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ABSTRACT 

A theoretical analysis of the interionic potential 

in four rutile-type oxide crystals has been made within 

the framework of ionic model using eight repulsive 

interactions including one proposed in this work. The 

sui tabi 1 i ty of the new £-nteraetion, potentia 1 as applied 

to these system is discussed. A new complete set of 

polarizability values of the ions concerned has also 

been derived. The lattice energy and pressure deriva-

tive of bulk moduli are evaluated for the entire family 

of crystals under study. The resulting values are com­

pared with the available ex~erimental data and other 

recent theoretical calculations. 

We have also considered the question of the degree 

of , ionicity of the compounds under study as there seems 

to be some controversy regarding these in literature. 

The present study indicates that the bonding in rutile 

is predominantly ionic, 

bution is present. 

although some covalent contri-
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CHAPTER 1 

INTRODUCTION 

1.1 General Introduction 

A solid has an arrangement of atoms (or mole-

cules) in which the atoms are arranged in some regular 

repetitious ~attern in three dimensions. It can be 
i 

classified accordintj to a variety of criteria. ; Among 

the more significant of these is the desi:ript'ion of a 

solid as being neither crystalline or amorphou$. The 

sample of macroscopic crystalline solids have been 

chosen by chemists and physicists for studying the 

structures of matters, interatomic bonding and other 

related chemical properties on an atomic scale. All of 

the mechanisms which cause bonding between atoms derive 

from electrical attraction and repulsion. The differing 

strengths and differing types of _bond are determined by 

the particular electronic structures of the atoms invo­

lved. The weak van der Waals(or residual) bond provides 

a universal weak attraction between closely spaced 

atoms and its influence is overridden when the condi­

tions necessary for ionic, covalent or metallic bonding 

are also present. 

An ionic bond may be thought of as the result of 
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the complete transfer of an _electron from one atom to 

another. The alkali halides such as NaCl are typical 

members of the class of ionic solids. NaCl crystallizes. 

as Na-t er: The alkali metals such as sodium have a 

single valence electron outside a closed shell. Where 

as halogens such as chlorine are one electron short of 

having a complete outer shell. An electron transfer 

from the alkali metal X to the halogen Y will result in 

closed shells for both X+and Y-ions .This happens in a 

salt XY. For example in NaCl, Na has an electronic 

configuration 
2 .2 6 · 

ls 2s 2~ which is the same as that of 

neon, whereas Cl 
2,, 2 .6 _ 2 _ 6 . h . 

has ls ,s 2p ~s ~p whic is the same 

as that of argon. Since these electronic configurations 

are very stable, it can be said that an ionic crystal 

consists of positive and negative ions. Besides alkali 

halides, ionic crystals can also be made of divalent 

and trivalent atoms for example Ca□, MgC13fl 2□5 , Na2s 

and Zn□ etc. 

~ 
< .• Ions have the same electronic structure as the 

nearest inert gas atoms e xcept that they are electrica­

lly charged. This charge is spherically distributed and 

represents the difference between the charge on the 

nucleus and the sum of the electronic charge surroun-

ding it. Whe n oppositely charged i ons are brought toge­

ther each ion t e nds to ne utrali ze its charge by surrou-
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nding itself with ions having an oppo_ai le charge. 

Because ions having like charges repel each other~ the 

stable packing attained is determined by the relative 

sizes of the ions and their respective charges. A 

periodic array therefore resul~s in which the environ­

ment of all similar atoms is the same and the sum of 

all positive and negetive charges and upto zero so that 

the ionic solid is electrically neutral. 

Ionic bond is fairly strong as known 

,;' 
~ 

from the 

amount of work required to dissociate an ionic solid 

into its components. Binding energy of NaCl is 7.8 ev 

and binding energy of LiF is 10.4 ev. This strong 

binding means that ionjc crystals are hard. and have 

relatively high melting and boiling points. Normally 

they are transparent to visible light while they exhi­

bit a single characteristic optical reflection peak in 

the infrared region. Crystals are quite soluble in 

ionizing solvents such as water~ the solutions being 

highly dissociated with free ions. The valence elec­

trons are also bound quite tightly to ionic nuclei so 

that electrical conductivity via electrons is not pos­

sible and ionic crystals are insulators at room tempe­

rature. At high temperatures ions themselves become 

more and more mobile and ionic conductivity become 

possible. 
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As a consequence of the spherical charge 

distribution ionic bond is non-directional. For special 

cases, ionic bonds have some directional characters. 

Ionic crystals usually crystallize in the relatively 

closed packed NaCl and CsCl structure. 

In covalent bond two electrons become shared 

between the atoms which are being joined. The covalent 

bond, 

bond, 

sometime referred to as a valence or homopolar 

is an electron pair bond. The result of this 

sharing is that the electron charge density is high in 

the region between the two atoms.The hydrogen molecule, 

H2serves as a simple example of the covalent bond. The 

other examples of covalent bond: 

H 

:Cl : Cl H C : H : 0 0 

H 

, 
The dots between the atoms indicate the electron pair 

~ 

b<!lnd. 

Characteristics of~ Covalent bond: 

!.Covalent bond has a saturation property. Let us con­

sider the interaction of a hydrogen atom with a helium 

atom. An exchange of electrons between Hand He with 

parallel spins result in repulsion, whereas an exchange 

with ~ntiparallel spins violates the Pauli exclusion 
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p~inciple. The~efore, covalent bonding exists only 

.between atoms with unpaired spins. For example in C~ 

for carbon to have unpaired spins, the four valence 

electrons must have the configuration 2s 2p 5in contrast · 

to the ground state configuration 2~ 2 2p~ The four 

orbital wave functions are mixtures of the one 2s and 

three 2p wave functions called the sp3..hybrid orbital 

and they have electron distributions directed towards 

the four corners of a tetrahedron. Typical examples of 

crystals with nearly pure covalent bonds are diamond, 

silicon and germaniun. 

2. Covalent bonds are strongly directional in character 

i.e. the electrons tend to be concentrated along the 

lines joining the adjacent · atoms. 

3. Covalent crystals are usually hard brittle with 

quite high binding energies and thus have high melting 

and, boiling points. 

' ~ 
4. They are transparent to long wavelengths but opaque 

to shorter wavelength, the transition is abrupt and 

occ~r at a characteristic wavelength usually in the 

visible or infrared. 

5. Covalent crystals are typical semiconductors whose 

electrical conductivity is quite sensitive to impurity 
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and change of temperature. In molecular crystal$ bin-

ding arises _solely from dipolar forces between th~ 

atoms or molecules of the crystal. Even when an atom or 

molecule has no average dipole moment it will in gene­

ral have instantaneous fluctuating dipole moment ari­

sing from instantaneous positions of the electrons in 

their orbitals. For example Germanium. Here unpair 

bonds exist at the boundary of the structure. These 

unpaired bonds are generally referred to as dangling 

bonds and they are responsible for the fact that germa­

nium and silicon surfaces are quite active chemically. 

Covalent binding is all that is needed for Ge 

atoms to form a germanium crystal. This is not the case 

with CH4. The bonds in CH4are all used up. Thus no 

additional bond pairs can be formed with neighbouring 

CH4 molecules. The binding between such molecules comes 

fro~ binding force arising from fluctuating dipole 

interaction called as van der Waals forces. It turns 

out that an atom or a molecule is polarizable not only 

under an external electric field but under the field of 

other atoms or molecule as well. As a result a very 

small electric dipole develops. 

The instantenuous dipole moment is the source of 

an electrostatic dipole field which in turn may induce 
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a dipole moment in other atom or molecule. The interac­

tion between the original and induced dipole moment is 

attractive and can serve to bind a crystal in the 

absence of ionic or covalent binding. Bindin~ forces 

are usually quite weak, the binding energy due to 

them falls off as 1/r where r is the distance between 

the dipoles • 

Molecular crystals have small binding energy and 

consequently have low melting and boiling points. They 

are usually poor electrical conductors. Crystals of 

organic compounds are usually of this type as are the 

inert gases Hg ,Ne A etc. in the solid state. 

In metallic crystals free electrons are present. 

The outstanding characteristic of a metal is its high 

electrical conductivity. 

, , 

The fig 1~~ shows the wave function of the valence 

electron in a sodium crystal indicated by solid line 

a, compared to 3s wave function of a sodium .atom indi-

cated by dashed line. The wave function is not distur-

bed near the ion core but in the outer region it is 

considerably flattened and squeezed in by neighbouring 

valence electrons. Since the distribution of electrons 

in volume element 4 n r2 dr is given by \'l'-1~ n r2 dr over 

90% of the electron distribution is in this flat re-



T ..... -

0 1.0 

Fig. 1-o: Wave function of valence electrons 3 S wave 
function ( theoretical) 
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gion. The potential energy of the electron is obviously 

lowered because the average electron distribution is 

now close to the nucleus. The kinetic energy being 

h 
propor·tiona l. to · {-i'tf 

d\ll 
a smaller ·c1r-· in the 

d\lJ 
d~--} is also reduced because of 

flattened region. The reduction in 

the total energy. constituted a bond between atoms in a 

metallic crystal. 

In the case of metal lie sodiLtm the situation is 

changed for two essential reasons. 

(i) First, each sodium atom has eight nearest neig­

hbours in a body centred cubic structure. Therefore on 

the average, each ~~om forms only one eighth of an 

electron pair bond with one particular neighbour. 

(ii) Secondly, as a result of electrostatic interac-

tions the energy levels of the atom broaden out to form 

a bond as the interatomic distance decreases. 

The number of quantum states in each bond is 

exactly equal to the number of atomic states multiplied 

by the number of atoms involved. If the model of cova-

lent binding is adopted we see that quantum states are 

now available to the third sodium atom. From the view 

point of covalent bond the metallic bond is unsaturated 

one and hence there is no contradiction between the two 

view points. 



(a) Diamond (covalent) 

(c) Sodium chlotfde 
( ionic ) 

00 ·0 
0G 
(b) Sodium ( metalitc) 

(d) Crystalline ( argon 
(van der Waals) 

Fig: 1-1 :The Principal types .of crystalline bonding forces. 



Monoa.tomic Ge, Si Val ence 

metals Bi cryst als s 
p 

Se 

·. 
Si 0

2 van der Waals 
SiC 

Crystals 

FeS 
. .. 

I oni c 'f' O 
All oys 

l. 2 

Mg
3
Sb

2 
Crystals 

Classifi cati on of solids Indicating i ntermediate c:ase.s. 
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The tr~nsitions between crystal types is not sharp 

at all, e.g. tin can exist in two crystal forms one 

being metallic and the other covalent. 

It should also be noticed that all semiconductors 

-are not covalently "bound . 
1 

Crystals such as Cu□, Zn□ 

and CdS are more ionic than covalent but they have also 

energy bands as also Ge and Si when sufficient elec­

trons are in the upper bond these will behave like 

semiconductors. Other examples of transition cases 

include some metal alloys such as Mg , Sb Zn and As 

which can be considered partly met~tic and partly io~ic 

and some molecular crystals such as Sand Pare partly 

molecular and partly covalent. 

Metallic crystals have high electrical and thermal 

conductivity. They have high optical reflection and 

absorption co-efficients. The binding energy of ideal 

metals such as alkali metals arise f~om the interaction 

of the free electron gas. 

Hydrog~n bond is formed by a hydrogen ion located 

between two anions. Since hydrogen has only one elec­

tron it can lose it to e i ther of the two adjoining ions 

with the result that there is an equal probability of 

find~ng the electron on either ion. The positive hydro-



gen ion tends to draw the two anions more closely 

together than their normal seperation in crystals so 

that such a shortering of their interatomic seperation 

serves to indicate the presence of a hydrogen bond. It 

is noticed that the hydrogen bond is largely ionic in 

character being formed only between the most electrone-

gative atoms, particularly F, □, and N. In the extreme 

ionic form of the hydrogen bond the hydrogen atom loses 

its electron to another atom in the molecule; 

proton forms the hydrogen bond. 

Crystal structure 

the bare 

The study of the physical- properties of the solid 

state began in the early years of . this century. A 

century ago the study of :~rystals was concerned only 

with their external form and with symmetry relation­

ships among the various co-efficients that describe the 

ph~sical properties. All atoms are constructed of va-

~ious elementary particles (electrons, protons, nuetron 

etc) and a complete description of a solid would simul­

taneously specify the condition of all these particles. 

The solids have an arrangement of atoms (or 

molecules)in which the atoms are arranged in some regu­

lar repetitious pattern in three dimensions. Such 

solids are called crystals and the arrangement of atoms 

is termed -the crystal structure. The logical relation 
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for crystal structure is, 

Lattice+ basis= crystal structure. 

Where a lattice is a regular periodic -arrangement of 

points in space. A lattice is a mathematical abstrac- · 

tion; the crystal structure is formed only when a basis 

of atom is attached identically to each latt i ce point . . 

The set of po i nts r'specif i ed by r'=r + n1 a +n2b .+ n~ c 

for all values of the integers n
1

, _n 2 , n
3
defines a 

lattice. The struc.ture of all crystals in terms of a 

single periodic lattice, but with a group of ~toms 

attached to each lattice point. This group of atoms is 

called the basis; 

form the crystal. 

the basis is repeated in space to 

A typical structure ot simple ionic solid is il­

lustrated in fig ■1-31..o· :lrk. The structure is composed of a 

number of i nterpenetrating simple cubic or face-cen-
,· , 

tered cubic Bravais lattices. With reference to the 

c-t:tbe a>:es, the CsCl structure is composed . of two sc 

lattices, one for each spec i es of ions, shifted by a 

½, ½ } relative to one another, while the NaCl struc­

ture and the Zinc blende structure are composed of _ two 

fee lattices, shifted by { ½ ½ t } and , , 
respectively . Similarly, the CaF structure is composed 

of three fee lattices, one for one species of ions and 

Rajsbahl University LibrllJ 
Doc\.J111e,w1{ion Seclioa 
Docu111enl NJ: , . ........ . 

Olllte .. :?;}:. 2-.: J,;_J? ...- 1 
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two for the other species, 

former by {¾ ,¼,¼ } and 

shifted with respect to the 

structure is composed of six sc lattices, two for one 

species of ions, with their origins at{¼,,¼,¾ } and {t,¾, 

f} and four for the other species, with their origins at 

{O,O,O}, { ·O, ½ ,½ } . The unit 

cell of stoichiometric rutile is tetragonal and con-

tains si>: ions per unit cell as shown in fig.(1-f). The 

crystals have the space-group 42 2:i. 2 with Z=2, the P- -- --m n m 
cat i ons occupy equivalent position 2{a} at {O,O,O} and 

{ t, J, ½} with site symmetry m m m, the anions reside 

in 4(f) att{(X,X,0),1/2+X,1/2-X,1/2}, . with symmetry 

mm. 

The existence of a stable bonding arrangement im­

~lies that the spatial configuration of positive ion 

cores and outer electrons has less total energy than 

any_ . other cont iguration. The energy def i cit of the 

c~nfiguration compared with isolated atoms is known as 

the cohesive energy and r a nges i n value from 0.1 ev 

atom for solids which can muster only the weak van der 

Waals bond to 7ev/atom or more in some covalent and 

ionic compounds and some metals. The c ohesive energy 

constitute the reduction i n potential energy of the 

bonded system .minus the a ddi tional kinetic energy which 

the He,isenberg . unc ertainly pr i nciple tel ls LlS must re-

"' 



Fig. 1-3: A lattice cell of sodium 
cloride structure. 

Fig. 1-4 A unit cell of sodium cliride o ~ c,­

•-~• Na+ 

structure. 



Fig. 1-5 A 10.ttic- cell of 
rutile structure. 

Cl 

•--• X 

o~► y 

.b 

cell of rutile 
structure. 



suit from localization of the nuclei and outer shell 

electrons. It shall now be considered the forces which 

holds the atoms or constituent particles together in a 

crystalline solid. These forces or bonds are of prime 

important in understanding differences in the gross 

structures and characteristic of different solids. 

Since atoms conta i n charge particles, they exert forces 

on each other when brought together ~ It is due to the 

influence of these interatomic forces that the consti­

tuent particles of a crystal obtain the position corre­

sponding ~o a minimum energy configuration and thus get 

bonded together. These interatomic forces were first 

observed in the field of crystal chemi~try dims studies 

on the composition and stabilization of molecules. It 

is significant t6 note that investigations of the na­

ture and origin of the interatomic forces did not 

awa~~ - · the development of X- ray diffraction and crystal 

structure analysis techniques. Around the mideighteenth 

century, Desaguliers suggested that these forces were 

of an electrical nature. This theory was further im­

proved upon by Berzellius in the early ninteenth centu­

ry. The · development of Bohr's theory on atomic struc­

ture in 1913 provided the physical basis for the 

interpretation of the interatomic forces. The discovery 

of X-r~y diffraction and the subsequent advances in 
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crystal structure analysis provided the necessary means 

to find out the atomic configuration of molecules whose 

forms were previously conjectured on the basis of vale­

ncy theories of chemistry. One significan~ fact that. 

which emerged from the earlist analysis of the struc-

ture of crystals was that no essential distinction 

existed between the chemical forces which bound the 

atoms of the chemical molecules and the physical forces 

which held together the atoms in a crystal. This impor­

tant finding was significant in two ways. First, it 

provided physicists with the means to explore the na-

ture of the forces which bound the atoms in crystals by 

utilizing ideas from chemistry and suitably extending 

_them.· Secondly, it opened a way to the physical inter­

pretation of the concent of chemical bonds pioneered by 

chemists . . For the present purpose one shall . be 

concerned with the first of the two aspects. The direct 

analogy which exists between the two fo~ces also makes 

it evident as to why one classify the discussion on the 

bonding of atoms in crystals as chemical bonding. 

Next we turn our attaintion to discuss ionic crys­

tals. The nature of binding in ionic crystals have been 

a subject of extensive study over the past few decades 

[1-11]. These studies have been made possible accurate 
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study on the investigation of the nature of the bonds, 

cohesive energy and other related chemical properties. 

A number of attempts have been made to approximate the · 

interionic potential in such crystals by assuming them 

to be composed of completely ionized atoms, and earlier 

models along these lines have been proposed by Born and 

Lande [1], Born and Mayer [2],Rittner [3], Varshni and 

Shukla[4] and Patel et. al.[5]. These evidences ·have 

been accepted as being reasonably successful in descri-

bing the ionic bond in diatomic, ionic molecules and 

crystals. Reviews of the progress in this field have 

been made by Sherman[6],Waddington[7], Ladd anq Lee[B]. 

The improved in recent years has made possible study of 

bonding and other related chemical properties in ionic 

molecules and crystals by Kachhava and Saxena[9], 

Mathur and Singh[10], Pandey [11], Pandey and 

Saxena[12], Barr and Lidiard [13] and Redington[14]. 

\ · Recently Ch . Satyanarayan[15] studied the static 
~ 

properties and stability of structure of ammonium ha-

lides. Ammonium halides are diamorphic, crystallizing 

in the CsCl-type crystal. Structure at low temperature 

and in the NaCl-type crystal structure at high tempera­

ture with the exception of NHqF which cryst~llizes in 

the Wurtzite-type lattices[16J. A predominantly ionic 

charact~r of binding in ammonium halides[17,18] , moti~ 



16 

vated the recen.t researchers to concentrate on the 

studies of their static and dynamic properties •. 

Bleick[16] comput the cohesive energies of ammonium 

halides. The van der Waals terms were computed by using 

London Margena(LM) formulas. But these formulas have 

been criticized because they are subject to considerab­

le uncertainties. Attempts to compute the cohesive 

energies have been made by Ladd and Lee[19] ; by Murthy 

et. al.17]. and by Singh et. al.18] with varying 

degrees of success. 

In recent years, a large number of potential 

energy functions have been applied to study the various 

thermodynamic properties of alkali halides, by Cubic-

ciotti[20] , Sharma and Mad~n[21] ,Kachhava[22],Mishra 

and Sharma (23] and Sharma and Tripathi[24]. J.Shanker 

and G.D.Jain[25] have devloped an interionic force 

model for mixed alkali halide crystals. Using empirical 

Bo~n and Mayer exponential form. But it' has sqme short­

commings in describing various properties. Therefore, 

Harrrison (26] has presented a quantum mechanical trea­

tment to calculate the cohesive energy and bulk modulus 

~t NaCl - NaBr, KCl-KB and KB- KI mixed · crystals. 

Studies on the alkali halides provide a critical 

test of, different interionic pote.atial: ..;; mainly because 
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they exist or three different states viz. (i) molten 

states (ii) crystalline state and (iii) molecular 

state. The B-M form on alkali halide can not . explain 

the molecular properties of diatomic alkali h~lides [3 

27]. Woodcock [28] proposed a compoite . form and 

applied in alkali halides molecules and crystals by 

calculating the binding energy and compressibility. 

