A chemical reaction is a process that is usually characterized by a chemical change in which
the starting materials (reactants) are different from the products. Chemical reactions tend to
involve the motion of electrons, leading to the formation and breaking of chemical
bonds. There are several different types of chemical reactions and more than one way of
classifying them. It is a process that always results in the inter-conversion of chemical

substances.

First Order reaction:

A first order reaction (order = 1) has a rate proportional to the concentration of one of the
reactants. A common example of a first-order reaction is the phenomenon of radioactive
decay. In this case, reaction rate is directly proportional to amount of reactant. A first-order
reaction depends on the concentration of only one reactant. Other reactants can be present,
but each will be zero-order. The sum of concentration exponents in the rate law for a first

order reaction is one.

A first-order reaction depends on the concentration of only one reactant (a unimolecular
reaction). Other reactants can be present, but each will be zero-order. The rate of law for an

elementary reaction that is first order with respect to a reactant A is
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d[A] — k4]

pEe—— s (1.7.1)

k is the first order rate of constant, which has units of 1/time.

Reactant:
The substance or substances initially involved in a chemical reaction are called reactants

which are different from the products.

Reactant Concentrations:

In chemistry, concentration is the measure of how much of a given substance there is mixed
with another substance. This can apply to any sort of chemical mixture. Concentration is a
way of describing mixture composition.

It usually makes the reaction happen at a faster rate if raised through increased collisions per
unit time.

If the concentration of one of the reactants remains constant (because it is a catalyst or it is in
great excess with respect to the other reactants) its concentration can be included in the rate

constant.

Rate and order of Reaction:
The rate of a chemical reaction is the amount of substances reacted or produced per unit time.
The Order of reaction, in chemical kinetics, with respect to a certain reactant, is defined as

the power to which its concentration term in the rate equation is raised.

For example, given a chemical reaction A + B — C with a rate equation
- e ——— (1.2:2)

the reaction order with respect to A would be 2 and with respect to B would be 1, the total
reaction order would be 2+1=3. It is not necessary that the order of a reaction is a whole
number - zero and fractional values of order are possible - but they tend to be integers.

Reaction orders can be determined only by experiments.

According to Bansal [22(a)] the general reaction equation in which A and B are transformed

to give P

aA+bB—cP, (1.7.3
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the reaction rate can be written as

_tdl4] 1 d[s]

, L Ldlr]
a dt

b dt’ ¢ dr
and the rate of law be written in the form of the equation

B 1 I ——
——okarmeroo e (1.7.4)

where [A], [B] and [P] denote the active concentrations in moles/litre of species A, B and P,
t represent the time, n and m are integers, k is the proportionality constant referred to as
the reaction rate constant or specific rate of constant and a, b, ¢ are the stoichiometric

coefficients.

_tdla] - _1dl5]

Since the concentrations of A and B are diminishing . ,
a di b dt

dlr]

are negative

) 1
number while +—
c

is positive. Any of these derivatives may be used to express the rate

of the reaction.

The order of a reaction is the algebraic sum of the exponents of all the concentration terms,

which appear in the rate law (1.9.4).
For the reaction given in equation (1.9.3) the rate law may be expressed as

_LdlA]_

7 HAJ'[B]

where n is the order of the reaction with respect to A and m is the order of the reaction with

respect to B. The over all order of the reaction is given by the sum (n+m).

The Rate Constant:

The rate constant isn't actually a true constant! It varies, for example, if we change the
temperature of the reaction, add a catalyst, or change the catalyst. The rate constant is
constant for a given reaction only if all we are changing is the concentration of the reactants.

A first order reaction has a rate constant of 1.00 s,
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1.8. Rotating System:

The essential characteristic of turbulent flows is that turbulent fluctuations are random in
nature. The system is usually rotating with a constant angular velocity in geophysical flows.
Such large-scale flows are generally turbulent. When the motion is referred to axes, which
rotate steadily with the bulk of the fluid, the coriolis and centrifugal force must be supposed
to act on the fluid. The coriolis force due to rotation plays an important role in a rotating

system of turbulent flow, while the centrifugal force with the potential is incorporated into

the pressure.

Turbulence in the presence of Coriolis force is an interesting tropic in astrophysics as well as
in fluid mechanics. Ohji [98] considered the effect of Coreolis force on turbulent motion in
the presence of strong magnetic field with the assumption that Coriolis force term (-2QxU) is
balanced by V(x) (the geostropic wind approximation) where x represents the generalized

pressure.

Kishore and Dixit [61], Kishore and Singh [63], Dixit and Upadhyay [39], Kishore and
Golsefied [66] discussed the effect of coriolis force on acceleration covariance in ordinary
and MHD turbulent flow. Funada, Tuitiya and Ohji [47] considered the effect of coriolis
force on turbulent motion in presence of strong magnetic field. Kishore and Sarker [71]
studied the rate of change of vorticity covariance in MHD turbulence in a rotating system.

Sarker [123] studied the thermal decay process of MHD turbulence in a rotating system.

1.9. Equation of Motion of Dust Particles:

The influence of dust particles on viscous flows has a great importance in petroleum industry
and in the purification of crude oil. Other important applications of dust particles in boundary
layer, include soil solvation by natural winds and dust entrainment in a cloud during nuclear
explosion. Knowledge of the behaviour of discrete particles in a turbulent flow is of great
interest to many branches of technology, particularly if there is a substantial difference
between particles and the fluid. Saffman P.G. [118] derived an equation that described the

motion of a fluid containing small dust particles, which is applicable to laminar flows as well
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as turbulent flow. Sinha [134] studied the effect of dust particles in addition to the magnetic

field fluctuation on the turbulent flow of an incompressible fluid.

The relative motion of dust particles and the air will dissipate energy because of the drag
between dust and air, and extract energy from turbulent fluctuations. If as certainly seems
possible, the turbulent intensity is reduced than the Reynolds stresses will be decreased and

the force required to maintain a given flow rate will likewise be reduced.

In order to formulate the problem in a reasonably simple manner and to bring out the

essential features, we shall make simplifying assumption about the motion of dust particles. It
will be supposed that their velocity and number density can be described by fields I{(f,t)and

N(i,f). We also assume that the bulk concentration (i.e. concentration of volume) of dust is
very small so that the effect of dust particles on the gas is equivalent to an extra force
KN(V —ii) per unit volume, where ﬁ(f,l‘)is the velocity of the gas and K is constant. It is
also supposed that the Reynolds number of the relative motion of dust and gas is small
compared with unity, so that the force between the dust and gas is proportional to the relative
velocity. Then with small bulk concentration and the neglect of the compressibility of the gas,

the equations of motion and continuity of the gas are:
T - PR 9
P §+(H.V)u =-Vp+Whi+ kKNG -u) e (1.9.1)

diva=0 e (L282)

where p, p and p are the pressure, density, and viscosity of the clean gas respectively.
/, dimension frequency; N, constant number of density of dust particle. K the Stokes’s
resistance coefficient which for spherical particle of radius r is 6mpr.

As will be seen below, the effect of the dust is measured by the mass concentration. The bulk

concentration is fﬁwhcrc p is the density of the material in the dust particles.
el

For common materials -2 will be of the order of several thousand or more, so that the mass

P
concentration may be significant fraction of unity, while the bulk concentration is small. it is
to be noted that for suspension in liquids, the bulk and mass concentration will roughly be the
same. So that the qualitative differences in the motion of dusty gases and the suspensions in

the liquids may be expected. For spherical particles, the Einstein increase in the viscosity is
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%ﬂj'pﬁ, which is negligible for a dusty gas but may be significant for a liquid suspension.
1

The force exerted on the dust by the gas is equal and opposite to the force exerted on the gas

by dust, so that the equation of motion of the dust is:

tov o\ - T
m;\'[a— + (V.V)le =mNg+KNG-4) e (1.9.3
!
where mN the mass of the dust per unit volume and g is the acceleration due to gravity. The

buoyancy force is neglected since £ is small.
ol

The equation of continuity of the dust is:

ON .
—+di(NW)=0 e (1.9.4)
ot
Here, v = is kinetic viscosity of the clean gas and 7 = %is called the relaxation time of the
p s

dust particles. It is measure of the time for the dust to adjust to changes in the gas velocity.

For spherical particles of radius €,

4 3
—me’p
T= 3
6
2 2
oo =& (1.9.5)
9v p

K= 6mpe, Stokes drag formula, M= (4/3) ne’p;, mass of the particle of radius € . p; is the

density of the dust particles.

The effect of dust is described in two parameters f and 1. The former describes how much
dust is present and the latter is determined by the size of individual particles. Making the dust
fine, will decreaset, and making coarse, will increase t in a manner proportional to the

surface area of the particles.
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1.10. Decay of Turbulence before the final period and in the final period:

The turbulent flows, in the absence of external agencies always decay. In considering the
dynamic equations for the velocity correlation and for the energy spectrum, it has been shown
that these correlations and spectra change with time and the turbulence decays if no energy
sources are present to sustain it. As in all fluid flows, an important parameter is the Reynolds
number and the character of the turbulence may vary appreciably whether the Reynolds
number of turbulence is large or small. Batchelor and Townsend [8,9,10] have made many
measurements of the decay of an isotropic turbulence produced by grids. From the results of
these measurements Batchelor [9] arrives at the conclusion that different periods of decay

may actually be distinguished; an initial period, a final period and a transition period.

Townsend’s experiments have shown that the final period seems to apply to distances greater
than 500M. Of course, this value too should depend on the initial Reynolds number of
turbulence. In Townsend’s experiments the Reynolds number Re,, =U M /v was about 650.
Where, Reyy—mesh Reynolds number; M, Mesh of a grid; 7, speed; v, kinematic viscocity.

In the initial period the decay is determined predominantly by the decay of the energy
containing eddies; in the final period the viscous effects predominate over inertial effects.

Thus, in the final period, where the Reynolds number of turbulence is very small, the inertial

terms in the dynamic equations may be neglected.

According to Deissler [36], in the final period of decay the inertia terms (triple correlations)
in the two point correlation equation obtained from the momentum and continuity equations
can be neglected because the Reynolds number of the eddies is small, and a solution can be
obtained. However, at earlier times the inertia terms in the two-point correlation equation
can’t be neglected. So that in order to obtain a solution, an intuitive assumption is generally
introduced to relate the triple correlations to the double correlations. The situation in
homogeneous turbulence is therefore analogous to that in turbulent shear flow where intuitive
assumptions have been introduced to relate the Reynolds stress or the eddy diffusivity to the
mean flow; although one case of homogeneous turbulence, the turbulence in the final period,

has been solved without introducing intuitive hypothesis.
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1.11. Statistical Theory of Distribution Functions in Turbulence and it’s
Properties:

In the statistical theory, the distribution function are discussed by several authors in the past,
but the dynamical equations describing the time evolution of the finite dimensional
probability distributions in turbulence were first proposed by Lundgren [84] and Monin
[93,94]. Lundgren [84] considered a large ensemble of identical fluid system in turbulent

state. In his consideration each number of the ensemble is an incompressible fluid in an
infinite space with velocity u(r,t) satisfying the continuity and Navier-Stokes equations. The
only difference in the members of ensemble is the initial conditions that vary from member to

member. He considered a function F(i(#,¢).4(7.1)——-) whose ensemble is given as
(F(:?(n,r).ﬁ(rz,t)———» and defined one point distribution function fl(}:I .131,1) such that
jf,(ﬁl.ﬁl.t) dv, is the probability that the velocity at a point 7 at time t is in element
d¥,about ¥, and is given by £ (7.9, ,1) =< 8(@(7,1)-v,) )

and two points distribution function is given by
/s (FI s VysFas ¥, ,!) = <‘S(ﬁ(”l vt) - )5(1}("2 >")_ {}2 )>

In short one and two point distribution functions are denoted as £’ and f;"*. Here & is

the dirac-delta function, which is defined as

L g i atthepointu=v
J(S‘(u —v)dﬁ = {0 .

elsewhere

and < > denote the ensemble average.

1.12. Fourier Transformation of the Navier-Stokes Equation:

The principal reason for using Fourier transformation is that they convert differential
operators into multipliers. The equations are so complicated in configuration (or coordinate)
space that very little can be done with them, and the transformation to wave number (or
Fourier) space simplifies them very considerably. Another and more mathematical argument

shows that these transforms are right method of treating a homogeneous problem. Associated
. 5 5 5 — =r\ . . A . == o i
with any correlation function, (Iﬁ(A‘,X ) is a sequence of eigen functions ¢1,X") and their

associated eigen-values ﬂ(”) These quantities satisfy the value equation.
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|G G R ) ) R — (1.12.1)

and the orthonormalization relation

(Wi xpe (mi)d's =1, if m=n e (1.12.2)

=0 otherwise

These equations imply that ¢ is a scalar. Actually it is a tensor of order two, but this

complicates the argument without introducing anything essentially new. The index # is in
general a complex variable and y* denotes the complex conjugate of y (strictly, y* is the
adjoint of y, but since ¢ is real and symmetric the adjoint is simply the complex conjugate).
The integrations in equations (1.12.1) and (1.12.2) are over all space, which may be finite or
infinite. If the space is finite 7 is usually an infinite but countable sequence, while if space is
infinite, 7 will be a continuous variable. Here the eigen functions all have real eigen-values.

If follows from (1.12.1) and (1.12.2) that.

e R 3 U (% (o e — (1.12.3)

all n
and this is the diagonal representation of the correlation function in terms of its eigen
functions. Evidently these functions are only defined “within a phase” that is, a factor exp(iy)

can be added to a;/(ﬁ,fc) without altering ¢(?c,?c’) provided vy is real and independent of x. For
a homogeneous field, ¢ is a function of X,X'only and the problem is to find the eigen

functions which are also homogeneous within a phase in the sense that
w(i, %) = expliy (7, % + @)
This equation is satisfied by the Fourier equation

q/(ﬁ,fc) = exp(inn.xX)= exp(z’ﬁj X, )

with y =—-n.a. In this situation (instance), therefore, “the index”, » is a wave number.

Equation (11.3) becomes.

§5.7) = X A(@)explin - )

so that A(77) may be identified with ¢(77), the Fourier transform of the correlation function.
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Since we are considering homogeneous isotropic turbulence, the turbulent field must be
infinite in extent. This produces, mathematical difficulties, which can only be resolved by
using functional calculus. This difficulty is avoided by supposing that the turbulence is
confined to the inside of a large box with sides (aj, as, a3) and that it obeys cyclic boundary
conditions on the sides of this box. The a; is allowed to tend to infinity at an appropriate point

in the analysis. Thus the Fourier transform is defined by

UE) =) (a,ana) Yu(R)expliRz) e (1.12.4)
K

Here K is limited to wave vectors of the from

2nmr 2n,m 2nym

) H

a, a; a

3
where n; are integers while the a; are, as before the sides of the elementary box. As these sides

become infinitely large, equation (1.12.4) goes over into standard form,

UE)= [u&)expiRzPR e (1.12.5)

The inverse of (1.12.5) is,

u,(E): (2r) Ju,(}c')exp(— i]??c)d"x ————————————— (1.12.6)
box

The Fourier transform of Navier-Stokes equation may be written as

[i #VK? }u, &)=, R)>u,B.6) e (1.12.7)

dt

where i is a short notation for the integral operator in

[[v,&p, @& -B-F)lapfa’7) e (1.12.8)

where 8k, p+tris the Kronecker delta symbol which is zero unless
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Here, M, (1-(:) is a simple algebraic multiplier and not a differential operator. We have
- 1 N
Mum (K): _El‘l)ym( ) """"""""" (1129)
= - - KK,
Wherc" P’Jm (K) = Km Pf;f (K)+ K} PHN (K) and P’J - (SU a Kzl

P (K’) is the Fourier transform of P, (V) but P (12') is not the transform of 2, (V).

ym im

As it is stands, equation (1.12.7) can’t describe stationary turbulence since it contains no
input of energy to balance the dissipative effect of viscosity. In real life this input is provided
by effects, such as the interaction of mean velocity gradient with the Reynolds stress, which
are incompatible with the ideas of homogeneity and isotropy. To avoid this difficulty, we
introduce in to the right hand side of equation (1.12.7) a hypothetical homogeneous isotropic

stirring force fi. The equation then reads.

dt

{i K }:, (R)=M,, (k)i R30S T - e — (1.12.10)

1.13. Magneto-hydrodynamic (MHD) Turbulence:

The magneto-hydrodynamic turbulence is the study of the interaction between a magnetic
field and the turbulent motions of an electrically conducting fluid. The interaction between
the velocity and the magnetic fields results in a transfer of energy between the Kinetic and
magnetic spectra, and it is thought that the interstellar magnetic field is maintained by a

“dynamo” action from turbulence in the interstellar gas.

Magneto-hydrodynamic (MHD) is an important branch of fluid dynamics. MHD is the
science which deals with the motion of highly conducting fluids in the presence of a magnetic
field the motion of the conducting fluid across the magnetic field generates electric current
which changes the magnetic field and the action of the magnetic field on these currents gives
rise to mechanical force which modifies the flow of the field. From historical point of view it
seems that the first attempt to study the problem of MHD is due to Faraday. Later on in 1937
Hartmann took up Faraday’s idea in understood conditions. Hartmann carried out
experiments, which demonstrated the influence of a very intense magnetic field on the motion

of mercury.
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Modern applications of magneto-hydrodynamics in the fields of propulsion, nuclear fission
and electrical power generation make the problem of magneto-hydrodynamic turbulence one
of considerable interest to engineers, since turbulent phenomena seen to be inherent in almost
all type of flow problems. There are two basic approaches to the problem, the macroscopic
fluid continuum model known as MHD, and the microscopic statistical model known as
plasma dynamics. We shall be concerned here only with the MHD, that is electrically

conducting fluids, and study the problems of MHD turbulent flow.

The theory of turbulence in an incompressible viscous and electrically conducting fluid is
formulated probabilistically through the use of the joint characteristic functional and the
functional calculus. The use of the joint characteristic functional approach relies upon the fact
that the velocity and magnetic fields are both solenoid, and hence, in the probabilistic sense,
are jointly distributed over the phase space consisting of the set of all solenoid vector fields.
The formulation of the problem in phase space is completely carried out. The full space-time
functional formulation of the problem as developed by Lewis and Kraichnan [82] for
“ordinary turbulence” is extended to magneto-hydrodynamic turbulence. This approach
enables us to generate space-time correlation between the velocity and magnetic field
components rather than merely spatial correlations as were used in the original [53] Hopf
presentation. Dynamical equation for various order space-time correlations between velocity
and magnetic field components are derived from the joint characteristic functional by its
expansion in a Taylor series.The concept of Kolomogoroff’s [77] equilibrium hypothesis for
ordinary turbulence is extended to magneto-hydrodynamic turbulence. The problem of

predicting the form of the energy spectra in the equilibrium range is taken up.

The fundamental equations of magneto-hydrodynamics for an incompressible fluid are

O ol B e B Bt 0000 s (1.13.1)
ot P P p
vai=0 e (1.13.2)
K OE = "

2 Y L (1.13.3)
c ot
. OH -
Ee B w8 00 (1.13.4)

¢ ot
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V.H =0 s (1.13.5)

J=olcE+piaxd)+p,t (1.13.6)
.

where #, the velocity vector; £, the body force; P, the pressure; p, the density of the fluid
which is constant; p, the excess electric charge; £, the electric field strength; ., the

magnetic permeability; J . the electric current density; 7, the magnetic field strength; v, the
coefficient of kinematic viscosity; k, the dielectric constant; ¢, the speed of light; o, the

electrical conductivity; v, the gradient operator, V.V = V? and t is the time.

When conductivity o of the fluid tends to infinity the electric field strength £, at each point

must tend to the value 4> otherwise the current J given by equation (1.15.6) becomes
c

very large even when very slightest mass motion is present. Hence when o is large we may
assume that
uxH

E=—p—— (1.13.7)
C

a relation which is increasingly valid as c—0

An important consequence of relation (1.13.7) is that under the circumstances in which this is
a good approximation the energy in the electric field is of the order of f”/ of the energy in
c

the magnetic field and can, therefore, be neglected. This approximation is known as the
approximation of Magneto-hydrodynamics. We have to consider only the interaction between

the two fields # and H.

In the MHD approximation, Maxwell equation (1.13.3) becomes,

- 1 -
Je—ewdHd  — (1.13.8)
4z

In the framework of approximations (1.13.7) and (1.13.8) the Navier-Stokes equation are

modified to take into account the electromagnetic body force (assuming that there is no body

force F')and equation (1.13.1) becomes

LT3 T S O L T — (1.13.9)
ot drp o)
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Again, in the approximation (1.13.7), Maxwell equation (1.13.4) becomes

%:curl(ﬂxﬁ) """"""" (1.13.10)

In a higher approximation in which the loss of energy by Joule heat is allowed for the

equation (1.13.10) is modified to [12]

%ii—cm'l(ﬂxﬁ)=ivzﬁ --------- (1.13.11)

where 4 =(4rmu,0)" is the magnetic diffusivity

Now the magnetic field intensity /7is a solenoidal vector, and in an incompressible fluid the

velocity # is also a solenoidal vector. When we use this property of # and H equations

(1.13.9) and (1.13.11) can be written in the form [11] as

2

H
oy omony M @ gy 1 O yp. Plsiovly, e (1.13.12)
ot £, 4rp Ox, P Ox, 8
and
oH, 0 5
—t+—(Hu, —u,H,)=AV*H, . (1.13.13)
ot Ox,

where, here and in the sequel, summation over the repeated indices is to be understood.
Equations (1.13.12) and (1.13.13) form the basis of Batchelor’s [12] discussion.
Chandrasekhar [24] extended the invariant theory of turbulence to the case of magneto-

hydrodynamics. He introduced the new variable as

e el 0 (1.13.14)
4mp

for H. It has the dimension of velocity (known as Alfven’s velocity) but behaves as vorticity.

In terms of 4 the equations (1.13.12) and (1.13.13) can be expressed as

ou, 0 oP 5
—+—\uu, —hh )=——+W-u. 11315
ot a.vk(' LY o, : (1.13.15)

1
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6/1, 8 )
and — +5Y—(h,uk ~uh )=V (1.13.16)
k

P 152 . 1. ;
where P :—+—‘h . is the total MHD pressure and A =(47u,0) "' is the magnetic

n p 2

diffusivity. Chandrasekhar [29, 30] in his theory, considered the correlation’s between # and

h at two points p and p’ in the field of isotropic turbulence in the same manner as in the

= . ] / !
ordinary turbulence. Here, we have the double correlation, ¥ ; | h,- /’lJ,- and U,»hj , and the

triple correlation,

! / r R 7 r f roor e
uu e hhog o wu by bbby (h,.uj. —uh, )lvk ,and (hjuk - hu; h, .

where the subscripts refer to the components of the vectors i,j.k=1,2,3. Each of these double

and triple correlations depends on one scalar function in the case of isotropic turbulence

because the divergence of both # and A is zero.

Equations (1.13.15) and (1.13.16) are derived by coupling Maxwell’s equations for the
clectromagnetic field and Navier-Stokes equations for the velocity field. The Maxwell
equations are modified to include the induced electric field due to the fluid motion and the
Navier-Stokes equations are modified to include the Lorentz force on fluid elements due to
the magnetic field. The so-called “Magneto-hydrodynamic approximation™ is made, in which
displacement currents are neglected in Maxwell’s equations. This approximation is well
founded provided we are not dealing with very rapid oscillations of the electromagnetic ficld

quantities, as is the case in the propagation of electromagnetic waves. Under this

L . ey e 1. .
approximation, the energy in the electric field is of the order of —- times the energy in the

C

magnetic field, where c is the speed of light and hence may be neglected. Therefore, we have

only to consider the interaction between the velocity field # and the magnetic field h.

1.14. A Brief Description of Past Researches Relevant to this Thesis work:

The system is usually rotating with a constant angular velocity in geophysical flows. Such
large-scale flows are generally turbulent. When the motion is referred to axes, which rotate

steadily with the bulk of the fluid, the coriolis and centrifugal force must be supposed to act
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on the fluid. The coriolis force due to rotation plays an important role in a rotating system of
turbulent flow, while the centrifugal force with the potential is incorporated into the pressure.
Turbulence in the presence of coriolis force is an interesting topic in astrophysics as well as

in fluid mechanics.

Ohji [98] considered the effect of coriolis force on turbulent motion in the presence of strong

magnetic field with the assumption that Coriolis force term (-2QxU) is balanced by V<x>

(the geostropic wind approximation) where x represents the generalized pressure. Kishore
and Dixit [61], Kishore and Singh [63], Dixit and Upadhyay [39], Kishore and Golsefied [66]
discussed the effect of coriolis force on acceleration covariance in ordinary and MHD
turbulent flow. Funada, Tuitiya and Ohji [47] considered the effect of coriolis force on
turbulent motion in presence of strong magnetic field. Kishore and Sarker [71] studied the
rate of change of vorticity covariance in MHD turbulence in a rotating system. Sarkar [121]
discussed the vorticity covariance of dusty fluid turbulence in a rotating frame. Shimomura
and Yoshizawa [131], Shimomura [132] and [133] also discussed the statistical analysis of
turbulent viscosity, turbulent scalar flux and turbulent shear flows respectively in a rotating
system by two-scale direct interaction approach. Sarker [123] studied the Thermal decay
process of MHD turbulence in a rotating system. Saffman [118] derived an equation that
described the motion of a fluid containing small dust particles, which is applicable to laminar
flows as well as turbulent flow. Using the Saffman’s equation Michael and Miller [92]
discussed the motion of dusty gas occupying the semi-infinite space above a rigid plane
boundary. Sinha [134], Sarker [122], Sarker and Rahman [124] considered dust particle on

their won works.

The essential characteristic of turbulent flows is that turbulent fluctuations are random in
nature and therefore, by the application of statistical laws, it has been possible to give the idea
of turbulent fluctuations. The turbulent flows, in the absence of external agencies always
decay. Millionshtchikov [90], Batchelor and Townsend [10], Proudman and Reid [110],
Tatsumi [142], Deissler [36,37], Ghosh [48,49] had given various analytical theories for the
decay process of turbulence so far. Further Monin and Yaglom [94] gave the spectral
approach for the decay process of turbulence. Although, MHD turbulent fluctuations are
random in nature but exhibit the characteristic structure likewise the hydrodynamic
turbulence, hence the statistical laws can also be applied in MHD turbulence. Mazumdar [96]
derived an early period decay equation for general type of turbulence for an incompressible

fluid. Also Sinha [134] discussed the decay process of MHD turbulence and derived an early
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period decay equation. Sarker and Kishore [120] discussed the decay of MHD turbulence

before the final period.

The approach is phenomenological in the sense that they considered the region where the
variations of the mean temperature and mean velocity may be neglected because of the
transportation of the thermal energy from place to place is very rapid. Deissler [36,37]
developed a theory for homogeneous turbulence, which was valid for times before the final
period. Using Deissler’s theory Loeffler and Deissler [81] studied the temperature
fluctuations in homogeneous turbulence before the final period. Using Deissler same theory
Kumar and Patel [73] studied the first order reactants in homogeneous turbulence before the
final period for the case of multi-point and single time. The problem [73] also extended to the
case of multi-point and multi-time concentration correlation in homogeneous turbulence by

Kumar and Patel [74]. The numerical result of [74] carried out by Patel [106].

Following Deissler’s theory, Sarker and Islam [128] also studied the decay of temperature
fluctuations in homogeneous turbulence before the final period for the case of multi-point and
multi-time. Sarker and Rahman [125] studied the decay of temperature fluctuations in MHD
turbulence before the final period, Sarker and Islam [129] considered the decay of dusty fluid
turbulence before the final in a rotating system. Sarker and Rahman [124] discussed the
decay of turbulence before the final period in presence of dust particles. Sarker and Islam
[130] studied the effect of very strong magnetic field on acceleration covariance in MHD
turbulence of dusty fluid turbulence in a rotating system. Further Rahman and Sarker [115]
studied the decay of dusty fluid MHD turbulence before the final period. In their approach
they considered the two and three point correlation equations and solved these equations after
neglecting the fourth and higher order correlation terms compared to the second and third

order correlation terms.

Azad and Sarker [1] studied the Decay of MHD turbulence before the final period for the
case of multi-point and multi-time in presence of dust particle. Sarker and Islam [127]
studied the decay of MID turbulence before the final period for the case of multi-point and
multi-time. Islam and Sarker [56] discussed the first order reactant in MHD turbulence before
the final period of decay for the case of multi-point and multi-time. Sarker and Islam [129]
also studied the decay of dusty fluid turbulence before the final period in a rotating system.
Reddy [116] studied about the flow of dusty viscous liquid through rectangular channel.

Hazem Attia [54] studied unsteady flow of a dusty conducting fluid between parallel porous
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plates with temperature dependent viscosity. Bhargava and Takhar [21] studied the effect of
Hall currents on the MHD flow and heat transfer of a second order fluid between two parallel
porous plates. Varma and Mathur [150] studied in this field. Sreeharireddy, Nagarajan and
Sivaiah [139] also studied on MHD flow of a viscous conducting liquid between two parallel

plates.

By analyzing the above all theories, we have studied the Chapter II, Chapter IV and
Chapter V.

Hopf [53], Kraichnan [78], Edward [41] and Hering [50] have given various analytical
theories in the statistical of turbulence. But the dynamical equations describe the time
evolution of the finite dimensional probability distribution of turbulent quantities were first
derived by Lundgren [83]. Lundgren [83] derived a hierarchy of coupled equations for multi-
point turbulence velocity distribution functions, which resemble with BBGKY hierarchy of
equations of Ta-Yu-Wu [141] in the kinetic theory of gases. Further Lundgren [84]
considered a similar problem for non-homogeneous turbulence. The basic difficulty is that
the above theories faced to closure problem. Some general approaches to closure problem for
multi dimensional probability density equations those were made by Lyubimov and Ulinch
[86 , 87]. Two other closure hypotheses for the probability distribution equation of single
time values were investigated by Fox [45], Lundgren [85], Bray and Moss [20] considered
the probability density function of a progress variable in a idealized premixed turbulent flow.
Bigler [19] gave the hypothesis that in turbulent flow, the thermo-chemical quantities can be
related locally a few scalars. Further Pope [107] gave a more suitable model for the

probability density functions of scalars in turbulent reacting flows.

Also Kishore [60] studied the distributions functions in the statistical theory of MHD
turbulence of an incompressible fluid. Pope [109] derived the transport equation for the joint
probability density function of velocity and scalars in turbulent flow. Kishore and Singh [62]
derived the transport equation for the bivariate joint distribution function of velocity and
temperature in turbulent flow. Kishore and Singh [64] have been derived the transport
equation for the joint distribution function of velocity, temperature and concentration in
convective turbulent flow. Dixit and Upadhyay [40] considered the distribution functions in
the statistical theory of MHD turbulence of an incompressible fluid in the presence of the

coriolis force. Kollman and Janicka [75] derived the transport equation for the probability
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density function of a scalar in turbulent shear flow and considered a closure model based on

gradient — flux model.

At this stage, one is met with the difficulty that the N-point distribution function depends
upon the N+1-point distribution function and thus result is an unclosed system. This so-called
“closer problem” is encountered in turbulence, kinetic theory and other non-linear system.
Sarker and Kishore [119] discussed the distribution functions in the statistical theory of
convective MHD turbulence of an incompressible fluid. Further Sarker and Kishore [126]
discussed the distribution functions in the statistical theory of convective MHD turbulence of

mixture of a miscible incompressible fluid.

Following the above theories, in Chapter III, an attempt is made to define the statistical
theory of distribution function for simultaneous velocity, magnetic, temperature and
concentration fields undergoing a first order reaction in MHD turbulence in a rotating system,
in presence of dust particle and for the both. Finally, the transport equations for evolution of
distribution functions have been derived and various properties of the distribution function
have also been discussed. The resulting one-point equation is compared with the first
equation of BBGKY hierarchy of equations and the closure difficulty is to be removed in the

case of ordinary turbulence.
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Chapter 2

CHAPTER- 11

PART-A

FIRST ORDER REACTANT IN MAGNETO-HYDRODYNAMIC
TURBULENCE BEFORE THE FINAL PERIOD OF DECAY IN A
ROTATING SYSTEM

2.1. Introduction:

The system is usually rotating with a constant angular velocity in geophysical flows. Such
large-scale flows are generally turbulent. When the motion is referred to axes, which rotate
steadily with the bulk of the fluid, the coriolis and centrifugal force must be supposed to act
on the fluid. The coriolis force due to rotation plays an important role in a rotating system of
turbulent flow, while the centrifugal force with the potential is incorporated into the pressure.
Kishore and Dixit [61], Kishore and Singh [63], Dixit and Upadhyay [39], Kishore and
Golsefied [66] discussed the effect of coriolis force on acceleration covariance in ordinary
and MHD turbulent flow. Funada, Tuitiya and Ohji [47] considered the effect of coriolis
force on turbulent motion in presence of strong magnetic field. Kishore and Sarker [71]
studied the rate of change of vorticity covariance in MHD turbulence in a rotating system.

