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Abstract 
 

Heat transfer in enclosure in which the influence of free (natural) and forced 

convection (mixed convection) are of comparable magnitude occurs frequently in 

engineering situations. The applications include the heat transfer improvement in 

heat exchanger devices, design of solar collectors, thermal design of building, air 

conditioning, cooling of electronic circuit boards, lubrication technologies, chemical 

processing equipment etc. Convection in ventilated enclosures containing obstruction 

has gained recent research significance as a means of heat transfer enhancement. The 

mathematical model of the present problem is governed by the couple equations of 

conservation of mass, momentum and energy. Discretization of the governing 

equations is achieved using a finite element scheme based on the Galerkin weighted 

residuals method. Then Newton–Raphson iterative algorithm is used to obtain the 

solutions of the obtained algebraic equations. Comparisons with previously 

established on particular cases of the problem are performed and the results show 

excellent agreement. 

Firstly, for mixed convection flow the effect of inlet and outlet position of a square 

ventilated enclosure with a centered heat generating solid body has been investigated. 

The bottom wall of the enclosure is kept at a uniform constant temperature, while the 

rest three walls of the enclosure are assumed adiabatic. A transverse uniform 

magnetic field is imposed in the horizontal direction normal to the right vertical wall. 

An external flow enters the cavity through an inlet opening whereas it exits via 

another outlet opening. 

After that, the effect of pertinent parameters in the considered flow problem in this 

thesis was analyzed for three different types of internal cavity solid body (heat 

generating, heat conducting, adiabatic) for a selected BT (bottom inlet and top outlet) 

configuration.  

Obtained results from the present study are presented in the form of streamlines, 

isotherms, average Nusselt number along the bottom heated surface and average fluid 

temperature in the cavity for each of four configurations as well as three different 

confined blocks for the pertinent parameters namely Reynolds number, Prandtl 
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number, Hartmann number, solid-fluid thermal conductivity ratio, solid block 

diameter at the three values of Richardson number, varying from 0.1 to 10. 

The computational findings of this thesis reveals that both the flow and the thermal 

fields strongly depend on the parameters Reynolds number Re, Prandtl number Pr, 

Hartmann number Ha at the three convective regimes (Ri = 0.1, 1, 10). The centered 

solid body of the enclosure influences the steamlines pattern slightly for the smaller 

dimension of the block D whereas it has a considerable disparity in temperature 

distribution inside the enclosure. It is also observed that the solid-fluid thermal 

conductivity ratio K have insignificant effect on the flow fields and have significant 

effect on the thermal fields at the three convective regimes. 
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Chapter 1 

Introduction 

The fundamental manners of a mechanism for heat transfer enhancement in 

enclosures by combined free and forced convection have been the subject of 

investigations for many years. Magneto hydrodynamic (MHD) flow has become 

essential in the context of many engineering applications such as magneto 

hydrodynamic generators, pumps, metallurgical processing, and cooling of fusion 

reactors. The effects of viscous incompressible thermal flow in enclosures or 

channels have been studied by many investigators due to its popularity in research 

field. The cavities including solid bodies are the topics of special attention in recent 

times due to their extensive applications in heat exchangers, cooling of electronic 

equipment, solar heat collector, ventilation of buildings, air conditioning and 

furnaces etc. Many researchers have investigated the flow of electrically conducting 

fluid in presence of magnetic field for its importance from the technical point of 

view. Numerical solutions are obtained for the mathematical models that are used to 

predict flow and thermal behavior are governed by coupled non-linear partial 

differential equations.  

In order to realize the present work, the introductory chapter is designed as follows. 

The problems that will be presented in this thesis are basically heat transfer problems 

in enclosures and thus a concise description on heat transfer through convection is 

given in section 1.1. In addition flows and heat transfer within an enclosure are 

narrated in section 1.2 for understanding the fluid flow and heat transfer 

characteristics of mixed convection in a vented cavity. In section 1.3 some fluid 

properties relevant to the recent work have been included. For showing the previous 

research work related to the current subject by many authors, a literature review is 

presented shortly in section 1.4. And lastly an overview of the present investigation is 

included in section 1.5. 
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1.1 Heat Transfer through Convection 

Convective heat transfer, often referred to simply as convection, is a system of heat 

transport that occurs for the reason of bulk motion of fluids. The term ‘convection’ 

generally refers to the observable movement of fluids that indicates liquids and gases. 

The fluid motion enhances convection heat transfer (the higher the velocity the 

greater the heat transfer rate). Convection heat transfer is complicated due to its 

involving fluid motion as well as heat conduction. In convection, heat is the entity of 

interest being advected and diffused. On the contrary, conductive heat transfer is the 

transfer of energy by vibrations at a molecular level through solid-solid or solid-fluid, 

and radiative heat transfer means the transfer of energy through electromagnetic 

waves. However the heated fluid itself is actually moving in case of convection and 

such flow of heated fluid is called convection current. Convection is related directly 

to heat and temperature and in some way linked to another phenomenon, thermal 

energy. Frequently what we term heat is actually thermal energy or kinetic energy 

formed by molecules in motion relative to one another. Heat is transferred by 

convection is found in the case of naturally occurring fluid flow, specifically wind, 

oceanic currents, and movements within the earth's mantle causes tectonic plates to 

move. In order to provide preferred temperature changes; convection is also used in 

heating of dwellings, industrial processes, cooling of electronic equipments, etc. A 

heat source (e.g. Bunsen burner) can be considered a good model for convection; if it 

is placed at any side of a glass full of a liquid; one can feel the different levels of heat 

in the glass. In general, convection is classified as natural (or free) and forced 

convection depending on how the fluid motion is initiated, though another 

mechanism also exists which is referred as mixed convection. However the 

distinction between free and forced convection is needed for convective heat transfer. 

Convection heat transfer rate is found to be proportional to the temperature difference 

that is conveniently expressed by Newton’s law of cooling as  

( )conv s sQ hA T T∞= −  

Natural Convection 

Natural convection is a process in which the fluid motion is set up by buoyancy 

effects due to density differences within the fluid caused by the temperature 
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variations and thus the fluid be at rest in the absence of temperature variations in 

such convection. Free convection velocities are comparatively gentle and the 

resultant wall heat flux will usually be less than in forced motion. A phenomenon for 

natural convection can be described as; at heating the density change in the boundary 

layer will cause the fluid to rise and be replaced by cooler fluid that also will be 

heated and rise. In free convection heavier (more dense) components will fall and 

lighter (less dense) components will rise that leads to bulk fluid movement. Therefore 

natural convection can only occur in a gravitational field. A well-known example of 

natural convection is the rise of smoke from a fire; one can be noticed that in a pot of 

boiling water the hot and less-dense water on the bottom layer moves upwards in 

plumes, and the cool and more-dense water near the top of the pot likewise sinks. 

Note that when the differences in buoyancy within a fluid occur for reasons other 

than temperature variations, the fluid motion is called gravitational convection. 

However, all types of buoyant convection which also includes natural convection do 

not arise in microgravity environments. All have need of the existence of an 

environment which experiences g-force (proper acceleration). 

Forced Convection 

The fluid is forced to flow over the surface in forced convection, by external means 

such as a fan, pump or the wind. For the reason of faster velocity of the currents, 

forced convection is commonly more efficient than natural convection. However in 

forced convection, the buoyancy has little effect on the flow direction and naturally 

forced convection is used to increase the rate of heat exchange. Various types of 

mixing also utilize forced convection to distribute one substance within another while 

it also occurs as a by-product to other processes, such as the action of a propeller in a 

fluid or aerodynamic heating. Some familiar examples of forced convection can be 

mentioned as fluid radiator systems, and also heating and cooling of parts of the body 

by blood circulation. In microgravity, the flow which happens in all directions along 

with diffusion is the only means by which fires are able to draw in fresh oxygen to 

maintain themselves. Some types of ovens and even refrigerators or air conditioners 

can be treated as examples of forced-convection apparatuses. For instance, a 

convection oven works by forced convection, as a fan which quickly circulates hot 
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air forces heat into food more rapidly than would naturally happen due to simple 

heating without the fan. Note that, it is possible to transfer heat only from a high-

temperature reservoir to a low-temperature one, and thus these cooling machines 

work by removing hot air. An air conditioner pulls heat from a room or building and 

releases it to the outside while the refrigerator pulls heat from its compartment and 

expels it to the surrounding room. However, forced convection does not necessarily 

involve man-made machines: the human heart is a pump, and blood carries excess 

heat generated by the body to the skin. Heat transfer coefficients encountered in 

forced convection are typically much higher than those encountered in free 

convection due to the higher fluid velocities associated with forced convection. 

Mixed Convection 

A convection situation that involves both natural and forced convection is commonly 

referred as mixed convection or combined convection. In mixed convection flows, 

neither the natural convection nor the forced convection effects are dominant and 

thus both modes are of comparable magnitudes. The fluid motion is the result of the 

interaction between an external forced flow and an internal buoyancy flow for a 

mixed convection problem. Therefore, combined natural and forced convection 

occurs if the effect of buoyancy forces on a forced flow or the effect of forced flow 

on a buoyant flow is significant. For a certain fluid, it is observed that the parameter 

2
ReGr represents the significance of natural convection relative to forced convection. 

This is not unexpected as the convection heat transfer coefficient is a strong function 

of the Reynolds number Re in forced convection and the Grashof number Gr in free 

convection. Both of the natural and forced convection must be measured in heat 

transfer calculations when the Gr and Re
2
 are of the same order of magnitude.  

1.2 Flows and Heat Transfer within an Enclosure 

Two types of convection are involved in vented enclosure, one that the internal 

buoyancy-induced natural convection and the other external mechanical-driven 

forced convection. Thus it is essential to realize the fluid flow and heat transfer 

structures of mixed convection in a vented cavity. In the mixed convection, the 

interaction between the external forced flow provided by the inlet and the buoyancy 
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driven flows induced by the heat source leads to the possibility of complex flows in a 

ventilated cavity. For the traditional ventilation system, the fresh cold air is supplied 

from the top ceiling and the polluted hot air is exhausted from the bottom of the 

sidewall. In this way, the ventilation system can achieve the goal of maintaining a 

healthy indoor air environment at a low cost of the external forced convection 

whereby to save energy and also to reduce the noise. Note that in conventional 

ventilation scheme, natural convection becomes a burden of the external forced 

convection, so, the forced convection should be increased to eliminate the negative 

effect of the natural convection. Due to the wide applications of buoyancy-driven 

natural convection in confined enclosures have been received more and more 

research attention; some of these are multi-layered walls, double-pane windows and 

other air gaps in unventilated spaces. In addition, an appropriate flow patterns in 

confined enclosures can greatly enhance the efficiency of utilization of building 

systems. Moreover, convection in enclosures having blocks has attained current 

research significance as a means of heat transfer enhancement. 

1.3 Some Fluid Properties 

Viscosity 

The viscosity of a fluid which is a strong function of temperature is a measure of its 

resistance to deformation. A friction force develops between two adjacent fluid layers 

while they move relative to each other and the slower layer tries to slow down the 

faster layer. This type of internal resistance to flow is quantified by the fluid property 

viscosity. All fluid flows involve viscous effects to some degree and therefore no 

fluid with zero viscosity. As temperature increases, the viscosities of liquids decrease 

whereas the viscosities of gases increase with temperature. 

Viscous Flow 

Such flows are called viscous whose flow patterns are dominated by the viscous 

properties of the fluid. This arises in fluids where the velocity gradients are 

comparatively large. Within pipes the flows close to the walls of the pipes can be 

treated as viscous flows. 
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Non-viscous Flow 

The flows are defined as non-viscous or inviscid flows if the viscous properties are 

not dominant. These types of flows are common in the centre region of flowing pipes 

and in gas flows. 

Newton’s Law of Viscosity 

If the shearing stress, τ , increases by increasing the force P, the rate of shearing 

strain also increases in direct proportion to that;   i.e.,  
du du
dy dy

α µτ τ = , where µ is the 

dynamic viscosity of the fluid. This principle is known as the Newton’s law of 

viscosity. 

Newtonian Fluid 

Newtonian fluids are those fluids for which the constant of proportionality i.e. the co-

efficient of viscosity (µ) does not change with the rate of deformation. In other 

words, fluids that follow the Newton’s law of viscosity are known as Newtonian 

fluids. Water, air and mercury are some examples of Newtonian fluids. 

Non-Newtonian Fluid 

Non-Newtonian fluids are those fluids for which the constant of proportionality i.e. 

the co-efficient of viscosity (µ) changes with the rate of deformation. In other words, 

fluids that do not follow the Newton’s law of viscosity are known as Non-Newtonian 

fluids. Blood, liquid plastic and polymer solutions are Non-Newtonian fluids. 

Compressibility 

Compressibility is a property of fluid that measures the change in density and 

consequently, the change in the volume of a fluid during motion under the action of 

external forces. The compressibility is expressed in terms of Mach number (M) 

which is defined by 
0

speed of fluid

 speed of sound 

u
M

α
= =  
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Compressible Flow 

A compressible flow is one in which the density vary in the different portion of the 

fluids. Thus the volume of every portion of fluid differs in compressible flow over 

the course of its motion. 

Incompressible Flow 

A flow is said to be incompressible if the density remains nearly constant throughout. 

Therefore, for incompressible flow the volume of every portion of fluid remains 

unchanged over the course of its motion. The densities of liquids are basically 

constant and accordingly the flow of liquids is naturally referred to as 

incompressible. 

1.4 Literature Review 

A number of experimental and numerical studies have been carried out by different 

researchers in order to assess the thermal behavior and the flow pattern of convection 

induced flows in geometrical configurations which frequently come into sight in 

various engineering designs and science. Literature review on the subject shows that 

many authors have been studied the natural and mixed convective flows in cavities, 

channels by considering with and without obstacle using analytical, experimental and 

numerical methods. The succeeding survey demonstrates some of that works. 

Natural Convection in Enclosure/Channel with and without Obstacle 

Natural convection is a physical phenomenon occurring frequently in natural process 

such as in the atmosphere, lakes, oceans etc. It also becomes relevant in engineering 

areas where the flow and heat transfer conditions are strongly affected by buoyancy 

forces. Some applications are solar collectors, energy storage systems, ventilation of 

rooms and design of electronic equipment etc. The study of the natural convection in 

enclosures and channels has been an active research topic in recent years because of 

the multiple applications in which it is involved. Furthermore, convection in 

enclosures having blocks has gained modern research significance due to the 

enhancement of heat transfer. Many experimental and numerical studies have been 

carried out on the natural convection in the cavity.  
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The effect on the steady-state natural convection heat transfer enhancement of a 

centrally-placed adiabatic block within a differentially heated square cavity with a 

fixed temperature drop between the vertical walls have been carried out by Bhave et 

al. (2006). Bilgen and Yamane (2004) studied the conjugate heat transfer by free 

convection and conduction in two-dimensional rectangular enclosures with openings. 

They examined the effects of the different geometrical parameters and the thickness 

of the insulation layer on the fluid flow and heat transfer characteristics. Later, 

Bilgen (2005) performed heat transfer by free convection in differentially heated 

square cavities with horizontal thin fin and it was focused that normalized Nusselt 

number is an increasing function of Rayleigh number whereas decreasing function of 

fin length and relative conductivity ratio. A steady laminar natural convection within 

a square cavity filled with a fixed amount of conducting solid material consisting of 

either circular or square obstacles were computed by Braga and Lemos (2005). The 

authors’ pointed out that the average Nusselt number for cylindrical rods is lesser 

slightly than those for square rods. Das and Reddy (2006) investigated natural 

convection problem inside an inclined square cavity with an internal conducting 

block. A study on free convection heat transfer in a rectangular enclosure with a 

transverse magnetic field was found in Garandet et al. (1992). House et al. (1990) 

analyzed natural convection in a vertical square cavity with heat conducting body 

which is kept on center of the cavity. They carried out the effect of the heat 

conducting body on heat transfer process in the cavity and observed that the heat 

transfer across the enclosure improved by a body with thermal conductivity ratio less 

than unity. Jami et al. (2007) studied the laminar natural convective flow in an 

enclosure with a heat-generating cylindrical body. Natural convection heat transfer 

from two horizontal heated cylinders confined to a rectangular enclosure with 

conducting walls was found in the work of Lacroix and Joyeux (1995). In their work 

it is presented that wall heat conduction decreases the average temperature 

differences across the cavity and reduces natural convection heat transfer around the 

cylinders. Merrikh and Lage (2005) studied natural convection in an enclosure with 

disconnected and conducting solid blocks. Laminar, steady conjugate natural 

convection around a centered finned pipe of a square enclosure with uniform internal 

heat generation has been investigated by Nakhi and Chamkha (2007). Oreper and 
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Szekely (1983) discussed the outcome of an externally enforced magnetic field on 

buoyancy driven flow in a rectangular cavity. The reality that revealed in their work 

is the presence of a magnetic field can suppress natural convection currents and the 

strength of the magnetic field is one of the important factors in determining the 

crystal quality. Oztop and Dagtekin (2004) studied free convection heat transfer in a 

square cavity containing a heated plate built-in vertically and horizontally. They 

focused that mean Nusselt numbers at both vertical and horizontal location enlarged 

with the increasing value of Rayleigh number. Oztop and Bilgen (2006) studied a 

differentially heated, partitioned, square cavity filled with a heat generating fluid. 

The horizontal walls and the vertical walls were considered adiabatic and isothermal 

in that order. In addition, an isothermal cold partitioned was attached to the bottom 

wall. In their essays the external and internal Rayleigh numbers (RaE and RaI) were 

taken ranging from 10
3
 to 10

6
. The flow field was modified noticeably with partial 

dividers and heat transfer was generally decreased particularly when the ratio of 

internal and external Rayleigh numbers was between 10
1
 and 10

2
. Rudraiah et al. 

(1995) computed the effect of a magnetic field on natural convection in a rectangular 

enclosure. Natural convection in a square cavity having a heat generating body was 

investigated by Shuja et al. (2000). They have taken air and water as working fluid 

inside the cavity whereas steel substrate is considered as the heat generating body. It 

was concluded that the heat transfer from the solid body surfaces enhanced where the 

surfaces facing the inlet and the exit of the cavity. They also presented that the solid 

body losses more heat in the air than in water. Tasnim and Collins (2005) studied 

laminar natural convection heat transfer in a square cavity with an adiabatic arc 

shaped baffle. The problem of laminar natural convection in enclosures surrounded 

by a solid wall with its outer boundary at constant temperature while the opposing 

side has a constant heat flux was analyzed by Yedder and Bilgen (1997). 

Mixed Convection in Enclosure/Channel with and without Obstacle 

Mixed convective flow in which neither the free convection nor the forced 

convection effects are dominant has gained its extensive applications in many natural 

and technological processes. Analysis of mixed convection plays an important role in 

many natural and technological processes such as furnaces, lubrication technologies, 
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the design of solar collectors, thermal design of buildings, air conditioning, cooling 

of electronic devices etc. The existing literature in this area has focused considerable 

attention on mixed convection in vented cavities or channels. In recent times, many 

researchers have studied heat transfer with obstacles, partitions and fins; a brief 

review of the relevant literature has been presented here. Combined natural and 

forced convection in a vented square enclosure with isothermal vertical surface was 

studied by Angirasa (2000). Amir Hossein Zarei et al. (2013) presented heat transfer 

manners of combined free and forced convection flow in lid driven cavity containing 

hot obstacle subjected to nano-fluid with variable properties. In their research the 

results indicate that the average Nusselt number for all range of solid volume fraction 

increases with decrease in the Richardson number. Chamkha (2002) analyzed an 

unsteady laminar mixed convection flow and heat transfer problem of an electrically 

conducting and heat generating or absorbing fluid in a vertical lid-driven cavity 

considering the effect of a magnetic field. Mixed convection heat transfer in a semi 

porous open cavity has been investigated by Carlos et al. (2008). Their study shows 

how free convection effects may develop the forced convection inside the open 

cavity. Gau and Sharif (2004) investigated the problem of combined free and forced 

convection heat transfer in a two-dimensional rectangular cavity with constant heat 

flux. The cavity was partially heated bottom wall while the isothermal sidewalls are 

moving in the vertical direction. Gowda et al. (1997) performed an analysis of heat 

transfer and fluid flow over a row of in-line cylinders kept between two parallel 

plates. A considerable effect of buoyancy and the blockage on the flow and heat 

transfer over the cylinders are noticed in their work. The effects of viscous 

dissipation on unsteady combined convective heat transfer to water near its density 

maximum in a rectangular cavity with isothermal wall was studied by Hossain and 

Gorla (2006). Analysis of combined free and forced convection in a partially divided 

rectangular enclosure for wide range of Reynolds and Grashof numbers were found 

in the works of How and Hsu (1998), Hsu et al. (1997). They have concluded that 

average Nusselt number and the dimensionless surface temperature are influenced by 

the location and height of the divider. Later on, Hsu and How (1999) discussed 

mixed convection flow and heat transfer in a square enclosure with heat conducting 

body and a finite-size heat source. In this work it was shown that both the heat 
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transfer coefficient and the dimensionless temperature in the center of the body 

strongly depend on the systems configurations. Combined natural and forced 

convection heat transfer was performed by Hsu and Wang (2000), in where the heat 

source was embedded on a board mounted vertically on the bottom wall at the center 

of the enclosure. Joshi and Sukhatme (2010) analysed combined natural and forced 

convection heat transfer from a horizontal circular cylinder to a transverse flow. In 

their study the numerical work is performed for the boundary conditions of constant 

surface temperature and constant wall heat flux. Kalam et al. (2014) analyzed the 

combined convection in an open cavity by finite element method under constant heat 

flux boundary conditions with magnetic field. They showed that increasing of 

Hartmann number decreases the heat transfer inside the cavity. Khanafer et al. (2002) 

studied mixed convection heat transfer in two-dimensional open-ended enclosure. 