This potential [28] has been also applied by Michiel­

sen et. al. (29] in crystalline molecular and molten 

states • Some errors have been noticed in the treatment 

;.·.of Michielsen et.al. [29]. The errors are corrected by 

Woodcock[28]. 

An analysis of interionic potentials in CaF 

SrF and BaF crystals· has been performed (30] by 

modifying the tradi t ional Bor-n model treatment. The 

cohesive energy~ bulk modulus and its pressure deriva-

tive for alkaline earth fluoride crystals are calcu­

L~ted. The values are inconsistent in some cases. Alka­

li halides because of.their wide-ranging importance as 

ionic crystals and molecules have been the subject of 

extensive studies. For the s~udy of their structures 

and properties one generally prefer a model potential 

for them. These potentia ls are mainly based on elec-

tro?tatk treatment of interionic interactions and are 
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very ~imple and suitable for applications in various 

fields of physico chemical intercepts. With this view a 

large number of attempts [2,3,27,31-34] have been per-

formed for ionic molecules. Excellent results of these 

potentials have been given by Varshni and Shukla (27], 

and by Das and Saxena [35]. 

More than twenty compounds crystallize with rutile 

structure (oxide crystals). The structure consists of a 

primitive tetragonel lattice with six atoms per unit 

cell and belongs to the space group 14 4 D 
4 

(P 2/mnm). Such 

solids exhibit several unusual and interesting features 

[ 36] which deserve thorough investigation. Many physi­

cal properties of rutile-type compounds have been 

measured by Grants [37] anti Rogers et. al. [38], The 

rutile structure o:ddes with interesting dieleetric . 

magnetic and chemical propert i es have thus been subjec-

te9 to many investigations [1,2,28,39-46]. But the 

controversy about the degree of the ionic nature of 

these compounds has not yet been settled. Thus an 

attempt has been made for ·a thorough theoretical study 

of rutile structure oxides compounds in this thesis. 

General introduction is discussed in chapter 1. 

Lattice energy and pressure derivative of Bulk moduli 

are described in chapter 2. The origin and different 
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empirical forms for repulsive potential (from 1918-

1985) are. discussed in chapter 3. The origin of van 

der Waals energy and derivation of van der Waals co­

efficients are presented in chapter 4. The origin of 

polarizability,a discussion of polarizability versus 

ion environment and methods of calculating polarizabi­

lity are also presented in chapter 4. The calculations 

and results are discussed in chapter 5. Chapter 6 

contains a discussion and a ~onclusion of the results 

obtained where it is shown that relatively simple theo­

ry with a new RPE function is moderately successful in 

explaining the properties of crystals under study. 



a) 

CHAPTER 2 

LATTICE ENERGY AND PRESSURE DERIVATIVE OF BULK MODULI. 

2.1 Introduction: 

The attractive electrostatic interaction between 

the negative charges of the electrons and the positive 

charges of the nuclei is extremely responsible for the 

cohesion of solids. To understand cohesion one compare 

the total energy of the solid with the energy of the 

same number of free neutral atoms at infinite sepera-

tion. ~ crystal can only be stable if its total energy 

is lower than the total energy of the atoms or mole­

cules when free. The difference (free atom energy)­

(crystal energy) is defined as the lattice energy. 

The total energy per molecule of a crystal rela-

tive to infinite separated ions is 

(2-1) 

where 
C u1 R= Long-range coulomb potential. 

R. vdW 
USR = USR + USR 

U~ = short-range repulsive potential. 

uvdW= short-range van der Waals energy. 
SR 

U = Zero-point energy. 
ZP 
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C 
A. Long-range Coulomb energy (ULR ): 

The coulomb interaction energy of point like char-

ges zpe and Zpe pertaining to the pth ion in the l th 

unit cell and to the p ' th ion in the reference cell is 

( irl 1"- $' -- r ) . p p • The corresponding ~lectros-
, 

tatic energy of the crystal per molecule is then given 

by 
UC -1 / 

eY 
( r1 + r - r ) ::: c2n. > LL z zP . . p . p (2-2) LR 

1 p.,p p 

where the superscript in the summation indicates that 

the case 1 = 0 is excluded for p = p' ~ and n is the 

number of molecules in the unit cell. Equation 

can be rewritten in the form 

= - ( z 
2 

e) ()Go/R 

(2-2) 

(2-3) 

where , Z is the largest common factor of the z· s and 
p 

R is a characteristic length o f the crystal structure. 

The additional quantity «R the Madelung constant ref­

fered to the characteristic lenght R is defined as 

· c<..R = - ~ ~ \...f p W ( rp ) ( 2-4 ) 

He.re \f =Zp /Z and 
p 

R \lJ ( r p ) = f f -f (r;-t~:-r-;~-/R ( 2-5 ) 

is the electrostatic self potential of the crystal at 

the lattice point r when the ionic charges are mea­

sured in uni t s of Z e and the interionic distances in 

uni t s of R. The Madelung consta nt is clearly indepen-

dent of the absolu t e value of the i onic charges and of 

the absolute value of the c e ll edges; it depends only 
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on the crystal structure. 

B~ Evaluation of Madelung constant: 

The Coulomb energy constant oc· was made by Made-

lung [47]. The general method for lattice sum calcula-

tions was developed by Ewald[48]and Evjen and Frank[49] 

have given simple methods which arrange the counting in 

rapidly convergent ways. 

The Madelung constant is defined as: 

(j-) 
(2-6) 

where pij is the quantity difined.by the relation rij =P:i.j 

R where R is the ne~rest neighbour seperation in the 

crystal. If one takes the reference ion as a negative 

charge the plus sign will be used for positive ions and 

the negative sign for negative ions. An equivalent 

definition is 

/ J_4:J (X 

~ --R-- = 
j rj 

where r· . j is the distance of the jth ion from the refe-

rence ion and R is the nearest-neighbour distance. 

For example one picks a neg ~ tive ion as reference 

ion~ and let R denote the distance between adjacent 

ions. Then 

0(. -----
R 

=2( 
1 ,-m- ~ ..... ) (2-8) 

(2-7) 



Na+ ion at arbitrary zero position 

·~~---► .. --◄----► .. 
R R 

... ~._ _____ _:~~ --<-------'► ... 
2R 2R 

3R 3R 

Fig. 2- 1 : One dim~ntional approximation to ,J., .. - NaCl structure . 
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the factor 2 pccurs because there are two ions~ one to 

the right and one to the left, at equal distance ~ 
. 

One sums this series by the expansion 

log (l+x) = X -
x2 

2 + 

Thus for the one-dimensional chain the Madelung con­

stant 0( = 2log2. 

C. Repulsive energy: 

The equilibrium conditions for a ~□lid can be sati­

sfied only if the interatomic forces become repulsive 

at small interatomic distances. The short-range repul-

sion between atoms is -connected with the role of the 

exclusion principle in opposing overlap of closed elec-

tron shells. This is e x plained simply in the case of 

two hydrogen atoms with parallel electron spins in 

their ~round state by the comparison between the energy 

of the triplet state of the molecule computed by first 
t 

order perturbation theory and the corresponding pseudo-

classical energy. These are given respectively[50] by 

the mean value of th~ ·molecular Hamiltonian over the 

antisymmetrized product of hydrozen ls wave functions 

and by the mean value of the molecular ls wave fun-

ctios, 
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+ + 

Here UH is the energy of th_e hydrogen a tom in its 

ground state, r is the interatomic distance ~nd aH is 

the fi~s~ Bohr radius. It is showed clearly that the 

repulsion is due largely to effects which are neglected 

in the pesudoclassical calc~lation. It is also seen 

that the repulsive energy of equation (2-9) in the 

range of large interatomic distance where this first 

order perturbation expression applies, decays almoit 

e:-:ponential fy with incresing interatomic distance, 

although with a logarithmic rate smaller than 

The analogous problem of the interaction between two 

hydrogen like ions, of not·charge z
1 

e and Z~e has 

been worked out by Pauling[51] in the same approxima­

tion. The resulting formula for the energy of the 

tr~plet state of the molecule involves, besides the 

Cpulomb interaction energy of the net ionic charges, 

the repulsive energy of equation (2-9) multiplied by a 

factor approximately equal to 1 + z
1 

+ z
2

. 

Further discussion about repulsive energy and its 

different empirical forms are presented in details in 

chapter 3. 



4 

3 

t 
r-.. 
l> 2 (j) ......., 

..Ji1 
(~ 

~ 

1 

0 

0 

I 

I 

' I 
I 
I 
I 
I 

I 

' ' 
I 
I 

' 

1 

\ 

\ 

' \ 
\ 
\ 
\ 

\ . 
\ 

3 4 

Fig. 2-2 : Interaction energy of the two hydrozen atoms with 
p..i.rallel eJectron spin in their ground state. 'l'he solid 
curves c;ives the an"'rr;~' of the triplet state of the 
moJ.0culc and C:aslk d curvG ~i ve::; LlLe pt:(;:Udoclossical in.t­
eraction energy . 



u 

t 

0 

' • 

F 

Repulsiv~ 

r 
a 

D 

--,. r 

Attractive Attractive 

( a) ( b) 

Schematic repr@eentati~n of the energy (a) end 
force (b) between two atoma os function of th~ir 
eeparatinn r. The dashed curves are the eumo of 
th! attractive end r~nul9ive curves. 



25 

D. van der ~aals energy: 

The existence of condensed phases for the rare gas 

elements shows that there are attractive interactions 

between closed shell atoms which are of a different 

nature ' from ·the Coulomb interactions between ions and 

from the overlap attractive interactions. The physical 

origin of these so called van der Waals forces is 

connected with correlations of the electronic motions 

in different atoms and can actually be understood in 

semiclassical terms[52]. Indeed, the instantanuous 

dipole moment M of a closed shell atom induces on a 

similar atom a distance r away a dipol~ moment, which 

is proportional to -~~ where 0( is the atomic polariza­
r3 

bility and produces at the location of the first atom a 

field proportional The related term in the 

interaction energy is thus of the form - o(~/rf where~ 

is the mean dipole moment of the first atom. In addi-

tion to such a dipole-dipole energy term, the conside-

.. 
r~tion of the instanteneous higher moment of _the charge 

distribution of the atoms yields other attractive 

terms, which decay more rapidly with increasi~g intera-

tomic seperation. The actual evaluation of the van der 

Waals energy in a solid is unfortunately subject to 

considerable uncertainties. However, this is only a 

minor part of the cohesive energy of an ionic solid in 



standard the~modynamic conditions and possible errors 

i0 its value are largely compensated in a Born model 

treatment in the fitting of the parameter entering the 

overlap repulsive energy. The detailed of the van der 

Waals energy - are described in chapter 4 

E. Zero point energy: 

A great step forward toward an understanding .of 

the specific heat curves at low temperatures was made 

by Einstein[53] in 1906. For the average energy o~ an 

osillator Einstein made use of a result obtained by 

Planck in 1900, in connection with the_theory of black-

body radiation. According to Planck, a harmonic oscil-

lator does not have a continuo~s energy spectrum as 

assumed in the classical theory, but can accept only 

energy values equal to an integer times h where h 

is Planck's constant. The possible energy levels of a 

har~oriic oscillator are given quanfum mechanically by: 

e = 
n 

(n + -1- ) hY where n = 0,1,2 
2 

(2-10) 

This has the effect of shifting all energy levels by 

the constant amount h 0 /2 and instead of Planck's 

average energy of an □sci 11 a tor shown in the Fig.. 2-3 

at a temperatur e T, one obtains 

( e) = + (2-11) 



The first term is called the zero-point energy of the 

osicillator because hi 
(e)= --- for T=O. 

2 
Now in the 

Debye theory of the specific heat of solids, a crysta~ 

is represented formally by a system of harmonic oscil­

lators with a frequency spectrum given by~ 

F ( ~ ) cJ)) = 4 V C 2 
c5 
t 

1 + -·--

~ 
(2-12) 

where v is the volume of the crystal and~ and ~ 

are, respectively the velocities o~ propagation of 

transverse and of longitudinal elastic waves. Making 

use of the de~inition o1 the Debye frequency ~D. One 

may write 

F())) 

where N stands for the total number of atoms or ions in 

the crystal.Hence, at absolute zero, the contribution 

of the zero-point energy is 

...,)D 

(2-13) 

~ -½fF(V) h1'd-v= 9/81\lh-JD (2-14) 

0 

per ion pair, this corresponds to 9hl)I)l4. With a Debye 

f 1 · 12 lOl?i -l th. . b t frequency of the order o u - . ~ec is gives a ou 

0.1 ev. As a correction to the lattice energy the zero-

point energy,this contributes about 1 percent. The 

zero-point energy is very important for light elements 

(high D~bye frequency). 
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2.2 PressLtre derivative of bulk modulL1s: 

In order to evalLtate the pressure derivative of 

bulk modulus let LIS first censider the definition of 

bulk modulLts. The bulk modulus B defined as: 

B = 

Neglecting thermal effects, from the first law of ther­

modynamics one may write, 

dU = - pdV 

or __ c!P_ = 
dv 

Therefore B = V 

It is well known 
dv2 

to all V = .2NR 3 as volume per molecule 

is ¼~ and a= 2R. Where N is the total number of mole-

cules and R is the nearest neighbour distance. Thus one 

may _.write 

(2-15) 

(2-16) 

(2-17) 

(2-18) 

-dU dU dR 
= (-----) ("-------) ., •cl.V dR dV (2-19) 

-~ d
2

U d ----- = ciV-
dV2 

= _dU. 
dR 

At the equi 1 i briLtm 

B = 

using 

dU dR 
( ----) --a:v-- ) ) 

dR 
2 Lu_ _ci::F. + ( 

d.R2 
(-~---

dV. 
) 2 . (2-20) 

= 0 so that 
dV2 

seperation R=R and 
0 

R = R 
0 

= 

( __ ,d1l._) 
dR 

( R ) 
0 

U (R) ----~---
u (R) 

0 

(2-21) 

(2-22) 
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where 1/B 
' .is the compressibility and is defined 

as the reciprocal of the bulk modulus. Thus equation 

(2-22) may be written as: 
dB R6 ( U ( Ro ) ) 

-crp- )T = 1 - ------------
3R3 ( u (R ) ) 

0 0 

2.3 The energy from the Born-Haber cycle: 

The theoretical value of the lattice energy can be 

compared with th~ experimental value determined by a 

Born-Haber cycle analysis. In this method, one consi-

ders all the steps involved in transforming one mole of 

Ti, Si, Ge and Sn respectively and one mole of molecu­

lar oxygen gas into one mole of rutile. The energy 

associated with each step of the cycle can be deter­

mined from thermochemical data. The formula for the 

energy is: 

u = 4H - L - D + 2A - I 
4 

wher.e H is the heat of formation of rutile, L is the , 

h~at of vaporization of Ti, Si, Ge and Sn respectively, 

Dis the disociation energy of O gas, A . is the affini­

ty of the oxygen atom for two electrons and I is the 

sum of the first four ionization potential of the Si, 

Ti, Ge and Sn atom respectively. 

(2-23) 

(2-24) 



CHAPTER 3 

REPULSIVE INTERACTIONS 

3~1. Origin of Repulsive interaction: 

A qualitative picture of the origin of the repul­

sive force may be given as follows: 

When M+ and X ions approach each other closely 

enough so that the orbitals of the electron ~- in the ions 

begin to overlap each other, then the electron begins 

to repel each other by virtue of the repulsive ~lectros~ 

tatic Coulomb force. Of course, the closer together the 

ions are, the greater the repu lsive force, which is in 

qualitative agreement with e x perimental observation. 

Without paying attention to th~ physical origin of the 

forces between the atoms, let us assume that the poteri­

tial energy of atom M due to the presence of atom Xis 

given by _an e >:pression of the type: 

= - -,-~- + -~-
rn rm 

' where r is the distance between the nuclei of the two 

atoms; !XJ J/!>, m and n · are cr~nstants, characteristic tor the 

MX molecule. The zero of energy is chosen such that for 

infinite seperation, U=O. The first term, which is 

negative, corresponds to the energy associated with the 

force of attraction, the second(positive) term corres-

ponds to the forces of repulsion. In tact , the £orce .. between 

(3-1) 
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that two atoms as a function of r is given by 

F(r) 
dU 

The energy and the force between two atoms M+ and x­

which form a chemical compound are represented in Fig. 

3-l(a), Fig. 3-l(b). 

The stable configuration for the system corres­

ponds to the minimum U(r) curve, which occurs for a 

particular seperation, r=r The eorresp_ondiil"g = energy 
0 

U(r 
O 

) is negative; thus the positive quantity D= 

U(r ) is the dissociation energy of the molecule i.e. 
0 

the energy required to seperate the two atoms. 

Dissod,~tion · may occL1r-, for example, at high tempera-

tures or as a result of other · process in which the 

mloecule can absorb sufficient energy. The dissociation 

energies are of the order of one or a few electorn 

volts. 

~ 

A~suming that the energy ·curve exhibits a mi~imum, 

one may express the equilibrium distance r 
. . 0 

and the 

corresponding binding energy U(ro ) in terms of the 

constants °",'1; m, and n by making use of the condition 

< -i~- )r=r= o 
0 

i.e. = ( 
m 
n 

According to (3-2) this condition is equivalent to the 

requirem~nt that the attractive and repulsive forces 

(3-2) 

( 3-3) 
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balance i.e. F(r) = 0. substituting from (3-3) into (3-

1) one obtains for the energy in the , esl.ll,librium state 

U(r ) = 0( _/2__ ( 
o(. 

(1- n - + = - ) 
rg rl1 rg m 

Q . 
It is noted that although attractive and repulsive 

forces are equal in equilibrium _; the attractive and 

requlsive energies are not equal since n ;= m. In fact if 

m>>n~ to total binding energy is essentially determined 

by the energy of attrction 
o<'., 

r11 
0 

As one may expect already by looking at fig. 2-

J<a), a minimum in the energy curve is possible only if 

m :: n; thus the formation of a chemical bond requires 

that repL1lsive forces be of short range than the gttrac.-

tlw ones. This may be shown by employing the condition 

that ~-d-1 ) =O 
dr r::::1" 

0 

if must have a minimum at r 0 

facti this condition leads to 

- n(n + 1) 0 

In 

which ~pon substit8tion 
m > n 

(3-3) immediately gives 

3.2 Different empirical forms: 

i) Born-Lande potential (1918): 

Many years ago Born and Lande[!] used an inverse 

power repulsive term in the potential function for 

alkali halide crystals.. For g~seous ionic molecule 

Born-Lande proposed a potetial function in which the 

repulsive •nergy is expressed as: 

(3-4) 

(3-5) 

(3-6) 



where band n are constants. This repulsive energy was 

much used in the potential energy during the twenties 

for investigating ionic crystals. Krebs[54] applied 

equation (3-7) to LiH and NaH and later paper[55] 

discussed the nature of alkali hydrides in the gaseous 

state. Rice[56] has determined the value of n from the 

lattice energy data and has used it to calculate the 

binding energy of gaseous alkali hydrides. The above 

equation has also been employed by Mulliken[57] in 

discussing the nature of the binding in LiH. 

Investigation of interionic forces that have been 

carried out on the basis of quantum mechanical calcula-,­

tions of forces between ions '. showed that an inverse 

power repulsive term was not satisfactory. The calcu-

lated val~es of ~
0

(rotational constant and vibrational 
, -

constants 6~/:e are too high and the ionic binding energy 

'· 
Di., , ar'"e too low . Thus it is found that BL potent_ial is 

. not satisfactory for alkali hydrides. However, it is 

in.teresting that for a particular constant (Ofu t.>e><e, or 
' 

o1 the percentage error is in the same direc~ion, 

for all the molecules. 

ii) Born-Mayer potential (1932): 

In most applications of the Born model since 1930, 

(3-7) 
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the repulsive energy of the closed shell ions has been 

assumed to vary exponentially with their distances, in 

keeping with quantum mechanical results (Heitler and 

London[50] . , 1927). The repulsive energy, as a fun-

ction of the nearest-neighbour distance r, is expressed 

by Born and Mayer[2J (1932) in the form: 

¢Cr)= a e-r/p 

where a and,O are the repulsive parameter. Th.e BL model 

is the most sucessful.of the previous models. However, 

in other respects a representation of the repulsive 

term- as good an exponential function (Born and Mayer). 

One argument that has been frequently advanced in 

support of the exponential function· is that such a term 

is predicted by quantum mechanical calculations. Theo-

retical treatment of the repulsive forces between 

closed shell anion and point cations have tended to 

SLtpport,, ttie assignment of · an e,xponential ,;- ~ term. However, 

sever~l of the theoretical results are in serious disa­
} 

greement with the experimental data. Thus the available 

evidence suggests ; that present quantum mechanical treat­

ments can not be applied to the repres1111tation of the 

binding energy in diatomic ionic crystals. Finally, as 

Dobbs and Jones[58] remark · 'The exponential form for 

the repulsive potential makes calculation of the lat­

tice prop~rtes rather complicated and in any case is 

(3-8) 
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perhaps, not valid . in the region near the minimum of 

the total potential which is of course the essential 

part in considering the properties of the lattices." 

iii) Wasastjerna potential (1935): 

Wasastjerna[ 33,34] in 1935 investigated an 

extended form of the repulsive potential for Na, Rb and 

Cs halide crystal. This is as ·follows: 

¢ ( r) = 7 .,../JJ r c r e 

where c and~ are constants. 

