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Summary

In the thesis we study the relationship between COs emission per capita and
GDP per capita in context of Bangladesh. First exploratory data analysis
(EDA) is used to uncover the hidden information carried by the observed data.
An attempt is made to fit Environmental Kuznets Curve model by means of
classical techniques as well as bootstrap techniques. EDA shows that both
CO4 Emission per capita and GDP per capita are trended. There is no steady
state of the variables within their sample period. These variables does not fol-
low EKC. To test the presence of stochastic trend of the variables we use unit
root tests. To mitigate small sample limitations of our data we first design
a simulation bascd study to compare the performance of classical tests with
bootstrap tests. Our simulation based result provides that CADF (Covariate
Augmented Dickey Fuller Test) test has higher power and BCADF (Boot-
strapped CADF) test has less size distortion for testing unit roots for small
sample of size 30. Unit root tests suggest that both the series are nonstation-
ary, i.e., COs is accumulating in the atmosphere and GDP is also experiencing
accumulation. In the succession of time series modeling ARIMA model is fit-
ted to both of the series. Both CO, emission per capita and GDP per capita of
Bangladesh follow ARIMA(0,1,1) model. Forecasting by bootstrap produces
better results sometimes. In quest of dynamic regression model cointegration
is checked. Classical, bootstrap and double bootstrap techniques are used to
test whether there exists any cointegrating relationship among COy emission
per capita, GDP per capita and it’s square. Result shows that these variables
are nonstationary but not cointegrated. There exists no long run equilibrium

relationship between CO, emission per capita and GDP per capita.
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Chapter 1

Introduction

1.1 Introduction

Sustainable development is now a global concern. The term ‘sustainable development’
was appeared in 1970 and focused by International Union for the Conservation of
Nature and Natural Resources in 1980. The term gained wide popularity after the
publication of Brundtland report in 1987. They defined sustainable development as
“Development. that mects the needs for the present without compromising the ability
of future generations to meet their own needs.” This definition has drawn attention
to the concern with the long-term implication of the present-day-development. For
a state-of-the-art discussion of sustainable development in an economic or ecological
point of view see Arrow et al. (1996). The Earth Council completed this concept
with more meaningful refinement. They indicated that sustainable development is
related to three sustainability. 1) Economic sustainability 2) Social sustainability
and 3) Environmental sustainability.

The natural environment provides some fundamental life support services and
maintain the suitable atmospheric and climatic conditions. The climate regulation
provided by natural ecosystem is the key life support service both on a local and on

a global scale. But increasing emission of greenhouse gases (COs, SO,, NO,) pose
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a serious threat to the global climate. Certain levels of these gases exist naturally,
trapping the sun’'s heat and making the planet inhabitable. However, increasing
emissions of these gases also have the potential to trap too much heat, altering the
climate in major and unpredictable ways which includes increasing strom severity, sea
level rise, spread of infectious diseases etc. The last two decades have witnessed an
unprecedented global warming. This has brought about great concerns over its causes
and consequences. Scientists claimed that the increasing carbon dioxide emission
(CO3) produced a massive build-up of greenhouse gas, which gave rise to recent
warm temperature (IPCC 1995; Watson et al. 1996).

The main source of COj is fossil fuel. Unlike other automotive and industrial
air pollutants, that are transformed by chemical reactions or washed out of the at-
mosphere by rainfall or other natural procedures, CO, is extremely stable gas that
accumulates in the atmosphere once emitted. Of total fossil carbon used probably less
than 1-2% is recycled, whereas the remainder is transformed into wastes, including
pollutants. There is some compensation for future generations through the planting
of additional forest and the development of solar and wind energy, but overall there
is no conformity to a steady state operationalization.

Modeling CO; emission and its effects on ecosystem is much tough job. Different
scientific paper have suggested different techniques and variables to assess CO, emis-
sion locally and globally. UNEP/UNSTAT (1993) consultative expert group selected
the indicators for reporting the state of environment. They include energy state as
total per capita primary energy use, total per capita domestic energy use, energy in-
tensity of industrial production and atmosphere condition judged from CO, emission
per person, production and import of ozone-depleting chemicals, frequency of days of
unaceeptable air quality ete.

After the historic agreement of Kyoto Protocol in 1997, Gupta and Bhandari
(1999) thought that it is reasonable to accept an individual as the unit of account of

COz emission, i.e., those which are generated by humans rather than by countries.
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According to their view, global emissions have to be restricted to a pre-determined
level with the widest participation (Annex I and Non-annex I countries). He aimed
to strike a balance between the concerns relating to the choice of the numeraire, viz.,
population and GDP in determining emissions targets.

The size of a nation’s economy is traditionally denoted by its yearly gross domestic
product (GDP), the value of all final goods and services produced within its borders
and by gross national product (GNP), GDP plus net income from abroad. Per capita
GDP and GNP are often used, as a measure of an average resident’s economic well
being. These indicators are frequently uSéd as yardsticks of economic prbgrc.ss and -
as a basis for international comparisons. (Repetto, 1989). '

Several recent and often-cited papers on the relationship between pollution and
cconomic growth have shown that the higher the income level, the greater would be
the environmental degradation (Daly, 1977, Georgeseu and Roegen, 1971, Hall ot al.,
1986). Many forms of air and water pollution “initially worsen but then improve
as incomes rise” (World Bank, 1992). “At higher levels of development, structural
changes towards information-intensive industries and services, coupled with increased
environmental awareness, enforcement of environmental regulations, better technol-
ogy and higher environmental expenditures, result in leveling off and gradual decline
of environmental degradation” (Panayotou, 1993). Grossman and Krueger (1995),
in particular, reported that for most pollutants, the turning point in environmen-
tal quality typically occurs at income levels below $8000 per capita. Because of its
similarity to the pattern of income inequality documented by Kuznet (1955), this
inverse-U-shaped pollution-income pattern is sometimes called an “Environmental
Kuznets Curve.” In response to these empirical findings, Selden and Song (1994),
Shafik (1994), Holtz, Eakin and Selden (1995), Jones and Manuelli (1995), Hilton
and Levinson (1998) have sought further evidence for inverse-U-shaped pollution-
income relationships. Jones and Manuelli (1995), Selden and Song (1995), Chaudhuri

and Pfaff (1997), Stokey (1998), Jaeger (1998), Andreoni and Levinson (2001) have
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proposed theoretical explanations for the relationship between pollution and eco-
nomic growth. Based on some existing researches, some policy analysts for example,
Beckerman (1992), Bartlett (1994) have concluded that developing countries will au-
tomatically beéome cleaner as their economies growing. Some argued that it is natural
for the poorest countries to become more polluted as they develop. These types of
conclusions depend on the apparently growing conventional wisdom that pollution
follows a deterministic inverse-U-shaped environmental Kuznets curve. Birdsall and
Wheeler (1991) studied air pollution in the manufacturing sector of Latin America
using developed and developing country data. They described pollution intensity in
terms of GDP. Day and Grafton (2002) showed that only CO appears to be declined
relation in the long run with increase of real GDP per capita for Canada.

Some researchers has ben given the emphasis on population growth as a factor of
increasing carbon emission. According to Smil (1990), Bongarrts (1992), Dietz and
Rosa (1994), Engelman (1994, 1998) and O’Neill et al. (2001), population growth is
one of the major factors in causing carbon emissions in both developed and developing
countries. Anquing Shi (2001) concluded that (1) One percent of population growth is
associated with a 1.28 percentage increase in emissions on average. (2) The impact of
population pressure on emissions has been more pronounced in developing countries
than developed countries. (3) It is estimated that global emissions will reach as high
as 13.72 gigatons in 2025 under the business-as-usual assumptions this magnitude
more than doubles the emissions level of 1990 and half of the gains will be attributed
to the future population growth alone. (4) Rising income levels have been associated

with a monotonically upward shift in emissions.

1.1.1 Drivers of Environmental Change

The first major factor affecting environmental change is population. The environ-
mental impacts of human activities depend strongly on the number of people that

inhabit in a particular part of the planet. So projection of future population trend is
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an important for environmental forecasts.

The second important factor is the standard of living. This is usually measured
in economic terms such as the gross domestic product (GDP) per capita. The more
affluent the population is the more goods and services they demand, and consequently
the greater the resulting environmental impacts per person. Thus change in economic
conditions and standard of living over time are another dimension of environmental
forecasting.

A third critical factor is technology. Technology includes the methods used to pro-
vide food, shelter comfort, transportation etc. The design and deployment of modern
technology gives rise to environmental issue. So, expectations of technological change
over time are thus the third element needed to describe an environmental future.
Among many measurements of technological change are the change of environmental
cmissions, energy requirements, and natural resource requirements of particular tech-
nology, as well as changes in the nature of types of technologies in use at the future
time.

Of course, these three factors alone do not tell the whole story of environmental
futures. Rather, they are the principal drivers that determine future land use patterns,

natural resource requirements, and pollutant emissions to air, water and land.

1.1.2 Modeling Environmental Process

To assess the resulting environmental impacts (such as pollutant concentrations), ad-
ditional mathematical models and data are required. Many of these scientific models
of environmental process are dynamic. They can predict how factors like pollutant
concentrations will change over time in response to a specified input. To develop such
type of model in Bangladesh context, I have considered population, GDP and CO,
emission. This type of model so far, does not exist for Bangladesh. For our study we
considered only the first two factors (Population, and GDP per capita as a Standard

of living) to explain the COq emission of Bangladesh.
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1.1.3 Why COy Emission in Study

Over the past century, the quantities of green house gases emitted to the atmosphere
from human acltivity have increased dramatically. The principal culprit is CO,. CO,
is emitted from the combustion of the oil, gas and coal that supply roughly 75% of the
total energy of the world. Current projections anticipate a doubling of atmospheric
CO; concentration by the year 2100, bringing the global average temperature increase
of about 2.4°C (IPCC, 1996). Though scemingly small, a temperature change of this
magnitude in just one century would be unprecedented in human history and would
profoundly affect the earth’s climate and inhabitants. The chief concerns include sea
level rise and flooding of low-lying regions; increased precipitation and severity of
Strom events; increased drought and some ecological effects as plants and animals
attempt to cope with rapid change.

Although, there are many other green house gases (CHy, N3O etc.), CO, is the
major concern. Among all GHG CO, is the most stable and non-reacting chemical.
The time scale for removal of natural process is very long. Again methane (CH,)and
carbon monoxide (CO) are oxidized to CO; by chemical reaction. The Global Warm-
ing Potential Index is sometime used to estimate the CO, equivalence of different
gases. So, to forecast the future climatic change due to GHG, it is necessary to study

the CO, emission.

1.2 Bangladesh in Short

Bangladesh is a South Asian developing country covering an area of 147,570 sq. km.
Its population is 130 million and enjoys a very low per capita gross domestic product,
i.e., 8350 dollars (US). The current estimated population growth rate is around 1.6%
and at this rate the population will be nearly 160 million in the next 10 years. The
populations with a very low per capita gross domestic product, i.c., $350 dollars (US).

Vulnerability of Bangladesh to climate change and sea level rise is well recognized.
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Agriculture, manufacturing industry and various service sectors are the economic
backbone of the country. Flat terrain, low economic growth, high population density,
intensive dependence on agriculture and agricultural production, lack of institutional
infrastructure etc. combine to make the country vulnerable to any nuance in climate
change and sea level rise. Agriculture, manufacturing industry, and various services
(such as transport, trade services, and housing) are the major economic sectors in
Bangladesh. There is a falling trend in agriculture, and yet, despite this, agriculture
remains of paramount importance because of the dependence of most other sectors
or activities cither on processing its products or on servicing it. According to the .
Bangladesh Bureau of Statistics, agriculture’s share of GDP fell from 25.6% in 1991-
92 to 21.3% in 1995, adjusted to 1989-90 constant market prices.

1.2.1 Energy Production and Consumption in Bangladesh

Bangladesh has one of the lowest per capita commercial energy consumption rates in
the world with about 75 kilograms oil equivalent (kg/oe) per year (1994-95). There-
fore, Bangladesh’s energy sector contributes a relatively small amount of greenhouse
gases (GHG) to the global atmosphere. On an average, more than 60% of total energy
comes from renewable energy sources either in the form of biomass or hydropower.
Similarly more than 55% of commercial energy comes from natural gas which is known
as cleaner fuel.

Bangladesh depends heavily upon traditional biomass fuel. But the proportion
of commercial fuels is greatly increasing due to increased use of indigenous natural
gas and the limited increase in consumption of biomass fuels. Commercial energy
consumption by different sector has gained pace after 1984-85 and increasing trend
has been observed for all sectors except commercial and service sectors. Significant
increase has been observed in transport and residential sectors which exceed the con-
sumption level of industrial sector in 1992-93. In 1994-95, among the consumers of

different commercial fuels, 35% of total commercial fuels was used for non-energy
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purposes (e.g., fertilizer production). The residential sector consumed 19%, indus-
try used 17%, and transport accounted for 19%. Commerce and services sectors
accounted for 2% and agriculture sectors used the remaining portion. Commercial
energy for the country comes from both indigenous and imported sources. Natural
gas, hydropower, and a small amount of petroleum products arc indigenous and the
country imports a significant amount of petroleum. Over time, the share of oil in
total energy has declined, and the use of natural gas has increased. In 1980-81, the
share of oil in the total energy mix was about 56%, but by 1994-95 it had dropped to
36%. On the other hand, share of natural gas has increased from 32% to 54% during

the same time.

1.2.2 Greenhouse Gas Emissions

A number of studies have estimated greenhouse gas emissions, but the Asian Least-
cost greenhouse Gas Abatement Strategy (ALGAS) project conducted a comprehen-
sive inventory of emissions in 1990 for energy, agriculture and livestock, and forestry
and land-use changes using IPCC methodology. ALGAS studies revealed that per
capita emission of greenhouse gas for Bangladesh in terms of CO, equivalent is less
than a ton, about 670 kg per year. The detailed estimate revealed that 21,186 kt (kilo
ton) of CO; equivalent greenhouse gas is released from the energy sector, of which
4,392 kt (kilo ton) is emitted by energy and transformation, 3,050 kt (kilo ton) from
the industry sector, 1,875 kt (kilo ton) from the transport sector, and the remaining
amount from small combustion and fugitive emissions. Combustion of commercial
energy and use of forestry products are the main sources of CO, that accumulates in
the atmosphere. The emission inventory of the forestry sector for 1990 revealed net
cmission of carbon. The existing forests can not absorb more carbon than the rate
of removal from the forests. The present net emission from the forestry and land-use
change sector is 19,738 kt (kilo ton) in CO; equivalent. Total methane emissions

from livestock due to enteric fermentation is estimated at about 519 kt (kilo ton)
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of which contribution by cattle is approximately 374 kt, nearly 72% of total emis-
sions from enteric fermentation. Within the cattle population, dairy and non-dairy
cattle accounted for 73 kt (kilo ton) and 301 kt (kilo ton), respectively. The goat
population contributed about 123 kt (kilo ton) (24%) of total emissions. Buffaloes
contribute about 3%, and the remaining 1% comes {rom sheep. The contribution
of cattle population is nearly 83% of which dairy cattle account for about 31% and
non-dairy cattle emit 52%. The contribution from poultry is small (4%). Methane
gas emissions due to rice cultivation has been estimated at 767 kt (kilo ton). Much of
it is due to non-irrigated rain-fed and deep water rice cultivation contributing about
518 kt (kilo ton) (68%) and 120 kt (kilo ton) (17%) of total emissions, respectively.

The remaining methane gas is emitted from irrigated rice fields.

For emission of non-CO, gases was done in terms of field burning of paddy-straw only.
The amount of CO, released was not estimated assuming that it would be balanced
by growing plants during the next cropping season. The estimated amounts of CO,
CHy, N0, and NO released due to field burning of biomass reveal that about 695.4
kt (kilo ton) carbon and about 9.7 kt (kilo ton) nitrogen are being released annually
from field burning in the form of 4.63 kt. (kilo ton) of CHy, 97.33 kt (kilo ton) of CO,
0.11 kt (kilo ton) of NO and 3.87 kt (kilo ton) of NO,. Much of the CH; emissions
(82%) in Bangladesh come from rice cultivation and livestock management. Of this,
43% is due to fermentation and manure management of livestock and the rest comes

from the rice field.

1.3 Review of Literature

The environmental Kuznets curve (EKC) hypothesis proposes that there is an inverted
U-shape relation between environmental degradation and income per capita. This has

been taken to imply that economic growth will eventually redress the envirommental

s
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impacts of the early stages of economic development. The EKC is named for Kuznets
(1955, 1963) who hypothesized that the relationship between a measure of inequality
in the distribution of income and the level of income is an inverted U shape curve.

Grossman and Krueger (1991)! estimated EKCs for SO,, dark matter (fine smoke),
and suspended particles (SPM) using the GEMS data set. Each regression involves
a cubic function of PPP per capita GDP and various site-related variables, a time
trend, and a trade intensity variable. The estimated turning points for SO, and dark
matter was at income level $4000-5000. Income variables in each of their regressions
werce highly significant. The concentration of suspended particles appeared to decline
even at low income levels. Both the time trend and the trade intensity variables had
a significant negative coefficient in the SO, regression. Neither the time trend nor
the trade variable was significant in the equation explaining the concentration of dark
matter. The time trend was significant in the suspended particles regression but again
the trade variable was insignificant. At income levels over $10000-15000. Grossman
and Krueger’s estimates show increasing levels of all three pollutants. Though eco-
nomic growth at middle income levels would improve environmental quality, growth
at high income levels would be detrimental.

Beckerman (1992) explained “although economic growth usually leads to envi-
ronmental degtadation in the early stages of the process, in the end the best - and
probably the only - way to attain a decent environment in most countries is to become
rich.” That is the core theme of EKC was forward by the World Bank’s World Devel-
opment Report 1992 (IBRD 1992). The authors noted that “The view that greater
economic activity inevitably hurts the environment is based on static assumptions
about technology, tastes and environmental investments” (p 38) and that “As in-
comes rise, the demand for improvements in environmental quality will increase, as

will the resources available for investment” (p 39).

'This was the first EKC study. The paper was later published as Grossman and Krueger (1994).

See also Grossman and Krueger (1995).
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These views have been countered by critics of the EKC concept and literature
(e.g. Arrow et al., 1995; Stern et al., 1996). The main arguments against the EKC
are: much of the empirical evidence is weak and statistical techniques inappropriate,
the static relationship between rich and poor countries does not necessarily tell us
about dynamics as countries experience economic growth. Again EKC relationships
have been found for only a subset of indicators and growth does not always improve
the leves of environmental indicators (Stern, 1998).

Shafik and Bandyopadhyay (1992) estimated EKCs for ten different indicators:
lack of clean water, lack of urban sanitation, ambient levels of suspended particulate
matter, ambient sulfur oxides, change in forest area, the annual rate of deforestation
between 1961 and 1986 (i.e., observations for each year), dissolved oxygen in rivers,
faccal coliform in rivers, municipal waste per capita, and carbon emissions per capita.
The results were used in the 1992 World Development Report (IBRD 1992). Data
coverage and sources varied between the different indicators. They used three different
functional forms: log-linear, log-quadratic and, a logarithmic cubic polynomial in
untransformed PPP (Purchasing Power Parity), GDP per capita, site related variables
and a time trend. They also carried out a number of additional regressions adding
various policy variables such as trade orientation, electricity prices, etc.

Lack of clean water and lack of urban sanitation were found to decline uniformly
with increasing income over time. Both measures of deforestation were found to be in-
significantly related to the income but these data were notoriously poor (Stern et al.,
1996). River quality tends to worsen with increasing income. The two air pollutants,
however, conformed the EKC hypothesis. The turning points for both pollutants
were found for income levels of between $3000 and $4000. The time trend was signif-
icantly positive for faccal coliform and significantly negative for air quality. Finally,
both municipal waste and carbon emissions per capita increase unambiguously with
rising income. Stern et al. (1994) criticized the model as the broader range of indica-

tors examined by Shafik and Bandyopadhyay clearly shows a much more ambignous
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picture of the relationship between environment and aevelopment than indicated by
Grossman and Krueger’s more limited study Panayotou (1993) estimated EKCs for
S0y, NO,. , SPM, and deforestation. This study employed only cross sectional data
and GDP was in nominal at 1985 US dollars. The three pollutants were measured
in terms of emissions per capita on a national basis. Data for developing countries
were estimated from fuel use and fuel mix data. Deforestation was measured as the
mean annual rate of deforestation in the mid 1980’s plus unity. Since estimated,
there were some problems with those data (see Stern et al., 1996). There were 68
countrics in the deforestation sample and 54 countries in the pollution sample. The
fitted equations for the three pollutants were logarithmic quadratics in income per
capita. All the estimated curves were inverted U’s. For the sample mean population
density, the turning point for deforestation was $823 per capita. For SO, emissions
the turning point was around $3000 per capita, for NO, around $5500 per capita,
and for SPM around $4500. The official exchange rates used by Panayotou tend to
lower the income levels of developing countries and raise those of the developed coun-
tries relative to the PPP values. Despite this the turning points for the pollutants
were in a similar range to those, reported by Grossman and Krueger and Shafik and
Bandyopadhyay. This may be because Panayotou uses emissions per capita rather
than ambient concentrations.

Shukla and Parikh’s (1992) paper was primarily aimed to find the relationship
between city size and ambient pollution levels for SO,, particulates and smoke. Us-
ing cross-sectional data from WRI (1989) they found that pollution rose with city
size. However, when they added GDP per capita and its square to the regression an
inverted U was found with respect to city size. The EKC relationship holding city
size constant was, however, U shaped, though except for in the particulates regression
few cocfficients were significant at, conventional levels.

Selden and Song (1994) estimated EKCs for four airborne emissions: SOy, NO,,
SPM, and CO on longitudinal data from World Resources Institute (WRI 1991). They

12
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estimated a variety of specifications and presented their results for a fixed effect model
including a population density variable. Authors suggested that in countries with
low population densities, there will be less pressure to adopt stringent environmental
standards and emissions due to transportation will be higher. The estimated turning
points were all very high compared to other studies: SO,, $8709; NO,, $11217; SPM,
$10289 and CO, $5963. Selden and Song reported that this was because ambient
pollution levels were likely to decline before aggregate emissions. There was some
support for this interpretation from Panayotou’s (1993) results.

Cropper and Griffiths (1994) estimated three regional (Africa, Latin America,
and Asia) EKCs for deforestation using panel data for 64 countries over a thirty
vear period. The dependent variable was the negative of the percentage change in
forest arca between two years. The independent variables in each regression were:
rural population density, percentage change in population, timber price, per capita
GDP and perecentage change in per capita PPP, square of per capita PPP, a dummy
variable for each country, and a time trend. Neither the population growth rate nor
the time trend'was significant in either Africa or Latin America, and the price of
tropical logs was insignificant in Africa. The coeflicients in these regressions were
significantly different from zero. None of the coefficients in the Asian regression were
significant. For Africa the turning point was $4760, and for Latin America $5420.
These levels are very much higher than those from either Panayoton’s or Shafik and
Bandyopadhyay's results. Cropper and Griffiths concluded that economic growth will
clearly not solve the problem of deforestation.

Lopez (1994) did a theoretical analysis of environment-growth relationships at a
fairly high level of generality. The model used to analyze the relationship between
pollution emissions and income has two production sectors, weak separability between
pollution and the conventional factors of production, constant returns to scale, quasi-
fixed inputs of capital and labor, exogenous technical change, and exogenous output

prices. Preferences were a function of revenue, pollution, and the output price vector.
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If producers pay a zero or fixed pollution price, then increases in output unambigu-
ously result in increases in pollution in this system, irrespective of the features of
the technology or preferences. However, when producers pay the social marginal cost
of pollution then the relation between emissions and income depends on the prop-
erties of the technology and preferences. If preferences are homothetic, increasing
output again results in increasing pollution. However, when preferences are nonho-
mothetic, as is likely in reality (Pollak and Wales, 1992), the response of pollution
to growth depends on the elasticity of substitution in production between pollution
and the conventional inputs, and the degree of relative risk aversion, i.e., the rate
at which marginal utility declines with rising consumption of produced goods. The
faster marginal utility declines and the more substitution is possible in production
the less pollution will tend to increase with production. For empirically reasonable
values of these two parameters pollution may increase at low levels of income and fall
at high levels - the inverted U. This result is interesting, but its relevance is limited
if the price of pollution is not socially optimal. Command and control measures on
pollutants that show inverted us may result in effective prices that are close to being
socially optimal while the effective price of pollutants such as carbon dioxide is gen-
erally close to zero. Also in the latter case the elasticity of substitution is probably
lower and the apparent damage less evident to consumers, both implying a higher
turning point. Lopez also constructs a model for deforestation, where as might be
expected, if the stock effects of the forest on agricultural production are internalized
then growth results in less deforestation and vice-versa.
Westbrook (1995) estimated a number of regressions explaining CO, emissions on
a panel for 56 developing countries between 1971 and 1991. Of most interest was
a regression of log emissions per capita on GNP per capita and its square and the
shares of GNP in agriculture and services. All the cocfficients in the regression were
significantly different from zero. The emission-income relationship was an inverted U

and as would be expected, the signs of the industrial structure coefficients are nega-
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tive reflecting the lower emissions of agriculture and services relative to the industrial
sector. The implication was that though industrial structure is a significant explana-
tory factor, other factors also contribute towards the inverted U relationship. In this
paper generality was restricted by the omission of developed countries - though many
other EKCs omit developing or low income countries instead.

Holtz, Eakin and Selden (1995) estimated quadratic EKCs for carbon dioxide
emissions on panel data confirming the very high (835000 in a level regression - $8
million in a logarithmic regression) turning points for this pollutant. They utilized
a wide range of diagnostic tests and statistics. They also projected cmissions.over
the next century under a number of different assumptions and a convergence based
economic growth model. Antle and Heidebrink (1995) estimated EKCs for afforesta-
tion and national parks on cross-sectional data. They find a U shape curve for both
indicators with turning points of 2000 and 1200 at 1985 US dollars respectively.

Becker {19.96) examined some of the theoretical determinants of the EKC and
their influence on possible growth and environmental quality trajectories. Compared
to Lopez (1994), the framework used by Becker was not very general specific functional
forms are introduced at the outset. The model consists of a transformation frontier
between environmental quality (E) and other goods (G). Welfare is defined in the
same arguments. Technical change can increase the potential to produce G but E
cannot. be improved beyond its pristine state. The paper examined the influence of
different patterns of technical and preferential change in influencing the paths the
economy takes. Becker argued for an inverted U shape path if preferences change
over time in favor of environmental quality.

Rock (1996) estimated regressions where the dependent. variables are two indica-
tors of toxic intensity of GDP also used by Lucas et al. (1992). These equations
included the quadratic function in income per capita, the share of manufacturing in
GDP, and four different indicators of trade orientation. A separate regression was

estimated. The inverted U is present and pollution is rising with the share of man-
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ufacturing in GDP. A dummy variable for closed vs. open economies showed that
closed economies had lower toxic intensities of GDP, while the growth rate of exports
and the growth rate of the share of exports in GDP are both positively related to the
pollution indices. The Dollar (1992) index of trade orientation hhas an insignificant
coefficient.