Sarker [123] studied the thermal decay process of MHD turbulence in a rotating system.

Turbulence in the presence of Coriolis force is an interesting topic in astrophysics as well as
in fluid mechanics. Ohji [98] considered the effect of coreolis force on turbulent motion in
presence of strong magnetic field with the assumption that the Coriolis force term (-2QxU) is
balanced by the geostropic wind approximation. Deissler [36, 37] developed a theory “decay
of homogencous turbulence for times before the final period”. Using Deissler theory, Kumar
and Patel [73] studied the first-order reactant in homogeneous turbulence before the final
period of decay for the case of multi-point and single-time correlation. Kumar and Patel [74]
extended their problem [73] for the case of multi-point and multi-time concentration
correlation. Patel [106] also studied in detail the same problem to carry out the numerical

results. Sarker and Kishore [120] studied the decay of MHD turbulence at time before the
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final period using Chandrasekhar’s relation [27]. Sarker and Islam [127] studied the decay of
MHD turbulence before the final period for the case of multi-point and multi-time. Sarker
and.Azad [137] studied the Decay of MHD turbulence before the final period for the case of
multi-point and multi-time in a rotating system. Islam and Sarker [56] studied the first order
reactant in MHD turbulence before the final period of decay for the case of multi-point and
multi-time. Sarker and Islam [128] also studied the first order reactant in MHD turbulence
before the final period of decay. In their approach they considered the two and three-point
correlation equations and solved these equations after neglecting fourth and higher order

correlation terms.

In this chapter following Deissler’s theory[36, 37], we have studied the magnetic field
fluctuation of concentration of a dilute contaminant undergoing a first order chemical
reaction in MHD turbulence before the final period of decay in a rotating system. Here, we
have considered the two-point and three-point correlation equations and solved these
equations after neglecting the fourth-order correlation terms. Finally we obtained the decay
law for magnetic field energy fluctuation of concentration of dilute contaminant undergoing a

first order chemical reaction in MHD turbulence in a rotating system comes out to be
5 -3 o
(h*) = exp[-R(s —fo)[/i(!—fo) 72 +exp[-{2€,, Q,}1B(-1,) 5},

where (h’) denotes the total energy (mean square of the magnetic field fluctuations of

concentration), t is the time and A, B and ty are constants.

2.2. Basic Equations:

The equation of motion and the equation of continuity for viscous, incompressible MHD

turbulent flow in a rotating system are given by the equation Chandrasekhar [27] as

i +i(ufu£_ *h,hk): —@%—V o, -2€,,Qu,, 00 eemeee (2:2.1)
ot Ox, ox, Ox,0x,

ol 0*h

L I N . s 2.2.2)
ot Ox, Ox, 0x,
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ou, ov, Oh
ox, ox, o,

i

B. (2.2.4)

with

Here, u;, turbulent velocity component;

hi, magnetic field fluctuation component.

2
Jtotal MHD pressure inclusive of potential and centrifugal

w(x, 1) = £+1<hz) + lf)x X
g 2 2
force;
p(x,1)=hydrodynamic pressure,

p = fluid density,

v :
Py =7 magnetic prandtl number,

VvV
p, =—, prandtl number,

v = kinematic viscosity,

K ; i
y = ——, thermal diffusivity,
[xip

K= Stokes’s resistance coefficient which for spherical particle of radius r is 6mpr.
A =(4zuc ), magnetic diffusivity,
¢, = heat capacity at constant pressure,

Q, = constant angular velocity components,

m

e, = alternating tensor,

mki

4 . . : -
m, = gﬁR_\,“p_\,,mass of single spherical dust particle of radius R,

Ry

Xk = Space co-ordinate.

The subscripts can take on the values 1, 2 or 3.

2.3. Two-point Correlation and Spectral Equations:

The induction equation of a magnetic field fluctuation of concentration of a dilute

contaminant undergoing a first order chemical reaction at the points p and p’ separated by the

vector » could be written as
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oh ou, o*h

;+u "h L :/1 —Rh ---------- 3.1

o C“oax, Cex,  oxox, ——
oh . oh . ou o*h .

and —~+u, —~-h —L=} —-Rh,, e 5

ot x, ox,  0x,0x,

where, R is the constant reaction rate.

Multiplying equation (2.3.1) by h_; and (2.3.2) by h;, adding and taking ensemble average, we

get
dhh) 8 ‘ . o .. L
TJ+§[<”kh,hJ>—<hku,hj>]+5g[<ukh,h,>—<hku,hf>]-
*hh)y 0°(hh ‘
= (b2 - <, d f>]—2R(h‘.hl) e (2.3.3)
Ox, 0x, 0x,.0x,
Angular bracket (.......... ) 1s used to denote an ensemble average.

Using the transformations

o_0 0 -
or, ox, Ox,
and the Chandrasekhar relations [27]
(uehhy = —Qu bl ) hh )y =—uhhy, e (2.3.5)
equation (2.3.3) becomes
oCh h;) bl o ; O (hh') .
——+2 whh y—(uhh)|. =21—"2--2R(hh,). —eeee- 236
8[ ]‘k [< {k i J|> < (il ¢ j)] af‘kark <I| j) ( 2 )

Now we write equation (2.3.6) in spectral form in order to reduce it to an ordinary differential

equation by use of the following three-dimensional Fourier transforms.

i (P)y = [, () exp[f (fE.f-)]d/E . e (2.3.7)

(u,hohy () = J‘(a,g{/kl,r/"f (k)) exp[f(/gf)]dl{'. ---------- {2.3.8)

Interchanging i and j, points p and p then,
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~

iy (7)) = (<P = [ (e, (RyexpfhAHE, e (239)

where, k is known as wave number vector and d & = dk,dk,dks

Substituting of equation (2.3.7) to (2.3.9) in to equation (2.3.6) leads to the Spectral equation

Ny ' (k)

S UKy, () + 2Ry (k) = 2ik[ ey w (k) ~ (e (k)]

......... (2.3.10)
Xy, , (k)
_ dvw, )

. R 1, g 5 ,ooA . ~
o +2Z[K“+Z]<w,w,(k)> =2ik[ {ay .y, (k) =y, (=k))] —---(2.3.11)

The tensor equation (2.3.11) becomes a scalar equation by contraction of the indices i and j

oy, (k)

N L ¥ %K‘fw: (k) = 2ik[ (ap,w, (k) — (et (kD] e (2.3.12)

The term on the right hand side of equation (2.3.12) is called energy transfer term while the

second term on the left hand side is the dissipation term.

2.4. Three-point Correlation and Spectral Equations:

Similar Procedure can be used to find the three-point correlation equation. For this purpose
we take the momentum equation of MHD turbulence in a rotating system at the point P and
the induction equations of magnetic field fluctuation, governing the concentration of a dilute
contaminant undergoing a first order chemical reaction at P' and P” separated by the vectors

r and 7' as

ou, ou,
+u, = . -
ot ok, Ox, Ox, Ox,0Ox,

iz,'+ . Oh, . oy, o’h,
ot ox, o, Ox,0x,

on Lon  .ou 0K .
+u,——h ——=A——2-Rh,, (2.4.3)
a  Fox, o, omox,
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.total MHD pressure inclusive of potential and

A~ ID 1 2 1 h~ ~
where, W(x,f)=—+—(h") +ﬁlQ><x
p 2 .

centrifugal force P(x,t), hydrodynamic pressure; Qm,constant angular velocity components;

€, alternating tensor.

mki ®

Multiplying equation (2.4.1) by h'h, (2.4.2) by u,h and (2.4.3) by uh, adding and taking
ensemble average, we obtain
a(u,h;h» b,
o
ot ox,

[(uku,h,hj)—(h,(h,h,hj)]+$[(u,u,‘h,h_l)—(u,u,hk}?)]

k

+g_"—[<ulukhrhj>_<u.‘u_,lh1hj>]

Xy

Xwhihy  &*(uhh)) o u,h'h)y 0 (uh'h’)
- +v 42 Al 4
Ox, Ox,0x, 0x, 0%, Ox,0x,

—2RG@uhh y-2¢€,, Q, hh). e (2.4.4)
Using the transformations

0 0 o 0 0 0 0
—(—'i"—

—= )y =, T = e (2.4.5)
Ox, o, O, Ox, On, ox; Orn
into equation (2.4.4)
ou,h'h, % (u,h'h O*u,h'h, o (u,h'h
(uh, j>7/1(]+PM) ( ”f?‘f>+(1+Pu) (51,'?J>+2PM (u,hh))
A ' or,or, or,0or,
a U " a U " a ¥ b a " "
:aT(u,ukhfhj)+?(u,ukhj.hj>—?(h,hkhihj)-—§<h,hkhthj)
k k k k
%, %, 0 0
——uuhh ) +— @ hh ) ——Quhh ) +—u hh )
ark ffad Ji ark < ! k" 8}"‘& ( ¥ j> af'k < 1% J
ks ;(1141}1}) + ?(wh,hf) =2R(ulih, y=2 € 5 S0 (BB, s (2.4.6)
A r, ' '
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In order to write the equation (2.4.6) to spectral form, we can define the following six

dimensional Fourier transforms:

(bl (P (7)) = mjij@, Bk B (k) exp[f (k.7 + /E'f')]diédé' --------- (2.4.7)

i P 7)) = ﬂw,; Y R (TR ) 2 — (248)
gt (Y (P, (7)) = Ew,sé,- O RO G TR D) S— (2:4.9)
(W ()R, (F)) = ? Uj[(gé,gbk RGN exp[f(/é.f + /E’f*)]d/édfé' --------- (2.4.10)
(b (P (1)) = ci[ mj( BB.BIKB, (k")) exp[f (k.7 + A?'.F')]d/éd/é' -------- (2.4.11)
(wh!(F)h, (F)) = TT(yﬁ;(/E)ﬂ; (k")) exp[f (kF+ é‘f’)]d/édfé'. ------- (2.4.12)

Interchanging the points p" and p” along with the indices iand j, result in the relations
gt p 4l 8 5 P
Quaghh)=Cuaghhy), S, hhy=Quhhy, @i h)=@uh) e (2.4.13)

By use of this facts(2.4.13) and equations (2.4.7)-(2.4.12), the equation (2.4.6) may be

transformed as

2 12 ! 26»:' Qm r "
(1 +P-\f)ku +(] +P_.u)k ) +2PMkkkk +2§++:|<¢fﬂ,ﬂj>

K¢ B8,) " /{
ot

=i(k, +k, )<¢f¢xﬁ.rﬂ;> —i(k, +k, )(ﬁ:ﬂkﬁ.rﬂﬁ —i(k, +k, )<¢!¢;ﬂ::ﬁ,> +ilk, + k')<¢[¢;ﬂf’[)’:>
+ilk, +BYaBBy. 0000 e (2.4.14)

The tensor equation (2.4.14) can be converted to scalar equation by contraction of the indices

i and j
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——O<¢'§;ﬁ ), ,1[(1 + P + k) + 2P, K,k +2§ +%}<¢,ﬁ!ﬂj'>

=ik + ki KO8 BBy =ik + ki XB BB~ ik, + k)G BB +ilk, + kX888

+ilk, +kDGBBY . e (2.4.15)

To relate the terms on right hand side of equation (2.4.15) derived from the quadruple
correlation terms and from the pressure force term in equation (2.4.6), we take the derivative

with respect to x,of the momentum equation (2.4.1) for the point p, and combine with the

continuity equation to give

_(’52(11))_ g
Ox,0x, 0Ox,0x,

wu, -mhy). (2.4.16)

Multiplying equation (2.4.16) by h;h; taking time averages and writing this equation in terms

of the independent variables r and r’

2 o)
o* N N B 2
- +2 + (whih ) = + + e

EE A Ayt ot o i 1A S A ALl
or,or, or,0r)  or'or J or,0r Or;or OF, O OF, OF
=7 1= i Ik 17k 1Tk Ik

QD

><(<u,ukh;-hj>f<h,hkh}'hj>j.. ------------ (2.4.17)

Now taking the Fourier transforms of equation (2.4.17) we get

(ki + kiky + kok) + kK8 BB = (BB BIOBY)

-{¥B/B,) = — :
d k+ 2k k, + k

Thus the equations (2.4.17) and (2.4.18) are the spectral equation corresponding to the three-

point correlation equations. Equation (2.4.18) can be used to eliminate (yﬁ,’[ﬂ}from the

equation (2.4.15).



Chapter 2 40

2.5. Solution for Times Before the Final Period:

It is known that equation for final period of decay is obtained by considering the two-point
correlations after neglecting the 3" order correlation terms. To study the decay for times
before the final period, the three point correlations are considered and the quadruple
correlation terms are neglected because the quadruple correlation terms decays faster than the
lower-order correlation terms. But to get a better picture of the MHD homogencous
turbulence decay from its initial period to its final period , three-point correlation equations
are to be considered. Here, we neglect the quadruple correlation terms since the decay faster
than the lower order correlation terms.

Putting the value of (}fﬁ,'ﬁ;) from equation (2.4.18) into equation (2.4.15) and neglecting all

the quadruple correlation terms, we have

3 " 2 Q ' o
—(3(¢,/3’, bi) + A (1+ P, Wk +&2)+ 2P, k. k, + 2£ +—m€’"“ = K, B.8.) =0
ot ‘ A A

----------- (2:5.1)

Taking inner multiplication by &, we get

k (¢, BB, § . 4 , 2R 2,0 T
et u[(l # P + K+ 2Pk + S 2ol o }(K;w,ﬁ.ﬂ,- »=0
t

——————————— (2:5:2)

Integrating the equation (2.5.2) between ty and t, and gives

k, <¢/ﬂ:ﬂ;> = kr[<¢fﬁ,'ﬁ:>]u exp{-A[((1+ P, )(k2 +k" )+ 2P,k k' cosO

+E i 2 € it Qnr ](l'l())}, __________ (253)

A A

where @is the angle between £ and k"and [{¢,B8/0" 1o is the value of (@, S/0") at t=t,.

Now, by letting ' =01in equation (2.4.7) and comparing with equations (2.3.8) and (2.3.9),

we get

)= (@B Gak, (2.5.4)
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A T L Y N e — 25.5)

Substituting equation (2.5.3) - (2.5.5) in equation (2.3.12), we get

a(‘/’/zuj;(l;)> 2 R A o0 . i s .. " A
—— 2k S ) = | 21k,[<¢fﬁi (KB, (k' =9, B, (~k)B, (=& )>J
| 2R € Q 5
xexp[— MA+p,, k2 + k2 )+2P, Kk c050+7+2W}(! —10)}11@, ........ (2.5.6)

Now,dlg'can be expressed in terms of k"and @ that is dK'= —27k"*d(cos @)dk’
(cf Deissler [37]).

With the above relation, equation (2.5.6) to give

Xy iy (k)

ot

R L @0 A "ooa ~ [ ~
+22[k* +Z]<t//,'w.(k)> =2 [ 2ik, |:(¢![3'_ (k) (k') =g, B, (=K, (kk')ﬁ
i —w i i i i 0

% lj At 1+ P Y2 +K2)+ 2P, k' cosg+ 2R 4o Zmkd =3 —
X ]cxp - (—!0)[(+ M)( - )+ A cosf + A+ T] (cos@) |dK",

In order to find the solution completely and following Loeffler and Deissler [81] we assume

that

N 2 (R It 1 : 2704 4712
a'k,[w,ﬂ:(mﬂ, (K =(4,B/(=k)p, (—k')>} =—(—;;7[k-k'- s L] T— (2.5.8)

where &, is a constant depending on the initial conditions. The negative sign is placed in
front of &, in order to make the transfer of energy from small large wave numbers for

positive value of &, .

Substituting equation (2.5.8) into equation (2.5.7) and completing the integration with

respect to cos@, one obtains
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e ——————————————

@iy (K)) .
—— T oan? e Ry k= —0 J(k kK )
c’[ l{ 1 V([ _l()) 0

{em{— At —1,)[(A+ By K + k)~ 2P k' 4 2R 4 2 D ]}

A

Q
_m=l| jmom; . 2,2 " 2R Skl m
exp—A¢ 10)[(1+PM)(k +k )+2PA//ck +7+2—/1 gk (2.5.9)

Multiplying both sides of equation (2.5.9) by k*, we get
a—H+2/1[k2 RJH G, e (2.5.10)
ot A

where, H=2 7k (y/ .7, ([%)) is the magnetic energy spectrum function and G is the

magnetic energy transfer term is given by

0 5 53 2 42 i 3R P8 Ll
G=——9 [k kK3 expl— A - P k" +K<)-2P —
V(I*IO)(I)( ) exp = A= 1)[A+ Py N +K7) de”;ﬁ ) ]
2
—cxp{—ﬁ(l—!o)[(hr K+ K'Y+ 2P, k' + 2;:3 “‘E%’Q'"]HJK'. ------- (2.5.11)

Integrating equation (2.5.11) with respect to K’, we have

é:O PM‘ \/_ 2 m.l'n' Qm |: ] +: 2PM }
G= exp[—{2R +—=—=Ht =1 Y]exp| — A =1, ——)k
420 -1,) 1+ P,)" Xp A ) 1+ P,

ISIDM'IC-1 1 Sf)fj _i k()_l_ PM Pf‘j‘ _1 kS
(-1, (1+PM) (t-1,) lv(+P,) 2v 1+2,) | (1+P,)’ '

-------------- (25.12)
The series of equation (2.5.7) contains only even powers of k and start with k*and the

equation represents the transfer function arising owing to consideration of magnetic field at

three points at a time.
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It is interesting to note that if we integrate equation (2.5.12) over all wave numbers, we find

that

o

[Gak=0 (2.5.13)

0

which indicates that the expression for G satisfies the condition of continuity and

homogeneity.

The linear equation (2.5.10) can be solved to give

2 R 5 R
H= exp|:— 220k + 2t -t )} l&; exp|i2/1(k +2)e=1,)

+J(k)exp[— 20(k* +§)(l—fu)} ----------- (2.5.14)

r 2

where, J(K)= ok is a constant of integration and can be obtained as by Corrsin[32].
T

Substituting the values of G from equation (2.5.12) in to equation (2.5.14) and

integrating with respect to t, we get

o)

= ok exp[— 2A(k* +£)(I—IU)J+
s A

o \/;P.u

4/13/2(1 +]::“)7ﬂ'2

1+2
xexp[~{(2R+2 €, Q,}(t~1,)]exp| - k> {ﬂ}u =4}
(] +* pﬂf)

3p, k' (Tpy —OK°  4Gp;, —2p, +)k*
P =YY 300ep =2 FEp )=t

- 8/1}”2 (3:0,31 -2 Py 3)/‘79

Ny, s,
3+ py)" @), (&ea.d3)

2 Aile=1
where N(@)=¢e" J.e" dx, 0=k Alt-t,) _
0 4 pe)
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By setting 7 =0, j =i, dK = —27k>d(cos0)dk and H = 27rk2<y/fw‘f (1%)> in equation (2.3.7),
we get the expression for magnetic energy decay with the fluctuating concentration as

.......... (2.5.16)

(h?>:<h,h,'):°]-Hd2
2 2 '

Substituting equation (2.5.15) in to (2.5.16) and after integration with respect to k, we get

-3
W N (t—t)7 2t—1)
u:exp[—ZR(f—IO)] %-Fexp[— {2 emi{.‘ Qni}]x 6 {:’EO
2 822w 42°(1+ py )1+ 2p,,)
9. Py 0y ~9) B BSPM(BP?W —2py,+3) " SPM(3Pi, =2p,, *+3) S 1.3.5....2n +9)
16 16(1+2p,,) 1 3 06 0 o 28 =
M & +2pM) (s pM) ! n!(2n+l)22”(l+pM)”
53
h* N (t—t) 2 ’
or < > = Cxp[ng(I_t(})] "(?’}—")_;_exp[_ {2 em.‘(.r in }]502([ .__to) ’ ’
8227
---------- (2.5.17)
where
o d [i+5pM(7pM _6)_3SPM(310§4 —2py +3)
(1+p,)1+2p,,)"? 16 16(1+2p,,) 8(1+2p,,)’
+ 810/\.1(3}7/?4 —2p,, +3) PR

3.2°(1+2p,,)’

Thus the decay law for magnetic energy fluctuation of MHD turbulence in a rotating system

governing the concentration of a dilute contaminant undergoing a first order chemical

reaction before the final period may be written as

(h?) = exp[-2R(1 —1, )J[A(r —14) 2 +exp[—{2 €, Q}1B(U~1)" ]

. . B=¢£,Z.

825 \2x

where, A=
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2.6. Results and Discussion:

In equation (2.5.18) we obtained the decay law for magnetic energy fluctuation of MHD
turbulence governing the concentration of a dilute contaminant undergoing a first order
chemical reaction before the final period in a rotating system considering three-point

correlation after neglecting quadruple correlation terms.

If the system is non-rotating, i.e. 2, =0, then the equation (2.5.18) becomes

(h*) = exp[-2R(1 - 10)'1[/4(1 1) + B(1 -1, )5}, ---------- 2.6.1)

which was obtained earlier by Sarker and Islam [128]

In absence of chemical reaction, i.e, R=0 then the equation (2.6.1) becomes
2\ _ B = 5
hoy=|A@t—t,) 2 +B@—-t)" |, semeemeeeee (2.6.2)

which was obtained earlier by Sarker and Kishor [120].

This study shows that due to the effect of rotation of fluid in MHD turbulence in a rotating
system with chemical reaction of the first order in the concentrarion the magnetic field
fluctuation i,e.the turbulent energy decays more rapidly than the energy for non-rotating fluid
and the faster rate is governed by exp[—{2¢€,, Q, }]. Here the chemical reaction (R#0) in
MHD turbulence causes the concentration to decay more they would for non-rotating system

and it is governed by exp[— {QRTM +¢€,, 82, }]

The first term of right hand side of equation (2.5.18) corresponds to the energy of magnetic
field fluctuation of concentration for the two-point correlation and the second term represents
magnetic energy for the three-point correlation. In equation (2.5.18), the term associated with
the three-point correlation die out faster than the two-point correlation. For large times the
last term in the equation (2.5.18) becomes negligible, leaving the -3/2 power decay law for
the final period. If higher order correlations are considered in the analysis, it appears that

more terms of higher power of time would be added to the equation (2.5.18).



CHAPTER- 11

PART-B

FIRST ORDER REACTANT IN MAGNETO-HYDRODYNAMIC
TURBULENCE BEFORE THE FINAL PERIOD OF DECAY IN
PRESENCE OF DUST PARTICLES

2.7, Introducti_on:

The influence of dust particles on viscous flows has a great importance in petroleum industry
and in the purification of crude oil. Other important applications of dust particles in boundary
layer, include soil solvation by natural winds and dust entrainment in a cloud during nuclear
explosion. Knowledge of the behaviour of discrete particles in a turbulent flow is of great
interest to many branches of technology, particularly if there is a substantial difference
between particles and the fluid. A dust particle in air, or in any other gas, has a much larger
inertia than the equivalent volume of air and will not therefore participate readily in turbulent
fluctuations. The relative motion of dust participate and the air will dissipate energy because
of the drag between dust and air, and extract energy from turbulent intensity is reduced than
the Reynolds stresses will be decreased and the force required to maintain a given flow rate

will likewise be reduced.

Sinha [134] studied the effect of dust particles in addition to the magnetic field fluctuation on
the turbulent flow of an incompressible fluid. Saffman [118] derived an equation that
described the motion of a fluid containing small dust particles, which is applicable to laminar
flows as well as turbulent flow. Sarker [121] discussed the vorticity covariance of dusty fluid
turbulence in a rotating frame. Deissler [36,37] developed a theory “decay of homogeneous
turbulence for times before the final period”. Using Deissler's theory, Loeffler and Deissler
[81] studied the decay of temperature fluctuations in homogeneous turbulence before the final
period. In their approach they considered the two and three-point correlation equations and
solved these equations after neglecting fourth and higher order correlation terms. Using
Deissler theory, Kumar and Patel [73] studied the first-order reactant in homogeneous

turbulence before the final period of decay for the case of multi-point and single-time



CAaupicr B

correlation. Kumar and Patel [74] extended their problem [73] for the case of multi-point and
multi-time concentration correlation. Patel [106] also studied in detail the same problem to
carry out the numerical results. Sarker and Kishore [120] studied the decay of MHD
turbulence at time before the final period using chandrasekher’s relation [27]. Sarker and
Islam [127] studied the decay of MHD turbulence before the final period for the case of
multi-point and multi-time. Azad and Sarker [1] studied the Decay of MHD turbulence
before the final period for the case of multi-point and multi-time in presence of dust particle.
Islam and Sarker [56] studied the first order reactant in MHD turbulence before the final
period of decay for the case of multi-point and multi-time. Sarker and Islam [128] also

studied the first order reactant in MHD turbulence before the final period of decay.

In this chapter, we have studied the magnetic field fluctuation of concentration of a dilute
contaminant undergoing a first order chemical reaction in dusty fluid MHD turbulence before
the final period of decay. Here, we have considered the two-point and three-point correlation
equations and solved these equations after neglecting the fourth-order correlation terms.
Finally we obtained the decay law for magnetic field energy fluctuation of concentration of

dilute contaminant undergoing a first order chemical reaction in dusty fluid MHD turbulence

comes out to be
(h") = exp[~R(t - ro)[A(r 1) 7 + expfs1B( - ro)ﬂ

where, (h*)denotes the total energy (mean square of the magnetic field fluctuations of

concentration), t is the time and A,B and t, are constants.

2.8. Basic Equations:

The equation of motion and the equation of continuity for viscous, incompressible MID

dusty fluid turbulent flow are given by the equation Chandrasekhar [27] as

ou 0 ow 0%u
—+—\wu, —hh )=——+ — 4 =V.),  ememeeees 2.8.1
5[ axk (ulul( 1.‘ k) : v axkaxk f(MJ Vr) ( )
oh o*h

L+ —a—(h!uk — i )=l — mcemeees (2.82)

ot ox, ' Ox,0x,
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o tox, 5( o=
with

Ou, 0Ov, Oh ~0 T
o, ox, ox, Lstind

where, p, is the constant density of the material in dust particle, N is the constant number of
density of dust particle

The subscripts can take on the values 1, 2 or 3.

2.9. Three-point Correlation and Spectral Equations:

Similar Procedure can be used to find the three points correlation equation. For this purpose
we take the momentum equation of dusty fluid MHD turbulence at the point P and the
induction equations of magnetic field fluctuation, governing the concentration of a dilute
contaminant undergoing a first order chemical reaction at 2" and P” separated by the vectors

rand 7' as

ou, Ou; oh, ow 0%u,

hcid 1 ), e Eflmp=v), e 29.1
o T, P T T e, T S
ho . oh . ou o°h, ,

P Do O g @8 g (2.9.2)
ot ox, G e ox,
oh, . 0oh, . 0u, o°h, ..

—tu, —+-h —+=A—7""-Rh,. (2.9.3)
ot ox, o, dx, 0x, ’

Multiplying equation (2.9.1) by h'h, (2.9.2) by u,h; and (2.9.3) by u,h/, adding and taking

ensemble average, we obtain

6(11,/1,'/1;) s, _— . ) oy "
5 +an [(uku,h,hj)—(h,.(h,h,hj>]+5;[(u,ukh, =G b)),

" a—a,.w[w,u,jh,h;)—<u,u,'h,h'f'>]

X
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__________

(5 2 rp" rp" 1"
_6(1vhihj)+va (u,hihj)+/1 62(u[h,hj)+62(u,h,.hj)

Ox, Ox,0x, . 0% 558455

= 2RGu by + f(Cuyhyh)y - ). 0 e (2.9.4)

Using the transformations

02,0, 2_ 5o 2 o 5105
ox, o, or” ox, or, ! or o
into equation (2.9.4)

Xu,h'h X uh'h’ o*(u,h'h’ o (u,hlh’

(u,h| ">—;u 1+P,) (u,h, ,>+(1+PM) (u,h, j>+2PM (u,h; ;)

ot Or,or, Or;or, Or, O,

0 ey O ey O ey O -
= QY+ Iy~ S =2 (B

or, or, or, or,,

0 0 PN 0
—a(u,ukh,.hj)+5{(u,u,hkhj)Hafd(u,ukh,hj)+a(u,ujh,hj)
e DR T SO R A 7 0 Ep— (2.9.6)

fi i '

In order to write the equation (2.9.6) to spectral form, we can use the six dimensional

Fourier transforms (2.4.7) - (2.4.12) and the equation

V(PR (7)) = j [(CYAGYACS) exp[f (k7 + /E'.f')]dlédlé'. ------- (2.9.7)

—0—a0

Interchanging the points p’ and p”" along with the indices jand J, result in the relations

Cwpgh by = b)Y, Cupd, by = (uuh, hy, Cupd b)) = <u,u;hj> ........ (2.9.8)

By use of the relation (2.9.8) and the equations (2.4.7)-(2.4.12) and (2.9.7) the equation

(2.9.6) may be transformed as
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0 'R
%+AIZ(I+PM)152 +(1+PM)kr2+2PMkkk; +2§_£j]<¢’ﬂ"ﬁ;>

=ik, + KX BIP)) il + kKB BBIBY — ik, +ky Xy BB +ilk, +K Ked'B8,)

+ilk, + kBB - SSBBy. (2.9.9)

The tensor equation (2.9.9) can be converted to scalar equation by contraction of the indices

iand j

a<¢fﬁ;ﬁ;> 2 r2 ' E—f ‘B
—at—_+/1f:(l+PM)(k +k )+2PMkkkk+ 7 E}(‘ﬁ;ﬂ,ﬂ;)

=ik + kXGBB8 — ik, + KX BB BB - ik, + kX H, BB +ilk, + KNS 8B
+ilk, +kDBBY - fSBB8Y. (2.9.10)

To relate the terms on right hand side of equation (2.9.10) derived from the quadruple
correlation terms and from the pressure force term in equation (2.9.10), we take the derivative
with respect tox, of the momentum equation (2.9.1) for the point p, and combine with the
continuity equation to give

_52(w>_ 0’
éxéx, o, or,

T (2.9.11)

Multiplying equation (2.9.11) by h,'h; taking time averages and writing this equation in terms

of the independent variables » and r’

a 2 P 2 3 2 N 2 2 5 2 2 2 2 2
- +2 + (wh:h ) = + + -
oror oryor,  or{ory J Orylry. orjor, Ory  Orjory

><(<ugukh,§h J.> —(hyhy hih j>]- ------------ (2.9.12)

Now taking the Fourier transforms of equation (2.9.12) we get
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ratN (kj'kk + k;kk + k,'kf: * k."kf: )(<¢f¢kﬁ:ﬂj) = <ﬁ’ﬁ"ﬂ’r9ﬂ f>)
-¥B/B,) = 2 ' N
k™ + 2k k, + k
-------------- (2:9.13)

Thus the equations (2.9.12) and (2.9.13) are the spectral equation corresponding to the three-
point correlation equations. Equation (2.9.13) can be used to eliminate (}/,B,.',Bj)from the

equation (2.9.10).

2.10. Solution for Times Before the Final Period:

By using the similar procedure of the Art.(2.5) we can neglect the quadruple correlation terms

because the decay faster than the lower order correlation terms.
Substituting the value of (yﬁ,’ﬁ;) from equation (2.9.13) into equation (2.9.10) and
neglecting all the quadruple correlation terms, we have

a—@—’? + /1[(1 + P )K* +K)+ 2P,k k) + 2§ = %}(;ﬁ,ﬁjﬂf) + 15,88 3=0

5 __a<¢,§£'ﬂ,"> " ;{(1 FP K k) + 2P kK + 2%—%@,5%) =0 —eeeme(2.10.1)

where (6,4/8,)=C{(¢, 8,8 yand 1-C=S, C and S are arbitrary constants.

Taking inner multiplication by &, we get

GBI 1,y k)4 28,1,k 2 —ﬂu@ BELN=0 - (2102)

Integrating the equation (2.10.2) between t and t, and gives

ki@ BIB)Y = k(8 BB Yo lexple AL((L+ P, YK +K'%) + 2P, k, k' cos @

2R Ewwewyr, 0 2.10:3
g S 1040, s

where @is the angle between & and k' and (#,8)0), is the value of (g, B0 at t=t,.