Mixed convection flow of an electrically conducting and heat-generating/ absorbing 

fluid in a vertical channel consisting of two parallel plates in the presence of 

transverse magnetic field has been analyzed by Mahmud et al. (2003). Manca et al. 

(2003) studied numerically the effect of heated wall position on a laminar mixed 

convection in a channel with an open cavity. Three different heating modes such as 

assisting flow, opposing flow and heating from below are considered in their article. 

Mixed convection heat transfer in vertical elliptic ducts containing an upward 

flowing laminar fluid rotating about a parallel axis has been investigated by 

Olumuyiwa (2007). The author found that the mean Nusselt number is highest at duct 

eccentricity, e = 0 for a given Prandtl number. The fluid flow behavior of combined 

convection in lid-driven cavity containing a circular body was investigated by Oztop 

et al. (2009). A simulation of combined free and forced convective cooling of heat 

dissipating electronic components positioned in rectangular enclosure that was 

cooled by an external through flow of air has been investigated by Papanicolaou and 

Jaluria (1990, 1992, 1993 and 1994). Rahman et al. (2008b) performed combined 

convection in a vented square cavity containing a heat conducting horizontal solid 

circular cylinder. Pop et al. (2010) studied the heat generation effect by an 

exothermic reaction on the fully developed mixed convection flow in a vertical 

channel. Raji and Hasnaoui (1998a, 1998b) have been used finite difference 

procedure to analyze mixed convection flow in a rectangular cavity heated from the 
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side with a constant heat flux. They submitted a laminar cold jet from the bottom of 

its heated wall while the fluid leaves the cavity through the top or the bottom of the 

opposite vertical wall. Further, Raji and Hasnaoui (2000) studied the mixed 

convection in ventilated cavities with opposing and assisting flows where the upper 

and the left walls were arranged with equal heat fluxes. A two-dimensional finite-

volume based numerical approach is adopted by Sudipta and Dipankar (2014) to 

solve the hydro-magnetic mixed convection in a horizontal lid-driven square cavity 

with a circular solid object. The object is located centrally within the enclosure. The 

results indicate a major influence of the prevailing convection method and the 

applied magnetic field on the flow as well as the thermal field, while the effect of 

Joule heating is found to be of very small significance. Saleh et al. (2013) performed 

flow reversal of fully developed mixed convection in a vertical channel with 

chemical reaction. Combined free and forced convection in a square cavity due to 

heat generating rectangular body was presented by Shuja et al. (2000) and examined 

the effect of exit port locations on the heat transfer characteristics in the cavity. They 

concluded that the normalized irreversibility increases with the increases of the exit 

port location number. Singh and Sharif (2003) reported mixed convective cooling of 

a rectangular cavity with inlet and exit openings on differentially heated side walls. 

Xianglong et al. (2014) studied combined natural convection and radiation heat 

transfer of various absorbing-emitting-scattering media in a square cavity. 

Analytical Study 

Mixed convection flow of couple stress fluid between two circular cylinders with 

Hall and ion-slip effects performed analytically by Srinivasacharya and Kaladhar 

(2012). Gaikwad and Kamble (2011) presented an analytical study of mixed 

convection through vertical channel in presence of porous media. Yang et al. (2009) 

performed both analytical and numerical calculations to study the buoyancy effect on 

the reversed flow structure and heat transfer processes in a finite vertical duct with a 

height to spacing ratio of 12. One of the walls is kept heated uniformly and the 

opposite wall is considered adiabatic. They developed simple analytical models to 

predict the penetration depth of the reversed flow for both assisted and opposed 

convection. 
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Experimental Study 

Gau et al. (2000) carried out an experimental investigation on combined free and 

forced convection in a horizontal rectangular channel which was heated from a side. 

Mixed convection in a channel with an open cavity has been investigated 

experimentally by Manca et al. (2006). Prakash  and Ravikumar (2013) investigated 

thermal comfort in a room with windows at adjacent walls along with additional 

vents. The authors studied indoor airflow behavior under various locations of the roof 

vent and best location was identified. Radhakrishnan et al. (2007) presented the 

results of experimental and numerical investigation of combined free and forced 

convection from a heat generating element in a ventilated cavity. From this study it 

can be concluded that a combined experimental and numerical investigation will 

significantly reduce the effort required to optimize the thermal performance in such 

kind of problems. Tahseen (2011) presented an experimental study for mixed 

convection through a circular tube filled with porous media and fixed horizontally 

and inclined. Xu et al. (2006) investigated experimentally the thermal flow around a 

square obstruction on a vertical wall in a differentially heated cavity. 

Numerical Study 

Deng and Tang (2002) conducted numerically mass and heat transport for conjugate 

natural convection/ heat conduction by streamlines and heat lines. In order to explore 

the transient heat transfer and flow nature of free convection of three different fluids 

in a vertical square enclosure having a heat-generating conducting body was 

numerically investigated by Ha et al. (1999). Kumar and Dalal (2006) performed 

natural convection about a tilled heated square cylinder placed in an enclosure in the 

range of Rayleigh number from 10
3
 ≤ 10

6
. It was noted that the uniform wall heat 

flux heating is quantitatively different from the uniform wall temperature heating. 

Lee and Ha (2005) used an accurate and efficient Chebyshev spectral collocation 

approach to examine natural convection in a horizontal layer of fluid with a 

conducting body in the interior. After that a numerical simulation of natural 

convection in a horizontal enclosure with a heat-generating conducting body was 

conducted by the same authors Lee and Ha (2006). Mansour and Alireza (2012) 

performed numerically the convective heat transfer of CuO nanofluids flowing 
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through a straight tube with uniform heat flux. A finite element analysis of conjugate 

free convection in a square enclosure with a conducting vertical wall was presented 

by Misra and Sarkar (1997). Oh et al. (1997) carried out numerical study of heat 

transfer and flow of natural convection in an enclosure with a heat generating 

conducting body. The effects of Rayleigh numbers Ra and temperature difference 

ratio on streamlines, isotherms and the average Nusselt numbers on the hot and cold 

walls are considered in their work. By the use of control volume finite element 

method, mixed convection in an air-cooled cavity with differentially heated vertical 

sidewalls has been analyzed by Omri and Nasrallah (1999). A numerical study of 

mixed convection in a square cavity with a heat conducting square cylinder at 

different locations was performed by Rahman et al. (2008a). Rahman et al. (2009) 

investigated combined natural and forced convection in a rectangular cavity 

containing a heat conducting horizontal circular cylinder by means of finite element 

method. Numerical simulation of natural convection heat transfer and fluid flow 

around a heated cylinder kept in a square enclosure with different thermal boundary 

conditions was presented by Roychowdhury et al. (2002). Sasaguchi et al. (1998) 

studied numerically the effect of the position of a cylinder in a rectangular cavity on 

the transient cooling of water around the cylinder. Shuja et al. (2009) analyzed 

numerically the flow over heat generating bodies in an open-ends cavity to show the 

effects of blocks' orientations and aspect ratios on the heat transfer rates, which finds 

applications in electronics cooling and industrial processing. Saeidi and Khodadadi 

(2006) analyzed numerically forced convection in a square cavity with inlet and 

outlet ports. Tasnim and Collins (2004) investigated buoyancy induced flow and heat 

transfer inside a square cavity with a thin baffle on the hot wall. They presented how 

heat transfer performance depends on baffle height, length and Rayleigh number and 

noted that adding baffle on the hot wall increases the rate of heat transfer. Laminar 

fluid flow and heat transfer in a channel with a built-in heated square cylinder was 

performed numerically by Turki et al. (2003). Yucel and Turkoglu (1998) performed 

free convection heat transfer in vertical cavities with conducting fins attached to the 

cold wall numerically.  
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1.5 Overview of the Present Study 

It is apparent from the literature review that a little study on viscous incompressible 

thermal flow in mixed convection heat transfer in vented cavities heated bottom 

surface with inner obstacle has been performed. Such kinds of problems are very 

important for numerous engineering applications and hence the investigations of 

these types of study are necessary to ensure efficient performance of heat transfer 

equipments. As far it is known to the author, nobody has carried out the mixed 

convection problem in a square vented enclosure having heat generating, heat 

conducting and adiabatic solid obstacle, even though these are largely used. From 

this point of view the topics of the present study is chosen.  

Present Work 

The present study is a numerical analysis on the vented enclosures with centered 

solid block for the purpose of actual heat transfer performance. In the current 

research, three different types of inner obstacle inside the square cavities are 

considered, where the bottom wall is heated and the remaining three walls of the 

cavity are adiabatic in each of the three cases. Fresh and cold air enters into the 

cavity through inlet at uniform velocity ui and ambient temperature Ti whereas it exits 

via outlet at the convective boundary condition (CBC). A uniform transverse 

magnetic field of strength B0 is applied in the opposite to flow direction. It is 

expected to expose that the heat transfers in such chosen arrangements are dissimilar 

from those performed in the above mentioned literature which motivates the designer 

in choosing the best physical condition that is appropriate for his model. 

Main Objective of the Thesis 

In particular the aim of this thesis is to analyze numerically fluid flow and heat 

transfer behaviors inside vented enclosure containing three types of centered body as 

stated in above. The effects of non-dimensional governing parameters such as 

Hartmann number, Prandtl number, Reynolds number, Richardson number, solid-

fluid thermal conductivity ratio and physical parameter such as obstacle diameter 

have been carried out in this work. Moreover, the effect of inlet and outlet port 

locations is studied for the case of heat generating obstacle. The outcomes will be 
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displayed in terms of streamlines, isotherms, as well as the average Nusselt number 

at the hot bottom wall and average fluid temperature inside the enclosure for different 

values of the considered parameters. The precise objectives of the current study are 

as follows: 

• To develop a mathematical model concerning the mixed convection flow about a 

center lined obstacle (heat generating, heat conducting and adiabatic) kept in a 

square ventilated enclosure and thus to solve that model by means of finite 

element method. 

• To execute the validity of the present finite element model by examining the 

effect of combined convection flow and heat transfer in a square vented cavity 

with selected solid bodies located in the center of the cavity. 

• To get the optimum location of the inlet and outlet port for which most 

advantageous heat transfer performance can be achieved in vented enclosure. 

• To find out the effects of Hartmann number, Prandtl number, Reynolds number, 

Richardson number, solid-fluid thermal conductivity ratio and diameter of the 

centered solid block.  

Plan of the Work 

This thesis is exposed in seven chapters. In chapter 1, an introductory talk is 

presented which includes heat transfer behavior, some relevant fluid properties, 

literature review described categorically and the main objective of the present 

research. Chapter 2 gives an idea of computational system. Also a finite element 

formulation is carried out for the problem of two-dimensional viscous incompressible 

steady-state thermal flow. To find out the maximum cooling efficiency among the 

four cavity configurations; the effect of inlet and outlet port is studied in chapter 3.  

A detailed parametric study on MHD mixed convection flow and heat transfer in 

vented cavities with heat generating centered obstacle is conducted in chapter 4. 

Further, the effects of pertinent parameters are investigated for the case of heat 

conducting and adiabatic obstacle in chapters 5 and 6 respectively.  

Last of all, in chapter 7 the essay is concluded by revealing the major outcomes of 

the study with comparison in heat transfer rate between three different types of 

centered solid body and probable further works is proposed. 
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Computational Details 

Finite element method has been used to analyze viscous incompressible thermal 

flows numerically in our present investigation. Physical phenomena of such problems 

can be expressed by mathematical model which may be consists of ordinary or partial 

differential equations and this types of problems is solved either experimentally or 

numerically. In the current study fluid motion is governed by the coupling of energy 

equations and the Navier-Stokes equations and thus the problem is somewhat 

complicated. The governing equations involve a set of coupled nonlinear partial 

differential equations that is difficult to solve; particularly for complex geometries 

with boundary conditions. Firstly we have to use a discretization scheme to obtain a 

numerical approximate solution. After discretization a system of algebraic equations 

is yielded and a computer program is then applied to solve these equations. The 

reason of preferring numerical system, a brief description of solution process 

together with finite element formulation is presented in this chapter.  

2.1 Advantages of Numerical Investigation 

The numerical method which always works with iteration is mainly to solve complex 

problem, physically or geometrically. In numerical analysis, numerical integration 

constitutes a broad family of algorithms for calculating an approximate value of a 

definite integral, and by extension, the term is also sometimes used to describe the 

numerical solution of differential equations.  

Consider a situation when the governing equations are a function of several 

parameters. For each combination of parameters a numerical solution is required. 

Suppose you have a mathematical model and you want to find a solution to the set of 

equations in order to understand its behavior. Then you turn to numerical methods of 

solving the equations. For a differential equation that describes behavior over time, 

the numerical method starts with the initial values of the variables, and then uses the 

equations to figure out the changes in these variables over a very brief time period. 

Its only an approximation, but it can be a very good approximation under certain 

circumstances. 
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Especially the numerical method FEM is an excellent tool to solve complicated 

geometrical shapes with a boundary and load condition that is difficult to describe 

with analytical expressions available in the industry. Famous Navier-stoke equation 

has not been solved till now analytically but can be easily solved by Numerical 

Schemes. 

However the advantages of numerical methods are also conditional. The numerical 

solution method selected must have the important properties of consistency, stability, 

convergence, conservation, boundedness, reliability and most importantly accuracy. 

It should be understood that numerical solutions of fluid flow and heat transfer 

problems are only approximate solutions. The systematic errors due to modeling, 

discretization and iteration must be minimum (set as a condition). Mathematical 

model involving partial differential equations in two-dimensional thermodynamics 

problems are required to be solved simultaneously with some boundary conditions. 

The analytical methods are not of much help in solving the practical problems and 

thus, there no alternatives except the numerical methods for the solution of the 

problems of practical interest. 

However, if analytical solution is not possible or very difficult/complicated etc., then 

numerical method has an advantage of being the only method, provided the results 

are somewhere close to those inferred from properties of analytical/experimental 

results. 

2.2 Different Steps of Numerical Solution Methods 

In general numerical methods are formed with some sequential steps. Ferziger and 

Perić (1997) presented a number of components of numerical solution methods in 

their study; some major steps only are discussed here. 

2.2.1 Mathematical Model 

For any numerical method, the initial step is the mathematical model which is a 

description of a system using mathematical concepts and language. A mathematical 

model usually reveals a structure by a set of variables and a set of equations with 

boundary conditions. The procedure of developing a mathematical model is known 

as mathematical modeling. Mathematical models are widely used in the natural 
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sciences and engineering disciplines. Such a model may help to clarify a system and 

to study the effects of different parameters, and thus to guess about behavior. 

2.2.2 Discretization Method 

Numerical discretization is the first step to solve a mathematical model numerically. 

One has to choose an appropriate discretization method, i.e. a method of 

approximating the differential equations by a system of algebraic equations for the 

variable at some set of distinct positions in space and time. After using successive 

linearization of the non-linear equations, the obtained linear systems are usually 

solved by iterative techniques. Finally the selection of solver depends on the nature 

of grid and the number of nodes concerning in each equation.  

Various spatial discretization schemes are finite volume (FV) method, finite element 

(FE) method, boundary element (BE) method and boundary volume (BV) method. 

Galerkin weighted residual based finite element method (FEM) is used in the present 

numerical calculation and a details of this method is available in the literatures of 

Chung (2002) and Dechaumphai (1999). 

2.2.3 Numerical Grid Generation 

The array of discrete points throughout the flow field is basically called a grid and 

grid generation is the mode of determining such a grid. Numerical grid generation 

plays a crucial role in any computational simulation problem when the geometry of 

the underlying region is complicated or when the solution has a complex structure. 

The capability to perform successful numerical procedures for the approximation of 

computational fluid dynamics (CFD) problems depends on the geometric modeling 

and grid generation phases which is very recognized. A proper grid generation can 

remove difficulties from this computational phase and help to prevent girding from 

becoming a hazardous bottleneck in complex simulations with consuming a 

noteworthy simulation time. For this reason, different research projects have 

concentrated on the development of numerical methods for the generation of 

structured and unstructured grids. 

Finite element method can be used for unstructured grids as the governing equations 

in this technique are found in integral form and numerical integration can be 
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performed directly on such domain where no coordinate transformation is necessary. 

In finite element method, the mesh generation is the process to subdivide a domain 

into a set of sub-domains which are known as finite elements. Figure 2.1 shows a 

domain, Λ  where eΛ  is the sub-domain which may be of the form square, triangle, 

rectangle, trapezium etc. with boundary, eΓ . Anderson (1995) and Chung (2002) 

presented a detailed discussion on this topic. A two-dimensional domain as shown in 

Fig. 2.1 is considered for present working area with triangular sub-domain in our 

study. 

 

 

Figure 2.1: A typical FE discretization of a domain, Reddy & 

Gartling (1994) 

2.2.4 Finite Approximations  

One has to choose the appropriate approximations that will be used in the 

discretization process after the selection of grid type. In a finite difference method, 

approximations for the derivatives at the grid points have to be selected whereas one 

has to select the methods of approximating surface and volume integrals in a finite 

volume method. But the approximating functions and weighting functions should be 

chosen in a finite element method.  

2.2.5 Algorithm 

The computational system was forwarded by means of the iterative Newton-Raphson 

algorithm; the discrete forms of the continuity, momentum and energy equations are 

solved to obtain the desired value of the velocity and the temperature. To estimate  

Λ
e
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Figure 2.2: Flow chart of the computational procedure 
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the initial values of the pertinent variables is essential for further steps. Then the 

numerical solutions of the variables are found while the convergent criterion is 

satisfied after performing some successive steps. The algorithm that used in this 

problem is exposed by the above flow diagram. 

2.2.6 Solution of System of Equations 

A system of linear algebraic equations has been solved by the UMFPACK with 

MATLAB interface. UMFPACK is a set of routines for solving asymmetric sparse 

linear systems Ax = b, using the Asymmetric MultiFrontal method and direct sparse 

LU factorization. Five primary UMFPACK routines are required to factorize A or Ax 

= b: 

1. Pre-orders the columns of A to reduce fill-in and performs a symbolic 

analysis. 

2. Numerically scales and then factorizes a sparse matrix. 

3. Solves a sparse linear system using the numeric factorization. 

4. Frees the Symbolic object. 

5. Frees the Numeric object. 

Additional routines are: 

1. Passing a different column ordering 

2. Changing default parameters 

3. Manipulating sparse matrices 

4. Getting LU factors 

5. Solving the LU factors 

6. Computing determinant 

UMFPACK factorizes PAQ, PRAQ, or PR
−1

AQ into the product LU, where L and U 

are lower and upper triangular, respectively, P and Q are permutation matrices, and R 

is a diagonal matrix of row scaling factors (or R = I if row-scaling is not used). Both 

P and Q are chosen to reduce fill-in (new non zeros in L and U that are not present in 

A). The permutation P has the dual role of reducing fill-in and maintaining numerical 

accuracy (via relaxed partial pivoting and row interchanges). The sparse matrix A 

can be square or rectangular, singular or non-singular, and real or complex (or any 

combination). Only square matrices A can be used to solve Ax = b or related 
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systems. Rectangular matrices can only be factorized. UMFPACK first finds a 

column pre-ordering that reduces fill-in, without regard to numerical values. It scales 

and analyzes the matrix, and then automatically selects one of three strategies for pre-

ordering the rows and columns: asymmetric, 2-by-2 and symmetric. These strategies 

are described below. 

One notable attribute of the UMFPACK is that whenever a matrix is factored, the 

factorization is stored as a part of the original matrix so that further operations on the 

matrix can reuse this factorization. Whenever a factorization or decomposition is 

calculated, it is preserved as a list (element) in the factor slot of the original object. In 

this way a sequence of operations, such as determining the condition number of a 

matrix and then solving a linear system based on the matrix, do not require multiple 

factorizations of the intermediate results. 

Conceptually, the simplest representation of a sparse matrix is as a triplet of an 

integer vector i giving the row numbers, an integer vector j giving the column 

numbers, and a numeric vector x giving the non-zero values in the matrix. The triplet 

representation is row-oriented if elements in the same row were adjacent and column-

oriented if elements in the same column were adjacent. The compressed sparse row 

(csr) or compressed sparse column (csc) representation is similar to row-oriented 

triplet or column-oriented triplet respectively. These compressed representations 

remove the redundant row or column in indices and provide faster access to a given 

location in the matrix. 

2.3 Finite Element Method 

The finite element method (FEM) is one of the powerful computational methods of 

numerical analysis for finding the approximate solution of ordinary and partial 

differential equations that arise in the various fields of science and engineering. The 

finite element was initially developed on a physical basis for the analysis of problems 

in structural mechanics. However it was soon recognized that the method can be 

applied equally to the solution of many other classes of problems such as fluid flow, 

heat flow, computational fluid dynamics, electric and magnetic field etc. Although its 

application is still under intensive research in the field of fluid mechanics, 

particularly to convective viscous flows. It has its superiority over other methods 
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because of its ability to solve problems concerning domain with irregular geometry 

and heterogeneous composition. 

The basic concept of the finite element method is to generate systematically 

piecewise approximation functions needed in the solution of partial differential 

equations by the Galerkin weighted residual method. That is we approximate a 

solution to a complicated problem by subdividing the region of interest into simple 

geometric shapes, called finite elements, as shown in Fig. 2.1 and representing the 

solution within each sub-domain by relatively simple function. The ideas from 

interpolation theory are used frequently to construct the approximation functions, 

which satisfy the governing equations and boundary conditions of a problem. The 

necessary approximating functions in finite elements are determined in terms of 

nodal values of a physical domain. 