Komen et al. (1996) estimated an EKC for public R and D expenditures on
environmental protection in a group of OECD countries. The main result of the
paper was that the elasticity of expenditures with respect to income was less than
one but positive. The authors recognized that public expenditures arc only a small
part of total environmental R and D expenditures. Also R and D is only a small
part of total expenditure on environmental protection and may or may not actually
result. in improved environmental quality. Nonetheless this was one of the links in an
investigation of the empirical determinants of the EKC.

De Bruyn et al. (1996) estimated the following regression individually for West
Germany, the Netherlands, the UK, and the USA for groups of 17 to 29 observations
over the period 1960 to 1993;

I(Ejt/ Ejs-1) = Pojln(Yie/Yie-1) + Brj + Bajin(Yie—1) + Bajln(Pje/ Pjer) + €50 (1.1)

for CO4, NO, and SO,. E is emissions, Y is income, and P is energy prices. Their
result was that fp; was significant and it was positive. In most of the case §;; was
7ero or negative. f33; was negative or zero more significantly for all three pollutants
in Germany. fJ3; was insignificant except for CO; in the USA. They argued that the
declination in pollution seen in developed countries since the carly 1970s was due
to the slow rate of economic growth during this period which had not overcome the
ongoing effects of the level of income in these countries in reducing pollution. They
also calculate the economic growth rates that are compatible with zero emissions
growth. For CO; these are 1.8% in the UK and Netherlands, 2.9% in Germany, and
0.3% in the US where the price effect has had most influence in reducing emissions.

Zero emissions growth rates are much higher for the other two pollutants but lowest
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for the UK, which has the least effective legislation. They also determined the long
run EKC effect by £y + (2;In(Yji—1). They restricted one of those parameters to zero
for most of the regressions.

Unruh and Moomaw (1996) also look at the effect of prices on CO, emission.
They used exploratory data analysis of CO, emissions per capita in various countries
rather than econometric analysis. They found that the transition to lower per capita
emissions levels can happen at varying income levels and tends to happen fairly
quickly.

Torras and Boyee (1996) used variety of impacts including the GEMS data ana-
lyzed by Grossman and Krueger (1994) and access to safe water and access to sani-
tation at the national level from the Human Development Report as dependent and
income per capita, square of income per capita, cubic term if income per capita, the
Gini cocfficient. of income distribution, literacy, an index of civil liberties, and the
and some control variables similar to those used by Grossman and Krueger. They
found for evidénce of N shaped EKC. They used panel data. The parameter was
estimated in the model in level and does not used any regression diagnostic. So the
result demands more analysis.

Kaufmann et al. (1996) examined the impact of the spatial intensity of economic
activity (GDP/Area) on ambient SO, concentrations for a panel of mostly developed

and middle income countries between 1974 and 1989. The estimated equation is:

Ci; = a+Bi(Y/P)je+ Bao(Y/P)3, + Bs(Y/A)je + Br(Y/A)}, + Bs(S/GDP) ¢ + Pet + 5
(1.2)

Where Y/ P is GDP per capita, Y/A is GDP per area, and S/GDP is steel exports

as a percentage of GDP, which was intended to capture the effects of trade. The
authors argued that this approach was superior to include population density as an
RHS wvariable because the impact of population density would be expected to vary
with the level of income per capita. The model was estimated by OLS, fixed effects,

and random effects, and for both national average levels of Y/ P and city specific levels
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of Y/A. The authors found that concentrations were a U shape function of income per
capita and an inverted U function of income per area. The former result is obviously
diametrically opposed to the standard EKC results for sulfur dioxide concentrations.
These findings were similar to Shukla and Parikh’s (1992) results.

Liddle (1996) examined changes in the consumption/production ratio of various
metals and paper in the OECD countries. In most cases there is no clear trend. This
result would be evidence against a major role for trade in determining the EKC. He
also predicted unabated levels of NO,, emissions for the same group of countries using
the Dignon and Hameed (1989) method and compares these results with the reported
estimates of emissions in those countries. The percent of emissions abated is constant
or slightly increasing in most countries. Given that the Dignon and Hameed modecl
predicts emissions as a constant fraction of fossil fuel consumption this implies a role
for abatement technology in producing the downward sloping part of the EKC.

In contrast to Liddle (1996), Suri and Chapman (1996) argued for an important
role for trade in generating the EKC relationship. They showed that the ratio of
manufacturing exports to manufacturing imports has increased in many developing
countries while it has decreased in many developed countries. They estimate an EKC
for energy use per capita for the period 1970 to 1991 for 34 countries ranging from
Bangladesh to the US in income levels. They estimated a logarithmice quadratic EKC
with the addition of the following variables: M/MFG - imports of all manufactures as
a share of domestic manufacturing production; X/MFG - exports of all manufactures
as a share of domestic manufacturing production; and MFG/GDP - share of man-
ufacturing in GDP. The estimates indicate an inverted U (turning point more than
$50000) with the expected signs for the auxiliary variables but only the coefficient
for X/MFG among the auxiliary variables are significant. Exclusion of the quadratic
term results in all the coefficients being significant showing that these variables co-
vary strongly with squared GDP per capita. A number of variant models arc also

estimated. A model with an interaction term M, GDP/MFG investigates whether
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the effect of imports on lowering energy use is greater as income rises. This seems to
be the case and the M/MFG coefficient falls to zero. A third version with a dummy
variable for high income countries in the interaction term provides a better fit. This is
the strongest evidence so far that trade effects are one of the causes of the flattening
or downward slope of the EKC.

Horvath (1996) quantified a relationship for the growth rates of E/GDP with
respect to income per capita. This relation was monotonically declining but the
multiple correlation coefficient was almost zero. The intercept of the regression curve
was very close to zero suggesting that even if an inverted U does exist for E/GDP, it
is largely an artefact and individual countries all see declining or constant levels of
E/GDP. This is an interesting result and should be examined for more conventional
EKC relationships - de Bruyn ot al. (1996) only look at rates of change in a few
developed countries individually. It is normally argued that E/GDP in individual
countrics follows a pronounced inverted U curve (c.g. Reddy and Goldemberg, 1990).

Rothman (1996) contributed critique and estimation of some novel EKCs, which
are intended to empirically, examine the determinants of the EKC. He updated some
of the earlier critiques of the EKC arguing that much of the analysis to date has not
really dealt with the main or interesting issues. He argued that one way to look at
the trade issue is to look at the environmental impacts generated by consumption
rather than by production activities in a country. To this end he estimated some
EKCs for expenditure on resource intensive consumption goods. Only expenditure
on food, beverages, and tobacco showed an inverted U within the sample range of
income. The other categories of expenditure are monotonically increasing. The data
were calculated on the basis of international PPP prices but there was no guarantee
that the prices of individual commodities within groups reflect their environmental
impact or that the impacts from goods consumed in the developed countries are equal
to those in the developing countries.

Alberti and Layton (1996) were generally more positive about the utility of EKCs
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than some of the other discussions. They point out that there are data on many en-
vironmental indicators, which have not yet been investigated using the EKC method-
ology. They argued that the EKC literature may be useful in choosing sustainability
indicators. For example, an indicator such as sulfur dioxide concentrations would be
a poor indicator of overall environmental impact because it is likely to decline with
increasing development at high income levels while other impacts are increasing.

Perman and Stern (1999) have done an empirical study on EKC relationship using
time series approach. They used panel data of 74 (OEZD and Non-OECD) countries
over 30 years time period. They choose to examine sulphur emissions.

To identify the time series properties they first use ADF test for testing the unit
root of individual countries after subtracting a common time trend from data. Lag
length for individual countries selected using Hall (1991) procedure. Their test infers
that both the variables emission and income per capita are I(1) process for most of the
countries. Only 18 countries out of 74 shown that income per capita is not integrated.
The full search result is that only 6 definitely rejects the null hypothesis of unit root
and 4 borderline case.

Again they use panel unit root test because conventional unit root test on a single
time series, such as éugmented Dickey Fuller test (ADF) procedure some time suffer
from unacceptably low power when applied to a series of moderate length and are sus-
ceptible to large size distortion (especially in the presence of moving average error).
The test result suggests that all three series for all country in the panel containing a
single unit root. The statistics reinforce the findings of the individual country ADF
test statistics. The only statistic suggesting a stationa1y process is the group statistic
from a model including both heterogeneous trends and time dummies for In(M/P).
Next they tried to determine the cointegrating relationship in modeling EKC. Test
statistics did not provide strong evidence for cointegration in individual countries in
the panel. In particular, in just under one half of all cases (35 out of 74 countries),

none of the models exhibited cointegration between emissions per capita and the first
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and second powers of income per capita. Cointegration was found most frequently
where the regressions included a deterministic trend. The support for cointegration
was substantially weaker in this case where the relationship allows for non-linearity.
They also used panel cointegration test because, panel cointegration tests test a par-
ticular form of hypothesis, power comparisons are somewhat questionable (Maddala,
1998). Their empirical result was that there were some support for the hypothesis
that there was a cointegrating quadratic relationship between emissions per capita
and first and second powers of income per capita over the panel as a whole. This
contention may be surprising given the country-by-country findings that gave little
or no support for cointegration. Next they tried to fit a dynamic EKC in search of
common long run parameter under the assumption that there exist a cointegrating
relationship. They estimated an unrestricted dynamic EKC model for each country,
and test. whether the individual countries’ emissions/income relationships converge
to a common cointegrating vector. The estimated equation is an autoregressive dis-

tributed lag (ADL) model, parameterised in error correction form:

p—1 g—1
AYy = {aiYi — BriXri — PriXua} + D xijAYie—j + D 015iAX 14—
= i=0
r—1
D 024 AX050 5 + i + M + €4 (1.3)
i=o

Where Y, X, and X; stands for in(Emission per capita), In(Income per capita) and
In[(income per capita)?] respectively. j; and 7, are country and time specific inter-
cepts. They estimated the model using maximum likelihood and inference procedures
and the statistical adequacy of this regression model assessed using conventional di-
agnostic statistics. This is in contrast to static regressions (including fixed effects)
where, they are inapplicable. The hypothesis of a common cointegrating vector is deci-
sively rejected when even when the sample is restricted to either OECD or non-OECD
countrics alone. Their Hausman (1978) test also supports rejection of homogeneity
of the sub group of OECD and Non-OECD countries. Rejection of the homogeneity

restrictions implies that each country has a unique [3;, O parameter pair; strictly
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speaking, each country has, therefore, a unique turning point in its EKC. At last
they estimated a pooled mean group estimates under the null that the long-run pa-
rameters are constant over the panel but all other parameters including the speed of
adjustment parameter and error variance varying over countries to find a common
turning point. For the whole panel, the static fixed effect model yields a turning
point at $82,746. For the non-OECD sample, the pooled mean group turning point
estimate is $28 792 vs. $116 619 for the fixed effect estimator. Both estimates are
out. of sample and imply a monotonic emissions-income relation. The turning point
implied by the average of the unrestricted estimates is a minimum at $403. This, too,
implies an essentially monotonic relation. Only Tanzania and Myanmar had income
lower than this and even then only for a few years in the 1960.

Finally they emphasized on the following findings on their concluding remark: (a)
[t is important to take difference to estimate and inference techniques if the data are
non-stationary rather than stationary. (b) Their data used in their study stochas-
tically non-stationary. They also suspect that many other indices of environmental
pressure are also integrated variables. (¢) There is weak support for the contention
that there exist cointegrating relations between sulphur emissions per capita and
income per capita in individual countries. Such cointegrating relations do exist in
the panel as a whole. (d) A large minority of countries has basic shapes of emis-
sion/income relationships that do not have the EKC form. (e) They have no strong
evidence that all individual members of the panel converge to a common cointegraing
vector. (f) Static regressions such as simple fixed or random effects are badly misspec-
ified, and are inappropriate for statistical inference (because of (a) and (b) above).

There is no doubt that Perman and Stern’s (1999) work is progressive. They were
much aware about the sample size. They used pancl unit root and pancl cointegration
test to gain the cfficiency over conventional ADF and cointegration tests that are
much affected by small size sample. They might check how much efficiency achieved

using panel unit root and cointegration test. Again they did not report any model
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diagnostic result. Also they could use cross-validation technique so that their might
be more reliable.

Bousquet and Favardy (2000) tried to investigate the link between pollution and
income theoretically. Their study shows how income inequality affects environmental
policies and therefore pollution. The Environmental Kuznets Curve (EKC) hypothesis
proposes that there is an inverted U-shape relation between environmental degrada-
tion and income per capita. This paper invalidates this common result. Indeed they
find for a set of parameters of two-hump curve.

Their result for a given inequality index is as follows;

First both income thresholds are decreasing functions of the inequality index.
This means that a socicty crosses the line between the development phase and the
environment. phase for a lower average income when inequality is large. This is due
to the redistribution impact of environmental policies, which are more stringent in
highly unequal societies.

Second, they draw on the same figure the income inequality relationship according
to the Kuznet’s hypothesis. It is not possible to determine the sign of the variation
for pollution, when average income increases and income inequality decreases. For
particular values of the parameters it is then possible to have an increasing part for
the pollution curve in this phase. In order to obtain a two hump curve for pollution it
is necessary (not sufficient) that the maximum inequality occurs in this phase. Finally
that in the two others phases pollution is always independent of income inequality.
If income inequality is maximum in one of these two regions then pollution follows a
simple inverted U curve.

Harbaugh ct al.(2001) reexamined the empirical evidence for an environmental
kuznets curve using the air pollution data studied by World Bank(1992) and Gross-
man and Kruenger(1995) with the benefits of retrospective data cleaning and addi-

tional ten years of data. They used robust approach to decide about the sensitivity
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of the model. In their study they used data on ambient pollution level collected by
the GEMS (Global Environmental Monitoring System) sponsored by WHO and UN.
The EPA maintains these data in its aerometric information retrieval system (AIRS).
Grossman and Kruenger(1995) used the same data but the new data contains sub-
stantially more usable observation than were originally available. Since the earlier
release of GEMS data contained missing descriptive statistic, Grossman and Kru-
enger (1995) used indicator variables when covariates were unavailable. The latest
data has no such gap. So Harbaugh et al. (2001) dropped the corresponding indicator
variables. In addition missing obscrvations for existing cities have been filled by the
World Health Organization. They analyze three common air pollutants: SO, smoke
and total suspended particulate (TSP). They also included trade intensity and the
democracy index as additional covariates.

Using the same observations and econometric specification as was Grossman and
Kruenger(1995), the changes in the data yicld large change in the regression result
and the shape of the predicted pollution-income relationship. Rather than increasing
and then peaking at $4000, declines initially, then starts to increase at about $7000,
at nearly the same p_oint where the second regression line was actually decreasing at
its highest rate. The line then starts to decrease again at about $14,000, about where
the second regression line starts to increase. Using the most recent AIRS data and
all available observations from 1971 to 1992 they showed that the individual GDP
coefficients are generally highly significantly different from zero, which was not true
of all of the preceding regressions. Again, the estimated pollution-income equations
change significantly from those fitted using the original data, though the changes
examined are minor. TSP and smoke, there were fewer changes to the data and
thercfore the regression results are less sensitive to those changes. In both the original
and now data TSP decreases monotonically with GDP, although the slopes at $10,000
and $12.000 are smaller in the new data. For smoke, in both the original and new

data the pollution concentrations exhibit an inverted-U, with a peak at about $6000.
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Finally, they used chi-squared statistics from a Hausman test of whether the random-
effects error terms are uncorrelated across the monitoring stations. In three of the
four samples, this hypothesis rejected, suggesting that fixed monitoring-station effects
are more appropriate. Changes such as logarithm of variables substantially alters the
pattern of GDP coefficients; however, they do alter the predicted pollution-income
paths. The logarithmic specification yielded an S-shaped curve with a peak at $3000
and a trough at about $13,000. Constructing confidence bands, they found that they
were wide enough to incorporate a variety of GDP-pollution paths over the relevant
range of GDP. So, monotonically rising or falling pollution-income paths, U-shaped
or inverted U-shaped paths, or more complicated relationships all can easily fit within
the 95 percent confidence bands, further demonstrating the extent of the uncertainty
about the relationship between economic growth and pollution. These results suggest.
an alternative shapes of the pollution-income paths at intermediate incomes are not
spurious results of multi-collinearity, the cubic functional form, or clustering of the
data alone. However, the varying predictions at income levels outside this middle
range, particularly at high incomes, may well be driven by the cubic function and by
coefficient estimates that are imprecise due to multi-collinearity. In sum, the results
here suggest that neither outliers in the data nor collinearity have caused the fragility
of the early results depicting environmental Kuznets curves. Rather, the largest
variations in the predicted pollution-income path have been the result of revisions
and additions to the underlying data.

Their alternative specifications yield such drastically different patterns demon-
strates the fragility of those earlier results. The key insight of this literature so far
has been that pollution does not necessarily increase deterministically with economic
growth. In fact, if it is true that pollution does not inevitably increase with economic
growth but rather declines at some point, then the pollution-income path must be
inverse-U-shaped. The estimated relationship between pollution and GDP is sensitive

to both sample selection and empirical specification. Their conclusion is simply that,
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for these pollutants, the available empirical evidence cannot be used to support either
the proposition that economic growth helps the environment, or the proposition that
it harms the environment. The next important empirical step for this line of research
to take will be to categorize those pollutants and countries for which pollution has
already begun to decline, simultaneously with economic growth. Rather than trying
to fit a universal, reduced-form, pollution-income relationship, Such detail will better
allow the various theoretical explanations to be tested.

Day and Grafton (2001) have done a work on EKC using the time series data of
Canada. The purpose of their study is to assess the nature of the long-term relation-
ship between per capita income and Canadian measures of environmental degradation
and to determine whether increases in per capita income are associated with reduc-
tions in environmental degradation in Canada. They examined the relationship for
four indicators of environmental degradation in Canada to income per capita, as mea-
sured by real GDP per capita. The four environmental indicators were emissions of
CO, and concentrations of CO, SO, and total suspended particulate matter (TSP).
For all four measures, an increase in the indicator implies an increase in environmental
degradation. They first estimated a standard reduced form model of the relationship
between environmental degradation and per capita income, and then they evaluate
the model using various econometric tests. Their model includes per capita income
term in levels and squared and cubed with a time trend.

Their model was of the form;
LEDy = a; + apLYy + a3LY; + ay LY} + ast + €3 (1.4)

Where LED was the natural logarithm of the measure of environmental degradation
and LY was the natural logarithm of real GDP per capita. They used the method of
Ordinary Least Squares (OLS) to estimate the coefficients of equation 1.4. The sample
sizes range from 38 obscrvations for carbon dioxide emissions to 24 for concentrations
of CO, SO, and TSP. Despite the fact that all the equations were estimated using

time series data.
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The reduced form results suggest that a comprehensive long-term beneficial rela-
tionship between per capita income and measures of environmental degradation does
not appear to exist for Canada. They further investigated whether their data were
non-stationary or not. To check stationarity of the data they used the Augmented
Dickey-Fuller test and the Phillips-Perron test, carried out for various lag lengths. In
all cases, the test equation includes both a constant and a linear deterministic trend.
They fail to reject the null hypothesis of nonstationarity at either the 5% or 10% levels
of significance for all cases. The log of per capita GDP was also found to be nonsta-
tionary. The Engle-Granger test and the maximum cigenvalue test suggest that per
capita income and the measures of environmental degradation are not cointegrated,
or that a long-term relationship between the variables does not exist. Causality tests
also indicate a bi-directional causality, rather a uni-directional causality, from income
to the environment. The results snggest that Canada does not have the luxury of
being able to grow out of its environmental problems. In concluding remark they
suggests that such form of standard reduced form model is spurious.

Day and Grafton (2001)used time series sequentially. The drawback of their article
is that All test procedure they used e.g. unit root tests, tests for cointegration,
causality and feedback check etc. are affected by sample of small size as they used in
their study. No model diagnostic were available.

For snap views of some empirical paper along with their criticism are summarized
in table 1.3. From the table 1.3 we saw that, most of the time the sample size, time
series properties, multicollinearity problem an diagnostics were over looked for model
estimation and test. In the thesis we tried to overcome all of those problems. Small
sample problem is handled by most recently developed resampling techniques namecd
bootstrap (discussed in chapter 2) approach first introduced by Efron(1979). It is
a computer intensive approach of statistical inference. Bootstrap technique is very

much helpful when appropriate sampling distribution is unavailable.
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Table 1.1: Some empirical work summarization

Authors

Variables

Time

Period

Countries/ Cities

Estimation Techniques

Comment

Grossman and
Krueger (1991)

Shafik and
Bandopadhyay
(1992)

Selden and Song
(1994)

Rock (1996)

De Bruyn et al.
(1996)

SOy, TSP, Water
Quality, GDP per
capita and it’s lag

SPM,  SO;, Fe-
cal Coliform in
rivers, Sanitation,
Municipal  waste,
Carbon emissions,
Deforestation
Panel of NO,, SPM
CO, SO2

Toxic intensities of
GDP, Income per
capita, 4 trade ori-
entation indicators
and a dummy vari-
able of closed and
open economy

CO4, NOg, SO, In-
come, Energy Price

77, 82,
88

1960-
1990

1973-75,
1979-81,
1982-84

1960-
1993

Various Countries from
GEMS data set

149 countries

22 OECD countries and
8 developing countries

cross sectional data of
different countries

West Germany, Nether-
lands, the UK and the
USA

Panel regression based
on GLS

Panel regression hased
on OLS, log linear,
quadratic and cubic

Pooled cross section,
fixed effect and random
effect

OLS

OLS

Most of the variables distrib-
ution are time dependent. So
the study did not focused the
long-run relationship

The data was not analyzed in
time series point of view. Di-
agnostic was not available

Heteroscedasticity was absent
and time dependency was not
considered. So the long run
forecast is not possible

No diagnostics

Only deterministic time trend
considered, So for stochastic
trend the regression may be
spurious. Small sample time
series problem was not consid-
ered
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(Continued from previous page)

Authors

Variables

Time
Period

Countries/ Cities

Estimation Techniques

Comment

Kaufman et al.
(1996)

Perman and
Stern (1999)
Harbaugh et
al.(2001)

Day and

Grafton (2001)

502 concentration,
population density,
Income per capita
S04 emission

SO;, Smoke, SPM

CO2 emission, CO
concentration, S0s
concentration and
TSP

1974-
1989

30 years

38 years
for COq
and 24
years
for the
rest

A panel of nearly de-
veloped, developing and
middle income countries
Panel of 74 OECD and
Non-OECD Countries

Data used by Grossman
and Krueger (1991) with
additional 10 years of
data from GEMS, AIRS

Canada

OLS, fixed effect and
random effect

Used latest time series
analyzing techniques.
Model were estimated in
classical approach.

Fixed effects. panel with
polynomial in GDP and
lagged GDP. Robust ap-
proach is used to decide
about the sensitivity of
the model

Analyzed data using
time series approach.
OLS wused for model
estimation

Time series properties was not
considered

Small sample time series prob-
lem faced by classical ap-
proach. Multicollinearity was
not checked. Diagnostic re-
sults were not reported.

Have diagnostics. It’s an ex-
tended work of Grossman and
Krueger (1991)

Faced the problem of apply-
ing time series an lysing tech-
niques for small sample. Mul-
ticollinearity not checked. Di-
agnostics unavailable.
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Introduction

1.4 Objectives

A well-established relationship between some measures of emission and economic de-
velopment indicators like GDP per capita begs the question, Is there any relationship
between cconomic growth and CO, emission for Bangladesh? If yes, what is the na-
ture of the relationships and what is the future of emission in Bangladesh depending
on economic development? Identifying such relation and providing the relationship
on a solid foundation of statistics is the main objective of the thesis.

Objectives of the thesis are as follows;

e To seek the separate behavior of both COg emission and GDP

e To study whether any relationship exists between COj emission per capita and
GDP per capita.

o To ascertain the nature of relationship.

e To apply tools of modern exploratory data analysis.

¢ To apply both classical and bootstrap methodologies for study of relationship.

e To provide model adequacy.

¢ To put forward policy suggestions.

1.5 Layout of the Thesis

We present a review of past works in chapter 1 togather with some criticism of growth
environment relationships. Here we show that the relationship is based on unsound
foundation considering the time series point of view. In chapter 2 we describe the
analysis techniques used in the thesis to model the relationship between CO2 emission
per capita and GDP per capita. Both classical and bootstrap methods are described in
an elaborated form. In chapter 3 we try to recognize something necessary information
about data by exploratory data analysis. The conventional EKC model is fitted for
Bangladesh data in chapter 4. To check the stationarity of data used in the study

in chapter 5we first check which tests perform better. This is done by simulation.
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Next we apply the tests for testing unit roots for our data series. In chapter 6 we fit
ARIMA models for the data. In chapter 7 we test the cointegrating relations among

the study variables and finally in chapter 8 we conclude the thesis.
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Chapter 2

Methodology

2.1 Introduction

Generally statistical procedures are designed to be used with data originated from
a series of independent experiment. The collected data or samples are taken to be
the representative of some population. The order in which the sample is prsented
to the statistician is irrevelent to the statistician. These classical techniques remains
no longer relevent if the data appear orderly by time. The methods devised to deal
with such data has developed from the last three decade and gained the ground of a
special subject of research.

In classical statistics one has a vital concept of population and sample. The equiv-
alent concepts with time ordered data are the stochastic process and its realization
or observed series. The initial objective of time series analysis is to make inference
about the properties of the stochastic process from the information contained in the
observed series. The eventual aim is to construct a model and it is hoped that the
model has similar properties to those of the generating mechanism of the stochastic
process. Once a model has been obtained, the model then can be used either to test
some hypothesis or theory about the generating mechanism of the process. It can

also be used to forecast future values of the series and/or may be used to decide on



Methodology

a system to control future values.

In the thesis, the recent techniques of time series data analysis has been used. The
most recent developed computer based resampling techniques has also been used to
overcome small sample time series problem. To introduce those techniques used for
the thesis, the chapter is organized as follows;

The next section 2.2 describes the data used for analysis. Section 2.3 introduces some
commonly used terms used in time series analysis, section 2.4 illustrates the unusual
data events, section 2‘5 describes the Box-Jenkins modeling strategy. In section 2.6
an overview is given on ARIMA modeling. Section 2.7 introduces the nonstationarity
problem of time series, section 2.8 illustrates the idea of some dynamic models, sec-
tion 2.9 pointes up the cointegration analysis, section 2.10 demonstrates the model
adequacy checking, section 2.11, section 2.12 and section 2.13 describe the bootstrap
approach and its application in time series estimation and hypothesis testing and
finally in scction 2.14 the necessary softwares are introduced to execute the whole

analysis conveniently.