Now, by letting r"=0in equation (2.4.7) and comparing with equations (2.3.8) and (2.3.9),

we get
(ay (k) = I(oﬁzﬁf'(’;)ﬁ;(/;'))dlg', -------- (2.10.4)
(kY= (GBI <k pak (2.10.5)

Substituting equation (2.10.3) - (2.10.5) in equation (2.3.12), we get

8(!//,-;{/;(15)) 5 R Do o i 5y,
T+22[k +z]<§l/,-l//l.(k)> = _£021k![<¢15i ("f)ﬁl. (k ))-(¢[ﬂj (—k )‘Bi (—k ))}

¢ 2 . 2 ' 2R S5 2
xexpli—)qﬂ‘# Py Wk +k )+2PMkk c059+7 —7}(1 —10)}:’1’( ------ (2.10.6)

Now, d/;'can be expressed in terms of k'and & that is dl%'=—2:rk’2d(c030)dk’
(cf. Deissler [37]).

With the above relation, equation (2.10.6) to give

&y (6))
ot

5 R Fope o R
$2AK” + gy () =2 [ 2ik, {w!ﬂ,. (KB, (k) = (9,8, (k)P (~k )>}

0

I
2| tawid o < - ' 2R 1S 5,
x k |:J;,:\p{ AU=t A+ Py kT + k) + 2P, kk cos§ + p ,1] d(cos 0) |dK

--------- (2.10.7)

Following Loeffler and Deissler [81] in order to find the solution completely, we assume that

R U TE L . (2.10.8)

Ty

ik, {((ﬁfﬁf(fe VB, (R') 4, B~ k) B (—k ')>}

where, £, is a constant depending on the initial conditions. The negative sign is placed in
front of &, in order to make the transfer of energy from small large wave numbers for

positive value of &, .



Substituting equation (2.10.8) into equation (2.10.7) and completing the integration with

respect to cosé,one obtains

oy (K)) P
il SRUT | R](zzw/lw (Ry)y=-—20__ j(k3k'5 —kSk'3)
ot vit=15)

X {exp{- A=t )1+ P, Yk* +k'?)=2P, kk' + % = %]}

: 5
—exp{— A=t DA+ P ) k2 +k'2)+2PMkk +% i ]Hdl{ T (2.10.9)

Multiplying both sides of equation (2.10.9) by &, we get

OH
_+”{k ﬁ]H:G, -------- (2.10.10)
ot A

where, H=2 76> (7,17, (K)) is the magnetic energy spectrum function and G is the magnetic

energy transfer term is given by

'50 5 3543 2 D, 2R /S
G:_ ’ ’ b _ ; N : 2R _fS
V(z—zo)g)(k k' —k k )cxo{ At :0)[(I+PM)(k +k'“) 2PMkk + > A}}

—Cxp{ At —1)[(A+ P, YK + k') + 2P, kk' +Zf {;HdK' --------- (2.10.11)

Integrating equation (2.10.11) with respect to K', we have

G= J_ exp[-{2R- J5

42 (1 =1 )’2(1+P %

5P, k' L] 5P z_i it P, P il
4v? (=, ) (%5 f) (F=1y) v(l+F,) 2v (]+P.u) U+

—}(r—ro)]exp{ A1, )(11+2P g2 }

M

o

}

The series of equation (2.10.7) contains only even powers of k and start with k*and the
equation represents the transfer function arising owing to consideration of magnetic field at

three points at a time.



By integrating the equation (2.10.12) over all wave numbers, we find that

[Gak=0 (2.10.13)
0

which indicates that the expression for G satisfies the condition of continuity and

homogeneity.
The linear equation (2.10.10) can be solved to give
, R )
H= exp{— 24(k° + Z)([ - ru)} IG exp[2l(k‘ + %)(r ~ t“)}dr

+J(k)8><p{— 2A(k* +§)(f—t,,)} ---------- (2.10.14)

2

Nk* . .. .
where, J(K)=—"— is a constant of integration.
T

Substituting the values of G from equation (2.10.12) in to equation (2.10.14) and integrating

with respect to t, we get

2

. GXP{—2i(k2+§)(t—zu)}+ ST Py

423/'2(1 + [)‘U)'HZ

x exp[—{2R — fS}(t —t,)]exp| — Ak’ {M}(I —t, )} X
(14 puy)

3prk4 + (7]7;.4 “6)k6 _ 4(3}7,34 —2 B +3)k8
2/12 PM (I - !,“)sz 3’1(1 L P )(t _tu)yz 3(] + Py )2(t _fo)”z

1/ 5
L8V Gp ~2p, +IK°

Neo, 21015
31+ py)" o) L
—n)zm Xz /?’I_'r{)
where  N@)=e® [efds,  w=k At
[4) (1+p;\.1’)

By setting 7 =0, j =i, dK =27k d(cos@)dk and H = 27rk2<a//,w;(l%)>in equation (2.3.7),
we get the expression for magnetic energy decay with the fluctuating concentration as

'y _<hh) de,’;_ .......... (2.10.16)
2 2



Substituting equation (2.10.15) in to (2.10.16) and after integration with respect to k, we get

45

h’ N,(t-t,) % x(t—t,)"
B expl-2R(t—1,)] ———=— +exp|fS}]x — ol )

2 84227 42°(1+ py )1 +2p,,)

sp, (Tp,, —6 2 2
9 Py 7Py, )_351)A‘1(3])M—2er+3)+8pﬁ4(3pM—2er+3) 2 135...Qn+9)
A@n+127 01+ p, )
-
h? N (t-1,)7? I
or 2 = expi2re - 1)) T s exp[ 201, | e 21017
81221
where
7 4 [2+ 50u(7Py —6) 3504 3Py —2P4 +3)
1+ py)1+2p,)"" 16 16(1+2p,,) 8(1+2p,)°

4 8P (3,0,3,,« —2py +3) 4

32°(1+2p,,)° -

Thus the decay law for magnetic energy fluctuation of dusty fluid MHD turbulence
governing the concentration of a dilute contaminant undergoing a first order chemical

reaction before the final period may be written as

(h?) = exp[-2R(t - 10)][A(( ~1,) 7% +explfs}]B(t —:0)5} --------- (2.10.18)

= N,
8/1% N2

where, A

B=¢,2

2.11. Results and Discussion:

In equation (2.10.18) we obtained the decay law for magnetic energy fluctuation of dusty
MHD turbulence governing the concentration of a dilute contaminant undergoing a first
order chemical reaction before the final period considering three-point correlation after

neglecting quadruple correlation terms.



If the fluid is clean, i.e. f=0 then the equation (2.10.18) becomes
(h*) =exp[-2R(t -1, )][A(t - to)% + B(t - ro)'s} ---------- (2.11.1)

which was obtained earlier by Sarker and Islam[128].

In absence of chemical reaction, i.e, R=0 then the equation (2.11.1) becomes
'y = {A(f —ro)_% + B(r—ro)s} ----------- (2.11.2)

which was obtained earlier by Sarker and Kishor [120].

This study shows that due to the effect of dust particles in the magnetic field with chemical
reaction of the first order in the concentrarion the magnetic field fluctuation i,e.the turbulent
energy decays more rapidly than the energy for clean fluid and the faster rate is governed by

exp[ fs]. Here the chemical reaction (R#0) in dusty fluid MHD turbulence causes the

concentration to decay more they would for clean fluid and it 1s governed by

exp [— {ZRTM - ﬁ}]

The first term of right hand side of equation (2.10.18) corresponds to the energy of magnetic
field fluctuation of concentration for the two-point correlation and the second term represents
magnetic energy for the three-point correlation. In equation (2.10.18), the term associated
with the three-point correlation die out faster than the two-point correlation. For large times
the last term in the equation (2.10.18) becomes negligible, leaving the -3/2 power decay law

for the final period.
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__

CHAPTER- 11

PART-C

FIRST ORDER REACTANT IN MAGNETO-HYDRODYNAMIC
TURBULENCE BEFORE THE FINAL PERIOD OF DECAY IN PRESENCE
OF DUST PARTICLE IN A ROTATING SYSTEM

2.12. Introduction:

Deissler [36, 37] developed a theory “decay of homogeneous turbulence for times before the
final period”. Using Deissler's theory, Loeffler and Deissler [81] studied the decay of
temperature fluctuations in homogeneous turbulence before the final period. In their
approach they considered the two and three-point correlation equations and solved these
equations after neglecting fourth and higher order correlation terms. Using Deissler theory,
Kumar and Patel [73] studied the first-order reactant in homogeneous turbulence before the
final period of decay for the case of multi-point and single-time correlation. Kumar and
Patel [74] extended their problem [73] for the case of multi-point and multi-time
concentration correlation. Patel [106] also studied in detail the same problem to carry out the
numerical results. Sarker and Kishore [120] studied the decay of MHD turbulence at time
before the final period using chandrasekher’s relation [27]. Sarker and Islam [127] studied
the decay of MHD turbulence before the final period for the case of multi-point and multi-
time. Azad and Sarker[2] studied the Decay of dusty fluid MHD turbulence before the final
period in a rotating system for the case of multi-point and multi-time. Sarker and Islam[129]
studied the Decay of dusty fluid turbulence before the final period in a rotating system.
Islam and Sarker [56] studied the first order reactant in MHD turbulence before the final
period of decay for the case of multi-point and multi-time. Sarker and Islam [128] also

studied the first order reactant in MHD turbulence before the final period of decay.

Here, we have studied the magnetic field fluctuation of concentration of a dilute
contaminant undergoing a first order chemical reaction in dusty fluid MHD turbulence
before the final period of decay in a rotating system. Here, we have considered the two-point

and three-point correlation equations and solved these equations after neglecting the fourth-



Chapter 2 58

order correlation terms. Finally we obtained the decay law for magnetic field energy
fluctuation of concentration of dilute contaminant undergoing a first order chemical reaction

in dusty fluid MHD turbulence in a rotating system comes out to be
PR ’% -5
<h > _exp["R({ _IO) A(t_t()) +Cxp[_{2 emt’d Qm ﬁﬁ}]B(I_IO)

where () denotes the total energy (mean square of the magnetic field fluctuations of

concentration), t is the time and A,B and t, are constants.

2.13. Basic Equations:

The equation of motion and the equation of continuity for viscous, incompressible MHD

dusty fluid turbulent flow in a rotating system are given by Chandrasekhar [27] as

Ou 0 ow 0'u

—+—A\uu, —hh )=- +v ——-2e . Q u + f(u —v,), -—-cemeee- 2050
a[ xk ( ik i fc) axf axkaxk mki mi f( i .') ( )
/ *)

ﬂ+ﬁi-(hluk -uh)=A7 Gl . e (2.13.2)
ot  0Ox, 0x, 0x,

L <, k ( 2.13.3)
—_—tyy, —=——(,-uw),  emmemees 3.
a "o, m 2 (
with
ou, ov, Oh,

— = — = e (2.13.4)
ox, ox, Ox,

where, Q  is the constant angular velocity components.

The subscripts can take on the values 1, 2 or 3.

2.14. Two-point Correlation and Spectral Equations:

Under the condition that (i) the turbulence and the concentration magnetic field are
homogeneous (ii) the chemical reaction has no effect on the velocity field and (iii)
the reaction rate and the magnetic diffusivity are constant, the induction equation of a

magnetic field fluctuation of concentration of a dilute contaminant undergoing a first

order chemical reaction at the points p and p’separated by the vector r could be

written as
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oh oh ‘ h
—Lia ’—@a%:z ah-Jm ---------- (2.14.1)
a  Cox, ‘ox, oo,

;. oh . ou o’h,
and —+u,—+-h —L=1—2L
ot ox, 0ox;, Ox,0x,

-RE,, (2.14.2)

where, R is the constant reaction rate.

Multiplying equation (2.14.1) by h; and (2.14.2) by h;, adding and taking ensemble average,
we get

by o, g O
7+5;[<uk j ,-)—(hku,h)]+ak—[(ukh,‘h‘,->—(hku_,rh)]-
O*(hh'y oXhh ;
=id] A “’>+ <, ' ,’>]—2R<h,hj). ------------- (2.14.3)
Ox, 0x, Ox,0x,
Angular bracket(......... ) 1s used to denote an ensemble average.
Using the transformations,
LN . a, ------------- (2.14.4)
OF, ox, Ox;
and the Chandrasekhar relations [27]
wehh) =~ hh)) by =-@hhy. (2.14.5)
Equation (2.14.3) becomes
o(hh,) o . . ;
+2—[u, hh,)—{uh h )] |,
2 ark[<k,j> (u;hh)l
62(h,h;) ;
=24 =2Rhh;) e (2.14.6)
or,or, ‘

Now we write equation (2.14.6) in spectral form in order to reduce it to an ordinary

differential equation by use of the following three-dimensional Fourier transforms.

G s 12— 2147
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@hh (7 = [y, T 10— (2.14.8)

Interchanging i and j, points p and p then,
G R S A T () F— (2.14.9)
where k 1s known as wave number vector and d k: = dk,dk,dks

Substituting of equation (2.14.7) to (2.14.9) in to equation (2.14.6) leads to the Spectral
equation

%gt’(ﬁ + 22Ky () + 2Ry (K)

o R ) R 2 21 2)) — (2.14.10)

Ny w (k)

2 E T
P +2A[K" + i](w,w_,(kb

=2ik[{ayp v, (k) ~(aw i, (=kD]. e (2.14.11)

The tensor equation (2.14.11) becomes a scalar equation by contraction of the indices i
and j

oy v, (k)

R _—
IMKE %= k
o +24] /1]0//,',//,( )

LR A R C R )] P (2.14.12)

The term on the right hand side of equation (2.14.12) is called energy transfer term while

the second term on the left hand side is the dissipation term.

2.15. Three-point Correlation and Spectral Equations:

To find the three points correlation equations similar procedure can be used. For this
purpose we take the momentum equation of dusty fluid MHD turbulence in a rotating
system at the point P and the induction equations of magnetic field fluctuation, governing
the concentration of a dilute contaminant undergoing a first order chemical reaction at /'

and P" separated by the vectors 7and 7' as



Chapter 2 61

ou, du, oh, ow d’u,

+u -h =— +V -2 Q u, + -Vv,), | em———— 2.15.1
o ok, ae, T o T amar, 2 S St + Sl =) (@b
oh . 0Ooh . ou o*h .
b B e N i N B SN (2.15.2)
ot ox, ox, 0x, 0x,
5!1; .Oh; . 6u; 62/1; "
Ly, Ll —L=] =Bh., = e (2.15.3)

ot Ox, ox, Ox, Ox,

2
,total MHD pressure inclusive of potential and

~ P 1 ) l 2 A
where, W(,0) = —+—(h*)+—|Qx %
p 2 2
centrifugal force P(x,r), hydrodynamic pressure; Qm, constant angular velocity
components; €,,, alternating tensor, f:k—N, dimension frequency; N, constant number
density of dust particle.
Multiplying equation (2.15.1) by A/h, (2.15.2) by u,h,and (2.15.3) by w4/, adding and

taking ensemble average, we obtain

&u k) L0

G,
o L)~ I+ =l ) =i ).

k

)]

C i RS

0 gt
+ g;[(u,u*h!hj) —{uu

Xwhih,y  8*(uhh,)
- + V + r " "
0ox, Ox,0x, 0x,0x, Ox; 0x;

i

O uhihy) 0% auhh)

—2RGu by =2 €, Q, by + fu k)= vlh)) e (2.15.4)

mki m

Using the transformations

o _ 2,0, 0 5 o_o .
ox, ar, o Ox, O ox, or,

into equation (2.15.4)

5(11,/1,'}1;) o’ (u,h{'h_;) . BB ﬁz(u,h,'h;)

o*uh'h’
_<’_’f_>_+(1+pm) »
or, 0r,

- A1+ P
( w) r, Or, Or/or|
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——————_—___“_——_—__—__
0 ey O

oo O ey O o
:§k<ulukhihj>+§’;<ulukhihj>_gl;(hlhkhihj')_§;<hlhkhihj>

0 0 0 0
_g(u,ukh,hj)+a(ufu,hkhj)—a(u,ukh,hj)+a—rk,(u,u.hh )

SRS
k

(whh,)

m

0 —_ 0 - -
+a(whihj)+a—n,(wh,.hj)—-2R(uh,hj)—2emk, Q
+ My~ e (2.15.6)

In order to write the equation (2.15.6) to spectral form, we can use the six dimensional

Fourier transforms (2.4.7) — (2.4.12) and the equation

VAR E) = [ [6,80) 8 E)) exp[f (k.F+ é'.f')]dfédié' R (2.15.7)

—00—00

Interchanging the points p’ and p” along with the indices jand J, result in the relations

(u,ufh;h;) = (u,u,'(h;hl;), (u,u;."h;h;) = (u,u;h,;h;), (ulu}"h;) = (u,u;h;) -------- (2.15.8)

By use of these facts (2.15.8) and the equations (2.4.7) - (2.4.12) and (2.15.7), the equation
(2.15.6) may be transformed as

X B/8,) 8
ot

2e . O ..
[(1 + P, )K? +(1+ P,k +2P, k, k! +2§+%—ﬂ(¢,ﬁ!ﬁj>

=ik +k XGG BB, — ik + KB BBE,) — ik +k X B BB +ilk, +K XS .55

ik + R YIEBI= JEBBy. 00 e (2.15.9)

The tensor equation (2.15.9) can be converted to scalar equation by contraction of the

indices 7 and J

' 8 2 Q
a(¢!§:ﬁf>+/1|:(l+PM)(k2 +kl_)+2PMkkkL +2§+ Em.f(.r m f

1 i E:|<¢.'/Bi,ﬂi >
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m

= 'i(kk F k}i )<¢l¢k 18;’/3,‘"> - i(kk i k,; )(ﬁgﬁk /B,'Iﬂ,"> - i(kk k2 kf; )<¢!¢};ﬂ:ﬁr> ¥ i(kk + k’)<¢1 ¢i’ﬁ;'ﬁ.i">

+ilk, + kBB - fSB88Y. (2.15.10)

To relate the terms on right hand side of equation (2.15.10) derived from the quadruple

correlation terms and from the pressure force term in equation (2.15.6), we take the

derivative with respect to x, of the momentum equation (2.15.1) for the point p, and combine

with the continuity equation to give

_wy &
ox;0x, Ox,0x,

wu, -wn). (2.15.11)

Multiplying equation (2.15.11) by h;h; taking time averages and writing this equation in

terms of the independent variables » and #

82 (32 82 N 62 62 a2 52
— +2 + (whih )= +

¥ +
O, 0r or,or/ 6}’1'51"1' J Brlark Br['ark 6r‘,§r]’( Brl'ar’,;

X[('l'ill*'kh;hj)—<hlhkh;'71j>}. ------------ (21812}
Now taking the Fourier transforms of equation (2.15.12) we get

(kiky + kik, + kkp + kKL Y(B8, B8 = (BB BB Y)
B2k, + &

- ()’ﬁ;’ﬁ,> =

------------- (2:15:13)
Thus the equations (2.15.12) and (2.15.13) are the spectral equation corresponding to the

three-point correlation equations. Equation (2.15.13) can be used to eliminate (yﬁr’ﬂ;) from

the equation (2.5.10).

2.16. Solution for Times Before the Final Period:

As Art.(2.5) we neglect the quadruple correlation terms since the decay faster than the lower

order correlation terms.
Putting the value of (}/ﬁjﬁ})from equation (2.15.13) into equation (2.15.10) and neglecting

all the quadruple correlation terms, we have
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X BB,
ot

+z[a+ P +K7) +2P, ko k! +2£~+2E”—j{9ﬂ—ﬂ<¢,ﬂ;ﬁ">

+1SB8,)=0

:>———a<¢’§;'ﬂ">+/1{(1+_PM)(k2+k'2)+2PMk,‘k,ﬁ+2§+% fs}w,ﬁﬁ) 0

............. (2.16.1)

where, (5,4/8,Y=C($,,8)and 1-C=S, C and S are arbitrary constants.

Taking inner multiplication by &, we get

—5(/’(, <§Ztﬁ"ﬂ’ ) +){(1+PM)(k2 +k'2)+2P k.k, + il %2 E’";i & ﬁ}([{ BBB =0
------------ (2.16.2)
Integrating the equation (2.16.2) between ty and t, and gives
ki BBIB,) = ki BB o lexp{=AL((1+ P, )(k* +k'*) + 2P, k k' cos @
2R 2 Q
+7+%L_Ii](t L J— (2.16.3

where, 0 is the angle between kand k'and (¢,8/0), is the value of (¢,0]) at t=t,.

Now, by letting »'=0in equation (2.4.7) and comparing with equations (2.14.8) and
(2.14.9), we get

@y Y= (@B Epak, (2.16.4)
G A L G Y G — (2.16.5)
Substituting equation (2.16.3) - (2.16.5) in equation (2.14.12), we get

2

a(*)//l//l(l;)) ~ "ooa A " ~
220 + T, R = J 2ik {<¢lﬁ; BB, (k)-8 (—k)B, <—k')>}

ot
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i ———— S Sl e = | e e e . S, 5 ]
_ 2, @il : 2R Smkl "“m Y —
xexp[ /1{(1+pM Wk© +k )+2PMkk cosd + - +2 7] /1}(1 tO) dK

----- (2.16.6)

Now, dk'can be expressed in terms of k'and @ that is d]%‘=—27dc'2d(cosé’)dk'
(cf. Deissler [37]).

With the above relation, equation (2.16.6) to give

&y (6)

2 R ' _ 3 . T L ' o " x
22l + ) =2 ] 2zk1[<¢[ﬂi (68, k) ~p 8, R, (- )>}

0

1 € Q
N s 2 a2 ' 2R mki "“m _fS o
xk l: Ilexg{ At !O)[(1+PM)(k +k )+2PMr’ck <:os6’+——/1 +2—~——/1 _/1] d(cos®) |dK

......... (2.16.7)

In order to find the solution completely and following Loeffler and Deissler [81] we assume

that

ik{@:ﬁ,'(x’%)ﬁ,"(le'))—<¢,ﬂ,’(—k)ﬁ,"(—k’)>J - —(—%[kzk”’ =% [— (2.16.8)
0
where, &, is a constant. The negative sign is placed in front of &, in order to make the

transfer of energy from small large wave numbers for positive value of £, ;

Substituting equation (2.16.8) into equation (2.16.7) and completing the integration with

respect to cosd, one obtains

oty (K)

+240k2 4 E]Qn(wil//‘ (R)) = 0 j(k3k'5 . k5k'3)
ot A 1

vt —t4) 0

2
x {exp{— A=)+ P Yk + k') = 2P, kk' + %R + 162 2 gﬁ }



Chapter 2 66

TR e S Y e e e P PR, T el e -

, € Q
—exp{* M=t )a+P, )k 2 +k'2)+2PMkk +5§+2—M”1—£]]

dK".
A A
------------ (2.16.9)
Multiplying both sides of equation (2.16.9) by k°, we get
oH R
—+2 ¥ "=, 2.16.10
ot ( AJ ( )

where, H=27k*{w , (1{' )) is the magnetic energy spectrum function and G is the

magnetic energy transfer term is given by

%0
v(t — {y

5% .0
G=——2Y J(k 313 — K3 expl— g - (IA+P )(k2+k’2)—2PMkk’+27R+—€mkf m_f5)

A A

—exp{—i(tﬁlo)[(l+PM)(k2 +k'*)+ 2P, kk' +3§ 28w S8 HdK’

A A
--------- (2.16.11)
Integrating equation (2.16.11) with respect to X', we have
= \/_ exp[- {2R+2—e'"ig——ﬁ}(t to)]eXp|:—,7L(t— 0)(1+2P Yk }
4/1/(:—: )/(1+P )2 7! 1+P,

159, k* 1 5By _3lie. B PR . kﬂ
4v? (t—r)(1+P) (t—t,) (v +P,)* 2v 1+P,) [(1+P,) |

-------------- (2.16.12)
The series of equation (2.16.7) contains only even powers of k and start with k*and the

equation represents the transfer function arising owing to consideration of magnetic field at

three points at a time.

It is interesting to note that if we integrate equation (2.16.12) over all wave numbers, we

find that

[Gak=0 (2.16.13)

which indicates that the expression for G satisfies the condition of continuity and
homogeneity.

The linear equation (2.16.10) can be solved to give
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H = exp|:— 24k + %)(r - to)} jG exp{bl(k2 + %)(l‘ ~t, )}lt

+J(k)e><p[— 2A(k* +§)(t—r0)} -------- (2.16.14)

2

where, J(K)=—%— is a constant of integration and can be obtained as by Corrsin[32].
7

Substituting the values of G from equation (2.16.12) in to equation (2.16.14) and integrating

with respect to t, we get

2

H= Al exp{k 24k + £)(z‘ - t“)} +
T A

o \/;PM

4/13/2(1 + P'U)-”Z

xexp[—{2R+2€,, Q, — S}t —-t,)] exp[— Ak’ {lipi}(t - t“)}
I+ py)

3py, Kk . (Tpy —6)k°  4Gpy —2p, +3)k°
24P, (t—1,)""7  3A0+p,)e—-t)"7 30+ p,)¢-t)"?

L 82Gph —2p, +3K
31+ )

2 Alt—t))
where, N(w)=e™ |e dx, o=k |—2.
; I Va+p,)

By setting 7 =0, j=i, dK = -2k d(cos@)dk and H = 2ﬂk2<y/,q/;(1<:')>in equation

Myl s (2.16.15)

(2.14.7),

we get the expression for magnetic energy decay with the fluctuating concentration as

2y (REY % on
RS Pk, 0 e (2.16.16)
5 2 4

Substituting equation (2.16.15) in to (2.16.16) and after integration with respect to k, we get

2 "% -5
(h?) | N,(t—t,) " E,m(t—t,)
= exp[-2R(t - 1,)]| =5 ——+exp[-{2¢,, Q, - S}]x ) S
847227

42°(1+ py )1 +2py,)
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sp. (Tp. —6 2 2

" Pm' P )735‘0M(3pM_Z‘DM+3)+8PM(3‘DM_2PM+3) £ 135.Q0+9)
T 8(1+2p, ) 32%+2p, ¥ n=0 , "
M M A2n+ 12"+ p, )

M

-3

() N,(t=1,) " :
or o =exp[2R( 1)) = v exp[-(2€, Q, - S Z(0-1,)7

812\ 27

.......... (2.16.17)
where,

Z = S [24_ SPu(Tpy —6) = 35py (3p:‘::f —2py +3)
(+p,)A+2p,,)"7 16 16(1+2p,,) 8(1+2p,,)°

" 8P, (3}734 ~2 Py +3)
3.26.(l+2pM)3

+==—]

Thus the decay law for magnetic energy fluctuation of dusty fluid MHD turbulence in a
rotating system governing the concentration of a dilute contaminant undergoing a first order

chemical reaction before the final period may be written as

(h*) = exp[-2R(t e )][A(t —!0)_% +exp[—{2€,, Q, — fs}]B(t —!U)"S} --------- (2.16.18)
- NU
84227

where, 4 y Bl

2.17. Results and Discussion:

In equation (2.16.18) we obtained the decay law for magnetic energy fluctuation of dusty
fluid MHD turbulence governing the concentration of a dilute contaminant undergoing a
first order chemical reaction before the final period in a rotating system considering three-
point correlation after neglecting quadruple correlation terms.

For clean fluid, f=0 then the equation (2.16.18) reduces to the equation (2.5.18)
of this chapter in part-A.

For non-rotating system,Q, =0, then the equation (2.16.18) reduces to the

equation (2.10.18) of this chapter in part-B.
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If the system is non-rotating and the fluid is clean i.e. Q, =0,and =0 then the equation

(2.16.18) becomes
(h*) = exp[-2R(¢ —to)][A(I —IO)_% + B(t —[0)‘5} ---------- (2.17.1)

which was obtained earlier by Sarker and Islam [128]

In absence of chemical reaction, i.e, R=0 then the equation (2.17.1) becomes
<hz>:[A(t—rG);"5 +B(t—tu)5} ----------- 2.17.2)

which was obtained earlier by Sarker and Kishor [120].

This study shows that due to the effect of rotation of fluid in the magnetic field with
chemical reaction of the first order in the concentrarion in presence of dust particle in a
rotating system the magnetic field fluctuation i,e.the turbulent energy decays more rapidly
than the energy for non-rotating clean fluid and the faster rate is governed by

exp[—-{2 €,,, 2, }— f5]. Here the chemical reaction (R#0) in MHD turbulence causes the

concentration to decay more they would for non-rotating clean fluid and it is governed by
CXp [_ {2RTM +2€,4 2, _f‘}]

The first term of right hand side of equation (2.16.18) corresponds to the energy of magnetic
field fluctuation of concentration for the two-point correlation and the second term
represents magnetic energy for the three-point correlation. In equation (2.16.18), the term
associated with the three-point correlation die out faster than the two-point correlation. For
large times the last term in the equation (2.16.18) becomes negligible, leaving the -3/2
power decay law for the final period. If higher order correlations are considered in the

analysis, it appears that more terms of higher power of time would be added to the equation
(2.16.18).



Chapter 3 70

CHAPTER-III

PART-A

STATISTICAL THEORY OF CERTAIN DISTRIBUTION FUNCTIONS IN
MHD TURBULENT FLOW FOR VELOCITY AND CONCENTRATION
UNDERGOING A FIRST ORDER REACTION IN A ROTATING SYSTEM

3.1. Introduction:

The kinetic theory of gases and the statistical theory of fluid mechanics are the two major and
distinct areas of investigations in statistical mechanics. In the past, several authors discussed
the distribution functions in the statistical theory of turbulence. Lundgren [83] derived a
hierarchy of coupled equations for multi-point turbulence velocity distribution functions,
which resemble with BBGKY hierarchy of equations of Ta-Yu-Wu [141] in the Kinetic
theory of gasses. Kishore [60] studied the distributions functions in the statistical theory of
MHD turbulence of an incompressible fluid. Pope [109] derived the transport equation for the
joint probability density function of velocity and scalars in turbulent flow. Kishore and Singh
[62] derived the transport equation for the bivariate joint distribution function of velocity and
temperature in turbulent flow. Dixit and Upadhyay [40] considered the distribution functions
in the statistical theory of MHD turbulence of an incompressible fluid in the presence of the
coriolis force. Kollman and Janicka [75] derived the transport equation for the probability
density function of a scalar in turbulent shear flow and considered a closure model based on
gradient —flux model.But at this stage, one is met with the difficulty that the N-point
distribution function depends upon the N+1-point distribution function and thus result is an
unclosed system. This so-called “closer problem” is encountered in turbulence, kinetic theory
and other non-linear system. Sarker and Kishore [119] discussed the distribution functions in
the statistical theory of convective MHD turbulence of an incompressible fluid. Also Sarker
and Kishore [126] studied the distribution functions in the statistical theory of convective
MHD turbulence of mixture of a miscible incompressible fluid. Sarker and Islam [138]
studied the Distribution functions in the statistical theory of convective MHD turbulence of

an incompressible fluid in a rotating system. Islam and Sarker [57] also studied Distribution
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functions in the statistical theory of MHD turbulence for velocity and concentration

undergoing a first order reaction.

Using the above theories, we have studied the distribution function for simultaneous velocity,
magnetic, temperature, concentration fields and reaction in MHD turbulent flow undergoing a
first order reaction in a rotating system. Finally, the transport equations for evolution of
distribution functions have been derived and various properties of the distribution function
have been discussed. The resulting one-point equation is compared with the first equation of

BBGKY hierarchy of equations and the closure difficulty is to be removed as in the case of

ordinary turbulence.

3.2. Basic Equations:

The equations of motion and the equation of continuity for viscous incompressible dusty fluid
MHD turbulent flow, the diffusion equations for the temperature and concentration

undergoing a first order chemical reaction in a rotating system are given by

au 8 ow 2

—+—\uu, -hh,)=——+W?uy -2 Qu . 3.2.1
a ¢ axﬁ (ucr yij o }9) axa o maf m©ta ( )
oh 0

L+ —LNhuy—u hy)=2v0, 954

o %(a 5 =tthy) (3.22)
o0 00 2

—tUu,—= g 3.23
ot ﬂ@xﬁ A ( )
ngﬂ L2 Dv*c-rc (3.2.4)
ot Ox

u ov, ~ Oh

ith 2 =—2 —_2 o = o oo e 3:2.5
. ox, Ox, Ox, ( )
where,

u, (x,t), o — component of turbulent velocity

h,(x,t), a- component of magnetic field

O(x,1), temperature fluctuation
C, concentration of contaminants
Vg, dust particle velocity

R, constant reaction rate
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€ ap» alternating tensor

N, constant number of density of the dust particle

w(fc,t)=%+%ﬂ2 +%

P(%.1), hydrodynamic pressure

2 ¥
QXX{ > total pressure

p, fluid density
Q, angular velocity of a uniform rotation
v, Kinetic viscosity
-

A= (47?;10) . magnetic diffusivity

& "
y =——, thermal diffusivity,

Fp
K= Stokes’s resistance coefficient which for spherical particle of radius r is 6mpr.
¢p, specific heat at constant pressure,
kr, thermal conductivity
o, electrical conductivity
i, magnetic permeability

D, diffusive co-efficient for contaminants.