The major steps involved in finite element analysis of a typical problem are: 

1. Discretization (or representation) of the given domain into a collection of 

finite elements (mesh generation). 

2. Derivation of approximation function. 

3. Derivation of element equations for all typical elements of the mesh. 

4. Assembly of element equations to obtain the equation of whole problem. 

5. Imposition of the boundary conditions of the problem. 

6. Solution of the assembled equations. 

7. Post-processing the results. 

2.3.1 Finite Element Formulation 

The differential equations for the two-dimensional steady-state thermal flow are, 

,   , 0x yu v+ =           (1) 

 ,   ,   , ,x x xy yx yu u v uρ σ τ 
 
 

+ = +        (2) 

( )0 ,   ,    [1  ], ,xy x y yx yu v v v g T Tρ τ σ ρ β 
 
 

+ = + − − −      (3) 
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 ,   ,  (  )  (  ), , , ,x x y yx yc u T v T k T k Tρ  
 
 

+ = +       (4) 

Where, u and v are the velocity components in the x and y direction, respectively; T is 

the fluid temperature, T0  is the reference temperature for which buoyant temperature 

vanishes, ρ is the fluid density, g is the gravitational constant, β  is the volumetric 

coefficient of thermal expansion, c is the fluid specific heat, and k is the fluid thermal 

conductivity. The stress components are defined by, 

-  + 2  ,x xp uσ µ=          (5) 

-  + 2  ,y yp vσ µ=          (6) 

( ),  ,xy y xu vτ µ= +          (7) 

Where, p is the total pressure and µ is the fluid dynamic viscosity. 

The partial equations, Eqs (1-4), are to be solved together with appropriate boundary 

conditions of,  

(1) Specifying velocity components ( ), i iu v and fluid temperature ( )iT  along 

inflow boundary ( )iS . 

( ),iu u x y=  

( ),iv v x y=  

( ),iT T x y=  

(2) Specifying surface tractions ( ), x yP P  along outflow boundary ( )0S . 

x x xyP l mσ τ= +  

y xy yP l mτ σ= +  

Where, l and m are direction cosines of the unit vector normal to the boundary. 

(3) Specifying velocity components ( ), w w
u v and fluid temperature ( )wT  or heat 

flux ( )wq  that flows into or out from domain along wall boundary ( )wS . 

( ),wu u x y=  

( ),wv v x y=  

( ) ( ),    or  ,w wT T x y q q x y= =  



Chapter 2 

 26

  ( ),  u x y N uα α=  

  ( ),  v x y N vα α=  

  ( ),  T x y N Tα α=  

  ( ),  p x y H pλ λ=  

Where α = 1, 2, … … , 6; λ = 1, 2, 3; Nα are the element interpolation functions for 

the velocity components and the temperature, and Hλ  are the element interpolation 

functions for the pressure. 

Equations (2), (3) (4) and (1) respectively are as follows  

, ,  ,   ,  x y x x xy yN u u v u dA N dA
A A

α αρ σ τ   
   
   

+ = +∫ ∫               8(a) 

( ), , 0  ,   ,   -   [1  ] x y xy x y yN u v v v dA N dA N g T T dA
A A A

α α αρ τ σ ρ β   
   
   

+ = + − −∫ ∫ ∫          8(b) 

 ,   , (  )  (  ), , , ,x y x x y y
A A

N c u T v T dA N k T k T dAα αρ          
+ = +∫ ∫              8(c) 

,   , 0x yH u v dA
A

λ
 
 
 

+ =∫                  8(d) 

Where, A is the element area. 

Gauss’s theorem is then applied to equations 8(a)-8(c) to generate the boundary 

integral terms associated with the surface tractions and heat flux. Then equations 

8(a)-8(d) become, 

According to Gausss’s theorem 

. .
A C

FdA F ndS∇ =∫ ∫ , we have 

 . . ,   where  
A A

N udA N u ndS F N uα α α∇ ∇ = ∇ = ∇∫ ∫   (*) 

Using the vector identity 

 

( )
( )

[ ]

. . . ,
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. . .

. . .

A A C

A C A

N udA N udA N u ndS

N udA N u ndS N udA

α α α

α α α

∇∇ + ∇ ∇ = ∇∫ ∫ ∫

⇒ ∇∇ = ∇ − ∇ ∇∫ ∫ ∫
 

Equation 8(a) can be written in the form 
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Equation 8(b) can be written in the form 
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Equation 8(c) can be written in the form 
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Equation 8(d) can be written in the form 

 



Chapter 2 

 29

 

0
, ,

,   , 0     

N u dA N v dA
x y

H u v dAx y
A

H H
A A

β β β β

λ

λ λ

 
 
 

+ =

+ =∫

∫ ∫
 

1 1
0

, ,
N u dA N v dA

x y
H H

A A
β β β βµ µρ ρ

+ =∫ ∫                 9(d) 

 

Substituting the element velocity component distributions, the temperature 

distribution, and the pressure distribution, and the stress components from equation 

(5)-(7), the finite element equations can be written as, 
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From equation 9(c), 
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Finally equation 9(d) reduces to 
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Finally the finite element equations can be written as, 
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Where the coefficients in element matrices are in the form of the integrals over the 

element area and along the element edges S0 and Sw as  
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Here the closed form ready for computer programming has been used for the 

evaluation of these element matrices. For brevity details of the derivation for these 

element matrices are omitted herein. 



 

 

Chapter 3 

Effect of Inlet and Outlet Port on Mixed Convection Flow in 

a Square Vented Enclosure with a Centered Solid Body  

The effect of inlet and outlet location on mixed convection flow inside a square 

vented enclosure with a centered heat generating solid body has been studied in this 

chapter. Based on inlet and exit position, the four cavity configurations namely BB, 

BT, TB and TT are considered along with an interior solid obstacle. At the beginning, 

the governing equations of the present problem with appropriate boundary conditions 

are transformed into non-dimensional forms which are then solved numerically using 

a finite element method. The dimensionless governing parameters namely, Reynolds 

number Re, Richardson number Ri, Prandtl number Pr, Hartmann number Ha, solid-

fluid thermal conductivity ratio K, heat generating parameter Q and also some 

physical parameters i.e. the inlet and outlet position of the cavity and the diameter of 

the inner body are studied here. The outcomes of the current research are presented in 

terms of streamlines and isotherms to visualize the flow and heat transfer behavior. 

Moreover, the average Nusselt number at the heated bottom wall, average 

temperature of the fluid in the cavity are presented graphically in this thesis. 

Numerical values of the average Nusselt number at the heated surface for the four 

configurations have been also presented in tabular form. 

The aim of the research is to optimize the relative positions of inlet and exit in order 

to obtain most effective cooling inside the cavity by maximizing the heat-removal 

rate from the heated surface of the cavity. It is noticed that highest cooling 

effectiveness is achieved if the inlet is kept at the bottom of the left wall while the 

outlet is placed at the top of the right wall. 

This chapter is divided in the different sections as stated here. The physical 

configurations of the current research domain are shown in section 3.1. In section 3.2 

the appropriate mathematical formulation for the present problem is presented. Then 

section 3.3 describes the numerical procedure that has been applied in the current 

work. The parametric results are explained in section 3.4 whereas section 3.5 reveals 

a conclusion. 
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3.1 Physical Configuration  

The schematic of the system considered in the present article is displayed in Fig. 3.1. 

The bottom wall of the enclosure is kept at constant temperature Th and the 

remaining walls are considered adiabatic. An inlet port is located at the bottom of the 

left vertical wall, whereas the exit port situated at the bottom of the opposite side 

wall (BB configuration) and these vary in location either top or bottom position as 

illustrated in Fig. 3.1. The size of each port is equal to w = 0.1L, where L is the length 

of the cavity. A heat generating solid square block of thermal conductivity ks is 

placed at the center of the cavity that generates uniform heat flux (q). A transverse 

magnetic field of strength B0 is applied along the normal of the right vertical wall. It 

is supposed that the incoming flow is at a uniform velocity, ui and at the ambient  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 3.1: Four schematic diagrams of ventilated enclosure with a 

square solid body. 
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temperature, Ti. The outgoing flow is assumed to have zero diffusion flux for all 

variables i.e.; convective boundary condition (CBC). All solid boundaries are 

assumed to be rigid no-slip walls. 

3.2 Mathematical Formulation 

The several steps of the mathematical formulation for the above physical 

configurations are shown here.  

3.2.1 Governing Equations 

In the present problem the assumptions are made as the flow within the cavity is two-

dimensional, steady, laminar, and incompressible with constant fluid properties. 

There is no viscous dissipation, the radiation effects are neglected and the Boussinesq 

approximation is considered. The governing equations for the problem can be 

described as below: 
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∂
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∂
∂
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Where, x and y are the distances measured along the horizontal and vertical directions 

respectively; u and v are the velocity components in the x- and y-direction 

respectively; T denotes the temperature; ν and α are the kinematics viscosity and the 

thermal diffusivity respectively; p is the pressure, ρ is the density and q is the 

uniform constant heat flux. 

3.2.2 Boundary Conditions 

The boundary conditions for the present problem are specified as follows: 

At the inlet: , 0,i iu u v T T= = =  

At the outlet: convective boundary condition (CBC), p = 0 

At all solid boundaries: 0,0 == vu  

At the heated bottom wall: hT T=   

At the left, right and top walls: 0
T

n

∂
=

∂
 

At the fluid-solid interface: 
f

s s

fluid solid

k TT

n k n

∂∂    =   ∂ ∂   
  

Where, n is the non-dimensional distances either along x or y direction acting normal 

to the surface and kf and ks are the thermal conductivity of the fluid and the solid 

block respectively. 

3.2.3 Dimensional Analysis 

Non-dimensional variables that are used in order to making the governing equations 

(3.1−3.5) into dimensionless form are stated as follows: 
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Where, X and Y are the coordinates varying along horizontal and vertical directions, 

respectively, U and V are the velocity components in the X and Y directions, 
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respectively, θ is the dimensionless temperature and P is the dimensionless pressure. 

After substitution the dimensionless variables into the equations (3.1−3.5), we get the 

following dimensionless equations as 

Continuity Equation 

0=
∂
∂

+
∂
∂

Y

V

X

U
 (3.6) 

Momentum Equations 

2 2

2 2

1U U P U U
U V

X Y X Re X Y

 ∂ ∂ ∂ ∂ ∂
+ = − + + 

∂ ∂ ∂ ∂ ∂ 
 (3.7) 

2 2 2

2 2

1

Re

V V P V V Ha
U V Ri V

X Y Y Re X Y
θ

 ∂ ∂ ∂ ∂ ∂
+ = − + + + − 

∂ ∂ ∂ ∂ ∂ 
 (3.8) 

Energy Equations 

2 2

2 2

1
U V

X Y Re Pr X Y

θ θ θ θ ∂ ∂ ∂ ∂
+ = + 

∂ ∂ ∂ ∂ 
 (3.9) 

For centered solid body 

2 2

2 2
0s sK

Q
Re Pr X Y

θ θ ∂ ∂
+ + = 

∂ ∂ 
 (3.10) 

The dimensionless parameters that appear in the equations from (3.6) to (3.10) are 

the Reynolds number Re, Richardson number Ri, Hartmann number Ha, Prandtl 

number Pr, heat generating parameter Q and solid fluid thermal conductivity ratio K. 

They are respectively defined as follows: 

2 2 2 2 2
0,  ,  ,  , ,  

f

i s

s

Re u L Ri Gr Re Ha B L Pr Q qL k T

K k k

υ σ υ υ α= = = = = ∆

=
 

Where, h iT T T∆ = − and
f pk cα ρ= are the temperature difference and thermal 

diffusivity of the fluid respectively. 

The dimensionless boundary conditions under consideration can be written as: 

At the inlet: U = 1, V = 0, θ = 0 
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At the outlet: convective boundary condition (CBC), P = 0 

At all solid boundaries: U = 0, V = 0, 

At the heated bottom wall: 1θ =   

At the left, right and top walls: 0
N

θ∂
=

∂
 

At the fluid-solid interface: s

fluid solid

K
N N

θθ ∂∂    =   ∂ ∂   
  

Where, N is assumed as the dimensionless distances either along X or Y direction 

acting normal to the surface. According to Singh and Sharif (2003), the average 

Nusselt number at the heated wall of the cavity based on the dimensionless variables 

may be expressed as 
1

0

avNu dX
Y

θ∂
= −

∂∫
and the bulk average temperature of the fluid 

inside the cavity defined as /av d V Vθ θ= ∫ , where V  is the cavity volume. 

3.3 Numerical Analysis 

The governing equations are solved numerically along with the boundary conditions 

using Galerkin weighted residual based finite element techniques that is discussed 

below. 

3.3.1 Derivation of Finite Element Equations and Solution Techniques  

The weighted residuals Zienkiewicz method (1991) is applied to the equations (3.6) – 

(3.10) and finite element equations are derived from these equations. 

0=







∂
∂

+
∂
∂

∫ dA
Y

V

X

U
N

A α  (3.11) 

2 2

2 2

1
A A A

U U P U U
N U V dA H dA N dA

X Y X Re X Y
α λ α

 ∂ ∂ ∂ ∂ ∂   + = − + +    ∂ ∂ ∂ ∂ ∂     
∫ ∫ ∫  (3.12) 
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2 2

2 2

2

1

Re

A A A

A A

V V P V V
N U V dA H dA N dA

X Y Y Re X Y

Ha
Ri N dA N VdA

α λ α

α αθ

 ∂ ∂ ∂ ∂ ∂   + = − + +    ∂ ∂ ∂ ∂ ∂     

+ −

∫ ∫ ∫

∫ ∫

 (3.13) 

2 2

2 2

1
A A

N U V dA N dA
X Y Re Pr X Y

α α
θ θ θ θ ∂ ∂ ∂ ∂ + = +  ∂ ∂ ∂ ∂   

∫ ∫  (3.14) 

2 2

2 2
0

.

s s

A A

K
N dA N QdA

Re Pr X Y
α α

θ θ ∂ ∂
+ + = 

∂ ∂ 
∫ ∫  (3.15) 

Where, A indicates the area of the element, Nα ( α = 1, 2, … … , 6) are the element 

interpolation functions for the velocity components and the temperature, while Hλ ( λ 

= 1, 2, 3) stands for the element interpolation functions for the pressure. 

To generate the boundary integral terms associated with the surface tractions and heat 

flux, Gauss’s theorem is then applied to equations (3.12)-(3.15) that reduce to the 

following equations. 

0
0

1

A A

xA S

U U P
N U V dA H dA

X Y X

N NU U
dA N S dS

Re X X Y Y

α λ

α α
α

∂ ∂ ∂   + +   ∂ ∂ ∂   
∂ ∂∂ ∂ 

+ + = ∂ ∂ ∂ ∂ 

∫ ∫

∫ ∫
 (3.16) 

0
0

1

A A

yA A S

V V P
N U V dA H dA

X Y Y

N NV V
dA Ri N dA N S dS

Re X X Y Y

α λ

α α
α αθ

∂ ∂ ∂   + +   ∂ ∂ ∂   
∂ ∂∂ ∂ 

+ + − = ∂ ∂ ∂ ∂ 

∫ ∫

∫ ∫ ∫
 (3.17) 

1

1

.
w wA A Sw

N N
N U V dA dA N q dS

X Y Re Pr X X Y Y

α α
α α

θ θ θ θ∂ ∂∂ ∂ ∂ ∂  + + + =   ∂ ∂ ∂ ∂ ∂ ∂   
∫ ∫ ∫  (3.18) 

2
.

s s
w wA Sw

N NK
dA N q dS

Re Pr X X Y Y

α α
α

θ θ∂ ∂ ∂ ∂ 
+ = ∂ ∂ ∂ ∂ 

∫ ∫  (3.19) 

Here (3.16)-(3.17) specifying surface tractions (Sx, Sy) along outflow boundary S0 and 

(3.18)-(3.19) specifying velocity components and fluid temperature or heat flux (qw) 

that flows into or out from domain along wall boundary Sw.  
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The fundamental unknowns for the differential equations described above are the 

velocity components, U, V, the temperature, θ, θs and the pressure, P. In order to 

develop the finite element equations, the six node triangular element is used in this 

work. All of the six nodes are associated with velocities and temperature; whereas 

only the corner nodes are associated with pressure. This implies that a lower order 

polynomial is preferred for pressure which is satisfied through continuity equation. 

The velocity components, temperature distributions and linear interpolation for the 

pressure distribution according to their highest order derivatives in the differential 

equations (3.6)-(3.10) are expressed as  

( ) ββ UNYXU =,  (3.20) 

( ) ββ VNYXV =,  (3.21) 

( ),X Y Nβ βθ θ=  (3.22) 

( ),s sX Y Nβ β
θ θ=  (3.23) 

( ) λλ PHYXP =,  (3.24) 

Where, β = 1, 2, ……, 6 and λ = 1, 2, 3. 

Substituting the element velocity component distributions, the temperature 

distributions and the pressure distribution respectively from equations (3.20)-(3.24) 

in equations (3.16)-(3.19); the finite element equations can be written in the form, 

0=+ ββαββα
VKUK yx  (3.25) 

( )1
x y x xx yy uK U U K V U M P S S U Q

Re
β γ β γ µ βαβγ αβγ αµ αβ αβ α

+ + + + =  (3.26) 

( )1

x y y

xx yy v

K U V K V V M P

S S V Ri K Q
Re

β γ β γ µαβγ αβγ αµ

β αβ βαβ αβ α
θ

+ + +

+ − =
 (3.27) 

( )1

.
x y xx yyK U K V S S Q

Re Pr
β γ β γ β θαβγ αβγ αβ αβ α
θ θ θ+ + + =  (3.28) 

( )
.

xx yy
s

s
K

S S Q
Re Pr β θαβ αβ α

θ+ =  (3.29) 
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The coefficients in element matrices are in the form of the integrals over the element 

area A and along the element edges S0 and Sw stated as  

,x xA
K N N dAα βαβ

= ∫  (3.30a) 

,y yA
K N N dAα βαβ

= ∫  (3.30b) 

,x xA
K N N N dAα β γαβγ

= ∫  (3.30c) 

,y yA
K N N N dAα β γαβγ

= ∫  (3.30d) 

A
K N N dAαβ α β= ∫  (3.30e) 

, ,xx x xA
S N N dAα βαβ

= ∫  (3.30f) 

, ,yy y yA
S N N dAα βαβ

= ∫  (3.30g) 

,x xA
M H H dAλ µαµ

= ∫  (3.30h) 

,y yA
M H H dAλ µαµ

= ∫  (3.30i) 

0
0

1

Re
u xS

Q N S dSαα
= ∫  (3.30j) 

0
0

1

Re
v yS

Q N S dSαα
= ∫  (3.30k) 

1

1

Re
w wSw

Q N q dSθ αα
= ∫  (3.30l) 

2

1

Re
s w wSw

Q N q dSθ αα
= ∫  (3.30m) 

There-after these element matrices are computed in closed form ready for numerical 

simulation and the details of the derivation for these element matrices are skipped 

herein. 

The derived finite element equations (3.25)-(3.29) are nonlinear. These nonlinear 

algebraic equations are solved by applying the Newton-Raphson iteration technique 
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by first writing the unbalanced values from the set of the finite element equations 

(3.25)-(3.29) as, 

p x yF K U K Vβ βα αβ αβ
= +  (3.31a) 

1
( )

u x y x

xx yy u

F K U U K V U M P

S S U Q
Re

β γ β γ µα αβγ αβγ αµ

βαβ αβ α

= + +

+ + −
 (3.31b) 

1
( )

v x y y

xx yy v

F K U V K V V M P

S S V Ri K Q
Re

β γ β γ µα αβγ αβγ αµ

β αβ βαβ αβ α
θ

= + + +

+ − −
 (3.31c) 

( )1

.
x y xx yyF K U K V S S Q

Re Pr
θ β γ β γ β θα αβγ αβγ αβ αβ α

θ θ θ= + + + −  (3.31d) 

( )
.

xx yy ss s

K
F S S Q

Re Pr
θ θβαβ αβα α

θ= + −  (3.31e) 

This set leads to a system of algebraic equations together with the incremental 

unknowns of the element nodal velocity components, temperatures, and pressure in 

the form, 

0 0 0

0 0

0 0

0

0 0 0 0

p
pu pv

u
uu uv up

u v

vu vv v vp v

s
s s

s

F
K K p

FK K K u

FK K K

K K K K v F

K F

α

α

θθ θ θθ α

θ
α

θ θ θα

θ

θ

   ∆        ∆          ∆ = −    
   ∆ 
     ∆         

 (3.32) 

Where, ( )1
uu x x y xx yyK K U K U K V S S

Reββ γ βαβγ α γ αβγ αβ αβ
= + + + +  

uv yK K U
αβγ

γ=  

0u u s
K Kθ θ= = , up xK M

αµ
=  

vu xK K Vγαβγ
=  
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( )1
vv x y y xx yyK K U K V K V S S

Re
β γ γαβγ αγβ αβγ αβ αβ

= + + + +  

vK Ri Kθ αβ= − , vp yK M
αµ

=  

0v s
K θ = , u xK Kθ γαβγ

θ= , v yK Kθ γαβγ
θ=  

1
( )

.
x y xx yyK K U K V S S

Re Pr
θθ β βαβγ αβγ αβ αβ

= + + +  

0p s
K Kθ θθ= = , 0u v ps s s s

K K K Kθ θ θ θ θ= = = =  

( )
.

xx yys s

K
K S S

Re Pr
θ θ αβ αβ

= +  

pu xK K
αβ

= , pv yK K
αβ

=  and 0p pp p s
K K Kθ θ= = =  

In the present computation the iteration process is terminated if the percentage of the 

overall change compared to the previous iteration is lower than the specified value. 