With the repulsive potential the Wasastjerna potential 

gives rise to nagative «, (rotational 
e constants). The 

vibrational -constants c-,
8 

►: 0 very high and the ionic bin-

ding energy Di are e xcellent agreement with the obser-

v~1d ones. It is the remarkabl~ phenomenon that it is 

able to reproduce one of the constant (D1 ) very succes­

, sf~l~ but fails completely for the other two. 

iv) H~llmann potential (1936): 
~ 

Some 2 5 years ago, Hellmann[31,32] introduced the 

following repulsive potential in the potential energy 

to represent the interaction between the valence elec­

tron and the core in an alkali atom: 
_-;,,.. 

C r 

where T and~ are constants. Since then it has been used 

for the electron-core interaction by a number of 

(3-9) 
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workers[59-63]. However, as for as we have been able to 

find, this potential has never been used before as the 

interaction potential. It has been found that such a 

potential yields satisfactory results for rapresenting 

the shape of interafomic potential energy curves of 

alkali hydrides at least in the neighbourhood of the 

equilibrium internuclear distance. 

v) HM potential: 

M.L.Huggins and J.E.Mayer[64] in 1937 proposed a 

form of repulsive potential which is as follows: 

-r/ 2 2 
W = M ,0 ++ b + b _. e +½M (f•\+b + + ~ b _ + 

..-_'Yf P 
b) e (3-11) 

where b + and b are the charac tristic parameters and 

the parameterp can be determined by a simultaneous fit 

for the salts of the family. It should be simultanuous­

ly emphasized that the fit of the repulsive par~meters 

to crystal data is effectively used in the Born model 

to correct, in an appropriate way, the approximations 
~ 

made -~ in the assumed e:-:pression of the lattice E;!nergy. 

The mean deviation of the values of n in the indivi­

dual salts yielded by equation n = ( r )-1 from their 

mean value amounts to 6½ as for the original Born-Mayer 

calculation, but the root-mean square deviation is as 

large and 10½ as large discrepancies between the ave­

rage and the individual value of n are apparent in a 



few salts. This implies that the Huggins-Marer form of 

the Born repulsive energy does not provide a good · fit 

of the compressibility for all the salts. 

vi) Verwey potential (1946): 

Verwey[65] in 1946 proposed a harder core poten­

tial function in which the repulsive every is expressed 

as: 

¢ ( r) = 

where µ.is the repulsive parameter. The Verwey paten-

tial have been used by workers (Guccione, Tosi and 

Asdente[66] 1959, Tharmalinghm[67] in 1963,1964, Bos-

warva and Lidiard[68] in 1967) in the calculations of 

activation energies and defect energies. 

vii) Dick-Overhauser potenti~l (!958): 

Regardless of the attractive force between atoms 

it known that the atoms remain a finite distance apart 

at equilibrium. Thu~ a repulsive force must set in 
~ 

suddenty at short distances and balance the attra_ctive 

f~rce at the equilibrium distance between atoms. This 

repulsive force arises in part from the application of 

the pauling exclusion principle, since the exclusion 

principle opposes the overlapping of the saturation 

electron c _louds of the d.i,fi\?rent atoms. 

The simi>liest mathematical form for a potential which 

(3-12) 
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yields a sudden repulsion at short distances is expres­

sed within the Born-Mayer · model[2] as 

The· form of the potential is not obtained , from first 

principles but, neverthless, represents the repulsive 

interaction satisfactorily between two ions, as for 

e>:ample, between two helium atoms or two neon atoms. 

However,as a general model the potential is quite un­

suitable for the whole alkali halide series. 

The electronic shells in the ions of alkali ha­

lides are closed shells and thus can be thought of as 

being similar to helium atoms except for the increased 

electronic and nuclear charges. It can reasonably ex-

pect that the results obtained from a study of the 

interaction of two atoms (heliu~) can be applied to the 

more general case of alkali halides. By evaluating the 

heliLtm-helium interaction integrals, Dick and 

Overhauser[69] hav~ shown that the total repulsion in 

this ~ystem can be represented by: 

Q ex /2r . 

where Q is the e xchange charge. 
ex 

The nature of the 

exchange charge can be inferred from a considerable 

method of Lowdin's technique of symmetrical orthogona-

lization[70] which takes into account the lack of 

orthogonality of the ionic electronic wave function due 

(3-13) 
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2 
When the value of Q =4 e Sas determined 

ex MX 
to overlap. 

by Hefemeister and Zahrt[71] is substituted in (3-13) 

becomes 

It may 

-

¢ = 
rep 

2 2 
2 • S e /r 

MX 
be noticed that . the overlap 

(3-14) 

integral in 

equation (3-14) is a complex function of r. Rather than 

being a single exponential it is the sum of number of 

exponentials, each with complex multiplicative terms. 

The Born-Mayer form for¢ is thus an oversimplification 
rep 

of the actual results. 

vin) Varshni-Shuk)a potential (1961) 

Varshni and Shukla[72] in 1961 proposed a more 

complicated form of potential for the repulsion between 

closed shell ions, 

d ?\1e-k:i_l"2 
'Prep= (3-15) 

Where ~~nd k1are the repulsive parameters. Recently it 

has bee,n found that the potential is reasonably satis-· 

facto~y for the alkali halides. The rotational con­

stantscc·for LiH and NaH negative , which is contrary to 
e 

observation. Except for LiH, the vibrational constants 

'ire are 20½. lower than the observed ones. The ionic 

binding energy D~ is satisfactory. But the potential is 

very much unsatisfactory in f~P.r.og.ucing : other molecu­

lar constants. For the above model, one has: 

(3-16) 
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i~) Benson-Dempsey potential (1962): 

Jai Shanker et.al.[30] in 1981 used Benson-

Dempsey[73] repulsive potential for analysis of 

interionic potential in alkaline earth fluoride crys-

tals. The repulsive energy by taking into account the 

interaction between nearest and next nearest neighbour 

cation-cation, cation-anion and ahion-anion can be 

written as follows: 

the co-efficients introduced by where ~ij are 

F'auling[74] is order to provide approprite weightage 

for the various pair interactions. the 

strength and hardness parameters. r and r.., are the 
+ 

radii of cation and anion respectively; 

and k2 = 1.6330. Values of fij a1re derived using the 

correlation between repulsive energy and overlap integ-

rals for the pair of neighbouring ions[74] 

b ij e-r1j/~) = 2 }/ e 2 s;j / rij (3-18) 

where "( is a dimensionless proportionally constants 

introduced by Dick and OverhaGser[69]. various 

ion pairs in CaF
2 

and BaF2 crystals have been reported 

by Ra[75] - . Values of ,.Oij based on these overlap integ-

rals. The repulsive strength parameter b can be calcu-

lated from .the crystal equilibrium condition. The cohe-

(3-17) 
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sive energy obtained by Benson and Dempsey[73] are 

slightly better agree~ent with experiment. 

x) HF potential (1965): 

in 

The Hefemeister and Flygar[76] form of SR overlap 

repulsive energy extended to the next nearest neighbour 

ions with band~ as the hardness and range parameters 
ab 

can be written as: 

¢(r) = (3-19) 

wher-e a, b = 1, 2, ..•... and ~ab are the Pauling co-

as: efficients defined 

Z1 
/3ab = 1 + + nl nm. 

where Zmare the valencies and nm the 

number of QUtermost electrons of the 1th and mth ions. 

r1 and rm are the ionic radii. 

R.K. Singh and P. Khare[77] analaysed the anharmo­

nic prop,rties of silver thallium and copper halides by 

means of this interionic potential model incorporating 

the effects of th~ long-range coulomb and three body 

interactions and the short-range vdW attractive and 

overlap repulsion. The results by using HF potential. 

agree fairly well with the avaiable experimental data 

and show a consistant trend through out. 

(3-20) 
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xi) Modified Varshni-Shukla potential: 

Patel, Gohel and Trivedi et.al.(5,78] adopted a 

slightly different p6tential function for th~ repulsion 

to that proposed by Varshni and Shukla[72]. Specifical­

ly, this potential function can be expressed as: 

d ( r) = -k2 r3/2 
'P 2e 

where ~ and k 2 are the repulsive parameters.. The rota­

tional constants~ are too high. The average percentage 

error of vibrational constant G,J
8 

x
8 

is the lowest a­

mongst the potential. The binding Dt are about 101/. 

lower than the observed ones. Fore.>eXe, (3-22) improves 

upon (3-10) but for average percentage error by (3-22) 

is nearly twice of that by (3-10).For Di also the 

results by (3-22) are uniformly less satisfactory than 

those by (3-10). 

xii) HZ form of overlap repulsion potential: 

R.t:. · singh and S.P. sanyal[79] used an overlap 

repul~ion ·potential · for analysing the cohesive and 

thermodynamic properties of alkaline earth oxides by 

extending HF and HZ potentials to include the three­

body interaction effects. The extended HZ (71] poten­

tial can be written as: 

¢ ( r) = Nb !:_-_fi....i.J 

(3-22) 

(3-23) 

where i and 
ij rij 

j denotes respectively either ion 1 or 2;~ij 

are the Pa~ling co-efficients defined as: 
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z. + __ :.L 
nj 

as the ionic charge parameters 

+ 2) and the numbers of electfons ( = 8) in the 

outermost shells of cations and anions; 

(3-24) 

the ionic radii whose values have been taken from . 

Pauling[74]. The cohesive energies calculated from the 

present extended HZ form of potential are in better 

agreement with experimental data than those obtained by 

previous investigators. It is also seen that the re-

sults obtained with HZ potential are much better than 

those of the HF potential. The extended HZ potential 

has yielded results much closer to the experimental 

results on cohesive energy, its o,.erall superiority has 

been obtained by performing calculations of various 

thermophysical properties of AEO crystals. 

xiii) GT potential (1968): 

The appropriateness of the Born-theory of ionic 
•; 

crysta~s is being successfully for alkali hydride. crys-

tals for which a little work is available in litera­

ture. A new form of overlap repulsion energy term[BOJ 

for alkali hydride earlier suggested by Gohel and 

Trivedi[45] for alkali halides of the form. 

¢ ( r ) = P / r e -k r2 

where P and Kare the repulsive parameters and r is the 

(3-24a) 
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interionic distance. This form (3-24a) has been sugges­

ted to study the lattice Jroperties:: of hydrides. 

The crystal energy may be expressed as the sum of 

coulombian attraction energy, the overlap repulsive 

energy, the point energy and the van der Waals interac­

tion energy terms. The compressibility predicted by[BO] 

and is superior to those predicted by Das and 

Se>:ena [35] . The co-efficient of thermal expansion is 

good agreement with the experimental value. 

xiv) Prakash-Behari logarithmic potential (1969): 

Prakash and Behari[Bl] suggested a logarithmic._ 

form repulsive energy in ionic crystals that has subse-

quently been adopted by Mishra et. 

by Sharma and Jain[83] in 1973, 

al.[72] (1971) . and 

to study the proper-

ties of these crystals. The new potential is given by 

-9 
a log (b + br 

, 
where a and bare the· repulsive parameters. It has been 

found . ' that depends sensitive 1 y on the form of the 

potential for the repulsive energy used within the 

frame work of the Born model. It should be remarked 

that the logarithmic - potentials _yield almost identical 

values of the cohesive energies and that these are 

consistently higher in magnitude than those based on 

experimental thermodynamic data. In contrast. . . the va-

(3-25) 
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lues of i derived fro~ these two forms of potential 

Verway and log.differ significantly each other. 

xv) Redington potential (1970): 

Redington[14] in 1970 proposed a form of repulsive 

potential 

which can be represented by: 

¢<r) e -pr+ a e-f'rl'¾ - fJr/ '3 = a a '3 1 2 

where al a and a '3 are some constants and ,. is the 
2 , 

repul~ive parametrs. 

xvi) Katiyar potential (1970): 

For the analysis of inter.1bnic potential in rutile 

structure · MX2 · crystals corresponding to MRIM, 

Katiyar[84J presented a SR repulsive energy given by 

where R 
1 

, . R 2, R :3 and R 4 a1re the four different cation.:__ 

anion, and anion-anion distances in ·..-utile stru~ture 

'· 
def ine'tl by Str iefler and Barsch .[36] 

where = B..,_ b e(r+ + r_ - K1 R )/ P, 
-r- +-

= B b (r + r - k 2 R )/ ,0 
e + - + -+-
e ( 2r - - k :3 R ) / p_ -

= B _ _ e( 2r_ - k 4R )/p __ 
\Jl(R ) = B 

5 5 
W4( R4) 

where b and pare the strength and range parmaters. 

respecti~ely, k (i = 1 - - - - 4) are the dimensionless 

(3-26) 

(3-27) 

(3-28) 

(3-29) 

(3-30) 

(3-31) 
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factors defined by Striefler and Barsch[36], (1973), B 

are the Pauling co-effecients (Singh and Tiwary[85], 

1980) introduced to pr~vide appropriate weighting for 

different ion-pair interactions and r+ and r are the 

crystalline radii of ''<s:a't!i.en.s :;and anions. 

xvii) RMS potential (1974): 

The repulsive energy contribution to the lattice 

energy per ion pair in an NaCl-type crystal has been 

proposed by [86] as follow 

r1 -~ -~r .,.,(r)=6.8u_e +6B 1 e + 8 -a•r 8u e + 3 81• e 

e-2«r + 24 B e-fsDlr 
u 

where interactions upto fifth neighbours are included. 

The parameters~, B 
u 

B1 are determined crystal by_ 

crystal data at atmospheric pressure and at temperature 

in the range 300 - 700 K via the Hildebrand equation of 

state. 

, ' 
One can make a comparison of the potential with 

the Fu~i and Tosi [87] potential by performing calcula-

tions for NaCl, KCl & KBr. The comparison shows that 

the FT potential and RMS potential as reported · gives 

quite comparable values for the total repulsive energy 

contribution to the lattice energies per ion pair a 

function of the nearest neighbour distance around the 

equilibrjum value in standard thermodymanical condi-

(3-32) 
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tions, but that the RMS potential gives much smaller 

values than FT potential for the repulsive energy con-

tribution due to the nearest and ne>:t nearest•. neig­

hboLtrs. 

xviii) _Thakur potential (1976). 

For many of the previous model it is found that 

1 im U ( r) = OC ( 3-33) 
r➔ o 

and thus the potential energy curves will approach 

infinity in the negative energy region. The e x ponential 

repulsion terms suffer from the fundamental physical 

draw back that they gave a constant finite value at r~ 

o. The forms of the pair potential for an LiF crystal 

as predicted by the models BL [1], BM [2], VS[72], & 

PGT[5] are shown in figure .3 - 1 where it is 

seen that, after the usual minimum at equilibrium ionic 

seperation ~ , the curves have a minimum in the region 

r ,< r
0 

ai;,d ' tend to infinity as r ~ 0. The height of the 

potential barrier for the BL model is about 10~ kj /mol; 

very much greater than for the other model. 

The potential energy curves in fig. ~1 as predic­

ted by these models are not satisfactory . . Since there 

must be a finite probability for penetration of ions in 

each direction through the potenial barrier under these 

conditiQri a crystal would not remain stable and could 
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either collapse or contain heavier muclei formed by 

fusion follow1.·ng sL•ch t 1· , unne ing. There is no evidence 

to show that diatomic ionic crystals have these charac­

teristics. 

The force F(r) = 

given by the models BL, 

dU(r) -ar between an ion pair, as 

BM, VS & PG·r, is plotted as a 

function of the ionic seperation r in fig. 3 - 2 . . Again 

the curves are not satisfactory since they all give 

F(r) zero for two values of r indicating a stable 

crystal for two values of ionic radius, together with 

the possibilities of crystals collapse and the forma-

tion of the heavier wclei by the application of an 

external force equal to he height of the force curve. 

For predicting the for~ of the potential energy 

curve then, from the above discussion the BL model[!] 

is the most successful to the ~revious models. However 

in o~her respects an inverse power function is not as 

gobd a representation of the repulsive term as exponen-

tial function. One argument that has been frequently 

advanced in supp~rt of the exponential function is that 

such a term is predicted by quantL1m mechanical calcula-

tions. Theoretical ·:. treatments of the repulsive force 

between closed shell anions and point cations and bet­

ween. inert-gas atoms have tended to support the assig-
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nment of an exponential form. However, several of the 

theoretical result are in serious disaggrement with the 

experimental data. Thus the available evidence suggest 

that present quantum mechanical treatments cannot be 

applied to the representation of the binding in diato-

mic ionic crystals. Dobbs and Jones[58] remarks "The 

exponential form for the repulsive potential mak.es 

calculations · of the lattice properties rather compli-

cated and, if any case, is perhaps, not valid in . the 

region near the minimum of the total potential which is 

of course the essential part in considering the proper­

ties of the lattices." 

Until a complete mechanical treatment of ions in 

close contact is available, . · the overall effect of the 

short-range forces can on 1 y be represented! by an ·empiri­

cal term in any model of the potential energy. However­

,exi~king models above are not entirely satisfactory 

an~ it would seen worthwhile to consider an alternative 

form for the repulsive potential term. It is accepted 

that this form will not only be adequate representation 

within the region r > ~ where, rx is the interionic 

distance at which the electronic shells come into con-

tat. In accordance with Pauling principle the short-

range repulsion should become infinty when the closed 

shell ~lectron clouds of the anion and cation overlap 



and taking account of this, the following logarithmic 

form[BB] ~or the repulsive potential is proposed: 

~ ( r) = P 1 og ( 1 + p"' r-n ) 

where P and~ and n are the constants. With inclusion 

of the terms for the other tnteracticrns~,the final form 

for the potential energy of the ion pair is then 

(3-34) 

U(r) = Ae2 C D K1e 2 
p log ( 1 + -r-- - -s-- -·--·- + p r 

r itl r10 
+ (3-35) 

The last two terms of this equati~n may be combined to 

give 

P log (1 +pr ) = P log ( a+ pr 

where E"= P log a now represents the zero point energy 

and P 
, = ap. The model proposed by Thakur[BB] is inves-

tigated for a parameter value of n = 6. The form of the 

present potetial function is satisfactory since unlike 

the previous curves it has a single turning point at 

(U('c), ) ,'c) ) and tends to infinity in the +ve energy 

dom9',in outside region o<r<rx 

The previous proposed models for the potential 

energy function in an ionic crystal are not entirely 

satisfactory. In order to overcome these difficulties 

this new repulsive interaction has been proposed in 

which the interionic potential energy tends to infirilty 

in the positive energy domain. It has been found that 

the. new model gives a better repr-esentation of the 

(3-36) 
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experimental data for the cohesive energy, the Grunei-

sen and Anderson - Gruneisen parametes and reststrahlen 

frequency than previous models . . . ' and is comparable in 

its predictions of the atomization energy. 

The form for the potential proposed is an · improve­

ment on previous models and although far from perfect, 

it may help in obtaining a better understanding of the 

riature of the ionic bond. 

xix) SKM potential (1977): 

The main feature of the existing potential models 

which have been suggested so far is the direct functio­

nal depedence of potential energy on the interionic 

distance at equilibrium. 

Actually the force of repulsion depends directly 

on the depth of overlaping of wave functions of the 

oute~. most orbits and thus it will be appropr~ate to 

assign,, SLtch a form of the repulsive energy ter-m which 

is function of interorbital distance. 

Introducing the concept of interorbital distance 

instead of interionic distance for ionic crystals a new 

form of overlap repulsion energy was proposed by 

M.N.Sharma et.al[39](1977). The form of overlap repul­

sion[39] is as follws: 
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¢< r) = f ( ~i ) · 

where f ( Si ) is a function of 'interorbital. distance• 

Assuming ¢ ( R) to · be function of ~ , t _he po ten tia 1 

energy per unit in an ionic 

e2 
U(r) = + r 

crystal 

C 
r6-

may be expressed as 

( 3-37 ). 

(3-38) 

where the notations have their usual meaning. To deter­

mine the form of the repulsive potential the values ofSi 

were determined by the following method. 

For NaCl-type crystal each metal ion is surrounded 

by six nearest neighbour halogen ions, four of which 

can be taken in the same plane with the central metal 

ion. The distance between the centres of the two oppo-

site halogen ions can be determined as 2r{2. - . 
half of 

which will be equal to the d~~tance between centres of 

metal and halogen ion . Thus 

= ( r (2 - (r + 
o.41.4 r 

- r) 

sim~larly for CsCl ' type crystals 
" 

= (0.732r '+ ) 
Thus ·one can obtain as : ¢ ( r) 

n 
= A c5 i 

where A and n are potential parameters. 