The repeated suffices are assumed over the values 1, 2 and 3 and unrepeated suffices may
take any of these values. Here u, h and x are vector quantities in the whole process.
The total pressure w which, occurs in equation (3.2.1) may be eliminated with the help of the

equation obtained by taking the divergence of equation (3.2.1)

52 (u s =i ):_[ Bua auﬁ _aha ahﬁ ]
R T Ox, Ox, Oxy Ox,

a

5
Viw=—

In a conducting infinite fluid only the particular solution of the Equation (3.2.6) is related, so

that

1 [ ou!, Ouy  Oh! Ohy ox'

4

' e ' ’ -t v
Oxy Ox, Ox, Ox, |x —x|

Hence equation (3.2.1) — (3.2.4) becomes
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B B s S e T e h
o ! ou ' Ohy
a +i(uauﬂ —hah = j [ hr ] + W,
or  Ox 5 47r e 8 ax i ox, 6x 5 Ox., Jx |
-2 = Bu, s 3.2.8)
oh 0
“+—-Nhu,-uh,)=ANV»H
S (htty ~u,hy) 5 (32.9)
od 6(9 3
—pl =pe e
ey S 8x =N (3.2.10)
5C oC
=DV*C-RC 2.
8I ‘U, — axﬂ (3.2.11)

3.3. Formulation of the Problem:

We consider the turbulence and the concentration fields are homogeneous, the chemical
reaction and the local mass transfer have no effect on the velocity field and the reaction rate
and the diffusivity are constant. We also consider a large ensemble of identical fluids in
which each member is an infinite incompressible reacting and heat conducting fluid in
turbulent state. The fluid velocity u, Alfven velocity h, temperature 0 and concentration C,
are randomly distributed functions of position and time and satisfy their field. Different
members of ensemble are subjected to different initial conditions and our aim is to find out a
way by which we can determine the ensemble averages at the initial time. Certain
microscopic properties of conducting fluids, such as total energy, total pressure, stress tensor
which are nothing but ensemble averages at a particular time, can be determined with the hel p
of the bivariate distribution functions (defined as the averaged distribution functions with the
help of Dirac delta-functions). Our present aim is to construct the distribution functions,

study its properties and derive an equation for its evolution of this distribution functions.

3.4. Distribution Function in MHD Turbulence and Their Properties:

In MHD turbulence, we may consider the fluid velocity u, Alfven velocity h, temperature 0,
concentration C and constant reaction rate R at each point of the flow field. Lundgren [83]
has studied the flow field on the basis of one variable character only (namely the fluid «), but
we can study it for two or more variable characters as well. The corresponding to each point
of the flow field, we have four measurable characteristics. We represent the four variables by

(N =(2) = (n)

v, g, ¢ and y and denote the pairs of these variables at the points X'/, X' ,— — — — — S g
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M =) 41, 7y =(2) 402 > LY _
( .2V, 60 y (Jl(() g6y ()l ______ (v(”’,g("),qzﬁ“”,t;/“”)alaﬁxedmstam

of time. It is possible that the same pair may be occur more than once; therefore, we simplify

the problem by an assumption that the distribution is discrete (in the sense that no pairs occur

more than once). Symbolically we can express the distribution as

{( M g 40 }(F(z),g(z)’{é(z)’w(z)} ______ ( ", 6™, (n:)}

Instead of considering discrete points in the flow field, if we consider the continuous

distribution of the variables v, g,¢ and y over the entire flow field, statistically behavior of

the fluid may be described by the distribution function F(17, E,;ﬁ,e,u) which is normalized so

that
| FG.2.¢.w)dv. dgdgdy =1
where, the integration ranges over all the possible values of v, g,¢ and y. We shall make use

of the same normalization condition for the discrete distributions also. The distribution

functions of the above quantities can be defined in terms of Dirac delta functions.

The  one-point  distribution  function E“’(v‘”,g“’,gb‘”,w‘”), defined so that
Fl“’(v“’,g“’,gﬁ‘”,w“’)dv“)dg“’d(é“)dg/“’ is the probability that the fluid velocity, Alfven
velocity, temperature and concentration field at a time t are in the element dv'" about v\

dg" about gV, d ¢ about ¢ and dy"" about y'" respectively and is given by

F,(”(v‘”,g“'.;ﬁ(”,wm) ( ( fil = n))(;( i (1)}3(0(11 —gb“’)[S(C“’ —W(”) ) e (3.4.1)

where 6 1s the Dirac delta-function defined as

T _[1atthepointu=v
J.cS(u —V)dv = {o clse

elsewhere

Two-point distribution function is given by

FOD = ( ( 1 m)5( m _ u))(g(gu) ¢“))§(C‘” m)5( @ —v(”)d(h“) _gm)

A A (ol —— (3.4.2)

and three point distribution function is given by

F3(1.3.3) :<§(u(” o (n)(g( (1 5,“’){5(0”) ¢(n)o( 0 t//”))&(um _v(2])5(hi21 _g(zy)
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5(9(2) —g® )5(C{2) _w<zJ)5(u(3) —v”’)c?(h“’ —g”’)d(t?(” —g® ):S(C”) —V/m) >

Similarly, we can define an infinite numbers of multi-point distribution functions F,/"**%

1:2.3.4,
Fs( 2345 and SO on.

The distribution functions so constructed have the following properties:

(A) Reduction Properties:

Integration with respect to pair of variables at one-point, lowers the order of distribution

function by one. For example,

”_I.J‘F}(Udvmdg(])d¢(l)dw(') 1
[[[[Fe2av®dgDag@ay® = RO

[[[[F02dvdg @ dpPay® = F1D e,

Also the integration with respect to any one of the variables, reduces the number of Delta-

functions from the distribution function by one as

I FOdy® = <5(h“’ (1))5(9(1) ¢m)5(c(n (1))
J‘ FOdg™ = <5(u(n —v“))(S(O“) -¢“))5(C“’ —l/f(')) >

IF‘”dﬂ” < ((1) (’))é(h(” ‘”)5(6'“) (1))
andj FAgAR < ( M _ ”k(h“) “))5(0(” _¢5(1))5(Cu) _W(l))é‘(hﬂ] _g(z))
( @ _ tz))(g(cm (2))

(B) Separation Properties:

The pairs of variables at the two points are statistically independent of each other if these

points are far apart from each other in the flow field i.c.,
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e e e e T M kel St

/ 1,2 | 2
Luﬂf”’a}“”—m Fz( ) = E( )F;( ;

and similarly,
Linf

_:((1?‘)'113} o0

12,3 (1,2) 7(3)
Ff&? = FIW R ete.

(C) Co-incidence Property:

When two points coincide in the flow field, the components at these points should be

(1,2)

obviously the same that is F""" must be zero. Thus v® =3, g® =g® 4™ =40 and

w? =™ but F;'"* must also have the property.

[[[[F»av®dg@dg@dy® = KO

and hence it follows that

Limgs sl | B = FOB00 -0 (e - g -4l ).
Similarly,
Lm‘?m . J F2 :Fz(l.z)a(v(,?) “))r)(gm g(l)b(¢(1) ¢(1))§(W(3; m ete.

(D) Symmetric Conditions:

F(l‘?_,r, —————— R n) . F(l,2, ————— §,———r,———n)

n n

(E) Incompressibility Conditions:

F“ —==n) _
X o

F(I 2,~==n) _
i) | j =0 KOdv " dh™ =0.
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3.5. Continuity Equation in Terms of Distribution Functions:

An infinite number of continuity equations can be derived for the convective MHD turbulent
flow and the continuity equations can be easily expressed in terms of distribution functions

and are obtained directly by div # = 0. Taking ensemble average of equation (3.2.5)

ou'l
()= ot s

%,

e g < M H”Ftl}dv(l)dg(l)d¢(l)dw(l,>

ax(” “‘” (n F“) dv ”dg“)d;ﬁ“)dw

- oo N RO asagay”
xa

(1)
= ””E;L‘m—v;"dv‘”dg‘”dgzﬁ”’dg/(” ............ (3.5.1)
x(l’
and similarly,
I
0= mja 0 gPadg®dg®dy® e (3.5.2)

which are the first order continuity equations in which only one point distribution function is

involved. For second-order continuity equations, if we multiply the continuity equation by

( @) _,0 ’)é‘(h( ) (’))(5(8(2) _¢(2))5(C(2) _w(z))

and if we take the ensemble average, we obtain

0={ 5(1,:‘3' » vm)(s(h(:) - gm)(\)‘(g(z} _ ¢(:))§(C(g; -V/”’)aus) >

ax;”
:i ( @ _ (2))(5(11(2) )(5(9(2) —¢‘2))6(C‘2) —Wm)u(” )
6x(” “
:iJ‘( (1)5( m _ (1))5(]?(1) ) (gm ”))o(c(” m)
ax(l)

a

Xé(um _v(z))(;(htz) - gtz))&(@(z) _¢,(2))§(C(2) _W(z)) >
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0
== ””vg)FQ“’Z)dv(”dg“)dgﬁ“)dw“) __________ (3.5.3)

and similarly,

0
o= (e Feavvagagoay® . (3:5.4)

The Nth — order continuity equations are

5
o [[[POR P a0dgVagOay (3.5.5)

0 :
and o= 50 HJ-Igé')Fff,"Q""""""N)dv”)dg“)d{émdw(” R (3.5.6)

The continuity equations are symmetric in their arguments i.e.;

ajf) JJIJ(VLF)F]E'I‘Z,‘.‘.......;r.N)dv(f)dg(r)d¢(r)dvj(r))
= (‘i} -I-J.ij(ﬂ)FA(FI\2,.....r,s,.‘.‘.N)dv(_\.)dg(k\_)d¢(“dw(S) __________ (357)
ox, a

Since the divergence property is an important property and it is easily verified by the use of

the property of distribution function as

””v(”F“)dv“)d (”dgﬁ“)d m :i< O >:< a”_r(rl) ): __________ 3.5.8
a 1 g W ax(l) ua ax (1) 0 ( i )

?
ox)

and all the properties of the distribution function obtained in section(3.4) can also be verified.

3.6. Equations for Evolution of Distribution Functions:

The equations (3.2.8)-(3.2.11) will be used to convert these into a set of equations for the
variation of the distribution function with time. This, in fact, is done by making use of the
definitions of the constructed distribution functions, differentiating them partially with
respect to time, making some suitable operations on the right-hand side of the equation so

obtained and lastly replacing the time derivative of v,4,6 and C from the equations (3.2.8)-

(3.2.11).
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Differentiating equation (3.4.1), and then using equations (3.2.8)-(3.2.11) we get,

6];1:” a< ( M _ “))ﬁ(h‘” “))(5(9“’—¢“))5(C<”—W”))
(h(” (”)(5( ) ¢(n)§( m _ (l}) = ((1) v(n)>+< ((l) cn)d(gm ¢(|))
><5(C(I)—y/('))é%ﬁ(h(l)—g(l)) ( M _ (l))é(hu) (1))5(0(1) %¢(l))aﬁt5(cm —W(”)>
_ <—§(h(” _g<1))§(9(1) _¢m)‘5(cm _wm)a“_m_a_g(um _vm) >

ot ovV

(m (n)(g(@(l) ¢I))5( m _ (1))_(;) o §(h‘”—g“))>

or ogt

(m (1})0(],1(1) {nb(c(n_wm)%mi ((l) ¢(I))>

or og"

+<—5(u(”—v“))5(h“) (”)5(9“) ¢m) L 5(C“) Wm)>.

or oy

Using equations (3.2.8) — (3.2.11) in the equation (3.6.1), we get

T o g0 - g - Ly )

B

10 J{au;” uy an on) | ax

2,,) M
s FINV U =2 B, KD
By oxy ozl GxS)JlE'—ﬂ , e W }

xav“) §(u“’—v(”) ((l) (1)}5(9(1) ¢“))§(C‘” (l)){ aa“) (h‘” M ufx”h}j”)

+/wzhg)}ajl) 5(}:(” (1)) + ((1) m)d(h“) “))ﬁ(C(”—w“))

{ug) Zgl },Vzgm} ;“) (6?(” ¢(n) (m “’)J(h“’ 1))

0

0 (1)

x5(00 — g0 Yo 2, pyrc) 0 )

¢ ax(]) é(C“) _Wm) >
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e —————— i

(1) (1) 5

(h(” l))g(g{l) ¢(”)§(C“) (n) 5(14“) _vm) >

(n
6xﬂ ov,

onhY 5
(h“) (1))&(9(1) ¢“))5(C(” m) axg)ﬁ ag(umwvm))

(h(n (1)}5(9(1) (ﬁ{]))ﬁ(Cm (;)) 0 J aug) 5ufg” ~ Bh((zl) ahél)
4 oxP S gxy ol

x_f&'mj—d(u("—v(')) (h“’ (1))5(9(1) ¢5“))«5(C“) (U)VVzu;nav_é;n_a(um_vm))

|x - x‘ vl

( m _ (1))5( Q) ¢(n)(5(cm “})2emﬁ Q, u aé:” 5(;;“’ _vm)>

( m _ (l))(g(g(!) ¢(')}5(C“’ u)) h‘”ug) a(l) §(h(” (n)>

g ogl

(L M _ 0 M, ouhy 3 M _ g
R R Y SR L R

( a _ (1))5(9(1) ¢“))0(C(” “))AV no aga“) E(h“} _g(n)>

( m _ “))(S(h“) (')}S(C(” —y® (ni(IJ 0 ( ) ¢(1)))

B ax(” 6¢5“)
( m _ (l))(;( g“’)é‘(C“’ "V/(l))ﬂﬂzgm aj(” (9(1) ¢,m) )

( m _ “’).5(h“) m)(g(g(n _g® ;n Zf—;a;(” §(C‘” _V/U)) )

( m _ “’)5(/1(” (1))[5(9“) ¢5“))DV ol o am é(C‘” _W(l))>

( M _ (”b(h(” m)cg(gm —¢“))RC“’GL5(C“) _wm) RE— (3.6.2)
W

n

Various terms in the equation (3.6.2) can be simplified as that they may be expressed in terms

of one point and two point distribution functions. For example,

The first term on the right hand side of the above equation is simplified as follows:
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- e ———

(5(u(|) —v“)) )

(1) (i) %

(& (h“ (n)(g(gu _ g0 )5((,‘(”—1//(”)6“

M M
x  ovl

_ <u}9”5(h“’ _ g(l))é*(g(l) _¢m)§(cm (n)a”_m 0 ﬁ(u“’ _V(I)) )

Ox (1 (}V(l)

- (- - g (o g (e - 2 sy

Ox (l) ax(i)

- <_ u(ﬁ')ﬁ(h‘” u)){;(gu) ¢(l)}5(c(l) (1))5_55(“(1) _v(l)) ), (since g:fz]; ~1)

(h“) (l)b(g(l) ¢(n)[;(cm (I)M;) aa‘“ ( ) __v(n) > ___________ (3.6.3)

Similarly, seventh, tenth and twelfth terms of right hand-side of equation (3.6.2) can be

simplified as follows;

( m _ ('))5( m _ “’)rS(C(” _w(l))ah,ﬂ”u? 0 5(!1“) —g(”)>

ax};) ag;”

— (=6 =0 Ys(o® — g0 ) - wpgai)@w> ) — (3.6.4)

Tenth term,

( M _ "’}S(h“’ “’)5(C(" u))“m 26" 0 ( m ¢m)>

o (l] a¢(l)

— (=8 — v )5 — g Ys(C® — ajm L (3.6.5)

and twelfth term

( m _ m)&(h(” (1)){5(‘9(1) ¢“))u“) aC' ((, ¥ (1) —W(])) >

B ax(l) a ()
= (=6 v Y550 — g0 )s(p ¢myya(n(cm*WM)y ........... (3.6.6)

Adding (3.6.3) — (3.6.6), we get

(—5(!1“) _ g(l})é‘(gm —4'5(”)5(6'“} — O p) ajm(s(u“) = v“)) )

B
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+ (_5(“(11 —v“’b(@m —¢(”)(5(C(” (1))1 (1) “) (hm (l)) >

(“m (I))§( B0 _ “’)6(C‘” _Wm}lg}% ( ) ¢m)>

X 5

+< (5(1 m (1))(5(;7(1) g“))d(()(” ¢(l}),(l) (C‘” _Wm)>

Ly 6“’

:_aj”< ) ( ) m)&( 0 gm)()(gm gi”’)d(c“’ m)

B

- 0 @

—m g 1 [Using the properties of distribution functions]
/]

i3 aF(l)
= vﬁ a (]) ““““““ (367)

Similarly second and eighth terms on the right hand-side of the equation (3.6.2) can be

simplified as

(o0 - g plo g ) 2T 2 o)y =gt e o

M A 8p 0] (1)
ax 5\)( }Va 3)(/;

----------- (3.6.8)
au(l)h(l) P
and M _,0s(p M)s(c® — w a "'p s(pM _ oM
S e s A
wd o
— (1 (l)
=&y 8 (1) B (1) """""" (3.6.9)

Fourth term can be reduced as

<_ szuc(xng(hm _ gm)(;(gm H¢,(n)§(c(n _Wu))a_iwé(um _vm)

ax

— af(‘ <V2 (l)[ ( W (l))&( M _ “’)5(9“’ “’)a( m)])

=—y 8\?” ] (?;x‘l)< U)[ ( W _ “))6( M _ g )5(9(1; (1 )d(C“) _Wm)]>
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:_V% Limg, &(E&CQ)( (2)[ O _ “’)é(h )é(gu) _¢u))é( n_wm)b

Q

g .. &
z__vgg Limg, _, A < J J‘ J J‘ug) é(u@) e ) (5(;1(2) _g® )é(gfz) e )5(02) . Wm)

5 (m (1))5(,1(1) “’)5(9“)—;é“))cS(C(”—t//(”)dv‘z’dg”)dgﬁ‘z)dgu(z’

. 2 2
:“Vav—le«nﬂ ax(”&»;‘z’ “‘J (z)Fuz dv(”dg(z)dgé‘ ay® (3.6.10)

Ninth, eleventh and thirteen terms of the right hand side of equation (3.6.2)

( m _ m)b((;m ¢(1})5(Cm (”)/IV B aa(” 5(h"’ _g(n) >

=(AV2HY 5 — v )s{o® — g Js(c —y “’)ag(., (- g)

aga

a

- ,1%3 - ax@ax@ | J' ﬂg(”ﬁ‘l gl dg P dy (3.6.11)

((1) (:))5(;1(1) (1))(5(@1 ‘//“))Wz@m

25 (9(1) ¢5m)>

= (—W29“’5(u“’ _ v‘”)&(h(” (1))5(@[) (1))¥5(9m _ ¢(1)) )
a¢""

oy Limy o —a— [$OFOD 3D gD gD g, T
a¢(|) X2y ) a_xg)axg) J.¢ 2 g ¢ W ( ety )

( m (l)b(h(l) u))(;(g{l) gz}“’)DV co a{j“) 5(C‘” _wm) >
. <—DV2C(”5(u“) - v(l))é\(h (1})5(61(1) (I)) (9“) ¢(z)) >

og"

0

= 2) p(1.2) 3.42) 7.(2) 74(2) 1., (2) 3
=D LM axwaxw e (.6.13)
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Now, we reduce the third term of right hand side of equation (3.6.2)

1 8 a/l(l) al(l) 31“) 51{1) &
é(/’l “))5(9 b ¢(]))5(CI) 1) dr arcm a{g) aj) &u) &(l)} x| a}])é( (i (]))

1 a)@) av{ﬂ ag(z) (7J ]2) ;
) 32 102 7.42) 1 42)

------ (3.6.14)
Fifth term of right hand side of equation (3.6.2)
< 5(]1(') —g(” )5(9(]) - ¢(]) b(c(]) —{//“))2 Emcx/)‘ Qmu;l) aa(l) 5(?’{(” = V“)) >
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—2¢,., O a”a({z]l ( m _ (n)g(hm (1))5(9(1) gé(”)()(C(l) m)
me m ava
=295 e (3.6.15)
And, the last term of the equation (3.6.2) reduces to
( M _ (l))(g( w _ (l}k(gm ¢{1))RCU) a; 5(0” f//“)) )
= (1) a (1)
=Ry —F KT e (3.6.16)

oy

Substituting the results (3.6.3) — (3.6.16) in equation (3.6.2) we get the transport equation for
one point distribution function F"(v,g,4,1v)in MHD turbulence for concentration

undergoing a first order reaction in a rotating system in presence of dust particles as
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Similarly, an equation for two-point distribution function F»'"* in MHD turbulence for
concentration undergoing a first order reaction in a rotating system can be derived by
differentiating equation (3.4.2) and using equations (3.2.2), (3.2.3).(3.2.4),(3.2.8) and

simplifying in the same manner, which is
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og,
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ox?) ox® ax(J) (Bx(B)JF“”)dx(}}dv dgmd;émdf// ]
Xy 0%,

[81)(1) av(3) 5 ((IJ) agg)J

3 ax(3) 6xf53) ax[(j)

e (e
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Chapter 3 86

0 .. 0
W —=Ling, _, + Y- — Limy__ (3) (3) J' '[ J]' (3) F(l 2 5P AP df

o .. 0 G }123) 7.0 7.0 123 7 ()
+ —(”"Llng(ayﬁi.m +@L f’ﬂw,_»_c(, @C(B}axo) J.J-J.J‘g F 1} dg( dQﬁ d()U
0 o o
+N——=Lim,, _,+—=Lim, _ ﬁ“‘H¢(3)F(1‘2’3)6{1’(3)dg(j)dﬁﬁmd'//(3)
(n 3,51 (2) T3 3 3) (3) 3
¢ o¢ @tﬁ 8xﬂ
N c i N 0 Li 3)F(123dv(3)dg(3d RFE)
oy WMoy st 20/ o)z ax“)ax‘” ”HW f
0
+2 emafﬁ Qszﬂ«?) - RW(I) af,//(l) F‘I“) =0 (3618)

: : : g " 2.3 23
Following this way, we can derive the equations for evolution of £">% 234

and so on.
Logically, it is possible to have an equation for every F, (n is an integer) but the system of
equations so obtained is not closed. It seems that certain approximations will be required thus

obtained.

3.7. Results and Discussion:

If the system is non rotating then Qm=0, the transport equation for one point distribution

function in MHD turbulent flow (3.6.17) becomes

~r(l) (1) > gy ~(1)
OFI +V;3” Orl(l) +g aé(” + V“) af‘ltl' i am LJ:”II a(l) 2 : I
or ox,, ovy  ogy )oxy  ovy|4x Gyt (B =g

( 5P ag® ogP

ax(l) ax(Z) 6}6(2) ax(z) JF“ Z}dx(Z)dv(Z)dgu)d¢(z)d{//
A a

o .. @ :

o
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_6 : o @ (12 .42 4.2 742 7, (2)
+/18g(l) Lime s xPex? ,m g, [y " dvidgTdgdy

+y J j‘ $PFE2 v dg®dg® dy®

aZ
Lim, _,———
aph T plig I

0 ; 52 (2) p(1,2) 3..(2) 1..(2) 2) 2)
+Daw(n Lim e, o PNOPNE! ”HW B dvdg D dg T dy
B B
------- (3.7.1)
— Ry P =0

(-1

oy

which was obtained earlier by Islam and Sarker [57].

We can exhibit an analogy of this equation with the first equation in BBGKY hierarchy in the
kinetic theory of gases. The first equation of BBGKY hierarchy is given as

aF*l(l) 1 - o anz 8F(1.2)
Sl ol iy fF(l):n 5 2
o m” axp Il Y gyl

ay‘-r-(ﬂdv{z) ------------ (372)

2) _ M
a v(Z

v

where V¥, =¥ is the inter molecular potential.

If we drop the viscous, magnetic and thermal diffusive, concentration terms and constant

reaction terms from the one point evolution equation (3.7.2), we have

aFlm m(’iF]“) M ogy’ avl,n aFl(l) 0 | 0 ( 1
ot Vs ox') & oyt +ag”’ ax}j” PN :I;j”jjax“)ufm_fm|

B a

0 (2) av(l) D @ 3 (2) ,
y va" 2 gaﬂ g{ FOD O g,@do@as@gy® |20 | e (3.73)
ax;;’ &Y B )
a B a
og o
The existence of the term "—‘%)‘ o r(ll)
ov,’ 0Og,

can be explained on the basis that two characteristics of the flow field are related to each

other and describe the interaction between the two modes (velocity and magnetic) at a single

point x'.
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The transport equation for distribution function of velocity, magnetic, temperature,
concentration and reaction have been shown here to provide an advantageous basis for
modeling the turbulent flows in a rotating system. Here we have made an attempt for the
modeling of various terms such as fluctuating pressure, viscosity and diffusivity in order to
close the equation for distribution function of velocity, magnetic, temperature, concentration
and reaction. It is also possible to construct such type of distribution functions in variable
density follows. The advantage of constructing such type hierarchy is to provide
simultaneous information about velocity, magnetic temperature, concentration and reaction

without knowledge of scale of turbulence.



SR/ oF L

CHAPTER-III

PART-B

STATISTICAL THEORY OF CERTAIN DISTRIBUTION FUNCTIONS IN
MHD TURBULENT FLOW UNDERGOING A FIRST ORDER REACTION IN
PRESENCE OF DUST PARTICLES

3.8. Introduction:

In this paper, we have studied the distribution function for simultaneous velocity, magnetic,
temperature, concentration fields and reaction in MHD turbulence in presence of dust

particles. Finally, the transport equations for evolution of distribution functions have been
derived and various properties of the distribution function have been discussed. The obtained

one-point equation is compared with the first equation of BBGKY hierarchy of equations in

the kinetic theory of gases.
3.9. Basic Equations:
The equations of motion and continuity for viscous incompressible dusty fluid MHD

turbulent flow, the diffusion equations for the temperature and concentration undergoing a

first order chemical reaction are given by

0 ' )
%4—%(1:(1% —hahﬂ)z —%+L}V“ua +f(ua —va) --------- (3.9.1)
Oh 0 2

*+—\hu,-u h,)=ANVGH 3.9.2
ot ax/j( atp a ﬁ) a ( )
00 ol )
v - e — 393
o0’ ox, W S
a,\—c+zf/jQC—:DV2C—RC ————————— (3.9.4)

ot Ox
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5, 0 oh
with oG, (3.9.5)
x, Ox, Ox,
where

. [-2 ; ; ; ’ .
w(x,:): % + 5‘h| total pressure and D is the diffusive co-efficient for contaminants.

The repeated suffices are assumed over the values 1, 2 and 3 and unrepeated suffices may
take any of these values. Here u, h and x are vector quantities in the whole process.
The total pressure w which, occurs in equation (3.9.1) may be eliminated with the help of the

equation obtained by taking the divergence of equation (3.9.1)

Viw=—

o du, Ou, oh, Oh,
Bx. 0% (it =y )= - [az 6xﬂ ox, ox, =1
i p s

In a conducting infinite fluid only the particular solution of the Equation (3.9.6) is related, so

that

J.[ ou, auﬂ oh' ohy, ]
b Bx, Bxﬂ ox., |x |

Hence equation (3.9.1) — (3.9.4) becomes

' a’ rah' r
Ot D oty [ 220 T ) & st )
or  0Ox, 4 Ox, 3x;3 ox,, Bx:ﬁ. ox, |x'—x[

------------- (3.9.8)

oh 0
— e — g, —whs J=AVE, 00000 s 3.9.9
ot axp(a g~ HUa ﬁ) a (3.9.9)
oo o6 5
L, N 3.9.10
o ' ox, & oo
%+uﬁ§—C=DV3C—RC ----------- (3.9.11)
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3.10. Continuity Equation in Terms of Distribution Functions:

An infinite number of continuity equations can be derived for the convective MHD turbulent
flow and the continuity equations can be easily expressed in terms of distribution functions

and are obtained directly by div u = 0. Taking ensemble average of equation (3.9.5)

o (n
0:<;f” > :<aa“) u{(}l) ”JIE”]dv“)dgmdgﬁ(”d(//“)>
e X,

:£<uf;)I”IF,”)dvmdgmdcﬁmdl/f(”>

0]
ox,,

-2 XA g
xﬂ

0

= ~ J‘”J‘V({,‘)F,(”dvmdg“)dgﬁ(”d{//(”
xa

aFI(]) ) D g .(1) 1 I
= Hﬂmvé o - (3.10.1)

and similarly,
oFW
0= ”“‘—Bxlm D e b 1 — (3.10.2)

which are the first order continuity equations in which only one point distribution function is

involved. For second-order continuity equations, if we multiply the continuity equation by

(5(”(2) —vm}j(hm _g® (9(2) _¢(2))‘5(C(2> _Wm)

and if we take the ensemble average, we obtain

0= 5(1[”’ " v“’)&(hm _g® )5(9(2) B ¢(2))5(C‘2) _W(z,)au;” >

(n
Ox,

= 75’(1) < 5(u‘3’ _v(z))5(h(2) —gm)é(ﬁ‘z) 4¢(2))5(C(2) _W(Z))M;]) >
ox,,

= aam J‘< ug)d(u(n —v“’)&(h‘” _g® (0(1) —¢‘”)§(C“) _W(H)
x(X
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" ( @ _ (2))5(h(2) (2))5(0(2) —-¢(2))5(C(2) _w(z)) >

0
= H”vg)Fz“’z)dv“’dg(”dgz}‘”dt,u(” __________ (3.10.3)

and similarly, =50 jjj [eVFIDav0dgVagDay (3.10.4)
The Nth — order continuity equations are
() pp(1.2,-—
11— o105

o DS ””g(”FM """""""" Aaglge VPV, e (3.10.6)

The continuity equations are symmetric in their arguments i.e.;

3

= a(r) J‘ j j J‘(v((;) F{1 20N g0 4ol g0 gy /(r))
xa’

............ (3.10.7)

_ ajs) .[.”‘J‘VS)FA(/LZ’WLS'““N)dV(S)dg{S)d¢(S)df//(S)

Since the divergence property is an important property and it is easily verified by the use of

the property of distribution function as

ouh
Ox, (1)

0 0
=0 ””VS)E“)dvmdgdeﬁ(”dwm _ ﬁ(us) >:< >: 0 (3.1038)

3.11. Equations for Evolution of Distribution Functions:

The equations (3.9.8)-(3.9.11) will be used to convert these into a set of equations for the
variation of the distribution function with time. This, in fact, is done by making use of the
definitions of the constructed distribution functions, differentiating them partially with
respect to time, making some suitable operations on the right-hand side of the equation so
obtained and lastly replacing the time derivative of v,h,0 and C from the equations (3.9.8)-
(3811
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Using the equations (3.9.8)-(3.9.11) we get,

5};” ;(0(;,1(1) _v<n)5(hm —g‘”)a‘(a“’ —¢(”)§(C“’ —l//m)>
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Using equations (3.9.8) — (3.9.11) in the equation (3.11.1), we get
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Various terms in the equation (3.11.2) can be simplified as the equations (3.6.3) — (3.6.14)

and the Sixth term of right hand side of equation (3.11.2)

<—5(h“’ —g® (9(1) _¢,m)5(cm —f/f(”)f( us) “Vc(,” )%5@(1) —v“’) >
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And, the last term of the equation (3.11.2) reduces to

((1) m};(hm “))5(9”’—¢5“’)RC”’6—8{T)5(C“’—a,u‘”))

W

0
=— Ry 5(//“) FI“) ----------- (3.11.4)

Substituting the results (3.6.3) — (3.6.14) and (3.11.3) — (3.11.4) in equation (3.11.2) we get
the transport equation for one point distribution function £ (v, g,é,)in MHD turbulence

for concentration undergoing a first order reaction in a rotating system in presence of dust

particles as
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Similarly, an equation for two-point distribution function F,"? in MHD dusty fluid
turbulence for concentration undergoing a first order reaction can be derived by using

equations (3.9.2), (3.9.3),(3.9.4),(3.9.8) and simplifying in the same manner, which is

(1,2) oM 5y
= vy 621} vy (32} i +g(1>( o (”J a(l) 2
ot Ox Ox oV, 08, 0%

DoD avt(xz) ) 3 1 5 i
G g(?—)[a‘i&g) T+ 8gf,2) ]ax;z) Fz("3) — (31)2) 1:4_7; '”.'I-J-'I.axg) {’fm . f(l)’

3 3 3

(av[(j) avﬁ) bg ( ) ag( )

(3 3 (3) (3)
Ox,’ Ox,” Oxy’ Ox,

JF(I 29 de Oy dg D dg Dy ]

av(s} av(3) a 3) ag(B)
(3) ax(3) ax;) 8x(3)

s e s

XF3U’2’3)dx(3)dv(3)dg(3)d¢5(3)dt//3)]

24

0 o . o
+l{av(l) L1 Moy _zo0 7 50 Llﬁ%m%}m JW IIJ VS)}:3(1,2,3)dv(3}dg(3)d¢(3)dw(3)
@ el
—a ] 0 (3) pA(1.2.3) W o dd® i/
* " Limes o + P ~& LMo o ax@ax@ ”_Ug F50dv g dg dy

—a i 0 1 62 (3) [p(L2.3) 7.(3) 7 (3) 74(3) (3)
PYD L’"E(3>—>;=')+WLM%”_WJJW ”_U¢ I .dv dgVdgVdy



Chapfter >

5 « . 62
-+ m My o +WLIWE(3)_,;(2) W '[.”J‘WG)F}(l,2,3)dv(3)dg(3)d¢(3)dw(3}
B g
0 G
() _ M (1.2) @ ]
+f(ua =y )a (z)F Rw(l aw(l)F =0 (3.11.6)

Continuing this way, we can derive the equations for evolution of F**, 0239 and 5o on.