The Newton-Raphson iteration technique has been adapted through PDE solver with 

MATLAB interface for solving the sets of the global non-linear algebraic equations 

in the matrix form. It is assumed that the solution converges when the relative error 

for each variable between two consecutive iterations is recorded less than the 

convergence criterion ε such that ε<Ψ−Ψ + nn 1 , where n indicates the number of 

iteration and , ,U V θΨ = . In this case the convergence criterion was set to ε = 10
- 4

.  

3.3.2 Grid Size Sensitivity Test 

At first the grid refinement test is needed for this study so that the difficulty of the 

computational domain can be avoided. Various types of grid such as: 14313 nodes, 

1986 elements; 24388 nodes, 3536 elements; 42913 nodes, 6386 elements; 70329 

nodes, 10711 elements and 83304 nodes, 12600 elements have been taken for the 

grid refinement examination. From Table 3.1 it is observed that the deviations among 

the results are very minor. On the basis of the outcomes from the table the grid with 

42913 nodes and 6386 elements are selected throughout the simulation. 
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Table 3.1: Grid Sensitivity Check at Re = 100, Ha = 10, Ri = 1.0, K = 5, D = 

0.2 and Pr = 0.71  

 

Elements 

(Nodes) 

1986 

(14313) 

3536 

(24388) 

6386 

(42913) 

10711 

(70329) 

12600 

(83304) 

Nuav 4.0511 4.1501 4.1510 4.1512 4.1513 

θav 0.1905 0.1901 0.1897 0.1837 0.1831 

Time (s) 385.219 493.235 682.985 698.703 927.359 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Grid used for numerical simulations at the present study 

3.3.3 Validation of the Numerical Scheme 

The current numerical code is verified based on the problem of mixed convection in a 

lid-driven enclosure having a circular body performed by Oztop et al. (2009), where 

the cavity was heated at the left wall, cooled at the right wall and the rest of the other 

two sides were insulated. The relationship between the outcome of the present code 

and the results obtained in the literature Oztop et al. (2009) with respect to average 

Nusselt number (at the hot wall) for Re=1000, Gr=10
5
 are shown in Table 3.2. It 

follows that the present results expose an excellent agreement with the reported 

studies. Hence the chosen code can be used to predict the flow field for the present 

problem. 
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Table 3.2: Comparison of average Nusselt number at the hot wall of the 

cavity for Re = 1000, Gr = 10
5
, C (x = 0.5, y = 0.5) between the present data 

and that of the Oztop et al. (2009) 

 

 

 

 

 

3.4 Results and Discussions 

The effects of different inlet and outlet port locations of a ventilated square enclosure 

along with heat generating centered block on MHD mixed convection flow and 

thermal fields as well as heat transfer rates at hot wall, average fluid temperature in 

the cavity have been carried out in this study. Here, the Richardson number, Ri is 

considered as the controlling parameter for the four configurations while the Prandtl 

number Pr, Hartmann number Ha and the Reynolds number Re are kept fixed at 

0.71, 10 and 100 respectively. For each configuration, computations are done for 

three convective regimes of Richardson number (Ri = 0.1, 1, 10). The results of this 

present study are displayed in terms of streamlines and isotherms. Moreover, the 

effects of heat transfer at the hot wall of the enclosure are shown in terms of average 

Nusselt number Nuav and the average fluid temperature θav. 

A detailed analysis for the distribution of streamlines and isotherms is carried out to 

examine the flow and thermal fields structure of the mixed convection problem for 

various cavity configurations as BB, BT, TB and TT and displayed in Fig. 3.3. Fig. 

3.3(a) presents the effect of inlet and outlet position of ventilated cavity on fluid flow 

field for Richardson number Ri = 0.1, 1, 10  while Re = 100, Ha =10 and Pr = 0.71 

are kept fixed. In the case of dominant forced convection area (Ri = 0.1), the effects 

are exposed in the third row of Fig. 3.3(a). For BB configuration (entering in the left 

bottom and leave by the right bottom) it is found that the fluid flow is characterized 

by the open lines about the whole domain and a counter-clockwise vortex appears at 

the left side above the inlet. Another anti-clockwise rotating cell is noted at right side 

of the cavity in the BB configuration. The reason is due to the effect of buoyancy 

driven flow and convective currents (the fresh and colder fluids entering the cavity 

Present Oztop et al. (2009) Error (%) 

9.125 9.13 0.05 

10.38 10.37 0.10 

11.20 11.10 0.90 
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cannot come into intimate mixing with the hotter fluids). When the inlet port is 

situated at the bottom of the left vertical wall and outlet is at the top of the opposite 

vertical wall, i.e.; for BT configuration the left sided recirculation cell reduces in size, 

right vortex disappears and the main flow is diagonal from the inlet to the exit. For 

TB configuration a small CW rotating vortex is developed at below just inlet and the 

main streams capture the whole cavity which are elongated from the entrance to the 

passageway. In TT configuration it is followed that the main flow pattern is reverse 

of BB configuration and a CW unicellular vortex is created at left top corner below 

the inlet at Ri = 0.1. Also a very small eddy is found near the right wall. 

For the case of pure mixed convection, (Ri = 1) the effect of different configuration 

of the vented cavity on flow fields are illustrated in the second row of Fig. 3.3(a). It 

is seen that the intensity of the vortices in the cavity increases. A very large anti- 

clockwise circulating cell containing the obstacle is formed above the major flow and 

another CW vortex is noted at right top corner in the BB configuration. For BT 

configuration the major flow shrinks from the left side and a small CW vortex is seen 

at the left top corner. There is no significant change in TB configuration as that was 

found for the same configuration at Ri = 0.1. The left top cornered vortex decreases 

in size and the small eddy disappears which was seen in the case for Ri = 0.1 in TT 

configuration. 

The streamlines for the mentioned four cases with Re = 100, Ha = 10 and Pr = 0.71 

have been presented in the first row of Fig. 3.3(a), whereas the dominant natural 

convection effect (Ri = 10) is considered. The CCW vortex in the cavity gets smaller 

from the top right corner and the clockwise rotating cell enlarges, consequently 

squeezes the induced flow path for BB configuration, indicating the supremacy of 

natural convection heat transfer in the cavity. It is followed that in BT configuration 

the upper vortex vanishes and the lower vortex swells so that open lines are 

minimized. TB configuration shows a very large vortex at the surrounding of the 

centered block. The centered vortex shrinks from the right side; as a result the open 

flow covers this domain for TT configuration. Moreover a small eddy is found at the 

lower left corner of the cavity. 

The isotherms of the above mentioned four configurations are displayed in Fig. 

3.3(b). The third row of Fig. 3.3(b) shows the effect of inlet and outlet position of  
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Figure 3.3: (a) Streamlines and (b) Isotherms at different inlet and 

outlet locations and various values of Richardson number Ri, while Re 

= 100, Ha = 10, K = 5, Pr = 0.71, Q = 1 and D = 0.2. 
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(i) (ii) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Effect of inlet and outlet locations on (i) average Nusselt 

number, (ii) average fluid temperature, while Re = 100, Ha = 10, Pr = 

0.71, D = 0.2, Q = 1 and K = 5 

Table 3.3: Variation of average Nusselt number with inlet and outlet 

locations  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vented cavity in temperature distribution for the case of Ri = 0.1. It is noticed that for 

BB configuration the isothermal lines are packed at the opening and a thermal 

boundary layer is found near the bottom heated wall of the cavity. A little difference 

is followed in the case of BT configuration. For TB configuration high isothermal 

lines are concentrated at the hot wall indicating diffusion heat transfer in the cavity. 

Ri 
Nuav 

BB BT TB TT 

0.1 5.691892 6.464218 3.123972 0.690825 

1.0 5.928245 6.512524 3.204073 1.499937 

2.0 6.0132564 6.544932 3.494512 2.43214 

3.0 6.104789 6.584512 3.731246 2.986542 

4.0 6.184321 6.602143 3.945147 3.16985 

5.0 6.260024 6.621028 4.137727 3.388347 

6.0 6.3124563 6.642134 4.160124 3.412890 

7.0 6.364571 6.664125 4.188452 3.495734 

8.0 6.394587 6.681470 4.191247 3.514863 

9.0 6.415321 6.701234 4.202130 3.536921 

10.0 6.465167 6.70955 4.247171 3.549034 
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The temperature distribution for TT configuration is that all the isothermal lines are 

stretched out in the whole region. 

At Ri = 1, the middle row of Fig. 3.3(b) shows the isotherms for four inlet and outlet 

position of the cavity. It is observed that for BB configuration round shaped high 

isothermal line that was seen at Ri = 0.1, expands below the heated block in this case. 

A minor change is followed in BT and TB configuration regarding Ri = 0.1. For TT 

configuration isotherms are stretched about diagonally. 

Lastly, the isotherms for the aforesaid configurations are depicts in the first row of 

Fig. 3.3(b) where the natural convection dominates the forced convection. For BB 

configuration the isotherms are found more flattened below the obstacle. In BT 

configuration the isotherms containing the obstacle scatters comparing as that case of 

Ri = 1. Finally for TB and TT configurations the isotherms pattern change drastically 

regarding Ri = 0.1 and Ri = 1. Besides, a little variation is found between these two 

configurations. For the above mentioned four configurations, the average Nusselt 

number at the heated bottom wall (Nuav) and the average fluid temperature (θav) in 

the cavity have been displayed in Fig. 3.4. It is apparent from Fig. 3.4(i) that the 

highest value of Nuav is found for BT configuration. Also Nuav increases generally 

with increasing Ri due to the rising effect of convection. In addition, the average 

fluid temperature (θav) in the cavity is maximum for TT configuration for all values 

of Ri which can be observed from Fig. 3.4(ii). 

3.5 Concluding Remarks 

A two-dimensional laminar mixed convection problem in a ventilated enclosure with 

a heat generating square block is studied numerically in the present work to point out 

the appropriate placement of inlet and outlet port for best cooling efficiency. To 

compare the cooling effectiveness among the considered four different cavity 

configurations, Nusselt number is taken as criterion. Based on the result and analysis 

of the numerical experiment the following summary is drawn: 

In the entire domain the BT configuration generates more effective cooling than other 

configurations as obtained higher Nuav. 
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Among the chosen four configurations, TT shows the highest value of θav for all 

values of Ri. Hence it can be concluded that the flow and thermal fields have strong 

dependence on the position of inlet and outlet openings. 



 

 

 

Chapter 4 

Effect of a Heat Generating Solid Body on Mixed 

Convection Flow in a Square Enclosure  

In recent years mixed convection flow and heat transfer in a ventilated enclosure has 

become a subject of general interest of many researchers. A large number of 

investigations have been conducted in the past on vented cavity flow and heat 

transfer with regards to various combinations of the imposed temperature gradients 

and cavity configurations. At first the major equations of the present problem 

transferred into a dimensionless form by means of suitable non-dimensional 

variables. Then using Galerkin’s finite element method the resulting non linear 

system of partial differential equations are solved numerically. The variation of 

streamlines, isotherms, average Nusselt number at the heated surface, average fluid 

temperature inside the cavity for the various relevant dimensionless parameters 

Hartmann number Ha, Reynolds number Re, Richardson number Ri, Prandtl number 

Pr, solid-fluid thermal conductivity ratio K and diameter of the inner solid body D 

are shown graphically. In addition, variation of average Nusselt number at the bottom 

heated surface with different relevant governing parameters are exposed in tables. 

The present chapter focuses a comprehensive study about the behavior of flow and 

heat transfer on MHD mixed convection for a wide range of pertinent controlling 

parameters in a ventilated square cavity having a heat generating solid body. It was 

found that the flow behaviors within the cavity and heat transfer rate at hot wall are 

strongly affected by the presence of heat generating solid body. 

The rest of this chapter consists of five sections. Section 4.1 describes the physical 

models of the present studied area. In section 4.2, the appropriate mathematical 

model for the current problem is presented. There after a brief description of solution 

scheme is given in the section 4.3. The results are given details in section 4.4. And 

last of all a conclusion is drawn in section 4.5. 
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4.1 Physical Model  

The geometry of the present study is illustrated in Fig. 4.1 in which a Cartesian co-

ordinate system is used with origin at the lower left corner of the working domain. It 

consists of a square enclosure of length L having a centered heat generating square 

solid block. The bottom wall of the cavity is subjected to hot with temperature Th 

while the other sidewalls are kept insulated. The solid body with diameter d and a 

thermal conductivity of ks generates uniform heat q per unit volume. The inflow 

opening is placed on the left bottom corner of the cavity while the outflow opening is 

on the right top corner as shown in the schematic and the size of each opening is w = 

0.1L. A uniform magnetic field of strength B0 is enforced in the horizontal direction 

on the right adiabatic wall. The incoming flow through the inlet is assumed at a 

uniform velocity ui, ambient temperature Ti whereas the outgoing flow by the exit 

port is assumed to have zero diffusion flux for all variables and all solid boundaries 

are supposed to be rigid no-slip walls. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Schematic of the problem 

4.2 Mathematical Formulation 

The several steps of the mathematical formulation for the above problem are shown 

as follows. 

4.2.1 Governing Equations 

The working fluid within the enclosure is supposed to be incompressible, Newtonian, 

two-dimensional, steady and laminar with all the fluid properties assumed as constant 

except for density variation. The radiation effect is negligible and the viscous 
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dissipation is absent for the considered fluid. The governing equations for the 

problem under Boussinesq approximation can be described in as below: 

Continuity Equation  

0=
∂
∂

+
∂
∂

y

v
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u
 (4.1) 
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Energy Equations  
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Where, x and y are the distances measured along the horizontal and vertical directions 

respectively; u and v are the velocity components in the x- and y-direction 

respectively; T denotes the temperature; ν and α are the kinematics viscosity and the 

thermal diffusivity respectively; p is the pressure, ρ is the density and q is the 

uniform constant heat flux. 

4.2.2 Boundary Conditions 

The boundary conditions for the present problem can be written as follows: 

At the inlet: , 0,i iu u v T T= = =  

At the outlet: convective boundary condition (CBC), p = 0 

At all solid boundaries: 0,0 == vu  
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At the heated bottom wall: hT T=   

At the left, right and top walls: 0
T

n

∂
=

∂
 

At the fluid-solid interface: s s

ffluid solid

k TT

n k n

∂∂    =   ∂ ∂   
 

Where, n is the non-dimensional distances either along x or y direction acting normal 

to the surface and kf and ks are the thermal conductivity of the fluid and the solid 

block respectively. 

4.2.3 Dimensional Analysis 

The above equations are made dimensionless by introducing the following non-

dimensional variables 
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Where, X and Y are the coordinates varying along horizontal and vertical directions, 

respectively, U and V are the velocity components in the X and Y directions, 

respectively, θ is the dimensionless temperature and P is the dimensionless pressure.  

Taking into account the aforesaid dimensionless dependent and independent 

variables on the equations (4.1-4.5), the non-dimensional equations for the problem 

are given as follows: 

Continuity Equation 

0=
∂
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+
∂
∂

Y

V
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U
 (4.6) 

Momentum Equations 
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Energy Equations 
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=
 

are the Reynolds number, square of the Hartmann number, Prandtl number, heat 

generating parameter, Richardson number and solid fluid thermal conductivity ratio 

respectively. (Here h iT T T∆ = − and
f pk cα ρ= are respectively the temperature 

difference and thermal diffusivity of the fluid) 

The dimensionless boundary conditions of the present problem under consideration 

can be written as follows: 

At the inlet: U = 1, V = 0, θ = 0 

At the outlet: convective boundary condition (CBC), P = 0 

At all solid boundaries: U = 0, V = 0, 

At the heated bottom wall: 1θ =   

At the left, right and top walls: 0
N

θ∂
=

∂
 

At the fluid-solid interface: s

fluid solid

K
N N

θθ ∂∂    =   ∂ ∂   
  

Here N is considered as the dimensionless distances either along X or Y direction that 

acts normal to the surface. 
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According to Singh and Sharif (2003), the average Nusselt number at the heated wall 

of the cavity based on the dimensionless variables may be expressed as 

1

0

avNu dX
Y

θ∂
= −

∂∫
and the bulk average temperature of the fluid inside the cavity 

defined as /av d V Vθ θ= ∫ , where V  is the cavity volume. 

4.3 Numerical Analysis 

The numerical method that has been applied in the present study is discussed briefly 

in this section.  

4.3.1 Solution Process 

The Galerkin weighted residual finite element scheme is used for the studied problem 

to solve the governing equations numerically. In this method, the continuum area of 

interest is discretized into finite element meshes, which are composed of irregular 

triangular elements. Six node triangular elements with quadratic interpolation 

functions for velocity, temperature and linear interpolation functions for pressure are 

used to discretize the physical domain. The coupled equations (4.6)-(4.10) are 

transformed into a system of integral equations using Galerkin weighted residual 

technique to reduce the continuum domain into discrete triangular domains. Then by 

imposition of boundary conditions the so obtained nonlinear algebraic equations are 

modified into a set of linear algebraic equations applying Newton-Raphson iteration 

technique. Last of all with the aid of triangular factorization method these linear 

equations are solved. Method of solution along with grid independent test and code 

validation has already been discussed in the Chapter 3 in details. 

4.4 Results and Discussions 

The effects of Reynolds number, Prandtl number, Hartmann number, solid fluid 

thermal conductivity ratio and solid block diameter for a MHD mixed convection 

problem in a ventilated square cavity containing a heat generating block have been 

investigated. The results of the present study are explained in the forms of 

streamlines and isotherms. In addition, the heat transfer effects inside the enclosure 
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are shown in terms of average Nusselt number Nuav and the average fluid temperature 

θav  

4.4.1 Effect of Reynolds Number 

The streamlines and isotherms for the different values of Re with Ha = 10 and Pr = 

0.71 have been presented in the Fig. 4.2. Fig. 4.2(a) shows the streamlines for the 

Reynolds number varied as 50 ≤ Re ≤ 500, whereas the dominant forced convection 

effect (Ri = 0.1) is considered. For the lower value of Re = 50 it is noticed that the 

fluid flow absorbs the whole cavity, diverges close to the heated surface and the open 

lines are symmetric about diagonally. As the inertia force grows up with increasing 

Re, a CCW vortex is created above the inflow openings at Re = 200. This vortex 

expands sharply confining the heated block and another small clockwise vortex is 

found near the bottom right side of the cavity for the two higher values of Re (= 350, 

500). This happened because the role of forced convection in the cavity becomes 

more significant with increasing Re. From this Fig. it can be highlighted that a 

noteworthy variation in flow behavior is found for the other two convective regimes 

of Ri (= 1, 10) with any particular Reynolds number. 

The corresponding effect of Reynolds number Re on the thermal field is exposed in 

the Fig. 4.2(b). For Re = 50 and all Ri (= 0.1, 1, 10) it is apparent that the isotherms 

move out of the centered heat generating obstacle. Besides this, for the considered 

three different convective regimes a thermal boundary layer is formed in the 

neighborhood of the bottom heated wall of the cavity and high isothermal lines are 

crowded at the lower part of the heat generating obstacle. Moreover, plume shape 

isotherms are viewed at the left side of the block for Re = 350 and Re = 500 at Ri = 

0.1 while these are found at the top of the block for Re = 200 with Ri = 0.1 as well as 

Re (= 200, 350, 500) at the rest two regimes of Ri. It also seen that thermal boundary-

layer thickness increases as Re gets higher and the isothermal lines become denser at 

the adjacent area of the heated block in the mixed convection and natural convection 

dominated regions. 

Fig. 4.3 describes the effect of Reynolds number on average Nusselt number Nuav 

and average fluid temperature θav in the cavity as a function of Richardson number. 

One can observes that the value of average Nusselt number increases as Ri increases  
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Figure 4.2: (a) Streamlines and (b) Isotherms at different Reynolds 

number and various values of Richardson number Ri, while Ha = 10, 

K = 5, Pr = 0.71, Q = 1 and D = 0.2. 
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Figure 4.3: Effect of Reynolds number on (i) average Nusselt 

number, (ii) average fluid temperature, while Ha = 10, Pr = 0.71, D = 

0.2, Q = 1 and K = 5. 

Table 4.1: Variation of average Nusselt number with Reynolds number 

 

Ri 
Nuav 

Re = 50 Re = 200 Re = 350 Re = 500 

0.1 4.388523 

 

7.750381 

 

9.901751 

 

11.6910 

 
1.0 4.443288 

 

8.052749 

 

10.17529 

 

11.84686 

 
2.0 4.485698 

 

8.189754 

 

10.52456 

 

12.18456 

 
3.0 4.502136 

 

8.34568 

 

10.84214 

 

12.81458 

 
4.0 4.534587 

 

8.54216 

 

11.40125 

 

13.40216 

 
5.0 4.591864 

 

8.869711 

 

11.70798 

 

13.88068 

 
6.0 4.625874 

 

8.904569 

 

11.98564 

 

13.89751 

 
7.0 4.632458 

 

8.954783 

 

12.23456 

 

14.01235 

 
8.0 4.642578 

 

9.123546 

 

12.32128 

 

14.45681 

 
9.0 4.657891 

 

9.234587 

 

12.50124 

 

14.52136 

 
10.0 4.669317 

 

9.454947 

 

12.59697 

 

14.89302 

 
 

for higher values of Re (= 200, 350 and 500) whereas for Re = 50, Nuav is almost 

constant for all Ri. Thus the greatest heat transfer rate is found for the highest value 

of Re. On the other hand, the average fluid temperature in the cavity increases 

smoothly with increasing Ri for the lower values of Re (= 50, 200). But for upper Re 

(= 350 and 500) it is noticed that θav increases as Ri varies from 0.1 to 1, decreases in 
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the region 1 ≤ Ri ≤ 5 and θav is about independent beyond these regions. In addition 

lowest average fluid temperature occurs for the largest Reynolds number. 