2.2 Data Source

Bangladesh is one of the newly born countries. The infrustracture of collecting the
historical data is not well established. Ministry of government of Bangladesh has a
department of environment. But their documentation is not well enough to use for
such analysis. So data are collected from www.unep.org Geo data set. GDDP per
capita and CO, emission per capita are used mainly for analysis.

GDP per capita is gross domestic product divided by midyear population. GDP
is the sum of gross value added by all resident producers in the economy plus any
product taxes and minus any subsidies not included in the value of the products.
It is calculated without making deductions for depreciation of fabricated assects or
for depletion and degradation of natural resources. Money value has evaluated at

constant 1995 US$ per person available from 1960-2001. Data has been collected
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from World Development Indicators 2003 provided by The World Bank.

The second variable is Carbon Dioxide Emissions per Capita. It's unit is Metric
Tons of CO, per Person. The data source is United Nations Framework Convention
on Climate Change - United Nations Department of Economic and Social Affairs
(UNFCCC-UNDESA /Statistics Division) provided by United Nations Statistics Di-
vision. The data is available for years 1972-2001 for Bangladesh.

2.3 Basic Definitions in Time Series

2.3.1 Time Series Data

A time series is a sequence of values or readings ordered by a time parameter (Granger
and Newbold, 1977). In time series analysis the order is an important factor. So the
classical statistical techniques are not sometimes relevant. If observations are taken
every moment of time called continuous time series denoted by Y(t). Most of the
time series data are collected after a certain time interval is called discrete time series
denoted by Y.

Time series is thought of as a realization of a stochastic process. generally for
every values of ¢ a time series Y, is generated by random input. So all values of ¢, Y,
is a random variable and a time series Yy,, Yy,,...,Y;, is a group of random variable.
Apparently it is much tough to characterize such series because only one realization
of each variable is obtained. Theoretically the distribution will exist.

Again since it is sometime impossible to get more realization of the variables under

the stochastic process, time series analysts adopte the restriction stationarity.

2.3.2 White Noise Process

A white noise process is a sequence {&,;}2__ whose elements have zero mean, constant

variance and uncorrelated over time.
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2.3.3 Lag Operator

In time series analysis the lag operator is a highly useful operator. Let us consider we
have two sequence {z,}§2_. and {y}{2_., where, the values of y, at date ¢ is equal

to the values of x; at date £ — 1.

Yt = Te—1 [2-1)

The equation 2.1 is described by using lag operator to {z,}{2__, as

L(It) =T (22)

where L is used as lag operator. Similarly we can apply lag operator twice will pro-
duce L(L(z;)) = L%(z4) = 12 two lag of z;. Double operation is indicated by “L?”
similarly k-th lag operation is indicated as “L*” and L*(z;) = x,_

The lag operator follows some algebraic law. The lag operator and multiplicative
operator arc commutative. The lag operator is distributive over additive operator.
We can freely use the commutative, associative and distributive law of algebra for
multiplication and addition to express the compound operator. Sometimes polyno-
mial in lag operator appeares in the time series. Those are algebraically similar to the
polynomial defined on a scalar. The difference is that the simple polynomial refers to
a particular number whereas a polynomial in lag operator refers to an operator that

produce a new time series. For more see Hamilton(1994).

2.3.4 Stationarity

A time series f)rocess y; is said to be covariance stationary or weakly stationary if its
mean and variance is independent of time and covariance between y, and y,_; depends
only on lag length j not on the time. Again a time series is said to strictly stationary
if the joint distribution of y; is independent of time. Next, the term stationary is

taken to be covariance stationary. If the mean is constant over time, we may use all
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sample observation to forecast it. If the process mean were different at each time
period we cannot get useful estimates of its value since, in practice, we get only
one observation for each time period. Non-stationarity occur due to deterministic or
stochastic trend in the data. Process with stochastic time trend is termed as unit
root process discussed in section 2.7. If a series is not stationary, we have to modify
the series to be stationary. Since we know the modification, we can reverse them later

to the original metric.

2.3.5 Box-Cox Transformation for Variance Stabilization

Many other transformations of data are possible. The log and square root trans-
formations are members of a family of power transformations called the Box-Cox
transformation (Box and Cox, 1964). With this transformation we define a new
transformed series y; as

' ytl =1

h="5— (2.3)

where ) is a real number and y, is a time series. Note that y, must not be negative.
If some values of y; are negative, we add some constant to y, so all values are positive.
After modifying the data, we may than return forecasts of this series to the correct

overall level by subtracting some constant from the forecasts. For the case A = 1, for

L
example, (2.3) gives the square root transformation and in the limiting case A — 0
Box-Cox transformation is continuous and leads to the natural log transformation.
Inspection of the time series plot may suggest an appropriate transformation. If
the variance tends to rise as the level of the series rises, setting A < 1 is called for.
If the variance tends to fall as the level of the series rises, setting A > 1 is called for.

Further inspection of the plots of the data after various transformations may confirm

which transformation seems best.
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2.3.6 Stationary Mean

A series with a stationary mean returns fairly quickly to a constant mean. When a
scrics is non stationary, usually we can create a new series with a constant mean by

differencing the data for all ¢, as follows:
Wy =Y — Yo ' (24)

Performing this calculation once, for all ¢, is called first differencing. If the resulting
series does not yet have a constant overall mean, we then compute the first differences

of the first differences for all t. That is, the first difference of w; series are

2t = Wy — W (2.5)

= (¥ — ¥e-1) = We-1 — Y1-2) (2.6)

The resulting series is called the second differences of y;. Let d denote the degree
of differencing. For first differencing d = 1. For second differencing d = 2. If the
original data lack a constant mean, usually setting d = 1 will create a new series with
a constant mean; setting d > 2 is all most never needed. When differencing is needed
to achieve the stationarity, the series is said to be integrated, detail discussion is in

section 2.7.

Seasonal Differencing

Usually, seasonal differencing induces a constant mean in a series that shift in a
scasonal fashion. To performing seasonal differencing, we compute the successive
changes between observations separated by s time periods, s is the number of seasons.
For quarterly data, s = 4, for monthly data s = 12; and so forth. A series may be
differenced non-seasonally only, seasonally only or, in both ways. Let D denote the
degree of scasonal differencing. If d = 0, a seasonal differencing series (D = 1) is

computed for all £ as

Wy = 2 — 244 (27}
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Almost always, setting D = 1 remove any large seasonal shifts in the level of the
series. If both non-seasonal and seasonal differencing are used, either one may be

done first; the result is always the same.

2.3.7 Autocorrelation

Autocorrelation measures the direction (positive or negative) and strength of the
relationship among observations within a single time series y, when the observations
are separated by k time periods, for k = 1,2,3,...,k. For each k we offset the
column of y; observations by k time periods to create the column y;x: Thus we
can have many autocorrelation coefficients for a single data series y;, one for each k.
Since we lose another observation on y,_ each time k increases by one, the maximum
useful value of k is somewhat less than n; a rough rule is to choose k < n/4, where
n is the sample size A study of the autocorrelation patterns in a data series often
can lead us to identify an ARIMA model for that series. We use sample data to
obtain the information of the population autocorrelation coefficient at various lags

k=1,2,3,...,k This theoretical coefficient is defineqd as

P = cov(Ye, yirk) /0, (2.8)

where 02 = E(y, — )%, 1y = E(y) and cov(ye) = B [y — ) Wesk — iy)-
For a stationary scries cov(yy, yi44), and therefore py , are independent of ¢. they
depend only on k, the number of time periods separating y; and y; -
The sample autocorrelation coefficient, which provide an estimate of py, is usually
computed as
n—k _
X (e — 9)(Yesr — 7)
- =
Pe = 0 _ (2.9)
_Zl{‘yt — g
i=

The resulting set of values is the sample autocorrelation function, abbreviated

SACF. This and other formulas for are discussed by Jenkins and Watts (1968). Any

P is only a sample value that might differ from zero just because of sampling variation.

38



Methodology

We can get some idea of the importance of the sample statistic by comparing it with
its standard error. An approximation standard error for pi, due to Bartlett (1946),

is

1
k-1 2
s (Pr) = (1 +2Eﬁ§) nt (2.10)
i=1
To test for a linear association in the population between y, and y4x, we test the

null hypothesis

Ho; pr = 0
against the alternative

Hy; o #0

We then compute the approximate ¢ statistics,

t=(px — px)/se(pr) (2.11)

If ¢ is significant at a% (generally 5% or less), we reject null hypothesis.

2.3.8 Partial Autocorrelation Coefficient

Another useful measure of autocorrelation for stationary series is the partial auto-
correlation coefficient. One way to think this coefficient is to consider the sct of K

regression equations:

y = Ci+dnyi+en
ye = Co+ dnyi1 + Poyr—2 + €
(2.12)
Y = Cr+ oy +dnyio+ -+ Okrlr—r + €kt
The population partial autocorrelation coefficient at lag k = 1,2,---, K is the last

coefficient (¢y) in each equation. Each population coefficient is estimated for a given

data set by its sample counterpart Gk The result ing set of values is the sample partial
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autocorrelation function abbreviated SPACF. In computing p;, we considered only
two random variables y; and y:4k, and we ignored the intervening random variables
Yesk—1:Yiak—2," "+, Y1 But in computing ¢rr we simultaneously take into account
the role of theses intervening random variables, We can gauge the significance of each

by comparing it with the standard error,
s(Prx) =n~3 (2.13)

2.3.9 Correlogram

It is convenient to present the SACF and SPACF in graphical form. For k =
1,2,---, K for example, the values of p, and Prx are represented on the graph by
the length of the bars at lag k. If i is plotted against k, the graph is known as the
sample correlogram and its population counterpart is known as the population correl-
ogram. If the mean of a series is stationary, then the SACF and SPACF will tend to
decay quickly toward zero. In practice, a quick decay means that the autocorrelation
coefficients and partial autocorrelation coefficients are well below their two standard
error limits by about lag 5 or 6. The ratio of the coefficients to their standard errors

(the approximate ¢ values) should fall to about 1.6 or less by about lag 5 or 6 available

2.4 Outliers in Time Series

2.4.1 Outlier

Outliers are unusual observation, which are different from the remaining part in the
scence that they stands apart from the pattern shown by bulk of the observation.
Outliers affects the validity of the subsequent analysis of the variable. There are

three type of outliers occur in time series.
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1. Additive Outlier (AO)

2. Innovative outlier (10)

3. Level Shift (LS)

All the outliers may be described in a generalized form as follows:
Let us consider a process y; contained the original scrics z, and the contaminated

part f(t). The process can be written in the form:

ve = f(t) + 2 (2.14)

f(t) can be of various forms. Here we will consider f(t) of the type
0(L)
#(L)

where I, is a binary variable. The outlier will occur in z, at time t =4, I, = 1 at

f(t) = I, (2.15)

t =1i,l; = 0 otherwise. (L) and ¢(L) are the lag polynomial. For expositional brevity

let us consider a simplest form of f(t)

]
f(t) = ETI9) ¢(L))I: (2.16)

From cquation 2.14 and equation 2.16, the process becomes

¢ .
Ye = (l—_—mft-l-zt (2:47)

¢ Additive Outlier
If 2.17 oecures with ¢ = 0 y, is shifted at time ¢ = i. The shift being upward or
downward depends on § > 0 or § < 0. Such an external event is called additive

outlier. A common cause of AO is data recording error.

¢ Innovative Outlier
Consider again equation 2.17 for 0 < ¢ < 1, like additive outlicr 3, shifted at
time ¢ = i and the shifting decays gradually with a Koyck type decay response.

The decay rate is ¢. This type of outlier is called innovative outlier.
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e Level Shift
Again in the contamination function in equation 2.17 for ¢ = 1, and where I, = 0

for all t and I, = 1 for ¢ = ¢, The series is shifted up or down permanently.

2.5 Box-Jenkins Modeling Strategy

To build a dynamic regression model the most popular strategy is associated with
the name Gorge E. P. Box and Gwilym M. Jenkins, so called Box-Jenkins strategy.
It has the following steps:

1. Identification

From the theory and practice a useful class of model is selected at the stage. To
understand the time structured pattern exploratory data analysis “Letting data talk
to us” is helpful to identify subclass of these too extensive model. The identification
process can be used to yield rough preliminary estimates of the parameter in the

model.

I1. Estimation

At the stage we estimate the parameter of the tentative model. These parameters
may be 1) Regression type coefficients or 2) ARIMA type coefficients. The regression
type coefficients help to identify the input-output relationship. The ARIMA type

coefficients help to understand the disturbance series autocorrelation pattern.

III. Diagnostic Checking

Diagnostic checks are applied with the object of uncovering possible lack of fit. If no
lack of fit is indicated, the model is ready to use. If any inadequacy is found, the
repetition cycle of identification, estimation, and diagnostic checking is undertaken

until a suitable representation is found.
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1V. Principle of Parsimony

Box and Jenkins emphasized the principle. According to the principle, a model should
include the smallest possible number of parameters for adequate representation. The
central role played by the principle of parsimony in the use of parameters will become
clearer. The main objective of B-J modeling strategy is to obtain adequate and
parsimonious models. Forecasting and control procedures could be seriously deficient
if models are either inadequate or unnecessarily prodigal in the use of parameters. So,
care and effort is needed for model selection. The process of selection is necessarily
iterative, that is to say, it is a process of evolution, adaptation, or trial and crror.

The schematic diagram of the ittarative procedure is illustrated in figure 2.1

2.5.1 Dynamic Regression Model

Dynamic regression model (DRM) is a special family of statistical models. Such model
states how an output (¥3) is linearly related to current and past values of one or more
input variables (X, X24,...) under the assumption that observation of the various
series occur equally spaced time intervals. There is another crucial assumption is that
the inputs are not affected by the output. This means that we are limited to single

equation models.
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Input Data
Asertes of observation made over the

same peniod oftime (days, weeks, etc)

:
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e s Explore The Data
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sationary ACF and PACF
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Nd Y
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Adequate
Y
Forecasting Using
The Final Model

Figure 2.1: Functional diagram of the Box-Jenkins modeling strategy
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2.6 ARIMA Model

Let us suppose that we have a time series observation of a variable. We want to
forecast it. We may simply use the arithmetic mean of the data to forecast. But there
may cxits a dependency structure to its past values. It is appealing to give more weight
to the more recent observation than the past. But the arithmetic does not consider it.
However, The Box-Jenkins modeling strategy produces the best-weighted average for
a single time series. These forecasts produced by the single equation Autoregressive
Integrated Mm.riug Average model. A single equation ARIMA model states how any
value in a single time series is linearly related to its past values. It helps to choose an
appropriate model. In theory, if the correct model is chosen, the ARIMA weighted
average forecasts are “best” (The minimum of mean squared forecasts error).

There are some reasons to study ARIMA in connection with dynamic regression.

1. If the ARIMA forecasts better than DR then we may not go with DR due to

extra trouble of working.

2. In a DR modecl the disturbance may be autocorrelated. This can be treated

using ARIMA, which may improve the model and its forecasts.

3. To forecast the output variable with DR, we may need to forecast the input.

Often ARIMA can produce forecasts conveniently.

4. Often ARIMA can announce some interesting feature of the input and output

variable. This may help to build a DR.

5. Finally to perform diagnostics checking for DR model adequacy ARIMA models

for stochastic inputs are needed.
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2.6.1 Assumptions of ARIMA Model

Standard ARIMA process stands on a simple assumption that the process generated
the single time scrics is stationary. There are two forms of stationarity a)Strong form
b) Weak form. In practice we will go with weak form. If the random shocks are
Gaussian then the two forms are identical.

Modification to induce stationary variance should be applied, if needed, before
any further modifications or analysis of data in ARIMA model. We may be able to

induce a constant variance by transforming the data. For example,

1. If the standard deviation of a series is proportional to its level, natural loga-

rithms yield a new series with constant variance.

2. If the variance of the original series is proportional to its level, square root

transformation induces a constant variance.

These two(especially the log transformation is both common and interpretable)
are often useful in practice.
Usually we assume that the data are normally distributed. The usual inferential
procedures depend on the normality assumption. Often a transformation to induces
a constant variance brings the data closer to normality, but this is not always happen.
The most popular transformation is the Box-Cox transformation.

To stabilize the mean over time (if necessary), differencing or seasonal differencing

or both is used after stabilizing the variance.

2.6.2 Some Stationary ARIMA Process
The combined multiplicative non-scasonal ARIM A(p, d, q) is as follows;
¢(L)A%z = C + O(L)e, (2.18)

A = (1 - L)¢ (The d order differencing operator)
&(L) = (1 — ¢y L — ¢poL? — §3L% — ... — ¢,L7) (The p order AR operators)
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O(L) = (1—-6L—60,L? —63L% — ... — 6,L7) (The q order MA operators)

e; = Random Shocks, C is the constant and 2z is any time series.

When difference is not necessary to achieve stationarity, d = 0 and the model

reduced to ARMA.

2.6.3 Theoritical Correlogram for ARIMA Model Identifica-
tion

An ARIMA model is based on the available data. its theoretical counterpart is an
ARIMA process. Each ARIMA model has a theoretical correlogram for associated
autocorrelation function (ACF) and partial autocorrelation function (PACF). To iden-
tify an ARIMA model in practice we first contract the correlogram for Sample Auto-
correlation Function (SACF) and Sample Partial Autocorrelation Function (SPACF)
for a given (l;tta series. Then we compare the correlogram of SACF and SPACF
with some common theoretical correlograms of ACF and PACF. In the following we
present some common stationary ARIMA process and their associated theoretical
correlograms of ACF and PACF.

The theoretical correlogram associated with AR(p) process will show for any value
of p ACF decays exponentially to zero, while PACF will show significant spike at lag
1,2,...,p. When ¢; > 0 the ACF decays all on the positive side, and the PACF has p
number of significant spike is positive. When any ¢; < 0 ACF decays with alternating

signs. stationary AR process of order p have these characteristics:

1. For the theoretical correlogram ACF decays, either exponentially or with a

dumped sine wave pattern or with both of these patterns.

2. For the theoretical correlogram PACF has spikes through lag p, then all zeros.
(Some values before lag p could be zero; the main point is that the last nonzero

value occurs at lag p.)
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The theoretical correlogram of MA(q) process has the form;

1. For an MA theoretical correlogram ACF has spike through lag g, then all zeros.
(Some values before lag g could be zero; the main point is that the last nonzero

values occurs at lag q.)
2. For an MA theoretical correlogram PACF decays.
3. For a mixed theoretical correlogram ACF and PACF both decay.

The SACF for integrated series decays slowly and thus obscures the rest of the
patterns that may be present. Differencing permits us to uncover those other patterns.
In practice if we compare a sample correlogram that look much like one of the
theoretical correlogram. The model we choose corresponds to the process whose
theoretical correlogram match the sample correlogram. Then we estimate and check

the tentative model if it is adequate.

2.6.4 ARIMA Modeling

The SACF and SPACF can tell much about the pattern of the data series. But they
arc based on sample information. So we must make allowance on sampling variation.
In practice we should pay special attention to the nonseasonal j; values that are about
1.6 times or more their standard errors in absolute value and seasonal j; values that
arc about 1.25 or more their standard errors in absolute value. In the SPACF we
should pay special attention to q?)kk values that are two or more times their standard
crror. These arc not rigid rules, they are guidelines.

Along with these practical rules, we should consider the overall pattern of M and
i coefficients. Not every moderately large spike or wave in an SACF and SPACF
is worth our attention, since SACF coefficients are often correlated with each other.
Thus an SACF can show moderately large waves that reflect only sampling variation.

When the model identification is complete, we used OLS or MLE to estimate

the parameter. If the estimated residuals are gaussian white noise, we can use the
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conventional t or F statistic to check the goodness of fit. Model adequacy checking

and forecasting effeciency of the model helps to select the final model.

2.6.5 Model Checking

An ARIMA represents the autocorrelation pattern available in the data. So there
should be no further significant autocorrelation pattern left in the residual series.
Then we construct the SACF for the residual. This ensures whether the model ad-
equately represents the autocorrelation pattern in the data. Again a standard as-
sumption is that the random shocks are normally distributed. This permits us to
perform approximate t tests for the coefficient significance at the estimation stage.
One way to check the normality is to examine a histogram of the residuals. Another
is to plot the model residuals in a normal probability plot. Both these procedure
give a helpful representation of the data. To create a normal probability plot, the
residuals are standardized and ordered from lowest to highest value. These values
are plotted against a set of theoretical ordered normal values. If the residuals are
normally distributed, the plots form a straight line. It is to be noted that Gaussian
hehavior of the estimated noise ultimately guarantees the adequacy of a model. So it

is important for a researcher to seck for a model until he/she gets gaussian noise.

2.6.6 Other Model Selection Criteria

Another approach is to use the Akike Information Criterion (AIC) (Sakamoto et al.,

1986) for checking model adequacy as well as models lag order selection. AIC is
defined as;
VB 2k

where 3" £2 is the sum of the squared residuals. In principle, one could select a lag
structure by increasing the number of lags up to the point where the AIC reaches a
minimum value. Also there are some other statistic for model selection like Schwartz

Criterion (SC) which is closely related to AIC and Baysian Information Criterion
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(BIC) (Schwarz, 1978). Also there are some contradictions among econometricians
about which criterion performs better. However, in the thesis, we use AIC only as

our model selection eriterion.

2.6.7 Forecasting

A correct ARIMA model gives minimum mean squared error forecasts among all lin-
ear univariate models with fixed coefficients. For each time period we can produce
point forecast. We can also construct a confidence interval around each point fore-
cast to give us an interval forecast. Interval forecast are sometime useful hecause it
provides the possible degree of error associated with the point forecast. The 95%
intervals for each forecast is f 4 2s. where f denotes a forecast and s is its standard
error. For a stationary model the forecasts converges to the mean of the series. How
quickly or how slowly depends on the nature of the model and on how close the most
recent observations are to the mean. For a nonstationary model, the forecasts do not

converges to the mean.

Interpreting ARIMA Model Forecast

An ARIMA forecast is the best weighted average of the past observations. So it is
casy to interprete. There are several other interesting and useful interpretations of
ARIMA model forecasts that arise in special cases. one of such case is ezponentially
weighted moving average (ARIMA(0,1,1)) that arises often in practice. Their forecast
have a special interpretation. For exposition, let us consider an ARIMA(0,1,1) model

of the form taking the constant zero:
(1- L)y = (1-48L), (2.20)
Multiplying both side of (2.20) by (1 — L)~ to get

(1-8L)y'Q— Ly =& (2.21)
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If |6] < 1, using Taylor series expansion, we may write 2.21 as (1 + 0,L + 9,2L +
G3L +...)(1 — L)y, = ;. The first factor is equivalent to an AR operator of infilitely
high order. The coefficients have special pattern b = —éi. The model 2.20 is a

parsimonious form of 2.21.

2.7 Unit Root and It’s Consequences

2.7.1 Unit Root

Time series can be characterized in many ways. First, we want to focus on the
presence of trends in the time series. There are two types of trends: (i) deterministic
trends and (ii) stochastic trends. A stochastic trend is a random walk, which may
or may not contain deterministic or stochastic drift. A time series that contain a
random walk process is termed as a unit root process.

Now let us consider a univariate time series Y; follows ARMA (p, q) process. The

process can be written in the form;

(1—L—gol?—...—¢pLP)yr=c+ (1 + 0L+ 6L +... +0,L%, (2.22)
provided that the roots of (1 — ¢1z — ¢222 — ... — ¢p2”) lies outside the unit circle.
Dividing both sides of 2.22 with (1 — ¢;L — ¢;L? — ... — ¢,L?) we obtain

Y = p+ $(L)ed (2.23)
where
’ff(L} i (1+91L+92L2+ +9qu}
(1= L — L7 — ... — b, L7)
and
p=c/(l—dr—dz—...— ¢p)

332 | 95 |< 0o. Roots of 1(2) = 0 arc outside the unit circle, {e;} is a white noise

sequence with E(e;) = 0 and V(&) = ¢2. Two important features of such processes
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arc i) E(Y,) = p and ii) lim,_,. }A’Hm = [, i.c., unconditional mean is independent
of time and the forecast values converges to an unconditional mean. Such process
is said to be a stationary process and stationary of an ARMA process depends only
on autoregressive parameters ¢; not on the moving average parameters 6;. This
assumption is quite unappealing for many econometric time series. Most of the time
series trends over time. To describe such trend a deterministic time trend is added
to equation 2.23

Yi=a+ Bt+¢(L)e; (2.24)

The mean p of the stationary process is replaced by o + dt. Such a process is called
trend stationary because the deduction of the term « + ¢ produces a stationary time
scrics.

Another process of describing the trend is unit root process, i.e., first difference is

stationary written in the form
(1 - L)Y, =6+ 9(L)e, (2.25)

where the assumption (1) # 0 assures that the series remains non-stationary. The
mean of (1 - L)Y, is denoted by § rather than p. Letting ¢(L) = 1 equation 2.25 can
be written as

Yo=Y +8+e (2.26)

The process is known as random walk with drift §. The process 2.26 is also termed

as an integrated process of order one shortly I(1).

2.7.2 Effects of Unit Root in Time Series Analysis

It is much important to check the stationarity of the time series. If the innovation
£, is Gaussian and the process y; generated by equation 2.24 contain a simple time
trend then the OLS estimate of cocfficients are Gaussian. Their test statistic £ and F

will follow exactly small sample distribution ¢ and F' (Hamilton 1994). But if there
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exists a unit root in the process, the consequences is listed by Bierens H. J. (1999) as

follows;

1. Regression involving unit root process may provide spurious regression because
time series data often tend to move in the same direction. Consequently this
may show a higher R? and lower Durbin-Watson (DW) statistic, which may not

indicate the true degree of association between the study variables.

2. For two or more unit root process there may exist a linear combination, which
may be stationary, and this can be interpreted as a long-run relationship. This

circumstance will be called cointegration.

3. For a non-stationary time series y,, if one would fit the model y, = py,_ + =,
and test the null hypothesis Hp; p = 1 in the above AR(1) model, the mull
distribution is non-normal and it follows the Dickey-Fuller distribution.

In short if a time series is generated by a unit root process, the conventional

test procedures remains no longer valid.

So, it is important to check whether a time series is stationary or not. The detailed

discussion arc in chapter 5.

2.8 Some Dynamic Regression Models

Some other dynamic regressions models are in vogue along with univariate time series
model like ARIMA. The models are much efficient to study the relationship among

time dependent variables.