Logically, it is possible to have an equation for every F, (n is an integer) but the system of

equations so obtained is not closed. It seems that certain approximations will be required thus

obtained.

3.12. Results and Discussion:

If the fluid is clean then f=0 , the transport equation for one point distribution function in

MHD turbulent flow (3.11.5) becomes

aF](l) @ a]:l(l) a ag(l) ov () 5171(1) b 1 o i
o e B e v +5g(') G2 —6v;” E”’”J‘ xY [F® —xO

{av(z) avj;) bg (2) og (2)
(¢4

ax® ax® ax(z) ax(z) JF(I 2 dx(z)dv{z)dg(z)d¢(2)dw
B a

2
+V6v(” Lim ) o) ax(2)ax<2> ”” @ 202 1y go® g @ oy

@ @) (L2) 7.(2) 7(2) 74(2) 7. (2)
+/Iag(”L A el ax(z)ax(z) ”ﬂg Bydvidg “de ™ dy

J‘ J’ J‘ J ¢(2) F(‘ 2 dg(z) dd®dy /j

i“)

—~a g
g op" i, ax(z)axm

) Lim L5

0
5x(2’6x(2) ””‘// Fadv?dg®dg®Pdy'® - Ry aTVWFI =0

oy

------------ (3.12.1)
which was obtained earlier by Islam and Sarker [57].
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We can exhibit an analogy of this equation with the first equation in BBGKY hierarchy in the

kinetic theory of gases. The first equation of BBGKY hierarchy is given as

R 1w 0

J‘ awlv aF(lz
ot mvﬁ fof;) '[

(2) (2)
ax(l av(l) o AT e (3.12.2)

(2) y®

where ¥, =y, Va

is the inter molecular potential.

If we drop the viscous, magnetic and thermal diffusive, concentration terms and

constant reaction terms from the one point evolution equation (3.1 2.1), we have

aFI(I) Ly aF](l) i agél) av(l) aF](l) ~ Pl L d ( 1
vﬂ (N +gﬁ (1 + 1 1 1 1
ot ox’ vP og? Jaxd vl | ax axf,)Ufm -5

2 2
xP ox® ax<2> ox?

J FM 8P avPdePae®dy® (=0 oo (3.12.3)

5g(1) av(l)
av(l) ¥ ag(l)

The existence of the term

can be explained on the basis that two characteristics of the flow field are related to each
other and describe the interaction between the two modes (velocity and magnetic) at a single

point x!.

In order to close the system of equations for the distribution functions, some approximations
are required. If we consider the collection of ionized particles, i.e. in plasma turbulence case,
it can be provided closure form easily by decomposing F>'"? as F," F,®. But such type of
approximations can be possible if there is no interaction or correlation between two particles.

If we decompose F,""? as
F2'?=(1+e)F,YF®  And F'%¥ = (1+e 2 FiV F,@ F,@

where, € is the correlation coefficient between the particles. If there is no correlation
between the particles, € will be zero and distribution function can be decomposed in usual
way. Here we are considering such type of approximation only to provide closed from of the

equation i.c., to approximate two-point equation as one point equation.
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The transport equation for distribution function of velocity, magnetic, temperature,
concentration and reaction have been shown here to provide an advantageous basis for
modeling the turbulent flows in presence of dust particles. Here we have made an attempt for
the modeling of various terms such as fluctuating pressure, viscosity and diffusivity in order
to close the equation for distribution function of velocity, magnetic, temperature,
concentration and reaction. It is also possible to construct such type of distribution functions
in variable density follows. The advantage of constructing such type hierarchy is to provide
simultaneous information about velocity, magnetic temperature, concentration and reaction

without knowledge of scale of turbulence.
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CHAPTER-III

PART-C

STATISTICAL THEORY OF CERTAIN DISTRIBUTION FUNCTIONS IN
MHD TURBULENCE IN A ROTATING SYSTEM UNDERGOING A FIRST
ORDER REACTION IN PRESENCE OF DUST PARTICLES

3.13. Introduction:

In this work, we have studied the distribution function in the statistical theory for
simultaneous velocity, magnetic, temperature, concentration fields and reaction in MHD
turbulence in a rotating system in presence of dust particles. Finally, the transport equations
for evolution of distribution functions have been derived and various properties of the
distribution function have been discussed. The resulting one-point equation is compared with
the first equation of BBGKY hierarchy of equations and the closure difficulty is to be

removed as in the case of ordinary turbulence.

3.14. Basic Equations:

The equations of motion and the equation of continuity for viscous incompressible dusty fluid
MHD turbulent flow, the diffusion equations for the temperature and concentration

undergoing a first order chemical reaction in a rotating system are given by

ou, 0 ow )
p + —axﬂ (u“uﬂ —hahﬂ)= —_——axa +Wu, -2 € g S, + f(u[2 - vg) --------- (3.14.1)
Oh 6, 5

€ e\ uo—w.hs)=ANVR. mmmmauan 3.14.2
a{ axﬂ ( a”p a ﬂ) a ( )
oo oo 5

+u,—=wN"¢ s 3.14.3
ot Y axﬁ }/V ( 3)

—a&fNPT-RC 0 e (3.14.4)
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with —*=—%=—%=0, e (3.14.5)
)

where, €2, angular velocity of a uniform rotation.

The total pressure w which, occurs in equation (3.14.1) may be eliminated with the help of

the equation obtained by taking the divergence of equation (3.14.1)

) 0’

Vow=

0 ol
(uauﬂ Whahﬂ):—[ aua u/j _6/1& 7/} ]

~———wu, -hpy )= —=—-—2——L | s 3.14.6
Ox,0x Ox, Ox, 0Ox, 0x, ( 2

In a conducting infinite fluid only the particular solution of the Equation (3.14.6) is related,

so that

1 [ 514; aulrg _ 5/1; ah;; ] af'

w=— 2 i — (3.14.7)
4r Oxy; Ox, Ox; Ox, lx —x|
Hence equation (3.14.1) — (3.14.4) becomes
ou' ouy Oh' Oh, !

ou, +i(z¢auﬁ—hahﬂ)=—L o J[ u, Oy Oh, Oy ]_fff_ W,
o ox, 4r ox, oxly Ox, oxy ox, |x'-Z|
—2e B, + flu,~v,) 0 e (3.14.8)
ch 0

¢ 4 — thup—wh: V=2V, 0 e 3.14.9
ot éxﬁ( p " Ha ﬁ) a ( )
oo oo 2
—+u e — 3.14.10
o ox, " ( )
~ ~
£+uﬂ£=9vﬁc_[gc ........... (3.14.11)
ot 0x

3.15. Continuity Equation in Terms of Distribution Functions:

An infinite number of continuity equations can be derived for the convective MHD turbulent
flow and the continuity equations can be easily expressed in terms of distribution functions

and are obtained directly by div » = 0. Taking ensemble average of equation (3.14.5)
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-_—__—__———_

o= (3 ={apet (vaasagan

0

:W@‘(’” ””E“)dv‘”dg“)d¢“)dw(”>
x(x

ox 0 H” ¢ ) FY v dgVdg®dy

- o (R g gy
xrz

= ””5 @ “)dv(')dg(”a’gﬁ“)dg/(” ............ (3.15.1)
- oR" M g, g4 7 (1)
and similarly, 0= Ijjfmga av-de g Vdptt s (3.15:2)

which are the first order continuity equations in which only one point distribution function is

involved. For second-order continuity equations, if we multiply the continuity equation by

@ _ @ )s(1® _ o@\s(9@ _ 4@ \s5(@ _,,@
o v B — g (o™ - 2 (c® -y )

and if we take the ensemble average, we obtain
(I

= (uz (2))5(]1(2) (2))5(9{2 ¢(21)5(C(2) (2))F>

(74

= %{ (5(”{2) —v(z’)é(h”’ _ g(z)}g(g(z) _ ¢(2’)5(C‘(2) _ w(z))ug) >
X

" 0 J‘< u(!)(g(um —v“))5(h(” _g® (9(1>_¢<1))5(C(1)_W<1>)
ot “

o

X(S(u(z) —vm)é(hm _ g(Z))5(9<2) (2))5( (2))

= —aj]) J”J‘v(a”Fz(]‘z)dv“)dg“)dgz,"“)dt,z/“) ---------- 3.15.3)

and similarly,

:ﬁaa“) [[[[eLF2av®dgVagPay® (3.15.4)
xa
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The Nth — order continuity equations are

0 .
g J_”J.VS)F;WLL MgyOdgDdgVdy® (3.15.5)

and

() (2, 1]
a (;) jjfjg F N)dV(l)dg( )d¢(])dlj/“) i s (3 1 56)

The continuity equations are symmetric in their arguments i.e.;

ajr} H_”(Vg)F;\(r]’zw'"’r'N)dv(r)dg(r)d¢(r)d’//(r)):% _””v;”F,f,"z"""”“'"""N)dv(")dg“"dgzﬁ(“')dq/(“’
(24 x&'

........... (3.15.7)

Since the divergence property is an important property and it is easily verified by the use of

the property of distribution function as

H” (”F(”dv“)dg‘”dgzﬁ(”d i<ué‘) >:( aug} ):0 .......... (3.15.8)

Ox ‘” dic) ox, (1)

a

3.16. Equations for Evolution of Distribution Functions:

The equations (3.14.8)-(3.14.11) will be used to convert these into a set of equations for the
variation of the distribution function with time. This, in fact, is done by making use of the
definitions of the constructed distribution functions, differentiating them partially with
respect to time, making some suitable operations on the right-hand side of the equation so
obtained and lastly replacing the time derivative of v,h,0 and C from the equations (3.14.8)-
(3:14:11).

Using equations (3.14.8) - (3.14.11) we get,
Y L ) — g )5(g» — g (g )
2 2 2o vl 5o -4l )

:( 5(h(l) —g(l))§(9(]) —¢5“’)§(C(” _w(l))ié'(u{l) e v(l)) >+< ( {5 (|))5(9(1) ¢(|))

ot

xa(c(” _w(n)g(;(hm _gu)) )
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§(um —v“))d(h“) _gm)(;(gm —¢“))§5(C“’ -—c//‘”) >
(h‘” m)5( (1))5( m _ n)ii})(g(um —v‘”) >

ot ov'
ol s o0 g e -y 2l )
(ol ol - e -y )0 sl -9
+ (=6 —vO W (A® - g )s(0® - ¢“>)Zfa£(,)§(c<” SpC) | y— (3.16.1)

Using equations (3.14.8) — (3.14.11) in the equation (3.16.1), we get

5};{(” (h(” (1))5(9(1) é(]))é(c(l) (1)){_ aiﬁ (u(l)ug) hf,”h}”)

(1) (1) (N (n F
1 o j aul Ouy'  oh') Ohy }abf
. ax() Bx(') Bx“) ax“) |x

‘+vv2 i -2e,. f,”+f(u;”—v;”)}

x%ﬁ(u(')—vm) ((1) m)(;(g(n ¢“’)§(C‘” (:)){ 0 (h“) () (l)th)

ox (1)

+/1V2hﬁ§”}$5(h(”—g(”) o (m (1))(5(;,(1) “))5((7(”—',1/(”)
{ug} aai; 7;\729(1)} aj(” (9(1) ¢,(l)) ((l) m)(;(hm (l))

a;(]) (5((3(1) —!//(”) )

(h‘” (1})5( ¢(1)}>( (1)) ”“2) ig(u(” —v“)) )

(1) M
Oxy’  Ov,

<alo ¢ Yoy o+ D

ohPh) 5
(h”) (1))5(9(1) ¢(l))§(cu) ) axg)ﬁ . 5(1,4“)—1)(”))

oul’ duy  ont ohy
4x 6x(” J o0 ox®  ox o

( am _ (1))‘5( M (1))5( 3 I (1))
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fﬁ' d 5(u(1);vm) (h(l) (1))5(9(1) ¢5“))§(C“) “’)VVZ (1) ((n v(n)}

(h“) u))(;( (1) ¢(1))§(Cu) (1))2Emﬂ u® 0 §(u(“—v“’)>

m a 61’ 0

a

(h(” (l)b(gu) ¢(l))§(cm (l)) (u ) —va“))—a—é(u“) —v“))>

(1)
ov,,

( m _ (1))5(9(1) ¢“))§((,“’ m) hm”“) o §(h(”—g“))>

ox () ag’(zl)

(7,1
( a _ (1))5(9(1) ¢(1))5(Cm (l))al;“x_;” %5(}:(” —g(”))

+( ((U (n)cg(g(l) ¢‘”)§(C“) “))szhf,” o 5(}:“) (n)>

+ 5(1:“’ (1))5(”:0 ("}S(C“’ _W(l))ug) ‘gf((ll: o ( M ¢Ul) )

((n “’)5(!1(” m)cS(C‘” u))?,vzg(n 0 ((l) ¢{n)>

¢(1)

( m _ (1))5(]1“) (11)5(9(1) ¢m)”(1) ac'” (C“) —W(])) )

B o (l) oy
+(_5(u(n “’)b(h“) g(1>)5(9(n ;;é(”)DV c® a;(” 6((?‘“ _W{n)>

(=8 v )55 - g)s(p - ¢(”)RC(”5¢5(U P SO0 R — (3.162)

Various terms in the equation (3.16.2) can be simplified as the equations (3.6.3) — (3.6.14)

and the Fifth and sixth terms of right hand side of equation (3.16.2)

(o= b0 -4 (e ey 0,00 S a0 -0
=( 2 €0y Q umi[ ( M _ (1))5(;2(1) (1))5(9(13 ¢“’)5(C”’ (1))]
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=2€,.: Q, %( ufz”é(u“) s v(l))é‘(h(l) “))5(9(” ¢(”)5(C“ “))

a

_2e,, 0, Zu{é:j ( 5(11(1) _V(I))(s(h(l) (1))5(9(:) ¢(l))5( (1))
va

=2e.. QK e (3.16.3)

and (h‘” (1))5(90) ¢“))5(C(” (1)) ;I)—v(]) )ié‘(u”)—v(”))

av(l)

(74

=—( f(ug) v(l))m[ ( a _ (1})5(}1(1) (1))5(9(1) ¢“))§(C(” (1))]
.,—f( ul - p )a (1) ( a _ (1))5(;,(1) (l)k(()u) ¢(”)5(C“) “))

8
=—f(ul =y )WF‘(U' ------------ (3.16.4)

And, the last term of the equation (3.16.2) reduces to

((1) “))J(h“) (1))5(9(1) ¢(l))RC(1)aj 5((](“ wm))

0
oy

=—Ry" —=F" e (3.16.5)

Substituting the results (3.6.3) — (3.6.14) and (3.16.3) - (3.16.5) in equation (3.16.2) we get
the transport equation for one point distribution function F"(v,g,é,)in MHD turbulence

for concentration undergoing a first order reaction in a rotating system in presence of dust

particles as

aFI(l) ) aFIU) iy ag(l} av(ll a};*](l) ~ p] L o 1
+vﬂ (n +5> 1 + 1 1 1 1 2
ot ox v ag Jax) vl | 4x x| [g® - x|

X

2228 ar o

FO2 1 30,2 o (D) 452
axg) P o ax(z)} dxPav®dg®dg® dy

0
+VWL - ax@’ax@ ” J j O {02 1 o g oy
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%
g e ax%xm [[[[s? B2 av®dg®dp®ay

c'ix(z o J,[j,[¢(2) F200 dgdg® diy/®

a¢(]) x(2)_»—c(1)
) (12) 742 7.(2) 742 7, (2)
+Dawm Lzmm ax@ax@’ | j HW EMa@dg® dg® dys
+2e,,Q FO +f(u“’—v(”)iFl“)—Rt//“’—-—a—Fl“):0, _________ (3.16.6)
maf m a a avt(zl) 8(//“)

Similarly, an equation for two-point distribution function F,"*? in MHD dusty fluid
turbulence for concentration undergoing a first order reaction in a rotating system can be
derived by using the equations (3.14.2), (3.14.3),(3.14.4),(3.14.8) and simplifying in the same

manner, which is

oR;Y m O @ _0 ) (2) 4 50 Oga . O, ) 8
NG G R ooy Eeiat

@

9e?  H?Y 5 o |1 0 :
+8§32)[£;2> El a;(z) }6@?’ F2(1,3) _81;—3)[?7; IJIIIax;I) {‘f(s) ._f(l)|

[avfj) vy g og

o o ax(B) ax(g) JFU 23)dx(3)dv(3)dg(3)d¢(3)dw ]
b a

0 ;3) av(3) P ((13) ag(B)
av(Q) |:4;,r .”-J-I.l'axmhxo) (2)| [a;;f) 6x§3) B ai;;) ax((?)J

F3“’2’3)dx(3)dv‘”dg‘”d;ﬁ‘”dz,//3) ]

o .. o .
+v{lemfm_,xm +ﬁLzm§(3)_}x(z,Jax{3)&c(3 J'J'H (3)F(123)d 3)dg(3)d¢{3 dU/

+ j J‘ J‘ J‘ O 029 13 o d dys®

. 5 0 i
MLy oo ML) o) 3
ag(l) —X ag{(f) Eohy ax{3)ax( )
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0 0 Q) ; (1.23) 1.(3) 7.03) 743) 7 (3)
W X550 +5&@ Sl PYOPNE) ”J]gé F3( ddg? dg dy

V/D My, ) lﬂ(z) Moy (3)&(3) J J ﬂ'w) E" B dd df

(12 M _ ,0
0. +f(ua -v )_

a

+ 3 ——FY =0, . (3.16.7)

maf

Following this way, we can derive the equations for evolution of £ F1>** and so on,
Logically, it is possible to have an equation for every F, (n is an integer) but the system of

equations so obtained is not closed. It seems that certain approximations will be required thus

obtained.

3.17. Results and Discussion:

For clean fluid, =0, the equation (3.16.6) reduces to the equation (3.6.17) of this
chapter in part-A.
For non-rotating system, Q, =0, the equation (3.16.6) reduces to the equation (3.11.5) of
this chapter in part-B.

If the reaction constant R=0, the transport equation for one point distribution function

in MHD turbulent flow (3.16.6) becomes

617](1)+v(]) a};'l(l)+g{l) ag(i)+av(|) aF](l) ~ o LJ-J-J.”A 0 ( 1
o 7 D vy ogl Jax) | 4x x| g -5

(av(z) av/(;) ag(z) og (2)
X (74

(L2) 7.(2) 7..(2) 2) (2)
oxy’ ox  oxP oxl ]F xS dg D dg P dy ]

0
+me b0 ax%x(z) J'J' J' J' @ 02 4y g0 g s

0
—Mag()L Moo ax(z)axu) ngﬁ v dgVdg®dy”
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0 &’
+y———

. (2) ;(1.2) 4.(2) 1 (2) 742) (2)
2 e {8 E2 s dg® g

+D

82
Lim — U,(Z) Fz“’z)dv(Z) dg(z) d¢5(2) dw(z)
al//(l) 2z axg)axg-) IJ‘.[

0

anﬁ;(]) +f(ut(2]) _v“))av(l)

a

+2e€ Efal. 0 s (3.17.1)

maf

which was obtained earlier by Azad and sarker [7].

If the fluid is clean and the system is non rotating then f=0 and Qm=0, the transport

equation for one point distribution function in MHD turbulent flow (3.16.6) becomes

a};‘l(ll 0 ar (N 0 ag(l) Ov (1) aF(H
7 o e[ 25 ) L e

2) (2)
ELARL

(1,2) 7.(2) 7.,(2) 7..(2) 7 .4(2)
oxD 5@ ax(z) axm JF dxPav?dg?dg dy?
[ a

0
+v—gLimg, o

a

6x(2’ax(2) J'j‘ J‘ J @) (02 4y ® 4o ® g gy

+2 [[[[e2 F> v dg® dg®dy

QQHL. ﬁwawakm

a

0 o’ ) (12) 3..(2) 72 7.42) 7...(2)
}/,\ (N L! (1 2) 2 J"”.J‘(b Fz' dv dg d¢ dW
oll] G 0%y
+D 0 Lim,, o’ “meF“‘z’dv(z]dg(z)d(é(z)dl//(z)—Rt,{/(” 0 FI(UZO
X )%}(l) 2
aw(l) 8)(592)6)(}?) aw(l)

———————————— (3.17.2)
which was obtained earlier by Islam and Sarker [57].
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CHAPTER-IV

PART-A

FIRST ORDER REACTANT IN MAGNETO-HYDRODYNAMIC
TURBULENCE BEFORE THE FINAL PERIOD OF DECAY FOR THE CASE
OF MULTI-POINT AND MULTI-TIME IN A ROTATING SYSTEM

4.1. Introduction:

The essential characteristic of turbulent flows is that turbulent fluctuations are random in
nature. In geophysical flows, the system is usually rotating with a constant angular velocity.
Such large-scale flows are generally turbulent. When the motion is referred to axes, which
rotate steadily with the bulk of the fluid, the coriolis and centrifugal force must be supposed
to act on the fluid. The coriolis force due to rotation plays an important role in a rotating
system of turbulent flow, while the centrifugal force with the potential is incorporated into
the pressure. Kishore and Dixit [61], Kishore and Singh [63], Dixit and Upadhyay [39],
Kishore and Golsefied [66] discussed the effect of coriolis force on acceleration covariance in
ordinary and MHD turbulent flow. Funada, Tuitiya and Ohji [47] considered the effect of
coriolis force on turbulent motion in presence of strong magnetic field. Kishore and Sarker
[71] studied the rate of change of vorticity covariance in MHD turbulence in a rotating
system. Sarker [123] studied the thermal decay process of MHD turbulence in a rotating
system.

Deissler [36, 37] developed a theory “decay of homogeneous turbulence for times before the
final period”. Using Deissler's theory, Loeffler and Deissler [81] studied the decay of
temperature fluctuations in homogeneous turbulence before the final period. In their approach
they considered the two and three-point correlation equations and solved these equations after
neglecting fourth and higher order correlation terms. Using Deissler theory, Kumar and Patel
[73] studied the first-order reactant in homogeneous turbulence before the final period of
decay for the case of multi-point and single-time correlation. Kumar and Patel [74] extended
their problem [73] for the case of multi-point and multi-time concentration correlation. Patel
[106] also studied in detail the same problem to carry out the numerical results. Sarker and

Kishore [120] studied the decay of MHD turbulence at time before the final period using



il o St =L . 111

chandrasekher’s relation [27]. Sarker and Islam [127] studied the decay of MHD turbulence
before the final period for the case of multi-point and multi-time. Sarker and.Azad [137]
studied the Decay of MHD turbulence before the final period for the case of multi-point and
multi-time in a rotating system. Islam and Sarker [56] also studied the first order reactant in

MHD turbulence before the final period of decay for the case of multi-point and multi-time.

In this chapter, using the above theories we have studied the magnetic field fluctuation of
concentration of a dilute contaminant undergoing a first order chemical reaction in MHD
turbulence before the final period of decay for the case of multi-point and multi-time in a
rotating system. Here, we have considered the two-point, two-time and three-point, three-
time correlation equations and solved these equations after neglecting the fourth-order
correlation terms. Finally we obtained the decay law for magnetic field energy fluctuation of
concentration of dilute contaminant undergoing a first order chemical reaction in MHD
turbulence for the case of multi-point and multi-time in a rotating system is obtained. If the

fluid is non-rotating, the equation reduces to one obtained earlier by Islam and Sarker[56].

4.2. Basic Equations:

The equations of motion and continuity for viscous, incompressible MHD turbulent flow in a

rotating system are given by

- 2
H +i(u,uk -hh )= _ +v 74 -2€,,Q u,  ee—ee—e- (4.2.1)
o ox, ox, Ox, Ox,
A 2
A (4.2.2)
ot oOx, Ox, 0x,
ov, ov, K
— 4y, ——=——W,-w), e (4.2.3)
ot &y m,
with
ou, 0ov, Oh,
— = =0, e (4.2.4)
ox, Ox;, Ox,

Here, u; turbulence velocity component; h;, magnetic field fluctuation component;

1

~ 2 .
w(f(,t)=1;—+;<h2 }+;‘Qxf< , total MHD pressure p(x,f), hydrodynamic pressure; p,
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fluid density; v, Kinematic viscosity; A = %, , magnetic diffusivity; Py, magnetic prandtl
M
; 4 ; ; : ;
number; Xy, space co-ordinate; m_ = grrRS p,.mass of single spherical dust particle of radius

. . K
Rs; Qn.,constant angular velocity component; €y, alternating tensor, y = —, thermal
r

diffusivity, K= Stokes’s resistance coefficient which for spherical particle of radius r is 6zur.
The subscripts can take on the values 1, 2 or 3 and the repeated subscripts in a term indicate a

summation;

4.3. Two-Point, Two-Time Correlation and Spectral Equations:

Under the condition that (i) the turbulence and the concentration magnetic field are
homogeneous (ii) the chemical reaction has no effect on the velocity field and (iii) the
reaction rate and the magnetic diffusivity are constant, the induction equation of a magnetic

field fluctuation of concentration of a dilute contaminant undergoing a first order chemical

A
reaction at the points p and p’ separated by the vector r could be written as

/ / 3
oh oh, ou, o°h, —Rh 4.3.1)

ot ox, ox, Ox,0x, '

oh' 8/1: ’ au: 82h_:

and —-+u, —~—h,—~= —Rh,, e (4.3.2)
ot Ox, e, Ox, Ox, :

where R is the constant reaction rate.

Multiplying equation (4.3.1) by hji and equation (4.3.2) by h; and taking ensemble average, we
get

ohh) o o*(h,h,) .
' —Wu hh'Y=(uh W' =A———-Rhh) = e 4.3.3
o o )~ )= A 2t R @33
o) o, o o) |
AﬂdT + 6._r;[<ukh’ h > —( u' hh, >]: RW ~BRA Yy @ e— (4.34)
Angular bracket ( ————— > is used to denote an ensemble average.

Using the transformations
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0 0
o0_ 2 0_0 (i)zw:(EJA,_i, 2_0 -
ox, or, Ox, Or, ot ot OAt ot OAt

into equations (4.3.3) and (4.3.4), we obtain

alhh' . )
%JJr%[(u;h,h;)—<u;h,h;>kr,At,t)—%[<ukh,hj>—<u,hkh;>kr,m,t)
o nh;)
r— 2AW 2R</’l h > --------- (436)
5(]1,12:> 8 o il o* <h;/1;> ,
nd — o (a2 ) = (' iy VN7 e ) = AR e 43.7)

Using the relations of Chandrasekhar [27]

(ughht)y = ~(uph ), (b ) = (ugh)),

equations (4.3.6) and (4.3.7) become

a(hh 8 e o ’ o (hh! .
<8! | > ' za [<“kh1h.f>_ () >] = aiark > —2Rmhy e (4.3.8)
2 '
and Pt > a [u )= (u, b, )]: PRI, ) =RBhihy e (4.3.9)
! T Oy '

Now we write equations (4.3.8) and (4.3.9) in spectral form in order to reduce it to an

ordinary differential equation by use of the following three-dimensional Fourier transforms:

hh r At, t l// r,z/ (K,At,t)exp[f(l%ﬁ)]d]% ---------- (4.3.10)

3!—-,5

and  (uhh! )P, AL = wj(a,%q/ )(K RIS 1) — (4.3.11)
Interchanging the subscripts i and j then interchanging the points p and p’ gives
(i, )7 A1) = (b ) = Fo=Att + At)

= T(a‘_y/,w} )(— K,—Att+ At)exp[f(]&.ﬁ)}l[& ————————— (4.3.12)
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where, K is known as a wave number vector and dK =dK; dK; dKj3. The magnitude of K

has the dimension 1/length and can be considered to be the reciprocal of an eddy size.

Substituting of equation (4.3.10) to (4.3.12) in to equations (4.3.8) and (4.3.9) leads to the

spectral equations

iwa’r@ + 2[&/{3 + Rky/,a//;) = 2ik, [(a,y/ku/': )(k,At,t)— <a,‘<//,(,u_: >(— K-Att+ At)]
------------- (4.3.13)
Ny ' . - .
il @gi’) i [AKZ ¥ RKWjW}> =ik, [<C¥,-‘//k9’/; >(K,Ar,t)— (akt;/,.r,//; >(— K,—-At,t+ At)]
----------- (4.3.14)

The tensor equations (4.3.13) and (4.3.14) becomes a scalar equation by contraction of the

indices i and j

iﬁg"l + 2[/1}(2 + ng/g;/f) =21k, [(a,ww;,’)(]&,m,t)— <akt//,t//f>(— E~At+ At)]
------------ (4.3.15)
and % - [/“LK2 + R](://,.y/:) = ik, [(a,z,ukw;)(f(, At,t)— (ockz,z/,wj)(— K,~At,t+ At)]
......... (4.3.16)

The terms on the right side of equations (4.3.15) and (4.3.16) are collectively proportional to

what is known as the magnetic energy transfer terms.