Table 4.1 shows the variation of average Nusselt number with Reynolds number for 

different Richardson number. It is apparent from the table that as Ri increases heat 

transfer rate is higher for all values of Re. 

4.4.2 Effect of Prandtl Number 

The influence of Prandtl number on streamlines and isotherms are presented for fluid 

flow within a vented cavity of the mixed convection problem having a heat source. 

The Hartmann number Ha, Reynolds number Re are chosen 10 and 100 respectively 

while the Prandtl number is in the range 0.071 ≤ Pr ≤ 7.1 for each of the three 

convective regimes of Ri = 0.1, 1, 10. 

The effect of Pr at the three different values of Ri on streamlines as well as isotherms 

are displayed in Fig. 4.4. From Fig. 4.4(a), it is seen that at Ri = 0.1, a small 

recirculation cell is formed near the left top corner of the inlet in the cavity while Pr 

= 0.071. This indicates that the fluid flow of the enclosure has been affected by the 

inertia force. There is no significant change in flow patterns for the rest three higher 

values of Pr at the dominant forced convection region; whereas it is observed that for 

the mixed convection (Ri = 1) and the dominant natural convection (Ri = 10) region 

the flow structure is influenced by varying Pr as shown in upper two rows of Fig. 

4.4(a). As the buoyancy force increases with increasing Ri; the rotating cell becomes 

larger for a fixed value of Pr and higher values of Ri. 

Fig. 4.4(b) depicts the isotherms for the four considered values of Pr. This figure 

illustrates that at Ri = 0.1 and Ri = 1 with Pr = 0.071 the heat lines become thinner 

and highest isotherm line pass through the heat generating block but at the dominant 

free convection region the isothermal line move out from the obstacle. With higher 

vales of Pr (= 1, 3, 7.1) it is seen that the isotherms become denser and top right 

cornered plume shape isotherms are created for Ri = 0.1, 1 whereas at Ri = 10, this 

type of heat lines are found at the top of the centered body. Also the higher Prandtl 

number gives more compact isotherms in the vicinity of the heat source. 

The average Nusselt number Nuav and average fluid temperature θav in the studied 

cavity for different Prandtl numbers along with Richardson numbers has been  
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Figure 4.4: (a) Streamlines and (b) Isotherms at different Prandtl 

number and various values of Richardson number Ri, while Re = 100, 

Ha = 10, K = 5, Q = 1 and D = 0.2. 
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Figure 4.5: Effect of Prandtl number on (i) average Nusselt number, 

(ii) average fluid temperature, while Re = 100, Ha = 10, D = 0.2, Q = 

1 and K = 5. 

Table 4.2: Variation of average Nusselt number with Prandtl number 

 

Ri 
Nuav 

Pr = 0.071 Pr = 1 Pr = 3 Pr = 7.1 

0.1 3.307886 

 

6.401763 

 

8.882427 

 

11.58715 

 
1.0 3.310394 

 

6.734086 

 

9.594996 

 

12.26479 

 
2.0 3.311246 

 

6.814573 

 

9.865423 

 

12.78451 

 
3.0 3.31548 

 

7.01549 

 

9.998754 

 

12.98754 

 
4.0 3.319854 

 

7.132456 

 

10.25478 

 

13.45621 

 
5.0 3.32025 

 

7.231245 

 

10.61472 

 

13.70829 

 
6.0 3.32145 

 

7.334568 

 

10.87946 

 

13.84256 

 
7.0 3.32456 

 

7.421578 

 

10.99879 

 

13.98562 

 
8.0 3.32514 

 

7.501245 

 

11.10345 

 

14.21346 

 
9.0 3.32789 

 

7.542863 

 

11.24789 

 

14.42013 

 
10.0 3.329817 

 

7.580309 

 

11.35116 

 

14.54344 

 
 

focused in Fig. 4.5. It is noted that Nuav increases with the rising value of Pr and 

accordingly optimum Nuav is recorded for Pr = 7.1, due to the capability of the fluid 

with the highest Prandtl number is to carry more heat away from the heat generating 

block and dissipated through the outlet in the cavity. Besides this it can be followed 

that as θav decreases while Pr increases, minimum average temperature is found for 

large Prandtl number Pr = 7.1. 
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The variation of average Nusselt number with Prandtl number is exposed in Table 

4.2 for the values of Ri =0.1 to 10. It is observed that the rate of heat transfer 

enhances with larger values of Ri and Pr. 

4.4.3 Effect of Hartmann Number  

The streamlines and isotherms have been analyzed to explain the flow and thermal 

field structure of the mixed convection problem for different values of Hartmann 

number. The Prandtl number Pr, Reynolds number Re are chosen 0.71 and 100 

respectively while the Hartmann number is varied from 0 to 100 for each of the three 

convective regimes of Ri = 0.1, 1, 10. 

The streamlines corresponding to different Hartmann number are shown in Fig. 

4.6(a). The third row of Fig. 4.6(a) displays the streamlines for dominant forced 

convection Ri = 0.1. In the absence of magnetic field (Ha = 0) the fluid flow is 

characterized by the open lines that squeezes above the inlet openings. It is also noted 

that a small anti-clockwise rotating vortex is developed at top just entrance of the 

cavity. For Ha = 20, the shape of the streamlines are found to be slight different and 

the circulating cell vanishes. Again in the case of the higher values of Ha (= 50 and 

100), the streamlines are about identical and it is observed that these are almost 

horizontal and vertical of the cavity walls in the whole domain. When natural and 

forced convection are equally dominant, namely, Ri = 1, the effect of Hartmann 

number on streamlines is demonstrated in second rows of Fig 4.6(a). The 

mainstreams shrink from the left and top side and consequently the CCW vortex 

increases much and it spreads up to the top cavity wall while Ha = 0. For Ha = 20 it 

is seen that the open lines swell up over the whole cavity and a small eddy is found 

above the inlet. No vortex forms for larger values of Hartmann number and the 

streamlines become more vertical for Ha = 100. This is because most of the heat 

transfer process is carried out by conduction. For the convective regime Ri = 10, the 

top row of Fig. 4.6(a) depicts the fluid flow characteristics for the variation of 

magnetic field parameter. For Ha = 0, it is seen that the core vortex expands more 

towards the right of the cavity and occupies the block indicating the enhancement of 

the flow strength of the vortex. As Ha increases the flow strength of the vortices  
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Figure 4.6: (a) Streamlines and (b) Isotherms at different Hartmann 

number and various values of Richardson number Ri, while Re = 100, 

Pr = 0.71, K = 5, Q = 1 and D = 0.2. 
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Figure 4.7: Effect of Hartmann number on (i) average Nusselt 

number, (ii) average fluid temperature, while Re = 100, Pr = 0.71, D = 

0.2, Q = 1 and K = 5. 

Table 4.3: Variation of average Nusselt number with Hartmann number 

 

Ri 
Nuav 

Ha = 0 Ha = 20 Ha = 50 Ha = 100 

0.1 5.921909 

 

5.692517 

 

5.326058 

 

5.303347 

 
1.0 6.139915 

 

5.851140 

 

5.548711 

 

5.56483 

 
2.0 6.195478 

 

6.102345 

 

5.998963 

 

5.895842 

 
3.0 6.231456 

 

6.185463 

 

6.123456 

 

5.98421 

 
4.0 6.294578 

 

6.231495 

 

6.201234 

 

6.01548 

 
5.0 6.316127 

 

6.283367 

 

6.236688 

 

6.192215 

 
6.0 6.384512 

 

6.321569 

 

6.302145 

 

6.213694 

 
7.0 6.408178 

 

6.364573 

 

6.338561 

 

6.289756 

 
8.0 6.411587 

 

6.395421 

 

6.402136 

 

6.302145 

 
9.0 6.431234 

 

6.411578 

 

6.409853 

 

6.312579 

 
10.0 6.449623 

 

6.433135 

 

6.413511 

 

6.348449 

 
 

reduces rapidly, major flows swell up and accordingly the vortex disappears while 

Ha = 100. 

In Fig. 4.6(b), the last row displays the corresponding isotherms for the 

aforementioned Hartmann numbers in the regime of Ri = 0.1. For Ha = 0, the 

isothermal lines are crowded at the inlet and a thermal boundary layer is followed in 

the vicinity of the bottom hot wall of the cavity. Also a round shaped heat line 
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appears through the square block. The non-linearity of the temperature distribution 

increases with the mounting values of Hartmann number. In the case of higher 

magnetic field parameter it is found that high isotherms are concentrated near the 

heat generating block and for Ha = 100, the circular isotherm confines the centered 

block. For Ri = 1, the temperature distribution inside the enclosure are presented in 

the middle row of Fig. 4.6(b). In the case of lowest magnetic field the isotherms 

pattern changes above the heat generating block. But no significant change is found 

for growing magnetic field parameter comparatively with those of the case at Ri = 

0.1. Lastly from the top row of Fig. 4.6(b) for Ri = 10, it is noticed that at Ha = 0 the 

heat lines are packed below the block. The non-linearity of isotherms increases and 

the heat generating block is curbed by the topmost isothermal line for the cases of 

growing Ha.  

From Fig. 4.7(i) it is seen that as the magnetic field Ha decreases average Nusselt 

number Nuav increases for all values of Ri. Thus higher Nuav that is maximum heat 

transfer is found in the absence of magnetic field. Moreover for the increasing value 

of Ri, Nuav increases for each of the four chosen values of Ha which is expected 

because of the supremacy of natural convection. In addition average fluid 

temperature is shown in Fig. 4.7(ii) and from this figure it can be concluded that θav 

is about uniformly increased for the values of Ha = 20, 50, 100. But for Ha = 0, 

average temperature is identical in the region 0.1 ≤ Ri ≤ 1 and it increases in the 

dominant natural convection domain. It is also observed that average temperature is 

lowest for Ha = 0. 

Table 4.3 reveals the variation of heat transfer rate at the heated surface among the 

different Hartmann number along with Richardson number. As Ri increases Nuav 

increases but it decreases with the larger value of Ha. 

4.4.4 Effect of Solid Fluid Thermal Conductivity Ratio  

Fig. 4.8(a) presents the streamlines for different values of K for the convective 

regimes of Ri (0.1, 1, 10) while Re = 100, Ha =10, and Pr = 0.71 are kept fixed. At Ri 

= 0.1 and K = 0.2 it is observed that the mainstreams capture almost the cavity and a 

counter-clockwise rotating cell develops just above the inlet openings. This is the  
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Figure 4.8: (a) Streamlines and (b) Isotherms at different thermal 

conductivity ratio and various values of Richardson number Ri, while 

Re = 100, Pr = 0.71, Ha = 10, Q = 1 and D = 0.2 
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Figure 4.9: Effect of thermal conductivity ratio on (i) average Nusselt 

number, (ii) average fluid temperature, while Re = 100, Pr = 0.71, D = 

0.2, Q = 1 and Ha = 10. 

Table 4.4: Variation of average Nusselt number with thermal conductivity 

ratio 

 

Ri 
Nuav 

K = 0.2 K = 1 K = 10 K = 50 

0.1 5.812649 

 

5.753399 

 

5.688583 

 

5.555065 

 
1.0 6.058879 

 

5.985485 

 

5.896423 

 

5.817765 

 
2.0 6.184789 

 

6.012345 

 

5.923185 

 

5.904563 

 
3.0 6.234567 

 

6.135469 

 

6.012456 

 

5.994658 

 
4.0 6.302145 

 

6.201456 

 

6.12349 

 

6.012348 

 
5.0 6.345561 

 

6.268571 

 

6.157524 

 

6.054824 

 
6.0 6.398745 

 

6.298457 

 

6.197845 

 

6.13458 

 
7.0 6.482589 

 

6.326985 

 

6.285469 

 

6.184793 

 
8.0 6.512378 

 

6.412578 

 

6.301297 

 

6.201346 

 
9.0 6.55789 

 

6.457892 

 

6.35698 

 

6.21459 

 
10.0 6.593505 

 

6.480545 

 

6.360907 

 

6.256456 

 
 

reason that outer fresh and colder fluids which enters the cavity cannot come into 

intimate mixing with the inner hotter fluids. There is no disparity in the streamlines 

for the rest higher values of K. In the mixed convection domain (Ri = 1) for K = 0.2 it 

follows that the size of lower vortex increases and the top-left cornered open lines 

squeezes, as a result another anti- clockwise vortex appears occupying that region. 
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But it can be noticed that with the increasing of thermal conductivity ratio the upper 

vortex reduces in size. A drastic change in flow lines is found at the higher value of 

Ri = 10. The main flow is found merely the right side of the obstacle and an 

extremely large vortex is created starting just above the inlet that spreads up to the 

top wall of the enclosure confining the obstacle.  

The corresponding isothermal lines for the chosen values of K in the range 0.1 ≤ Ri ≤ 

10 are displayed in Fig. 4.8(b). In the forced convection dominated region, highest 

circular thermal lines are distributed inside the centered solid block for the lowest 

value of K = 0.2. As the value of K increases from 0.2 to 1 it is noticed that the 

isotherms are dispersed all over the cavity and the compactness of heat lines inside 

the block reduces. It can be summarized that with increasing the value of K 

isothermal lines move out gradually from the solid obstacle and as a result it 

disappears at K = 50. With the comparison of Ri = 0.1, a minor change including 

right-top cornered plume shaped heat line is found in the patterns of isotherms at Ri = 

1. For the free convection dominated region (Ri = 10) the behavior of temperature 

distribution changes markedly. The majority of isothermal lines are distributed below 

the heat generating block and plume shaped isotherm alters it direction from the 

right-top corner to left-top corner. 

In order to investigate the effect of thermal conductivity ratio K at solid fluid 

interface on heat transfer manner, average Nusselt number Nuav at the bottom heated 

surface and average fluid temperature θav in the cavity are shown in Fig. 4.9. From 

this it can be observed that average Nusselt number enhances sharply as the value of 

K decreases and Ri increases. Therefore the rate of heat transfer is found optimum for 

the smallest value of K. On the other hand, θav increases for the rising value K and 

minimum average temperature is occurred when K = 0.2. Also for the lower values of 

K (= 0.2, 1) it is apparent that θav raises with the increasing value of all Ri but θav is 

seen about stationary in the domain 0.1 ≤ Ri ≤ 1 and 5 ≤ Ri ≤ 10 while it grows up in 

the area 1 ≤ Ri ≤ 5 in the case of upper values K = 10 and K = 50. 

Table 4.4 shows the variation of heat transfer rate at the hot bottom surface with 

thermal conductivity ratio for the values of Ri = 0.1 - 10. Comparatively higher heat 

transfer rate is found for the upper value of Ri and it decreases as the value of K 

increases. 
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4.4.5 Effect of Block Diameter  

The streamlines for different block size are depicts in Fig. 4.10(a) in the range of 

Richardson number 0.1 ≤ Ri ≤ 10. At Ri = 0.1 and D = 0.1 the major streams 

stretched diagonally from the inlet to the exit opening and a recirculation cell is 

created just above the inlet of the cavity as expected. As the value of D increases the 

vortex becomes smaller and consequently it diminishes at the largest value of D = 0.7 

due to the space availability in the cavity. Besides, streamlines are found to be nearly 

flat and vertical between the cavity and centered solid block for larger values of D (= 

0.5, 0.7). In the pure mixed convection case (Ri = 1) the vortex expands rapidly at D 

= 0.1 and this recirculation cell sharply reduces and finally disappears for the 

maximum blocked size (D = 0.7) with the similar flow structures as seen at Ri = 0.1. 

One can easily be observed that for D = 0.1 the intensity of the vortex in the cavity 

increases too much and it captures the obstacle in the case of higher value of Ri = 10, 

this is happened since buoyancy effect increases. For D = 0.3 the counter-clockwise 

vortex shrinks from the right side and it vacates the block. A bi-cellular recirculation 

cell is created at D = 0.5 and it becomes narrow regarding D = 0.1 and D = 0.3. There 

is no change in flow patterns for D = 0.7 with the comparison of Ri = 0.1 and Ri = 1. 

Fig. 4.10(b) illustrates the temperature distribution inside the vented enclosure for the 

four chosen values of block diameter D. For all the convective regimes of Richardson 

number Ri (= 0.1, 1, 10) it is noticed that at D = 0.1 isotherms are concentrated near 

the inlet and a thermal boundary layer is formed in the vicinity of the bottom hot 

wall. The heat lines are scattered in the whole domain for the lower values of Ri (= 

0.1, 1) while these are seems to be curved below the heat generating block at Ri = 10 

and D = 0.1. For higher values of D the heat lines are almost similar in all the 

selected range of Richardson number. 

Average Nusselt number and average fluid cavity temperature are displayed in Fig. 

4.11 to expose the heat transfer efficiency for the inner heat generating body. From 

Fig. 4.11(i) it is noticed that average Nusselt number is higher for the smallest value 

of D and a little difference in heat transfer is found for the two consecutive values of 

D = 0.1 and D = 0.3. On the other hand, largest sized solid body gives the maximum 

cavity temperature that is seen in Fig. 4.11(ii). 
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Figure 4.10: (a) Streamlines and (b) Isotherms at different block 

diameter and various values of Richardson number Ri, while Re = 

100, Pr = 0.71, Ha = 10, Q = 1 and K = 5. 
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Figure 4.11: Effect of block diameter on (i) average Nusselt number, 

(ii) average fluid temperature, while Re = 100, Pr = 0.71, K = 5, Q = 1 

and Ha = 10.  

Table 4.5: Variation of average Nusselt number with block diameter 

 

Ri 
Nuav 

D = 0.1 D = 0.3 D = 0.5 D = 0.7 

0.1 5.86043 

 

5.613745 

 

4.304263 

 

1.134105 

 
1.0 6.115497 

 

5.854553 

 

4.552257 

 

1.229502 

 
2.0 6.21343 

 

5.912346 

 

4.62351 

 

1.293046 

 
3.0 6.315479 

 

6.012145 

 

4.78623 

 

1.304568 

 
4.0 6.416312 

 

6.10879 

 

4.821364 

 

1.358764 

 
5.0 6.544416 

 

6.147784 

 

4.919997 

 

1.48240 

 
6.0 6.59215 

 

6.195476 

 

4.995689 

 

1.598761 

 
7.0 6.612456 

 

6.201347 

 

5.012345 

 

1.612486 

 
8.0 6.685421 

 

6.254987 

 

5.10246 

 

1.620439 

 
9.0 6.704236 

 

6.301249 

 

5.11879 

 

1.63254 

 
10.0 6.774454 

 

6.335527 

 

5.138711 

 

1.646546 

 
 

Variation of average Nusselt number for block diameter along with Ri is given in 

Table 4.5. It can easily be seen that heat transfer rate decreases as D increases. Also 

when Ri increases heat transfer also increases. 
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4.5 Concluding Remarks 

The present analysis addresses a problem on mixed convection two-dimensional 

laminar flow in a ventilated square enclosure with the variation of governing 

parameters such as Reynolds numbers (50 ≤ Re ≤ 500), Prandtl number (0.071 ≤ Pr ≤ 

7.1), Hartmann number (0 ≤ Ha ≤ 100), thermal conductivity ratio (0.2 ≤ K ≤ 50), 

solid body diameter (0.1 ≤ D ≤ 0.7) and Richardson numbers (0.1 ≤ Ri ≤ 10). 

Combined convection flow along with thermal field is analyzed here numerically in 

the presence of heat generating obstacle located in the ventilated enclosure. Detailed 

computations for the distribution of streamlines, isotherms, average Nusselt number 

at the heated wall and average fluid temperature in the cavity were performed to 

explore the effect of the mentioned parameters. In view of the obtained results, the 

following conclusions may be summarized. 

The Reynolds number Re always plays a crucial role on both flow and thermal fields. 

The highest value of Re gives the ceiling average Nusselt number and minimum 

average temperature in the cavity.  

The effects of Prandtl number Pr on streamlines are insignificant in the forced 

convection dominated region but significant in other two convective regimes. On the 

other hand, in all convective regimes the temperature distributions in the cavity are 

influenced much by Prandtl number. The average Nusselt number becomes higher 

and average temperature in the cavity becomes lower for the larger values of Pr. 

The flow field and temperature distribution are affected from the magnetic field. The 

decreasing of Hartmann number Ha increases the average Nusselt number but 

decreases the average fluid temperature in the cavity. 

The highest heat transfer is recorded for the lowest value of K and it increases with 

increasing Ri. Lower thermal conductivity ratio shows the minimum average fluid 

temperature in the cavity. 

A small size of obstacle gives the maximum average Nusselt number. Average fluid 

temperature in the cavity is about independent of Ri and it is lowest for the smaller 

value of D. 



Chapter 5 

Effect of a Heat Conducting Solid Body on Mixed 

Convection Flow in a Square Enclosure 

Combined free and forced convection flow through a square vented enclosure with 

heated bottom wall is often encountered in air conditioning system for room space. 

Various aspects of flow and heat transfer in enclosures with and without obstacle was 

extensively studied in past and some of them have been reported in the literature. The 

present chapter deals with a numerical investigation on mixed convection in a 

ventilated enclosure containing a heat conducting solid body that was carried out 

using a finite element method.  

