






Chapter-One Preliminaries 

Completely prime ideal in a I'-ring: A completely prime ideal 

m a I'-ring M is a proper two-sided ideal P such that Ml P is an 

integral domain (not necessarily commutative). 

Division I'-ring: A I'-ring M is called division I'-ring if for 

every xeM there exists yeM such that xyy = yyx = ] . 

I'-Field: A commutative division I'-ring is called a I'-field. 

Semi-hereditary: A I'-ring M is said fo be semi-hereditary if 

every finitely generated right ideal of Mis projective M-module. 

Non-singular I'-ring: An ideal / of a I'-ring M is called 

essential if for every nonzero ideal A in M, In A i- 0. Let cp(M) be the 

class of all essential ideals in Mand Zr(M) = {xeM I xn = 0 for some 

/ ecp(M)}. M is called a non-singular I'-ring if Zr(M) = 0. For the 

case of a classical ring R, we define Zr(R) = {xeR I xi= 0 for some 

I ecp(R). Then R is called a non-singular if Z,(R) = 0. 

m-system: A subset Sofa I'-ring Mis an m-system if S = <I> or 

if a, beS implies (a)I'(a) n S -:t:- <I>. A subset N of Mis said to be 

n-system in M if N = <l> or if aeN implies (a) n N -:t:- <l>. 

Radical Class: A class of rings (I'-rings)fll is called a radical 

class if 

a) fll is homomorphically closed, i.e. if Re !ll and / is an ideal 

of R, then RI IE f!l. 

ii) 91 is closed under extension, 1.e. if RI/ and /e .W, then 

Re 91. Here l is an idea] of R. 
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Chapter-One Preliminaries 

Quotient module: Let Q be submodule of a M-module E. If for 

each a + Q, b + Q are in the factor group EIQ = {p + QI peE} and 

each yeI', we define mr(p + Q) = myp + Q for all meM, peP and 

yeI', and (p, + Q) + (p2 + Q) = (pi + P2) + Q for all Pt, p2eP, then 

EIQ is a M-module which we call the quotient module of M with 

respect to Q. 

Irreducible module: An M-module is said to be irreducible if it 

has exactly two submodules. These must be itself and O; the module 0 

is not irreducible according to this definition. 

Annihilator: Annihilator of a subset S of an M-module E is 

defined as 

Ann(S) = { aeE I ayx = 0 for all xeS, ye I'}. 

It is a left ideal of E. If S is submodule of E, then Ann(S) is a two­

sided ideal of E. 

If S = E, then Ann(S) = Ann(E) = 0 

lf Ann(E) = 0, then Eis called a faithful module. 

Indecomposable Submodules: Submodules that are not the 

direct sum of two nonzero submodules are known as indecomposable 

Submodules. 
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Chapter-Two Some Characterizations of p-Rings 

c) For every principal ideal Ra of R, there exists an element 

b ER such that R = Ra EB Rb. 

d) Every principal ideal Ra is a direct summand of R. 

Proof. �a !Ò� b) Let xeR. Then xP = x for some prime p > 1. Let a ER. 

and Let a �~� x p-2• Now, the principal ideal Ra is generated by the 

element xa which is idempotent; for (xa)(xa) = xxP-2xxP-2 = 

xPxP-2 =xa. 

b !Ò� c) Let Ra= Re, ~here e2= e and a= xp-l, xeR. Since 1 = e + 

(1 - e), and if there exists bER such that ae = b(l - e), then ae = ae2 

= b(l - e)e = 0. So R = Re EB R(l-e). 

c !Ò� d) Trivial. 

D !Ò� a) Let aER. Then there exists an ideal/ of R such that R = Ra EB 

I. Hence, 1 = xa + b, where bEI, so x = xax + bx. Since a = xP-2 , 

bx= x - xaxERa n I= 0, and therefore x = xax = xP. Hence, R is a 

p-ring. % � 

Theorem 2.06. Let R be a p-ring with 1. Then 

1) Every finitely generated ideal is principal. 

2) The intersection of any two principal ideals of R is principal. 