4.4. Three-Point, Three-Time Correlation and Spectral Equations:

Similar procedure can be used to find the three-point correlation equations. For this purpose
we take the momentum equation of MHD turbulence in a rotating system at the point P and
the induction equations of magnetic field fluctuations, governing the concentration of a dilute

contaminant undergoing a first order chemical reaction at p’ and p" separated by the vector

rand r' as

ou, s ou, _h oh, __ow e o’u,
k k

-2€,,Q u, e (4.4.1)
ot ox, ox, ox, Ox, Ox,

' oh! ou, o h! ;
o R R BB e B I ot (4.4.2)
or' 0x, Ox, Ox, Ox;
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on'  oh!  ou” o*h ;
+u - —L=1 -RK, . e (4.4.3)

i k
ot" ox;, &%y gx ax, 4

Multiplying equation (4.4.1) by h'; h;”", equation (4.4.2) by uh;"" and equation (4.4.3) by uh;/,

taking ensemble average, one obtains

ouh'h’) 5 ' ' o(wh'h, 0 (u,h'h"

< Iar J> ! o, ku"u’hfh > <h hihih; >] <ax, J> Ty ;x:axkj> -2€,, Q,,,<u,h,'h;)

-------- (4.4.4)

olu,h'h" o (u,h'h" o

(u;t,r ?_;> + ai; [(u;u;h,’ h,;') - (u,ujh,i h;>]= ’l_atza—x,;j) o 7.7 % S— (4.4.5)
and

oluh'h" o (u,h'h" o

<waf: ) + ai; [(u;u;,' ,’h;’)—(u,u",'h,’h:ﬂ: l%—fe(u,hh;) ........ (4.4.6)

Using the transformations

Sl L) B, B 1
ox, or, ar,‘ Cox, o, oaxp o’

2f’,r": i At,At'—i— ¢ )
ot ot OAt OAt

into equations (4.4.4) to (4.4.6), we have

ot or,  or, r,

I e S s R )

2
+ % [<u,u£_'hf'h§"> < uihh; >] [5 & irJ(“"h:hD + V[% i ai; J <u,hf/7;'>

P ar; OF

o> (u, k") 0 (u,hh"
% il: é:"a;k j> 2 é:ar;1>:| -2€,, Qm<ll,/?;h::> _________ (4.4.7)
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o{u,h'h, 5w,k N
< (';At j> i 5: [(u,u;hjh;') . <“z“:hlhf>]: A é:jark f> -RQuhh) e (4.4.8)
olu /’I;h’r 0 ’ . 82 u h:h,,
and < E;At’J > * o, [(u,ukh hj > <”f“fh:‘hk >]: A(kf—r,()_ R{u,hh )
--------- (4.4.9)

In order to convert equations (4.4.7)~(4.4.9) to spectral form, we can define the following six

dimensional Fourier transforms:

(w k)37 s ar ity = [ (8880 R R ar, A exp(& -+ R 7k

------------- (4.4.10)
(a1 NFL P, AL A1) = ﬁ@;ﬁ&ﬁ (&, ar, a0 )expli(&.7 + &7 \kak

.......... @.4.11)
(whih Y7 8y = [ [0 R, R A A expli (R 7 + .7k
.......... (4.4.12)
(w0 F 7 A A1) = [ (BB, R, A Yexplf (R 7+ R iRk
T (4.4.13)
(i V37 At A ) = ﬂ(ﬁkﬂ,ﬁ/ﬂﬁ(k K80 Jexpli(R 7+ K7 kak
............ (4.4.14)

(w57, 80,000 = [ (i8R R At vt Jexpli (R 7+ K JaRaR

......... (4.4.15)

Interchanging the points P and P along with the indices i and j result in the relations

(b)) = (wa iy (4.4.16)

By use of these facts and the equations (4.4.10)-(4.4.16), we can write equations (4.4.7)-

(4.4.9) in the form
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8%@5, BBNR K A A1)+ ;{(1 + P kP + k)4 2P, kk' + %154%(2 e Q )}

<(p BBNK K A A )= [k, + K, X, B87) ik, + ] XB.5,8.8])

= ilke + kX B/8])+ ilk, + K Mg 51 ) = ik, + ki X B0 (R K e, )
---------- (4.4.17)

% (688 R K a0, A0 1)+ R[KZ + ﬂ(@ pBNK R ar, v 1)
=ik, (¢, . B8 )\R. KA1, AL 1)+ ik, ORI S NN N) E— (4.4.18)
and %(@ BBINR, R, a0 1)+ ){Kf! +ﬂ(¢, BBNK R a0 0)

= —ik, (¢, L BIBINK. KAt A1)+ ik, R 3 L NNy N— (4.4.19)

If the derivative with respect to x; is taken of the momentum equation (4.4.1) for the point P,

the equation multiplied by hi'h;”” and time average taken, the resulting equation

X (whin') 2 . -
- a<x,axfj> ~ o, (<“f“khfhf>‘<hrhkhshf>) ---------- (4.4.20)

Writing this equation in terms of the independent variables 7 and 7'

o’ o & o’ o’ 9’ o’
- +2 + (whin) = + + + x
or0r,  Or0r/ oror oror, Oror, ordr, or/or]
(<u,ukh:h;'> - </’l, h, h;h}'>) _________ (4.4.21)

Taking the Fourier transforms of equation (4.4.8)

oo ek Kk + k- Kk N 900880~ (8,8, 8.87))
~(18.8]) = kk +2kk v kK T st

Equation (4.4.22) can be used to eliminate (yﬁfﬁj’) from equation (4.4.17)
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e e B L A e e e Sy i P e T, S T, e K oS s s e S S e T T SR Sl iak 5 ed]

The tensor equations (4.4.17) to (4.4.19) can be converted to scalar equation by contraction of

the indices i and j and inner multiplication by k

<¢1ﬂ ﬁ”}( At At t)+ l{(lJrPM)(kz +k'2)+ 2P kk’+%+

—(2 e )}(M BKL R LA )= ik, + K, N0 88K K A6 1)

~ilk, + kB BBBNR K At At )= ik, + KXo 81 B8R K" A, At 1)

ik, +k, X 8.8, BNK K" At A )~ ik, + k) (yﬂ;m(k,k',m,m',t)

--------- (4.4.23)
% kg BBNR R A A 1)+ A{KZ + ﬂ(gs, BaNR & A )
ik (9,0 BLBNK K AL, ALt )+ ik, (9,818, BYR R, AL, A ) coreeeee (4.4.24)
and ai (8.88)R &, 50,0 t)+){K ¥ }(;ﬁ,ﬁﬂ”)([( AL A1)
ik} (g0, 887K K, Ar, At o )+ ik; (6,9:8.8)K. K" Ar, ) R— (4.4.25)

4.5. Solution for Times Before the Final Period:

It is known that the equation for final period of decay is obtained by considering the two-
point correlations after neglecting third-order correlation terms. To study the decay for times
before the final period, the three-point correlations are considered and the quadruple

correlation terms are neglected because the quadruple correlation terms decays faster than the

lower-order correlation terms. The term <yﬁ,’[3;’> associated with the pressure fluctuations

should also be neglected. Thus neglecting all the terms on the right hand side of equations
(4.4.23) to (4.4.25), we get

ﬁK (B8R R A ar )+ 20+ Py Y2 + 572+ 2P, kk +%

e Leew 0 e s R R A ) =0 (4.5.1)
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%K,(gﬁ, BIBNR K" At A 1)+ 2 [ }(@ N RNy I - 452)
0 ’ - Tt ' 2 R ' o
and K, (g BBNR K a0, 0 ,z)w{k +ﬂ<¢,ﬁ, i L N 4.5.3)

Integrating equations (4.5.1) to (4.5.3) between t, and t, we obtain
! 2 12 ' 2R
k, <¢,[3,ﬂ,—”> = J exp{— l[(1+PM )(k +k )+ 2P, kk cos¢9+7

e 0, )e-1,),

k!<¢iﬁf'ﬂf”> =& eXpI:_ A K* + %JAI}

r I : R r
and K, <¢fﬁfﬁ;’) =dq, €Xp| — i[k £+ E]At :, .
For these relations to be consistent, we have

k($BIB1Y = kBB expl A1+ P k> + k2 e —1,)+ k2Ac + K2 AL"

+2P, kk'cosO(t —t, )+ %[r—ro & At;m ]{2 E"'ﬁ{ 2, )(t % || Je— (4.5.4)

where 0 is the angle between K and K’ and (¢,,8fﬁ,”)0 is the value of (4&“[3’,’,8,.”} at 't =it At
=At'=0, A=—

M

By letting 7" =0 , At" =0 in the equation (4.4.10) and comparing with equations (4.3.11) and
(4.3.12) we get

@pwi&and)= (@R Mok @53)

and (ay ) Ko-dniear)= (@880 RE Aotk e (4.5.6)
Substituting equation (4.5.4) - (4.5.6) into equation (4.3.15), one obtains

%(w,w;)(k, AI,I)+ 2/1{;%2 + %}(w,.y/j)(l%,m,tF 0]'2ik, [(;ﬁ,ﬁ,’ﬁ,.”)(]%, f(’,At,O,t)
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~(3,8BN-K~K'.Aa00.1) | expl-2{1+ P, Yk + 872 ) -1,)

+k*Ar+2P, (t—t, k' cos O +3§(: —t, +At) +(%]@ —t, )tk .

Now, dK' can be expressed in terms of k" and 6 as -2nk'd(cos0)dk’ (cf. Deissler [37])

ie. dK'= 27k'd(cosO)dk’ e (4.5.8)

Substituting of equation (4.5.8) in equation (4.5.7) yields

2w, Ar,f)+2,1[kz +§}<W,W;>(;e, aet)=2 2t g, 510 R )

—(6.8:8)- K—K)lk[ Ijexp{— A0+, Yk +k7Ye-1,)

) . , 2R 2¢€,u 2, ,
+k2At + 2P, (t -1, kk' cos 6 + 7(; = A%) % [—TJQ -, )]}d(cosm}ik

In order to find the solution completely and following Loeffler and Deissler [81] we assume
that

i fompli &)= (oppn-R R = (;Sz

where 0y is a constant determined by the initial conditions. The negative sign is placed in

(i | - (4.5.10)

front of &y in order to make the transfer of energy from small to large wave numbers for

positive value of d.

Substituting equation (4.5.10) into equation (4.5.9), we get

§2ﬁ<w,w:>([%,m,t)+ 2&[!(2 + %}Zﬁ@/,y/,’)(k,m,t): —260:[(!{2;?('4 -k'k"” )kr2

[ exp-al(1+, 62 +k2 e —1,) + A0 +2P, (¢ —1, Yok cosd

=
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__“

+—([—t +A/) [2€ka J(t—t")}}d(cos@) }dfg' --------- (4.5:11}

Multiplying both sides of equation (4.5.11) by k*, we get

51

+2kKE=F (4.5.12)
o

where, E = 27rk2(a//,y/: ) E is the magnetic energy spectrum function and F is the magnetic
energy transfer term and is given by

-1

F =-26, jk k= kR ek [j expfe A[(1+ P, Yk + k2 e —1,)
+k*At+2P, (t -1, )kk’ cosd +3§(r—t +AV)+ 2Cm D (t—¢,)|td(cos®) |dk’
M o /1 0 2 /1 0

-------- (4.5.13)

Integrating equation (4.5.13) with respect to cosd and k& , we have

Fo_ : JHPM \/;[_ exp{* (MJ(I £, )} e
)2

422t~ Y21+ P, A

M
+ _ﬂ__é k6 + P\::’ - P_\f k8
+p,) 2|P,Alt-t,) |(+P,) 1+P,

Q
_ . CS‘” PM ‘\//; exp{_ ( 2 emH m ](t . t” )} %

a2 (o=t + MY (14 P, ) 2

&’ 15P, &
exp kA(+2P,) t—t, +—1+P‘” At [-2R(t—t, +AV2) x : ’”kj
1+PM 1+2P 4R&422(t_tu)“(1+ PM)

2 4
exp —kMl+25,) t—t”+LAt —2R(t—tu+A%) X ISP*"’k?
1+ P, 1+P, (-t +M) 1+ P,)

W - 8 ) VA YA LY (4.5.14)
(+P,) 2fPAl-1,+a) |(1+P,) 1+P,
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The series of equation (4.5.14) contains only even power of k and start with k* and the
equation represents the transfer function arising owing to consideration of magnetic field at

three-point and three-times.

If we integrate equation (4.5.14) for At=0 over all wave numbers, we find that

[pak=0 (4.5.15)
0

which indicates that the expression for F satisfies the condition of continuity and
homogeneity. Physically it was to be expected as F is a measure of the energy transfer and the

total energy transferred to all wave numbers must be zero.

The linear equation (4.5.12) can be solved to give
E = expl-22k7 (t ~1, + A1/2) [FexpA(k? + B/ ) e —1, + At/2)

5 J(k)exp{— 2A(k* + % (t—t, + At/2)J ---------- (4.5.16)

N,k
b1

where (k)= is a constant of integration and can be obtained as by Corrsin[32].

Substituting the values of F from equation (4.5.14) into equation (4.5.16) gives the equation

N, k?

exp[* 2A(k* + %)(t —t, + At/2)]+ ERAACE .

421+ p, )
Cxp[_ (2 emk:’ Qm Xl - ta )]

—-k*A(l+2P,) 1+ P,
exp| —————— 25| r—1, + At |=2R(t—t,+A!
p|i 1+R‘{ [ 7] 1+2P ( 0 /2)

M

E=

3k (7P, - 6)k* 43P 2P, +3)°
2—r V5 | % 2(r_1 Vb
2PM/1 (t_to)' 3;“(1'*'10}.4)(‘?_1‘0)2 3(1+Rw) ([_Io)'

+ eXp[— (2 Emk! Qm Xt = ta )]

8vVA(3P2 -2P, +3)° Flo) |+ 82
31+, )2 4741+, )
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1+ P, 1+ P,

M

-k*A(1+2P
exp{ 4, '”)(t—tu+iAtJ—2R(t—IU+A%)}

3k* (7P, - 6)k*
5 5 * 3
2P, 2=ty + A2 3400+ P, Xt —t, +A1)%

4

43P -2, +3K*  8JABR: -2P, + 3)1ch((0)1
31+ P, (e —1, +At)? (B R

=

@

2

- I2
where [ ((u)ze Ie dx
0
= Alt =t + At
o=k Nt or ) e S LIRS Y
1+ P, 1.8

By setting =0, j=i, dk = 27k *d(cos@)dk and E = 27rk2<¢/,t//;> in equation (4.3.10), we

get the expression for magnetic energy decay law as

} r @
(nh) _ e s (4.5.18)
0

Substituting equation (4.5.17) into equation (4.5.18) and after integration, we get

<h /r'> N,
L = : —exp[-2R(T + AT
2 82z AP(T +AT/2)" P2k /)

5 7o,
4201+ P, 1+2P,)"

CXP[_zR(,[Y +A %)]exp[_— (2 € ki Qm )]

9 9
= 3/2 + 5/2
5/2 1 PM - 5/2 PM
7§ —— 2 AT 16(T + AT)?| T + —2__ AT
1 + 2PM l + 2});1-.‘
+ SPM (7PM = 6) 1 SPM (7]).1-1 i 6)

14+ 2P,

7/2 7/2
16(1+2P, )T"/z[T Lt B AT] 16(1+2P, XT + AT)-‘”(T i %_f_]) _AT]
el
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35p, (3P2 —2P,, +3) . 35p, (3P2 - 2P, +3)
9/2 9/2
1+P P
8(1+2P, )TV T+ —M AT 81+ 2P, T +AT)?| T+ — AT
(e2p,)r [ +l+2PM J 528, X7 <47) (T+l+2PM J
L8, (P2 28 430130 VP = 135 (2n+9)
3250 .2 | nln+ 121+ P,)
T(2n+l)/2 . (T+AT)(2n+1)/2
= ARl | e 4.5.19)
AT )(2 02 ( AT )(2 02 (
(T+ /2 T+ /2

where, T=t-t, .

For T =T+ /—\T/ , equation (4.5.19) takes the form

'y _ () N, 75,
=—2=¢X [—2RTm] = + ex [—(2€m Qm)]
2 2 H SV2T AT 425(1+ P, X1+ 2P, Y2 7 !

9 9
1 512 ar V7 572 ar "
16\ - AT P 16T +AT y T T
(”’ A) (’"+1+2PM} (m+ /2) ( 2(1+2PM)}
. 5P, (TR, —6)
32 72
16(1+2P, )(T —ﬂj il W
2 2(1+2P,)
N 5P, (7P, - 6) PR | R (4.5.20)

ATY" ar )"
16(1+2P, {Tm + —] T, ——————
2 2(1+2P,)

This is the decay law of magnetic energy fluctuations of concentration of a dilute
contaminant undergoing a first order chemical reaction before the final period for the case of

multi-point and multi-time in MHD turbulence in a rotating system.
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4.6. Results and Discussion:

In equation (4.5.20) we obtained the decay law of magnetic energy fluctuations of a dilute
contaminant undergoing a first order chemical reaction before the final period considering

three-point correlation terms for the case of multi-point and multi-time in MHD turbulence

In a rotating system.

If the system is non-rotating, Q2,, = 0 then the equation (4.5.20) becomes

(h*) N, 75,
=exp[-2RT, ] o
2 827 T 42°(1+ P, Y1+ 2P,

9 9
) 52 AT 2 / AT i

167 —AT/V?| 1 telr, + AT T, - 2

( m A) [ m * 1+ 2PM ] 6( e N /2) (T'm 2(1 + 2PM )]
5P, (7P, —6)

' AT\ i

16(1+ 2P, )(T,,, - —J S

2 2(1+2P,)

X 5P, (7P, —6) el e (4.6.1)

ATY" ar "
16(1+2PM{T,” +ﬁJ et ey
2 2(1+22,)

which was obtained earlier by Islam and Sarker [56].

If we put AT=0, R=0, in equation (4.6.1), we can easily find out

(h*y (mh)) N, )

. 0

= +
2 2 8272 a2(+p, NI

=5 9 3 PM (7PM _6)
5/2 e L S
+2P,) 16 16 1+2P,

which is same as obtained earlier by Sarker and Kishor [120)].

This study shows that due to the effect of rotation of fluid in the flow field with chemical
reaction of the first order in the concentrarion the magnetic field fluctuation in MHD
turbulence in a rotating system for the case of multi-point and multi-time i,e.the turbulent

energy decays more rapidly than the energy for non-rotating fluid and the faster rate is
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governed by exp[-{2¢€,, €, }]. Here the chemical reaction (R#0) in MHD turbulence for

the case of multi-point and multi-time causes the concentration to decay more they would for

non-rotating system and it is governed by exp [— {QRTM +€,5 £, }]

The first term of right hand side of equation (4.5.20) corresponds to the energy of magnetic
field fluctuation of concentration for the two-point correlation and the second term represents
magnetic energy for the three-point correlation. In equation (4.5.20), the term associated with
the three-point correlation die out faster than the two-point correlation. If higher order
correlations are considered in the analysis, it appears that more terms of higher power of time
would be added to the equation (4.5.20). For large times the last term in the equation (4.5.20)

becomes negligible, leaving the -3/2 power decay law for the final period.
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CHAPTER- IV

PART-B

FIRST ORDER REACTANT IN MAGNETO-HYDRODYNAMIC
TURBULENCE BEFORE THE FINAL PERIOD OF DECAY FOR THE CASE
OF MULTI-POINT AND MULTI-TIME IN PRESENCE OF DUST
PARTICLES

4.7. Introduction:

The relative motion of dust particle and the air will dissipate energy because of the drag
between dust and air, and extract energy from turbulent intensity is reduced than the
Reynolds stresses will be decreased and the force required to maintain a given flow rate will
likewise be reduced.The behavior of dust particles in a turbulent flow depends on the

concentration of the particles and the size of the particles with respect to the scale of turbulent
fluid.

In the past, many researchers worked taking dust particles. Saffman [118] derived and
equation that describe the motion of a fluid containing small dust particle, which is applicable
to laminar flows as well as turbulent flow. Using the Saffman’s equations Michael and Miller
[92] discussed the motion of dusty gas occupying the semi-infinite space above a rigid plane
boundary. Sarker and Rahman [124] considered dust particles on their won works. Sinha
[134] studied the effect of dust particles on the acceleration covariance of ordinary
turbulence. Kishore and Sinha [88] also studied the rate of change of vorticity covariance in
dusty fluid turbulence. Sarker [121] discussed the vorticity covariance of dusty fluid
turbulence in a rotating frame.

Deissler [36, 37] developed a theory “decay of homogeneous turbulence for times before the
final period”. Using Deissler’s theory, Loeffler and Deissler [81] studied the decay of
temperature fluctuations in homogeneous turbulence before the final period. In their approach
they considered the two and three-point correlation equations and solved these equations after
neglecting fourth and higher order correlation terms. Using Deissler theory, Kumar and Patel
(73] studied the first-order reactant in homogeneous turbulence before the final period of
decay for the case of multi-point and single-time correlation. Kumar and Patel [74] extended

their problem [73] for the case of multi-point and multi-time concentration correlation. Patel
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[106] also studied in detail the same problem to carry out the numerical results. Sarker and
Kishore [120] studied the decay of MHD turbulence at time before the final period using
chandrasekher’s relation [27]. Sarker and Islam [127] studied the decay of MHD turbulence
before the final period for the case of multi-point and multi-time. Sarker and Azad [137]
studied the Decay of MHD turbulence before the final period for the case of multi-point and
multi-time in presence of dust particle. Islam and Sarker [56] also studied the first order
reactant in MHD turbulence before the final period of decay for the case of multi-point and

multi-time.

Here, we have studied the magnetic field fluctuation of concentration of a dilute contaminant
undergoing a first order chemical reaction in MHD turbulence before the final period of
decay for the case of multi-point and multi-time in presence of dust particle. Here, we have
considered the two-point, two-time and three-point, three-time correlation equations and
solved these equations after neglecting the fourth-order correlation terms. Finally we obtained
the decay law for magnetic field energy fluctuation of concentration of dilute contaminant
undergoing a first order chemical reaction in MHD turbulence for the case of multi-point and
multi-time in presence of dust particle is obtained. If the fluid is clean , the equation reduces

to one obtained earlier by [56].

4.8. Basic Equations:

The equations of motion and the equation of continuity for viscous, incompressible dusty

fluid MHD turbulent flow are given by

ou 3, ow ou,

~+—(wu, —hh)=—-—+v —+ f(u,-v),  memeem-- (4.8.1)
o 6xk( * ) x, — ox,0x, 7 )
S A S (4.82)
o Ox, Ox,Ox,
ov ov, K
— 4y, ——=——W,-u), e (4.8.3)
ot Ox m

_ Ou, o0ov, Oh
with - = L o— (4.8.4)
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Here, u; turbulence velocity component; h;, magnetic field fluctuation component; v;, dust

particle velocity component; w(fc,r):£+%<h2> total MHD pressure  p(x.1),
ol

hydrodynamic pressure; p, fluid density; v, Kinematic viscosity; /lz%, , magnetic
M

diffusivity; Py, magnetic prandtl number; xi, space co-ordinate; the subscripts can take on the

values 1, 2 or 3 and the repeated subscripts in a term indicate a summation; €, alternating

. KN . . . . :
tensor; f = —, dimension of frequency ; N, constant number density of dust particle, K is

Stokes’s resistance coefficient which for spherical particle of radius r is 6zpur. m, = 57{1?\3,0.‘

, mass of single spherical dust particle of radius Rg; ps, constant density of the material in

dust particle.

4.9. Two-Point, Two-Time Correlation and Spectral Equations:

It is assumed that (i) the turbulence and the concentration magnetic field are homogeneous
(ii) the chemical reaction has no effect on the velocity field and (iii) the reaction rate and the
magnetic diffusivity are constant, the induction equation of a magnetic field fluctuation of

concentration of a dilute contaminant undergoing a first order chemical reaction at the points

p and p' separated by the vector » could be written as

2/.
_afiﬂlk ch, _h, ou, - o0 h, S — 4.9.1)
ot ax;, Ox, Ox,0x,
oh' oh' ou' 62h; .
and —‘—I+H; : —h; : =i A e —Rhf « =-eesescess (4.9.2)
o' ox, ox, dx,. 0%,

where R is the constant reaction rate.

Multiplying equation (4.9.1) by h} and equation (4.9.2) by h; and taking ensemble average, we

o) & | o (m) .
< = +E[<ukh, )= (b, >]: XW—RU?J?}) ----------- (4.9.3)
' N2 ]’l}
sl h’}f’>+ ’ [(u;_hi.h;>-< u;h,h;ﬂ:&M—R(h‘h;) L e (4.9.4)

ot Ox, Ox; Ox,
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Angular bracket (————— ) is used to denote an ensemble average.

Using the transformations

0 0 0 d (8], (6} o o9 0
RS SR, S B [ Py T . S (4.9.5)
ox, or,  ox, “or, r, \Ot ot OAt ot oAt

into equations (4.9.3) and (4.9.4), we obtain

%Eﬂ+ihm@>@mmhmﬂ7§WM%%wWﬂhmﬂ

ot or, A

> (hh)) |
S SRGEY e wos
r,or, -
5, h]hl o , ol 62 h hr
s 6Atj> ki a’} [<ukh1h1> <u_lhihk >kr, Af,l‘) = i% R(h l’l > ________ (4.9.7)

Using the relations of Chandrasekhar [27]
(uhhy) = =(uph ), (b ) = (uh by,

Equations (4.9.6) and (4.9.7) become

o(hh 5 , 0% (i,
<at ) S a2y = (a1 )] = 22-—61 ark> <. 0’8 S — (4.9.8)
o(h o (hh |
and <;I >+_3k[u (V= ()] = 2 afkark)—R(h,hJ). ---------- (4.9.9)

Now we write equations (4.9.8) and (4.9.9) in spectral form in order to reduce it to an

ordinary differential equation by use of the following three-dimensional Fourier transforms:

hh r At, r D]z;/ l/ll (K Ak t)exp[ (K r)}lK e (4.9.10)

and (u hh' >(r At,t)= J‘(ait//kt,{/; >(I€',At,t)exp[f([%f) / Q— (4.9.11)

—00

Interchanging the subscripts i and j then interchanging the points p and p’ gives

(i, )P AL ) = (weh i) (= 7= At + At)

= J(a,q/,y/;>(~ K,-At,t + At)cxp[f(]%.ﬁ) 7/ (4.9.12)

-0
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whcre,]{’ is known as a wave number vector and dK =dK, dK; dKj. The magnitude of K
has the dimension 1/length and can be considered to be the reciprocal of an eddy size.

Substituting of equation (4.9.10) to (4.9.12) in to equations (4.9.8) and (4.9.9) leads to the
spectral equations

w ¥ 2[/1/(2 He Rku/,w; > = 2ik, [(a,t//,cw: )([i’, At,t)— <akt//,z,u_: >(— K—Att+ At)]
............ (4.9.13)
and % + [lez + Rky/fy/}> =ik, ka,t//ky/; >([€,At,t)— (aky/,.gz/; >(— K,-At,t+ Ar)}
---------- (4.9.14)

The tensor equations (4.9.13) and (4.9.14) becomes a scalar equation by contraction of the

indices i and |

6@;{%) + 2[/1K2 + R](f//,wf) = 2ik; [(aie//kr,u»([{’,m,r)- <a’kl//,t//,'>(— K.—At,t + At)]
.............. (4.9.15)
and %V:_J + [lez + Rkl//ﬂ//f) =ik [(a,wwff)(]%, At,t)— (aky/,q/»(— K,—-At,t+ At)]
........ (4.9.16)

The terms on the right side of equations (4.9.15) and (4.9.16) are collectively proportional to

what is known as the magnetic energy transfer terms.

4.10. Three-Point, Three-Time Correlation and Spectral Equations:

To find the three-point correlation equations, the procedure can be used as before. For this
purpose we take the momentum equation of dusty fluid MHD turbulence at the point P and
the induction equations of magnetic field fluctuations, governing the concentration of a dilute

contaminant undergoing a first order chemical reaction at p’ and p” separated by the vector

rand 7' as
0 / o’
& +u, L, Ot O S T T T — (4.10.1)
ot ox, or. ox, O 0x,
oh' oh' ou! o*h! :
i DY o T e B L. S - (4.10.2)

k ' rat [
ot ox, Ox,, Ox, 0x,
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' I e 2711
on  oh'  oul 0%

stu—-—h/—=A—=—-Rh,. e (4.10.3)
ot ox, ox, Ox,0x, '

Multiplying equation (4.10.1) by h’; hj"", equation (4.10.2) by uh;"" and equation (4.10.3) by

uhy’, taking ensemble average, one obtains

ouhihy) o | ) 2 i)

= <uku,h,’h;>—<hkh]h,’h;’> o
E L 4 R — (4.10.4)
o(u,h/h’ F) — - 0% (u,h'h] .
< ;t’ >+axL <u,ukh,hf)—~<u,u;hkhj>]:&—é{#—R(u,hﬁj) -------- (4.10.5)
uhh) o o g oy Ok
and v LA ax: <u!ukhih1>—<uiulh,hk>]= ZW—ROQ}?J}H). -------- (4]06)

Using the transformations

a_(aa]aaaa

R N T ’ = " =_r ?
ox, or, ©or.) ox, ©oOr, ox; Or

[QJI',I"Z[—a—]At,AI'—*a————E— .
ot ot OAt  OAt'

0 0 0 o

ot'  OAt a:":am'

into equations (4.10.4) to (4.10.6), we have

olu,hih" )0 TR | APN,
<ulat : > _(ai o ai: J[<ukulhrhj> B <hkhfhahj >]+ akulukh"hf > - <uiuihkhj>]

yy .Or ;O

o (uhh”) 0 (u,hlh’ o .
L —

2
i % [<u,ufhfh;'> - <zl,lzjhfhf>]= —(ai + §J<Wh:hj> 3 V[;_ N 6r ] (1)
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o* (u,h'h"
o or, [(“eukh'h.?')‘(ufu hih )]=z1 ézam 3 o SONY 3 S— (4.10.8)
ou,h'h’ P KA N
and < (;A[’,r > + a_r’:' k“:“kh:hD - <“r”;hr—h¢ >]= A é}?@rk’j> ~RQuhh, ) ssscncs (4.10.9)

In order to convert equations (4.10.7)—(4.10.9) to spectral form, we can define the following

six dimensional Fourier transforms:

(i W F 78,800 = [ [(g, 5800 R R o, 6 el (R 7 + Kk

............. (4.10.10)
(i 7 00,804) = Tl s8R R v ool o ki
e (4.10.11)
(whih! )(7.7", At AL, 1) ﬂyﬁﬁ (KK At Al r)exp[(KHK # Jakak:
.......... (4.10.12)
(g, W) WP, AL AL ) = oﬁ(%cﬁ;ﬂ,’ﬁf)(]%’k'*‘maA"=f)eXP{f(k-F”%"’:’) Kak:
........... (4.10.13)

(i) (PP A AL 0]a}(ﬁkﬂ,ﬁ"ﬁ;’xﬁ,K’,Ar,At’,t)exp[f(I%_P+K".F') KdK'
S (4.10.14)
(ua i o7 00,0000 = [ ({90188 R e, 6t Jexplf (R 7+ R ke
N, (4.10.15)
(v hih) )7, F AL AL ) = T[o]'<,u, p’[ﬁ}’}([% KA Ar’,t)exp[f(k F+K '.F’) KdK'

—G0—00

------------- (4.10.16)
Interchanging the points P' and P along with the indices i and j result in the relations

(uuihhl) = (i hh))

By use the equations (4.10.10)-(4.10.16) and the facts, we can write equations (4.10.7)-

(4.10.9) in the form
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%<¢,ﬁ;ﬁj”>(ﬁ,K',At,At’,t)+ /?{(HPM N2 + &)+ 2P, kk' + %— }l{f}
(B BN R At )=[ilk, + kN 518"~ ik, + KL\ B BBIBL)
~ilk, + K, X@ i BIB7) + ilk, + K X8 BLBT) - ilk, + K, XyB.B7)

- f{mB8]) [&.&. ALACY) (4.10.17)

%(M’ﬁf)(fék'smamtr)w{K : +ﬂ(cﬁfﬁ,'ﬁ:}(&f%zm,m:r)

=ik (¢, i B\ KDt A ) ik, (9,68, VK K A A ) e (4.10.18)

and % (qzﬁ,p’,’ﬁ,’}(k, K' A A, t)+ ;{Kz +§J<¢, ﬂ:ﬁ;)(f(, KA A, r)

=ik (¢ #i B B)NR. ROLAC )+ iki (908, R K AL AL L) oo (4.10.19)

If the derivative with respect to x; is taken of the momentum equation (4.10.1) for the point P,

the equation multiplied by hi'h;"" and time average taken, the resulting equation

o (wh'h' 52 o .
a<x,ar,1> " ox0x, g S (.0 R — (4.10.20)

Writing this equation in terms of the independent variables 7 and 7’

a 2 a 2 a 2 e a 2 a 2 a 2 a 2
- 42 = <wh, h’ > = + + + X
or,or, or,0r,  Or,or/ ‘ or,0r, oror, oror, oOror,

((u,u,{hjh])—(h,hkh,.'h}’» . e (4.10.21)

Taking the Fourier transforms of equation (4.10.8)

(ki + kik, +kky + ki Mo 887~ (B,8.8.57))

T - 4.10.22
7B57) ko, + 2k, k] + kK| ( )
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Equation (4.10.22) can be used to eliminate <}fﬁ,',8j"> from equation (4.10.17)

The tensor equations (4.10.17) to (4.10.19) can be converted to scalar equation by contraction

of the indices 1 and j and inner multiplication by k;

gk, (885K KA A1)+ P{(l + P, Nk + K% )+ 2P, kk' + %_ L2 f}

<¢I/8;"ﬁ,-">([€, ]%,Af,AI’,I): I(kk + k; )<¢k¢fﬁ:ﬁf>
[RUR A A0+ X BB IR R A AL )i 1)

~ ~

(8,8, BIBNK, K", a6, At )+ ik, + K, X, 8L BN K, At A 1) ik, + &)
OB BNR K At A - flu BIBNR KAt A ) e (4.10.23)

ait ACYA [)"}(K K AN t) A{Kz +ﬂ<¢,@'ﬂj}(k,f<’,m,m:r)

ik, (p 8 BBINR LR AL AL 1)+ ik (8,018 BYR R ALAC) coeeeee (4.10.24)

O &K, A:,Az',:)u{f(z +ﬂ(¢, pANRR AL )

ik, (¢,0: B! ﬁ)( At,At' t)+1k (¢,0.B.8, )( JK' At At',t). ------- (4.10.25)

4.11. Solution for Times Before the Final Period:

We know that the equation for final period of decay is obtained by considering the two-point
correlations after neglecting third-order correlation terms. To study the decay for times before
the final period, the three-point correlations are considered and the quadruple correlation

terms are neglected because the quadruple correlation terms decays faster than the lower-

order correlation terms. The term <yﬁfﬂ}'> associated with the pressure fluctuations should

also be neglected. Thus neglecting all the terms on the right hand side of equations (4.10.23)
to (4.10.25)
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-—________

] S s o e P A e

(gzﬁ,ﬁﬁ')( R\t A )+ A1+ P, )(k2+k'2)+2PMkk'+g§——ﬁ}x

(6.8.81(K. K", Ar, A 4)=0 @.11.1)

e (¢,ﬁﬂ”}(K K',Ar,Ar f)”[ J({ﬁ;ﬂﬂ?( tAt’,t)zo ----- 4.11.2)

andaﬁ?[( (¢,ﬂﬁ)(K K A e t)+ ﬂ[k + :|<¢,,3 ﬁ”)(K K',At, A’ t) --------- (4.11.3)

where ( 73 [)’,'ﬁ,.') =l (¢, ﬂ,’ﬁ[’) and 1-C=S, here C and S are arbitrary constant.