2.8.1 Vector Autoregressive Model

A vector autoregression system is a system in which each variable is regressed on a

constant and p of its own lag as well as p lags of each of the other variables in the
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VAR. The pth-order vector autoregression denoted by VAR(p) is as follows;

w=n+Ihy g +1hy o+ ... + 1Ly, +é (2.27)
where t = 1,2,...,T, 7 denotes and (n x 1) vector of constants and II; is an (n x n)
matrix of coefficients for j = 1,2,...,p and

Ep ™~ INPIO‘ Q’E]

with €. an (n x n) positive definite matrix. The equation 2.27 can be written in the

form

[Ip e [ll(L) == HQ(L2) = e HP(LP)]yt = mwteg (228)
or
H(L)yf_ = m+E& (2.29)

where, II{L) indicates an (n X n) matrix polynomial in the lag operator L. The
dynamic stability of the of the process 2.28 can be investigated by calculating the
roots of the characteristic polynomial of the VAR

(z) = (I, - Mz — T;2% — ... — T1,2P)

The roots of | II(z) |= 0 contains all necessary information about the stability of the
process. In econometrics it is more convenient to discuss the stability in terms of

companion matrix of the process which can be obtained rewriting equation 2.28 as

follows;

( Yt \ Im, II, I3 ... II \ Vi1 (g!\

P

Yi-1 Ip 0 0 ey 0 Yi—2 U

Y2 =10 I, 0 ... 0O vz | +1 0 (2.30)
Yt—p+1 \ ¢ 0 0 ... L ) \ Ye-p 0 )
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Here the first block is the VAR process and the other are identity for y;_;, y;_o and
so on. Stability depends on the eigen values of the coefficient matrix of 2.30 which
is called the companion matrix of the process. If all eigen values of the companion
matrix are inside the unit circle, then {y;} is stationary. If all eigen values are inside
or on the unit the unit circle, then {y;} is nonstationary, else {y;} is explosive.

When there are unit roots in the model, we reformulate the VAR into an equilib-
rium correction model. There are different ways to reformulate the VAR described in
the following;

For first order integrated process, The VAR expressed by equation 2.28 can be

written in the form;
Ye=DP1AY 1+ P2Ayp 2+ ...+ Bp 1Ay prr + Hysy + 7 + & (2.31)
where
M=10L +I+...+1I,

and

D, = —[Meqy + Myyp + ... +11,) for s=12,...,p—-1

Subtracting y;_, from equation 2.31 produces
Ay =D, Ay + PAy, 2+ ... + O, 1Ay pi1r — My + 7+ &4 (2.32)

where II is redefined as (IT = I,, — II; — I, — ... — IT,). Equation 2.32 is the VAR in
first order difference.
Another reformulation of VAR model using the second order difference (Acceleration

rates) in level is of the form;

A2y¢_1 = {I’Ayg_l + ‘bszt_g S AP ‘I’p_lﬁytmﬁ_l b Hyl'.—l + T+ &y (233)

where

(I):@s - In:_In_[llq+l+ns+2+A+Hp]

This presentation is useful when y; contains time series variables of 1(2). The general

condition for y; ~ I(0) is that IT is non-singular. Stationary variables cannot grow
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systematically over time. So for stationary y; we can take expectation on both sides

of 2.32 that yields;

0 = -ME(y 1) +7 (2.34)

E(yr) = I'n (2.35)

So when IT has full rank, the levels of stationary variables has a unique equilibrium
mean. This is preciously why stationary is so unresonable for economic variable.
When II is not full rank (y; exhibits I(1) behavior), 2.34 leaves some of the levels
indeterminate. At the other extreme II = 0, The VAR becomes one in the differences
Ay,, and these are stationary if ® = @, — I, has full rank, in which case y, ~ I(1).

Notice that if ®; = I, when IT = 0 makes Ay, a vector of random walk, so y; ~ I1(2).

2.8.2 Environmental Kuznets Curve (EKC) Model

A dispute issue of the environmental statisticians is the model named Environmental
Kuznets Curve model. The basic EKC model is given by:

M : Y Yx 12
in ("};)it =i+ x¢ + 6t + ,(31_fln (F)it + ‘B‘zj [l'ﬂ, (F);z] + Eit (236)

Where M is some measure of pollutant emissions or concentration (or some other
index of environmental pressure), Y is national income, P denotes the population
size of a country, and t is a deterministic time trend. The variables are observed over
a panel of countries (i = 1,..., N) and time periods (f = 1,...,7). The random
disturbances are assumed to be independent across countries. Non zero «; terms
allow for country-specific effects. The x; terms are time-specific dummy variables,
usually interpreted as disturbances affecting all countries in the panel at some point
in time in a common way and 6y allows heterogeneous linear time trends over the
sample of countries. Some or all of these country-specific or time-specific effects, or
time trends, may be restricted either on the basis of prior information or after some

specification search process.
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A weaker version of the EKC hypothesis is that the EKC has a common form,
equivalent to the restriction that 8;; > 0 and £y < 0 for all ¢, But these parameters
have different values in different countries. A stronger version of the hypothesis is

that the weak condition is satisfied and 8i; = 8, and 8y = 3, for all i.

2.9 Cointegration

This section is concerned with the statistical analysis of multivariate systems of a
special class of non-stationary time series using the concept of cointegration and
common trend in the framework of the autoregressive model with Gaussian error.
The methodology is to formulate economic hypotheses as parametric restrictions on
the Gaussian VAR model and analyze these submodels. The section is written with
the help of Hamilton (1994) and seminal papers of Headry and Juselius (2000, 2001)
part I and part II.

2.9.1 Description of Cointegration

An (n x 1) vector time series y, is said to be cointegrated if each of the series taken
individually is I(1), that is nonstationary with a unit root, while some other linear
combination a'y; is stationary, for some nonzero (n x 1) vector a. a is called the
cointegrating vector. Cointegration means that although many developments can
cause permanent change in the individual elements of y,, there are some long run
equilibrium relation tying the individual components together that is represented by
their linear combination a'y,. Existence of cointegrating relation between variables is
not identifiable from the exploratory data analysis. The only way to find out such

relation is through careful statistical analysis.
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General Characteristic of Cointegrating Vector

The cointegration vector a is not unique. For if a'y, is stationary, then so is ba'y,
for any nonzero scalar b. If a is a cointegrating vector then so ba. So, an arbitrary
normalization is made such that the first element of @ is unity.

If there are more than two variable in y;, then there may be two nonzero (n x 1)
vector a; and ay such that ajy, and aly, are both stationary. Also a; and a, are
linearly independent, then there may be h < n linearly independent (n x 1) vectors
(a1, as,...,ay) such that Ay, is stationary (h x 1) vector. where A’ is the following

(h x n) matrix

a

A=|" (2.37)

aj
If A'y, is stationary, then for any nonzero (1 x h) vector b’ the scalar b’ A'y; is also

stationary. Then the (n x 1) vector 7 given by 7’ = b’ A’ could also be described as a

cointegrating vector.

2.9.2 Cointegration in VAR

There are two general conditions necessary for y; ~ I(1) expressed as being cointe-
grated. The first condition is needed to ensure the data are not I(0), that is IT of

equation 2.32 has reduced rank r < p. so can be written as;
II=-af (2.38)

where v and 3 are p x r matrices, both of rank r, substituting 2.38 into 2.33 that

will deliver the cointegrated VAR model of the form;

Azyg_l = DAy + PoAyy 0+ ...+ ‘1),_,_1 Ayt_,p.'.] + a(ﬁ’yt_l) + T+ e (2.39)
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An important feature of the matrices o and § are that they have orthogonal comple-
ments.

The second condition, which is needed to ensure that the data are not I(2) which
requires that a transformation of ® in (2.39) must be of full rank. That means If
r = p, then y; is stationary and standard inference procedure is applicable. If r =0
then Ay, is stationary, but it is not possible to obtain stationary relations between
the levels of the variables by linear combinations. Such variables do not have any
cointegration relations and hence, cannot move together in the long run. In this case
cach of 2.32 and 2.33 becomes a VAR model in difference and standard inference is
still applicable as Ay; ~ I(0). If p > 7 > 0, then y; ~ I(1) and there exist r directions
in which the process can be made stationary by linear combinations 3y, and 2.39 is
said to he cointegrated VAR. Some time it is called vector error corrections model.

The model allow us to investigate both short-rin and long-run effects in the data.

2.9.3 Role of Deterministic Components in Cointegrated VAR

It is noticeable that the constant term as well as the other deterministic terms like
dummy variables play a dual role in the dynamic regression model. This is also true
for the cointegrated model like equation 2.39. When two or more variables share the
same stochastic or deterministic trends, it is possible to find a linear combination
that cancels both the trends. The resulting cointegrating relation is not trending,
even if the variables by themselves are. In the cointegrated VAR model this situa-
tion can be accounted for by including a trend in the cointegration space. In other
cases, a linear combination of variables removes the stochastic trend(s), but not the
deterministic trend, so we again need to allow for a lincar trend in the cointegration
space. Similar arguments can be used for an intervention dummy. So it is important
to understand the role of stochastic and deterministic components in the model. One
can obtain biased parameter estimate if the deterministic components are incorrectly

formulated. The asymptotic distribution of the cointegration tests are not invariant to
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the specification of the components. Furthermore, the properties of the resulting for-
mulation may prove undesirable for forecasting by inadvertently retaining unwanted

components.

2.9.4 Restrictions on Constant Terms

To illustrate the idea let us consider a p dimensional cointegrated VAR with a constant

and a linear trend of the form;

Ay = 1Ay, + DAYy 2+ ...+ ¢p_1Ayt_p+1 + Of{ﬁ’yg_l) + 746t 4 e (240)

All variables appeared in equation 2.40 are stationary. Without loss of generality
the two (p x 1) vectors m and 4 can be decomposed into two new vectors, of which
one is related to the mean value of the cointegration relation ,B’ytmli and the other
to growth rate in Ay,. Later we described five baseline cases frequently occured for
VAR specification.

Case 1. Trends and intercepts are unrestricted in the VAR model. This implies
linear trend in the differenced series and thus, quadratic trend in the levels of the
variable.

Case 2. Trend is restricted to lie in the cointegration space but the constant is
unrestricted in the model. This restriction allows a linear trend in the model but pre-
cludes the quadratic trend in the data. E(Ay,) # 0 implies linear deterministic trend
in the level of y;. In addition if  # 0, these linear trends in the variable do not cancel
in the cointegrating relations, so the model contain ‘trend-stationary’ relatioﬁs which
can describe either a trend stationary variable or an equilibrium relation contains the
trend. Therefor the hypothesis that a variable is trend stationary can be tested with
the form of model.

Case 3. 0 = 0 and the constant term is unrestricted, In the situation, there are

still linear trend in the data but, there in no deterministic trend in the cointegrating
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relations. Also E(Ay;) # 0, is consistent with the linear deterministic trend in the
variable but, since p = 0 these trends cancel in the cointegrating relations.

Case 4. The constant is restricted to lie in the cointegration space. In this case
there is no linear deterministic trend in the data, consistent with E(Ay,) = 0. The
only deterministic components in the model are the intercepts in any cointegrating
relations, implying that some equilibrium means are different from zero.

Case 5. The model excludes all deterministic components in the data with both
E(Ay)=0 and E(B'y;) = 0, implying no growth and zero intercepts in every coin-
tegrating relations. Since an intercept is generally needed to account for the initial
level of measurements, yo, only the exceptional case when the measurement starts
from zcro, or when the measurements cancel in the cointegration relations, in thosc
situation the restriction is justified.

The two components § and 7 play an important role in the cointegrated VAR and it is
necessary to ascertain whether they are significantly different from zero or not at the
outset of empirical analysis. Further topic of cointegration like tests for conintegration

in VAR in both classical and bootstrap approachs are described in chapter 7.

2.10 Diagnostic Checking

Diagnostic checking is an important step of modeling. It is necessary to check the
model whether the model is adequate or not. Any inadequacies revealed may suggest
and alternative model specification. Residual analysis is usually the best way for

diagnostic checking.

2.10.1 Checking White Noise Error

A residual analysis is usually based on the fact that the residuals of an adequate model
should be approximately white noise. Autocorrelations of the estimated residuals from

the model are checked. For a white noise process autocorrelations are zero. Therefore
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the significance of the residual autocorrelations is often checked by comparing with
approximate two standard error bounds +2/ VT, where T is the sample size used
in computing the estimates. Plots of autocorrelation along with the approximate
standard error bounds is helpful to take the decision. Ljung and Box (1978) statistic

is also used to check the overall acceptability of the residuals autocorrelations.

2.10.2 Checking Normality

A standard assumption is that the random shocks are normally distributed. This per-
mits us to perform approximate t tests on coefficient significance at the estimation
stage. One way to check the normality is to examine the histogram of the residuals.
Another is to plot the residuals in a normal probability plot (See Weisberg (1980) and
Liu and Hudak (1986)). Both of the procedure provide a helpful graphical presenta-
tion of the data: they do not, however, provide any formal test for normality. There
are various formal test for normality. The most recent and efficient test for normality

of the fitted residuals is described below.

2.10.3 RM Test for Normality Check

There are various tests e.g. Jarque-Bera (1987), Bowman and Shenton (1975) for
testing normality . It is well known that these tests suffers from possessing a lower
size than the nominal level when the sample size is small. Again, these methods
were proposed for testing the normality of the sample obtained randomly. But in
regression, since the true innovations are unobserved, it is a common practice to use
estimated residuals from the fitted model which may be correlated even, if the real
innovations are not. In such situation, Imon (2003) proposed a new technique using
the rescaled moment. The rescaled moments are used to estimate the coefficients of

skewness and kurtosis. The test statistic of the test is as follows;

b2 (b3 -3)° 2
U= E%— + —o_%""'— ~ X2 (2.41)
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where 0 = & and 03 = 2 n is the size of the sample. b} and b} are the measure of

skewness and kurtosis estimated from the rescaled moments defined as
b*g == 63 bl

and

b =c*b;—3)+3

by and by are the Pearsons measure of skewness and kurtosis and ¢ = n—’i_‘; where p is
the number of estimated coefficient.

Imon (2003) showed that the test procedure is much more effective in non-normal
cases when n is relatively small. The test have a slightly lower size than nominal but,

they are much more accurate in size than the other techniques.

2.10.4 Checking Heteroskedasticity

A Important question often the applied worker facing is whether the variance of
the residuals is independent of covariates or time. If heteroskedasticity does not
arise, OLS produces BLUE of the coeflicients as well as unbiased variance estimates.
However if it goes undetected, our least square estimator will not be the best and is
likely to lead misleading inference. On the other hand corrections for heteroskedastic
crror disturbance can lead to more efficient parameter esitmates. There are various
kinds of test to check the heteroskedasticity of the residuals. Goldfeld-Quandt (1972)
test and Breusch-Pagan (1979) test are popular.

There is another kind of heteroskedasticity present in which the variance of the
regression crror depends on the volatility of the errors in the recent past. A widely
used model of such heteroskedasticity was developed by Robert Engle (1982) named
Autoregressive conditional heteroskedasticity (ARCH) model. ARCH model would
lead to increased efficiency. Tim Bollerslev (1986) proposed a modification of ARCH
named generalized autoregressiove conditional heteroskedasticity moldel (GARCH).

Both of the models have a wide application in the field of econometric research.
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2.10.5 Checking Outliers

Qutliers are unusual observations which are different from the majority. Those could
rcally be a part of the data or could possibly be due to gross error such as incorrect
key punching. Of course the latter kind are easily fixed. Real ourliers, however,
are more difficult to handle. (References include Fox (1972), Kleiner et al. (1979),
Martin (1980), Martin et al. (1983)) Undetected outliers may affect every subsequent
analysis of the data series.

A careful inspection of time series plot is helpful for evaluating whether there
are outliers in time series. Standardized residual plot is also preferable to detect the
presence of outliers of the data. Standardized residuals greater than some number
such as 3.0, 3.5 or 4.0 may be considered important. Of course, some residuals may be
large just by chance. Formal outlier detection procedures are also available. Chang
et al. (1988) proposed an iterative detection procedure using the estimated residuals
from any DR. The method is not free of problem. The DR model identification may
affected by outliers. Chen et al. (1990) discussed another iterative procedure designed

to deal with this problem.

2.10.6 Checking Multicollinearity

In regression analysis, if the independent variables are correlated, is called multi-
collinearity problem. Multicollinearity violates no regression asumptions. Unbiased,
consistent estin'mhes will occur, and their standard erros will be estimated correctly.
The only effects is to make hard to get estimates with small standard error. Multi-
collinearity is a question of degree and not of kind. The meaningful distinction is not
between the presence and the absence of multicollinearity, but. between its various de-
grees. It is essentially a sample phenomenon and we do not have any unique method
of detecting multicollinearity of measuring its strength. We usc observed high R? and
few significant ¢ ratios as a rule of thumb of detecting multicolinearity. Also eigen

values and conditional index is used to measure the strength of multicollinearity.
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2.11 Bootstrap

2.11.1 Basic Philosophy of Bootstrap

According to the view of Politis et al. (1999), Bootstrap is the statistic of 21°* century.
The basic philosophy of bootstrap is quoted by the inventors own word in the preface
of their book (Efron and Tibshirani 1993) as follows;

“The traditional road to statistical knowledge is blocked, for most, by a formi-
dable wall of mathematics. Our approach here avoids that wall. The bootstrap is a
computer based method of statistical inference that can answer many real statistical
questions without formulas”

Bootstrap was first introduced by Efron (1979) for assigning the measure of accu-
racy of the estimates using the idea of resampling from a sample. It is indissolubly
linked with computer to obtain a reliable estimate. The key idea is to resample from
original data to create replicate datasets from which variability of the quantities of
interest can be assessed without long winded analytical calculation. It established a
new atmosphere for simulation a computer based technique. (See more Efron, B., and
R. J, Tibshirani 1993). During the past four decades technological progress has made
massive increase possible in the speed of digital computers. For scientific computing,
a typical PC of today is several hundred times as fast as a typical PC of just a decade
ago, although it costs less than half as much. Now a day a simple PC performs a
huge amount of calculation in a single second. Again computer is also very cheap
now. Development of computer technology has made econometric analysis an easy
task to the applied econometricians.

The reason for using bootstrap inference is that hypothesis tests and confidence
intervals based on asymptotic theory can be seriously misleading when the sample
size is not large. For example, see Davidson and MacKinnon (2002a), Davidson and
MacKinnon (1992). Of course, asymptotic tests are not always misleading. In many

cases, a bootstrap test will yield essentially the same inferences as an asymptotic test
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based on the same test statistic. Even in some situation when asymptotic theory fails
or inapplicable, bootstrap produce better result. Although this does not necessarily
imply that the asymptotic tests are unreliable, the investigator may reasonably feel
greater confidence in the results of asymptotic tests that have been confirmed in this
way. The main advantage of bootstrapped method is that any inference is possible
for both which probability distribution is completely known or not. Again in classical
approach, inference depends on normality of the residuals. But in real world situation,

it is sometime impossible.

2.11.2 Simulation vs Bootstrap

The process of interest is usually called system. In order to study a system scientifi-
cally, we often made some assumptions about how it works. These assumptions which
usually take the form of mathematical or logical relationship constitute a model. Gen-
erally the model is used to try to gain some understanding of how the corresponding
system behaves. In simulation we use a computer to evaluate a model numarically,
and data are gathered in order to estimate the desired true characteristic of the model.

In real world situation, the assumptions that constitutes a model remains un-
known. Then we try to estimate the model from the observed sample. When the
simulation is done using the estimated model, the simulation is termed as bootstrap-

ping. A schematic difference of simulation and bootstrap is presented in figure 2.2

2.11.3 Bootstrapping IID Data

The technique of bootstrap is simple. Let us consider, we have a sample x which is
independently and identically distributed. We just know the empirical distribution
F. of x. Let é(m) be the statistic of interest. We want to know the distribution
of § so that we can draw the inference on 8. The bootstrap algorithm to draw the
distribution is as follows.

1. Select B independent random samples depending on E, ], 23, ..., oy from given
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Figure 2.2: A schematic diagram of bootstrap and simulation as it applied to one

sample problem.
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sample x
2. Evaluate bootstrap replication corresponding to each bootstrap samples
3. Estimate the statistic of interest and realize the distribution of the statistic
The Illustration of bootstrap algorithm for estimating the standard error of an

estimate is presented in the figure 2.3
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Figure 2.3: Bootstrap algorithm for estimating the standard error.

The procedure is termed as non-parametric bootstrap. Here it is notable that, the
sample is independently and identically distributed. Each estimate from bootstrapped

sample is called replication.
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2.11.4 Parametric Bootstrap

Bootstrap sample can be carried out parametrically. In this procedure F' = Fj is an

cstimate of F' = Fy derived from parametric model to the data.

2.11.5 Bootstrapping Regression

In regression analysis, the mean of random response Y observed at value z = (1, zy, . .., ;)

of the explanatory vector variable is
E(Y/z) = p(z) = 2’8

The model is complicated by specifying the nature of random variation. Lincar re-
gression with normal random error having constant variance, the least squares theory
of regression estimation and inference provides exact method for analysis. But for
generalizations of non-normal error, and non-constant variance, exact method rarely
exists and we are faced with approximate methods based on linear approximations to

estimators and central limit theorems.

Model Based or Fixed X Approach

The linear regression data set contains n data points 21, #4,...,2, where z; is itself a
pair.

x; = (ci, ¥i) . (2.42)
Here c; is a 1 x p vector of covariates, and y; is the response. The probability structure
of the lincar model can be expressed as

vi=cl+e for i=1,2,...,n (2.43)

The error terms e; in equation 2.43 are assumed to be a random sample from an
unknown distribution F having expectation 0. Thus the probability model P — z

for linear regression has two components
P=(6,F)
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where 3 is the parameter vector of regression coifficients and F is the probability

distribution of the error terms. The general bootstrap algorithm requires to estimate

P. The bootstrap algorithm for regression by estimating P is as follows;

1;

[y}

Estimate the model coefficients 5',_ and é;. The obvious estimate of F is the

empirical distribution on the é;.

. With P = (fi F') Select a random sample of bootstrap error terms

F—(cl,ch...,e% ) =¢
The bootstrap responses y; are generated according to 2.43 as
ul =cb+e
Fit the linear regression for z* = (¢;, y;) and obtain 8.

. Repeat 1-4 a number of times to obtain the bootstrapped distribution of 3.

Random X Approach

In this approach we can imagine the data as a sample from some (P° + 1) dimensional

distribution F. In such situation the regression coefficients are viewed as satatistical

functions of F' with no assumptions on e;. For bootstrapping, it is appropriate to

take F' to be the empirical distribution of the data pair (c1,%1), (¢2,¥2); - - -, (Cn, Un)-

The

resampling simulation therefore involves sampling pairs with replacement from

(¢i, ;) so called pair wise bootstrap. Bootstrapping algorithm is as follows;

1

2

3

.Forj=1,2,...,n set c}zc,:;,,y;-:y,:-;

. Sample i}, 5, ..., randomly with replacement from {1,2,...,n};

i)
. Fit the regression to (c},v}), (c3,v3),- .., (c}, ys) giving the necessary estimates

of interest.

4. Repeat 1-3 a number of times to obtain the distribution of estimates

70



Methodology

2.12 Bootatrapping Time Series

Bootstrapping time series is not possible in the process because, time series has a
complex time dependency structure. If one applies the IID bootstrap to the time
series and if the data contain heteroscedasticity or autocorrclation, the randomly
resampled data will not preserved the properties. So the statistic estimated from the
sample will produce inconsistent result (Shing (1981), Babu and Shing (1983)). Thus,
the IID bootstrap fails for time-dependent data. In such situation all the dependency
information is lost. So the estimate o2 does not converges to the correct limit given
by 02 = § v(s) rather it converges to y(0) where y(s) is the autocovariance at lag
s and 7(050105 the variance of the series (Politis 2003). So algorithm of bootstrapping
time series is a liitle bit complicated than IID data bootstrap and has a wide variey

described latter.

2.12.1 Parametric or Model Based Bootstrap
Bootstrap in ARMA

Almost immidiately after Efron’s (1979) paper Freedman (1981, 1984) introduced
the residual based bootstrap for linear regfessiun and bootstrap for autoregression
was provided by Efron and Tibshirani (1986, 1993). They reduced the complex
dependency of the data to an IID structure by fitting a parametric model. The
residual based bootstrap is same as IID bootstrap of the estimated residuals from
the fitted model. So it is sometimes called model based bootstrap or residual based
hootstrap.

Let us consider a time series y, follows AR(p) of the form;

o(L)y = ¢ (2.44)

where ¢(L) = (1 —é1L— ¢oL%—...— $,LP) is an invertible polynomial. The assump-
tions for the residual based bootstrap is that e, ~ IID, E(e;) = 0 and E(¢?) < oc The
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series generated by the process 2.44 may be bootstrapped as follows;
Step-1 Determine the order p of the AR(p) process
Step-2 Estimate the parameter é(L) of the model

Step-3 Generate the bootstrap innovations €} from the residuals €; = ¢(L)y,

Step-4 In such way the initial p observations is unobtainable because Y = (y1, 3, .., ;)

is unknown. It can be obtained by a random draw from y; or can be used any other
method of initialization described below at the subsection ”Initialization Problem”.
Step-5 Generate pseudo-data (ﬁ(L)yz = g} conditional on Y

Step-6 Then we estimate the bootstrap estimate of the parameter ¢*(L) from the
bootstrapped data series y;.

Step-7 The procedure 1 to 6 repeated many times to build the empirical distribution
of ¢(L).

Generally, AR(p) models are estimated by least square, Yule-Walker method may
be used for small sample. If no intercept included in the regression model, the resid-
uals must be centered by €} — & to ensure the zero population mean. & is the mean
of & . Sometime residuals are rescaled by a factor [T' — p/(T — p — d}]% to give
the desired variance of the residuals. d denotes the number of estimated coefficients.
(Stine(1987), Peter and Freedman(1984)). If the assumed model holds true, then the
above procedure of bootstrap works well for sample mean or more complicated statis-
tic even it enjoys a higher order accuracy property as was in Efron’s [ID. bootstrap.
See Bose(1988).

An alternative class of parametric models are stationary MA(q) models of the
forms;

ye = 0(L)e, (2.45)

0(L) is the polynomial of the lag operator. MA(q) models are rarely bootstrapped in
econometric practice. Simulation results for the finite order stationary MA(1) model

can be found in De Wet and van Wyk (1986) and Bose (1990). Bose (1990) proved that
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the bootstrap approximation of the parameter estimates in moving average models
are accurate to the order o(T‘%). In contrust, the asymptotic normal approximation
is accurate only to the order O(T~%).

Chatterjee (1986) applied the bootstrap algorithin to general ARMA(p,q) models

of the form;

&(L)y, = 0(L)e; (2.46)

The scrics generated by the process 2.46 may be bootstrapped as follows

Step-1 Determine the order p and q of the ARMA(p,q) process

Step-2 Estimate the parameter ¢(L) and (L) of the model

Step-3 Generate the bootstrap innovations &} from the residuals é, = 6-1(L)(L)y
Step-4 Choose a large positive integer 7, set yy = 0 for £ < 7 and generate IID draws
foref fort = —7,...,T.

Step-5 Generate pseudo-data y; = ¢~ (L)8(L)e} for e} for t = —7,..., T and retain
the last T values of y;

Step-6 Calculate the bootstrap estimate of the parameter ¢*(L) and 6*(L) from the
bootstrapped data series y;.