This model is more suitable for predicting . the beha­

vour of alkali halide crystals regarding infrared abso­

rption frequency as compare~ to previous values by 

other workers. Though its performance is.poorer for 

(3-39) 

(3-40) 

(3-41) 
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flurides among other crystal~, the model shows a marked 

improvement in the case of fluorides as compared to the 

results obtained with other model. Thus the overall 

performances of the properties of the crystals shows a 

marked improvement to the previous models. The uniform 

behaviour of the crystal properties may be observed 

which was ·one the short-comings of the previ6us models. 

xx) Mohammed potential (1979): 

S. Noor Mohammad[42] proposed a general form for 

repulsive potential of the given below: 

rl . -lo! ,!D-jxJl. 
'P ( r) = S e ·1.. 

where S,1'\_,m and n are the parameters of the potential. 

With this form for p(r) the total potential energy can 

be writen: 

U ( r) = 0.5e 

(3-42) 

r 
C 

r6 

2 e 2 I( ______ M X 

r2 
(3-43) 

In equation (3-45) o(M and o< X are the pol ar-i zab'i 1 i ties 

+ . -
and ZMand Zxare the atomic weights of the Mand X and C 

is the van der Waals constants, given by 

C = 1.50( « I E /(I+ E ) 
M X M X M X 

IM i s the second ion i zation potential of the ions and E 

is the electron affinity o ·f the negative ion • 

. It is possible to derive this potential fr-om a 

(3-44) 
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series . of empirical consideration •. In order to deri~e 

the improved model we assume that the total potential 

combination of the exchange and coulomb energies and E
1 

+ E 
2
arises from the pol~r·ization of charges of the ions 

of the system. Other contributions to E are assumed 

negligble. The electronic energy E depends largely on 

the charge density in the bond region. To determine it 

we then be used the charg~ density model of Anderson 

and Parr can be used. We then write 

2 
"y El:::: Fl(r) ~ 4 n Z o(.,,. Pp/ ( "'') :::: 4 n Z~/(3-45) 

where Z , is the atomic number of nLtcleuseic1and ~..,( 11( 1 ) 
~ . ~ .. 

is the first-order electron density at nucleus due to 

the part of the total electron density which perfectly 

follows nucleus during vibratipn. Each first order 

density function Fi (r) in equation (3-45) determines a 

potential E 1(r) and conversely. The simpliest possible 

I 
ass~mption about ~ 1 ( ~ ) may be that it is exponentia-

' llV decaying and with this assumption we take. ~ (r) as 

Fl ( r) :::: S · e- Ylr11/r n12 
n 2 m 2 r2D1 - nm ( m _ 2n + 1) rm 

+ n (n - 1 (3-46) 
in which m and n are the parameters of the 

function Fl (r); with this function we get from equation 

(3-45) 

.- e 21r + S (3-47) 

In order to determine E2 and E 5 (considering only term 
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which are zeroth order in overlap) we write the inte­

raction potential Vas a multiple expansion. Using the 

relation · due to Buckingham, one can write 

V = + 

) + ••••••••••• 

Index 1 refers to M+ and index 2 to X • The quantities 

qi .Mj_
1
0:t3re respectively, the monopole, dipole and quad ­

' rupole operators associated with specis i(i = 1, 2). 

With this V, E2 and E 5can be approximated as 

E
2

(r) + E:3 ( r);:;; - 0.5 e2(oc. 4... C 
0( X )/r -~-

M 
- 2 e2«M ()(x /r? 

Sum of E 
' 

E and E given the potential U(r) as in 
1 2 5 

eqL1a tion c:::.,-43) • 

Comparison to other potentials: 

The average percentage errors for q~antities for 

all the system of alkali halide series it can be stated 

th~t the new potential with variable m predicts consis-

t~ntly better results than the other. It has been 
~ 

observed that with m = 1.4 and n = 1. 75 the proposed 

can also given satisfactory results. The calculated 

values of the apectroscopic: constants are qLli t .e poor. 

However these values using thus ·new potential with 

vairable m are better than LI Sing Rj. ttner's 

potential[3]. Thus the proposed potential with variable 

m is ·more flexable and much better than the Rittner 

(3-48) 

(3-49) 
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potential [3] ·. 

Defect of the potential: 

The main defect of the potential is that it is a 

semiemperical one and uses either the free ion polari-

zabilities (~
1
0(:r or the crystal polarizabilities as 

input. Since one can use in principle only the effec-

t . eff. eff. 
ive polarizabilities ( ~ ,O'( X) viz., the polarizabili-

ties of the ions as part of the alkali halide mole-

cules, the use of any of these two should lead to 

inaccurate results. The crystal polarizabilities can 

not be u s ed since they differ greatly from the effec­

tive polarizabilities. The free-ion polarizabilities 

can not be used because the polarizability of a posi­

tive ion M + is increased .in the coulomb field of an 

anion, while the polarizability of a negative ion X 

is decreased in the coulomb field of a cation. 

:o',i) I s lam potentia l ( 1980): 

The simple Born-Mayer potent i al compared to other 

form has been fairly suc cessful in pred i cting some of 

the properties of the ionic compounds with NaCl struc-

ture. But for bivalent metal o x ides, sulphides, sele-

nide s . and t e l l urides having NaCl structure and other 

ionic compounds wi th different structures the results 

s ee~ to be less satis f actory. Similar c onclusions can 
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also be made fa~ other available potential, some of 

which are suitable for one of the crystals and not for 

other and vice-versa. 

The available repulsive terms in their simple form 

thus do not describe the interaction energy properly at 

all distances and involving cation and anion which 

differ considerably in size from each other. Moreover, 

the lattice energy generally is larger for compounds 

containing atoms of higher valency than for compounds 

containing atoms of lower valency. It is stated that 

this in not fully understood by the difference in 

coulomb interactions and by the repulsion of simple 

e x ponential type. Thus a potential is meeded which will 

not too be difficult to handle and at the same time it 

gives a simple dependence on the charge and the rela­

tive sizes of the ions and be able to account for the 

difference in strL1cture type. 

~ 
} 

In view of the above considerations a modified 

short-range repulsive potential has been suggested by 

Islam[89] in 1980 which is as follows: 

Where 

UV 
¢< r) = I e-5 r 

d 

Zro 
rand dare equilibrium 

seperation and the difference of the ionic radii, 

ionic 

Z is 

largest common factor of the valencies of the cation 

(3-50) 
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a nd anion. I and Sare two parrmeters -of the potential. 

This specific form of the potential has been tes­

ted by calculating the crystals energy and the An~erso­

n-Gruneisen parameters of the alkali halides, alkaline 

earth chalcogenides and titanium dioxide (rutile). The 

interaction potential includes the Coulmob, ttie two-

body overlap confined to nearest neighbour and the van 

der Waals interactions which approximate the dipole­

dipole and dipole-quadrupole At.tractions. •·. 

The lattice energy calculated using the Born-Mayer 

form showed significant deviation (average 7'l.), com-

pared with either the present[89] (4.l'l.) or the 

Thakur's form[BB] (4.7'l.).The .nverall pr~diction becomes 

much better with the present potential than obtained 

using Thakur's form.Thus the chief merit of the sugges­

ted potential lie~ in the fact that it leads to a good 

co~ection between the observed and the calculated re­

sults not only for simple NaCl type crystals but also 

for a wide varity of ionic crystals. 

xxii) Harrison potential (1981): 

Harrison[26] has presented a quantum mechanical 

treatment of the short -range repulsive energy can be 

written as: 
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r1 < ) _ ?. - 3 -k~ r 
'P r - nh72m .A;\r e (3-51) 

where r is interionic distance, n is adjustable parame-

ter, h Planck's constant divided 2n, m the electron 

mass, k a numerical factor taken as 5/3 by Harrison, 

equal for the kinetic energy term . . .-Mis an average of 

the quantities ~and .M.zor cations and anions respecti-

vely, such that,A,-.is related to the valence p state 

energy E: as 
p 

given below: 

E= 
p 

h2..M2 
-------

:an 
On the basis of (3-34) one can write the total overlap 

repulsion energy fr) e x tended up to second neighbour 

ions as follows: 

¢(r)= 6nh2 ( _3 -k .Mr 3 -kY2 .M1r ------ .,.- r.e + (2 .Ml r•e :an 
+ 'J2 .IX r • e-k\12A1~) 

2 .. 

where r is the nearest neighbour distance and r is the 

second neighbour distance in the NaCl structure solids. 

The Harrison repulsive potential is represented by a 

quantum mechanical .·.analytical:·, ~ potential form derived 
~ 

f~Om the tight binding theory. Accordind to _J.Shanker. 

and G.D. Jain[25], we have used the Born-Mayer paten-

tial for mixed crystals by taking the repulsive har-

dness parameter corresponding to overlap integrals. The 

results using Harrison's potential for mixed obtained 

in the study are in better aggrement with experimental 

data . obtain the corresponding values obtained from the 

(3-52) 

(3-53) 
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Born-Mayer potential for mixed crystals[25]. 

xxiii) Narayan-Ramaseshan potential (1982): 

In the compressible ion model[90,91] a radius is 

associated with an ion in the direction of each of its 

nearest and next nearest neighbour. The ions are then 

pie tu red to be in the form of a .~lyhe<3..ron .. whose faces 

are perpendicular to the interionic bonds at distances 

from the ions centre equal to the corresponding radii. 

For each bond the sum of the radii ,. of ions is taken to 

be equal to the bond length and so the whole crystal is 

made up of space filling polyhedra. The compression 

energy at the face i of an ions of polyhedral shape is 

assumed to be of the form[90,91]: 

" ¢ ( r · ) = B 12 n JJ ·e -r(S)/o-- ds 
, 

where r(s) is the distance from the centre of the cell 

to an area element ds on thg face and the integral is 

over. the face area. B and(5" are the repu 1 sion parameters 

far the ions under consideration. The cell face can be 

approximated to a circle of equal area (Narayan and 

Ramaseshan) and one can then write the compression 

energy of the ith face as: 

¢ < r )
1 

= Bov [ (r1 + ~) e-r:t/~( 11 +<>' )e-11/cr,, 

where is the distance to the ith face from the ion 

centre and 11 is the distance to the circumstance of 

the -~orresponding circular cell face. The 11 's depend 

(3-54) 

(3-55) 
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on the interionic distance r as well as the crystal 

-f;}tructure • . The above theory of repulsion has been 

rather 

alkali 

studies. 

the successful in explaining , the structure of 

halides and is a natural choice for the others 

In calculations on the alkaline earth chalcogenides, 

the repulsive energy was computed using the simplified 

formula 
. ri . 

------------------.The actual 
1 - 2/r.,. • k(ri/rav -1) 

procedure 

of the optimising the repulsion parameters B and (I.J is 

explained elsewhere (Narayan and Ramaseshan[46,90], 

1976, 1979) 

The free energy per molecule of the crystal is given by 

1113 2 C D 
U = ----- ---- ------ + ¢ + pv ( 3-56) 

L r r6 r8 rep 
where r is the nearest neighbour distance, p the pres-

sur and volume per molecule. The Madelung constants A 

is .~nown for structure of interest. The van der Waals 

cq-efficients C and D be calculated in terms of the 
~ 

polarizabilities of the ions and the effective numbers 

of participating electrons. However, it has been shown 

that the polarizabilities of the chalcogen ions can not 

be considered to be constants but must be taken to ~ry 

in the form. 
(3-57) 

The above theory of repulsion has been rather succes-

sful i~ explaining the structures of the alkali ha-
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lides[45]. Det · 1 d f & ai e ormula are given by Narayan . 

Ramaseshan for NaCl, CsCl and ZnS structures. However, 

the labour involved in deriving exact formula for the 

differ~nt Ii can become quite excessive when one deals 

with other lower symmetry structures . and this would 

defeat the very purpose of the present approach which 

seeks to develop a simple semiemperical theory of repu-· 

lsion. Instead an alternative simplified approach is 

presented here where 1 ~ is computed in terms of only 

the co-ordination ~umber and ionic radii. 

If there are n faces symmetriclly disposed at 

equal distance from the ion centre, the solid angle 

subtended by each face at the centre is If 

the n faces are at different distances ri from the 

centre, a weighted average distance ravmay be defined 

as 
(-3 - 58) 

If ··11 < rav the solid angle subtended by such a face will 

4n be greater than --- while the reverse will be true when 
n 

r1 > rav. Motivated by this one can appro~:imately write, 

K 
2 

ri 
( 1 - ( -----) ) ) 

rav 
(3-59) 

where wel.iis written in a form which ensu1res thati ¢f 4n. 
K is a suitable constants which has to be determined. 

It can be easily shown that equation (3-59) leads to 

the f~llowing relation for 1i. 
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The squares 

fit to the known exact values of the~ 'sin the NaCl, 

CsCl, and ZnS structures. 

The main advantage of the relation (3-60) is that only 

input required for calculation of 1 are the number of 

nearest neighbour and the corresponding radii. 

Using the repulsive parameters of the chalcogen 

ions, one can determine the repulsion parameters for 

the other divalent cations. However, considering the 

low compressibility of the cations compared to anions, 

one can assume the cations to be hard spheres to a 

radius which can be fitted to reproduce the experimen­

tal interionic distance of the corresponding chalcoge-

nides. 

The , compressible ion theory of repulsion has been ap-
, . 

p,ied to the alkaline earth chalcogenides using a sim­

plified formulation of the polyhedral cell approach.The 

theory correctly shows that most of the crystals should 

occur in the NaCl structure. The repulsion parameters 

of the chalcogenide ions have been used to derive hard 

sphere radii for few divalent ions. Also the theory has 

been extended to the rutile and perovskite where the 

int~ricinic distances and compressibilities are satisfa-

(3-60) 



64 

ctorily predicted. Th ese results indicate that the 

theory, which is based on a purely ionic picture, is 

q uite va11.·d ford' 1 1.va ent ions in crystals. However 

there is a mild discrepancy in the matter of relative 

stability of different crystals stru!oture. The approach 

appears to over-estimate the stability of the NaCl 

strL1cture and underestimate the binding energies of the 

competing ZnO and CsCl st rue tL1 res. The presence of the 

covalency might possibly explain the discrepancy. 

xxiv) Satyanarayana potential (1984): 

An empirical expression for the repulsion energy 

has been proposed for computing the lattice energies of 

alkaline earth chalcogenides and alkali halides in view 

of the short-comings of eirlier forms[92] which is 

given by: 

/ 
-1 

,; ( r) = Mb (er P - 1 ) 

where Mis the number of nearest neighbour, and band p 

a~e repulsion parameters to be determined under static 

equilibrium conditions from crystal data. The defensi­

bility of the present form equation (3-61) is discussed 

in details below. Expanding equation (3-61) in a power 

series one obtains, 

= M b 

= M b 

e -r/~ 1 + e-r/p 

r,;r/p ( ~ 8 -nr/p) 

n = 0 

-2r/p 
+ e + •••• 

(3-61) 

(3-62) 
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Generally pis of the order ofl/·lOOi'r, and hence r/p 

will be of the order of 10. Therefore the sum of the 

infinite series is a rapidly converging one, and hence, 

to a good approximation, the series sum can be trun-

cated at the second term. In this approximation the 

expression for the repulsion energy can be written as: 

¢ ( r) = M b e-r/p1+e -r/p 

= ¢1)_+¢r2 (3-63) 

This results in a two term expression for the repulsion 

energy, the first term being simple BM form. For NaCl-

type crystal structure the formula for repulsion energy 

is 

+ 15 A e-2r/p 

and for CsCl - type crystal structure it is 

¢ ( r) = M b e -r/p + 28 A e-2r/p 

where A's are the structure-independent constants ac-

' 
counting for the short-range three· body interactions. 

xKv) Yadav potential (1985): 
Yadav[93] proposed a new repulsion term in the 

ionic interaction potential. The form of the potential 

is as follows: 

-n -rJ... rJ (r) = A r e '"" 

where A, n and ~are constants. He has utilized this to 

determine the cohesive energy of several alkali halide 

crystals. In going through this work some discrepancies 

(3-64) 

(3-65) 

(3-66) 
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are found in the evaluation of the potential parameters 

which leads the theoretical results · meaningless. 

The total potential energy of the alkali halide 

crystals is given by: 

U ( r) = _e_2_ZJ__~~,!(___ + A r -ne-r/-,... 
r 

There are three unknown parameters namely, A, n 

and which can not be obtained by solving then above 

equation. Varshni[94] and Varshni and Shukla[95] have 

used experimental vibrational energy of the crystals in 

computing the unknown parameters. Yadav[93] on the 

other hand, has intr□dLlced an arbitrary condition 
d ¢(r) 

A -3 ----av- = r 

d ¢(r) r d¢ (r) 
But ,-1v--- = -'3-v • -~-

and the explicit form of above equation (3-66) with the 

help of (3-68) and 

d ¢ (r) 
--1lr- - = r 

-(n+1) 

E9uation (3-66) and (3-58) are identical and a compari­

son of these equations shows that while th~ explicit 

form of 

· and:;>\,, 

d ¢(r) 
--cir- constants all the three parameters, A, n 

Yadav suppresses?\and n. He could have chosen 

r -m 
' 

with m = 1, 4 or any other 

The eqLlation (3-66) thus constitutes a se­interger. 

rious restriction on the form of potential function and 

is ·not warranted by any stability condition about the 

(3-67) 

(3-68) 

(3-69) 

(3-72) 
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lattice. 
Moreover since the equation is not written at 

the equilibrium 
' it should be true for any value of r. 

On the other hand if the equation (3-67) were written 

for the equilibrium value, the right hand side of the 

equation should be zero. This point has been missed by 

Yadav[93] 

he has used 

is trivial 

point. 

Yadav[93]. 

3 AK 
and 

ro 

and in order to evaluate the 
d¢(r) _5 -dr-r~ A r0 and not zero. 

0 

model parameter 

To prove, · this 

but given here in order to clearify this 

or 

9 K r: and now equating ¢'t= _____ Q.. 

r=r /J 
0 

we have the result of 

Thus shows the Yadav has used ¢~r) = 0 

at the same time to determine 
r=ro 

the model 

par~meters which makes his theoretical results invalid . 

.. 
>j:vj) Potential of Buekingham type:-

In our study we would also use a short-range 

potential of the familar Buckingham type 

¢ ( r) Ae -r/p -Cir 6 
= (3--73) 

where the constant have their usual meanings. James and 

Catlow [159]while studing the inter-ionic potential 

derjved the various interactions utilizing Shell model. 
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A major problem in deriving tuch poten­

for oxide crystals is the lack of experimental 

This problem has been overcome by using the 

following assumptions: 

i) Th 2- 2-e D -□ interaction is taken to bathe same for 

all crystals and the potential derived by James and 

Catlow is used. At equilibrium oxygen-oxygen sepera-

tions this interaction is very small. 

ii) Cation-cation interactions ar~ assumped to .be pure-

ly Coulombic. Since cations generally smaller than the 

o>:ygen ion and 02:.. □21.nteraction already very smal 1 at 

equi 1 ibrium lattice sp~:cings this assuption seems to be 

resonable. 

iii) The cation-anion interaction is considered to be 

of the Born-Mayer form 

¢ = A e~r/p 

i.e. the attractive r-\erm is ignored. The small con-

tribution of such terms to the short-range potential at 

the lattice interatomic spacing will be incorporporated 

by small modifications of the Born-Mayer parameters. 



XXVU) A new proposed form: 

Many of the repulsive poten-

tials proposed thus far suffer from some fundamental 

drawbacks. As r-.·;;. 0 , th 1 • f · t · f e repu sive orms consis ing o 

e x ponential term give finite values. As a result the 

potential energy predicted by previous models are not 

satisfatory and hence there must be a finite probabili­

ty for ions in each direction through fhe potential 

barrier, under these conditions a crystal would not 

remain stable and could either collapse or contain 

heavier nuclei formed by fusion follo¥ing such tunnel­

ling. Evidence shows that the crystals donot have these 

characteristics. 