A comprehensive study about the behavior of flow and heat transfer on MHD mixed 

convection for a wide range of various influencing parameters in a ventilated square 

cavity with internal heat conducting obstacle has been focused in this contents. The 

results showed that the flow and thermal behaviors within the cavity and heat transfer 

rate at hot wall are affected by the presence of heat conducting solid body. 

There are five consecutive sections that are described in this chapter. Among these 

section 5.1 contains the physical configuration of the considered model. The 

mathematical formulation of the present problem is described in few steps in section 

5.2. The numerical method that is applied in the studied problem is discussed in brief 

in section 5.3. Section 5.4 presents the outcome of this analysis in details. In view of 

the obtained results a conclusion is summarized finally in section 5.5. 

5.1 Physical Configuration  

The physical model of the studied problem is shown in Fig. 5.1 that consists of a 

square enclosure of length L with a heat conducting solid block located at the center. 

Except the bottom surface which is kept at a constant temperature Th all sides of the 

cavity were taken as thermally isolated. The inlet port is placed on the bottom of the 

left wall, exit port is situated at the top of the right wall and the magnitude of each 

port is w = 0.1L. For all solid boundaries rigid no-slip walls assumed that is velocity 

components u and v are set to be zero. The flow of a uniform velocity, ui and the 
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ambient temperature, Ti enters into the cavity and the outgoing flow is considered to 

have zero diffusion flux for all dependent variables. 

 

 

 

 

 

 

 

Figure 5.1: Schematic of the problem 

5.2 Mathematical Formulation 

Mathematical formulation for the current problem is described step by step in this 

section. 

5.2.1 Governing Equations 

The studied fluid is treated as laminar, Newtonian and incompressible with the flow 

on the mixed convection problem which possesses constant thermo physical 

properties. Under the Boussinesq approximation the governing equations for steady 

mixed convection flow using conservation of mass, momentum, and energy can be 

written in the dimensionless form as follows: 

Continuity Equation 

0=
∂
∂

+
∂
∂

Y

V

X

U
 (5.6) 

Momentum Equations 

2 2

2 2

1U U P U U
U V

X Y X Re X Y

 ∂ ∂ ∂ ∂ ∂
+ = − + + 

∂ ∂ ∂ ∂ ∂ 
 (5.7) 

2 2 2

2 2
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Energy Equations 

2 2

2 2

1
U V

X Y Re Pr X Y

θ θ θ θ ∂ ∂ ∂ ∂
+ = + 

∂ ∂ ∂ ∂ 
 (5.9) 

2 2

2 2
0s sK

RePr X Y

θ θ ∂ ∂
+ = 

∂ ∂ 
 (5.10) 

Where, the dimensionless parameters involving the equations (5.6) - (5.10) are the 

Reynolds number, Rayleigh number, square of Hartmann number, Prandtl number, 

Richardson number, solid fluid thermal conductivity ratio and these are defined 

respectively as follows  

2 2 2 2
0

3
, , , ,

and

i

s f

Re u L Ra g T L Ha B L Pr Ri Gr Re

K k k

υ β υα σ µ ν α= = ∆ = = =

=
 

In addition, h iT T T∆ = − is temperature difference and 
f pk cα ρ= is fluid thermal 

diffusivity. 

5.2.2 Boundary Conditions 

The non-dimensional boundary conditions which are used in the current work can be 

set as follows:- 

At the inlet: U = 1, V = 0, θ = 0 

At the outlet: convective boundary condition (CBC), P = 0 

At all solid boundaries: U = 0, V = 0 

At the heated bottom wall: 1θ =   

At the left, right and top walls: 0
N

θ∂
=

∂
 

At the fluid-solid interface: s

fluid solid

K
N N

θθ ∂∂    =   ∂ ∂   
  

Here N is the dimensionless distances either along X or Y direction that acts normal to 

the surface. 
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The average Nusselt number at the hot wall of the enclosure based on the 

dimensionless variables may be expressed as 
1

0

avNu dX
Y

θ∂
= −

∂∫
and the average fluid 

temperature of the cavity defined as /av d V Vθ θ= ∫ , where V  is the volume of the 

cavity that was recommended by Singh and Sharif (2003). 

5.3 Numerical Analysis 

In this section, the numerical scheme adopted in the present study together with grid 

refinement test and validity of computational code is discussed briefly.  

5.3.1 Method of Solution 

The Galerkin weighted residual based finite element scheme is applied in this study 

to solve the governing equations numerically. Firstly, the problem is defined as a two 

dimensional enclosure and the solution domain is discretized into finite element 

meshes, which are composed of non-uniform triangular elements. The coupled 

equations (5.6) - (5.10) are transformed into a system of integral equations using 

Galerkin weighted residual technique and then using appropriate boundary conditions 

the so obtained nonlinear algebraic equations are modified into a set of linear 

algebraic equations with the help of Newton-Raphson iteration technique. Last of all, 

these linear equations are solved by means of triangular factorization method. 

5.3.2 Grid Size Sensitivity Test 

For grid refinement check five different non-uniform grid systems with 2312, 3976,  

 

 

 

 

 

Figure 5.2: Grid test for average Nusselt number and average fluid 

temperature 
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5158, 6278 and 7724 number of elements are examined in the present simulation. 

Fig. 5.2 shows that average Nusselt number at the hot wall and average fluid 

temperature in the cavity for 5158 elements gives a little difference with the 

corresponding outcomes for the other denser grids and thus the grid system of 5158 

elements is selected for the computation of all cases for optimum results. 

5.3.3 Validation of the Numerical Scheme 

In order to validate the computational code, the average Nusselt number on the 

bottom heated wall obtained form the current code and those performed by House et 

al. (1990) are tabulated in Table 5.1. The comparison was carried out for the 

Rayleigh number Ra = 0.0 and 10
5
 and three values of K = 0.2, 1.0 and 5.0. House et 

al. (1990) studied a problem of square vertical cavity of length L with a heat 

conducting body where the top, bottom walls were insulated and the vertical walls 

were isothermal and differentially heated. The mean deviations between the Nuav 

calculated by the present simulations and those of the aforementioned study House et 

al. (1990) were less than 1% that established the reliability of the present solver. 

Table 5.1: Comparison of average Nusselt number with House et al. (1990) 

 

Ra K Nuav Error (%) 

Present study House et al. (1990) 

0 0.2 0.7082 0.7063 0.19 

0 1.0 1.0001 1.0000 0.01 

0 5.0 1.4153 1.4125 0.28 

10
5
 0.2 4.6228 4.6239 0.11 

10
5
 1.0 4.5041 4.5061 0.20 

10
5
 5.0 4.3187 4.3249 0.62 

5.4 Results and Discussions 

In order to investigate the flow behaviors, thermal fields and heat transfer 

performance affected by the Reynolds number, Prandtl number, Hartmann number, 
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solid fluid thermal conductivity ratio and diameter of the centered block; a mixed 

convection problem in a vented enclosure with heat conductive block has been 

performed numerically. Computations are performed for considered parameters in the 

range of Ri varies from 0.1 to 10 and findings are presented in terms of streamlines, 

isotherms, average Nusselt number at the hot wall as well as average cavity fluid 

temperature. 

5.4.1 Effect of Reynolds Number  

The influence of Reynolds number on the overall flow pattern and heat lines 

arrangements are depicted in Fig. 5.3. Here the value of Pr is chosen as 0.71which 

corresponds to air. These figures show the streamlines and isotherm contours for 

various Reynolds number varied from 50 to 500. From Fig. 5.3(a) it is observed that 

at low Reynolds number Re = 50, the mainstream occupies the whole domain for Ri 

(= 0.1, 1) whereas a very large counter clockwise vortex is developed confining the 

centered block for Ri = 10. When Re = 200 and Ri = 0.1, a unicellular vortex is found 

above the inlet opening and it expands very sharply for the higher values of Ri. In the 

dominant forced convection region a very big sized anticlockwise rotating cell is 

created and another small clockwise vortex is seen at the right bottom corner for Re = 

350. Large vortex swells up and small one disappears as Ri increases. At Re = 500 a 

minor change is followed in flow patterns with the comparison of Re = 350 for all Ri. 

The corresponding isotherms for different Reynolds numbers are displayed in Fig. 

5.3(b). For the lower value of Re = 50 the heat lines are nonlinear that stretched the 

whole cavity and a small variation is noticed for different values of Richardson 

numbers. The isotherms are packed at the inlet and form a boundary layer in the 

vicinity of bottom hot wall of the cavity at Re = 200. As the Reynolds number 

increases (Re = 350, 500) the isothermal lines move away to the right wall and high 

isotherms are crowded at the heated surface of the cavity. In the case of two upper 

values of Ri (= 1, 10), a tendency is observable for the low temperature heat lines is 

coming back towards the left wall of the enclosure. 

Fig. 5.4 illustrates average Nusselt number at the heated wall and bulk average fluid 

temperature in the cavity for different values of Re. It is seen that for low Reynolds 

number heat transfer rate at the bottom wall is about stationary with respect to Ri and  
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Figure 5.3: (a) Streamlines and (b) Isotherms at different Reynolds 

number and various values of Richardson number Ri, while Ha = 10, 

K = 5, Pr = 0.71, Q = 1 and D = 0.2 
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Figure 5.4: Effect of Reynolds number on (i) average Nusselt 

number, (ii) average fluid temperature, while Ha = 10, Pr = 0.71, D = 

0.2, Q = 1 and K = 5. 

Table 5.2: Variation of average Nusselt number with Reynolds number 

 

Ri 
Nuav 

Re = 50 Re = 200 Re = 350 Re = 500 

0.1 4.553039 

 

7.851059 

 

10.16745 

 

11.93826 

 
1.0 4.610437 

 

8.326203 

 

10.79475 

 

12.69623 

 
2.0 4.654871 

 

8.564213 

 

11.02432 

 

12.98754 

 
3.0 4.685423 

 

8.754621 

 

11.35487 

 

13.21458 

 
4.0 4.712583 

 

8.956471 

 

11.58742 

 

13.84573 

 
5.0 4.778768 

 

9.155231 

 

11.97403 

 

14.11736 

 
6.0 4.798564 

 

9.354612 

 

12.03457 

 

14.32134 

 
7.0 4.821346 

 

9.48761 

 

12.31257 

 

14.58451 

 
8.0 4.85423 

 

9.587423 

 

12.54217 

 

14.69752 

 
9.0 4.875243 

 

9.63241 

 

12.71045 

 

14.89866 

 
10.0 4.921946 

 

9.672471 

 

12.76067 

 

15.07491 

 
 

maximum heat transfer is found for the largest value of Re which is reasonable. A 

reverse effect is followed for the case of average temperature of the fluid inside the 

cavity. 

Table 5.2 shows the variation of average Nusselt number at the hot bottom surface 

with Reynolds number for the values of Ri = 0.1 to 10. Comparatively higher heat 

transfer rate is found for the upper value of Re and for larger values of Ri. 
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5.4.2 Effect of Prandtl Number  

The effect of Prandtl number in the range 0.071 - 7.1 on flow and thermal fields 

inside a vented enclosure with heat conductive block placed at the center are 

presented in Fig. 5.5; the other parameters are kept fixed at Re = 100 and Ha = 10. 

The flow characteristics that are represented by streamlines for four different values 

of Prandtl number are shown in Fig. 5.5(a). At Ri = 0.1 and for all selected values of 

Pr it is seen that a recirculation cell is formed just above the inflow opening and open 

lines are identical. There is no significant change except extended vortex size is 

observed for the different Prandtl numbers in the case of pure mixed convection Ri = 

1. But when Ri = 10 a dramatically variation in flow patterns is noticed for the 

studied Prandtl numbers. Major streams minimize towards the right-bottom walls and 

consequently size of the various shaped vortices expand very swiftly and surrounded 

the inner block. 

In order to examine the mode of temperature distribution heat line contours are 

plotted in Fig. 5.5(b). At Pr = 0.071 a small number of high isotherms only are 

observed for all the considered values of Ri. On the other hand, for Ri = 0.1, 1, and 

10 temperature distributions are followed almost the whole domain with thermal 

boundary layer at the bottom wall when Pr = 1. As Prandtl number increases a 

noteworthy change occurs in the isotherms pattern. For larger values of Pr (= 3, 7.1)  

hot wall is jammed by heat lines and gradually these became isolate from the heat 

conducting solid in the case of all chosen Richardson numbers. 

Lastly average heat transfer rate is presented in Fig. 5.6 along the heated wall at 

different Prandtl numbers. Heat transfer rate is highest and it slowly rises up with 

increasing of Richardson number when Pr = 7.1. Also it follows that smallest value 

of Pr gives minimum heat transfer which is independent of Ri. On the other hand, 

average temperature of fluid inside the enclosure decreases as Prandtl number 

increases. 

A numerical data is presented in Table 5.3 for showing the effect of Prandtl number 

on average Nusselt number at the heated surface of the square enclosure. It is 

observed that heat transfer rate increases very slowly as Ri increases whereas it 

increases rapidly with the upper values of Pr. 
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Figure 5.5: (a) Streamlines and (b) Isotherms at different Prandtl 

number and various values of Richardson number Ri, while Re = 100, 

Ha = 10, K = 5, Q = 1 and D = 0.2. 
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Figure 5.6: Effect of Prandtl number on (i) average Nusselt number, 

(ii) average fluid temperature, while Re = 100, Ha = 10, D = 0.2, Q = 

1 and K = 5. 

Table 5.3: Variation of average Nusselt number with Prandtl number 

 

Ri 
Nuav 

Pr = 0.071 Pr = 1 Pr = 3 Pr = 7.1 

0.1 3.403973 

 

6.469222 

 

8.975492 

 

11.60556 

 
1.0 3.406295 

 

6.861754 

 

9.617635 

 

12.36946 

 
2.0 3.408124 

 

6.921346 

 

9.721458 

 

12.57896 

 
3.0 3.409854 

 

7.125478 

 

9.985473 

 

12.78456 

 
4.0 3.410456 

 

7.31245 

 

10.24587 

 

13.01246 

 
5.0 3.415927 

 

7.481586 

 

10.78206 

 

13.88605 

 
6.0 3.416547 

 

7.598647 

 

11.02436 

 

13.99854 

 
7.0 3.417864 

 

7.654782 

 

11.12458 

 

14.02316 

 
8.0 3.419854 

 

7.784572 

 

11.23547 

 

14.33215 

 
9.0 3.42214 

 

7.801246 

 

11.35648 

 

14.53217 

 
10.0 3.432531 

 

7.838668 

 

11.45531 

 

14.73343 

 
 

5.4.3 Effect of Hartmann Number  

Fig. 5.7(a) illustrates the effect of Hartmann number in terms of streamlines. For the 

dominant forced convection area , at Ha = 0 it is followed that the fluid flow 

characterizes by the major streams through the cavity and a small vortex is found in 

the lower left side of the cavity. While the Hartmann number increases by Ha = 20, 

the size of the vortex reduces and as a result the open lines expands towards the left  
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Figure 5.7: (a) Streamlines and (b) Isotherms at different Hartmann 

number and various values of Richardson number Ri, while Re = 100, 

Pr = 0.71, K = 5, Q = 1 and D = 0.2. 
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Figure 5.8: Effect of Hartmann number on (i) average Nusselt 

number, (ii) average fluid temperature, while Re = 100, Pr = 0.71, D = 

0.2, Q = 1 and K = 5. 

Table 5.4: Variation of average Nusselt number with Hartmann number 

 

Ri 
Nuav 

Ha = 0 Ha = 20 Ha = 50 Ha = 100 

0.1 6.189092 

 

5.791037 

 

5.663728 

 

5.595915 

 
1.0 6.235082 

 

5.958862 

 

5.728370 

 

5.617554 

 
2.0 6.35421 

 

6.132456 

 

5.801248 

 

5.34216 

 
3.0 6.45782 

 

6.254781 

 

5.987321 

 

5.468721 

 
4.0 6.521367 

 

6.34127 

 

6.13248 

 

5.54213 

 
5.0 6.651435 

 

6.455524 

 

6.280295 

 

5.612085 

 
6.0 6.698741 

 

6.501248 

 

6.31245 

 

5.789214 

 
7.0 6.724135 

 

6.552413 

 

6.42157 

 

5.98752 

 
8.0 6.784592 

 

6.602145 

 

6.485721 

 

6.12345 

 
9.0 6.832142 

 

6.654217 

 

6.502143 

 

6.3241 

 
10.0 6.870787 

 

6.680713 

 

6.538633 

 

6.425373 

 
 

bottom side of the cavity. On the other hand, the rotating cell disappears and 

streamlines are nearly similar for the rest two values of Hartmann number Ha = 50 

and Ha = 100. In the domain Ri = 1, a large bi-cellular re-circulation cell is created 

(Ha = 0) that spreads from the lower left side to the upper side of the cavity. At Ha = 
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20, the vortex increases slightly regarding the same case of Ri = 0.1. In addition, 

there is no significant change in the patterns of fluid contours for the higher values of 

Hartmann number (Ha = 50, 100). For the convective regime Ri = 10, in the absence 

of magnetic force (Ha = 0) the vortex expands drastically and it confines the centered 

block. This indicates the enhancement of the flow strength of the vortex. At Ha = 20, 

the vortex shrinks from the right side and another vortex is seen below the obstacle. 

The flow strength of the rotating cell reduces sharply and the open lines swell up 

with the rising values of Ha and as a consequence the vortex moves out while Ha = 

100. 

The corresponding isotherms are displayed in Fig. 5.7(b). For the lower Hartmann 

number Ha = 0, the heat lines are distributed through all over the cavity and 

isotherms are packed at the opening in the domain Ri = 0.1. Also a thermal 

boundary layer is formed in the vicinity of the bottom heated surface of the cavity. 

A minor change is noticed in temperature distribution inside the cavity for the case 

of upper values of Ha = 20, 50, 100. While Ri = 1, the isothermal lines are slight 

different for Ha = 0, 20 but these are identical for the two larger values of Ha (= 50. 

100). Lastly, in the dominant free convective regime Ri = 10, a markable change is 

observed in the case of Ha = 0. Comparatively low temperatured heat lines reflect 

towards the left wall of the cavity. As Ha increases the non-linearity of the 

isotherms increases and a little variation is found among the three consecutive 

values of Ha = 20, 50, 100. 

Fig. 5.8 depicts the heat transfer performance of the enclosure for different values of 

Hartmann number that are presented in terms of average Nusselt number Nuav at hot 

wall and the  average bulk temperature of fluid θav inside the enclosure. It is observed 

from Fig. 5.8(i) that heat transfer rate decreases as the value of Ha increases within 

the range of 0.1 ≤ Ri ≤ 10. On the other hand, an opposite result is found for the 

average fluid temperature in the cavity from Fig. 5.8(ii) which reveals that heat 

transfer rate enhances as the value of Ha increases. 

Table 5.4 gives the variation of average Nusselt number with different Hartmann 

number and it is found that rate of heat transfer decreases with the increasing of Ha 

but it increases as Ri increase. 
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5.4.4 Effect of Solid Fluid Thermal Conductivity Ratio  

Fig. 5.9(a) shows the streamlines for the considered four values of thermal 

conductivity ratio in the three convective regimes of Richardson number. In the 

convective domain Ri = 0.1, for K = 0.2 it is noticed that the open lines stretched 

from the inlet to the exit inside the cavity and a small vortex is created at the top of 

the inlet. This is happened as the fresh and colder fluids entering the cavity cannot 

mix immediately with the hot fluids of the cavity. For the other three higher values of 

K, there is no significant dissimilarity in the streamline patterns. While Ri = 1, the 

vortex size increases and the major stream squeezes from the left-top corner at K = 

0.2. A very minor variation can be followed in the streamlines for the thermal 

conductivity ratio K = 1, 10 and 50. Interestingly, for all the chosen values of K a 

noteworthy change is occurred in streamlines where the free convection dominates 

the forced convection (Ri = 10). In these cases, the vortex expands very sharply that 

captures the centered heat conducting block and consequently open lines suppress 

towards the bottom right wall of the cavity. This is due to the supremacy of the 

natural convection. 

The corresponding temperature distributions are depicted in Fig. 5.9(b). The 

isotherms are found to be scattered through the whole cavity in the two convective 

regimes of Richardson number namely Ri = 0.1, 1 for the considered values of 

thermal conductivity ratio K = 0.2, 1, 10 and 50. In close observation it can be noted 

that there exists a little disparity in temperature distribution inside the cavity as K 

varies from 0.2 to 50. In the region Ri = 10 where the dominant natural convection is 

considered, heat lines show an observable variation regarding that of Ri = 0.1, 1. 

With a variety in the midst of different values of K, a large number of isothermal 

lines are seen to be folded that returns the left wall of the cavity. 

Average Nusselt number Nuav at the bottom heated surface and average fluid 

temperature θav in the cavity are depicted in Fig. 5.10 for showing the effect of 

thermal conductivity ratio K at solid fluid interface on heat transfer mode. From this 

it can be followed that Nuav enhances sharply as Ri increases with decreasing value of 

K. Therefore highest heat transfer is recorded for the smallest value of K. In addition, 

θav increases with the higher values of K and minimum average fluid temperature 

inside the cavity is found when K = 0.2.  
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Figure 5.9: (a) Streamlines and (b) Isotherms at different thermal 

conductivity ratio and various values of Richardson number Ri while, 

Re = 100, Pr = 0.71, Ha = 10, Q = 1 and D = 0.2 
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Figure 5.10: Effect of thermal conductivity ratio on (i) average 

Nusselt number, (ii) average fluid temperature, while Re = 100, Pr = 

0.71, D = 0.2, Q = 1 and Ha = 10. 