Proof. 1) 1t is enough to prove that if a, b ER, then Ra + Rb is 

principal. Since R is a p-ring, by Theorem 2.05, there exist elements 

x, yeR with a= xP-2 and b = yP-2 for some prime p > 1, such that 

the elements e1 = xa and e2 = ya are the idempotent elements of Ra 

and Rb respectively and also Ra= Re, and Rb= Re2• 
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Chapter-Two Some Characterizations of p-Rings 

Now, Ra-+ Rb = Rei + Re2 = Rei + R(e2 - e2e1) because a,e1 + 

a2e2 = (a, + a2e2)ei + a2(e2 - e2e1 ). If s = (e2 - e2e1) p-
2 ER, then 

(e2 - e2ei)s(e2 - e2e1) = (e2 - e2ei)P = (e2 - e2e1)-Then e~ = s(e2 -

e2ei) is an idempotent of Rb. Then Rei + Re2 = Re1 + Re~ with e~e1 = 

Finally, we have, a1e1 + a2e~ = (a1e1 + a1 e~)(e1 + e~ - e~e1), 

a1, b1 eR. Thus, Re1 + Re~ = R(e1 + e~ - e~_e1). Therefore Ra+ Rb= 

R(e1 + e~ - e~ e1) is a principal ideal. Thus, Ra + Rh is a principal 

ideal. 

2) Let Ra and Rb be two principal ideals. Since R is a p-ring by 

Theorem 2.05, there exists elements x, yeR with a = x p-
2 and 

b = y p-
2 for some prime p > l, such that the elements e1 = xa and 

e2 = ya are the idempotent elements of Ra and Rb respectively and 

also Ra= Re, and Rb= Re2 • Hence, R = Re, EB R(I - e 1) = Re2 EB R(l­

e2), and 

Re,= AnnR[( I - e1)R] = {xeR I x(l - e1)R = O}, 

Re2 = AnnR[(I - e2)R] = {xeR I x(J - e2)R = O}. 

Indeed obviously Re1 c AnnR[(l - e1)R] . 

Conversely, if xeR and x(J - e1) = 0, writing x = a1e1 + b1(l -
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Chapter-Two Some Characterizations of p-Rings 

Thus, Re, n Re2 = AnnR[(l - e,)R + ( 1 - e2)R]. Now, there 

exists e3 ER such that (1 - e1)R + (1 - e2)R = (1 - e3)R, and from 

Re3 = AnnR[(l - e3)R] we deduce that Re, n · Re2 = Re3. Thus, 

Re, n Re2 = Ra n Rb is a principal ideal. % � 

Theorem 2.07. Let R be a p-ring with unity 1. Then 

a) The Jacobson radical J(R) of R is zero. 

b) R is a semisimple ring if and only if it is a Noetherian 

p-ring. 

c) The centre of R is also a p-ring. 

d) The p-ring R without zero divisor is a field. 

e) Every ideal of R is nonsingular. 

j) For any idempotent element e of R, (1 - e)Re = 0. 

g) /f (Ri)iE/ is a family of p-rings, then n Riis a p-ring. 

h) R is semihereditary. 

Proof a) Let aE J(R). Then Ra c J(R). Since Ra= Re, where e = xa 

is an idempotent with a= xP-2 for some prime p > I, so eEJ(R), it 

follows that (I - e) is invertible. So there exists yER such that 

1 = y(l - e) = y - ye. Hence, e = ye - ye2 = ye - ye= 0 and therefore 

a= 0. Thus, J(R) = 0. 

b) First suppose that R is finitely generated. Then every ideal of R is 

finitely generated and hence a direct summand. So R is a semisimple 

ring. 

Conversely, let R be a semisimple ring. Then every principal 

ideal of R is a direct summand of R and hence, R is a p-rina (by 
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Chapter-Two Some Characterizations of p-Rings 

Theorem 2.05). Since Jacobson radical J(R) is the largest ideal of R, 

and since, in a p-ring, J (R) = 0, so any ascending chain of ideals of R 

must be finite. Hence, R is Noetherian. 

c) Since p-ring is abelian, so centre of R is R itself, i.e. C(R) = R. 

d) Let aER with at- 0. Then aP= a for some prime p > 1. Then 

aP- a= 0 !Ò� a(ap-l - I)= 0. Since a f. 0, so pp-I -1 = 0 and so 

a p-2 is the inverse of a. Since p-ring R is abelian, ~o R is a field. 

e) Suppose that xi= 0 for some xeR and Jc R is an ideal of R. Let Rx 

be a principal ideal of R. Then there is an idempotent e such that 

Rx=Re. 