Integrating equations (4.11.1) to (4.11.3) between t, and t, we obtain

k(8,880 = f,exple 2|1+ P, Nk + k2 )+ 2P, ki cos 0 +27R— %ﬁ(r -, )},

k) <¢1ﬂ:ﬁfﬁ> =& expli_ /?-(Kz + %}At
2l

' v R ,
and ki <¢!ﬂiﬁr‘”> =(q, eXp[— ;L[k . +E At :] .
For these relations to be consistent, we have

k(.88 = ki (9, B8]) expl- A1+ P, Nk* + k" Xe—1,)+ kAt + k" Ar

+2P, kk'cos Ot — 1, )+ %{r—ro " A’;A’ J—ﬁ(:—zg)]} ........ (4.11.4)

where,0 is the angle between K and K’ and <¢fﬂ,',6’,.">n is the value of (¢, 8/8/) at t=t,,

At=At'=0, 1=

PM

By letting 7' =0 , At'=0 in the equation (4.10.10) and comparing with equations (4.9.1 1) and

(4.9.12) we get

()R, Ant)= o](gﬁ,ﬁ PR Aot (4.11.5)
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—_______ e ————— L S

and  {ap ) Ro-At,t + &)= wj{@ BN R R Ao R (4.11.6)

-0

Substituting equation (4.11.4) to (4.11.6) into equation (4.9.15), one obtains

§<¢/,w,')(1%, AL)+ 2/1[1# ‘ ﬂ(:,u,w;)(k, Att)= :[m‘k_, 6 8.85(&. &', Ar0,1)
~ (BB R~ 81,0.) | expl- {0+ B, Yk + 42 e -1,)
+k*At+2P, (t -1, Jkk' cos & +~2)L£(t —t, +Al) ~—££(t—tu | r— (4.11.7)
Now, dK' can be expressed in terms of k' and 0 as -27k'd(cos0)dk’ (cf. Deissler [37])
ie. dK' = 27k'd(cosO)dk’
Substituting of equation (4.11.8) in equation (4.11.7) yields

}fj('f’: )&, ane)+ 24[1(2 ; ﬂ(w,m(& at)=2 [oik, [,00)(R . B)
- <¢zﬁfﬂf’>(— 1%,—1%')1) k'{ i’-exp{— /1[(1 +P, )(k2 + k" Xt =,

+ kAt +2P, (¢ 1, Kk’ cos6 + 2; t—t, + A%) - % (t -1, )]}d(cos@)}dk'

.......... (4.11.9)

The quantity [(0,8B/NK, K )~ (98B~ R,~K')l, depends on the initial conditions of the

turbulence.

In order to find the solution completely and following Loeffler and Deissler [81] we assume
that

ik|[<¢|f3?l3?)(f<,f<’)*(¢|B213§’)(—K,—K’)L :(;—;%(ka“‘ ! (4.11.10)



Chapter 4 138

where, 9y is a constant determined by the initial conditions. The negative sign is placed in
front of 6¢ in order to make the transfer of energy from small to large wave numbers for

positive value of &y.

Substituting equation (4.11.10) into equation (4.11.9), we get
22;’r<t y )(K At, t)+ 2/1[k +fy}2 )(K At, t)~—2§ J Kk —k*k"
Py Y 1 W ¥,

U CXP{ 1[1+PM)(k +k'2)(t )+ kAt + 2P, (t -1, Jkk' cos®

=1

2R ; %
+7(I—t0 +A%) —%(r—r” }}d(cosG) }dk' --------- (4.11.11)

Multiplying both sides of equation (4.11.11) by k%, we get

Ok voaE<F (4.11.12)

ot

where, £ =27k*(y,y!), E is the magnetic energy spectrum function and F is the magnetic

energy transfer term and is given by

F= _250?(/{2/(" — kK Kk % U expl- Al(1+ P, k2 + &2 N -1,)
0

-1

........ (4.11.13)

-k’A 15P, k*
exp k /(1+2P_u) t—ﬁ,"‘iiﬁt _2R([_[0+A%) X = M g
I T 1)'” 1 * 2P 4PM/1 (t - tu )" (1 + PM’)

M
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+ SPS’ _3 k6 e Pf! — PM ks
(1+PM)2 2 PM’?'(t_tn) (1+PM)3 ]+PM

) 5,p, % exp{(ﬁj(,_tu )}x

422 (-1, + MY (1 4+ p,): A

M M

—kz/l(l+2PM) Py 155,k
ex =t +—M_Af |~ OR(E—~t, +A L y
p[ 1+ P " 1+P =t /2) ) (-1, + M) (1+P,)

2 6 .
o 2_3 : o 5= B Lol L (4.11.14)
(1'}'[):»1) 2 PA:’I(I_"(;*“A{) (I+PM) 14+ P,

The series of equation (4.11.14) contains only even power of k and start with k* and the
equation represents the transfer function arising owing to consideration of magnetic field at

three-point and three-times.

If we integrate equation (4.11.14) for At=0 over all wave numbers, we find that

dekzo .......... (4.11.15)
0

which indicates that the expression for I satisfies the condition of continuity and
homogeneity. Physically it was to be expected as F is a measure of the energy transfer and the

total energy transferred to all wave numbers must be zero.

The linear equation (4.11.12) can be solved to give

E= exp[— 24k (¢ —1t, + AI/Z)IF explZﬁL(k2 + %)(t —t, + At/2)Jdt

+J(k)exp|f AR +%(t—to +At/2)J .......... (4.11.16)
where, j(k)= N.k* is a constant of integration and can be obtained as by Corrsin[32].
b1

Substituting the values of F from equation (4.11.14) into equation (4.11.16) gives the

equation

2

N k2 S P r
et AN\ Wy T [ L Y SN Y ) | WO o,

4221+ P, V5

xexpfs(e -1, )]
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e ————— e S e B A P, 4TI S el S .. ST v S

~k*A(L+2P,) 1+ P,
exp| ————M )t +—M A —2R(t -1, + AL
p{ e =ty +A 1)

| b, o

3k . (R, -6k 43Py -2p, +3)*
2P, 2t -t,)2 3A0+P, Xt-1,)>  3(1+P, ) (-1,)"

8vA(3P% —2P, +3)° 5Pz
+ i A F(o) i A |
3(1+P,)" } 42%(1+ B, V5 L)

—k*A(1+2P il
- k /1(]."‘ M) t—t(, +—MAt —2R(f"“to +Ay)
1+P, T8, i

| 3k* (7P, -6)k®
5 + 3
LZPM R—ty+MY2 3401+ P, Xt -1, + M2)2

43P2 —2P,, +3)° N $VABPE 2P, +3)°F (“’)} ..... (4.11.17)
31+P, ) (t~1, + A1) @ P By o

e = Alt =ty + At
where F(CU)=€ Ie dx | o=k el or b l— 7
0 1+ P, 1+ 2P,

By setting 7 =0, j=i, dk = -27k*d(cosf)dk and E = 27rk2<r,1/,r,u;.> in equation (4.9.10) we get

the expression for magnetic energy decay law as

(A
. :jEdk --------- (4.11.18)
0

Substituting equation (4.11.17) into equation (4.11.18) and after integration, we get

(1)) N,
2 B 82713 (T+ AT/Z)jjz exp[-2R(T + A%)]
)
0, exp[-2R(T +A%)]exp[(ﬁ)]

+
4250+ P, X1+2P,)"°
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i 5P, (7P, -6) N 5P, (7P, -6)

72 772
1+ P :
16(1+2P, T2 T+ ——M AT 16(1+2P, XT +AT)" T4—TM AT
1+2P, ' 1+2P,

35p, (3P2 - 2P, +3) . 35, (3P2 -2P,, +3)

9/2 9/2
1+ P '
80+22, 2| 7+ 0 a7 | ga2m, X7+ AT T4 AT
1+2P ' 1+2P,

M

.+_

.88, (3p2 -2, +3)1+28, )" § 135 (2n+9)
32741+ P Y* = n(2n+12(1+ P, )
T(2n+l),-’2 (T+AT) (2n+1)/2
( AT ){2n+l)/ ( AT )n+l --------- (4.11.19)
T+ A T+ /
where T=t-t; .
For T, —T+AY/ , equation (4.11.19) takes the form
(hz> <h*h:> 0 7o,
~—~=>——L=expF2RT,] g} explfs]
2 2 827 AT 42(1+ P, N1+2P, )"
9 9
” ar Y s Y°
167, - AT 1dr +4 T, ——
| /) ( +1+2PM) ﬁ( B /2) [ 21+2P, )]
% SPM (7PM _6)
3/2 72
16(1+2P, (1 —ﬂ) T, + Al
2 2(1+2P,,)
1]
5P, (7P, -6
i (78 =6) S | (4.11.20)

32 72
16(1+2PM)[TM+A—T] e B
: 2 2(1+2P,)
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This is the decay law of magnetic energy fluctuations of concentration of a dilute
contaminant undergoing a first order chemical reaction of MHD turbulence before the final

period for the case of multi-point and multi-time in presence of dust particle.

4.12. Results and Discussion:

In equation (4.11.20) we obtained the decay law of magnetic energy fluctuations of a dilute
contaminant undergoing a first order chemical reaction before the final period considering

three-point correlation terms for the case of multi-point and multi-time in MHD turbulence

in presence of dust particle.

If the fluid is clean, f=0 then the equation (4.11.20) becomes

(h*) N, 7o,
= exp[-2RT,
;- Lrw SRR YR e
9 9
= 7 sz T - AT 5/2
6l — AT T s _ AT ==t
1, -47) ["’+1+2PM] 7 +47;) (”’ 2(1+2PM)J
. 5P, (7P, —6)
32 7/2
16(1+ 2P, )(Tm = 91) T B
2 2(1+2P,,)
. 5, (7P, - 6) PR | - (4.12.1)

7/2
AT ar Y

gl +38. Y7 425 |5 o B
(1 + ’”{ +2) ("' 2(1+2PM)J

which was obtained earlier by Islam and Sarker [56].

If we put AT=0, R=0, in equation (4.12.1) we can easily find out

2y _(hh) NI 75, s[9 S POR -6 ‘L
2 2 $ni” 4;:"(1+PM Xi+2pP,)" 16 16 1+2P,
-------- (4.12.2)

which is same as obtained earlier by Sarker and Kishor [120].
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This study shows that due to the effect of rotation of fluid in the flow field with chemical
reaction of the first order in the concentrarion the magnetic field fluctuation in MHD
turbulence in presence of dust particle for the case of multi-point and multi-time i.e.the
turbulent energy decays more slowly than the energy for clean fluid and the rate is governed

by exp[fs]. Here the chemical reaction (R#0) in dusty fluid MHD turbulence for the case of

multi-point and multi-time causes the concentration to decay more they would for clean fluid

and it is governed by exp [— {2RT,, —»ﬁ}]

The first term of right hand side of equation (4.11.20) corresponds to the energy of magnetic
field fluctuation of concentration for the two-point correlation and the second term represents
magnetic energy for the three-point correlation. In equation (4.11.20), the term associated
with the three-point correlation die out faster than the two-point correlation. If higher order
correlations are considered in the analysis, it appears that more terms of higher power of time
would be added to the equation (4.11.20). For large times the last term in the equation

(4.11.20) becomes negligible, leaving the -3/2 power decay law for the final period.
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CHAPTER-IV

PART-C

FIRST ORDER REACTANT IN MAGNETO-HYDRODYNAMIC
TURBULENCE BEFORE THE FINAL PERIOD OF DECAY FOR THE CASE
OF MULTI-POINT AND MULTI-TIME IN A ROTATING SYSTEM IN
PRESENCE OF DUST PARTICLE

4.13. Introduction:

Funada, Tuitiya and Ohji [47] considered the effect of coriolis force on turbulent motion in
presence of strong magnetic field with the assumption that the coriolis force term is balanced
by the geostropic wind approximation Sarker and Islam [129] studied the decay of dusty fluid
turbulence before the final period in a rotating system. Kishore and Sinha [68] studied the rate
of change of vorticity covariance in dusty fluid turbulence. Sinha [134] also studied the effect
of dust particles on the acceleration covariance of ordinary turbulence. Deissler [36, 37]
developed a theory “decay of homogeneous turbulence for times before the final period”.

Using Deissler's theory, Loeffler and Deissler [81] studied the decay of temperature
fluctuations in homogeneous turbulence before the final period. In their approach they
considered the two and three-point correlation equations and solved these equations after
neglecting fourth and higher order correlation terms. Kumar and Patel [73] studied the first-
order reactant in homogeneous turbulence before the final period of decay for the case of multi-
point and single-time correlation. Kumar and Patel [74] extended their problem [73] for the
case of multi-point and multi-time concentration correlation. Patel [106] also studied in detail
the same problem to carry out the numerical results. Sarker and Kishore [120] studied the decay
of MHD turbulence at time before the final period using chandrasekher’s relation [27]. Sarker
and Islam [127] studied the decay of MHD turbulence before the final period for the case of
multi-point and multi-time. Azad and Sarker[2] studied the Decay of dusty fluid MHD turbulence
before the final period in a rotating system for the case of multi-point and multi-time. Islam and Sarker
[56] also studied the first order reactant in MHD turbulence before the final period of decay for

the case of multi-point and multi-time.
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In this chapter, following the above theories we have studied the magnetic field fluctuation of
concentration of a dilute contaminant undergoing a first order chemical reaction in dusty fluid
MHD turbulence before the final period of decay for the case of multi-point and multi-time in a
rotating system. Here, we have considered the two-point, two-time and three-point, three-time
correlation equations and solved these equations after neglecting the fourth-order correlation
terms. Finally we obtained the decay law for magnetic field energy fluctuation of concentration
of dilute contaminant undergoing a first order chemical reaction in dusty fluid MHD turbulence
for the case of multi-point and multi-time in a rotating system is obtained. If the fluid is clean

and the system is non-rotating, the equation reduces to one obtained earlier by [56].

4.14. Basic Equations:

The equations of motion and the equation of continuity for viscous, incompressible dusty

fluid MHD turbulent flow in a rotating system are given by

ou 0 ow o’u

—+—(wu, —hh)=—"—+v —=-2€,,Q u + f(u,-v,), - 4.14.1

61‘ axk( i i k) axi axk‘axk mkl m*i f( i l) ( )
2

i bR . e (4.14.2)

o ox, dx, Ox,

—t by, —=——,-w) e (4.14.3)

ou, v, oh,
o,  ox,  Ox

with =0,  eeseeceens (4.14.4)

Here, u; turbulence velocity component; h;, magnetic field fluctuation component; v;, dust

. p 1~ L2 A
particle velocity component; w(x,t)=£+%<h2 >+Elex , total MHD pressure p(x,f),
p

hydrodynamic pressure; p, fluid density; v, Kinematic viscosity; ﬂ.:%) , magnetic
M

diffusivity; Py, magnetic prandtl number; xy, space co-ordinate; the subscripts can take on the

values 1, 2 or 3 and the repeated subscripts in a term indicate a summation; Qn, constant

) : KN : :
angular velocity component; €.k, alternating tensor; f = ——, dimension of frequency ;

N, constant number of density of dust particle, K= Stokes’s resistance coefficient which for
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spherical particle of radius r is 6zur. m, = ger_fp‘\_ , mass of single spherical dust particle of

radius Rg; ps, constant density of the material in dust particle.

4.15. Two-Point, Two-Time Correlation and Spectral Equations:

With the conditions (i) the turbulence and the concentration magnetic field are homogeneous (ii) the
chemical reaction has no effect on the velocity field and (iii) the reaction rate and the magnetic
diffusivity are constant, the induction equation of a magnetic field fluctuation of concentration of a
dilute contaminant undergoing a first order chemical reaction at the points p and p’ separated by the

A

vector r could be written as

h o’h
B g T @151
ot ox, 0x, 0x, 0%,

oh' oh' ou o*h! .
Lo —S L s % -RE, e (4.15.2)
or' Ox, Ox;, ox, Ox; '

and

where R is the constant reaction rate.

Multiplying equation (4.15.1) by h} and equation (4.15.2) by h; and taking ensemble average,

we get
k) 5 ' ’ o*(hh)) | q
ot +5'x::[<uﬁ'hfh_,'>_<u:hkh_,{>]: /?’W_R<h,h,> """"""" (415))
o(h ) o g () |
and o +gc;—[<ukh,h,>—( u,h,hk>1=/1m—ﬁa<h,h,> ----------- (4.15.4)
Angular bracket < ————— > is used to denote an ensemble average.

Using the transformations

0 __0 08 _3a (2],':(_@}3,_5, o0 —
ox, or, ox, or, \ot ot OAt o' OAt

into equations (4.15.3) and (4.15.4), we obtain
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ahh) 5

- +am[<u;hfhj’>—(u;h,h \#,at t)—%[(u )= (u b V7 A 0)
) hh
_ W 2R(BAY e (4.15.6)
o(h,h o*(hh, .
am,gm>+5—{uhh @Wﬁﬂhﬂnﬂ=3j%5il‘R“ﬁ) -------- (4.15.7)

Using the relations of Chandrasekhar [27]

(ukh,.h;> = —(u;h,h;.), <u;h,.h,;> = (u,.h,(h;),

Equations (4.15.6) and (4.15.7) become

a(nh;) , o*(hh! ,
= +2a_[ ugh ) ) <u,hkhj>]: 21#—21«/@/@) --------- (4.15.8)
olhh)y a5 , o*(h i |
and <a! J>+a[<ukh,hf>_<u,hkhj>]=ll—a—i—‘ér—:—z_R<hth,> i  momeomess (4.15.9)

Now we write equations (4.15.8) and (4.15.9) in spectral form in order to reduce it to an

ordinary differential equation by use of the following three-dimensional Fourier transforms:

(hn))F.ant)= [y, )(K O L) << — (4.15.10)

é-__,a

and(u hh r At, t — c] a y/,ct// (K At, I)exp[ (K r)}JK --------- (4.15.11)

Interchanging the subscripts i and j then interchanging the points p and p’ gives

(i, )7, At 2) = (w h ) )= 7= Aty + Ar)

:Z[<a‘q/1y/ S ) N {1 0 S — (4.15.12)
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where, K is known as a wave number vector and dK =dK, dK; dK;. The magnitude of K has

the dimension 1/length and can be considered to be the reciprocal of an eddy size.

Substituting of equation (4.15.10) to (4.15.12) in to equations (4.15.8) and (4.15.9) leads to the

spectral equations

w - Q[Akz - Rkw}ty_j) = 2k, [(a,y/,(z//; >(K, At,t)— <akq/,1//; )( K,—Att+ Ar)]
............... (4.15.13)
oy’ x .
and %V;Jl + [/U(2 - Rkl//i!//:,) =ik, [(a,l//kl//} )(K,At,t)~ (akwjt,z/} )(— K,—Att+ At)]
................... (4.15.14)

The tensor equations (4.15.13) and (4.15.14) becomes a scalar equation by contraction of the

indices i and j

5(‘:2:/’:) + 2[/11(2 + ng/,w,'> =20, [(agtpg,uf)([%,m,t)— (ak(y;.w»(— ]%,—Ar,t - Ar)]
....... (4.15.15)
and a(‘g;’:) al [/11(3 + R](y/j{//j'> =ik, [(a,.wkg/;)([%,m,r)— (akw,i,uf>(— K, —At,t+ Ar)]

................... (4.15.16)

The terms on the right side of equations (4.15.15) and (4.15.16) are collectively proportional to

what is known as the magnetic energy transfer terms.

4.16. Three-Point, Three-Time Correlation and Spectral Equations:

In order to find the three-point correlation equations, similar procedure can be used. For this
purpose we take the momentum equation of dusty fluid MHD turbulence in a rotating system at
the point P and the induction equations of magnetic field fluctuations, governing the
concentration of a dilute contaminant undergoing a first order chemical reaction at p’ and p”

separated by the vector rand 7' as

Ouy +u, cuy —h, i +v o, S I o R RN [ — (4.16.1)
Ot Ox, Ox, Ox, &, 6%,
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on ,oh , ou oh :
Lyu,—=h—=A————-Rb, e (4.16.2)
ot Ox, ox, ox,0%;
oh’ oh! ou'! o h'
+uy ———h' =1 —Rh. . e (4.16.3)
or"' ox; Fes g ox,'ox;, 4

Multiplying equation (4.16.1) by h'; h{"", equation (4.16.2) by ujhj"" and equation (4.16.3) by

wh;', taking ensemble average, one obtains

o(whin}) & (whih))

5(u,h;h'.'> A [ i -
e <ukul,hr.hj>—<hkhfh‘hj>]= i
26, O, (whH)+ fu B )=o) e (4.16.4)
ANu b))y & [ o . ] al(ufh;h‘;') -
= + o, <u,ukh,h_f>—<u1u,hkh,> ZEW_RWWJIJ) """"""" (4.16.5)
a hl"hr" a n rm myrypn az uh:h" : ¥
and <“;[,, ) o [(u,u,(h,m ~(us Wk )= z%— RGuhhy) wmeemeeemev (4.16.6)

Using the transformations

0 (a a} o a8 8 _ 2

_ = — 3 —
0x, or, or,

[Q)r’, "= [i]/_\t, At' — L .
ot ot OAt  OAtl'

0 0 0 0

of oM’ o oAr

into equations (4.16.4) to (4.16.6), we have
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6<u,h:h; ) ( B

B . -
® oy o J[(uku,h,-hj)—(;zkh,hfhj>]+

2 gy = i)

or,

B % [<u,u,:'hf'h;'> - <u, u}'/th,f)] — —[i B E’Jbvlﬁh;’) + V[i + i,J— <u,hl'hj">

A or, o, or, or,

+/llaz(u,h;/ﬁ) * (u, 1))

. o ]—26",“ Q, (k) + f((u,h;h;)—<v,h;/zj'.’>)

......... (4.16.7)
6(1:,/1,71.;) ) { 'h'h W h ] P <” hlh;) Bl b b
e +a <Uf”k ; > <u u, _ﬁé"k—_ <“f i _:'> """"""" (4.16.8)
o b O*(u,hh" -
- 0<“{;;;; >_|_a [u:u hh' > <u,ujh,'h;>]=ﬂ%}_}e@f}%h;) """""""" (105

In order to convert equations (4.16.7)—(4.16.9) to spectral form, we can define the following six

dimensional Fourier transforms:

(B h) )PP A AL 1) = D]T(gﬁ, BENR.K', At A )expli(R 7 + B 7 Jakak

............ (4.16.10)

<uiu,"h:h >r r' AL AL 1 ??(gﬁ,gék ﬁfﬁ;)([&,]&",m,At',t)exp[f([%.f+ l%'.?') IKdK'

------- (4.16.11)
<wh,'h;’><}:,F',At,At',t) = D]u}(yﬁfﬂ}'>([&,k',At,At',t)exp[f(]%.F+I%’.F') KdK'
S (4.16.12)
(10, Y7, P, A AL TI(¢K¢, BANK, K ar, A t)explf (R 7 + K7 Jakak
e (4.16.13)

<hk Wk NP7 AL AL ) = oﬁ(ﬁ,{.ﬁ,ﬁjﬁ”(&k’,At, A:’,t)exp[f({%f + K’.F‘) KdK'

------ (4.16.14)
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(i V7P AL A ) Tj (058K K 6,80 )exoli (K 7 + K" )RR

------ (4.16.15)

(oI NE A A = | [ B8R K a e Jexpli (R 7 + K5k

—00—00

......... (4.16.16)

Interchanging the points P’ and P" along with the indices 1 and j result in the relations

<u[ u; 'h> <u,u,’{h:h;'>

By use of these facts and the equations (4.16.10)-(4.16.16), we can write equations
(4.16.7)-(4.16.9) in the form

§<¢, ,8],8}’)(]%,]%’,At,At’,t)+)L[(l+PM)(k2 + K )+2P, kK’ +%+/11(2 e Q - f)}

< (3,88 )RR At A )= [ilk, + ki Xt B.87) - ilke + K, X BB BB

~ilke, +k; X ti BB )+ il + ki X8, BB ) — ik, + ki XrBIB)

~ £ BB gt (4.16.17)

2 lanmlick, Ar,At',t)+A{K2 +ﬂ<¢, gk &)

— =ik (¢ 488 KRN )4 ik (8 B BN RK AL ) e 16.18)

and % (688K K o0, 6+ Z{Kz ; ﬂ(gﬁ, pR K a1

= ik} (p, ;BB NK . R DAL 1)+ ik (919181 B, MK, KA A7)
--------- (4.16.19)
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If the derivative with respect to x; is taken of the momentum equation (4.16.1) for the point P,

the equation multiplied by hi'hj and time average taken, the resulting equation

o (whih'” 52 . .
) ng,ax,J> " oo, N YN0 A — (4.16.20)

Writing this equation in terms of the independent variables 7 and 7'

o’ 0° o’ 0’ o’ o? o’
- +2 + <whj h;’) = il =e——— |
oror,  Oror/ Oror or,0r, Oor/or, Oror, Oror

(RN AR Y10 EE— (4.16.21)

Taking the Fourier transforms of equation (4.16.8)

o (kk Rk Rk + KR 8088 - (B.8.5.5])
= <J/ﬂ,ﬂ;> - kk, +2k k! + k! j _Lge—— (4.16.22)

Equation (4.16.22) can be used to eliminate <;/ﬁ,’/3;’> from equation (4.16.17)

The tensor equations (4.16.17) to (4.16.19) can be converted to scalar equation by contraction

of the indices i and j and inner multiplication by k;

AL BYR. R, At A )+ i[(HPM Nk + &%)+ 2P, k' +%+
L

~Qew, f)}ww R R, At A )= ilk, + K.Y 6.6,8.8)
(R R At At )= ik, + K, Y By B BIBINR K A, AL )~ ik, + K, )

(6,0, B.8NR K At A1)+ ik, + kL X818 BVKL K, A, A )ik, + ;)

n A

OB BNR. R AL A= Flu BBNR R AL AL ) e (4.16.23)



Chapter 4 153

a%kL (BB R A )+ 2 K2+ ﬂ(gﬁ, paNR K e, A )

~

=ik, (g, BANR K A A2+ e, 8 B BN R R, A A ) o (4.16.24)

and %k,(gs, pBNRR, At,At',t)+A{K ¥ }(M pK.K A )

ik, (p 8 B8R K" 0 A1)+ ik (9,68 BNR K AL AL 1) oo (4.16.25)

4.17. Solution for Times Before the Final Period:

It is clear that the equation for final period of decay is obtained by considering the two-point
correlations after neglecting third-order correlation terms. To study the decay for times before
the final period, the three-point correlations are considered and the quadruple correlation terms

are neglected because the quadruple correlation terms decays faster than the lower-order

correlation terms. The term <yﬁ,'ﬁ;’> associated with the pressure fluctuations should also be

neglected. Thus neglecting all the terms on the right hand side of equations (4.16.23) to
(4.16.25)

%K G, BK K an A )+ Al + Py Y2 + k72 )+ 2P, kk + 2R

o %(2 € ., — 54, ﬁ;ﬂ:)(l%,k',m,m',r): B cessesess (4.17.1)

a r

K K (6,88)K. K", AL, Ar t)+ﬁ.[ }((ﬁ,ﬂﬂ'}( YN P S— 4.17.2)
0 ' 2 ' 2 R ' ot '
aN,K,(Mﬂ;)(K,K,m,Az,r)u{k +z}(¢!ﬁﬁ’>(K,K,At,Ar,t)=0 --------- (4.17.3)

where (1, 8/!") = C(¢,B.]) and 1-C=8, here C and S are arbitrary constant.
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Integrating equations (4.17.1) to (4.17.3) between t, and t, we obtain
k(g B:87) = £, expl= Al(1+ P, i + k2 )+ 2P, Kk’ cos 6 + 2_/1@
1
+Z(2 EEm."cl Qm _ﬁ)](t - ro )} s
' » R
kf<¢1ﬂiﬁi”> =& expli_ A(K +“}:JAI}

and k{88 =q, exp{— ){k'2 et ngt':l :

For these relations to be consistent, we have

k{<¢iﬁifﬂjﬂ>: k.’<¢.’ﬁfrﬂ;’>o exp{" )L[_l‘f‘PM )(kz krzxt +k At B AL

, 2R A+A) (2e, Q)
+2PMkkcos@(t—-to)+7[t—to+ > ]{ E;’ —%)(l‘—ta)]}

----------- (4.17.4)
where, 0 is the angle between K and K’ and (¢,/8/) is the value of (¢,8/4) at t=1t,,

At=At=0, A=—
P

M

By letting 7’ =0 , At' =0 in the equation (4.16.10) and comparing with equations (4.15.11) and

(4.15.12) we get

O ) I N7 1 | YR ) Y < — (4.17.5)

RN SRRy B Y7 B HYRY)  J— (4.17.6)

Substituting equation (4.17.4) to (4.17.6) into equation (4.15.15), one obtains
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%{w,.w;>(f<, M t)+ 22{1{2 +ﬂ(w,.y/,.}(f<, wt)= [kl (i ka0

— (4,880 K=K a0,0,t) ), exp[- A {0+ P, Nk2+ k72 e - 1,)

+szt+2PM(t—to)kk'cost9+27R(t—te+At)+(ﬂi&—§J(z—t0)}]d£ |

................. (4.17.7)

Now, dK' can be expressed in terms of k’ and 0 as - 27tk 'd(cos@)dk’ (cf. Deissler [37])

~

ie. dK'=-2#k'd(cos@ak' e (4.17.8)

Substituting of equation (4.17.8) in equation (4.17.7) yields

%(% g{/f)(]%, At,t)+ 2/1|:k2 + %:]({;j#}:)(ﬁ, At,t) = 2?272‘”6,. [(;é,ﬁ,’ﬁf’)(f(, K")

o (@ﬁ;ﬁf’)(— K,—[%’)l)k'{ 1Jexp{— /1[(1 +P, )(k2 +k'? Xt ~£)

mkl Qm

2 . 2R 2e s hase
+k*AL 2P, (¢ -1, )k 0030+7(t—r0 +A%) +[ = _IJ([ —ta)]}d(COSQ)}dk

.......... (4.17.9)

The quantity [(cbﬁfB[’)(I&,K’)-—(¢,B;B:’)(—K,—K')}o depends on the initial conditions of the

turbulence.