Table 5.5: Variation of average Nusselt number with thermal conductivity 

ratio 

 

Ri 
Nuav 

K = 0.2 K = 1 K = 10 K = 50 

0.1 5.996055 

 

5.894875 

 

5.852833 

 

5.792311 

 
1.0 6.15619 

 

6.106777 

 

6.096624 

 

6.052123 

 
2.0 6.34578 

 

6.301245 

 

6.297541 

 

6.201245 

 
3.0 6.45476 

 

6.410213 

 

6.402134 

 

6.39875 

 
4.0 6.54217 

 

6.51247 

 

6.49857 

 

6.42157 

 
5.0 6.654277 

 

6.60185 

 

6.583809 

 

6.482992 

 
6.0 6.698547 

 

6.68542 

 

6.601248 

 

6.542178 

 
7.0 6.721453 

 

6.70102 

 

6.684572 

 

6.621345 

 
8.0 6.852143 

 

6.801243 

 

6.754128 

 

6.675482 

 
9.0 6.901243 

 

6.83214 

 

6.785496 

 

6.702143 

 
10.0 6.959192 

 

6.861843 

 

6.804503 

 

6.764881 

 
 

 

Deviation of average Nusselt number for different thermal conductivity ratio with 

respect to Ri is tabulated in Table 5.5. From the table it is noticed that Nuav decreases 

slightly as K increases and it gives higher values with the increasing of Richardson 

number. 
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5.4.5 Effect of Block Diameter  

The streamline and isotherm patterns due to the variation for solid block diameter D  

are presented in Fig. 5.11. It is seen from Fig. 5.11(a), when Ri = 0.1 the open lines 

are found throughout the cavity and a small recirculation cell is developed at the top 

of the inlet port for D = 0.1. As the Richardson number increases, the intensity of 

flow circulation within the cavity enhanced owing to the increase in buoyancy effect. 

For the largest value of Ri it can easily be noticed that the vortex swells up drastically 

confining the centered body so that the open streams are suppressed in the lower-

right corner of the cavity which is very reasonable. The second column of Fig. 

5.11(a) shows how the behavior of the flow fields are affected under the influence of 

block dimension D = 0.3 in the range of Richardson number 0.1 ≤ Ri ≤ 10. At Ri = 

0.1 the fluid streams are nearly identical with the same case for D = 0.1. On the other 

hand, in mixed convection area (Ri = 1) it is followed that the bi-cellular vortex 

reduces to unicellular and relatively it becomes very small and so main streams 

spread out at the left side of the block. There is no significant change in flow 

characteristics for Ri = 10 regarding to D = 0.1. The effects of the internal block 

dimension D = 0.5 at three convective regimes of Ri (= 0.1, 1, 10) on the streamline 

patterns are displayed in third column of Fig. 5.11(a). At Ri = 0.1 and Ri = 1, a very 

small eddy is created at the left side of the cavity situated above the injection port 

and the solid body is fully surrounded with major streams. For high value of Ri, 

where free convection dominates a large counter clockwise vortex is appeared that 

confines the obstacle. In this case open lines are seen only the bottom and right side 

of the cavity. Last column of Fig. 5.11(a) depicts the streamlines for block size D = 

0.7 at three selected values of Ri. From this figure it can be reported that as the value 

of D increases the vortex becomes smaller and accordingly it disappears at D = 0.7 

for all values of Ri. This is the reason that for larger values of D space availability in 

the cavity reduces. Further, streamlines are similar in the range of 0.1 ≤ Ri ≤ 10 and 

these are found in two parts; one is bottom-right sided while the other is left-top 

sided of the cavity. 

In addition, the first column of Fig. 5.11(b) shows that for the dominant forced 

convection and mixed convection area the heat lines patterns become scatter except  
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Figure 5.11: (a) Streamlines and (b) Isotherms at different block 

diameter and various values of Richardson number Ri, while Re = 

100, Pr = 0.71, Ha = 10, Q = 1 and K = 5 
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Figure 5.12: Effect of block diameter on (i) average Nusselt number, 

(ii) average fluid temperature, while Re = 100, Pr = 0.71, K = 5, Q = 1 

and Ha = 10.  

Table 5.6: Variation of average Nusselt number with block diameter 

 

Ri 
Nuav 

D = 0.1 D = 0.3 D = 0.5 D = 0.7 

0.1 6.168909 

 

5.938528 

 

5.918809 

 

5.878331 

 
1.0 6.446465 

 

6.255076 

 

6.188468 

 

6.075355 

 
2.0 6.592357 

 

6.370531 

 

6.274562 

 

6.184572 

 
3.0 6.704987 

 

6.487892 

 

6.381245 

 

6.294578 

 
4.0 6.818792 

 

6.614246 

 

6.540872 

 

6.421573 

 
5.0 6.991182 

 

6.726170 

 

6.684877 

 

6.550595 

 
6.0 7.1071246 

 

6.870453 

 

6.792456 

 

6.685782 

 
7.0 7.221246 

 

7.022145 

 

6.861247 

 

6.771245 

 
8.0 7.420241 

 

7.191472 

 

6.971234 

 

6.814893 

 
9.0 7.537841 

 

7.314712 

 

7.082145 

 

6.881243 

 
10.0 7.636104 

 

7.446213 

 

7.184350 

 

6.929178 

 
 

in the vicinity of the bottom hot surface for D = 0.1. But as the natural convection 

becomes dominant (Ri = 10), isotherms are found to be folded below the inner body.  

Also for all the considered values of Richardson number the high-isothermal lines are 

more concentrated near the hot wall and the temperature distribution is more uniform 

in the lower right parts of the cavity. The second column of Fig. 5.11(b) represents 
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the temperature distribution for D = 0.3. Close examination of the temperature field 

for the working domain it reveals that except a minor difference the same is reflected  

in heat lines as was observed for D = 0.1. The thermal fields characteristics inside the 

cavity for D = 0.5 are displayed in the third column of Fig. 5.11(b). For the whole 

domain of Ri (= 0.1-10) the isotherms are clustered close to the bottom wall specially 

at the inlet openings, which indicates the existence of high temperature gradients in 

the vertical direction. Besides, thermal boundary layer is created near the hot wall 

and it increases in thickness slowly as Ri gets higher value. Finally from the last 

column it is noted that for all the considered values of Richardson number heat lines 

are distributed about uniformly over the whole enclosure and these are almost similar 

relative to Ri for the case of D = 0.7. 

In order to evaluate how the center lined solid block of the cavity affects the average 

heat transfer along the hot wall; average Nusselt number is plotted as a function of 

Richardson number in Fig. 5.12(i) for different block diameter D. This figure reveals 

that average Nusselt number increases rapidly with the increase of Ri. Highest heat 

transfer is found at the lowest value of D = 0.1 and it reduces as the value of D 

increases. A closer examination of Fig. 5.12(i) shows that there is a slight variation in 

average Nusselt number for the two consecutive values of D (= 0.3 and 0.5). On the 

other hand, Fig. 5.12(ii) presents the average temperature of the fluid (θav) inside the 

enclosure. The θav is almost invariant at low Ri (0.1 ≤ Ri ≤ 1) whereas it increases 

with higher Ri (1 ≤ Ri ≤ 10) for all of the chosen values of D. Another important 

observation is that minimum cavity fluid temperature is found for the smallest size of 

the block. 

In addition Table 5.6 gives an idea about the effect of centered heat conducting block 

dimension D in case of some selected mixed convection parameter on the average 

Nusselt number at the hot surface of the cavity. It is clear that as D increases Nuav 

decreases for fixed Ri. On the other hand for a stationary value of D, Nuav increases 

with the rising value of Ri. 
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5.5 Concluding Remarks 

A two-dimensional numerical study is carried out to explain the flow patterns and 

heat transfer phenomena of an electrically conducting fluid subjected to externally 

imposed magnetic field.  

 The results show that there is a considerable enhancement in heat transfer from 

the heated wall due to higher values of Reynolds number. 

 Prandtl number effects in flow behaviors are more significant in free convection 

dominated region than other two regimes. Heat transfer at the bottom heated surface 

increases with increasing of Prandtl number. 

 Optimum cooling that is lowest cavity fluid temperature can be obtained in 

absence of magnetic field parameter (Ha = 0). 

 A slight dissimilarity is found in flow and thermal fields for the variation of 

thermal conductivity ratio that is flow and thermal fields are not much affected by the 

parameter K. Highest heat transfer rate is found in case of lowest value of K = 0.2. 

 The flow visualization results show that in the dominant natural convection 

domain comparatively larger vortex is developed for the smaller block diameter D. 

The heat transfer at heated wall increases gradually as the value of D reduces with all 

the Richardson numbers. Last of all, it can be summarized that maximum cooling 

effectiveness is achieved if the dimension of the centered block is minimized. 



 

 

Chapter 6 

Effect of an Adiabatic Solid Body on Mixed Convection 

Flow in a Square Enclosure  

Interest in mixed convection fluid flow and heat transfer in ventilated systems has 

been motivated by a broad range of applications, including thermal design of 

buildings, air conditioning and recently the cooling of electronic equipments. The 

flow and heat transfer characteristics of combined free and forced convection in a 

two-dimensional square enclosure with internal thermally isolated solid body is 

studied in the present chapter. A finite element method is used for solving the 

governing equations. The involved parameters are Reynolds number, Prandtl 

number, Hartmann number and diameter of the solid body. 

Hence, the objective of the present study is to investigate streamlines and heat lines 

for the mixed convection flow and heat transfer in such a system, idealized as a 

square enclosure filled with a centered adiabatic block. 

The current chapter is divided in five sections, of which section 6.1 covers the 

physical model of the considered geometry. Section 6.2 presents the mathematical 

formulation of the problem. The method of solution is deliberated briefly in section 

6.3. Section 6.4 exposes the findings of this research elaborately and lastly the 

summary of this chapter is given in section 6.5. 

6.1 Physical Configuration  

A square enclosure containing incompressible fluid with a centered insulated 

obstacle is shown in the Fig. 6.1. The cavity dimensions are defined by L for each 

side. The bottom wall is heated while the remaining walls are considered perfectly 

adiabatic. The entrance and outlet of the enclosure are positioned at the bottom of the 

left wall and at the top of the right wall respectively. A magnetic field of strength B0 

is assumed to be applied transversely to the opposite of flow direction. The size of 

each opening is equal to one-tenth of the cavity length. The inflow state is (ui, Ti) 

while zero diffusion flux is assumed for outflow. 
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Figure 6.1: Schematic of the problem 

6.2 Mathematical Modeling 

Mathematical model for the present work is designed by the following some steps. 

6.2.1 Governing Equations 

The fluid inside the square enclosure is assumed as laminar, incompressible and 

steady-state. Two-dimensional mass, momentum and energy conservation equations 

are considered as the governing equations in the present work and airflow is assumed 

to obey the Boussinesq approximation with constant physical properties. Taking into 

account the above mentioned assumptions, the dimensionless governing equations 

are described as follows: 

Continuity Equation 
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Momentum Equations 

2 2

2 2

1U U P U U
U V

X Y X Re X Y

 ∂ ∂ ∂ ∂ ∂
+ = − + + 

∂ ∂ ∂ ∂ ∂ 
 (6.6) 

2 2 2

2 2

1V V P V V Ha
U V Ri V

X Y Y Re ReX Y
θ

 ∂ ∂ ∂ ∂ ∂
+ = − + + + − 

∂ ∂ ∂ ∂ ∂ 
 (6.7) 

Energy Equations 

2 2

2 2

1
U V

X Y Re Pr X Y

θ θ θ θ ∂ ∂ ∂ ∂
+ = + 

∂ ∂ ∂ ∂ 
 (6.8) 
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Where, the Reynolds number, square of Hartmann number, Prandtl number, 

Richardson number are defined respectively as 

2 2 2 2
0, , ,iRe u L Ha B L Pr Ri Gr Reυ σ µ ν α= = = =  

6.2.2 Boundary Conditions 

The concerning boundary conditions in the dimensionless form are given below: 

At the inlet: U = 1, V = 0, θ = 0 

At the outlet: convective boundary condition (CBC), P = 0 

At all solid boundaries: U = 0, V = 0 

At the heated bottom wall: 1θ =   

At the left, right and top walls: 0
N

θ∂
=

∂
 

At the surface of the block: 0, 0, 0U V
N

θ∂= = =
∂

 

Where, N is the non-dimensional distances either along X or Y direction acting 

normal to the surface. 

According to Singh and Sharif (2003), the average Nusselt number at the hot wall of 

the cavity based on the dimensionless quantities may be expressed by 

1

0

Nu dY
X

θ∂
= −

∂∫
and the average temperature of the fluid in the cavity is defined by 

/av d V Vθ θ= ∫ , where V  is the cavity volume.  

6.3 Numerical Procedure 

The procedure of solution that is applied in solving the considered problem is 

explained here briefly. 

6.3.1 Solution Technique 

The solution of the governing equations along with boundary conditions are obtained 

through the Galerkin weighted residual based finite element method. The continuum 

domain is discretized into finite element meshes, which are consists of non-uniform  
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triangular elements. The principal conservation of mass, momentum and energy 

equations are transferred into a system of integral equations by using Galerkin 

weighted residual method. Gauss quadrature method executes the integration 

concerning each term of these equations. Boundary conditions are then imposed and 

the nonlinear equations are transferred into linear algebraic equations with the aid of 

Newton Raphson method which are finally solved by triangular factorization method. 

6.3.2 Grid Size Sensitivity Test 

In order to obtain the grid independence solution, a grid refinement study is 

conducted to select proper grid resolution. Various size of grid having 2024, 3540, 

4508, 5554 and 7160 elements are used to determine the average rate of heat 

transfer at the heated wall of the cavity. The average heat transfer rate at the hot 

wall with grid elements is revealed in Table 6.1 and Fig. 6.2. As it is seen that there 

is no significant discrepancy ahead of 5554 elements, all computations are 

performed using this grid resolution. 

Table 6.1: Grid Sensitivity Check at Re = 100, Ri = 1, K = 5, D = 0.2 and Pr 

= 0.71  

Elements Nuav Discrepancy (%) 

2024 6.201839 --- 

3540 6.202839 0.02 

4508 6.212839 0.17 

5554 6.213839 0.19 

7160 6.213939 0.19 

 

 

 

 

 

 

 

 

Figure 6.2: Average Nusselt number for different grid elements while 

Ri = 1, Ha = 10, D = 0.2, Re = 100 and Pr = 0.71 
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6.3.3 Validation of the Numerical Scheme 

The solution procedure has been validated against the numerical results of Oztop et 

al. (2009) is shown in the Fig. 6.3. This figure shows that the streamline and isotherm 

patterns in the present work have excellent agreement with those obtained by Oztop 

et al. (2009). Thus the numerical code used in this analysis can perform the present 

problem with logical agreement. 

 

 

 

 

 

 

 

Figure 6.3: Comparison of streamlines (left) and isotherms (right) 

between the work of Oztop et al. (2009) and present while Gr = 10
5
, 

Pr = 0.71, C = 0.5 and Re = 1000  

6.4 Results and Discussions 

As stated earlier, the overall aim of the current investigation is to explore steady 

laminar mixed convection flow and heat transfer in a ventilated square enclosure with 

an inner adiabatic solid body. The MHD mixed convection phenomenon inside a 

vented enclosure having an adiabatic obstacle is influenced by different controlling 

parameters such as Re, Pr, Ha, D, and Ri. Analysis of the results is made here for the 

mentioned parameters varied as 50 ≤ Re ≤ 500, 0.071 ≤ Pr ≤ 7.1, 0 ≤ Ha ≤ 100, 0.1 ≤ 

D ≤ 0.7 and each of the cases the mixed convection parameter Ri is chosen in the 

range of 0.1 ≤ Ri ≤ 10. The outcomes of the present study are discussed here in 

different steps in order to focus the characteristic of flow field, temperature 

distribution inside the ventilated cavity as well as heat transfer performance within 

the cavity in terms of average Nusselt number at the hot surface, average temperature 

of the fluid inside the enclosure. 
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6.4.1 Effect of Reynolds Number 

A general observation concerning the influence of Reynolds number on streamlines 

has been demonstrated in Fig. 6.4(a). In the dominant and pure mixed convection 

region the flow patterns inside the enclosure appear as an onion shape that elongated 

from the entry to the exit port at Re=50, while a large anti-clockwise rotating cell 

formed occupying the centered block for the case Ri = 10. When Re = 200, a vortex 

is seen near the lower left side of the cavity, consequently open lines shrinks towards 

the obstacle at Ri = 0.1 and this vortex enlarges very fast as Ri increases. For higher 

values of Re = 350, 500 the vortices expand in size and number of small eddies and 

these are nearly similar in all the ranges of 0.1 ≤ Ri ≤ 10. This figure is also 

indicating that the Reynolds number is an effective parameter on streamlines. 

In order to clearly exhibit the thermal field characteristic of the working area for the 

different Reynolds number the corresponding isotherms are displayed in Fig. 6.4(b). 

At smaller value of Reynolds number (Re = 50) temperature distribution inside the 

cavity shows non-linearity for all the values of Ri varies as 0.1-10 with a minor 

change in Ri = 10. In the dominant forced convection and pure mixed convection 

area it can be easily followed that isotherms are shrink gradually in the direction of 

bottom-right sided wall with the increasing values of Reynolds number from 200 to 

500 as the basis of higher Re shows more suppression. In addition, for these three 

values of Reynolds number the tendency of heat lines minimization is more visible in 

the case of Ri = 10 and some folding isotherms are returned to the left wall. 

To show the effect of Reynolds number, Fig. 6.5 records the variations of Nuav and 

θav as the function of Ri within the range of 0.1–10 for different values of Re. It is 

evident from Fig. 6.5(i) that average Nusselt number increases with the mounting 

values of Reynolds number Re. In addition, heat transfer rate at heated wall is about 

invariant for lowest value of Re with respect to Ri. Logically, Fig. 6.5(ii) shows a 

reverse effect in the case of average temperature of cavity fluid. 

Table 6.2 gives the variation of average Nusselt number with Reynolds number. As 

Re increases, Nuav increases with the rising value of Ri. 
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Figure 6.4: (a) Streamlines and (b) Isotherms at different Reynolds 

number and various values of Richardson number Ri, while Ha = 10, 

K = 5, Pr = 0.71, Q = 1 and D = 0.2 
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Figure 6.5: Effect of Reynolds number on (i) average Nusselt 

number, (ii) average fluid temperature, while Ha = 10, Pr = 0.71, D = 

0.2, Q = 1 and K = 5. 

Table 6.2: Variation of average Nusselt number with Reynolds number 

 

Ri 
Nuav 

Re = 50 Re = 200 Re = 350 Re = 500 

0.1 4.542412 

 

7.839311 

 

10.16379 

 

11.93755 

 
1.0 4.601385 

 

8.320327 

 

10.78297 

 

12.69044 

 
2.0 4.65145 

 

8.56349 

 

10.99854 

 

12.87125 

 
3.0 4.690142 

 

8.75421 

 

11.22436 

 

13.24587 

 
4.0 4.735423 

 

8.98654 

 

11.54287 

 

13.78542 

 
5.0 4.782014 

 

9.143034 

 

11.97443 

 

14.12518 

 
6.0 4.812456 

 

9.321457 

 

12.02136 

 

14.59861 

 
7.0 4.838754 

 

9.46257 

 

12.24587 

 

14.75217 

 
8.0 4.852785 

 

9.52143 

 

12.43568 

 

14.88237 

 
9.0 4.880245 

 

9.60241 

 

12.59857 

 

14.99021 

 
10.0 4.895953 

 

9.671546 

 

12.74836 

 

15.03054 

 
 

6.4.2 Effect of Prandtl Number  

The effect of Prandtl number (0.071 ≤ Pr ≤ 7.1) on flow patterns and temperature 

distribution in an enclosure vented having an adiabatic block are displayed in Fig. 

6.6, where Re and Ha are kept constant at 100 and 10 respectively. The streamlines 

that are the representative of flow behavior are shown in Fig. 6.6(a). From the third 

row of Fig. 6.6(a) it is seen that in the dominant forced convection regime (Ri = 0.1)  
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Figure 6.6: (a) Streamlines and (b) Isotherms at different Prandtl 

number and various values of Richardson number Ri, while Re = 100, 

Ha = 10, K = 5, Q = 1 and D = 0.2. 
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Figure 6.7: Effect of Prandtl number on (i) average Nusselt number, 

(ii) average fluid temperature, while Re = 100, Ha = 10, D = 0.2, Q = 

1 and K = 5. 

Table 6.3: Variation of average Nusselt number with Prandtl number 

 

Ri 
Nuav 

Pr = 0.071 Pr = 1 Pr = 3 Pr = 7.1 

0.1 3.401222 

 

6.46578 

 

8.974533 

 

11.60541 

 
1.0 3.40483 

 

6.831039 

 

9.60981 

 

12.36013 

 
2.0 3.40593 

 

6.924561 

 

9.723654 

 

12.87453 

 
3.0 3.407842 

 

7.1124 

 

9.89754 

 

13.01279 

 
4.0 3.409875 

 

7.34217 

 

10.24563 

 

13.54789 

 
5.0 3.419237 

 

7.471625 

 

10.76878 

 

13.88735 

 
6.0 3.419982 

 

7.54213 

 

10.85467 

 

13.98547 

 
7.0 3.421025 

 

7.685423 

 

10.93215 

 

14.12135 

 
8.0 3.4228 

 

7.72413 

 

11.02436 

 

14.35647 

 
9.0 3.43012 

 

7.752463 

 

11.23546 

 

14.56871 

 
10.0 3.426057 

 

7.827903 

 

11.43939 

 

14.72438 

 
 

and for all of the four different values of Pr, a small sized vortex is created above the 

inlet and open lines are stretched over the whole domain. When Ri = 1 (second row), 

the lower vortex enlarges for all selected values of Pr and a small eddy is found at 

the left-top corner of the cavity for Pr = 1. In dominant free convection regime (Ri = 

10) the top row shows a noticeable change in flow characteristics for all Pr. Size of 
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the vortices increase very rapidly confining the centered body and thus main flow 

minimizes towards the bottom-right sides of the cavity. 