Now, since Rel = Rx/ = 0, we see that / c R(l - e). Then 

I n Re = 0, whence Re = 0 a.nd consequently x = 0. Thus, R is 

nonsingular. 

f) Since Re is a two-sided ideal, so (1 - e)Re = Re-Re2 =Re-Re= 0. 

g) Proof is obvious. 

h) Since a finitely generated ideal of R is a direct summand of R and 

so is projective. Hence, R is semihereditary. % � 
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Chapter-Three 

Some Characterizations of J-Rings 

In this chapter, we study various properties of J-rings and 

obtain some characterizations of J-rings. We first study the 

commutitivity of J-rings. Then we obtain a basic theorem like: If R 

is a ring and/ be an ideal of R, then Risa J-ring if and only if land 

RI/ are both J-rings. If fll is the class of all J-rings then with the 

help of this theorem we prove that f!l is a radical class. We also 

obtain a couple of necessary and sufficient conditions that R is a 

J-ring. We also establish some other properties. 

Definition. A ring R is said to be a J-ring if for each xER there 

exists an integer n = n(x) > I such that xn = x. 

Lemma 3.01. Let R be a J-ring. Then every right ideal l of R is a 

two-sided ideal of R. 

Proof. We first observe that R has no nonzero nilpotent elements. 

For if xi 0, then xn = x implies that xm i O for all m > 1. Next, let 

aE/ and suppose an = a for some n > ] . Then (an-1) 2 = a 2"-2= 

a11 a"-2 = aa"-2 =an-I, so an-I is an idempotent. 

Now, let e be an idempotent. Then for any xER, (xe-exe)2 = 0 = 

(ex-exe)2 • Thus, xe - exe = ex - exe = 0 and so xe = ex, 

i.e. e commutes with every elements of R. 



























Chapter-Three Some Characterizations of J-Rings 

Proof. Suppose x-:/; 0 is in every maximal ideal of R. Then xn = x, 

and xn-I is an idempotent, say xn-I = e =f:. 0 and e must also be in 

every maximal ideal of R. Now, 1 - e can not be in any proper right 

ideal of R, for if it were, it would be in a maximal ideal K of R. 

Since eeK, 1 = e + (1 - e) would be in K and hence, K = R, a 

contradiction. Since (1 - e)R-:/; 0 and since ( I - e)R is a (right) 

ideal, it follows that (] - e)R = R, whence (I - e)r = e for some 

reR. Thus, 0 = e(l - e)r = e, a contradiction. Thus, x can not be in 

every maximal ideal in R and the intersection of all the maximai 

ideals of R is 0. Thus, by Lemma 3.04, xy - yxeO, x, yeR, that is, 

xy = yx, for all x, yeR. % � 

Theorem 3.06. If R is a J-ring, then R is commutative. 

Proof. Let e be an idempotent in R. Then, ex= xe for all xeR. Thus, 

eR =Re= Tis also a J-ring, but T has an identity, namely e. Hence, 

by Lemma 3.05, Tis commutative. Now, for all x, yER, xye = xye2 

= (xe)(ye) = (ye)(xe) = yxe, that is (xy - yx)e = 0. Since (xy- yxt 

= (xy - yx) for some n > 1, so (xy-yxt-1 is an idempotent, say e,. 

Thus, 0 = (xy-yx )e1 = (xy- yxl = xy-yx, that is xy �~� yx. % � 

Lemma 3.07. Let R be a commutative ring. Suppose that I is an 

ideal of R such that I is a J-ring. Then e(y - yn) = 0 for all yeR 

and e is an idempotent of I. 
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Chapter-Three Some Characterizations of J-Rings 

Conversely, if xER and x( 1 - e1) = 0, writing x = a,e, + b,(1 -

e1), we have 

a1e1(1 - e,) + b1(1 - e1)(] - e,) = 0, and so 

b1(1 - ei) = 0, hence, x = a,e, eRe,. 