Step-7 The procedure 1 to 6 repeated many times to build the empirical distribution
of ¢*(L) and 6*(L).

Under regularity conditions, Kreiss and Franke (1989) proved the asymptotic valid-

ity of the bootstrap approximation for ML estimators in the finite-order stationary

ARMA models.

Bootstrap in VAR

Superficially, the bootstrap algorithm for VAR models is similar to the familiar al-
gorithm for the regression model with fixed regressors. However, in autoregressive
models the OLS estimates of the slope coefficients are systematically biased away

from their population values. As a result, the standard bootstrap algorithm used by
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Runkle (1987) may be misleading in small samples. The size of the bias depends
on the sample size, the persistence of the data generating process and whether a

deterministic time trend is included in the regression.

2.12.2 Initialization Problem

The effect. of p initial conditions Yy = (31, s,...,¥,)" like all observations for Y; are
stochastic. Though the effect of conditioning on a particular set of initial conditions
is asymptotically negligible, it is not appropriate to condition on Yy in order to gen-
erate bootstrap replicates. This type of initialization may generate a non stationary

data series. To avoid such problem it is better to start the series in equilibrium or

to generate a longer series of innovations and start Yiforj=1,....tatj= -k
The ‘burn-in’ period —k, ..., 0 is chosen large enough to ensure that the observations
Yi,-.-,Y; are essentially stationary. We can discarded the first y_y, ...,y observa-
tions.

Again bootstrap replicates conditional on Y, disapproves the randomness of Yj.

(Liitkepohl (1991), p. 496) suggested a way to randomize Yg is to set
s peof weadk
Yy =i} (}:E 25;)

where I is the estimate of E(y,y,) defined by ¢(L)

This procedure preserves the second moment structure in the data. The main draw-
back with this method is that it requires the estimated process to be stationary. For
nonstationary coeflicient estimates, the procedure breaks down because I is noninvert-
ible. Even for borderline stationary processes. Rayner (1990) suggest an alternative
method from the estimated moving average representation as Yy = é)*l(L}ef. But
this requires a truncation of the infinite sum. Stine (1987) used another approach for
initialization. He divided the observed data into T'— p+ 1 overlapping block of length

p and randomly select one block for Y with replacement.
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2.12.3 Lag Order Problem in Parametric Bootsrtap

The bootstrap can only be expected to perform well when the parametric model pro-
vides a good approximation to the true model. Determining the correct orders of an
ARMA or AR model is thus a crucial issue. For example, Chatterjee (1986) reported
simulation results for ARMA(1 ,1), ARMA(2,0) and ARMA(0,2) models. He com-
pared bootstrap and asymptotic estimates of standard errors. Chatterjee’s (1986)
bootstrap results was quite satisfactory, but observed that much of the attraction
of this method depends on selecting the right order. He noted that the bootstrap
performs poorly if the selected order is not correct. Recent work by Kilian (1996a)
offers some guidance on selecting the lag order. For the AR(p) model, the lag order
selection criterion need not be consistent for the lag order for the bootstrap algorithm
to be asymptotically valid. However, it is necessary that the probability of underesti-
mating the true lag order is asymptotically zero. Provided that the range of lag orders
considered includes the true lag order, this suggests that a wide range of information-
based lag order selection criteria including the Akaike Information Criterion (AIC)
are potentially valid criteria.

Kilian (1996a) also points out that the consequences of bootstrapping an over
parameterized VAR model may be very different from those of bootstrapping an
under-parameterized model. This suggests that lag order selection criteria such as the
Schwarz information Criterion (SIC), which are known to be biased downward in small
samples, will result in poor bootstrap estimates. Kilian’s simulation results confirm
that in small and moderate samples the coverage accuracy of bootstrap confidence
intervals for VAR impulse response estimates is much closer to nominal coverage for
the AIC than for more parsimonious criteria such as the SIC or the Hannan-Quinn

Criterion.
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2.12.4 Non-parametreic Bootstrap for Time Series
Sieve Bootstrap

If the true moldel is infinite ordered, the asymptotic justification of the bootstrap
approximation proposed by Bose (1988) and Kreiss and Franke (1992) is no longer
valid. Bootstrap algorithms designed for this class of processes: the sieve bootstrap
proposed by Biihlmann (1996a). He considered a class of linear, infinite dimensional
process which can be approximated by a sequence of finite-dimensional autoregres-
sive approximations. This so-called sieve bootstrap is model free within the class of
linear MA(oo) processes with polynomial decay. Biihlmann (1996a) proved that the
sieve hootstrap gives correct approximations to the distribution of smooth functions
of linear statistics of the data. Bithlmann (1996b) studied the sieve bootstrap for

autoregressive models including a deterministic time trend.

Cholesky Factor Bootstrap

Diebold, Ohanian and Berkowitz (1995) formulated a bootstrap algorithm which does
not require conditioning on any parficular parametric model of the VARMA type. The
context is the vector covariance stationary MA(co). Any finite realization of length

T thus has representation:

Y = Pe (2.47)

where Y is rt x 1 vector of time series variable, P is T x rt and ¢ is rT' x 1. The

bootstrap procedure is as follows;
1. Consistently estimate COV(Y) =X
2. Take the Cholesky decomposition PP’ = &

3. Resample from the normal distribution * ~ N(0, X)

4. Generate pseudo-data: y* = Pe*
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5. Calculate bootstrap statistics of interest
6. Repeat steps 3-5 many times and build up the empirical distribution of interest.

This “Cholesky factor” algorithm is a model-free method for generating pseudo
data focusing on the second moment properties of the observed data. Note that
in place of the lag order selection problem in parametric models, the nonparamet-
ric Cholesky factor bootstrap requires a bandwidth choice. Data-based bandwidth
sclection procedures for consistent covariance matrix estimation may be found, for ex-

ample, in Andrews (1991), Andrews and Monahan (1992) or Newey and West (1994).

Block Bootstrap

A different strategy has focused on resampling blocks of contiguous time series ob-
servations. In the method b = Tk + 1 blocks of data is defined. The blocks may be
overlapping or not. The method resamples the blocks of data (moving blocks). For
more see Kiinsch (1989) and Liu and Singh (1992). Resampling overlapping blocks
may provide somewhat higher bootstrap estimation efficiency than non-overlapping
blocks, although the available evidence indicates that the efficiency gain is small (e.g.,

Hall, Horowitz and Jing (1995)).

2.12.5 Forecasting with Bootstrap

An AR(p) process forecasts is a conditional distribution of all past observation, is the
same as the conditional distribution on the last p observation of the sample realization.
Bootstrapping such conditional distribution requires the last p observation identical
to the original series. So the model based bootstrap algorithms are not appropriate for
forecasting. Thombs and Schucany (1990) proposed a method to construct forecast
confidence interval with bootstrap approach using backdraw representation of a time
series (Box and Jenkins, 1976, pp. 197-200). The correlation structure of forward

representation and backward representation remains the same. So, y, can be expressed
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as;

¢(B)y = as (2.48)

where B indicates the forward difference operator, B = L~' and ¢(B) =1 — ¢ B —

¢9B?—...— ¢,BP, i.e., y, expressed as a linear combination of future values plus error
il 1

term. Resampling (IID) can be used for backdraw residuals a, and hence reproduce

the time series fixing the last p observations as initial observation. Thombs and

Schucany (1990) algorithm for bootstrap prediction is summarized in the following;

i

Determine the order of AR(p) process.

. Estimate the parameter ¢(L) from the observed data. Obtain the forward

residuals £, and backward residuals a;. Let E. and F, be the empirical cdf of

the centered and rescaled forward and backward residuals respectively.

Then we generate the bootstrap innovations a from the backward residuals a;

. Generate bootstrap realization {y;} for {1} keeping fixed the last p observation

of the samples via

*

Y= W for t=T,T-1,...,.T—p+1 (2.49)

yr ¢(B)y; +af for t=T-p,T—p-1,...,1 (2.50)
Calculate ¢*(L) for y; and compute the bootstrap future values using the model

Yo = 8" (L)Wiri—; + Etu (2.51)

. Repeat steps 3-5 many times and buildup the conditional empirical distribution

of the l-step ahead forecasts Jrp-

Breidt, Davis, and Dunsmuir (1992, 1995) also proposed a method for conditional

bootstrap prediction which is little bit different from Thombs and Schucany (1990).

McCullough (1994) finds that the conditional forecast distributions implied by the

Thombs and Schucany (1990) procedure are very different from those implied by
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the Breidt et al. procedure. Sharker and Nasser (2004) extend the algorithm to
ARMA(p,q) empirically for small sample. The efficiency of their technique is not well
justified.

2.13 Hypothesis Testing with Bootstrap

Let us consider a sample {z1,...,2,} be an IID sample n random variables with
distribution function F' and the parameter 6(F) which is a real valued functional
statistic to be tested for Hy : 6(F) = 6p. To test this hypothesis, Beran (1984,

1986, 1988) proposed two alternative approaches described in the following;

2.13.1 The Test Statistic Approach

This approach approximates the exact critical region of the test by the percentile of
its bootstrap distribution. The unknown distribution of the sample is replaced by its
empirical distribution.

Let T,, = T,(Xy. ..., X,) be the test statistic for the mull hypothesis Ho : 0 = 6

vs. H : 6 # 6y and Fr(€;6,) = Prob(T,, < £) is the distribution of T}, under Hy.

The critical region of the test is given by

du(5:00.F) = Fr'(3:60) (2:52)
du[l—%;e[,,F) = F,‘-l(l—%;t’}g) (2.53)

where « is the significance level of the test. In most application Fr(-) is unknown

and therefore have to be replaced by estimates

di(g—;ﬂu,ﬁ) = P! %;90) (2.54)
b1 5560, F) = Fi'(1-5:i00) (2.55)

where Fj(+) is the bootstrap distribution of T}, based on the empirical distribution of

X given Hy is true.
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2.13.2 The Confidence Region Approach

In this approach a confidence region for the estimated parameter is constructed and
the null hypothesis is rejected if 6y lies outside the confidence interval. Whenever the
parameters of interest can be transformed to a normal pivot, an appropriate critical
region can be derived without knowledge of the exact functional form of the trans-
formation.

Let It, (X, 0) be a pivot for @ where X = (X),..., X,,) and Fg(€;0) is the correspond-

ing c.d.f. of R,. The critical values of the confidence region approach are

(30 F) = Fz'(5:0) (2.56)
cll=5:0,F) = Fz'(1-5:6) (257)
Replacing Fg by its bootstrap approximation yields
ci(3:0.F) = Fy'(5i0) (2.58)
el - g;é, By = Fyla- g;é) (2.59)

It is sometimes difficult to find the pivot R(X,#) and for some parametric families no
such pivot exists. Furthermore, in non-parmetric cases pivots should be constructed
which hold for all possible distributions. Efron (1979) considered a class of estimators
g for which a monotonic increasing function g(-) exists, such that the transformed
quantities ¢ = g(#) and ¢ = g(d) satisfy

(6~ ¢)/7~ N(0,1) (2.60)

where 7 is the standard error of ¢. Since the percentile method for constructing
bootstrap confidence interval is transformation invariant, the normalization to the
pivot (2.60) is automatically incorporated. Efron (1982, 1987) extends the results to
BC: (¢-¢)/m~N(-2,1) (2.61)

and
BCo: ($—¢)/7~ N(—2(1+ag), (1 +ag)?) (2.62)

where zp and a are suitable chosen constants.
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2.13.3 Double Bootstrap

As with most statistical methods, the bootstrap does not provide exact answers.
Beran(1988) showed that the bootstrap inference is refined when the quantity boot-
strapped is asymptotically pivotal. A statistic is said to be asymptotically pivotal
if its limiting distribution does not depend on DGP p € M where M is a model,
a set of DGP. Most statistic commonly used in econometric practice is asymptoti-
cally pivotal. Many statistics of interest based on AR(p) and ARMA(p,q) models arc
asymptotically normal and can be studentized to make them asymptotically pivotal.

If an asymptotic pivot t(x) is not and exact pivot, its distribution depends on
which particular DGP p € M generates the data used to compute it. In this case
bootstrap inference is no longer exact in general. The bootstrap samples used to
estimate the finite-sample distribution of t(z) are generated by bootstrap DGP which
although it usually belongs to model M. Davidson and Mackinnon (2000) proposed
a method of calculating bootstrapped p-values in such situation named Fast Double
Bootstrap. It is a modification of bootstrapped p-value. The procedure is closely
related to double bootstrap developed by Beran (1988). (Davidson and Mackinnon
(2000) used the term because, Beran (1988) proposed the genuine double bootstrap
which is computationally expensive. They used the technique with more efficiently

and renamed. Fast is for “Fast version”) Their technique is as follows;

1. Obtain B first level bootstrap from the DGP /i in the usual way and use them
to compute bootstrap statistics #(x*®) for b = 1,2,..., By and the bootstrap
p-value p*

2. For cach first, level bootstrap sample b, compute the second level bootstrap DGP
p; and use it to compute B, second level bootstrap samples. These samples are
used to compute a test statistic #(x***) for | = 1,2,..., By. These are used in

the Fast double bootstrap procedures (FDB)
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3. For first level bootstrap sample b, compute the second level bootstrap p-value
- 1 g *+hl
B = 5 (™) < t(a) (263)
2 =1

I is the indicator variable. if #(z***) < #(z) holds true I = 1 else I = 0

4. Finally compute the double-bootstrap p-value
1 .
5 =5 I <) (2:64)
1 =1

Thus the double bootstrap p-value is equal to the proportion of the second level
bootstrap p-values that are more extreme than the first level bootstrap p-value. The

procedure does not requires any sort of independence between the bootstrap DGP

and the test statistic.

2.14 Softwares Used

SPlus 2000 professional is most frequently used for simulation and bootstrap pro-
gramming. Sometimes Eviews, EasyReg, SPSS, Statistica, Excel ete. are used for
more convenience. For word processing LaTex is used. MS Paint and MS word are

also sometimes used for picture processing used in LaTex.
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Chapter 3

Exploratory Data Analysis

Abstract

In this chapter data has been explored and analysed using visual inspection.
Time series plots shows that COs emission per capita, GDP per capita and
Total energy consumption of bangladesh have trended over time. There may
exist a long-run equilibrium relationship between COg2 emission per capita
and GDP per capita. First difference of the variables are moving around
some central value. Phase diagram illustrates that none of the variables
create an attractor. Both the variables arc increasing at some constant rate.
Decadal box plot study shows that both median of CO2 emission per capita
and variation of emission have increased in consecutive decades. Scatter plot
study demonstrates that there may exist any causal relationship from GDP

per capita to COg emission per capita.
3.1 Introduction

Exploratory data analysis (EDA) utilizes minimum prior assumptions and thus allow
the data to guide the choice of appropriate models (Tukey, 1977, Hoaglin, Mosteller,
Tukey, 1985). Exploratory Data Analysis (EDA) reveals the behavior of the data and

the structure of the analysis. It is a robust technique. Using the visual inspection



Exploratory Data Analysis

of the data series one can decide about data and structure of analysis. It helps to
ensure that a few extraordinary data values do not influence the result unduly.

The chapter includes some exploratory presentation of the study variables. The
next section 3.2 data explored with time series plot. Section 3.3 describes the phase
diagram, section 3.4 uses box plot to see the decadal variation and finally in section 3.5

scatter plot is used to explore the causal relationship between the two variables.

8.2 Tim.e Series Plot

Collecting data applied researchers and econometrician are interested to see the visual
structure of the data. In time series plot, the data are plotted against their occurrence
time. Vertical axis is the scale of the variables and horizontal axis represents the
observation time. If the data have a strong up or down trend we may suspect the
nonstationarity of the data series. In such situation we should use the transformed
series taking difference a lag from current time values for analysis. Sometime data
series may be nonstationary without showing any upward or downward trend. The
graphical Illustration 3.1 represents the untransformed plot of the study variables CO,
cmission per capita in metric tons, GDP per capita in constant 1995 $US, squared
GDP per capita and Total energy consumption in unit 1000 tons of oil equivalent.
All the variables have strong trend. These trends may be stochastic or deterministic.
Figure 3.2 illustrates the simultaneous dynamics of log transformed CO, cmission
per capita and log transformed GDP per capita. The plotting has been done under
different scale. The left vertical axis represents the scale log(CO, emission per capita)
and the right vertical axis is for log(GDP per capita). The figure shows that there
may exists a common trend in both of the transformed series. The figure 3.3 is the
time series plots of differenced variables in different scale. The figure shows that time
trend is removed after differencing. But their means likely nonzero. The figure 3.4 is
the plot of all differenced variables in a common scale. Figure shows that all the log

transformed differenced series have nonzero similar means.
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Figure 3.1: Graphical presentation of untransformed CQ, emission per capita (unit:
metric tons of CO, per person), GDP per capita (unit: constant at 1995 US$ per
person), squared GDP per capita and total energy consumption (unit: thousand tons

oil equivalent).
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Figure 3.2: Graphical presentation of log transformed CQ, per capita and GDP per

capita.
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Figure 3.3: Graphical presentation of differenced log transformed variables in different.
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Figure 3.4: Graphical presentation of differenced log transformed variables in the

same scale.
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3.3 Phase Diagram

Dynamical systems are nonlinear feedback systems that sometime produce complex
behavior from relatively simple functions. These systems are generally characterized
by no single solution rather by multiple or even an infinite number of solutions indi-
cating that a multitude of states are possible. Researchers have therefore relied on
phase space diagrams to identify possible limits to the range of potential solutions
(Cambel, 1993). A useful approach for this analysis is a time-based space comparing
variables in the previous year (y-axis) with those in the current year (x-axis). The
dynamics of a system, in this case emissions of an economy, then traces out a trajec-
tory phase space which can reveal whether the measure is changing in a systematic
or irregular fashion. Systems will often be “attracted” to a region of the phase space
indicating that the variable is fluctuating around an average value. A description of
attractor can provide a classification for a given dynamical system (Peters, 1991). If
variables level simply increased at a constant rate, the path would trace a straight
line. Phase diagram reveals the behavior of an individual variable through time. For
this reason considerable size of time scries are most useful. Generally the concept of
phase diagram was ofiginated in particle physics. However, the econometric data sets
which include time series with measures of variables before and after the transition
to stable or declining levels are seldom found. Carbon dioxide emission per capita
under an economy may be one of the more complete and is therefore suited to phase

diagram.

3.3.1 Phase Diagram of CO; Emission Per Capita

Figure 3.5 displays the phase diagram of CO, emission per capita in Bangladesh. In
the figure, the ordinate represents emission levels in the present year and the abscissa
indicates emissions in the previous year. Individual points arc labeled with the pre-

vious year, and are connected together in time sequence. The figure illustrates the
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dynamics of CQy emission per capita. The figure shows that no significant attractor
has developed within the studied time period. The measure is increasing in a system-

atic fashion and the path is nearly a straight line.
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Figure 3.5: Phase diagram of CO, emission per capita.
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Figure 3.6: Phase diagram of GDP per capita.
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3.3.2 Phase Diagram of GDP Per Capita

Figure 3.6 displays the phase diagram of GDP per capita in Bangladesh. The fig-
ure has been drawn in the same fashion described in previous subsection. Figure
illustrates that except some previous years the line is straight and no attractor has
been developed. So we may conclude that GDP per capita in Bangladesh has simply
increased at constant rate. This may also happen due to non-stationarity liable to its

non-constant mean over time.

3.4 Boxplot Study

The decadal change and variation is studied in the boxplot. For this purpose we have
divided the data according to three successive decades. Boxlot of the three decades
are shown in figure 3.7 in same scale. The figure illustrates that, both median emission
and variation of emission have increased in consecutive decades. This is alarming as
cmission increases with instable fashion. This plots also showed the deeadal trend.

The plot reveal that there were no value abruptly fluctuated from the other.

3.5 Scatterplot Study

To find the relationship of rate of change of GDP per capita with changing rate of
CO;, emission per capita we have constructed a scatter plot. Figure 3.8 shows that
there may exist a relationship that rate of CO, emission per capita is directed by the

rate of change of GDP per capita.
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Figure 3.7: Decadal boxplot of CO, emission per capita.
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Chapter 4

Environmental Kuznets Curve

Abstract

In this chapter, we study the most familiar environment development re-
lationship model Environmental Kuznets Curve (EKC) for COy emission
of Bangladesh. Classical method is used to estimate the parameters. To
provide the validity of inference on parameter, bootstrap technique is used.
Both classical and bootstrap result shows that per capita CQ2 emission of
Bangladesh is better explained by time trend rather than GDP per capita
and it's square. The COz emission of Bangladesh does not follow EKC in

static sense. The data has severe multicollinearity problem.
4.1 Introduction

Economic development affects the environment no doubt, but a fundamental ques-
tion of economic development is to what degree increases in economic activity affects
the natural environment. The common way to cvaluate such growth environment
relationship is to regress the environmental measurement against the measure of eco-
nomic development. We have mentioned in chapter 1 that such models of growth and
environment have been estimated for a large number of measures of environmental

degradation in both panel and cross-country studies for a variety of different coun-
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tries. Some of the studies, often with panel data for a group of countries, provide some
evidence to support a so-called Environmental Kuznets curve (EKC) where environ-
mental degradation initially increases with the level of per capita income, reaches
a turning point, and then declines with further increases in per capita income. In
the review of literature we have seen that EKC often does not exist for a number of
important measures of environmental degradation, particularly water quality, and for
many consumption-based measures of environmental degradation (Rothman 1998).
The potential problems with estimating reduced form models of income-environment
rclationships are detailed by Stern, Common, and Barbier (1996). However, if the
estimated EKC results are correct, the fact that many of the reported turning points
are at a level greater than the current income of most countries then increasing per
capita income implies declining environmental quality for poor and middle-income
countries for the foresceable future (Ekins, 2000). Even if an EKC exists for wealth-
ier countries it may arise from the “export” of pollution-intensive industries and thus
may represent the ability of rich countries to separate themselves from their own
consumption by engendering environmental degradation in poor countries (Rothman
1998). The possible existence of an EKC for some measures of environmental degra-
dation in a panel of countries begs the question, “what is the nature of the growth-
environment relationships for Bangladesh?” I have not found any article on economic
growth-environment relationship so far for Bangladesh.

The organization of the chapter is as follows; section 4.2 describes the model
estimation and testing using classical approach. Section 4.3 describes some hypothesis

testing for EKC in bootstrap approach and finally conclusion is in section 4.4
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4.2 EKC for Bangladesh in Classical Approach

We examine the relationship of CO; emission and GDP per capita of Bangladesh. To

study the relationship the following model is used;
(COy); = a + 6t + ByGDP; + B,GDP? + ¢, (4.1)

where CQj is the log of CO, emission per capita, GDP is the log GDD per capita. The
sample size is 28 for both CO, emission per capita and GDDP per capita. To estimate
the parameter we use OLS technique under as usual assumptions. Then we evaluate
the model using various classical econometric tests. The OLS results together with

diagnostics are presented in table 4.1.

Table 4.1: Results of parameter estimation by OLS for EKC model

Coefficients SE t-value Pr(> |t])
(Intereept) -9.1393 4.4872 -2.0367 0.0524
Trend 0.0221 0.0041 5.3347 0.0000
B . 6.6297 3.6850 1.7991 0.0841
Ba -1.3946 - 0.7670 -1.8183 0.0810
Test Statistics | F: 604.4 RM: 0.6995 G-Q: 0.4204 | J-B: 0.5221
p-value 0.00 0.352 0.433 0.770
RSE: 0.0224 R?: 0.9864 | D-W Stat: 1.805 | k:1996.87 | CI: 3987472

4.2.1 Results in Classical Approach

Table 4.1 shows that about 98.64% variability of COy emission is explained by the
model. The time trend coefficient is highly significant. The other cocfficients arc
significant at 10% level. The F-statistic implies that the overall regression is highly

significant. Thus the model as a whole have an explanatory power. RM test (Imon,
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2003) and Jarque-Bera test do not reject the null hypothesis that the residuals are
normally distributed. The D-W statistics implies that the null hypothesis of no
serial correlation can not be rejected at 5% level of significance. Plot of SACF of
the residuals (figure 4.1) and their corresponding L-B statistics suggests that there
is no unexplained serial correlation left by the model. Figure 4.2 is a scatter plot of
residuals vs. GDP per capita. Figure suggests that the residual has constant variance.
The Goldfeld-Quandt (G-Q) test also suggests that the null hypothesis that the error
variance are homoscedastic may be accepted. Presence of outlier was checked by
standardized residual plot. Figure 4.3 illustrates the standardized residual plot from
the fitted EKC. Plot shows that there are no values abrupt fluctuation as no values

is more than three standard deviation from zero.

Autocorrelation Function

Residuals

(Standard erors are white-noise estimates)
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Figure 4.1: SACF plot of residuals.
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Figure 4.2: Scatterplot of residual vs. GDP per capita.

Standardized Residual

Figure 4.3: Standardized residual plot of the residuals obtained from the EKC model.
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Figure 4.4: QQ plot of residuals.
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Figure 4.5: Histogram of residuals.
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4.2.2 Drawbacks

The histogram (figure 4.5) and QQ plot (figure 4.4) of the residuals incites question
on the validity of the inference of the RM test, JB test and DW test. RM test and
JB test are asymptotic tests designed for large sample assuming that the residuals
are independent. DW test depends on assumption of nonstochastic regressor. Our
regressors are stochastic. So to draw a valid inference on the coefficients we use the
resampling technique.

It is remarkable that R? = 0.986 is very high, F statistic has rejected the hy-
pothesis that the partial slope coefficients are simultaneously equal to zero but the
individual ¢ statistic has shown that only one slope coefficient is significant. It is a
symptom of presence of multicollinearity. So we calculate the cigen values of X'X
so as to find the condition number k and the condition index (CI). The value of
k = 1996.87 and Cl= 3987472 is alarming. Our k value exceeds 1000 and the CI

value exceeds 30 therefore suggest the presence of severe multicollinearity.

4.3 EKC in Bootstrap Approach

It is also possible to use the bootstrap technique to construct empirical sampling
distribution of the coefficients. Here we use the model based bootstrap with fixed
regressor. We want to test the hypothesis Ho; #; = 0. So in our data generating
process we set 3, = 0 so that we get the distribution of §; under the null hypothesis.
9999 replicates taken to draw the empirical distribution of the coefficient 61‘ The
other hypothesis & = 0, § = 0 and 3, = 0 are tested using the same manner. The
distributions of the coefficients under the null hypothesis are illustrated in figure 4.6
and figure 4.7. The histogram and QQ plot showed that the replicates of the coef-
ficients under the null is distributed normally. The bootstrap test results has been
summarized in table 4.2. Result shows that &, Bl and ,ég is not a rare value under the

null hypothesis hence the null hypotheses a = 0, ; = 0 and 3, = 0 arc accepted at
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5% level of significance. The trend coefficient is highly significant and the histogram
of the trend coefficient under Hy does not contain the value of §. Thus, bootstrap

test procedure supports the classical test result.