In fig. 3-2 the force f(r)= _ _g.Qfa:) 
dr 

=O for two values of r, which indicates that the crys­

tal is stable for two values of ionic radius. Thus U(r) 

ancj hen~e -¢(r) is not satisfactory due to this possibili-

ties in addition to col lapse f!.ndto formation of heavier 
., 

n~clei by the application of an e x ternal force equal to 

the height of the force curve. The electronic shells of 

the ions in question will have overlapped long before 

the interionic seperatian has been reduced to (1-2) i 
the ions M+ (M+), x- ( x-) can not exist in the region and 

an interionic potent i al as such cannot be defined in 

such a distance. 
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Taking this point in conside­

ration, we are thus encouraged ~o propose! the modified 

form - of the existing potential due to Islam[89] as 

follows: 

~(r) ~ G/ (r**n) exp [-g (r**Sigma)] 

where Sigma= z+d/zr, G and g are .two parameters of the 

potential. 
't 

This form is in conformity with the Pauling p r inc i ple 

according to which the short-range repulsion should 

become infinite when the closed-shell e lec tron clouds 

of the anion and ca tion o verlap. 

r-,-.,,-.,,---. ------ ---~----
· The crystal properties were c&).culatei usuia various integral: 

-1.u~s of the parameter,. nm.:, yields better result. This specific 

form of the potential with the said -value will be appliea for 

..,,. 

... 

.. 
, .. .,. -



CHAPTER 4 

VAN DER WAALS INTERACTIONS 

4.1 Origin of van der Waals interaction: 

• t 

71 

Let us consider two atoms that are gradually 

brought closer to each other. As long as they remain 

more than an atomic diameter distance from each other 

the electronic charge of each atom will tend to shield 

its own nucleus so that in the zeroth approximation~ 

ther·e wi 11 be no net force betwe~n the atoms.If we 

consider mare carefully, what happens, however we can 

see that there should be small residual force. · This 

arises from the f act that the electrons move around in 

orbits. As a result, the potential produced by ~ any 

given atom will undergo small fluctuations. This flue-

tuafion will produce small electric fields that pola~· 

rize the other atoms and create a dipole moment which 

we denote by M, since the force on Mis, 

~ ... ➔ 
F = (M. V 

field and since M = rt, 
one obtains, 

~ 4 4 ➔ 
F = P ( · E, "v 

.. . 

➔ 
w~ere Eis the electric 

... 
where Pis the polarizability, 

... 
E 

: 

This small residuif force is ~ailed th~ van der . Waals 
,. 

force[96]. {\ notable fea:tur--e of the van der Waals force 

is that they act - between electrically neutral systems 

and between _system having _no Slectric moment, for ~xam-

1' 

(4-1) 
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ple, between heli'Ltm t a oms~ charge distribution is sphe-

rically symmetric so that these atoms have no dipole, 

quadrupole or higher electric moment . A second impo'r-

tant property of these forces is that they are indepen­

dent of temperature[97]. If the charge distribution on 

the atoms were rigid,the interaction between atoms 

· would be zero, because the electrostatic potential of a 

spheri~ally symmetric distribution of electronic charge 

is cancelled outside a neutral atom by the electros-

tatic potential of the charge on the nucleus. Then the 

inert gas atoms could show no cohesion and could not 

condense, contrary to exp~riment. It is true that the 

time- average electric moments. are all zero. But the 

electrons are in motion · arround . the nucleus even in 

lowest electronic state~ and at any instant of time is 

likely to be a non-vanishing electric dipole moment 

fro~ this motion[98]. An instantanuous dipole moment of 

m~gnitude ~ on one atom produces an electric field E of 

magnitude 2 Pl /R3at the center of the second atom 

distance R from the first atom. This field will induce 

an instantaneous dipole moment i:\=oe E = 2F?"R 3 pn the 

second atom. Here o( is the electronic polarizability 

defined as the dipole moment per unit electric field. 

van der Waals forces have two outstanding charac-
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ter-istics: 

( 1 ) They are mu~h weaker than the forces in 

chemical bonds. 

(2) In many cases, they ar-e additive and can not 

be saturated. That is, the van der Waals for-ce between 

two atoms A and B, is not ver-y much affected if energy 

.of say, thr-ee neon atoms, !\Jea, N~ and Nee in a given 

con~iguration can be calculated by adding the energy 

that would be obtained if only Nea and Neb were pr-e­

sent, plus the ener-gy of N~ and Nee by themslves, plus 

behaviour of chemical for-ces. For- instance if there are 

no other hydrogen atoms in the vicinity, the interac-

tion, of two hydrogen atoms, Ha and Hb, is not at all 

the same as the interaction that occurs when Hb is 

already chemically bonded to another-[99] hydrogen atom 

He . 

body 

The van der Waals f orce is not pre~isely a two 

force since the mome nt induced in an atom by a 

second will interact with a third but in th~ case of 

neutral atoms it may be regarded a s a two-body force 

for large seperat ~on, when power laws mentioned are 

valid. In the two-body approximation, it is also cen--

tral force and it is certainly of short range, so that 

in general the effect of any but the nearest-neighbours 

are _negligible[lOO]. 



atom 1 atom 2 

r ---~ 

(8) Origin of the van der Waale interaction. 

atom 1 atom 2 

---,--ffir--t---------+--i--hj_ _ _j_~t~imetb 

(b) At one 1netant of time, there is dipole moment P1 on 
atom 1. Thie produces an eledtric field E which acquirea 
an induced dipole moment P2 ° 

fig. 4-1 : van der weals interaction between the two inert 
gae atoms. 
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The van der w· aals potential are short range attra-

ctive between closed shell atoms or ions, having an 

origin connected with correlations of the electronic 

motions in different atoms. In the case of rare gas 

solid like ztts ' , 
the van der Waals forcets are the 

sources of· binding where their con tr.i bu tions to the 

binding energy of ionic crystals is small. However, the 

consideration for producing better aggrement with expe-

rimental values of cohesive energies and also for stu-

dying various other properties of ionic crystals, for 

example, the studies on phase transformation, lattice 

dynamic~I behaviour and evalution of defect energies 

require the reliable knowledge of van der Waals paten-

tial. The contributions to the van der Waals energy 

mainly arise from the dipole-dipole (d-d) and the dipo-

le-quadrupole (d-q) inter-action. Other higher order 

t:enns such as quadrupole-quadrupole (q-q) ~ interaction 

de~~y more rapidly with increasing interionic sepera­

tion and therefore can be neglected. 

Several e:<planations for ~an der Waals forces have 

been proposed. In 1921 Keesom pointed out that if two 

molecules bear permanent electric dipole moment m1and m~ 

and if they undergo thermal motion, they will on the 

average Or 1· eri·tations leading to attractive for­assume 
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ce. If R is the vector joining the two dipoles the 

potential energy of a pair ... 
V = 

of dipoles is _,. 

( ~
1 

.a)( m2.R , 
( ... ➔ -, m 1 • m 2 - ,..) ----iif 2' ____ _ 

Since the thermal motions are subject to the Boltzmann 

distribution,· so that an arrangement whose energy is V 

has the probabi 1 i ty e-VfCr, orientations with low energy 

are favou,~ed on average the quantity ve-Vj'Cr over al 1 

orientation and assuming that KT >>V it is faLtnd that 

the average potential energy so a pair of dipoles whose 

seperation is -R i~l~{,:~r:imately 
V - ----------

:3 KTR6 · 
This force evidentl y dec reases in importance as the 

temperature increases. It is known as the dipole ·orien-

~atian farce, or the Keesom force. The (d-d) energy is 

C 
pr·oportional to-;tr i.e. 

gy is proportional to-7 

C 
Udd= -~ and the (d-q) ener-

i.e . 

. The Van der Waals energy is mainly represented by 

th~ relation. 

6 I a U - u +U = - C/r - d r 
vdW- d-d d-q 

where C and Dare known as the van der Waals co-effi-

cients and R is the interionic separation. The co­

efficients C and Dare linear combinations of the van 

der Waals co-efficients (cij' dij) for interactions of 

the various ion pairs weighted by appropriate lattice 

sums. In the particular case of an ionic crystal formed 

( 4-2) · 

(4-3) 

(4-4) 
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by two Bravais lattice of ions one has, 

C = C s 6 
(r~ +½( c++ + C ) s6 

of._ r - r-
D = d 58 ( r ) + ·1t2(d +d ) 

of._ r - ++ 

( 0) 

s6 
r 

( (l) 

(4-5) 

(4-6) 

where r is position vector of the negative ion in the 

unit eel l, the positive ion is being at the origin and 

the sum[102]. 

4.2 Derivation of van der w~als co-efficients: 

In this section we will consider the derivation of 

the van der Waals co-efficients ctj and d i.J • 

wing three methods will be discussed in 

obtainihg c0 and dij 

The foll □-

details for 

i) London-Margenau[103,104](LM) formulation based 

on the perturbation treatment. 

ii) Slater-Kirkwood[105] (SK) treatment based on 

variational theory. 

fii) Kirkwood-Muller[106,107] (KM) formulation. 

Th~ expression for the dipole-dipole(d-d) and dipole­

quadrupole(d-q) co-efficients obtained from these theo­

ries are given below: 

· SK theory: 

(4-7) 

(4-8) 



where 

is the Planck's constant divided by 2n c is the 

velocity of light. Ej_ and Ni a re respectively the 

polarizability, molar susceptibility, characteristic 

excitation energy and effectiv e number of electrons in 

ion i. Equation ( 4-7) to (4-12) have been used by 

various workers to calculate c ijand d1jin alkali halide 

and other ionic crystals. These calculations require 

the knowle~ge of excitation energies, effective number 

of electrons and electronic polarizabilities of ions. 

There are considerable variations in the values of 

these quantities used in different calculations. A 

critical discussion along this line is presented in the 
.. 

following section. As far as the soundness of mathema-

tical formulation is concerned, the · kM[122,123] 

equation (3-11) and (4-1 2 ) has the great advantage that 

it does not suffer from uncertainties regarding the 

.off-diagonal term Q defined by Pitzer. On the other 
ICI 

hand, the LM and SK theories neglect the contribution 

of these off-diagonal terms which are not without sig-

77 
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nificance. Th c·M e ~ formulae have been derived in such a 

manner that off-diagonal terms ~liminated with the use 

of expressions for molar susceptibilities and electron 

polarizabilities. 

4.2.1 Dipole-dipole term, 

(a) London formula: 

C ·• ."-J 

The ground state wave function of the closed 

shell atom can be written by Slate~ determinant for N 

electrons: 

det ( q 
1 

(4-13) 

To define the polarizability one can write the pertur-

bing potential as : 
N 

V = F ~ 
p=l 

z p 
(4- 14) 

where F is the electric fie1d along the Z-axis. The 

I 
variational wave function ~is taken to be 

= 

= 

N 

'1J + t=l a:>\ ¢ "­
(Nil j det ( ql 

z-,.. ¢:,,. ·f"-

(4-15) 

••• 

(4-17) 

whe1re f~ is either unity Dir a function such as ( 1 + C lr 

+C~2J. The fol lowing three quantities need to be defined 

as 

(4-18) 

(4-19) 

(4-20 ) 

Here H. is the complete Hamiltonian for the unpe~tured 
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~Ystem and the usual quantum mechanical integrals over 

all space are indicated. 

The energy change up on imposing the field is 

(4-21) 

which is to be minimized with respect to each a~i.e. 

dh
1 

--da~- = 0 = 2 Fh)\ + 2 1 a,.,. ¢AM (4-22) 

From the determi.Y1a.~t theory, the solution is :a/'\: -)~ ( 4-23) 

and the minimized energy is: r{= -F 2 (21:A-,..h,,,._-lfA.,.!,.f,,N\. 
"' ?\.M 

= - F 
2r_ A,.._ h 7' ( 4-24) ,-. 

The expression for polarizability is: 

2 h
1 

ex=· - ---F2- = 2 ~-A~ h7' c 4-25 > 

It is assumed tl1a t the q:;,<,.. are orthogonal to a 11 /fl' 

This ·assumption is not necessarily true although the f~ 

can be selected to make it true. Then 

q.)<._.vt = (l if (4-26) 

The calculation of Q is more complex. If f is unity and 

Hartree wave function are used Q = 1/2 . . )',)'. 
This value 

w~s taken as an approximation · by previous worker-

s[103~10BJ. The off diagonal Q)'.Mterm which have been 

neglected previously are not without · significance. Axis 

given by: 

A = - h"" - ···- ( 4-27) 
-,... 1:, Q)'-~h2 2 Nh2 

So that o<. = 2 l"....--~--- = ------ ( 4-28) 
,-. 1 Q ?-M. l,_ Q;,..M 

Using the above approximations we can get the f~llowing 



expression for the dipole. 
A 2 

u = - _§Z'" . ( L. (~_) ) 
d-d R° K A 

'> ,~,r 
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-'~ I qB -,-~ pg ..:EE 

the 
~q / ~p) • EA1.t 

equation,(4-29) takes the following form 

This 

Ud-d = - -~--~.A...~ B - EA • EB __ 
2n 6 EA+~ 

formula was first derived by London. The main 

assumptions in deriving (4-17) are that 

{lo) ( i) al 1 ¢ are 01rthogonal to '11.,.._ 

(ii) f~ = 1 and (iii) □·ff-diagonal terms ¢Mdo not 

contribute to polarizability and dipole-dipole energy. 

The assumption lead to the followi~g results: 

q = h}. = <¢; Z~ ¢7'> .,....,... . /' 

so that we have; 

o< A = 2 L h~· = _g_J{b:: 
,,._ EA EA 

From equation (4-30) and (4-33) we get, 

EAl= t;-:t -( --;;-i-\-!-- I 

J 1 . 
Inserting (4-34) in (4-31) an assuming that off-diago-

nal terms do not contr-ibute i.e. L Q = ½, we get, 

whjch is the SK for-mula for the van der Waals dipole­

dipole interaction. 

( c) KM ·formu 1 a 

Another- usefuliquation for the dipole-dipole energy is 

that obtained by Kirkwood[~06] and Muller(107]. This 

(4-29) 

(4-30) 

(4-31) 

(4-32) 

(4-33) 

(4-34) 

(4-35) 
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contains the diamagnetic su1icepti bi 1 i ty as we 11 as the 

polarizability per atom ~fa spherically symmetric 

system is given by: 

In view of electronic arrangement we can for 

shell of equivalent electrons 

Nh4 
o<. A = - -2-;-~2-

a sub-

Equa t ions . (4-36) and (4-37) imply that the assumption 

that the same number of electrons contribute to polari­

zability as to susceptibility. Such an assumption has 

been found to be fairly satisfactory. Thus we have, 

-1 2 1 fX.A 
E A = - ( 4 m c i ( ----

.?(. A 
Then the then becomes 

(4-36) 

(4-37) 

(4-38) 

dipole-dipole energy 

6 m c2 
= - -N~-ao--~A .xB c _c ?!-:.A.. + -~ B -

o<.A C(B 

] - 1 (4-39) 

In equation (4-39) ,N
0 

is the Avogad,~o's number andXis 

now the molar susceptibility in cm3. The most remarkable 

feature in deriving (L~-39) is th,=-1t E_D has been elimi­

nated. Thus the Kirkwood-Muller formula (4-39) has the 

. gf·'eat advantage that. it does not suffer ·from the uncer­

tainties regarding the off-diagonal term Qkl· 

4.2.2 Dipole-quadrupole term ~j 

To derive the SK theory of the tyfe: 

d == _:?!,_ h2 -~J~j __ (J~U.!JJ!±(~ _ _LNj__J_J_~--- ~et a sys-
ij Bm ( oe i / Ni) +a:l/3( (1/Ni )(OC j/N j) )~(OCj/N j ) 

tern have the ground state wave-function with energy E0 
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for the Lin perturbed Hamiltonian H i.e. 

H 
0 '\lJ = 

0 ~o \l;o 

Let the pertL1rbed Hamiltonian be H whose 

H = Ho + V 

We assumed that the perturbed wave-function closely 

approximated be a function of the form, 

where Vis small compared to ·unity. From the variatio-

nal theorem in quantum mechanics, the excess energy of 

the system arising from the perturbation approximation 

closely reduces of the value. 

E 

where 

<H> -F 
0 

h2 
= Voo + 2 (vV ~o + 2- '1j . -l-- ( ( 

co-ords --:i. 

the summation goes over all the ele·ctrons 

over the three co-ordinates for each electron. 

and 

Using the above formula, the polarizability of an 

atom can be derived to be 

(4-40) 

(4-41) 

(4-42) 

(4-43) 

(X_ = 4me -2 /9h2 N(r~ 2 (4-44) 
00 

' ~rom the multiple expansion of the charge distribution 

in two atoms we get the dipole-quardrupole interaction 

potential of the two atoms to be 

:,/2 e2/,-4!:( r2 z2j - 1u 
2 (2x 11 >: V -- li r2j + 2j '•j 

+ 2y y 2j - 3 
li 

z 11 z2j (Z -
1i z2.i ) 

whe1~e the subscripts 1,2 refer to electrons in the 

f i ,..-st and second atom and i,j goes f r·om 1 to N,N the 

(4-45) 
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numbers of electrons participating in the 

interaction. 

We use the first approximation in Hasse's[109] 

method and express v as 

V = V = ( ( rTu z 2j- 2u r~ 2 >:11 ►:2j + 2 '11 Y2j 

- 3 zli z 2j ) ( z 11 - z 2j ) 

where~is an Lmdetermi.ned multiplier. 

It is determined the matrix elements in (4-43) 

that, 

voo = (I 

voo = 0 

Also 

From equation (4-46) we have 

dv 
. dxik 

i.e. ( 

( 2:·1.k Z 2j + 

2 2 
) = "N 2 
00 

2:·:2j< Zlk - Z 2j ) ) 

2 2 
'(B/9 ( rl )oo ( r2 )oo + 

Thus we obtain for the kth electron of the first atom 

~ dv 2 2 _ 2 2 4 
.,c_ c ------ > = x1,2 c4u/9c,~1 ) <r2 ) + 4/!3cr2 h > 

co-mrdls dxlJc 00 oo oo o 

Fi~ally summing over all the electrons of the first 

atom and adding a symmetrical term for the second atom 

we have 

dv 

~ 
+ 4/3 ( 

Substituting (4-54,) (4-48), 

the perturbation energy to be 

( r2 ) 
2 00 

r! ) oo 

(4-49) and (4-43) we have 

E ·- -~!-- 1'11 l'12( 1 "1 >oo 1 '22
)00 + (ri )oo <~l lbo) 

(4-46) 

(4.47) 

(4-48) 

(4. 49) 

(4-50) 

(4-51) 

· (4-52) 

(4-53) 



h 
+ ----

2m 

+ 4/3 

N1N2(4/3(ribo+ 

( r~ ) oo ) 2 

The result (4-54) - contains the undetermined 
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(4-54) 

multiplier 

To eliminate it . we minimize (4-54) with respect to.'.X 

we then get the dipole-quadrupole inte~action energy 

as: 

polarizability 

as: ( r~ = 
00 

We also make the approximation that 

r4 ) = ( r 2 )2 
00 00 

)oo) 
terms of the 

which · is reasonably valid whenever the electrons are 

distributed in a shell arou~d the nucleus with a strong 

speaking of the electron density at some radius. 

Substituting (4-56) and (4-57) in (4-55) we thus obtain 

the following formula for the dipole-quadrupole intera­

ction co-efficient. 

d 12 = -r-tt o(l (){ 2 

4. 3 .1 Origin Of polarizability s 

In order to understand the origin of polarizabili­

ty of an atom let us first define dipole · moment and 

local electric field. 

The dipole moment o1 the pair of charge ±q is?= 

(4-55) 

(4-56) 

(4-57) 

(4-58) 
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q7-l - qt2 = qt , and is directed from the negative charge 

toward the positive charge. The local electric field at 

an atom is the sum of the electric field E
0 

from exter­

nal sources and of the field of the di~oles within the 

specimen, we write, 

The contribution of the local field are as given in 

f :i.qur-e 4-1-. 

The polar-izability of an atom is defined inter-ms 

of the local electr-ic field at the atom: 

p = E 
local 

where Pis the dipole moment. The polarizability is an 

atomic properties,but the dielectric constants will 

depend on the ~anner in which the atoms are assembled 

to form crystal. The polarizability has the dimension 

:3 
of (Length). The total polar-i zability may be seperated 

into thr-ee parts: 

i) Electr·onic, 

ii) Ionic and (iii) Dipolar, 

The electronic polarizability arises from the displace­

ment of the electronic shell relative to a nucleus. The 

ionic contribution comes from the displacement of a 

charged ion with respect to other ions. The dipolar 

polarizability arises · frcm molecules with a permanent 

electronic dipole momen t that can change orientation in 

(4-59) 

(4-60) 
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-E 
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fig. 4-3 : Different polar1zab1lit1ee. 
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an applied electric fi~id. The contributions to the 

polarizability are as given in figure 4-;. : 

Let us now calculate 

the polarizability of an ionic crystal. The polarizabi­

lity of molecules plays an important role in several of 

the theories of long range intermolecular forces. Acco­

rdingly we devote this section to a discussion of the 

calculation of polarizability. First the general quan-

tum mechanical theory is presented and this theory is 

applied to the calculation of the polarizability of 

molecule. Then the principle of additivity of polariza­

bility· is discussed and finally the use of screening 

constants to calculate polarizability and other molecu­

lar properties is considered. 