Thus, Re, n Re2 = AnnR[(l - e1)R + (1 - e2)R]. Now, there exists 

e3 eR such that (1 - e1)R + (l - e2)R = (1 - e3)R, and from 

Re3 = AnnR[(l - e3)R] we deduce that Re, h Re2 = Re3• Thus, 

Re, n Re2 =Ran Rb is a principal ideal. % � 

Theorem 3.13. Let R be a J-ring with unity 1. Then 

a) The Jacobson radical J(R) of R is zero. 

b) R is a semisimple ring if and only if it is a Noetherian 

J-ring. 

c) The centre of R is also a J-ring. 

d) The J-ring R without zero divisors is a field. 

e) Every ideal of R is nonsingular. 

j) For any idempotent element e of R, ( 1 - e)Re = 0. 

g) If(R;);ef is a family of J-rings then n R; is a J-ring. 

h) R is semi hereditary. 

Proof. a) Let aEJ(R). Then Ra c J(R). Since Ra = Re where 

e = xa is an idempotent with a= xn-2 , so eEJ(R). It follows that 

(1 - e) is inevitable. So there exists yER such that 1 = y(l - e) = 

y -ye. Hence, e = ye - ye2 = ye - ye= 0 and therefore a= 0. Thus, 

J(R) = 0. 

b) First suppose that R is finitely generated. Then every ideal of R 
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Chapter-Three · Some Characterizations of.I-Rings 

is finitely generated and hence a direct summand. So R is a semi­

simple ring. 

Conversely, let R be a semisimple nng. Then ever:x 

principal ideal of R is a direct summand of R and hence R is a 

J-ring by Theorem 3.1 l(d). Since Jacobson radical J(R) is the 

largest ideal of R and since m a J-ring; J (R) = 0, so any 
.. 

ascending chain of ideals of R must be finite. Hence, R is 

Noetherian. 

c) Since J-ring is abelian, so centre of R is R itself, i.e. C(R) = R. 

d) Let aER with a f. 0. Then an= a for some n > 1. Then an- a= 0 

implies a(an-l - 1) = 0. Since a f. 0, so an-I -1 = 0 and so an-2 is 

the inverse of a. Since R is abelian, so R is a field. 

e) Suppose that xi= 0 for some xER and / c R is an ideal of R. Let 

Rx be a principal ideal of R. Then there is an idempotent eER such 

that Rx = Re. Now, since Rel = Rx/= 0, we see that I c R( 1 - e). 

Then / n eR = 0, whence Re = 0 and consequently x = 0. Thus, R is 

nonsingular. 

J) Since Re is a two-sided ideal, so (1- e) Re= Re-Re2 =Re-Re= 0. 

g) Proof is obvious. 

h) Since a finitely generated ideal of R is a direct summand of R 

and so is projective. Hence, R is semihereditary. % � 
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Chapter-Four 

Now, for any rEM and aEl with (anP a = a, r'}G = rJ{anP a = 

ry(ay)p-l (ay)a = (ay)p-l ayrya = (ay)(ay) p-2 ayrya = aJ{ay) p-l rya = 

ayr1 , where r 1 = (ay) p-l ryaeM. Since ayr1 el, so does rya and so I is 

a two-sided ideal. % � 

Lemma 4.02. let M be a p-T-ring and I an ideal of M. Then Mil is 

p-T-ring. 

Proof. Let xeM/1, then x = m + I for all mEM with (my)Pm = m, 

p > 1 and ye I'. Now, (xy)Px = (m + l)y} P(m +I)= {my+/} P(m + I) 

= {(my)P + J}(m + [) = (my)Pm + I= m + I=x. Thus, Mil is ap-r­

ring. % � 

Lemma 4.03. let D be a division p-I'-ring of characteristic p -:j:. 0 and 

let C be the center of D. Suppose that aED, a~C is such 

I, 

that(ay)P a= a for some h > 0. Then there exists an element xeD 

such that xyayx-1 -:j:. a. 

Proof. We define the mapping/ D '”� D by fix) = xya - a}'X for every 

xeD. Now, J2(x) = ff(x) = j{xya - ayx) = (xya - ayx)ya - a}'(xya -

ayx) = xyaya - 2ayxya + ayayx. 