4.4 Conclusion

From the analysis it is clear that CO; per capita, GDP per capita and squared GDP
per capita are trended over time. So there exists severe multicollinearity in the data.
It is also clear that these variables does not follow the global environmental kuznets
curve. Nevertheless, analysis suggests that the constant and trend coefficients arc
highly significant. The final conclusion is that CO, emission is better explained by
time trend model rather than EKC. That is why, in the next chapter we try to model

them separately by Box-Jenkins modeling philosophy.

Table 4.2: Test results of bootstrapped OLS for EKC model

Coeff | Estimates | Hypothesis Rejection Point

1% 5% 95% 99%
Const. | -9.13931 =0 -9.618145 | -6.825136 | 6.794673 | 9.594075
Trend | 0.02209 6=0 -0.008851 | -0.006376 | 0.006495 | 0.008847
5 6.62971 B8 = -8.016327 | -5.721828 | 5.734302 | 7.883458
B2 -1.39460 By =0 |-1.606433 | -1.168716 | 1.177770 | 1.660179
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Chapter 5

Tests for Time Series Properties

Abstract

It is well known that the power of conventional unit root tests such as ADF,
PP, CADF etc. are very low and suffer severe size distortion problem in
small sample time series. A simulation based study is done to extract the
performance of bootstrap on ADF and CADF test. It is found that for
small sample (n = 30) BCADF performs relatively better than all other
tests. Therefore, variables like GDP per capita and CO4 emission per capita
of Bangladesh where data are available from 1972-2000, i.c., only for 29 ycars
it is wise to use BCADF test. The test result shows that COy emission per

capita and GDP per capita in Bangladesh are unit root process.
5.1 Introduction

Time series with unit root have great importance in the analysis of time series. Tests
of hypothesis of unit root in a time series process is yet challenging because the ques-
tion whether a time series has a unit root is “inherently unanswerable on the basis of
a finite sample observation.” (Hamilton, 1994, page-444) due to almost equal finite
sample behavior of the processes with unit root and near unit root. The research

on the sub_iecf has been extremely active both theoretically and empirically. Dif-
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ferent type of unit root tests have been proposed and applied. The methods have
some disagreements over how strong and extensive is the empirical evidence for the
unit root in the process. The most frequently used method for the test of a unit
root in a parametric framework is the Dickey-Fuller test developed by Dickey and
Fuller (1979, 1981). This test is based on autoregression of finite order that is as-
sumed to be known. In general, however, it is undesirable to test for the unit root
within a specific parametric family, since misspecification could lead us to incorrect
inference. Said and Dickey (1984) proposed to include the lagged difference term for
correction of serial correlation in the residuals proved that such ADF (Augmented
Dickey-Fuller) tests are valid for all finite ARMA processes..of unknown order, if we
increase the number of included lagged differences appropriately as the sample size
gets large. However, several authors have argued that the tests may have consider-
able size distortions in finite samples, especially when the model has moving average
components. See Leybourne and Newbold (1999). Another test for testing unit root
is Covariate Augmented Dickey-Fuller (CADF) test developed by Hansen (1995).
He showed that inclusion of related stationary covariates in the regression of ADF
equations might lead to a more precise estimate of the autoregressive coefficient. He
proposed to use CADF unit root test rather than conventional univariate unit root
tests for small samples. He also analyzed the asymptotic local power functions for the
CADF t-statistic and discovered that enormous power gains could be achieved by the
inclusion of appropriate covariates. The major drawback of CADF test is that the
limiting distribution of the CADF test statistic is dependent on the nuisance parame-
ter that characterizes the measure of relative contribution of covariates to residuals
of the equation without including covariates. Hansen (1995) suggested using critical
values based on an estimated nuisance parameter to draw a valid statistical inference.
Though relatively better from ADF test, size distortion problem is also present in
CADF test for small sample realization. Chang and Park (2001) used sieve bootstrap

method on ADF test for testing the unit root for infinite order autoregressive model.
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They showed that the procedure improves the size distortion of ADF test for finite
sample. In their simulation study they took the initial value y5 = 0 which violates
the stochastic properties of yg. They used sample size 50 as small sample. Chang
et al. (2001) used bootstrap method for CADF test that is independent of nuisance
parameter. They showed that the bootstrap CADF test is consistent and the critical
values based on the empirical distribution of the test statistic obtained by bootstrap
is asymptotically valid. They showed their test performance by simulation. Results

provided that CADF test offers drastic power gains over the conventional ADF test
specially when the covariates are highly correlated with the error. Bootstrap CADF
test significantly improves the finite sample size performances of the CADF test. In
simulation their sample size was n = 50, 100 and 250. They claimed that for n = 50
and 250 the results are “qualitatively similar.”

In this chapter we compare four different types of test. ADF, Bootstrapped ADF
(BADF), CADF and bootstrapped CADF (BCADF). The aim of the paper is to
verify the result for sample size n = 30. In real world situation we have sometime
not enough data to generate a longer series of innovation to discard the ‘burn-in’
period observations.  So, Chang et al. (2001) initialization method used for their
bootstrapping technique is difficult for small sample non-stationary time series. Again
Bootstrapping ADF test as was done by Chang and Park (2001) is also problematic
for sample size of less than 50 since a number of lag difference term included in
regression to whiten the residual. Sufficient inclusion of differenced lag term reduces
the effective size of residuals. The study methodology of the article is similar to Chang
et al. (2001) except the initialization method and data generating process (DGP).
The intuition is that, a random block from the main series will carry the properties of
the series. So, a bootstrap replica of the series using such initial values, the generated
serics will preserve the properties of the original series. However, here Stine’s (1987)
approach for initialization is used. Stationary covariates are used for augmentation

in the ADF model. It supports us to describe the unexplained serial correlation in
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the white noise of ADF model. For Bootstrapped ADF test sieve bootstrap is used.
Finally we decide to use the test procedure to test the unit root hypothesis for GDP
per capita and CO, emission per capita of Bangladesh. The chapter organized as
follows;

Section 5.2 introduces the unit root problem in time series and CADF test in
presence of unit root along with conventional ADF test. Section 5.3 demonstrates the
bootstrapping methods of time series, specially bootstrapping ADF and CADF test
while section 5.4 launches the simulation algorithm and results, section 5.5 explicated
an application to the data serics GDP per capita and COy emission per capita of

Bangladesh and finally section 5.6 concluds.

5.2 ADF and CADF Test

The ADF test is proposed by Dickey and Fuller (1981). In ADF test the hypothesis
that the data is a unit root process, is tested in the context of three different main-
tained hypotheses or models concerning the alternative hypothesis that the series is
stationary. These differ according to the presence of an deterministic and/or intercept
trend.

For the Augmented Dickey-Fuller test the following three models were considered:

P
Model I Ay = a+ Bt + pye—1 + Z5iAye-i + ug (5.1)
i=1
P
Model IT Ay, = o+ pyi_1 + ZﬁiAyt_i + uy (5.2)
i=1
p
Model Il Ay, = pye—1 + Y _ 6iAys—; + (5.3)
i=1

A is the difference operator. wu; is assumed to be Gaussian white noise. Tests
may be carried out on the parameters o and §. The DF test does not include the
lag-differenced term. The purpose of including the lagged variables is to provide
a correction for serial correlation that may be present in residual. When lagged

dependent variables are included in the regression, the test is known as the Augmented
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Dickey-Fuller Test (ADF). In Model I the null is that y; is a random walk process
with drift while the alternative hypothesis is that y; is a trend stationary process. In
Model II the null is that y; is a drift less random walk vs. a stationary process with
mean «. Model 111 is a more powerful test for a unit root when the null is that y; is a
random walk with no drift against the alternative that y, is a stationary process with
mean zero. The test for a unit root is given by Hp ; p = 0. If the series is [(0), against
the hypothesis Hy; p < 0. To perform ADF test of a sample realization we first fit
any one of the models (I, II or I1I) using OLS and estimate the test statistic 7. under
Hy; p = 0, the test statistic is 7 = p/se(p). Although the test statistic is calculated
in the usual way, it’s limiting distribution is Dickey-Fuller distribution rather than
Gaussian. Statistical tables for Dickey-Fullar distribution for various sample size arc
reported in Hamilton (1994).

Hansen (1995) developed the test named Covariate Augmented Dickey-Fuller test.
The CADF tes:t, is a unit root test procedure in multivariate context. Here more sta-
tionary variables are added to whiten the residuals from unexplained serial correlation
in the models of ADF test.

Let us assume that the regression residual u; in model (I, II, III) in equation
(5.1, 5.2, 5.3) is serially correlated and also allowed them to be related to other

stationary covariates. Let w, be the m-dimensional stationary covariates specified as;
8(Lyuy = y(L)'we + & (5.4)

q
Y w2

k=-r

Where L is the lag operator, §(L) = 1+ 8, L+ 8, L2+ ...+ 6,L” and (z)
Using equation 5.4 in equation 5.1, 5.2, 5.3 the ADF models became

P q
Model I Ay, =a+Bt+ py—1 + Y 5dy i+ ) ek +e  (5.5)

i=1 k=-r
P q
Model II Ay: =a+ py-1 + Z (sejAyt—i =+ Z YeWi—k + &4 (50)
i=1 k=—r
n q .
Model IIT Ay, = pyy—y + Zé,:Ayt_i + Z YWk + €t (5.7)
i=1 k=-r
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We wish to test the hypothesis Hg ; p = 0 against the alternative hypothesis Hy;

p < 0. The long run covariance matrix

= U Oi Tue
Q= > E [wr axl]= 5 (5.8)
k=-—0o0 E Tey Of
A2 = 02, /0202 is a measures of relative contribution of w; to u, at the zero

frequency. Under the null hypothesis the test statistic estimated by equation ( 5.7),
7(p) = p/se(p) has the distribution.

[ W (r)dW (r) 1
7(5) = A+ (1 - A%)2N(0,1) (5.9)

]: 2
(Jwe)
0
The asymptotic distribution depends on nuisance parameter A*>. The critical values for
the three models provided in the article of Hansen (1995) by Monte Carlo simulation

for different values of A%2. An enormous power achieved compared to Augmented

Dickey-Fuller test is reported.

5.3 Bootstrapping Time Series

In iid. data structure one can create a bootstrap sample by random sampling with
replacement. But it fails if data is time dependent due to heteroscedasticity or au-
tocorrelation. In such situation if we use iid. bootstrap, all the dependency infor-
mation lost (Politis, 2003). To preserve the dependency information, there are two
approaches in resampling time series. 1) Parametric bootstrap and 2) Non-parametric
bootstrap. Reviews of Barkoitz and Killian (1996) reviewed both parametric and non-
parametric approach in bootstrapping time series while Biithlmann (2001) did review

non-parametric approach only. In our article we use parametric bootstrap.
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5.3.1 Bootstrapping ADF Test

To construct bootstrap ADF we first let, under the null hypothesis of unit root,

Ay, = u;. Then we fit the autoregression model
8(L)u, = € (5.10)

where €, is assumed to be Gaussian white noise. Usually, parameters of the model
are estimated by OLS method. Yule-Walker method can also be used since, it always
vields an autoregression that is invertible and it is asymptotically equivalent to the
OLS method. Lag order is chosen by AIC. Basawa et al. (1991) showed that the
samples generated without the unit root restriction do not behave like unit root
processes. That makes the subsequent bootstrap techniques inconsistent. So it is
important to base the bootstrap sampling on regression (5.10). The equation is as
same as equation (5.3) with the restriction p = 0.

Next we obtain a bootstrapped sample £} from the centered residual and the

boostsrapped realization of uf and y; is obtained by the equation
0(L)u; =€ (5.11)

For initial vector uj we used Stine’s (1997) approach of a random block selection from

the series u; of size p. and

¢
vi=vot+ ) u (5.12)
k=1

which also requires the initial observation y3. A random draw from the main sample
realization is taken as the initial value of the bootstrapped sample y;. Then ADF
test applied to y; and we obtained The bootstrapped T statistic 7* = p*/se(p*).
This technique repeated a number of times to obtain the empirical distribution of
7. At the nominal size 1%, 5% and 10% the critical value of bootstrapped test is the
1%, 5% and 10% cmpirical percentile of the empirical distribution. If the test statistic
7 < ¢*(a) the bootstrapped critical value of size o we reject the null hypothesis of a

unit root.
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5.3.2 Bootstrapping CADF Test

We have described the test statistic of CADF test 7(p) in section 5.2. We want to
draw the bootstrapped critical value for 7(5) bootstrapping the sampling distribution
of 7(p). To construct the bootstrap CADF test, letting u; = Ay, equation (5.7) can
be written in the form:

P q
iy = Z5kut—k =+ Z AWk + E¢ (5.13)
k=1

k=—r

Equation (5.13) is estimated under the null hypothesis by OLS method and #; ob-
tained and 7j, from the I** order autoregression for m dimensional covariate of the
form

Wegrs1 = ‘i’1wt+r +. oo+ Beweproigr + i (5.14)
The combined innovations obtained from the model (5.13) and model (5.14) are de-
fined as §, = (€e,m;)'. (1 + m) dimensional bootstrap samples & = (e},n;”)’ generated
by resampling from the centered fitted residual vector (ét -1/n )n: ét)n . The boot-

t=1 t=1
strapped sample of w; obtained recursively from the fitted model

B = &t Bt * EiE
Wigrs1 = @, Weyr teick (I)‘u‘t+r—l+l f: Y ("'10)
A new innovation is generated by

q
v =) Wi, +er (5.16)

k=-r

Using the innovation v; we gencrate u} by

ul =8l + Ul o+ ...+ 5;,1;:_],, + v (5.17)
Finally y; is generated by
t
=yt ) (5.18)
k=1

At all steps, initial values are taken as described in section 5.3.1. Using y; and w}
we applicd the classical CADF test and obtained the test statistic 7*, the bootstrap
replicate of 7 by

1_* N P
(8) 5e(7) (5.19)
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p* is the OLS estimate of p from the models of CADF test applied to bootstrapped
samples. To implement the bootstrap CADF tests, we repeat the bootstrap sampling
for the given original sample a large number of times and obtain critical value b}, ()
such that a is the prescribed size. The bootstrap critical values is determined in the
same manner as described in the previous subsection 5.3.1. The bootstrap CADF

test rejects the null hypothesis of a unit root if 7(p) < b},(a)

5.4 Simulation and Results

5.4.1 Simulation Algorithm

We wish to perform a set of simulation to investigate the relative performance of
different (ADF, BADF, CADF, BCADF) unit root test. For simulation, we considered

(y¢) as a unit root process of the form.
Yt = PY—1 + U
The error term w, =y, — y;-1 for p = 1 generated by
Ug = 01— + V¢
where v, is related to the covariate w; by
vy = yw + €
In our simulation the covariate w, is assumed to follow AR(1) process of the form;
Weyy = QWi + 1)

The innovations & = (g4, ;)" are iid. N(0,X) where
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Under this setup, we have the following covariate augmented Dickey-Fuller regression
Ay = pye-1 + O Ay +ywp + &

The correlation between v; and w; depends on two parameter values v and . In the
data generating process we used v = 0.8 and ¢ = 0.5. The lagged difference term
set to 4, = 0 in our simulations. We want to test the hypothesis Hy; The process
contains a unit root against the hypothesis Hy; The series is a stationary process.
To investigate the power and size of the test we consider p = 0.5 and p = 0.95.
The sample size is n = 30. In our total simulation we take o, = o, = 0.5. After
generating the data we perform four test procedures on the artificial data. To perform
ADF test we use the most powerful model y; = py;—) + u;. Reason behind choosing
such model is that in our DGP we generate y; in the same fashion. We want to usc
ADF procedure taking the exact model. Next we used bootstrapped ADF test on the
artificially generated data. Our model for bootstrapped ADF test is as follows;
P

Ay = pyr—1 + Z;JkAyc—k +é& (5.20)
The test statistic 7 is estimated from the model and it is compared to the tabulated
value provided in Hamilton (1994).

For CADF test we use the model as follows;
Ays = pye-1 + 61AY1 +ywr + & (5.21)

“The test statistic 7 and A? are estimated from the model and they are compared to
the tabulated value developed by Hansen (1995).
In bootstrapped CADF test we use model (5.21) for £ and the model
l
wy = Z Qi + 1 (5.22)
i=1
for 7;. Equation (5.22) is sometimes different from our DGP because after data
generation we fit AR model again to the artificial w; using the Yule-Walker method

for estimating the parameter. The maximum lag length is to be 10logip(n). The
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default value of SPlus is 14.77 for sample size 30. We used AIC for lag order selection.
10,000 simulations is done to draw the conclusion. The power and size of the tests

ADF, CADF, BADF and BCADF are illustrated in figure-5.1 and figure-5.2.

5.4.2 Results

From Figure-5.1 we see that application of bootstrap technique did not improve the
power of the test. In case of CADF test, the power of bootstrapped CADF was
lower than classical CADF test at each prescribed level of significance. As level of
significance increases, power of bootstrapped test also increases. At 10% level of
significance the power of both classical and bootstrapped tests are literally the same.
In case of ADF test, we see that, the power of bootstrapped ADF test and classical
ADF test are the same and like BCADF test, as the level of significance increases,
the power of bootstrapped tests also increases. There is another findings that if the
residuals of ADF model is correlated with any other covariate or, if the model failed
to explain the serial correlation completely, the power of ADF tests drastically falls.
At that time The power of CADF and BCADF is comparatively very high. These
results supports the résult of Chang et al. (2001) for sample size n = 50,100 and 250
under the same simulation setup.

Figure 5.2 shows that bootstrap techniques improves the size distortion problem of
unit root test for finite size of sample. Specially bootstrapped CADF test reduces the
size distortion which is amazing. The size distortion of both ADF and bootstrapped
ADF tests are the same. Comparing ADF and CADF tests, the result shows that
classical ADF and bootstrapped ADF tests size distorte less than both classical CADF
and bootstrapped CADF test and bootstrap able to reduce size distortion. Buf the
size distortion problem remains present in all of the tests considered in the article for
sample of size n = 30. Chang et al. (2001) also found such type over rejection but
less than our results. Their over rejection rate was less, may be, due to their large

sample size.
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5.5 Application to CO; Emission Per Capita and
GDP Per Capita of Bangladesh

We apply all four tests to CO; emission per capita and GDP per capita of Bangladesh.
Data series are graphically presented in figure 3.1. The length of both the series is 29.
Data are collected from www.unep.org, Geo-Dataset. At first classical tests ADF and
CADF tests are applied. Models for these tests consist of constant and time trend.
The null h_ypothesis Hp; The series is a unit root process with drift is tested against
the alternative hypothesis Hy; the process is trcnd. stationary. To determine the
bootstrapped critical values of ADF and CADF test, Models are estimated under H,
and these models are used as DGP (Data Generating Process) for bootstrap replicates
of 7. We use CADF test to test the same hypothesis. AGDP and ACO, used as
covariates for testing CO emission per capita and GDP per capita respectively. The
model for testing CO, Iemission consists of AGDP, one period leads of AGDP, one lag
of AGDP, and two lags of ACO,, Constant and time trend. The model for testing
GDP data series consists of ACO,, one lag of ACO;, two lags of AGDP, constant,
and time trend. The model estimates are presented in table (5.1, 5.2, 5.3 and 5.4 ).
The critical values based on DF distribution, Bootstrapped Critical values, Critical
values of CADF test based on estimated A? and bootstrapped critical value of CADF
test statistics are reported in table-(5.5) in appendix.

Result of Dickey-Fuller test shows that CO, emission in Bangladesh is a random
walk process. Gaussianity assumption free ADF test based on bootstrapped critical
value provides the result of ADF test. The CADF test and bootstrapped CADF test
fails to reject the null hypothesis at 10% level of significance. Similarly ADF test and
CADF test of GDP per capita does not reject the null hypothesis. The bootstrapped
ADF and bootstrapped CADF test also provides the same result.
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5.6 Conclusion

In this paper we try to know about the performance of Bootstrapped ADF and
Bootstrapped CADF Compared to ADF and CADF developed by Hansen (1995) for
sample size 30. 10,000 simulations are done. Analysis shows that bootstrap technique
relatively reduces size distortion problem for small sample compared to their classical
counterparts. Bootstrapped ADF and bootstrapped CADF test do not achieve radical
power gain over their classical ones but at higher level of significance, bootstrapped
and classical tests power are almost the same. Tests are applied on CO3 emission per
capita and GDP per capita of Bangladesh. All tests supports that CO, emission per

capita and GDP per capita are explained better by random walk process.
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Figure 5.1: Graphical illustration of power comparison of tests.
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Figure 5.2: Graphical illustration of size distortion of tests corresponding to their

nominal size.
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Table 5.1: Model estimates for ADF test and DGP for BADF test for CO; emission

per capita
Estimates SE Test Statistic | Model Under Hyg
p -0.444938655 | 0.203785644 | -2.1833660
[ 0.022655397 | 0.009410052 | 2.4075739 0.0032173227
Trend | 0.002705245 | 0.001136209 | 2.3809382 0 .0002626649
&y 0.034362297 | 0.214102542 | 0.1604946 0 .1727955335

Table 5.2: Model estimates for ADF test and DGP for BADF test for GDP per capita

Estimates SE Test, Statistic | Model Under Hy
p 0.017340682 | 0.011102524 | 1.5618684
C -0.004535135 | 0.004208009 | -1.0777390 3.31870845
Trend | 0.255757718 | 0.153279584 | 1.6685700 0.34174135
d -0.437542807 | 0.172207222 | -2.5407924 | -0.42314426
0z -0.041339108 | 0.169458140 | -0.2439488 -0.03294488
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Table 5.3: Model estimates for CADF test and DGP for BCADF test for CO; emission

per capita

Estimates SE Test Statistic | Model Under Hy
p -0.5012830060 | 0.2247228011 | -2.2306726
C 0.0241944909 | 0.0097949570 | 2.4700967 | 0.00386278296
Trend 0.0029006816 | 0.0012098312 | 2.3975920 0.00025927046 |GDP
61 0.0761635767 | 0.2315364612 | 0.3289485 | -0.18422440661
AGDP, | 0.0002655712 | 0.0004120174 | 0.6445631 | -0.00000843938
AGDP,_,; | 0.0001546688 | 0.0003252782 | 0.4754968 | -0.00010027194

per capita is used as covariate

Table 5.4: Model estimates for CADF test and DGP for BCADF test for GDP per

capita
Estimates SE Test Statistic | Model Under Hq

P 0.023142420 | 0.012829138 1.8038952

C 0.005087908 | 0.004330911 | -1.1747892 4.496682529
Trend 0.279509013 | 0.158488334 | 1.7635936 0.395094263
01 0.474159612 | 0.179984758 | -2.6344431 -0.457168450
s 0.050960644 | 0.178401918 | -0.2856508 -0.041346592
A(CO,), 0.002646021 | 0.002830244 | -0.9349092 -0.002721990
A(CO3)¢-1 | 0.002055790 | 0.002829123 | -0.7266527 -0.002132991

using total COy emission per capita as covariate
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Table 5.5: Table of critical values for both classical and bootstrapped tests

Co2 GDP
A? 0.7864965 0.6577151
Tests 1% 5% 10% 1% 5% 10%

ADF -4.3382 | -3.5867 | -3.2279 | -4.3382 | -3.5867 | -3.2279
BADF |-4.3319 | -3.5934 | -3.2078 | -4.4785 | -3.5102 | -3.2235
CADF | -3.8241 | -3.2554 | -2.9599 | -3.7242 | -3.1433 | -2.8342
BCADF | -4.6336 | -3.8911 | -3.4598 | -0.8831 | -0.3904 | -0.0986
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Chapter 6

ARIMA Modeling

Abstract

In the chapter ARIMA models are fitted for COy emission per capita and
GDP per capita. Both classical and bootstrapped approach are used for
parameter estimation, hypothesis testing and forecasting. We see that both
CO; emission per capita and GDP per capita of Bangladesh are better ex-
plained by ARIMA(0,1,1) process. The further results can be summarize as
follows: 1) Th(; bootstrap method produce the same inference on parameter
for both variables as the classical does. 2) The bootstrap method sometimes
produce better forecasts and 3) Bootstrap forecast points histogram has a
regularity among each other which demands further study on bootstrap fore-

casts.

6.1 Introduction

It is a good practice to build an ARIMA model for each stochastic series in a dynamic
regression model. Such models give us a baseline model for the output series. We can
compare the fit and forecast accuracy of the DR models with those of the ARIMA
models. In addition, we may learn something useful about the series going through

the ARIMA modeling. Finally, ARIMA models are needed to perform diagnostics



ARIMA Modeling

checks of the DR model’s adequacy. Since our aim is to find a DR model of CO,
emission per capita with the development related variables of Bangladesh, we fit
suitable ARIMA models for those series. To stabilize the variance of the series we use
log transformation. As in the previous chapter we have decided that CO, emission and
GDP is better explained by a random walk process, we took first difference for those
variables to stabilize the mean. These transformed series are used to fit ARIMA
models. To identify the suitable ARIMA, we use SACF and SPACF. From those
graphical preser;tation different models are chosen and fitted. This is done so because,
SACF and SPACF illustrates sometime ambiguous, specially for small sample. Also
efficiency of forecast of the models has been checked. Certainly we like to choose
the model which have minimum root mean squared forecast error (RMSFE) amongst
the sct of models for an individual series. We also observe the residuals variance,
autocorrelation plot, histogram, normal probability plot of residuals carefully to check
a model adequacy. Residuals normality is checked also by RM test (Imon, 2003) and
Jarke-Bera test. To check the presence of outliers in the series only standardized

residual plot is used.

6.2 ARIMA Modeling (Classical)

6.2.1 ARIMA Model for CO, Emission Per Capita

The best suited ARIMA model for CO; emission per capita is ARIMA(0,1,1). The
estimators are obtained by statistical software package SPlus-2000. Software gives
the following estimates by conditional log-likelihood approximation method. The

estimated model is as follows;

v, = 0.050357 + (1 — 0.6962L)é; (6.1)
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6.2.2 ARIMA Model for GDP Per Capita

Within a set of possible model, the best fitted model to explain transformed GDP

per capita (z}) is as follows;
7, = 0.02004965 + (1 — 0.71347)¢, (6.2)

The standard error t-statistic, p-values and 95% confidence intervals for both of the
variables are reported in table 6.1. We used the t-values to test the null hypothesis
Ho; @ = 0. The p-value shows that all coefficients are highly significant. For both

models |d| < 1 that ensures the invertibility of our models. The residual standard

Table 6.1: Model summary of ARIMA for CO; emission per capita and GDP per

capita
Variable Coefficients 6 SE(@). t p-value Lower Conf. Upper Conf.
CO, q(1) - 0.6962 0.1531 4.54 0.0002 0.396 0.996
GDP q(l) 0.7135 0.1494 4.78 0.0001 0.421 1.01

Before estimating the parameter, we center the transformed data to zero, so related statistics to

the constant terms are not presented in the table though they are present in the model.

error of the shock term series is unknown: sample standard error is used to estimate
it. The residual standard error for model 6.1 is G, (¢) = 0.059 and for model 6.2 is

G2 (g) = 0.02444292
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6.2.3 Model Checking
Outlier Checking

Outlier is checked by standardized residual plot. The standardized residual (&,/d,)
plot (figure 6.1) do not show any unusual observation that falls three standard devia-
tions from zero for the CO, emission per capita model. Plot of standardized residual
from the model 6.2 in figure 6.2 has only one value that falls a. little more than three
standard deviations from zero. Though in a roughly normal distribution, this is not.
unusual, RM test shows that the residuals distribution is non normal. So it might be

worth while to do some research to find out if something unusual happened at time

t =1973.