4.3.2. Polarizability versus ion-environment: 

The polarizabilit~ of an ion is sensitive to its 

en.') i ronmen t. For example, the best spectroscopic value 
. 3 

for polarizability of the lithium ion is 0.0283 ~ and 

the most recent theoretical estimation for the polari­

zabil.ity 
q.., • 

of the free fluorid~ ion are 1.56 and 1 . 40 A. 

The sum o-f these 1 ies bl"?tween 1. 59 and 1. 4:::_, 'A.
3 

whereas 

the experimental polarizability per ion pair in crysta-
. J 

llin~ LiF is 0.915 ~-
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The existence of such effects was demonstrated in 

principle over 40 years age by Spangenberg[110] who 

showed that the polarizability per ion-pair in crystal-

line alkali halides cannot be accurately described as 

sums of constant polarizabilities for the component 

ions. This is illustrated by the fact that the differe- · 

nee in Q~ 
polarizability between NaF and NaBr is 3.24 A 

whereas the corresponding difference in the rubidium 

salts is 

Fajans and joos[111] proposed on the basis of 

quite general arguments that the polarizability of a 

positive ion i5 increased in the Coulomb field on an 

anion, while the polarizability of a negative ion 

should be decreased in the Coulomb field of a cation. 

In an extensive review of the information available at 

the time, they applied these idea to correlate not only 

the polarizability of ionic component in crystals and 

in solution but also those of molecule composed of 

.•groups differing substantially in electronegativity. 

The application of these c oncepts to a great variety of 

substances has . been pursued subseqently by Fajans and 

his collaboraters in a long series of publication-

s[112,113]. Fajans and Joos also proposed a formalism 

for estimating .the pol d riza b i lity o f the free ions, 

bath pos itive and negati ve, on the basis of two quali -
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tative rLtles: 

IX/4Jl \°') . 
(l) ~/ ~where the subscripts positive, o, nega-

tive refer to monoatomic cation, noble gas and anion in 

an isoelectronic series and ( 2) 

wher·e n is· the principal quantL1m numb'er of the balance 

shel 1 in an isoelectronic pair. together 

with experimental values for the polarizabilities 

indepenclent estimates of tX."'"for the lighter cations and 

plausible assumpt:i.ons about tile trends in the inequal i-

t:i.es in r-ules (1.) and (2), led to estimates for the 

polarizabilities of the .ions. These estimates were 

influenced also by the estimated polarizabilities[111] 

of the heavier anions in aqueous solution; with minor 

modif.icat.i9ns, they are current to day[114]. They ap-

pe~r to have had a significance influence on the selec-

tion of parameters for Pauling's semi empirical calcu-

lation[115] of the polarizabilities of the free alkali 

halide ions. 

Despite the ~vidence summarized above that 

ionic polarizabities vary with envir-onment, 

kei-·s have based their estimates of polarization ener-

qi.es and London energies in ionic system on the 

"Constants" or additive ion i c p□ la1rizabilities assigned 

by Tessman, Kahn and Shockley[116]. These values were 

chosen to minimiz~ the mean squar-e deviations tram 



additivity in the polarizabilities of ionic crystals, 

but 

of 

wi th due to consideration of independent estimates 

the polarizabilities of the ligther tree alkali 

ions, + 
especially Li. Clearly the use of these additive 

polari~abilities must be regarded as only a first ap-

pro:-:imat.ion. More realistic estimates of the secondary 

interactions in ionic systems could be made if reliable 

value~ were available for ionic polarizabilities in 

different environments. Indeed the values deduced by 

TKS for the polarizabilities of the oxide ion, 0
2-- . 

J.n a 

number of crystals ranged from 0.9 to 3.2 illus-

trated again the existence of a substantial environmen-

tal e·ffect. 

At the level of appraximation represented by the 

lightly succesful Born-Mayer model[2] of ionic crys-

tals, it is neutral to represent the polarizabilitity 

of~~ ionic crystal as the sum of anionic and cationic 
. 

com):lonent polarizabilities. From the point of view of 

the quantum mechanical description of the _system, 

howeve1'", this procedure can not be stri~kly justified. 

The nature and validity of the quantum mechanical ap­

proximations involved in this additivity concepts have 

been discussed by Ruffa[117]. Making use of a well 

established description o f the polarizabilities of an 



atom or ion as proportio~ar to a weighted mean square 

excitation energy, .Ruffa extended his analysis . to carry 

out what amounts to a semi-quantitative of the hypothe-

sis of Faja~s & Joos. On the basis of a some what 

intuitive estimates of the effects of the lattice inte-

ractions on the mean-square excitation energy, he 

confirmed their conten~ion that the polarizability of a 

cation is increased by lattice interactions, whereas 

the polarizability of an anion is decreased even more. 

As Ruffa himself admits, however, some of the parameter 

that entered his theory could be estimated only ~oughly 

and his estimates of the magnitude of the changes in 

polarizability may have been too large. In addition, he 

based his estimates of the mea~ square excitation ener­

gies of the unperturbed ions on Pauling's estimates of 

the free ion-polarizabilities. As will be shown below, 

subsequent work has made available more reliable esti­

mates for the polarizabilities of the lighter ions in 

th~ free states and has raised doubts about the accura­

cy of Pauling's estimates for the polarizabilities of 

the heavier ones. 

The effect of lattice interaction on the polariza­

bilities of the component i~ns in the. chlorides and 

fluorides of lithium, sodium & potassium has also been 

anal~z~d by Mitskevich[118] on basis of variation thee-
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ry. His treatment leads to the same qualitative conclu­

sions that the 1· 5 polarizabilities of the ions 

increased in the crystal and that of the negative ions 

is decreased relative to the values that characterize 

the free ions. 

Pentrashen, Abarenekov and Krostofel[119]have pre­

sented a.model which a1lows for the modification of the 

Hartreefock distribution by the Madelung potential. The 

expected dilution of the cation and construction of the 

anion were demonstrated. The corresponding perturba-

tions of the polarizabilities have been investigated by 

Ledovskaya[120]. Qualitative similar results have been 

by Paschalis and Weis[121] using the model of 

an ion embedded in a hollow sphere, a sphere which 

carries an electric charge of the same magnitude but 

opposite in sign to that of the ion considered. 

Wilson and Curtis have treated the variation of 

anion polarizabilities in the alkali halides using the 

model of a compressible conducting sphere. They assume 

that the relative decrease of· the · polarizability expe­

rienced by the anion is proportional to the compressive 

force acting upon the anion. This force was approxi-

mated by the Coulomb force. Applying their model to the 

alkali halides having the sodium chloride structure, 



they found free anion polarizabilities that were essen-

tial ly · equal to the cube of the anion radii. The 

refractive 1.·nd d t · ex a a did not seem to require sign1.-

fiant enhancement of the cation polarizabilities. 

Pirenne and kartheuser[122J have obtained a set of 

free ion polarizabilities that is based on the presum-

tion that crystal polarizabilities are enchanced by a 

dipole-dipole interaction. Some theoretical support for 

this position, which contradicts Fajans principle~ is 

given by Heinrich. 

An alternative approach to this problem was made 

earlier by Burns and Wikner[124]~ who calculated the 

polarizabilities of the fuloride ion from the approxi­

mate wave functions proposed by Yamashita[125] for the 

f1~ee ion and for the ·fluoride ion in the crystal of 
o°!> 

LiF. They obtained a polarizability of 1.31 A for the 
1 

fr~e ion but a smaller polarizability of 1.11 f:i for the 
!-

contracted wave function~ of the fluoride ion in the 

crystal. The model which we present b~low is related 

cohceptually to the results of these calculations. 

A model for the polarizability of anion in crystals: 

This model can be based on the following argu-

ment~. The major contribution to the polarizabilities 
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of a closed she1·1 atom or ion is made by the el~ctrons 

of its highest occupied sub-shell. In the halides ions 

these electrons and relatively weakly bound and might 

therefore be expected tb respond to a polarizing field 

rather as if they were the electrons of a conduction 

sphere. Classically the polarizabilities of a conduc-

ting sphere is the cube of its radious. In applying 

this concepts to a halide ion, it is not clear how the 

radius should be chosen. We shall defer cosideration of 

that question until a later section; for the moment, we 

simply assume that the polarizability of an anion res­

ponds to its environment as if it were propotional to a 

radius cubed i.e. to a ·volume. 

We would not except th~s model to apply as well to 

the polarizabilities of cations and of the noble gases 

since the ionization potentials of these systems are 

much lighter than those of the halide ions. That one 

s~ould not except a proportionality between polarizabi­

lity and volume in general is shown by the from of the 

of these wel 1 known quantum the_ory e:-:pressions for one 

electron polarizability as the square of a sum of terms 

of the for-m, 

,. ~ ·.::- and < ..Mt l'j r-.. i.. (4-61) 

wheie ~ is the radius from the nucleus to the ith 

electron is the corresponding one electron wave fun-
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ction. In a condensed phas~ we assume that an increment 

dF of t~e compressive force results in a proportionate 

decrease of the polarizability~ similar to the decrease 

in effective volume. Thus ·we write . for the ith ion 

where l<i is the constcmt {l,!lB.lo~us ; to a compressibil­

ty. Integration yields 

0 
= ln C>{i 

where «~is the polarizability of the free ion. 

Let us approximate the lattice free energy U of a 

crystal 

potential 

as a sum of the coulomb term and a repulsive 

we ignore for the moment the K.E. and 

entropy terms and the London potentials. n,e use of a 

more elaborate model will ·be discussed in a later 

section. Thus we write 

u ..-«e,,. ----- + ¢( r) 

where~ is the Madelung _ constant. 

ne,rest neighbour distance, ~ 
~ du 

( -----) dr 
= 0 

At the equilibrium 

Here the attractive and repulsive forces acting on the 

ions are in balance and we may write for the compres-

-sive ·force F(re.) 

F ( re ) ~ - <j/( re ) = o< e 7 r~ 

Then equation for correlating ionic polarizabilities 

between different crystals with the same structure 

(4-62) 

(4-63) 

(4-64) 

(4-65) 

(4-66) 



because 

ln oq = Q 
ln o(i. 

0 
or log <Xi,= log « .. -

we have ignored the difference between the compressive 

forces acting on ions of differing "size". 

Model - 1 

+ 
It was assumed that the polarizabilities of Li 

d f N + . an · o a remain constant at their well-known vaccum 

o• 
values of 0.0283 and 0.148 A, respectively. In each of 

the lithum and sodium salts the polarizability of the 

halide ion was obtained by subtracting the polarizabi-
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(4-67) 

(4-68) 

lity of the cation~ assumed to be constant~ from the · 

polarizability per ion pair of the salt. These anion 

polarizabilities were extrapolated by means of equ. (4-

68) ta the va 1 ues of i:-; for the ca1rrespand ing potassium 

salts and the polarizability of the potassium · ion was 

obtained for each salt by differnce. The values ab-

-t;ained ·far 0( ( ~::+) ranged from 0.75 to 0.84 
0'3 
A with no 

~ 
- l. 

obvious trend with "°e it · was ther-efore assumed that 0( ( K 

-1 
was appra:-: ima te 1 y independent of 1r e. • The average 

-+-

0 :3 C), 
value was 0.787 A with an average deviation of 0.024 A 

this 
-2. 

value was used to «(X) at the values of re ob-

taining in the potassium salts. These from the lithium 

-2. 
and sodium salts to e:-:trapolate to re for the rubidiLtrn 

-r 
salts. The value s of ~(Rb)~ obtained as before ranged 
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from 1.31 to . 1.36, and again showed no systematic trend 

with the values obtained from fluoride and iodide 

salts were almost identical. 
+ 

The average value of ~(R~ 

1.328 
o~ o' 
A with an average deviation of 0.015 A was 

then + used as before to obtain «(Cs) in CsF. 
c,> 

value obtained was 2.31 A. 

Model - II: Variable cation polarizability. 

Here the 

It is very likely that the polarizabilities of the 

alkali cations are larqer in ionic crystals than .in 

The magnitude of the increase is far from 

certain, however, since the increase resulting from 

electrostatic effects is opposed by the repulsive inte­

ractions with neighbouring i6ns. 

The approximation poroposed by Ruffa fo~ the pola-

rizability of a cation in a crystal can be written in 

the form 

++ ½ 1/2 2. 
D<o/{)(,C!== (l-2.434-tX.o / n • re) 

. •.- -t-
where °"c,is the free-ion polarizability, n is the total 

number of electrons in the ion, and~ is the nearest 

neighbour anion-cation distance. This e:-:pression has 

been used to calculate cation polarizabilities in the 

alkali halides on the basis of the spectroscopic esti­

mates of the free-ion polarizabilities rather than the 

PauJing estimates used by Ruffa• The r~sulting values 

(4-69) 
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for + 
Rb and es-t- though smaller than Ruffa ' s, ap-

peared still to be much too large on the basis ·of ·the 

values obtainea by difference for the polarizabilities 

of the anions i n the crystals. Thus for example in the 

fluorides, the resulting value of ~(F ) increased as 

e xpected from LiF to NaF but then declined through the 

salts 1:if Kt a nd Rt to unreasonably 
0~ 

low value of 0.23 A, 

in CsF. It therefore appeared likely that overestimates 

also the polarizabilities o ·f Li+ and Na+in their salts. 

In the "bootst1~a,p" procedure, it has been assumed 

that the functional form provides a reasonable appro xi­

mation for interpolation or extrapo~ation with respect 

to r but it has been used for this purpose in the 

following empirical in which C is a constant 

characteristic of the ith cation 

c~ 
- ---♦---

te 

For the range of values of C~ which has been found 

useful to describe the experimental data is very ~lose-

~ 

10 approximated by 

+ + :i.c:/'fe °'~ = 0(0 e. 

Sum rule analysis of free ion polarizabilities: 

First an analysis of the polarizability of a sys­

tem of non interacting free ions will be made. Conside­

ring one of the isolated ions for the moment, its 

static electronic polarizabilit~ may be obtained direc-

(.4-70) 

(4-71) 
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tly from the quadratic Stark effect since at ordinary 

temperature the ground state of the ion is the only one 

having an appreciable probability of being occupied. If 

the electric field is in the x direction, second order 

perturbation theory yields for the polarizability, th~ 

results. 
'1 

(X, = 2e ~ ..,.~\< v'( x I v->j;E v'r 

where X = ~ :-:~ 
i. 

the x~be ing the x co-ordinates of the 

individual electrons and E 1 = E '" '( '{' y 

first order contribution since for 

E~. There is no 

free ions("f\x\v}:= O. 

Evaluation of the e x pres sion (4-72) is complicated by 

the fact that it requires a knowledge of the energies 

and wa v e functions of all the states of the system, 

which is generally no ava ilable. Consequently, it is 

necessary to know the wave functions as well 

s pecific energies of a ll t he quantum states. 

as the 

Such a me ans is ava i lable in this case in the form 

qf a sum rule which was discovered 
~ 

Thomas and from a consideration of 

independently by 

the dispersion 

for~ula for optical frequencies from the standing point 

of the corresponding princ i ple. 

from the commutation relations 

[ Cl · • p . 
l · l 

J = iif.. 
l.J 

It follows directly 

for the electronic co-ordinates and momenta and may be 

writte n in the following mann e r: 

(4-72) 

(4-73) 
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'2. . -a. 
(Bn m/h _) = n (4-74) 

where n is the number of electron in the ions. Identi-

cal relations hold for 

y = Yt and 

The use of (4-40) enables one to express (3-38) as 

O(= (2if' /E:) L. ·E , \<vlxji)=if h~n/4rfm ti. (4-75) 
y' y y . ' 

where~ is a parameter whose magnitude is determined by 

the equlity of the right hand sides of (4-72) and (4-

7&). Because the sum rule is identical for all three 

co-ordinates, the polarizability is independent of the 

direction of the field. Moreover, it . may be seen that 

the expression for~ has been reduced to a dependence 

upon only one unknown parameter i.e.«~!. The 
e;-

➔-

qLtantity E
1

, 

may be loosely reffered to as being a mean e:-:ci talion 

energy although this designation is not a precise one 

since the values of such quantities are dependent _ upon 

the sums from which they are obtained. 

This fact may be illustrated by obtaining an ex- · 

pression fcir the polarizability in another way. The · sum 

rule (4-7~) may be simplified by taking advantage of 

the matrix sum rule, 

~ ... l«I x·, v;( = <vJ /fv)-Kvl xiv)( 
Yy- · 

to yield the following: 

1- '1. 
Bnm/ h 

1, . 2. 
Bnm/ h 

l; <rl /jy) 
E: <rf Yi.Iv-) 

= n 

= n 

(4-76) 

(4-77) 
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= n 

wher-e advantage has been made of··the fact that <vlxlr)= 
<y\v\y > <."'I z\"' 1 I > = 0, 

~x 
and wher-e E2., 

par-ameters whose magnitudes are determined by the equa­

lity of the left hand sides of (4-74) and (4-7¥). 

Equations (4-77) may be simplified further by the 

use of the principle of spectroscopic stability . Acco-

rding to this principle, sums of the form 

~m 1l(nmlAql 1\•m;)-( -2 , Where mis a space.,quantization index, are 

independent of the axis of the quantization so that 

~ . .'.(nm I A In• rhfJ 2 
= F , j/n m I Ay I n' m•> / 2 

m,m I q p ,m m "'°' 
?. ,m' ,ml<.n m j Azf n' m•) I 2 

= 

In this case, the result is 

Consequently, equations (4-?7) reduce to 

( ~n'm1t?) ?• <+ f} /Y)= n (4-78) 

where the E~have been replaced by E.,. In a similar , 2. ,.. 

➔ 
maQner, one may define as E

3
given by 

~ 

(4-79) 

So that we have as a second expression for 

'1 ' ~ ::t 
f(; = 2e n c/ E.a.: E1 (4-80) 

where The result is again independent of 
. ➔ 

direction in agreement with (4-95). The quantities E
1 

, 

➔ ➔ 
E~ and E~ which may be called the mean excitation 

ener-gies of the f i 1rst, second· and third kinds res pee-
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tively, satisfy. the relationship, 

lt = l2.. ~
3 (4-81) 

Although they are not equal, one might generally expect 

them to be of the same order of magnitude. A specific 

comparison of these quantities is made by the relation 

oc 1 _ R 
4 

n E2 ( 1) / E2 ( 1) 
o<i. - ( --~-2.____ ) ( _2 _______ 1____ ) ( 4-82) 

R2 n1 E~ (2) / E; (2) 
A system of non-interacting free ions is electric 

dilute so that the effective and applied fields acting 

on a given ion are the same. Under these conditions, 

the polarizability of the system, is the sum of the 

ionic polarizabilities, and is equal to the total 

polarization 

"' X = L 
·~ =\ 

divided by the applied field. If 
M 

. "' = ~ x~ '''- ~ ,:, 
where N is the number of electrons in the system and~ 

is the numbe r of ions, then 

kind that 

"" L I><' i. 
i.::. I 

x~ \ r) 

of the third 

Because there is some ambiguity in the value of the 

mean excitation e nergy, it is dangerous to attempt to 

determine polari zabilities by estimating E's. However, 

the value of (4- 75) and (4-82) to our approach to the 

(4-83) 

(4-84) 
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determination of the polarizabilities of ions in crys­

tal lies in calculating E's directly from theoretically 

determined free ion valLtes. Then given a crystalline 

environment in which the ions maintain their individLta­

lity to good approximation and the crystalline interac­

tion is known to the extent that the change in the E's 

from their free ions valLtes may be estimated, values 

for the ionic polarizabilities may be obtained. The 

electronic polarizabilities of ions alkaline earth 

chalcogenides were obtained by Tessman et.al.(116) by 

performing an analysis of the crystal refraction data 

on the basis of the Lorentz-Lorentz relation employing 

the additivity rLtle. The electronic polarizabilities of 

ions in alkaline earth chalcogenides crystals obtained 

by Tessman et.al. may by Boswarva[68] differ from free 

state valLtes (Fajans and Joos), (Pa uling), being larger 

for cations and smaller for anions. 

When the ions are transported from fre~ state to a 

crystal, their polarizabilities are changed. According 

to RLtffa[117) one can write 
+ '1 

--~- = __ .f.¼.!.-
oC'r E'l-

j- c" 

- " where Ee - Et..- et,'\ . 
-t •-t 

~ and Kc are respectively the 
f ~ .,. 

free 

state and crystalline state polarizabilities of a ca-

tion. VM is the Ma delung potential, E
7 

is the energy 

(4-85) 
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parameter 

a. 

defined as 
l. ~ 

e ii 'r\ Et= 
"M 0( i-\ 

where e and mare the electronic charge and mass respe-

ctively. n is the number of electrons in the ion.~ is 

the Planck's constants diveded by 20 An equation 

similar to (4-85) cannot, however, be used for anions 

because of the excitation levels to the anion polariza-

bilities in the crystal which has no counterpart in 

free state. In addition, quantum states above the first 

ionization continum contribute substantially to the 

free anion poalrizabilities. Ruffa therefore obtained a 

different expression for anion polarizabilities which 

is as follows 

--~c::.­
°'t 

where °'c- the crystalline and free state 

polarizabilities of anion, Ef- is the energy parameter 

ana 1 ogus to. E.ft 

Ea.- = ¼< ( 4 

. Crystalline state parameter Ee- is 

+ E I + Q 

where R is the interionic seperation, e V~is the repul-

sive energy, Ethe electron affinity of anion, I the 

ionization potential of cation and Q is the energy of 

interaction between the free atoms and the crystal 

environment. 