Again, J\x) = j{xyaya - 2a}'Xya + aya}'X) = (xyaya - 2a}'Xya + 

ayayx)ya = (xyayaya - 3ayxyaya - 3ayayxya + ayayayx). Thus, a 

simple computation yields that 

f P(x) = xy(ay)p-l a-(ay)p-l ayx, where charD = p, a prime. 

Continuing we obtain that 
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Table 4.10 Land use pattern of Chakbara village, 2014 

(Figures are in percentage) 
 Water bodies Aquaculture Agricultural 

land 

Vegetation 

 

Settlement Bare land Total 

Area (acres) 18.68 207.50 71.61 9.3 27.80 180.36 515.25 

Percentage 3.63 40.27 13.90 1.80 5.40 35.00 100.00 

Source: Image processing, 2014 

From figure 4.5 and table 4.11, it is found that the highest percent land (33.04%) of 

Patakhali village is engaged with aquaculture (shrimp cultivation).  16.36 percentage of 

land is under water body which is fully unproductive.  13.21 % land uses as homestead 

vegetation and settlement. Only 13.40 % land cultivates for agricultural purpose. 

 

 

 

 

 

 

 

 

 

 

 

Source: Image processing, 2014 

Figure 4.5 Land use pattern of Patakhali village, 2014 

 



 

 
General Description of the Study Area 

66 

 

Table 4.11 Land use pattern of Patakhali village, 2014 

(Figures are in percentage) 
 Water bodies Aquaculture Agricultural land Vegetation and 

settlement 

Bare land Total 

Area 

(acres) 

93.40 188.60 76.50 75.40 136.98 570.88 

Percentage 16.36 33.04 13.40 13.21 23.99 100 

Source: Image processing, 2014 

About one-fourth of land is bare which is either fallow or few portion of it using as 

kaccha road.  

Agricultural land use 

Agricultural land uses are discussed under four categories such as aquaculture, crops, 

vegetables & fruits and others. From table 4.12 it can be said that in all the study villages 

except few exceptions more than 80% people are not involved with any one type of 

cultivation. Those are involved with agriculture most of them are shrimp cultivator also. 

In Sora 6.98 % people have either 0-.333 acres or .333-.666 acres shrimp firm. But in 

Chakbara 8.3 % respondents have more than 1.666 acres of aquatic land. Besides, few 

respondents have other sizes of land in both Sora and Chakbara villages. On the other 

hand in Patakhali village only 1.56% respondents have less than .333 acres shrimp firm. 

 

In case of crop cultivation more land of Chakbara is devoted than other two villages. In 

both Sora and Chakbara villages, different types of crops land are exist but in Patakhali 

only small crop land can be seen.  

On the other hand vegetables and fruits cultivation was found in Chakbara.  
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Table 4.12 Agricultural land use pattern of the study area, 2015 

(Figures are in percentage) 

 
Aquaculture Crops Vegetables and fruits Others 
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Not cultivating 82.56 80.00 98.44 87.21 63.33 92.19 100.00 96.67 100.00 97.67 98.33 100.00 

0-.333 acres 6.98 1.67 1.56 6.98 5.00 6.25 0.00 3.33 0.00 2.33 1.67 0.00 

.333-.666 acres 6.98 1.67 0.00 1.16 10.00 1.56 0.00 0.00 0.00 0.00 0.00 0.00 

.666-1 acres 1.16 6.67 0.00 3.49 1.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1-1.333 acres 1.16 1.67 0.00 0.00 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.666 + acres 1.16 8.33 0.00 1.16 15.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total 100 100 100 100 100 100 100 100 100 100 100 100 

Source: Field survey, 2015 

 

4.12 Land ownership 

Land is an essential ingredient of economic activities.  All the economic activities take 

place on land. So, land ownership has a positive co-relation with the livelihood pattern of 

an area.  From the figure 4.6, it can be said that inhabitant of Patakhali have almost cent 

percent (98.44%), Chakbara almost fifty percent (51.67%) and Sora almost one-third 

(37.21%) land ownership. So, in terms of land ownership both Sora and Chakbara are in 

lag behind. 