Normality Checking

A standard assumption that the random shocks are normally distributed is checked.
Histogram and normal probability plot (discussed in Weisberg, 1980) of the residuals
are used to check the normality of the residuals. The graphical presentations are
helpful but, they do no provide any formal test. The histogram (figure 6.3) and normal
probability plot (figure 6.5) of residual for CO, emission model (equation 6.1) shows
that the residuals may be normally distributed though they are little bit irrigular.
For GDP per capita, the histogram (figure 6.4) of residual shows that the distribution
is irrigular and the normal probability plot (figure 6.6) of residual is fragile and not
a straight line. So we may conclude that the residual may be far from normal.

We also used formal test procedure to check the normality of the estimated residuals,
The recently developed rescaled moment (RM) test (Imon, 2003) is used to check the
normality. The value of RM test statistic S = 8.545964 with p-value 0.007. That
means that the null hypothesis of normality of the residual is rejected at 5% level of
significance. So we may conclude that the residuals obtained from model 6.1 may be

non-normal. The same technique is also applied to the residuals estimated from the
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model 6.2. The RM test statistic is S = 32.901 with p-value = .0000. Test implies
that the probability of accepting the null hypothesis of normality of the residual from

model 6.2 is zero.

Standardized Residual

Figure 6.1: Standardized residual plot obtained from ARIMA(0,1,1) for log trans-

formed CO; emission per capita.

Standardized Residusl

Figure 6.2: Standardized residual plot obtained from ARIMA(0,1,1) model from log
transformed GDP per capita.
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Figure 6.3: Histogram of residuals obtained from ARIMA(0,1,1) for log transformed

CQO, emission per capita.
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Figure 6.4: Histogram of residuals obtained from ARIMA(0,1,1) for log transformed
GDP per capita.
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Normal Probability Plot: CO2
ARIMA (0.1,1) residuals;
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Figure 6.5: Normal probability plot of residuals obtained from ARIMA(0,1,1) for log

transformed CO, emission per capita.
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Figure 6.6: Normal probability plot of residuals obtained from ARIMA(0,1,1) for log

transformed GDP per capita.
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Checking the Presence of Serial Correlation

We construct the SACF of the residuals obtained from model 6.1 and model 6.2.
Figure 6.7 is the SACF of the residuals achieved from the model 6.1. Figure illus-
trates that each residual autocorrelation is very small relative to its standard error.
Each spike falls well short of two standard error limit. This suggests that the model
adequately represents the autocorrelation pattern of the data. Ljung-Box test (Ljung-
Box, 1987) statistic (@ statistic) has also studied to test the joint null hypothesis Hy;
All autocorrelation coefficient are zero. The values of test statistic for different lag
and their p-values are reported at the right side of the figure 6.7. p-values indicates
that all () statistics are insignificant. Thus the joint test suggest that the model 6.1
has adequately captured the autocorrelation pattern in the data.

In the same way the SACF of residuals from the model 6.2 is also checked and
was presented in figure 6.8. The graphical illustration and the Ljung-Box @ statistic

suggests that there is no serial correlation unexplained by the model.

6.2.4 Model Interpretation

Both model 6.1 and model 6.2 have an interesting interpretation. The models are
exponentially weighted moving average of the available data. If we consider those
model as autoregressive form, the models are the infinite order autoregressive models.
The current, and future output depends on infinite past lag. More weight to the nearest

lag and less weight to the farthest lag.

125



ARIMA Modeling

Autocorrelation Function
CO2 : ARIMA (D,1,1) residuals;
(Standard emors are white-noise estimates)

Lag Corz. 3.E. q P
14,188 1793 i . .88 %489
2 -.181 .1759 ' ' 1.7z .4234
2 -.204 .1725 2 2.1z .3730
4 -.092 _1890 : 3.42  .4901
5 +.056 L1655 : 7] 3.54  .6179
£ +.245 .1518 5.85 4408
7 +.081  .1581 5.11  .5271
8 +.075 1542 7] 5.94 .6087
9 +.166 .1504 7.56 5788

10 -.082 1464 7.88 6404

11 -.093  .1423 |74 8.31 .6852

12 -.232 1380 11.13 5178

13 -.158  .1338 VA 12.52  .4882

14 4,071 .1291 i |7 12.82  .5405

15 +.252 .1244 Y74 16.92  .3238

-10 05 00 05 10

Figure 6.7: ACF of residuals from ARIMA(0,1,1) for log transformed CO; emission

per capita.

Autocorrelation Function
Residuals obtained from GDP moriel
(Standard emors are white-noise estimates)

Lag Corr. 8.E. Q P

1 +.005 .1994 ) | . .00 .9797
2 +.116  .1946 ! : .36 .8373
3 -.030 .1897 - B - .38 .9442
4 -.064 .1846 4] .50 .9734
5+.071 .1794 i %] .66 .9852
6 -.246 .1741 - EZZ2 2.66 .8501
7 +.141  .1685 3 74 3.36 .B496
8 -.014 1626 : I 3.37  .9090
9 +.021 .1569 | 3.39  .9469
10 -.059 .1508 %] 3.54  .9657
11 +.032  .1443 ] 3.59  .9805
12 +.041 .1376 : | 3.68 .9886
13 -.111  .1306 i 4.40 .9862
14 -.052 .1231 - B 4.57 .9909
15 -.167 .1151 22 6.68 .9660

-1.0 -0.5 0.0 0.5 1.0

Figure 6.8: ACF of residuals from ARIMA(0,1,1) for log transformed GDP per capita.

At the left of figures, autocorrelation at different lag and their corresponding standard
error was displayed. The right side of the figure shows the corresponding Ljung-Box's
@ statistic and their respective p-values.
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6.3 ARIMA Modeling (Bootstrap Approach)

We are not. sure whether the estimated residuals are normally distributed. If the dis-
tribution is really non normal, the classical technique fails to infer properly. To check
the validity of classical technique it is good practice to use simulation or bootstrap.

In quest of better and cfficient estimates of parameter and forecast, we use bootstrap.

6.3.1 Bootstrap Estimation

Parametric method is used for bootstrapping ARIMA(0,1,1) process for estimating
the bootstrapped estimator of the moving average estimator for CO, emission per
capita and GDP per capita. First of all, the residuals from the classically fitted
models are centered to zero. Then the centered residuals are bootstrapped, The
hootstrapped residuals and the classical model is used to get the replica of study
variables (the transformed CO, emission per capita) y,;* and (GDP per capita) zjx.
Series were initialized by generating an initial random state vector according to a
state space form of the model.

By the process, one thousand sample is generated and used to estimate the boot-
strap replicates of 6. The histogram of bootstrap replicates of MA estimator is shown
in figure 6.9 for CO, emission per capita and figure 6.10 for GDP per capita. Gener-
ally the mean of the bootstrap replication is the bootstrapped estimate. In this thesis
median of the bootstrap replicates are also used for bootstrapped estimator from the
robust statistical point of view. Using the bootstrapped estimators of # our model

becomes

y, = 0.050357 + (1 — 0.74496L)é, (6-3)

Yl = 0.050357 + (1 — 0.7436424L)é, (6.4)
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Models of differenced log GDTP per capita

2, = 0.02004965 + (1 — 0.7319L)é, (6.5)

2, = 0.050357 + (1 — 0.7424L)é, (6.6)

The bootstrapped estimates, bias, and standard error of the estimator are reported
in the table 6.2. From the table we see that bias from mean and bias from median
of the classical estimator are the same. The SE of the moving average estimator for

CO; emission per capita is 0.2158 and for GDP per capita is 0.2201.

Table 6.2: Classical and bootstrapped estimates of MA parameter, bias and standard

error for COy per capita and GDP per capita

Coef Classical Mean Bias Median Bias from Median SE
CO, MA 0.6962 0.745 -0.04877 0.7436424 -0.04747 0.2158
GDP MA 0.7135 0.732 -0.0315 0.7424143 -0.0289 0.2201

From the equation 6.3 and equation 6.4 we obtain the residuals. The residual
standard error from equation 6.3 and equation 6.4 are 6(&)mean = 0.05077902 and
(€ )median = 0.06043072 respectively. 6(€)mean = 0.05077902 is much less than that
of from classically estimated residual () = 0.059. RM statistic is tested for those
residuals are S = 1.638841 for model 6.3 and S = 1.636994 for model 6.4 with p-values
0.2203434 and 0.220547 respectively. Test does not reject the null hypothesis that the
residuals obtained from equation 6.3 and equation 6.4 may be normally distributed.

We do the same task for model 6.5 and model 6.6. We observe that the standard

errors of residuals from those models are 6(€)mean = 0.02377872 and 6(&)median =
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Figure 6.9: Histogram of 1000 bootstrap replication of MA parameter for CO, emis-
sion per capita. The dashed varticle line indicates the median bootstrapped estimate

and the solid varticle line point indicates the mean bootstrapped estimate.
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Figure 6.10: Histogram of 1000 bootstrap replication of MA parameter for GPD
per capita. The dotted vertical line indicates the classical estimate and the dashed

vertical line indicates the bootstrapped estimate.
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0.02379658 respectively. Both are less than that of from the classically estimated
residual standard error (0.02444292). Again using the median bootstrapped estimate
do not improve the residual standard error compared to its mean bootstrapped esti-
mate. So we discard the median bootstrapped estimate from our subsequent analysis.
The RM test statistics S = 24.24795 with p-value= .000 and S = 23.1911 with p-
value= 0.000 still rejects the null hypothesis of normality.

6.3.2 Hypothesis Testing with Bootstrap

To test the null hypothesis that the MA parameter # = 0, we use bootstrap technique
in same fashion described above with a little change. Here we gencrate bootstrapped
samples under the null hypothesis. So for data generation we set MA coefficient
to zero. Finally we take one thousand bootstrap replicates of MA estimator and
hence we get the distribution structure. The 2.5% and 97.5% empirical percentail is
considered as the critical points of 5% size test.

For the model of the series y;, under the null hypothesis 6 = 0, The 5% boot-
strapped critical values are -0.6153793 and 0.5625293. Since our observed coefficient
f = 0.6962 (in classical method) stands outside the interval, we reject the null hy-
pothesis and conclude that the coefficient is significantly different from zero. The
test result coincides the classical inference described in table 6.1. The test result is
illustrated graphically in figure 6.11.

For the series z}, the 5% bootstrapped critical values are -0.6153793 and 0.5625293.
Both the classical and bootstrapped estimate lies in the critical region. So we may

conclude that the estimated coefficients § and §* are significantly different from zero.
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Figure 6.11: 1000 bootstrap replication of MA coefficients under the null hypothesis
f = 0. The solid varticle line indicates the 5% critical points, the dashed varticle line
point the estimated coefficient and the dashed varticle line indicates the bootstrapped

estimate.
6.4 Forecasting with Classical and Bootstrap Tech-
niques

There are two types of forecasting. one, we can produce a single value forecast for
each point of time and two, we can also construct a confidence interval around each
point forecast which gives the interval forecast. Interval forecasts are especially useful
because they convey the possible degree of error associated with the point forecast.
Here we estimated both point and interval forecast for the last six years of the observed
sample. To compare the efficiency we compared our forecast to the observed data for
those years. Our produced forecasts from the models are in differenced log metric
form. The standard error of these forecasts are reported. But when we like to compare

the forecasts to the observed data, the forecasts are transformed to the level.
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6.4.1 Forecast Using Classical Method

In classical forecast we used the classical models (equation 6.1 for CO, emission per
capita and equation 6.2 for GDP per capita). Forecast values , 95% upper and lower
bound of each point, deviation from observed and residual mean squared forecast
error is reported in table 6.3 for CO; emission per capita and table 6.4 for GDP per
capita. The future values for these periods are assumed to be unknown at the time
the forecasts are made. We see from both table that all forecasts lic within the 90%
forecast interval. The root mean squared forecast error for CO, emission per capita

model is 0.0106163 and for GDP per capita is 576.3413.
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Table 6.3: Forecast of CO; emission using ARIMA model

Lower Upper

Time 95% Forecast  95% Observed Residual
24 7 0.148872 0.1662017 0.185548 0.1823 0.0002496
25 0.136969 0.1748694 0.223257 0.1886 0.0001997
26 0.126018 0.1839890 0.268628 0.1922 0.0000642
27 0.115942 0.1935843 0.323220 0.1830 -0.0001120
28 0.106672 0.2036800 0.388907 0.1982 -0.0000323
29 0.098143 0.2143022 0.467943 0.2122 -0.0000185

RMSFE 0.0106163

Table 6.4: Forecast of GDP per capita using ARIMA(0,1,1) model

Lower Upper
Time 95% Forecast 95% Observed Residual
24 293.7552 307.5010 321.8901 307 -0.501045
25 283.3318 313.7286 347.3864 314 0.271445
26 273.2782 320.0822 374.9023 324 3.917817
27 263.5813 326.5645 404.5976 333 6.435514
28 254.2285 333.1781 436.6451 342 8.821932
29 245.2076 339.9256 471.2310 355 15.074412
RMSFE 7.7691
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6.4.2 Forecast with Bootstrap Method

In bootstrap technique to forecast, we bootstrapped the backward residual. The
variance of forward residual and backward residuals for the model of y; are o, = 0.058
and oz = 0.057 respectively which are literally same. Also we check it for 2;. These
are o = 0.00056 and o; = 0.00059. So our covariance remains almost same taking the
froward residuals. Then we generated the bootstrap sample fixing the last observation
for both the series. In our data generating process we used three estimates (classical,
bootstrapped mean coefficient and bootstrapped median coefficient) of coefficients.
Next we used bootstrap samples for forecasting the six year. One thousand forecast
value for each time period was generated and the mean and median of the forecast
replicates were used as bootstrap forecast. The 95% confidence intervals are achieved
from the 2.5% and 97.5% empirical percentile of the forecast replicates. The graphical
presentation of ten bootstrapped samples are shown in figure 6.12 generated from

forward residual of y; model. At length we compared the forecast efficiency.
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Figure 6.12: 10 bootstrapped sample. The solid thick line is the original series. The
lines before the concave point are bootstrapped sample and lines right to the concave

point are forecasts from the bootstrapped sample.
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6.4.3 Comparative Results between Bootstrap approach and

Classical Approach

For y, forecasting results and their standard error are presented in table 6.5. Table
showed that the standard error of forecast at each point of time is minimum for the
cases where mean of 8% is used for data generating process when bootstrapped. For
easy comparison the results of CO, forecasts combinedly illustrated in figure 6.13 in
the original metric. Figure showed that the bootstrap forecast is almost nearer to
the classical forecast. But the confidence interval of classical forecast is much wider
than the bootstrap forecast interval. All combination of bootstrapping forecast(i.c.,
mean forecast replicate, median forecast replicate combined with classical estimator
of 8, bootstrapped mean estimator of # and bootstrapped median estimator of #)
lies approximately over the same line. On the whole, classical forecast is nearer to
the original at first three points and far from the last three. But in the case of
hootstrap forecast, the last three years forecast is nearer to the original. Among all
the bootstrapped forecast, bootstrap with classical estimator of § and the means of the
forecast replicates produces the best bootstrap forecast. Also we mentioned earlier,
the standard error is also minimum of the bootstrapped forecasts. The forecasts
with different bootstrapped method with their 95% empirical percentile residuals and
RMSFE are reported in table 6.7, table 6.8 and table 6.9. From those table we
see that the bootstrap forecast where data is generated using classical estimate of
@ and the mean points of the replicates are used as forecast produces the minimum
RMSFE = 0.01205 (shown in table 6.7) among all other bootstrap forecast. If the
classical technique is compared with bootstrap techniques, then classical technique

produced the minimum RMSFE = 0.0106163 (shown in table 6.3)
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Table 6.5: Table of bootstrap estimates of forecast mean and forecast median and forecast standard error with classical

forecast for transformed series of CO emission per capita

Classical forecast Classical estimate of 8 Bootstrapped mean replicate of # | Bootstrapped median replicate of &
Mean SE Mean Median SE Mean Median SE Mean Median SE

0.03193 0.0551 | 0.0122649  0.007976 0.06388 | 0.0002174 -0.0008352 0.05841 | 0.00007347 -0.0010595 0.05866
0.0 0.0671 | -0.0021970 -0.0029150 0.05659 | 0.0021970 -0.0029150 0.05659 | -0.00219703 -0.0029150 0.05659
0.0 0.0671 | 0.0002032 -0.0029150 0.05842 | 0.0002032 -0.0029150 0.05842 | 0.00020318 -0.0029150 0.05842
0.0 0.0671 | 0.0002055 -0.0005782 0.05G14 | 0.0002055 -0.0005782 0.05614 | 0.00020550 -0.0005782 0.05614
0.0 0.0671 | -0.0033792 -0.0029150 0.05745 | 0.0033792 -0.0029150 0.05745 | -0.00337925 -0.0029150 0.05745
0.0 0.0671 | -0.0026763 -0.0029150 0.05708 | 0.0026763 -0.0029150 0.05708 | -0.00267628 -0.0029150 0.05708

buyepoy VIWIHV



ARIMA Modeling

For z, the forecast for transformed metric along with their standard error is re-
ported in table 6.6. From table we see that bootstrap forecasts are very much nearer.
The forecasts standard error are of bootstrapped cases are literally same. Compara-
tively standard error of the bootstrapped forecasts are smaller than that of classical .
To compare the bootstrap forecasts to the classicals we drawn figure 6.14 in the orig-
inal metric. figure shows that all forecast points (both classical and bootstrapped)
approximately lie on the same line. In the figure we also illustrated the 95% lower
and upper confidence limits. We see that the both the upper and lower point of boot-
strapped confidence interval has and increasing tendency compared to the classical
confidence interval. Also, the bootstrapped confidence interval is shorter

The forecasts with different bootstrapped method with their 95% empirical per-
centile residuals and RMSFE are reported in table 6.10, table 6.11 and table 6.12.
Tables showed that the forecasts using the median of the forecast replicated did not
necessarily improved the forecast error. Using the median of the bootstrapped repli-
cates in data generating process is not so effective. The root mean squared forecast
error is minimum in classical technique (RMSFE = 7.769). The mean of the forecast
replicates also provides a good estimates of forecasts. The RMSFE for hootstrapped
forecasts is RMSFE = 9.078

Next we construct the histogram of the replicates for each bootstrap techniques
to know about the distributional structure of forecasts. Figure 6.15 represents the
histograms of the forecast replicates at each point of time forecasted. The classical
estimate of @ is used for data generating process. Figure 6.16 viewing the same type
of histogram. Here bootstrapped mean estimate of @ is used and the figure 6.17
represents the histograms of the forecast replicates. Bootstrapped median estimate
of @ is used for data generation. All histograms have some regularity pattern except
the 24th prediction. The 24th prediction of figure 6.15 and figure 6.16 showed that

they may be normally distributed.
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Table 6.6: Table of bootstrap estimates of forecast mean and forecast median and forecast standard error with classical

forecast for transformed series of GDP per capita

Classical forecast

Classical estimate of 8

Bootstrapped mean replicate of #

Bootstrapped median replicate of 8

Mean

SE

Mean Median SE

Mean Median SE

Mean Median SE

0.004646
0.000000
0.000000
0.000000
0.000000
0.000000

0.022866
0.028089
0.028089
0.028089
0.028089
0.028089

-0.000170 -0.004053 0.023759
0.001221  -0.003845 0.025394
-0.000818 -0.003993 0.023662
0.000306  -0.004099 0.025053
-0.001136 -0.004154 0.022909
-0.000628 -0.003887 0.022173

-0.000072 -0.003932 0.023868
0.001264 -0.003724 0.025150
-0.000837 -0.003930 0.024057
0.000265 -0.003973 0.025051
-0.001276 -0.004249 0.022736
-0.000645 -0.003979 0.022230

-0.000169 -0.004098 0.023824
0.001155 -0.003797 0.025611
-0.001045 -0.003955 0.024097
0.000507 -0.003911 0.024803
-0.001372 -0.004379 0.022896
-0.000281 -0.003894 0.022205
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6.5 Conclusion

In this chapter we fitted ARIMA model for both CO, emission per capita and GDP
per capita. At first we used classical approach for estimating the model parameters.
Following the usual methods we select the models. We see that both CO, emission per
capita and GDP per capita are better explained by exponentially weighted moving
average model (ARIMA(0,1,1)). We also drawn inferences on parameters under the
usual assumptions of Gaussianity of error. After diagnostic checking we used the
models for forecast the next six year.

Siuce the sample realization is very small in time series analysis point of view, we
used bootstrap technique for further justification. We used bootstrap technique for
estimating and testing the models. Using the model estimated in bootstrap approach,
we forecasted the last six years of the observed sample which was excluded from
the analysis before. To forecast we used bootstrapped forecast technique. We also
have tried to find the distributional structure of each forecast point using bootstrap.
Finally we compared the classical forecasts and bootstrapped forecasts to the original
observations.

Findings of the chapter are as follows;

1. Se(residual) from the model using bootstrap estimate is less than that of using
classical estimate, i.e., models estimated by bootstrap approach can explain

variables better than models estimated by classical approach.

2. Bootstrap forecast is nearly the same as classical forecast even, sometimes it

produce better than classical forecast.

3. In bootstrap approach most of the time the forecast standard error was mini-

mum.

4. Bootstrap forecast interval is shorter than classical forecast.
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Figure 6.13: Forecasts with bootstrap and classical technique along with their 95%

confidence intervals for CO, emission per capita.
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Figure 6.14: Forecasts with bootstrap and classical technique along with their 95%

confidence interval for GDP per capita. Most of the forecasts lying on the same line

so visually unidentifiable.
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Table 6.7: Forecast of CO2 emission using bootstrap.

(0210ssica) Uscd for data generating process (DGP)

ARIMA Modeling

Classical estimator of @

Lower Upper
Time Observed 95% Mean  Median 95% Residual 1 Residual 2
24 0.18200  0.14608 0.16297 0.16227 0.18580 0.01903 0.01973
25 0.18900  0.13918 0.17109 0.17023 0.22296 0.01791 0.01877
26 0.19200 0.13260 0.18005 0.17859 0.26755 0.01195 0.01341
27 0.18300 0.12634 0.18948 0.18780 0.32106 -0.00648 -0.00480
28 0.19800  0.12037 0.19869 0.19701 0.38527 -0.00068 0.00099
29 0.21000  0.11469 0.20849 0.20669 0.46232 0.00151 0.00331
RMSFE 0.01205 0.01262

Mean and median indicates the means and the medians of the forecast replicates at

each point of time

Table 6.8: Forecast of CO, emission using bootstrap. Bootstrapped mean estimator

of 6 (é;‘nmn) used for data generating process (DGP)

Lower Upper

Time Observed 95% Mean  Median 95% Residual 1 Residual 2

24 0.18200  0.14582 0.16101 0.16084 0.18360 0.02099 0.02116

25 0.18900  0.13893 0.16904 0.16874 0.22032 0.01996 0.02026

26 0.19200  0.13236 0.17789 0.17702 0.26439 0.01411 0.01498

27 0.18300 0.12611 0.18721 0.18615 0.31726 -0.00421 -0.00315

28 0.19800  0.12015 0.19631 0.19529 0.38072 0.00169 0.00271

29 0.21000  0.11448 0.20599 0.20487 0.45686 0.00401 0.00513
RMSFE 0.01338 0.01370

Mean and median indicates the means and the medians of the forecast replicates at

cach point of time
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Table 6.9: Forecast of CO, emission using bootstrap. Bootstrapped median estimator

of 0 (0:egian)used for data generating process (DGP)

Lower Upper

Time Observed 95% Mean Median 95% Residual 1 Residual 2
24 0.18200  0.14582 0.16101 0.16084 0.18360 0.02099 0.02116
25 0.18900  0.13893 0.16904 0.16874 0.22032 0.01996 0.02026
26 0.19200  0.13236 0.17789 0.17702 0.26439 0.01411 0.01498
27 0.18300  0.12611 0.18721 0.18615 0.31726 -0.00421 -0.00315
28 0.19800  0.12015 0.19631 0.19529 0.38072 0.00169 0.00271

29 0.21000  0.11448 0.20599 0.20487 0.45686 0.00401 0.00513

RMSFE 0.01338 0.01370
Mean and median indicates the means and the medians of the forecast replicates at

each point of time

Table 6.10: Forecasts of GDP per capita using bootstrap. Classical estimator of 6

(é:!assicui) used for data generating process (DGP)

Lower Upper
Time Observed 95% Mean Median  95% Residual 1 Residual 2
24 307 295.6351 306.0236 304.8374 331.6874 0.9764 2.16256
25 314 201.3380 312.6025 309.8174 366.6827 1.3975 4.18256
26 324 287.1333 318.6727 314.8322 405.3677 5.3273 9.16779
27 333 282.9630 325.2260 319.8944 448.1728 7.7739 13.1056
28 342 278.7780 331.4358 325.0198 495.4986 10.5642 16.9802
29 355 274.7396 337.9359 330.3155 547.6664 17.0641 24.6845

RMSFE 9.078428  13.99778

Mean and median indicates the means and the medians of the forecast replicates at

each point of time

143



ARIMA Modeling

Table 6.11: Forecast of GDP per capita using bootstrap. Bootstrapped mean estima-
tor of 6 (6%,..,) used for data generating process (DGP)

Lower Upper
Time Observed 95% Mean  Median 95% Residual 1 Residual 2
24 307 205.634 306.054 304.875 331.636 0.94637 2.125413
25 314 291.330 312.647 309.893 366.655 1.35319 4.107362
26 324 287.025 318.711 314.929 405.135 5.28835 9.071499
27 333 282.833 325.252 320.032 447916 7.74755 12.96763
28 342 278.587 331.416 325.129 494.775 10.5837 16.87078
29 355 274.547 337910 330.397 546.435 17.0899 24.60347

RMSFE 9.0811277 13.91518
Mean and median indicates the means and the medians of the forecast replicates at

each point of time

Table 6.12: Forecasts of GDP per capita using bootstrap. Bootstrapped median

estimator of 8 (8%,.4iqn) used for data generating process (DGP)

Lower Upper

Time Observed 95% Mean Median  95% Residual 1  Residual 2

24 307 295.6872 306.0238 304.8746 331.6992 0.9762 2.1254

25 314 291.3859 312.5823 309.8926 366.8004 1.4176 4.1074

26 324 287.0416 318.5796 314.9285 405.5324 5.4204 9.0714

27 333 282.8094 325.1962 320.0324 448.4047 7.8038 12.9676

28 342 278.6236 331.3272 325.1292 494.7848 10.6728 16.8708

29 355 274.5699 337.9422 330.3965 546.4894 17.0578 24.6034
RMSFE 9.112 13.9152

Mean and median indicates the means and the medians of the forecast replicates at

each point of time

144



ARIMA Modeling

&
g

g ]
i
2 g
= 8
g

R 8
A

1 i
= = | -]
—= .
U ua a1 o2 «L 1o 0 vos o1 <00 o oS [ERIT]
24th farecast 20 forecast ZEM Parecast

= H
g :
2

Gl - g

E 2 g 1
1 ]
1INl

o = - !