(4-86) 

(4-87) 

(4-88) 
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.4.3. 3 Methods for the calculation of polarizabilities: 

Variational procedure of screening constant method: 

The polarizability of a molecule can be approxi­

mated by Hyllerrss[126] and Hasse[109]. Let us consider 

an unperturbed molecule containing n electrons and 

nuclei for which the quantum mechanical Hamiltonian 

operater is H~. The energy of the molecule in its 

ground state is designated by E&. Associated with this 

ener-·gy .i.s a wave function \JJ • o· which satisfies the 

Schodinger equation and a normalization condition: 

Ha"1o = Eallto 

J '11: ~,ieJ r "1\ == 1 

when the molecule is subjected to an external distur-

bing influence there is a contribution to the Hamilto-

n ian H1 due to the perturbation effect. The total 

Hamiltonian for the perturbed molcule is then, 

Corresponding to this Hamiltonian there is a wave fun-
': 
2tion and an energy E. The perturbed wave function can 

be written approximately as: 

(4-89) 

(4-90) 

(4-91) 

~ == (1 + AH )~0 (4-92) 

in which A is the variational parameter. This parameter 

is evaluated by requiring that the approximate value of 

the energy: 

(4-93) 



105 

be a minimLlm. S b t · t · ,us 1 Lltion of the Hamiltonian given in 

equation (4-91) and ofJ,given equation in (4-93) into 

wave functions, the expression assumes the form: 

E - Eo = !j_~-~~-~-2_W_z_~-~~-~~~-~--w3 ) A2 

in which 
1 + 2W1A + W2A2 

w, = f-JJoH 1 \Vo d.,.-n 

w1 = j-JJ
0

H ('J,,0 d r"" 

wi = ]'1
0

H ~ '110 dr')'\ 

o I = f We ( Ho - Eo) H I Ulo d r 'Y\ 

Gil. = J'oH1 (Ho- Eo) H1~dr'Y\ 

When the constant A ls varied so as to minimize the 

value of E, equation (4~95) gives the shift in the 

energy level due to the perturbing effect. Let us now 

apply this result to the special case of a molecule in 

an electric field. In order to study the pcilarizability 

c:;i'f a neutral molecule, the perturbation is _taken to be 

uniform electric field of intensity E in the x direc-

tion. The perturbing potential is then 
'V\ v 

= - e E,, [ - ~ Xi,. t L. :l4't X..c] 
" t::1 o<.=1 

Here e is the absolute value of the charge on an elec­

tron. The Xi andX~are the x co-ordinates of the elec­

trqns and nuclei, respectively, and the Z~ are the 

(4-95) 

(4.96) 

(4-97) 

(4-98) 

(4-99) 

(4-100) 

(4-101) 
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atomic number of the nuclei· N th t of the . ow e x-componen 

permanent dipole moment of the undistrubed molecule is 

given by 

in which averaging 

with respect to the unperturbed wave function. Since 

all electrons are equivalent, we can drop the subscript 

on iL and call is~, the average x co-ordinate of an 

(4-102} 

electr·on. Thus it may be seen that when the integral W1 

defined above is evaluated for the perturbation in 

equation (4-101), the result may be written as: 

The expression given in equation (4-95) or the 

energy shift is then, ~ 

E - E = =~.Jt_E_ic._°t~.!~1~_'2:._~~=-~~\.€~2-~~(_~_:'--~3_: W~M,._~ )() ( 4:..103) 
O \- I.AM.-xex + ,11,,:~ W 1. 

This expression for the energy shift is of the same 

form as equation E - E
0

• Hence the evaluation of the 

Q~ and W;enables us to calculate the co-
' 

,, ~ 

ef.-ficient oft}l, which is simply related to the polari-

zability. First .we notice from the definitions of theWi 
't 

that both the W~and W1M,,,vr-e proportional to ~x 

Hence these terms do not contribute to the polari­

zability and need not be considered further here. The 

integral o1 may be shown to be zero, and the other 

integrals in equation (4-103) may be shown to have the 



following values: 

2 2. 2. ~ 
\[ex - 'l 

., ' w =M.xCx + e E .. n N) + en - 1) e~>') ( )•:a - x) ,... . 
Q =¼ 4 2 a e ,I. 

0 · x 

in which n is the number of the electrons in the mole-

0 
0.5292 A is the Bohr radius. 

Th t 'Xt .. ;: x-)J. e erm ~ is the mean square deviation of an 

electron from its average position in the x ~irection. 

The term ex1 - ~) ex1 - ~) gives the average correlation 

between the instantaneous x co-ordinates of two diffe­

rent electrons. This correlation would be zero for •a 

molecular wav e function. However, for polyatomic mole­

cules this correlation is appreciably large if the wave 

function is either of a chemical bond using atomic 

orbitals or else the wave function is of the correlated 

molecular orbital type. 

The variational parameter A may be determined by 

se"t.ting e-t{-> equal to zero and solving -fo1·· A. In the 

Iimit of low electric field strength, it may eas~ ly be 

shown that A 

A = 

varies as E and the 
;l 2-

~ )(, ~ ')( - W'l. 
G2.2, 

with the result that 
1. 2. ,1. 

E - E
0 

=Atxf.x' --~~~f ;_H_':) __ 

form, 

Compariason of this result with equation e4-104) and 

the use of the expression given in equations (4- 107), 

107 

(4-104) 

e4-105) 

(4.106) 

(4-107) 
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and 

for 

<4 -l05) for Q~and W~yields the following formula 

x x component of the polarizability. 

This result, which is v a lid for molecules is a genera-

lization of the expression for the polarizability of 

atoms which was obtained by Kirkwood- (106). 

The polarizability of an atom i s isotropic. If the 

wave function for an atom is approximated by an atomic 

orbi t al wave fun c tion, the second term in equation (4-

108) vanishes. Further more, in an atom:-:= 0 

_1. - i. 
= z1 = 1/3 ~. Thus equation (4-108) becomes, 

(4-108) 

°' = 419 a 0 L n t c r= ~ , -i.. < 4 • 1 o 9 > 
.: 

When n is the principle quantum number of an electron 

and ~
1
\s given, by. the· relation 

- J~rc:+21 Rd~)" . Y\-. I( k * ... 
l'j·k = ~)~r~pq"iJ~- = ( -i[i_~-Si.)) (',~1 ( 2nL + j ) ) ao 

.. 
where n, is the effec tive quantu m number a nd (~ -S~) .i. s 

the effec tive nuclear charge for various electrons in 

an atom. 
' • ' , 
Estimation of screening constants: 

The po larizabi 1 i ty_ can be est .ima ted easi 1 y and 

quite accurately by means of "Screening constants" 

using the formulas (4-109) and (4-110). The basis for 

(4-1.10) 

this treatment is the fact that an elec t r on in an atom does 

not "feel" the pr-esence of the nuc 1 e us comp 1 ete 1 y, in as 
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much as the el t ec ran is screened from nucleus by the 

other electrons. Hence, although the charge on the 

nucleus is JCe, and electron in the atom acts as though 

it is moving in the ·field of a nucleus of (Z -S)e. The 

quantity Sis called the screening constant. Fr-om the 

knowledge of one property of an atom it is possible to 

determine a set of scr-eening constants. 

We assume that each electron in the atom may be 

repr-esented by a wave function of the form, 

'1,.. = 
Y\, t,IWI 

Rll,t ( f) = 
..,. 

YT (~,9) 
e -(2'- 5?/''ri' 

Hence the (Y.t_) are the normalized spherical harmonics 

defined by the equation 
. "M ! W\f-W\ /(i_t_+_l J_(_.C._-,=--Yfl-\-1! 
~ Ce,<p) = '- -- 1n-(-.C;j~ff!!/ __ 

where is the units of the Bohr- radius, 
0 

a 0 = 0 . 5292 A. 

At large distance this function behaves like a hydrogen 

like · wave function of principle quantum number n in a 

field of nuclear char-ge (Z-S).The effective quantum 

number n* and the ef ·fec ti ve nuc 1 ear char-ge ( ~ - ~ ) for 

various electrons in an atom are given by the following 

empirical rules: 

(i) If the principle quantum number of an electron 

is n the v a lue of~ is obtained from this table: 

(4-ll.1) 

-----------------------------------------------------------
n 1 2 ' ·-· 4 5 6 

... 
1 ...., 3 3.7 4 n ..:.. 
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For determining (z-s), 

vided into the followi· r1g groups, 

(ii) the electron are di­

each having a diffe-

rent shielding constant: 

-----------------------------------------
1s 2s 3s 3d 4s 4d 5s 5d 

2p 3p 4p 5p 
--------------------------------

That is the sand p for a given~ are grouped together, 

but the d and the f each considered separately. The 

groups are considered to be arranged from inside out in 

the order given, above, with ls as the inner most. 

(iii) The screening constant Sis fo~d. for any 

group of electrons from the following contributions. 

(a) Nothing from any shell outside the one being 

considered. 

(b) An amount 0.35 from each other electron in the 

group considered (except in the ls group where 0.30 is 

us~d instead). 

(c) If the shell considered is ans or p shell, an 

amount of 0.85 is contributed from each electron, with 

total quantum number less by one; 

from each electron still further in. 

and an amount 1.00 

(d) If the shell is ad or f shell each electron 

in the groups closer contributes 1.00 to the screening 

constant. 
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CHAPTER 5 

CALCULATIONS Al\10 RES UL TS 

5.1 Derivation of repulsive constants: 

In order to take account different interactions 

existing in r-utile structur~ (oxide cr-ystals), the 

cr-ystal 

chapter 

energy can be expressed in equation 

When two ions combine to form 

(2-1) of 

a stable 

molecule two equilibrium conditions have been establis-

hed. These are pre sented in chapter 1. At equilib,,..ium 

position, the equilibr-ium distance r- is called the bond 
0 

lenqth. 

It may be observed that the bond between two atoms 

obey Hooke's law by taking the analogy of a spring. 

Thus the e:-: pr-1:•ssion for· ,~es tor- inq force may ·be writ ten 

as: 
F = Ke (r - r) = - K x 

b e' 

whe~e K and rare the for-ce constant and 
e 

the inter 

nuclear distance respectively. Ther-efore the ener-gy of 

a crystal is given by: 

U( :-: ) = U 
x=O 

+ V :-: 2 
e 

In this case, - the energy curve is parabolic. The crys­

tal formed by the analogy of Harmonic motion is called 

the simple harmonic oscillation and the frequency of 

the oscillation is given by 

(5-1) 

(5-2) 
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where ·, is the reduced mass o·f thesystern and the ene1rgy 

is given by 

u:h = (n +y~ -+," {-f-. 
where n = (>,1,2 ••••.• etc. 

For n = D, equation (5-4) can be expressed as: 

U 
O 

== 1/~ ~- = ¼ t'l w = y;/i »e 

The expression (5-5) is called the zero point energy. 

The vibration of molecule results in only small distor-

tion of the bond from its equilibrium length. I·f >: is 

the displacement of the bond from its equilibrium 

length, a Maclaurin series expansion about x = o gives 

At :-: = o, the potential energy is a minimum and there-

. fore, 

If only the next higher term in the expansion is re-

" talned,the expression valids near the equilibrium posi-

tion and have the form: 

2 
u ( :-: ) -- IJ 

x=O 

) , , 
x=O 

Comparing this expression with equation (5-4) gives 

= Ke or 
iu 

-... 
' L ur 

) = K 
e 

Thus the· ·force constant is then the value of 

') 

ct'·u 
--·--;)-- near 

ctr~ 

(5-3) 

(5-4) 

(5-5) 

(5-6) 

(5-7) 
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equilibrium distance r = r · 
0 

Now the total energy expression (5-1) of a crystal is 

again written as: 

u = 
r 

Here zero point is neglected because it has very small 

contribution to the total energy. 

Now equation (5-8) can be also be wri t ten as 

u 

dU 
-a;--

4~-­
cir~ ,. 

= 

r 
d,-,.Z

2
e

2 
- ·---2--

r 
+ 

= __ _ 2~ii/e
2 

6e -;7- + 

420. 
- -·- 8 -

r 

SD / 
-- - -~- + /J 

r 

72D 
10 r 

From equation (5-10), we have , 

(5-8) 

(5-9) 

(5-10) 

( 5 -11) 

=a+ r ~, (5-12) 
dr 

where a= 

where b = 

2 2 u.,.z .e 

r 

6C 8D 
+ --G-- + ·- - 8 . ---

r r 

) = b + /-cf> 

2/i,f
2

e
2 

42C 720-- -------------6-- -----8--
r r r 

but r (---~u ____ , = 3TV.rv/3 
0 dr 

/I< 

and 

Therefore (5-12) and (5-14) reduces to 

(5-13) 

(5-14) 
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a + r ,¢ 1 ~Vm/l - ------·--- (5-15) 
K 

or 

= Mir where M = 
K 

-· a (5-16) 

and b + r~ j" = (5-17) 

or r 2¢'11 = 9Vm 
b 

___ K ___ -

or r ~¢" = _2~~ 
K 

- b = X 

, .. X 
where• X= 

9v 
(5-18) 01" - --z- __ _ra.. - b 

r K 

¢',, X r X ------- = --z- -·---- = (5-19) 
¢' r M rM 

After solving eqL1ation (5-19) the 1repulsive parameter-s 

can easily be found out for different repulsive paten-

A. BL potential (1918) 

The form of the repulsive potential 

·-n 
A r 

,,, 
--

¢" w-
or-

n = 

n A r-

+ n (n+l) A 1r 

n(n+1) Ar 
-(11+2) 

- - -----c--y----A - n+1 n r 

ii+1 X 
----·- = ·- -~r"f:C r 

X 
( -- + 1) -­

M 

or~ 

X 
M 

X 
= rM 

n+l = -

- 1 

(5-20) 

(5-2.1) 

(5-22) 

(5-23) 

X 
-M-

(5-24) 
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From equation (~ le) 
J- 0 one can write 

a + _?~Y .. rn~ 
K 

j TV n. 
n,1" 
K ---- - a = M (5-25) 

Substituting (5-21) in equation (5-25) it may easily 

write that, 

A -- ____ J'1___ r ( n+ 1) =-· M - --·--r n 
nr n 

= 

8. BM potential: 

The form of repulsive potential as: 

J6 = 13 e - r /p 

I3 
f' 

e-rft., 

e -r/p 

substituting equation ( 5-28) and ( 5-2 9 ) in (5-19) one 

car, obtain, B e-r/p 
71= X 

---------- = rr-
13 e-r/p 

p 
or 1/ = - _I_ 

ri·l 

Mr M 
= --x- = - -x- r 

From equation (5-15) may easily write that 

(5-26) 

(5-27) 

(5-28) 

(5-29) 

(5-30) 
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a + r --------
K 

B = - -~- P e +r/f 
r (5-31) 

C. Verwey potential: 

The form of the repulsive potential as: 

(5-32 ) 

(5-33) 

~II = - 13 :-: 12AC.r - 14 

Substituting equations (5-33), 

be written as: 

(5-3 4) in (5-19) it can 

- ----------- = 

or •1";," -1 -. . ..:, r -
- ____ x_ 

rM 

X 
--- - 1 t:. (5-35) 

From equation (5-15) one may write, 

3TV ~ 
a + r (- 12.M r-10 = ----\ll.-

K 

r ( - 12 ,M ..--1~ = M 

or, 12.M. r -1 2 = - M 

_.r:;_ r 12 
12 

(5-36) 
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D. VS potential: 

The form of the repulsive potential as: 

(5-37) 

¢/ 2re -Kl· 2 = - :XK 
1 1 

(5-38) 

2 
~:-2 P" = - 2 )..K e-K1:r_;..4rA e-K 1 r 2 1 ·1 1 · 1 

(5-39) 

Substituting equation (5- 38) and (5-39) in equation (5-

19) one may obtain: 

From equation (5-15) it can be written as: 

2 
r ( --'x1 ~:: 1 2r-e -I<1Y - l"I 

:X = 
1 

E. GT potential: 

Ki 
1 

Th~ for-m of the repulsive potential as: 

-Kr 
2 

JlJ -
_ _p ___ 

e 
r 2 -Kr 
l?~ -Kr·2 pe 

~- 21,.. .. e - -------= 2 r r 
2 

2 -Kr 
r1 

p l( -IC:t· _l2_l2,_ ____ 
= ..::. ---- e 

2 
2 r 

? -Kr 
- Kr : pe 

= 2p~-: G -=---z--
r 

(5-40) 

" 
(5-41) 

(5-42) 

(5-43) 



= 

,-Ji .. r = 

, , 2 
, 2 Kr -r 1 ) 

---------·--------

-I· 

2 r 

2pk. - K.2r. 

c:p C 
I r 2 

- \l' 

---------
r;, 

I- 2 ') = 2pe - u· ( 2 k '-
r 

-Krc = 2pe ( 

r / , ') 

21( \ - ' ·:· f'3'.·('. + 1 

2 r 
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(5-44) 

(5-45) 

Substituting equations (5-44) and (5-4~) in (5-19) one 

may write as: 
,, p2 i.;. Tl ' 2 

!, l' + 1..:.:- + 1 ______ ,,_______ ) 

or, 

or, = (5-46) 
2i'-1 

Let -
X 

= a. 

Then equa tion (5- 46) becomes, 

·:; }, ':) 

21.~r. + l~i ·'- + 1 
------ -------- =a 

2 Kr
2 

+ 1 

~ 

2 r ""-k.a - a = o 

[, ,.. ' 
or, 2r k '· + r ~ (l - 2a)K + (1-a) = o (5-47) 

Thi s is the quadratic eq u at ion in K. 



Therefore the solution of equation (5-47) is 

From equation (5-15) one may obtain, 

Mre I' 2 ,r 
p = -----------

F. Islam potential: 

The form of the potential is 

· Let m 

-ltl 
I e 

1 
z 

1,1 
~ II = - C,... -- ¢ - c,1\1( (S'v - 1 ) 

or, 

or, 

or, ov m 
r 

:::::: - X 
r t-: 

(,.,m - ~+ 1)= - >: /M or, ..... 

m d ---o.,~ ,., 
r 

X 

r M 
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(5-48) 

(5-49) 

(5-50) 

(5-51) 

(5-52) 

(5-53 



or~ c:f\-(m - 1) + 1 = - :-:/M 

or, c,-.,(m - 1) = X X 
--- - 1 = - ( -n.

1
- + 1) f.; 1'1 

or, m 1 1 X = -y.:;- + 1) 6'--

1 " A or~ m = -r: + 1 ) + 1 ~ 

But 

Now from equation (5-15) one may obtain, 

m a + r ( - '1'----

a - mo-I 
- m 

e 

-m Imc,.,e = a 

r 

·,;l'V (3 _ __: __ 1.1 __ 

K 

·.'•J.'V A 
- .) - i.1.!:___ = - M 

K 

I = 
r 

Ir, 6"' 
ru 

e = 
in av 

M 
---- - e Ill 

G. Proposed new potential: 

~ 

~ The form of the potential is 

1 
Where ()-.; = Z + -z-

Let m = 

-~ - (3 +~m) r 

120 

(5-54) 

(5-56) 

(5-57) 

(5-58) 
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(5-59) 

and = ( - 60 + 120,m + 3 ~(C,., - 5) m - 3c,J?m 2 

(5-60) 

By solving equation (5-57) and equation (5-58) one obtains. 

2 2 2 2 
( r;v -7 +()l a)+( ~ --7 + c,la) -4 a1,, 3(4- i:J. ) 

m = (5-61) - ----2 ""2 

and from equation (5-57) it can be easily written that 

G = - - ------ -
( 3 +d'l rn ) 

H.Buckingham potential: 

The form of the potential is 

James and Catlow[159] has given the 

fol~owing values for the parameters appropriate for the 

n~arest neighbour and next nearest neighbour interac­
~ 

tions 

For TiO~ 

A =656.7 ev~ =0.40431 R. C =O 
+- +- . +-

(5-62) 

A =22764.3 ev, =0.1490 0 .P -6 
A~ C · =27.063 ev A 
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A ➔ =1056. 8 ev, p = O. 3683A', C =O 
·- +- +-

A __ =22764. 3 ev, p = O .1490 A, C =28. 43 ev fr6 

5.2 Electronic polarizability and van der Waals constants; 

a) Electronic polarizability: 

The electronic polarizability plays 

a very important role in several of the theories of 

long range intermolecular forces. Matter is made up of 

two kinds of charges, free and bound. Free charges can 

move through considerable distances, whereas bound 

charges such as the electrons in atoms can shift their 

average positions only by distances small compared to 

atomic dimensions, that is, by a small fraction of an 

angstrom. An electron in an ·atom maintains a stationary 

orbit by balancing the force of attraction towards the 

nucleus with centrifugal force generated by its motion. 