 

 

 

 

 

 

Source: Field Survey, 2015 

 Figure 4.6 Land ownership pattern of the study area, 2015 
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Table 4.13 provides homestead and agricultural land ownership pattern of the study 

villages. In case of homestead land most of the people of all three villages have small 

patch of homestead land. 69.77% population of Sora, 46.67% population of Chakbara and 

62.50% population of Patakhali village have less than 5 decimals homestead land. While 

19.77 % land owners of Sora village have more than 20 decimals, 21.67% land owners of 

Chakbara village have more than 20 decimals and 23.44% land owners of Patakhali 

village have 5-10 decimals homestead land. Few land owners of all three villages have 

10-15 or 15-20 decimals homestead land. 

In case of agricultural land most of respondents have no agricultural land.  12.79% of 

Sora, 13.33% of Chakbara and 15.63% of Patakhali respondents have less than 1 bigha 

agricultural land. Few people have more than 5 bighas agricultural land in all the study 

villages except Patakhali. Again, 5.81% of Sora, 8.33% of Chakbara and 1.56% of 

Patakhali land owners have 1-2 bighas land. Moreover, small percent of land owners of 

all villages have 3-5 bghas land. 

  

Table 4.13 Homestead and agricultural land ownership pattern of the study area, 2015 

(Figures are in percentage) 

  
Sora Chakbara Patakhali 

H
om
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te

ad
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nd

 

< 5 decimals 69.77 46.67 62.50 
5-10 decimals 3.49 13.33 23.44 
10-15 decimals 4.65 13.33 3.13 
15-20 decimals 2.33 5.00 4.69 
20< decimals 19.77 21.67 6.25 
Total 100.00 100.00 100.00 
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 0 Bigha 69.77 53.33 81.25 

0-1 Bigha 12.79 13.33 15.63 
1-2 Bigha 5.81 8.33 1.56 
2-3 Bigha 2.33 6.67 0.00 
3-4 Bigha 2.33 0.00 0.00 
4-5 Bigha 2.33 3.33 1.56 
5+ Bigha 4.65 15.00 0.00 
Total 100.00 100.00 100.00 

 

Source: Field survey, 2015 

 



Sora Chakbara Patakhali

Electricity Line 0.00 0.00 1.56

Solar Pannel 54.65 88.33 51.56

No electricity connection 45.35 11.67 46.88
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5.6 Change in expenditures 

Expenditures of the respondents of the study villages are discussed here by classifying 

expenditure for some basic needs such as cloth, food, treatment, drinking water, others 

and total expenditure. Most of the people of the study village s paid 300-600 taka/ per 

month for cloths before and after Aila. But After Aila number of people of 300 -600 taka 

range has reduced while 600-900 taka range has gone up.  

Expenditure of money for food has increased in all study villages. In Sora village, 8.14% 

people paid 4000-5000 taka before Aila but 30.23% people pay 4000-5000 taka after 

Aila. A negative change is found in 2000-3000 and 3000-4000 taka range in this village. 

On the other hand in Chakbara village a reducing change is found in 2000-3000 and 

3000-4000 taka range while a increasing change is found in 4000-5000 and more than 

5000 taka range. Expenditure capacity for food has changed from lower limit to 

consecutive upper limit in Patakhali village.  

Expenditure for treatment in all three villages has been increased after Aila. While most 

of the people of Sora village paid 100-400 taka before Aila, now they are paying 200-500 

taka per month for this purpose. But in Chakbara village most of the people was paid up 

to 600 taka but after Aila they are paying up to 900 taka for this reason. In Patakhali 

village, most of the people were paid up to 600 taka per month but after Aila they are 

paying up to 900 taka per month. 

Almost all the people of three villages have no need to pay for drinking water purpose. A 

very few people of Chakbara village pay maximum 100 to 200 taka after and before Aila 

respectively. 

Expenditure for other resources in both Sora and Chakbara villages has been increased 

whereas in Patakhali village it remains almost same.  

As like income, expenditure levels of people of all villages have been increased.  Monthly 

total expenditure of most of the people of the study villages were from 3000 - 9000 taka 

before Aila but now it is needed from 6000- 12000 taka per month. Accordingly, 12000 

taka and more monthly spend capable people have also been increased in all three 

villages. 