The temperature distributions for the four considered values of Pr are displayed in 

Fig. 6.6(b). It is seen that for all convective regimes of Ri = 0.1, 1, 10 and at Pr = 

0.071 a few number of heat lines are created. Among them some semi-circular 

shaped isotherms are found at the left wall of the cavity. When Pr = 1 the 

temperature distribution are found over the whole cavity for Ri = 0.1, 1 and for Ri = 

10 heat lines are found to be reflected to the left wall. A significant change is 

followed for higher value of Pr = 3 and Ri = 0.1, 1; isotherms are crowded to the 

right bottom side of the enclosure. At Ri = 10 and Pr = 3 low temperatured 

isothermal lines returns to the left wall of the cavity. For all convective regimes of Ri 

isotherms are suppressed towards the hot bottom surface and right wall of the cavity 

when Pr = 7.1 and comparatively more suppression is noted for larger values of Ri. 

Moreover for largest value of Pr = 7.1, isotherms are found to be isolated from the 

centered obstacle of the cavity. 

Average Nusselt number and average fluid temperature inside the cavity are shown in 

Fig. 6.7. From Fig. 6.7(i) it is seen that highest value of Pr = 7.1 gives the maximum 

heat transfer rate and lowest value of Pr = 0.071 gives the minimum heat transfer rate 

at the heated surface. An opposite effect is found to the average fluid temperature 

that is depicted in Fig. 6.7(ii). 

The variations of average Nusselt number with Prandtl number are tabulated in Table 

6.3. From this table it is seen that Nuav increases with both of the rising values of Pr 

(rapidly) and Ri (slowly).  

6.4.3 Effect of Hartmann Number  

Fig. 6.8(a) depicts the effects of the magnetic field parameter on streamlines at 

different Richardson number. At low Hartmann number Ha = 0, a rotating cell is 

created just above the inlet in the domain Ri = 0.1 and it increases rapidly for the 

consecutive value of Ri = 1. On the other hand it is followed that for the above two 

convective regimes of Richardson number the flow structures are almost identical at 

the rest three considered values of Ha (= 20, 50, 100). Interestingly, in the dominant 

free convection domain the patterns of the cavity flow change dramatically for the  
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Figure 6.8: (a) Streamlines and (b) Isotherms at different Hartmann 

number and various values of Richardson number Ri, while Re = 100, 

Pr = 0.71, K = 5, Q = 1 and D = 0.2. 
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Figure 6.9: Effect of Hartmann number on (i) average Nusselt 

number, (ii) average fluid temperature, while Re = 100, Pr = 0.71, D = 

0.2, Q = 1 and K = 5. 

Table 6.4: Variation of average Nusselt number with Hartmann number 

 

Ri 
Nuav 

Ha = 0 Ha = 20 Ha = 50 Ha = 100 

0.1 6.117298 

 

5.788497 

 

5.470473 

 

5.438015 

 
1.0 6.211818 

 

5.878837 

 

5.630361 

 

5.56877 

 
2.0 6.26431 

 

5.941346 

 

5.784562 

 

5.604578 

 
3.0 6.30457 

 

6.12243 

 

5.854136 

 

5.66213 

 
4.0 6.32872 

 

6.17243 

 

5.921234 

 

5.72475 

 
5.0 6.360872 

 

6.215266 

 

5.976642 

 

5.779284 

 
6.0 6.382157 

 

6.258542 

 

6.044782 

 

5.834762 

 
7.0 6.43871 

 

6.291403 

 

6.139754 

 

5.901245 

 
8.0 6.47021 

 

6.324315 

 

6.211354 

 

6.113145 

 
9.0 6.49287 

 

6.38458 

 

6.305416 

 

6.238740 

 
10.0 6.52927 

 

6.452779 

 

6.433060 

 

6.38791 

 
 

cases of lower Ha than those of higher values of Ha. The reality established here is 

that the application of transverse magnetic field acting as Lorentz’s force which 

retards the flow. As expected, the flow strength is reduced with increasing the 

Hartmann number. 

The inspection of the heat lines profile relating to these various values of the 

Hartmann number are illustrated in Fig. 6.8(b). The isothermal lines are scattered 
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through all over the enclosure for the choosing values of four Hartmann number as 

Ha = 0, 20, 50, 100 in the different values of Richardson number regimes with the 

exception of two cases. However a significant change is found for the lowest value of 

Ha = 0, that is in the absence of magnetic field parameter along with Ri = 10. Also a 

noticeable variation is observed in the dominant natural convective domain at Ha = 

20. Moreover, it is seen that heat lines are crowded at the bottom wall near the inlet 

port and a boundary layer is created at the vicinity of the heated surface of the cavity 

for each case. 

At last the heat transfer efficiency of the enclosure for the above discussed parameter 

is presented in terms of average Nusselt number Nuav and the dimensionless average 

bulk temperature θav. Fig. 6.9 plots the variation of both average Nusselt number and 

average fluid temperature for different values of Hartmann number. The variation 

profile indicates that heat transfer rate decreases as the value of Ha increases within 

the range of 0.1 ≤ Ri ≤ 10 and so an opposite result is found for the average fluid 

temperature in the cavity. The higher the Hartmann number the smaller are the 

fluctuations in the average temperature. 

Table 6.4 shows the rate of heat transfer at the bottom hot wall along with Hartmann 

number. As Ha becomes higher Nuav decreases slowly, but it increases very slowly 

when Ri increases. 

6.4.4 Effect of Block Diameter  

Diameter D = 0.1 that is for a smaller solid block, an anti-clockwise vortex is 

developed above the inlet at the value of Ri = 0.1 whereas it increases very sharply 

for the higher value of Ri = 1. But in the dominant free convective regime Ri = 10, 

the flow patterns inside the cavity change dramatically. The vortex swells up and 

captures the block, open lines move away along the bottom right side of the cavity, as 

expected. Also a small eddy is seen inside the vortex and at the right side of the 

adiabatic obstacle. As D increases from 0.1 to 0.3, the size of the re-circulation cell 

decreases for all of the three chosen values of mixed convection parameters Ri (0.1, 

1, 10). When D = 0.5, small sized vortex vanishes in the dominant forced convection 

and mixed convection domain but in the region where free convection dominates 

forced convection the flow strength of the vortex is reduced regarding to same case  
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Figure 6.10: (a) Streamlines and (b) Isotherms at different block 

diameter and various values of Richardson number Ri, while Re = 

100, Pr = 0.71, Ha = 10, Q = 1 and K = 5. 
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Figure 6.11: Effect of block diameter on (i) average Nusselt number, 

(ii) average fluid temperature, while Re = 100, Pr = 0.71, K = 5, Q = 1 

and Ha = 10.  

Table 6.5: Variation of average Nusselt number with block diameter 

 

Ri 
Nuav 

D = 0.1 D = 0.3 D = 0.5 D = 0.7 

0.1 5.96388 

 

5.936496 

 

5.870495 

 

5.659744 

 
1.0 6.320079 

 

6.173956 

 

6.145851 

 

6.014219 

 
2.0 6.564872 

 

6.362145 

 

6.21345 

 

6.113024 

 
3.0 6.721436 

 

6.451278 

 

6.32104 

 

6.19784 

 
4.0 6.835421 

 

6.574213 

 

6.398742 

 

6.26894 

 
5.0 6.984043 

 

6.67612 

 

6.455061 

 

6.322963 

 
6.0 7.012354 

 

6.874512 

 

6.56871 

 

6.42157 

 
7.0 7.112354 

 

6.985462 

 

6.70321 

 

6.53214 

 
8.0 7.352136 

 

7.12354 

 

6.89214 

 

6.60124 

 
9.0 7.46873 

 

7.204321 

 

7.01249 

 

6.68942 

 
10.0 7.58193 

 

7.387842 

 

7.114406 

 

6.771448 

 
 

with D = 0.3 due to the lackness of space availability inside the cavity. For the largest 

value of D = 0.7 there is no vortex in the domain Ri = 0.1, 1 whereas in the domain 

Ri = 10 two small vortex is appeared instead of single large vortex.  

The first column of Fig. 6.10(b) depicts the isotherms for D = 0.1 and it shows that 

for the dominant forced convection and mixed convection domain the heat lines 

patterns become scatter except in the vicinity of the bottom hot surface of the 

enclosure. On the other hand, isotherms are found to be folded below the inner body 
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when the natural convection becomes dominant (Ri = 10). Moreover, the high-

isothermal lines are seen more concentrated near the hot wall and the thermal field is 

more uniform in the lower right parts of the enclosure for all the considered values of 

Richardson number. From the second column of Fig. 6.10(b) it is seen that a 

significant change in isotherm patterns is occurred for the two lower values of Ri = 

0.1 and Ri = 1.0 when D = 0.3. But in the dominant free convection region 

temperature distribution inside the enclosure is almost identical that was found for D 

= 0.1. A noteworthy variation is followed in thermal fields for the larger value of D 

(= 0.5) in all the considered values of mixed convection parameter Ri. A large 

number of packed heat lines are noticed at the top right corner of the cavity for the 

dominant forced convection and mixed convection domain. When Ri = 10, except 

some high isothermal lines all isotherms are seen to be folded to the left wall of the 

enclosure. When D = 0.7, a little dissimilarity in heat lines is observed in the case of 

Ri = 10 but for the other two values of Ri isotherms are about same that was seen in 

the case of D = 0.5.    

The average heat transfer rate at the hot wall of the enclosure and average fluid 

temperature inside the cavity are displayed in Fig. 6.11 for different block diameter 

D. Fig. 6.11(i) shows heat transfer rate is maximum at the lowest value of D = 0.1 

and it minimizes as the value of D increases. Besides that, from Fig. 6.11(ii) it is 

noticed that the average fluid temperature θav inside the enclosure is about stationary 

in the range of Richardson number 0.1 ≤ Ri ≤ 1. But it increases rapidly for three 

larger values of D and smoothly for the smallest D with higher Ri (1 ≤ Ri ≤ 10). And 

smallest block shows the minimum cavity fluid temperature. 

Table 6.5 shows the variation of Nuav with centered adiabatic block diameter D. 

Average Nusselt number gives the higher value for upper values of Ri and it 

decreases very gradually with higher values of D. 

6.5 Concluding Remarks 

The pertinent parameters of this work have provided some reliable information on 

the condition on flow and heat transfer for the enclosure vented confining a thermally 

isolated obstacle and it may be concluded that the considered parameters in this study 

can be treated as heat transfer controlling parameter. 
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From the present investigation it is seen that for different Reynolds number Re while 

Hartmann number Ha, Prandtl number Pr and adiabatic solid body diameter D are 

kept stationary; heat transfer rate at the hot wall of the cavity is larger for upper 

values of Re. In addition, the flow and thermal fields in the case of Reynolds number 

are much affected than those of other considering parameters. 

Flow fields are much affected by Prandtl number in dominant free convection 

domain than the other two convective regimes of Richardson number. On the other 

hand, a significant effect is followed in thermal fields for all the considered values of 

Pr with all values of Ri. The rate of heat transfer is ceiling for the largest Prandtl 

number.  

But an opposite effect is noticed for the case of different Hartmann number Ha with 

fixed Reynolds number Re, Prandtl number Pr and block diameter D; that is, rate of 

heat transfer reduces as Ha increases. 

The heat transfer rate can be enhanced by reducing the diameter of the adiabatic 

obstacle and thus optimum cooling in the enclosure is achieved for the smallest value 

of D. 
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Conclusions 

A mixed convection problem on two dimensional steady, laminar, incompressible 

viscous flow in an obstructed ventilated enclosure have been investigated 

numerically to explain the flow and heat transfer characteristics of an electrically 

conducting fluid subjected to externally imposed magnetic field. The Reynolds 

number, Prandtl number, Hartmann number, thermal conductivity ratio and solid 

block diameter are treated as governing parameters in this dissertation. The present 

work is mainly based on three types of internal solid block as heat generating, heat 

conducting and adiabatic. Detailed analysis for visualization of streamlines, 

isotherms, average Nusselt number at the heated surface and average fluid 

temperature in the cavity were carried out to explore the effect of mentioned three 

obstacles along with studied parameters. The results are presented details in the 

relevant chapters and in view of the obtained results a data for heat transfer 

performance in the case of mixed convection regime (Ri = 1) is presented in this 

chapter.  

In chapter 3, the effect of inlet and outlet position of an obstructed ventilated cavity 

has been investigated. It was found that the BT configuration that is the enclosure 

having bottom inlet and top outlet gives the optimum cooling inside the cavity as the 

rate of heat transfer at the hot wall is maximum. In addition, TT configuration shows 

the ceiling cavity fluid temperature. In mixed convection regime BT configuration 

shows that heat transfer rate is 76.96% higher than TT configuration. 

The effect of heat generating block with different governing parameters has been 

analyzed in chapter 4. A variation of Nuav between lowest value and upper value of 

considering parameters is presented here for Ri = 1. In case of Reynolds number, 

average Nusselt number increases 166.62% when Re varies from 50 to 500. When 

Prandtl number rises to 7.1 from 0.071, it is found that Nuav increases 270.49%. For 

the case of two values of Hartmann number; absence of magnetic field parameter (Ha 

= 0) and highest Hartmann number (Ha = 100), a little difference of 9.37% 

decreasing is found. High thermal conductivity ratio gives low heat transfer rate and 
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it is noticed that Nuav decreases 3.98% when K = 0.2 increases to K = 50. Also it is 

revealed that largest size heat generating block minimizes heat transfer rate and 

79.90% decreasing is found when D varies from 0.1 to 0.7. 

The effect of heat conducting block along with considered parameters in this work 

has been carried out in chapter 5. A comparison of Nuav between the lowest and 

highest value of various parameters is summarized here for the mixed convection 

domain. For the forced convection parameter Re, it is observed that Nuav increases 

175.38% when Re increases from 50 to 500. Average Nusselt number increases 

263.14% for the variation of Prandtl number Pr = 0.071 & Pr = 7.1. When Ha = 0 

reaches to Ha = 100, Nuav decreases 9.90%. If thermal conductivity ratio K = 0.2 

goes to K = 50, Nuav decreases 1.69%. For the variation of block diameter D from 0.1 

to 0.7, it is clear that average Nusselt number decreases 5.76%. 

Chapter 6 presents the effect of adiabatic solid body together with the related 

parameters. For mixed convection region, the rate of heat transfer variation is shown 

for the studied parameters. Average Nusselt number enhances 175.80% for the 

difference of Re = 50 & Re = 500. Also when Pr = 0.071 rises up to Pr = 7.1, Nuav 

increases 263.02%. For the variation of Hartmann number (Ha = 0 to Ha = 100), 

Nuav decreases 10.35%. It is noticed that if the dimension of solid block increases, 

Nuav decreases and it is decreased 4.84%, when the diameter of the solid block 

reaches its highest value D = 0.7 from the lowest value D = 0.1. 

Last of all, a comparison of heat transfer rate at the heated surface of the enclosure 

for the studied three types of obstacle has been computed here in tabular form. 

From these tables it can be followed that for the case of heat conducting block 

highest heat transfer rate is found for all convective regimes and all considered 

parameters. This is due to the fact that as it conducts heat it is helpful for heat 

transfer. The second highest heat transfer rate is marked for the adiabatic block for all 

the cases. It is reliable because it neither produces heat nor conducts heat and thus it 

acts an obstacle. Finally, the comparison table shows that heat generating block gives 

the lowest heat transfer rate as it generates heat itself and consequently rate of heat 

transfer reduces. 
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Ri 

Nuav 

 
HG Block HC Block AD Block 

0.1 

Re=500 11.6910 

 

11.93826 

 

11.93755 

 
Pr=7.1 11.58715 

 

11.60556 

 

11.60541 

 
Ha=100 5.303347 

 

5.595915 

 

5.438015 

 
K=50 5.555065 

 

5.792311 

 
--- 

D=0.7 1.134105 

 

5.878331 

 

5.659744 

 
 

 

 

1.0 

 

Re=500 11.84686 

 

12.69623 

 

12.69044 

 
Pr=7.1 12.26479 

 

12.36946 

 

12.36013 

 
Ha=100 5.56483 

 

5.617554 

 

5.56877 

 
K=50 5.817765 

 

6.052123 

 
--- 

D=0.7 1.229502 

 

6.075355 

 

6.014219 

 

10.0 

 

Re=500 14.89302 

 

15.07491 

 

15.03054 

 
Pr=7.1 14.54344 

 

14.73343 

 

14.72438 

 
Ha=100 6.348449 

 

6.425373 

 

6.38791 

 
K=50 6.256456 

 

6.764881 

 
--- 

D=0.7 1.646546 

 

6.929178 

 

6.771448 

 
 

Ri 

Nuav 

 
HG Block HC Block AD Block 

0.1 

Re=350 9.901751 

 

10.16745 

 

10.16379 

 
Pr=3.0 8.882427 

 

8.975492 

 

8.974533 

 
Ha=50 5.326058 

 

5.663728 

 

5.470473 

 
K=10 5.688583 

 

5.852833 

 
-- 

D=0.5 4.304263 

 

5.918809 

 

5.870495 

 
 

 

 

1.0 

 

Re=350 10.17529 

 

10.79475 

 

10.78297 

 
Pr=3.0 9.594996 

 
9.617635 

 
9.60981 

 
Ha=50 5.548711 

 

5.728370 

 

5.630361 

 
K=10 5.896423 

 

6.096624 

 
-- 

D=0.5 4.552257 

 

6.188468 

 

6.145851 

 

10.0 

 

Re=350 12.59697 

 

12.76067 

 

12.74836 

 
Pr=3.0 11.35116 

 

11.45531 

 

11.43939 

 
Ha=50 6.413511 

 

6.538633 

 

6.433060 

 
K=10 6.360907 

 

6.804503 

 
-- 

D=0.5 5.138711 

 

7.184350 

 
7.114406 

T
ab

le
-7

.1
 

T
ab

le
-7
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Ri 

Nuav 

 
HG Block HC Block AD Block 

0.1 

Re=200 7.750381 

 

7.851059 

 

7.839311 

 
Pr=1.0 6.401763 

 
6.469222 6.46578 

 
Ha=20 5.692517 

 

5.791037 

 

5.788497 

 
K=1 5.753399 

 

5.894875 

 
-- 

D=0.3 5.613745 

 

5.938528 

 

5.936496 

 
 

 

 

1.0 

Re=200 8.052749 

 

8.326203 

 

8.320327 

 
Pr=1.0 6.734086 

 

6.861754 

 

6.831039 

 
Ha=20 5.85114 

 

5.958862 

 

5.878837 

 
K=1 5.985485 

 

6.106777 

 
-- 

D=0.3 5.854553 

 

6.255076 

 

6.173956 

 

10.0 

 

Re=200 9.454947 

 

9.672471 

 

9.671546 

 
Pr=1.0 7.580309 

7.838668 

 

7.827903 

 
Ha=20 6.433135 

 

6.680713 

 

6.452779 

 
K=1 6.480545 

 

6.861843 

 
-- 

D=0.3 6.335527 

 
7.446213 7.387842 

 
 

 

 

 

 

 

 

 

 

 

 

 

Ri 

Nuav 

 
HG Block HC Block AD Block 

0.1 

Re=50 4.388523 

 

4.553039 

 

4.542412 

 
Pr=0.071 3.307886 

 

3.403973 

 

3.401222 

 
Ha=0 5.921909 

 

6.189092 

 
6.117298 

K=0.2 5.812649 

 

5.996055 

 
-- 

D=0.1 5.86043 

 

6.168909 

 

5.96388 

 

1.0 

 

Re=50 4.443288 

 

4.610437 

 

4.601385 

 
Pr=0.071 3.310394 

 

3.406295 

 

3.40483 

 
Ha=0 6.139915 

 

6.235082 

 

6.211818 

 
K=0.2 6.058879 6.15619 

 
-- 

D=0.1 6.115497 

 

6.446465 

 

6.320079 

 

10.0 

 

Re=50 4.669317 

 

4.921946 

 

4.895953 

 
Pr=0.071 3.329817 

 

3.432531 

 

3.426057 

 
Ha=0 6.449623 

 

6.870787 

 

6.52927 

 
K=0.2 6.593505 

 

6.959192 

 
-- 

D=0.1 6.774454 

 
7.636104 7.58193 

 

T
ab

le
-7

.3
 

T
ab
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-7

.4
 



Chapter 7 

 117

7.1 Further Works  

The following can be put forward for the further works as follow-ups of the present 

research as  

� In the future, the study can be extended by incorporating different types of nano-

fluids.  

� Double diffusive combined free and forced convection can be analyzed through 

including the governing equation of concentration conservation.  

� Analysis can be executed by using magnetic fluid instead of electrically 

conducting fluid within the porous medium and varying the boundary conditions 

of the cavity’s walls. 

� The problem can be performed for turbulent flow and unsteady flow using 

various fluids with different thermal boundary conditions.  

� In this work, the fluid flow and heat transfer has been analyzed only for two-

dimensional case. So this research work may be extended to three-dimensional 

analyses to investigate the effects of considered parameters on flow fields and 

heat transfer in enclosures. In addition, the problem of fluid flow and heat 

transfer along with three types of solid body may be studied also in three-

dimensional cases. 
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