In order to find the solution completely and following Loeffler and Deissler [81] we assume

that

ik, [(%BEBI’)(K,K')—(%Biﬁ?’)(— K,—K')L = %(kzk”‘ =7 o [—— (4.17.10)

where, 8 is a constant determined by the initial conditions. The negative sign is placed in front
of 8y in order to make the transfer of energy from small to large wave numbers for positive

value of 9.
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Substituting equation (4.17.10) into equation (4.17.9) we get

527r<y/ s )(K At r)+ 21[ +%]2 (! )(K At, t) =26, J.( ) k'z)k"

{IJ‘ exp{ [ )(kz +k'2Xt +k At+2P,(t -1, Ykk' cosO

-1

2R A
i T(I —l +A %) + [%- -E?j(; = )J}d(cos 6) }dk' --------- (4.17.11)
Multiplying both sides of equation (4.17.11) by k%, we get
‘Z—E+zzk E=F s (4.17.12)
t

where, E =27k’(y ), E is the magnetic energy spectrum function and F is the magnetic

energy transfer term and is given by

:_wj Kk =k Yk “ expl- A1+ P, Nk + &7 Ye—1,)

+k*At+ 2P, (t —t, k' cos @

2R 2 Q.. J% , R
+7([—10+A%)+(+ ZJ(I t)}}d(cosé)) }a’k ........ (4.17.13)

Integrating equation (4.17.13) with respect to cosd and k£ we have

8, Py \/; Xp{—(z €t £ = fsj([ b )}x

F=- e
4% (et )5 (1+ B, )% oA
ex —kA(1+2P,) t—t HPM At |-2R(t -t +Ay) X ISP, k°
R 1+ P, 4 I+2PM ’ 2 4P2 2% (-1, ) (1+P,)

I 7R | G AR N R 7 L'cf‘
(1+PM)2 2 PMJ‘(I_I()) (1+PM)3 1+PM)
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_ - 5013.&4 .\/3; : exp{_(z Em;‘n’ Qm _ ﬁj(t o Io )} x
4% -1 + M2 (14 P, ) A A

exp i '1(1+2PM){t~to+—PM At —2R(r—r0+A%) x ISPMkZ
1+ P, 1+ P, 4it—t, + AtV (1+P,)
2 6 3
Y Y 2—3 ; I i —— P A (4.17.14)
+p,) 2|PAlt—-t,+Ar) |(1+P,) 1+P,

The series of equation (4.17.14) contains only even power of k and start with k* and the
equation represents the transfer function arising owing to consideration of magnetic field at

three-point and three-times.

If we integrate equation (4.17.14) for At=0 over all wave numbers, we find that

J‘de ) — (4.17.15)
0

which indicates that the expression for F satisfies the condition of continuity and homogeneity.
Physically it was to be expected as F is a measure of the energy transfer and the total energy

transferred to all wave numbers must be zero.

The linear equation (4.17.12) can be solved to give
E = expl-24k2(t 1, + A/2) [FexpRA(k? + B/t 1, + Atj2)ar

+J(k)exp[— 2A(k? +%(r—r0 +Ar/2)J ---------- (4.17.16)

N,k
T

where j(k)= is a constant of integration and can be obtained as by Corrsin[32].

Substituting the values of F from equation (4.17.14) into equation (4.17.16) gives the equation
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5(1PM\/;

kl
expl- 2A(k* + B/ )t -1, + Ar/2)|+ — M=«
| % | 42%(1+ P, V5

eXP[— (2 €t 2y — f?)(t -1, )]

1+ P, ”

—k*A(L+2P,) 1+ P,
exp| ——— Mg & At |=2R(t—t, +A !
p|: [ 0 ]+2P ( 0 A)

3k . (1R, 6k’ 43Pz -2p, + 3R
2P, 2(t-1,)> 3A1+P Ne—-1,)" 3(1+B,V(-1,)"

exp[— (2 €t 2y ﬁfs)(t‘fu )]

+8«/_(3p2 +3)k )} 5P T

3(1+ P, )/ 4221+ P, Vi

g2
exp k}t(l+2PM) t—tu+iAt —2R(t—r0+AV)
LB, 148, 2

3k* (7P, - 6)k°
P A i, +At)/ 340+ P, Nt —t, + A1)

__4Bpi -2p, +3)° , 8P -22, +3)k9F(a))} e
3(1+Rw)2(f_fo +AI)% (1+PM)512PJ2 sd L
where F(a))ze_wz J‘exzdx, Al - A f—t0+At
0 1+P 1+P

By setting 7 =0, j=i, dk = -27k>d(cos@)dk and E = 2zk2<w,w;> in equation (4.15.10) we get

the expression for magnetic energy decay law as

(i)
. :jgdk ......... (4.17.18)
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Substituting equation (4.17.17) into equation (4.17.18) and after integration, we get

(i) _ N,
2 827 A (T + AT/2)

- exp[-2R(T + A%)]

s 7o,
42501+ P, Y1+2P, )"

exp[-2R(T + AT )exp[- (2 €, @, = f5)]

9 9
X +

5/2 1+ P, i 502 Py e
16T T+ AT 1607 2 ATYR| T 4—2 AT
| £28, 1+ 2B,

L

5P, (18, -6) N 5P (18 —6)

* 7/2 7/2
16(1+28, | T +—4- 18 ar 16(1+2P, XT +AT)"” T+—tu_ar
1+2P, 1+2P,

M

35P,,(3P2 - 2P, +3) . 35P,(3P2 -2P,, +3)

92 9/2

14 P P

8(1+2P, Y| T+ M AT | 8(1+2P, NI +AT)?| T+—"2 AT
1+2P, 1+ 2P,

i 822 ~op, +3)1e2m, " i 1.3.5 0 (2n+9)
327014 ) = aQn+127(1+P,)
T(2n+l)/'2 (T+AT) (2n+1)/2

......... (4.17.19)

(T+A%)(2n+1) ( +A]/)2n+l

where T=t-t; .

For T. =T% Af/ , equation (4.17.19) takes the form
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(n*) _ (hhi) N, 75,
=" — exp[-2RT, q2E., O~
2 2 - CXPL2RT,] 827 AT N 4250+ P, Y1+2P,)"? HPLA2 Et R = S
9 9
< = 5/2 ¥ " AT 5/2
_AT A
1l /)["’ 1+2P} (T+/)[ !+2P)]
N 5P, (7P, -6)

AT\ AT N
16(1+ 2P, )(T -~—) T o=
2 2(1+2P,)

. 5P, (7P, -6) eemdl e (4.17.20)

il i
16(]+2PM(T + J T, ——————
2 30 +28,)

This is the decay law of magnetic energy fluctuations of concentration of a dilute contaminant
undergoing a first order chemical reaction before the final period for the case of multi-point and

multi-time in dusty fluid MHD turbulence in a rotating system.

4.18. Results and Discussion:

In equation (4.17.20) we obtained the decay law of magnetic energy fluctuations of a dilute
contaminant undergoing a first order chemical reaction before the final period considering
three-point correlation terms for the case of multi-point and multi-time in MHD turbulence in

presence of dust particle in a rotating system.

For clean fluid, f=0 then the equation (4.17.20) reduces to the equation (4.5.20) of this
chapter in part-A.

For non-rotating system,Q = 0,then the equation (4.17.20) reduces to the equation
(4.11.20) of this chapter in part-B.

If the fluid is non-rotating and clean then Q, =0, f=0, the equation (4.17.20) becomes

(h*) 70,
= exp[-2RT, ]
2 b 8\/27ri3/2 TV 4/16(1+PM Y+28, )"
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g 5/2 AT 7 s/2 AT *
(g =&1 T 16lr + AT
('" A) ['"+1+2PM] 6( -7 /2) [’" 2(1+2PM)]
N 5P, (7P, —6)
AT\ ar \”
16(1+2P, )[Tm = —] T
2 2(1+2P,)
7]
N 5P, (7P, —6) AT | R ——— (4.18.1)

AT\ BT Y
16(1+ 2P, {Tm +] e S
2 2(14+2P;)

which was obtained earlier by Islam and Sarker [56].

If we put AT=0, R=0, in equation (4.18.1) we can easily find out

iy (b)) N, 78, o595 Py(1Py ~6)
g B _8\/2ﬂ13/2+4/'16(1+P Yi+270, 2 616 1+2m,
M M M

-------- (4.18.2)
which is same as obtained earlier by Sarker and Kishor [120].

This study shows that due to the effect of rotation of fluid in the flow field with chemical
reaction of the first order in the concentrarion the magnetic field fluctuation in dusty fluid
MHD turbulence in rotating system for the case of multi-point and multi-time i,e.the turbulent
energy decays more rapidly than the energy for non-rotating clean fluid and the faster rate is

governed by exp[—(2 €,,, Q, — f5)]. Here the chemical reaction (R#0) in MHD turbulence for

the case of multi-point and multi-time causes the concentration to decay more they would for

non-rotating clean fluid and it is governed by exp [{2RT,, +2¢,, Q,, - 51

The first term of right hand side of equation (4.17.20) corresponds to the energy of magnetic
field fluctuation of concentration for the two-point correlation and the second term represents
magnetic energy for the three-point correlation. In equation (4.17.20), the term associated with

the three-point correlation die out faster than the two-point correlation.
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CHAPTER-V

EFFECT OF CORIOLIS FORCE ON DUSTY VISCOUS FLUID
BETWEEN TWO HORIZONTAL PARALLEL PLATES IN MHD FLOW

5.1. Introduction:

The subject of magneto-hydrodynamics (MHD) has developed in many directions and the
industry has exploited the use of magnetic fields in controlling a range of fluid and thermal
processes. The study of fluids having uniform distribution of solid spherical particles is of
interest in a wide range of areas of technical importance. These areas include fluidization (flow
through packed feds), flow in rocket, tubes, where small carbon or metallic fuel particles are
present, environmental pollution, the process by which rain drops are formed by the coalescence
of small droplets, which might be considered as solid particles for the purpose of examining their
movement prior to coal scene, combustion and more recently blood flow in capillaries. The
coriolis force due to rotation plays an important role in a rotating system of the flow, while the
centrifugal force with the potential is incorporated into the pressure. Ohji [98] considered the
effect of coreolis force on turbulent motion in the presence of strong magnetic field with the
assumption that Coriolis force term (-2QxU) is balanced by the geostropic wind approximation.
Saffman [118] worked on the stability of the flow of a dusty gas, which is very useful for this
work. Reddy [116] studied about the flow of dusty viscous liquid through rectangular channel.
Azad, Aziz and Sarker [3] studied on first order reactant in MHD turbulence before the final
period of decay in a rotating system. Hazem Attia [54] studied unsteady flow of a dusty
conducting fluid between parallel porous plates with temperature dependent viscosity. Bhargava
and Takhar [21] studied the effect of Hall currents on the MHD flow and heat transfer of a
second order fluid between two parallel porous plates. Varma and Mathur [150] studied in this
field. Sreeharireddy, Nagarajan and Sivaiah [139] also studied on MHD flow of a viscous

conducting liquid between two parallel plates.
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In the present investigation, the MHD flow of a dusty viscous incompressible fluid in a rotating
frame between two parallel flat plates in presence of a uniform transverse magnetic field with
pressure gradient is studied. The velocities of the fluid and the dust particles for rotating frame
are obtained and the effect of magnetic field on these velocities is investigated. The variation in
the magnetic parameters causes significant changes in the velocity profiles of fluid particles as
well as of dust particles and these changing levels of velocity profiles are comparatively higher
than that of the non-rotating frame. The effects of the coriolis force on velocity profiles of the
fluid and the dust particles are graphically discussed. It is observed that the velocities of fluid

and dust particles increase with the increase of coroilis force.
5.2. Formulation and Solution of the problem:

In the present discussions, we consider the flow of dusty viscous fluid between two rotating
parallel plates in the presence of a uniform transverse magnetic field. It is assumed that the fluid
is of small electrical conductivity with magnetic Reynolds number much less than unity, so that
the induced magnetic field can be neglected in comparison with applied magnetic field.

The x-axis is taken along the mid way of the channel and a straight line perpendicular to that is
taken as the y-axis. Let the distance between the two plates be 2h and the magnetic field of

intensity Hp is introduced in the y-direction as shown in fig. A.

The equations of motion of a dusty conducting viscous, unsteady and incompressible fluid in the

absence of input electric field are [117, 151]:

a—“+(a.V)a = —le+VV2E+g(G—5)+
ot P P

K,

TeHy=2eQ@F, seoee (5.2.1)
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m{% + (F.V)F} =Kfz-%], (5.2.2)
dva=l, 0 ke (3.2.3)
%mw(Nﬁ) =8, s (5.2.4)

where, u and v are velocities of fluid and dust particles respectively; ¢, the time; p, the fluid
pressure; p, the fluid density; o, the kinematic coefficient of viscosity; K, the Stokes’s
resistance coefficient which for spherical particle of radius r is 6mur; N represents the number of
density of the dust particles; g, the magnetic permeability; J, the current density; H, the
magnetic field; m, the mass of the dust particles; €, the unit alternating tensor and Q, the

angular velocity vector of uniform rotation.

For the present problem the velocity distribution of fluid and dust particles are defined

respectively as

ulzu](ya t)a UZZO, U3:O

------------ (3.2:5)
vi=vi(y,t), v2=0, v3=0
where, (u; up uzyand (v v2, v3 ) are the velocity field of fluid and dust respectively.
Using these relations, equations (5.2.1) and (5.2.2) become
) | o*u, KN ooy
ﬂ=——a—p+v l;'-i——(vl—ul)—%—nul—EeQul -------------- (5.2.6)
o pox oy p P
0
T e — (5.2.7)
ot m
2 2 2
H
T W L I LT K ST T T — (5.2.8)
ot p Ox oy
T O — (5.2.9)
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mN ; ; :
where /=—— (Mass concentration) and 1 = (Time relaxation).
Yo,

%
K
The initial and boundary conditions as:

at t=0, u, =0, v,=0
at >0, wu, =0, v,=0aty=-h s {5.2.10)
u, =0, v,=0aty=+h

g : & iy / /
Introducing the non-dimensional quantities u,’, vy, p’ ; t’, x’, y’ and 7 as follows:

ul’=u—', Vlfz_\_’L’ p = Pz, = 12'[_
Uo Uy Py h

/X f e Y / v _my

b4 = — = =y T = —_—=— emmemmme————— 5.2-]]
i ¢ k& PR e21d)

where ug is the characteristic velocity and h the half distance between two plates.

In view of Eq.(5.2.11), Egs. (5.2.8) and (5.2.9), after removing the primes reduce to,

2 2 242
LWL A PR L. L, D O —— (5.2.12)
ot ¥ ox T
and %zl(ul—vl) """"""" (3:2:13)
o T
2
ie. %:—Ra—p+aL;'+£(vl~ul)~Mul—ZEQu, -------------- (5.2.14)
ot ox oy° 1
N T —— (52.15)
o T
op, H,'h?

h
where, R= o (Reynolds number) and M = (Hartman number).
1%

yli
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The boundary conditions in the non-dimensional form are

at t=0, u, =0, v,=0

at >0, u, =0, v,=0aty=-1p, e (5.2.16)

u, =0, v, =0 aty=1

Eliminating v, from the Egs. (5.2.14) and (5.2.15), we get

2 2 2
aﬁ'+i[Ra—p}-£ azj‘ i yoeg o ol S Bl p BRIy o (5.2.17)
ot o\ ox) ot\ oy T of t| ox oy
Consider that, the sum of the residues of the poles as [35]
u=f(y) (agtat) +agly) e (5.2.18)
dp
and -R—=a,+at e (5.2.19)
ox
where, f and g are functions of y only.
In view of Eqs. (5.2.18) and (5.2.19), Eq. (5.2.17) reduces to
i
—a[l +f”(y)—{ﬂ+M—2en}f(y)— g (y)}—(”‘] +‘”j[1+f”(y)]:0 ----------- (5.2.20)
T T T

where primes denote differentiation with respect to y.

By equating the coefficients of (ag+at) and a to zero, we can obtain the expressions for f(y) and
g(y) from Eq. (5.2.20), Thus

f(y) = %(l o —— (5.2.21)

g(y)=2r4|:[+1 +M-2¢€ .Qj|(6y2 - y4 = 5) """""""" (9.2:22)
T
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From the Eqgs. (5.2.18), (5.2.21) and (5.2.22), we obtain the velocity of the fluid

[+1

u, :%(ao +at)(1—y2)+%{—-+M—EEQJ(6y2 -y! —5)

From the Eqgs. (5.2.15) and (5.2.23), we obtain the velocity of the dust particle

ar

Lif-y)-e

{

[+1

—+M-2€Q

T

+ Mj{%(an +at)l-y?)+

art

24

M—2eQ}(l—y2)+(

}(l—yz)

{!LlJrM—ZeQ
T

T

£+M},]}

}(6)/2 -y —5)}

The Egs. (5.2.23) and (5.2.24) represent the velocities of the fluid and dust particles respectively

in a rotating frame i.e. in presence of coriolis force.

5.3. Results and Discussion:

In Egs. (5.2.23) and (5.2.24), we obtained the velocities of the fluid and dust particles
respectively in MHD flow of a dusty viscous incompressible fluid in a rotating frame with the
transverse magnetic field.

If the frame is non-rotating (absence of coriolis force), i.e. Q = 0, then the Eqgs. (5.2.23) and

(5.2.24) become
1 [+1
i =Hag+ =)+ | b oy -yt -5)

v, = %B all —yz)—%r{l%]+M}(1—y2)+[%+MJu]j|

and -
which were obtained earlier by Sreehareddy, Nagarajan and Sivaiah [139].
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This study obtained the velocity profiles of the fluid particles (u;) and dust particles (v;) in
presence of coriolis force due to the variation of the parameters M, I, T and t under the influence

of the magnetic field. These results are graphically shown in Figs. 1(A)-4(B) and also are

discussed.

In Fig. 1(A)&1(B), we observe that the variation in Hartman number (M) causes significant
changes in the velocity of fluid particles as well as in the velocity of dust particles. It is
mentioned that the velocity of the fluid particles decreases with the Hartman number M increases

and the velocity of the dust particles increases with M increases.

In Fig. 2(A) & 2(B), we notice that the variation in mass concentration / on the velocities of fluid
and dust particles is shown. It is observed that increase in mass concentration / leads to decrease

in the velocity of fluid particles and also dust particles.

In Fig. 3(A)&3(B), we observe that the variation in time relaxation t on the velocities of fluid
and dust particles is shown. We mention that the velocity of the fluid particles and also dust

particles increases with the increasing values of time relaxation t.

In Fig. 4(A) & 4(B), we mention that the variation in time t on the velocities of fluid and dust
particles is shown. We observe that velocity of the fluid and also dust particles increases as time t

increases.
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Fig-1(B): v;-Y graph for velocity profile of dust
Fig-1(A): u;-Y graph for velocity profile of fluid particle with coriolis force for different
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Fig-4(B): v,-Y graph for velocity profile of dust
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In the absence of coriolis force, the velocity profiles of the fluid particles (u;) and dust particles

(v1) due to the variation of the parameters M, 1, t and t under the influence of the magnetic field

are graphically shown in Figs. 5(A)-8(B) which were obtained earlier in ref. [139]:
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Fig-5(A): u,-Y graph for velocity profile of Fig-5(B): v,-Y graph for velocity profile of dust

fluid particle for different values of M. particle for different values of M.
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Fig-6(A): u;-Y graph for velocity profile of ] _
fluid particle for different values of /. | Fig-6(B): v,-Y graph for velocity profile of dust
particle for different values of /.
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Chapter 5 173
%
L ——
For both rotating and non-rotating frame, the velocity profiles of the fluid particles (u;) and dust
particles (v;) due to the variation of the parameters M, I, T and t under the influence of the magnetic field
are graphically shown (comparatively) in Figs. (9-16). Here, the variation level of the velocity profiles of
fluid and dust particles between rotating and non-rotating frame are clearly observed. The levels of

velocity profiles of both fluid and dust particles are increased for rotating system.
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Fig-9: u,-Y graph for velocity profiles of fluid particles in rotating and non-rotating system for
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Fig-10: u,-Y graph for velocity profiles of fluid particles in rotating and non-rotating system for
=551, 13,2
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CHAPTER-VI

A REVIEW OF THE THESIS WITH CONCLUSIONS

The thesis entitled “A study on turbulence and MHD turbulence” has been divided into

five chapters.

First Chapter :

In the first chapter, we have studied the definition and concept of turbulence, Reynolds
number and its effect of turbulence, method of taking averages, Reynolds rules averages,
Reynolds equations, spectral representation of turbulence, correlation functions, historical

back ground of early works of turbulence.

In this chapter, we have also discussed the first order reaction, rotating system, equation of
motion of dust particles, decay law of turbulence before the final period and in the final
period, statistical theory of distribution functions in turbulence, Fourier transformations of
Navier-stokes equation and their principal conceptions, Magneto-hydrodynamic(MHD)

turbulence and finally, a brief review of the past researches related to this thesis.

The Second Chapter has been divided in to Three Parts:

In Part-A, the first order reactant in Magneto-hydrodynamic Turbulence before the final
period of decay in a rotating system is studied. In this part we studied the magnetic field
fluctuation of concentration of a dilute contaminant undergoing a first order chemical
reaction in MHD turbulence before the final period of decay in a rotating system. Here, we
have considered the two-point and three-point correlation equations and solved these
equations after neglecting the fourth-order correlation terms. Finally we obtained the decay
law for magnetic field energy fluctuation of concentration of dilute contaminant undergoing a
first order chemical reaction in MHD turbulence in a rotating system. Equation (2.5.18)
denotes this decay law for magnetic energy fluctuation of MHD turbulence governing the

concentration of a dilute contaminant undergoing a first order chemical reaction before the
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final period in a rotating system considering three-point correlation after neglecting

quadruple correlation terms.
If the system is non-rotating, i.e. Q, =0, then the equation (2.5.18) becomes the equation

(2.6.1) which was obtained earlier by Sarker and Islam [128]
In absence of chemical reaction, i.e, R=0 then the equation (2.6.1) becomes the equation

(2.6.2) which was obtained earlier by Sarker and Kishor [120].

This study shows that due to the effect of rotation of fluid in MHD turbulence in a rotating
system with chemical reaction of the first order in the concentrarion the magnetic field
fluctuation i,e.the turbulent energy decays more rapidly than the energy for non-rotating fluid

and the faster rate is governed by exp[—{2¢€,, Q, }]. Here the chemical reaction (R#0) in

MHD turbulence causes the concentration to decay more they would for non-rotating system

and it is governed by exp [— {2RT, +¢,, Q, }]

The first term of right hand side of equation (2.5.18) corresponds to the energy of magnetic
field fluctuation of concentration for the two-point correlation and the second term represents
magnetic energy for the three-point correlation. In equation (2.5.18), the terms associated
with the three-point correlation die out faster than the two-point correlation. For large times
the last term in the equation (2.5.18) becomes negligible, leaving the -3/2 power decay law

for the final period.

In Part-B, the first order reactant in Magneto-hydrodynamic Turbulence before the final
period of decay in presence of dust particle is studied. In this part, the same procedure 1s
followed as in part II-A. In equation (2.11.18) we obtained the decay law for magnetic energy
fluctuation of dusty MHD turbulence governing the concentration of a dilute contaminant
undergoing a first order chemical reaction before the final period.

If the the fluid is clean, i.e. f=0 then the equation (2.11.18) becomes the equation (2.12.1).
which was obtained earlier by Sarker and Islam [128]. In absence of chemical reaction, i.e,
R=0 then the equation (2.12.1) becomes the equation (2.12.2) which was obtained earlier by
Sarker and Kishor [120].

This study shows that due to the effect of dust particles in the magnetic field with chemical
reaction of the first order in the concentrarion the magnetic field fluctuation i,e.the turbulent

energy decays more rapidly than the energy for clean fluid.
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In Part-C, we have studied the first order reactant in Magneto-hydrodynamic Turbulence
before the final period of decay under the effect of rotation with an angular velocity Q, in
presence of dust particles and we obtained the equation (2.17.18). This equation indicates that
the decay law for magnetic energy fluctuation of dusty fluid MHD turbulence governing the
concentration of a dilute contaminant undergoing a first order chemical reaction before the
final period in a rotating system more rapidly.

If the fluid is clean and the system is non-rotating then f = 0 and Q. = 0, the equation
(2.17.18) becomes equation (2.18.1) which was obtained earlier by Sarker and Islam [128]. In
absence of chemical reaction, i.e, R=0 then the equation (2.18.1) becomes (2.18.2) which was
obtained earlier by Sarker and Kishor [120].

In equation (2.17.18), the terms associated with the three-point correlation die out faster than
the two-point correlation. For large times the last term in the equation (2.17.18) becomes
negligible, leaving the -3/2 power decay law for the final period. If higher order correlations
are considered in the analysis, it appears that more terms of higher power of time would be

added to the equation (2.17.18).

The Third Chapter consists of Three Parts:

In part-A, we have studied the statistical theory of distribution function for simultaneous
velocity, magnetic, temperature, concentration fields and reaction in MHD turbulence in a
rotating system. We have derived the transport equations (3.6.17) and (3.6.18) for evolution

M and two point distribution function Fz“‘z) in MHD

of one point distribution function F,
turbulent flow under the effect of coriolis force and various properties of the distribution
function have been discussed. We can also derive the equations for evolution of
F3' 9 F' 23 and so on. The resulting one-point equation is compared with the first
equation of BBGKY hierarchy of equations and the closure difficulty is to be removed as in
the case of ordinary turbulence.

But it is a great difficulty that the N-point distribution function depends upon the N+1-point
distribution function and thus result is an unclosed system. This is so-called “closer
problem™. In this chapter, the closure difficulty is to be removed as in the case of ordinary
turbulence and some properties of distribution functions have been discussed.

If the system is non rotating then Qm=0, the transport equation for one point distribution
function in MHD turbulent flow equation(3.6.17) becomes the equation (3.7.1) which was

obtained earlier by [57].
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In part-B, we studied the statistical theory of distribution function for simultancous velocity,
magnetic, temperature, concentration fields and reaction in MHD turbulence in presence of
dust particles. Finally, the transport equations (3.13.17) and (3.13.18) for evolution of one
point distribution function F;“) and two point distribution function Fz{l‘z) in MHD turbulent
flow for evolution of distribution functions have been derived and various properties of the
distribution function have been discussed. The resulting one-point equation is compared with
the first equation of BBGKY hierarchy of equations and the closure difficulty is to be
removed as in the case of ordinary turbulence.

If the fluid is clean then =0 , the transport equation for one point distribution function in
MHD turbulent flow (3.13.17) becomes the equation (3.14.1) which was obtained earlier by
[57].

In Part-C, we have studied the statistical theory of distribution function for simultaneous
velocity, magnetic, temperature,concentration fields and reaction in MHD turbulence in a
rotating system in presence of dust particles. Here, the transport equations (3.20.18)
and(3.20.19) for evolution of one point distribution function F;'" and two point distribution
function F»'"* in dusty fluid MHD turbulent flow under the effect of coriolis force have been
derived and various properties of the distribution function have been discussed. The resulting
one-point equation is compared with the first equation of BBGKY hierarchy of equations and

the closure difficulty is to be removed as in the case of ordinary turbulence.

The Fourth Chapter also consists of Three Parts:

In Part-A, we have studied the magnetic field fluctuation of concentration of a dilute
contaminant undergoing a first order chemical reaction in MHD turbulence before the final
period of decay for the case of multi-point and multi-time in a rotating system. Here, we have
considered the two-point, two-time and three-point, three-time correlation equations and
solved these equations after neglecting the fourth-order correlation terms. Finally the decay
law for magnetic field energy fluctuation of concentration of dilute contaminant undergoing a
first order chemical reaction in MHD turbulence considering three-point correlation terms for
the case of multi-point and multi-time in a rotating system is obtained in equation (4.5.20).

If the system is non-rotating then Q_ =0, the equation (4.5.20) becomes the equation (4.6.1)

which was obtained earlier by [56].
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If we put AT=0, R=0, in equation (4.6.1), we can easily find out the equation (4.6.2)
which is same as obtained earlier by [120].

This study shows that due to the effect of rotation of fluid in the flow field with chemical
reaction of the first order in the concentrarion the magnetic field fluctuation in MHD
turbulence in a rotating system for the case of multi-point and multi-time i,e.the turbulent
energy decays more rapidly than the energy for non-rotating fluid and the faster rate is

governed by exp[-{2€,, Q,}]. Here the chemical reaction (R#0) in MHD turbulence for

the case of multi-point and multi-time causes the concentration to decay more they would for

non-rotating system and it is governed by exp[— {2RT, +¢€,, Q, }]

The first term of right hand side of equation (4.5.20) corresponds to the energy of magnetic
field fluctuation of concentration for the two-point correlation and the second term represents
magnetic energy for the three-point correlation. In equation (4.5.20), the term associated with
the three-point correlation die out faster than the two-point correlation. If higher order
correlations are considered in the analysis, it appears that more terms of higher power of time
would be added to the equation (4.5.20). For large times the last term in the equation (4.5.20)

becomes negligible, leaving the -3/2 power decay law for the final period.

In Part-B, we have studied the magnetic field fluctuation of concentration of a dilute
contaminant undergoing a first order chemical reaction in MHD turbulence before the final
period of decay for the case of multi-point and multi-time in presence of dust particle. Here,
we have considered the two-point, two-time and three-point, three-time correlation equations
and solved these equations after neglecting the fourth-order correlation terms. Finally we
obtained the decay law for magnetic field energy fluctuation of concentration of dilute
contaminant undergoing a first order chemical reaction in MHD turbulence for the case of

multi-point and multi-time in presence of dust particle is obtained in equation (4.11.20).

If the fluid is clean then f=0, the equation (4.11.20) becomes the equation (4.12.1)
which was obtained earlier by [56].
If we put AT=0, R=0, in equation (4.12.1) we can easily find out the equation (4.12.2)

which is same as obtained earlier by [120].
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e e i et im———

This study shows that due to the effect of rotation of fluid in the flow field with chemical
reaction of the first order in the concentrarion the magnetic field fluctuation in MHD
turbulence in presence of dust particle for the case of multi-point and multi-time i.e.the
turbulent energy decays more slowly than the energy for clean fluid and the rate is governed

by exp[fs]. Here the chemical reaction (R#0) in dusty fluid MHD turbulence for the case of

multi-point and multi-time causes the concentration to decay more they would for clean fluid

and it is governed by exp[- {2RT,, - 5]

In part-C, the magnetic field fluctuation of concentration of a dilute contaminant undergoing
a first order chemical reaction in dusty fluid MHD turbulence before the final period of decay
for the case of multi-point and multi-time in a rotating system is studied. Here, we have
considered the two-point, two-time and three-point, three-time correlation equations and
solved these equations after neglecting the fourth-order correlation terms. In equation
(4.17.20) we obtained the decay law of magnetic energy fluctuations of a dilute contaminant
undergoing a first order chemical reaction before the final period considering three-point
correlation terms for the case of multi-point and multi-time in MHD turbulence in presence

of dust particle in a rotating system.

If the fluid is non-rotating and clean then Q, =0, =0, the equation (4.17.20) becomes the

equation (4.18.1) , which was obtained earlier by [56].
If we put AT=0, R=0, in equation (4.18.1) we can easily find out the equation (4.18.2), which

is same as obtained earlier by [120].

The first term of right hand side of equation (4.17.20) corresponds to the energy of magnetic
field fluctuation of concentration for the two-point correlation and the second term represents
magnetic energy for the three-point correlation. In equation (4.17.20), the terms associated
with the three-point correlation die out faster than the two-point correlation. If higher order
correlations are considered in the analysis, it appears that more terms of higher power of time
would be added to the equation (4.17.20). For large times the last term in the equation

(4.17.20) becomes negligible, leaving the -3/2 power decay law for the final period.



Chapter 6 183

Fifth Chapter :

In Chapter V, we have studied the MHD flow of a dusty viscous incompressible fluid in a
rotating frame between two parallel flat plates in presence of a uniform transverse magnetic
field with pressure gradient. The velocities of the fluid and the dust particles for rotating
frame are obtained and the effect of magnetic field on these velocities is investigated. The
variation in the magnetic parameters causes significant changes in the velocity profiles of
fluid particles as well as of dust particles and these changing levels of velocity profiles are
comparatively higher than that of the non-rotating frame. The effects of the coriolis force on
velocity profiles of the fluid and the dust particles are graphically discussed. It is observed

that the velocities of fluid and dust particles increase with the increase of coroilis force.

In Egs. (5.2.23) and (5.2.24), we obtained the velocities of the fluid and dust particles
respectively in MHD flow of a dusty viscous incompressible fluid in a rotating frame with

the transverse magnetic field.

If the frame is non-rotating (absence of coriolis force), i.e. € = 0, then the Eqgs. (5.2.23) and
(5.2.24) become the equations (5.3.1) and(5.3.2), which was obtained earlier by Sreehareddy,
Nagarajan and Sivaiah [139].

This study obtained the velocity profiles of the fluid particles (u;) and dust particles (v) in
presence of coriolis force due to the variation of the parameters M, |, t and t under the
influence of the magnetic field. These results are graphically shown in Figs. 1(A)-4(B) and

also are discussed.
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