—_—_—— —_—
RURD nn nns n-n -hoan nn nns non -min nr nns  aan
& rarecast 26T fovecast 2AF forecast

Figure 6.15: Histogram of the bootstrap forecast replicates for CO, emission in trans-

formed metric. Classical estimate of 6 is used for data generation process (DGP).
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(DGP).
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Chapter 7

Cointegration Analysis

Abstract

Since, CO; emission per capita and GDP per capita are I(1) process, we
search whether there exists some cointegrating relation between COz emis-
sion per capita and GDP per capita and squared GDP per capita. Classical
method, bootstrap method and fast double bootstrap method is used to find
the p-value of the test statistic for testing cointegrating relation. Classi-
cal method shows that these variables are trend stationary. The bootstrap
methods show that the variables are non-stationary but not cointegrated.

The result supports the results obtained from our previous studies.

7.1 Introduction

The bootstrap has become a standard tool for the econometric analysis. Roughly, the
purpose of using the bootstrap methodology is to find the distributions of statistics
whose asymptotic distributions are unknown or dependent upon nuisance parameters,
and to obtain refinements of the asymptotic distributions that are closer to the finite
sample distributions of the statistics. If properly implemented to pivotal statistics,
the bootstrap simulations indeed provide better approximations to the finite sample

distributions of the statistics than their asymptotic (Horowitz, 2002).
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Small sample properties of tests on long-run coefficients in cointegrated system
are still a matter of concern to applied econometricians. The asymptotic procedures
proposed by Johansen (1991) was shown to suffer severe size distortion (see Bew-
ley et al., 1994 and Li and Maddala, 1997). Two complimentary solutions has been
proposed; I) applying Bertlett corrections to the test statistics so that the corrected
statistic will follow a small sample distribution closer to the asymptotic one and thus
bring actual sizes closer to the nominal sizes (Johansen 2000); and (II) trying to
estimate the actual small sample distribution by the bootstrap. Again, since the
statistical theories for the former are generally nonstandard and depend, often in
a very complicated manner, upon various nuisance parameters bootstrap may be a
very useful tool. Virtually a few work has been done on bootstrapping cointegrating
regression. The bootstrap cointegrating regression was studied only by simulations as
in Li and Maddala (1997). The bootstrap method, however, is used quite frequently
and extensively by empirical researchers to approximate the distributions of the sta-
tistics in more general models with nonstationary time series. Chang, Park and Song
(2002) tried to develop the bootstrap theory for cointegrating regressions. They used
sieve bootstrap to resample the cointegrating regression. They showed that under the
scheme, bootstrap become consistent for both the usual OLS and the efficient OLS
by Saikkonen (1991) and Stock and Watson (1993). They also concluded that the
bootstrap can thus be employed to correct biases in the estimated parameters, and to
compute the critical values of the tests. With the bootstrap bias correction, the OLS
estimator becomes asymptotically unbiased. Moreover, the OLS-based tests become
asymptotically valid, if the bootstrap critical values are used.

Omtzigt and Fachin (2002) undertook a simulation based study to compare the
bootstrap performance over the Bartlett correction in cointegration test for small
samples. They used the bootstrap and the fast double hootstrap for testing cointe-
gration parameter in the maximum likelihood framework. They have showed that

the fast double bootstrap delivers superior size correction whereas the Bartlett cor-
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rection leads to the least loss of power. They also concluded that all three techniques
performs much better than the asymptotic tests and difference between them are
small.

As we have seen from previous chapter 5 that CO, emission per capita and GDP
per capita are both integrated of order I(1), So squared GDP per capita is also inte-
grated of order I(1). Now we want to check whether there exists any long run equi-
librium relation among these variables. Depending on the last comment of Omtzigt
and Fachin (2002), we use bootstrap and fast double bootstrap test to check the
cointegration.

The layout of the chapter is as follows; The next section 7.2 describes the maxi-
mum likelyhood estimation texhnique for cointegrated VAR model. Section 7.3 de-
scribes the method of testing cointegration in cointegrated VAR in both classical and
hootstrap approach, section 7.4 illustrates the application of testing cointegration

techniques and finally concludes.

7.2 MLE for Cointegrated VAR

Here we describe the Johansen’s approach (1988, 1991), full information maximum
likelihood estimation of a system characterized by exactly h cointegrating relations
under the restriction that there is no deterministic time trend in any of the series.
The constant term is restricted to lie in the cointegration space. The estimation
techniques are summarized in the following steps.

Step 1: In this step we estimate the (p — 1)th VAR of Ay, and collect the OLS

regressions in vector form as follows;

Ay = LAY+ LAY 2+ ..+ T 1 Ay pyr + 2 (7.1)
1 = @AY + DAy o+ ...+, AYp_pr1 + B (7.2)
Y = XAy + XAy + .. F Xp-1DYr—pi1 + T (7.3)

where I1; and x; denotes the n xn QLS coefficient estimates. 4, and 1, and 9, denotes
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the n x 1 vector of OLS residuals.

Step 2: Next we estimate the canonical correlations i; and 7; where

w
(Te)(n+1yx1 = E (7.4)
Uy
For this purpose we construct
o T r
Yyv =1/T) 4,7, (7.5)
t=1
- T‘ I
Yypu = l/TZﬁtﬁz (7.6)
t=1
- T ’
Ypv = 1/T211¢ﬁt (7.7

t=1

and find the eigen value of the (r + 1) x (n + 1) matrix
Sy Svu iy ey (78)

ordered as A\; > dg > -+ > ):ML The maximum value achieved for the log likelihood
function subject to the constrain that there are h cointegrating relations and no

deterministic time trends is
4 . h
Ly = —(TN/2)log(2r) — (T'N/2) = (TN/2)log|Sa| — (TN/2)> " log(1 — X)) (7.9)
i=1

Step 3: The previous two steps provides all information needed to perform a likeli-
hood ratio test of the number of the cointegrating relations. However, the likelihood
estimates of the parameters also desired. This can be done in the following way.

Let, éy,as,...,a denotes the eigen vector of 7.8 associated with largest eigen
values which forms the basis of the space of cointegrating relations. Johansen sug-
gested normalizing these vectors d; so that ﬁ;ﬁw&g = 1. So Johansen’s estimate is
a; = a; + \fﬁ;ijt.tﬁ.f‘ Collecting the first h normalized vector in an (n x h) matrix A,
the MLE of ¢ and II is given by

[ 11]=LmAA (7.10)
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The MLE of ®; is
&, =1 —ad -y fori=1,2,...,p—1

and the residuals

7.3 Hypothesis Testing for Cointegration

Once we will get the unrestricted VAR model that satisfactorily describe the data,
we can start the search of reduced-rank restriction, i.e., restrictions on the long-run
parameter 0, and finally restrictions on the short run adjustment parameter a and ®.
The first crucial steps is to discrinimate empirically between zero and non-zero cigen
values when allowing sampling variation and then impose an appropriate cointegration

rank restriction r on the II matrix.

7.3.1 Cointegration Test in Classical Approach

A test for r coiutegr.ating vectors can be based on the maximum likelihood approach
proposed by Johansen (1988). The statistical problem is to derive the test procedure
to discriminate between the A; for ¢ = 1,2,...,7. The rank r is determined by a
likelihood-ratio test procedure between the two hypothesis.
H,: Rank= p, i.e., full-rank, so y; is staionary
H,: rank= r < p, i.e., r cointegrating relations
The test statistics is
. | p
S = Euymy = ~Tlogl(1 = Arsr) .. (1= M)l = -T 3 log(1—=A)  (7.11)
i=r+1
If A\py1 = ... = Ap =0, the test statistic should be small enough to zero, which de-
livers the critical value under the null. The test is based on non-standard asymptotic

distributions that have been simulated for the five cases that are already discussed.
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There is an additional problem, in that H, may be correctly accepted when )\, = 0
even A._; = 0; Therefore, if H, is accepted, we conclude that there are at least
p — r unit roots, i.e., p — r common trends in the process (but there can be more)
corresponding to at most r stationary relations.

However, if the test statistic includes log(1 — ),), which is not close to zero, so
an outcome in excess of the critical value should be obtained, correctly rejecting the

false null of fewer that r cointegration relations.

7.3.2 Cointegration Test in Bootstrap Approach

The general idea of the bootstrap test is to assess the value of the test statistic S
obtained from the empirical analysis on the basis of the distribution of statistics S*
from suitably constructed pseudo data. Hy may be imposed when generating pseudo
data (Eforn and Tibshirani (1993)) or the chosen DGP taken as the null hypothesis
(as recommended by Hall (1992)). In both cases, Hj is true for the pseudo data. The
proportion of S* more extreme than S in the relevant direction is a natural estimate

of the p-value of the test.

Bootstrap Test for Cointegration

With cointegrated VARs we want to test the hypothesis on the long run coefficients
Hy : B = B° To perform bootstrap we followed Omtzigt and Fachin (2002) chosen
approach. Estimating the unconstrained VAR, unconstrained parameters and a set
of random noises, generating pseudo data using the unconstrained estimates of para-
meters and the set of random noises and testing Hy : 8 = 3° on the original data and
HE B = i (wlfere 3 is the unconstrained estimates of ) on the pseudo data.

Let us consider © the entire parameter set of the VAR. As we are interested in

the test Ho : 3 = 3°, the test is implemented in the following bootstrap procedure.

1. Estimate VAR on data Y; for given cointegrating rank obtain unrestricted es-

timates @, unrestricted residuals £, restricted estimates 8y, restricted residuals
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£ and test statistic S for the hypothesis Hy : 8 = 3°

2. Construct. pseudo data Y* = q&(é,a*), €* drawn at random with replacement
from € or NID using parametric bootstrap.

3. Estimate VAR on pseudo data Y* and obtain é*, é*, é{,, £y and the test statistic

S* for the hypothesis Hy : 8 =

Repeat (2)-(3) a large number of times

4. Compute bootstrap p-value: p* = prop(S* > S)

Fast Double Bootstrap Test for Cointegration

As discussed in the subsection 2.13.3 in the methodology chapter, we seen that double
bootstrap may produce better result compared to simple bootstrap discussed above.
The basic intuition is very simple. If the bootstrap estimate p* = prop(S* > S)
of true p-value of the test is distorted, we may get better estimate by replacing S
with some S chosen so to counterbalance the distortion. Now S by definition the
p*-th quantile of the distribution of S*; hence, an obvious candidate for S is the same
quantile of the distribution of a second-level bootstrap distribution. If p* is distorted
downwards, such as a quantile will tend to larger than the true quantile S, and vice
versa, thus delivering the desired effect.

The genceral structure of the fast double bootstrap is as follows; (Graphically

presented in figure 7.1

1. Estimate VAR on data Y; for given cointegrating rank obtain unrestricted esti-
mates §, unrestricted residuals £, restricted estimates ég, restricted residuals &

and test statistic S for the hypothesis Hy : 8 = 3°

2. Construct pseudo data Y* = ¢(f,€*), £* drawn at random with replacement

from € or NID.
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3. Estimate VAR on pseudo data Y* and obtain 6*, &*, é{,, £ and the test statistic

S* for the hypothesis Hy : 3 =

4. Construct second level pseudo data Y** = t;f)(é*,s“), £** drawn at random with

replacement from &* or NID.

5. Estimate VAR on second-level pseudo data Y** and obtain 6**, &**, 83*, £5* and

test statistic S** for the hypothesis Hj* : g = B

Repeat (2)-(5) a large number of times
6. Compute bootstrap p-value: p* = prop(S* > S)

7. Compute fast double bootstrap p-value type 1: pi* = prop(S* > Q}}) where
o is the p*-th quantile of the S**.

8. Compute the fast double bootstrap p-value type 2; p3* = 2p* — prop(S** > S).

If for instance p* > p, we can expect pop(S** > S) > p*, so that p}* will be closer to
p than p*. However p;* may not be greater that 2p* and it may be negative. If the

difference between the two p-value is sizeable neither of them should be trusted.

7.4 Analysis and Results

We want to test whether there is a cointegrating relationship between emission per
capita and the first and second powers of GDI per capita for Bangladesh. Since the
sample size is very small, we have used the methodology described above along with

classical test.

7.4.1 Tentatively Estimated VAR

At the first step in the analysis, the unrestricted VAR(1) model with a constant

term was estimated by OLS for the variables CO; emission per capita, GDP per
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Figure 7.1: Fast double bootstrap procedure for tests on the cointegration parameters
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capita and Squared GDP per capita. Some descriptive statistics for the logs of the
variables in level, differences, and for the residuals are reported in table 7.1. As in
the previous chapter 5 we saw that both CO, per capita and GDP per capita were
apparently non-stationary, but the empirical density was normal for these variables.
On the other hand the change of the variables showed non-normality except CO,
emission per capita. Normality was tested with Jarque-Bera test, as the test statistic
distributed as x?(2) under the null. So due to either excess kurtosis of skewness, the
test may produce ambiguous inference. Form table 7.1 we also have seen that the

first differenced variables and their residuals are not significantly different from zero.

Table 7.1: Descriptive statistics of different time series under study

ACO; AGDP AGDP? LCO, LGDP LGDP? éco, égpp écppe

Mean 0.05 0.02 0.24 -2.18 557 31.08 0.00 0.00 0.00
t 4.12 4.53 4.67 -29.07 179.64 89.88 0.00 0.00 0.00
p-value  1.00 1.00 1.00 0.41 0.00 0.00 1.00 1.00 1.00
Median 0.04 0.02 0.23 -2.16 558 31.16 -0.01 0.00 0.02
Max. 0.18 0.11 1.13 -1.55 587 34.47 0.13 004 047
Min -0.07  -0.03 -0.35 -2.81  5.27 27.76 -0.12 -0.04 -0.46
Stdev. 0.07 0.03 0.27 0.40  0.16 1.83 0.06 0.02 022
Skew 0.30 1.14 1.02 -0.08  0.01 0.05 -0.02 -0.10 -0.11

Kurt. 2.22 6.06 5.66 1.77 1.98 1.99 289 264 257
J-B stat 1.12 16.97 13.08 1.78 1.20 1.20 0.02 020 027
p-value  0.57 0.00 0.00 0.41 0.55 0.55 099 091 0.87
n 27 27 27 28 28 28 27 27 27

The graph of the residuals of the variables are shown in figure 7.2. We did not

observe any countable situation which is far enough from £34. Figure 7.3 is the
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autocorrelogram and histogram of the VAR residuals. There should be no signifi-
cant autocorrelation left if the truncation after the first lag appropriate. Since the
autocorrelation coefficients are very small, this seems to be the case. Furthermore,

histograms have shown that the residuals may be normally distributed.

7.4.2 Stability and Unit Root Properties

Up to this point, we have discussed the VAR model as if it were stationary. How-
ever, the dynamic stability of the process can be checked by the companion matrix.
The matrix was constructed from the estimated VAR. Estimations are presented in
table 7.2. Stability depends on the ecigen value of the companion matrix. For an
n-dimensional VAR with p lags, there are np eigen values. For our trivariate process
we have 3 x 1 = 3 roots, the moduli of which are

1.11, 0.906, 0.0846

We note that the system seems instable as one of the root is outside the unit circle,
i.e., explosive root. But it is not much away from 1. Also we have another root nearer
to 1. So we want to conclude that the process may be stable. This result also suggests
the presence of the stachastic trend. Since there are two roots closer to unity for three
variables, the series seems non-stationary and may be cointegrated.

When there are unit roots in the model, it is convenient to reformulate the VAR
model in the error correction model. The presentation is discussed in chapter 2. From
our study, Table 7.1 showed that E(Ap;; =0 for i=1,2,3) was not rejected either
of the case. (p; is used against long variable names). Hence there is no evidence of
lincar deterministic trend in the variables, at least not over the sample period. So
we think that, the cointegrated VAR model should be formulated as restricting the
constant term to lie in the cointegration space. The only deterministic component
in the model are the intercepts in any cointegrating relations, implying that some

equilibrium means are different from zero.
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7.4.3 Test Results Using Classical Approach

To test the presence of cointegrating relations we estimated the system of equa-
tions 7.1, 7.2 and 7.3 using OLS for y, = (LCOq, LGDP,, LGDP?)'. The regressions
were estimated over 1972 to 1998. So the number of observation used for estimation
was " = 27. The autoregressive order p = 1 was chosen using AIC. The sample

variance-covariance matrix of the residuals were calculated from 7.5 through 7.7.

0.0048322431 0.0005301099 0.005802559
Sur = | 0.0005301099 0.0007436179 0.008056441 (7.12)
0.0058025595 0.0080564411 0.087332531

0.3186653 —0.7591923  1.750866  9.622287
) ~0.7591923  1.8486074 —4.157156 —22.767689
Sy (7.13)

1.7508662 —4.1571560  9.625579  52.931402

9.6222866 —22.7676893 52.931402 291.250847

0.02136993 —0.04949809 0.11708052 0.6415721
Sov = | 0.00926036 —0.02281532 0.05092345 0.2801825 (7.14)
0.10118424 —0.24827699 0.55677856 3.0654734

The eigen value of the matrix in 7.8 are then

A = 0.704
X2 = 0516
A3 = 0.423
A4 = 0.000

T log(l — A;) = —32.85
T log(1 — Ay) = —19.59
T log(1 — Ag) = —14.83
T log(1 — As) = 0.00
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We want to test the null hypothesis of 7 = 0 cointegrating relation against the

alternative of r = 3 cointegrating relation. The test statistic

S=-TY log(l—-\)=067.28 (7.15)

i=r+l

The asymptotic distribution of S is tabulated in Hamilton(1994). The critical value
of size 5% is 20.77 and 1% is 25.52. Since the estimated value of S 67.28 > 25.52 we
may reject the null hypothesis and decide that all the series may be well described

by trend stationary process.

7.4.4 'Test Results Using Bootstrap Approach

As we came to know from several literature that bootstrap performs well for small
sample, we used bootstrap technique to obtain more reliable p-value. Bootstrap and
fast double bootstrap used for testing the cointegration

To perform we first obtained the unconstrained estimate of the model 2.39 The

estimates are as follows;

Table 7.2: Model estimate of short-run and long-run effects

& i
ALCO3;-, ALGDP,., ALGDPZ, | a LCOz-y LGDP._; LGDP:,
ALCO;  -0.3723 -15.504 1.423 0461  0.428 1.319 -0.219
ALGDFP  0.07G8 1.453 -0.183 -0.175  -0.172 -0.500 0.084
ALGDP? 08107 18.247 -2.216 1908 -1.860  -5.464 0.921

Also we obtained the residuals £; from the model. We resample &; and using the
unconstrained model described in table 7.2 we generated the bootstrapped realization
of the series. From those sample we calculated the test statistic S*. 500 replicates

are taken to draw the empirical distribution of S. The histogram of the bootstrap
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replicates are shown in figure 7.5. The p-value for testing Ho; There are zero coin-
tegrating relations against the alternative hypothesis that H4; The series are trend
stationary. The p-value obtained from bootstrap test is p* = 0.21. We may accept the

null hypothesis and conclude that the series are non-stationary but not cointegrated.

af the b ficates of &

Figure 7.4: Histogram of the bootstrap replicates of S. Solid varticle line pointed the

calculated value of S and the dotted varticle line pointed the 5% critical point
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Figure 7.5: Histogram of the bootstrap replicates of S**. Solid varticle line pointed the
p* = 0.21th quantile value of $** and the dotted varticle line pointed the calculated

value of S

In fast double bootstrap this model and &; were used for first step bootstrap.
at second step the model is obtained by unconstrained estimate of each bootstrap

realization of the first step bootstrap samples, i.e., ¢* and £7 is used for data gen-
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eration. 500 replicates were taken to get the fast double bootstrap estimates of S.
Same hypothesis is tested using double bootstrap. Five histogram of S** are shown
in figure 7.6. The histograms are little bit regular fashion. The double bootstrapped

p-values are pi* = 0.798 and p3* = 0.13. Both the p-value suggested to accept the
null hypothesis.
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Figure 7.6: Histogram of the bootstrap replicates of S obtained from fast double
bootstrap. Each histogram showed the empirical distribution of S* obtained from

first level of bootstrap

7.5 Conclusion

Cointegration analysis of the three series CO, emission per capita, GDP per capita
and squared GDP per capita have studied. From analysis we see that, Though the

variables are nonstationary, they are not cointegrated. There exist no long-run equi-
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librium relationship among those variables. The test results also support our the
result that we obtained from unit root test and the study of EKC.

This result is reasonable for Bangladesh point of view. The main part of GDP
come from agriculture and manpower and foreign trade. Most of our trade is agricul-
ture and manpower related. So it is clear that there does not exeist any short-run or

longrun relationship between C'O; emission per capita and GDP per capita.
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Chapter 8

Conclusion

8.1 Summary of the Results

To study the relationship between development and CO5 emission in Bangladesh, we
study two time series variables mainly. GDP per capita used as the development
variable and COy emission per capita as the dependent variable. Secondary data is

used. Since, the data series is of short length, we use bootstrap techniques.

¢ Data Exloration. At first data has been explored and analysed using visual
inspection. Time series plot (in level and in first difference in different metric),
scatter plot, phase diagram and box-plot have been used to explore data. Plots

have shown that

~ CO,, emission per capita and GDP per capita is trended over time. Al-

though it is not clear whether the trend is stochastic or deterministic.

— The rate of change of the variables corresponding to time are not centered

to zero.

— None of the variables create any attractor, i.e., have no stable state over
the sample period. Both CO; emission per capita and GDP per capita are

increasing at some constant rate.
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— The decadal median of CO4 emission per capita and the decadal variation

of emission are increasing in consecutive decades.

— There may have any causal relationship from GDP per capita to CO,

emission per capita

— There may exist a short-run as well as long-run equilibrium relationship.

Plotting the transformed variables also support the hypothesis.

e Environmental Kuznets Curve Fitting. After visual inspection, the most
familiar environment development relationship model EKC (Environmental Kuznets
Curve) has been fitted for CO, emission of Bangladesh. Classical method has
been used to estimate the parameters. To provide the valid inference on para-
meters, bootstrap technique has been used. Both classical and bootstrap result

shows that;

— Per capita CO, emission of Bangladesh is better explained by time trend

rather than GDP per capita or, it's square.
— The CO; emission of Bangladesh does not follow EKC in static sense.

— The data have severe multicollinearity problem. So, it is not possible to
get the real variance of the estimators. Consequently, we get the minimum
number of significant coefficient though the overall regression is highly

significant,.

— Such type of regression may produce spurious relationship as the variables

are trending over time.
— CO; emission of Bangladesh does not follow the EKC relation.
¢ Test for Stoachastic Trend. From exploratory data analysis and EKC study
we have seen that all variables of the analysis are trended over time, it is nec-

cssary to check whether the trend is stochastic or deterministic. Significant

stochastic trend is termed as unit root process. It is well known that the power
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of conventional unit root tests such as ADF, PP, CADF, etc. are very low,
and suffer severe size distortion problem in small sample time series. Bootstrap
sometimes are helpful to get better estimate for small sample. So to decide,
which test is better, a simulation based study has been done to extract the
performance of bootstrap on classical ADF and CADF tests. Simulation shows

the following results;

— For small sample like (n. = 30), Bootstrapped Covariate Augmented Dickey-
Fuller test (BCADF) performs relatively better than all other tests. There-
fore, variables like GDP per capita and CO, emission per capita of Bangladesh
where data are available from 1972-2000, i.e., only for 29 years it is wise

to use BCADF test.

— The unit root test (both in classical and bootstrap approach) result shows
that both CO, emission per capita and GDP per capita in Bangladesh are

unit root processes.

Univeriate Time Series Modeling. The ultimate goal of time series analysis
is to find a suitable model that explains the relationship of development and CO,
emission. At a conventional succession we fit ARIMA models for CO, emission
per capita and GDP per capita. Both classical and bootstrapped approach have
been used for parameter estimation, hypothesis testing and forecasting. We have
found that both CO, emission per capita and GDP per capita of Bangladesh
are better explained by ARIMA(0,1,1) process. The results can be summarized

as follows;
— The bootstrap method produces the same inference on parameter for both
variables as the classical docs.
— The bootstrap method sometimes produces better forecasts and

— Bootstrap forecast points histogram has a regularity among each other,

which demands further study on bootstrap forecasts.
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¢ Cointegration: ARIMA models are univariate time series model. So it does
not describe any interrelationship among the study variables. Since our aim is
to find the titled relationship, we search for some dynamic regression models.
Since, CO, emission per capita and GDP per capita are I(1) process, we have
searched whether there exists some cointegrating relation between CO; emission
per capita and GDP per capita and squared GDP per capita as evidenced by
the EKC 'of the variables. Classical p-value as well as bootstrapped method
and fast double bootstrapped method have been used to find the bias corrected
p-value of the test statistic for testing cointegrating relation. The results are as

follows;

— Classical test methods show that variables are trend stationary

— Bootstrapped methods shows that the variables are non-stationary and not

cointegrated.

8.2 Area of _Further Research

There are some drawbacks of the thesis which is left for further research. First,
in conjunction with GDP the variables, technological change, fuel consumption, de-
forestation, forcign trade, land use, vehicle use should be considered to study the
relationship between development and CO, emission in Bangladesh. Another impor-
tant drawback is that, most of the tests and inferences are asymptotic. We have tried
to over come it by simulation and bootstrap. But most of the bootstrap techniques
are mathematically not well established. For further study bootstrap techniques for

small samples can be pursued.
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8.3 Policy Implication

Our study shows that CO, is accumulating in the atmosphare and the emission is not
statistically related to the GDP of the country. Perhaps, high traffic, large population
and high rate of deforestation may be the causes of mcreasing CO, emission. On
the other hand, it may happen that the relation has not been established due to
labor intensive and agriculture dependent nature of GDP of Bangladesh. So the
environmentalists and policy makers should take necessary research activities to find
ways for the reduction of CO, accumulation in the atmosphare. Steps should also be
taken to identify proper causes of mmcreasing CO, emission and thereby take proper
actions to control CO, emission in this regards will help the nation to have suitable,

habitable and sustainable environment.
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