The . internal electronic forces in atoms and molecules 

large compared to the forces produced by 

external electric fields. In a conductor a fraction of 

the electrons are free to move from one place to anot-

her. These free electrons distribute themselves so as 

to make the electric potential constant throughout the 

conductor. Any other distribution of free electron 

would have a higher energy. In an insulator the elec-

trans are firmly attached to individual atoms, mole-
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cules or ions. When such a insulator is placed in an 

the electrons are pulled slightly in electric field, 

one direction while the nuclei are pulled in the opo-

site direction. This relative displacement of charges 

in matter is referred to as polarization. When two 

molecules approach one another a mutual polarization 

ta kes place. This polarization of the molecules may be 

an important contribution to the intermolecular poten-

tial. The extent to which the polarization takes place 

can be obtained from a study of the electric susceptib-

lity of the bulk substances. The detailed study of 

polarizability are discus sed in chapter 4.3 of 

thesis. 

this 

Acca rdi~~ to Pauling the free state 

polarizabil.i.ty «-ro·f an atom or ion can be e:-:pressed in 

an approximate manner as follows: 

(5-64) 

Where Z is the nuclear charge and k is a constant 

depending upon structure of the ion. Because ions and 

atoms of the same species have different electrical 

environments, the polarizability of an ion or atom 

varies some what with the substances. Thus a different 

set of polarizability obtained for different ion envi-
!a 4+ iH 2-

r-onment. Tt-ie C( - values of Si Ti , Sn and O are avai-

lable in literatt1re are shown in Table -1. TKS values 
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are shown in column 4 of Table -1. The free ion polari­

zability values are presented in column 2 of Table-1. 

It can be observed from Table -1 that polarizability 

values for some ions in a particular column or set are 

missing. Thus we estimated a consistant set of a~-

values for all the ions under discusion by means of II 

Screening Constant II method and are shown in Table-1. 

The basis of this treatment is the fact that an el~c-

tron in an ion does not 11 ·feel II the presence of the 

nucleus completely, in as much as the electron is 

screened from the nucleus by the other electrons. 



Ion 

Si4+ 

Ti4+ 

Ge 4+ 

Sn4+ 

02-

3 
Table - 1 : Electronic Polarizability of ions I in i ). 

I I I I 
FJb 

Present I 
I Paulinga I I TKSc I study I Set II 
I I I I Set I I 

0.017 o.o4 - 0.05 o.o4 

0.185 0.24 - 0.63 0.24 

1.0 a.Bo 1.0 

3.4 3.64 3.4 

3.88 2.75 0.5 to 3.2 2.16 2.75 

Set II: Reference No. b with missing values from reference No. c. 

a. Ref. 131 

b. Ref. 127 
c. Ref. 132 

I Effective 
I numbers of 
I electron 

14 

19 

21 

29 

7 

_,, 
l'v 
\.n 
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(b) van der Waals constants. 

The van der Waals constants C and D 

are the linear combinations of the van der Waals co­

effients <c;. ,d.j) for interactions of the various ions 
.LJ l. . 

pairs weighted by appropriate lattice sums. The de-

tailed study for van der Waals energy, co-efficients 

are presented in chapter iv. Here the above studies are 

described very shortly. In this thesis SK treatment 

based on variational theory is used mainly for deriving 

This treatment is most appropriate than ot-

hers. Because in London and KM formulas have large 

uncertainties. Thus one expresses the van der Waals 

energy as in eqn.(4-4). Where the constants have their 

usLta 1 meaning. The calculated value of van der Waals 

constants are shown in Table ,, 
..:.. . 

5.3 Lattice sums. 

The lattice sums for rutile type 

c;,ompounds obtained by 
6 

summing 1. ./r(for S) 
l J lJ 

8 
and 1. ./r .. 

l.J l.J 

( ·for T),where 1.. is 
l.J 

the number of j ions distant r .. 

from ion i.The lattice sums for rutile type compounds 

studied are listed in Table 2. 

5.4 Effective number of electrons: 

The effective number of electrons 

the number of outermost electrons of the cation and 

l. J 
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the anion. The values of cij when fitted in eqn. given 

11 1l 1/. 
be 1 OW C. • = 3/2 .efi/rd .rx. o( ./( t'( . /N. )' ~+ ( 0( ./N _)12 

J.J 1 J 1 1 J J 

give the effective numbers of electrons Ni or NJ which 

show a smooth trend of variation with atomic number Z • 

It has been suggested · ➔ 

~ by Scott and Scherage [12] that the plot of Nttff-vs Ze# 

(Fig.5-1) can be used to predict the values of N for 

any atom or ion. Values of N ~nd N.for rutile so ob-
J 1 

tained are given in Table-1. 
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Fig. 5-1 : Plot of effecyive number of electrons versus effective 
charges. 



T 
Crystal I 

I 

Si02 

Ti0
2 

Ge02 

Sn02 

ro 
(i) 

1.757 

1.945 

1.872 

2.052 

Table - 2 In.E,ut data 

I K•u 
13 2 

. I C6o 6 I ~ 8 I Ionic radii I Madelung I 

I (10- cm /dy.) I (10- erg-cm ) I (10- erg-cm ) I (i).. I constant I 
·~ .. I I I r+ Ir- I (Rutile type I 

2.78 

4.91 

172.80 

234.53 

443.08 

354.24 

77.64 

116.03 

236.92 

198.23 

0.506 1.251 4.77 

0.94 1.005 4.77 

2.212 

2.22 

3.86 523.91 283.40 0.59 1.282 4.77 2.185 

743.87 453.51 

4.69 1729.66 1045.41 0.79 1.261 4.77 2.115 

1941.75 1283.69 

Different entries ror C and D corresponding for different sets of polarizability values. 

•• Ref. 128 

u• Ref. 129 

Contd ••••• --' 
I\) 

'° 



Contd --- Table - ~ In.E,ut data 

vdW-

Crystal i____ Lattice sums• of f our oxides T I - USR ( Kcal/mol ) 

I s +- f s ++ i s -- I T +- i T ++ I -- I 
6 

SiO 5.963 0 .362 1. j32 5 . 646 0 .128 0. 671 96 . 90 
2 133. 20 

Ti02 ~.097 0 . 371 1.412 

GeG
2 6. 1E:5 0 . 375 1. !+25 

: -lsO~ 6. _323 0 . 3,39 1. ~f)7 
,:: 

• Ref. 127 

5 . 794 0 .1 31 

5 . 841 0 . 132 

6 .1 31 0 . '139 

o . 688 

u . 694 

0 .729 

134.51 
108. 16 

2c2 . 36 
291.20 

.331 .52 
433. 34 

_). 

~ 



131 

5.5 Repulsive parameteri and energy: 

The repulsive parameters and ener­

gies calculated under s tudy, have been shown in table 3 

and in table 4. Different repulsive forms have been 

used for calculating the parameters and ene rgies. 



Table - 3 : Va.lu,~s o . .' r •~nu::'...sive "D-,u:·a~::2ters. 

~ Polariza- ~ .3 - L J · - ,.. I i " 
Crystal I oili ty ~ n ~r -:le 10-12s-rg) I ( 10 8 cm) I B( ~o-1~erg) ! 

~ set X r 

Si02 

Ti0
2 

Ge0
2 

Sno
2 

• 
II 

I 

II 

I 

II 

I 

II 

5.34 

4.45 

4.12 

4.04 

4.45 

4.67 

5.13 

5.21 

67.42 

69.37 

68.69 

67.41 

72.61 

77.71 

74.18 

77.47 

1142.96 

1315. 96 

928.96 

829.91 

1381.70 

1856.75 

2836.29 

3217.94 

329 

322 

380 

386 

343 

3;0 

335 

331 

x V - 8 2 ·./er;:.ey -12 .t -K - -12 
r - •Cc 10 erg) I 

1 
( 10-12 cm) I 1e ~-r ( 10 erg) 

24.38 

25.72 

23.61 

22.66 

26.93 

;0.24 

31.68 

33.60 

1098.96 

1202.66 

988.66 

920.98 

1260.95 

1527.84 

!880.46 

2053.3,2 

Contd ••••••• 

h6.15 

47.86 

46.25 

45.06 

50.10 

54.~1 

53.35 

55.97 

-3. 

~ 



Contd ••• Table - 3: Values of repulsive parameters 

I G - T ,. 2 I Islam I Buckingham I M. Islam a, --

Crystal : P( 10-ae I K2( 10 
16x ~;~-~;:;: ) ~ I( 10-a2erg ) ~c= r- ~ ¢(r )=Ae -r/ -C/r6( 10-12erg I mc1=gI" - i G 

Si02 

Ti02 

Ge0
2 

Sn0
2 

1046.49 
1146.58 

1039.74 
967.f:IJ 

1280.88 

1555.58 

2108.38 
2;03.98 

o.Bo 
0.83 

0.63 
0.62 

0.73 
0.76 

0.69 
0.70 

48.71 

50.41 

49.03 
47.86 

52.77 
58.00 

55.64 
58.31 

865.71 

940.85 

777.99 
727.58 

1015.47 
1220.17 

1610.95 
1755.52 

2_.96 

3.01 

2.86 
2.82 

3.04 
3.14 

3.42 
3.46 

8.25 

6.26 

1.04 

1.10 

0.91 
0.85 

1.11 
1.24 

1.52 

1.57 

847.14 

927.26 

1030.62 

959.58 

1187.04 

1439.49 

24ao.52 
2645.84 

~ 

~ 



Table - 4 Different tyPes of repulsive energies. 

B?olarizabili ty I 
, _ 

' Calculated repulsive energy in Kcal7mol 
Crystal I set 

I 

Si0
2 

Ti02 

Ge02 

Bn0
2 

I 

II 

I 

II 

I 

II 

I 

II 

I B- L 
I 

970.80 

998.97 

989.26 

970.66 

1045.64 

1118.95 

1068.14 

1115.61 

I B - M 

789.02 

815.61 

796.20 

777.86 

853.82 

921.62 

893.74 

935.81 

I Verwey I V - s 

351.14 664.57 

370.'!f) 689.12 

339.98 666.19 

326.35 648.96 

387.86 721.47 

435.48 783.45 

456.15 768. '!fJ 

483.89 8o5.93 

I G - T 

701.40 

725.90 

796.10 

689.55 

759.93 

822.24 

8o1.22 

839.63 

I Islam 

643.07 

667.19 

643.08 

626.14 

701.37 

762.31 

756.14 

993.32 

I Buckingham I M. Islam 

-
-

118.97 

-

-
-

90.19 

794.96 

816.77 

813.28 

800.27 

857.37 

915.77 

880.10 

919.51 

...:,. 
vi 
+" 



5.6 Output results: 

5.6.1 

135 

Lattice energy: 

The lattice energies 

for rutile-type oxide crystals have been calculated 

using the expression (5-9) of this chapter. 

The results of the 

calculations using two different sets of electronic 

polarizability as well as seven different forms (A-G) 

for the repulsive interactions are presented in Table 5 

This 5 also contains experimental values of the lattice 

energy for comparison. 

5.6.2 Pressure derivative of Bulk moduli: 

The potential repre-

sented by (5-9) has also been used to calculate the 

dB 
pressure derivative of Buik moduli~ 

dp 

obtained for J;liL are 
dp 

The results 

of the calculations listed in 

Table 6 with available experimental values for compari-

son. 



Table - 5 : Lattice energies of four Rutile-type oxides. 
(Si02, Ti02 , Geo2 , Sno2 ) 

'olariza- l - U( Kcal mol.) Calculated l-u(Kcal/mol 
Crystal I bili ty - ucking M. Experimental 

I set I B - L B - M Verwey V - S I G - T I Islam I ham I Islam I 

Si02 
I 2733.73 2915.51 3353.39 ;039.95 ;003.a2 ;061.45 - 2909.56 3166a 
II 2741.85 2925.21 3370.52 ;051. 70 ;014.92 ;073.63 - 2924.65 

Ti02 
I 2404.16 2579.22 3053.44 2727.24 2697.33 2750.34 3139.89 2580.14 2858a,2873C 
II 2396.41 2589.21 ~40.72 2718.11 2677.92 2740.94 2566.81 2900d,29;0e -

I 2542.72 . 2734.54 3200.50 2866.89 2828.43 2886.99 - 27;0.99 ;03'f1,;05od 
Ge02 

II 2559.25 2756.58 3242.72 2894.75 2855.96 2915.87 2762.43 30g:Je -

I 2402.36 2576.76 3014.34 2702.20 2669.28 2714.35 2998.88 2j90.34 2783a,2924d 
Sno2 

II 2406.7 2586.51 3038.44 2716.39 2682.69 2729.00 2t02.80 2838e -

a Ref. 127 
C Ref. 129 
d Ref. 130 
e Ref. 131 ~ 

... \JJ 
CJ'\ 



Table - 6 : Pressure Derivative of Bulk Modulus 

Polariza-1 dB d Experimental 
Crystal I bili ty 

I B - L I B - M I Verwey I V - S I G - T I Islam I 
ucking M. Islam dB/dp I set ham I 

I 3.57 2.88 6.47 1.52 1.51 1.70 - 3.07 7.oof 
Si0

2 II 3.54 2.79 6.52 1.43 1.44 1.5:3 2.97 -

I 3.30 2.46 6.54 1.14 1.28 0.98 - 2.76 6.76g 
Ti02 II 3.33 2.54 6.51 1.22 1.a3 1.14 1.56 2.86 

I 3.33 2.42 6.62 1.09 1.23 0.91 - 2.64 6.16g 
Sno2 II 3.24 2.18 6.71 o.88 1.09 o.44 2.36 -

I 3.49 2.36 6.83 0.93 1.11 o.66 - 2.44 5.13g 
Sn02 II 3.46 2.24 6.88 0.83 1.06 o.43 1.30 2. 30 

f Ref. 132 

g Ref. 133 

~ 

~ 



CHAPTER 6 

DISCUSSIOI\IS AND CONCLUSION$, 

Wackman et.al.[129] discussed the effect of polari-

zabilities . on energy values for Ti□ 
2 

be;acuse these are 

not known exactly. The~ found that binding energy chan-

ges by more than 10%. When one set of values is rep­

laced by those obtained by Ruffa's method[134]. In view 

of this extreme situation with Ruffa's polarizability 

values ' Wackman et.al.[129] considered that these 

' 
va-

lues of ions are incorrect. Thus the part played by 

polarizability is apparent. The values of s-4+ 
1 ' 

T .4+ 
1 ' 

Sn 4+ and o2- available in the literature 

[111,115,116,129Jare shown in Table 1. TKS values (116] 

of simple additivity in o~ide crystal leads to an 

appreciable spread of the values of polarizability. As 

suggested by TKS (116] this would result from a depar­

ture from the ideal ionic crystal state and an overlap­

ping and distortion of the ionic wave function. TKS 

[116] values give an approximate measure of various 

ions in crystals rather than of "fr-ee" ions. On the 

other hand, the polarizability values in column 2 are 

those for free ions. The experimental work suggests a 

significant dependence of the values on the environ­

ment~ The crystalline environment significantly reduces 
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the polarizability of the anions and 

rizability values of the cations. 

increase the pola-

The value '1-t 
for «(Si ) derived by us is consistent 

with the value of □ .04 X lO •3 nm obtained by Born and 

Heisenber9[137\ an analysis of the Rydberg Ritz correc­

tion for a spectral series . From the indices of refrac-

tion of salts in aquous solution, Fajan and Joos 

[127] also obtained the same value but Schmidt et.al. 

[154] reported its value to be 0.51 X 10 

X 10n~~The first one refers to the result when the 

influence of both the environment in the crystal and 

self consistency is not included . In their study the 

effect of the crystal environment is incorporated by 

the Watson-sphere model, wh~le consistency effects are 

included by a procedure adopted from many body pertur­

bation theo1~y. The polarizab.ility values of both Ge4tnd 

4+ ~-
Sn a~e found to be consistent wi th the TKS values ~(O ) 

is , consistent with the crystal have values by Bisarya 
~ 

and Shanker [155]. 

Table 1 shows different sets of polarizability 

valLtes, including free ion sets and the choice of 

v~lues is not necessarily clear- cut. It was thus 

thought to be of interest to see how sensitive the 

results were to the specific choice of polarizability 
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and so a range of polari· 7 abi"l i· ty - values with reasonable 

physical Justificat1· 0 n wi·ll b . d e c□ns1 e1red. The use of 

different sets of values affects constants and hence 

other calculations. There is no direct method which can 

yield experimental values of vdW energy in ionic crys-

tal. It has been indicated by many authors that the 

London formulae involved excitation energies of ions 

which are • subject to large uncertainties and these 

seriously under estimate the actual vdW interations. 

Thus the vdW Co-efficients c. -and d - . are estimated 
l.J l.J 

using SKV approach to obtain an increased vdW bonding 

effect. 

The estimated values (set I) are used to calcu-

late the values of C and D based on variational method. 

The values of vdw energies calculated by Ladd [127] and 

by Shaker and Jain [128] vary between 40 to 50 and 50~ 

100 ,,Kcal/mol., respectively for the compounds under 

di~cLtssion. 
~ 

The results are much smaller than those 

obtained from present calculations. 

The repulsive energy con tr i bLt tions to the total 
\,.Mte 

energy for variOLIS crystalsAbeen shown in the six 

columns of Table 4. Eight short-range repulsive 

interactions are considered. It is observed that the 

repulsive potential energy increases with the increase 
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of vdW energy. 
The contribution of the second neig­

hbour•· repulsion is small. For this reason we have not 

included the contributi· on of t~ie , second neighbour inte-

raction in the repL1 l si· ve energy calculations, except 

for one case as mentioned earlier. 

As shown in table f for any particular repulsive 

potential form the values of the lattice energies are 

seen to vary from one set of polarizability values to 

another. However the variation is small. For a particu-

lar set of polarizability values, the lattice energy 

vary appriciably when different repulsive potentials 

are used. The lattice energy using Born-Lande form with' 

set I polarizability is lower than on the average 

experimental values by 14.86%, but in case of Born-

Mayer, Islam, Modified Islam and Buckingham potential 

forms the discrepancy is 3.50%-9%. In the case of 

Ver~ey, Varshni-Shukla, Gohel-Trivedi forms the corres­

p9nding values differ from experimental values by a­
~ 

mount of -6.60% 4.25%, and 5.52% respectively. 

In the light of the above calculated results it is 

seen that although the calculated values are not in 

e xact agreement with the e xperimental values the devia­

tions or discrepancies are not much except Verwey and 

Buckingham potential. This situation reveals that the 
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ionic character of these crystals are nearly correct. 

Earlier investi t· ga ions [73~129] assumed the short-

range 

remedy 

parameters to be equal i,e.p=r~~In an attempt to 
~-- -· . 

this deficiency Shanker and Jain [128] used a 

more _general short -range repulsive interaction but 

could not determine~_because of the lack . of~_values for 

tetr-avalent positive ions. They chosep =0.0345 nm=:, for 
+-

all oxide crystals. This model which assumes a full 

ionic · charge including a vdW ener-gy term. and the 

resulting dB/dp values wer-e found to be not very satis­

factory. 

Anderson and Anderson [132] within the framework 

of a simple Born model alio calculated dB/dp for Si□2 
and Ti0.2 by adjusting the potential parameters until 

they yield the correct value of bulk modulus. Shanker 

and/ Jain [144] poj,nted out that these results clearly 

d_fmonstrated the fact that even the fitting of the bulk 

modulus d i d not improved the agreement between theory 

and experiment. Contrary to this agreement our simple 

approach showed that not only lattice energy values but 

also dB/dp values yield much agreement with e xperiments 

than those due to either Shanker and Jain [128] or 

Anderson and Anderson [132]. 

An~erson and Anderson [132] suggested that the 



d .i 1·-er.: t.i.ona 1 
bond- bendinq forces are 

present. in these c t l rys a .s. 

most likely 

Striefler and Barsch [141] 

used the rigid ion model o ·f • 
~atiyar [84] where central 

short-ranqe inte-act1.· on • between first and second 

nearest neighbours is included and an effective charge 

takes into account deviations from ionic binding. The 

six free parameters were determined from a least-square 

fit of the Raman and inactive frequencies and ~~f the 

elastic constants to the available experimental data. 

They concluded that the application of the model to the 

rutile-type oxides turned out to be much less satisfac­

tory tt"\an for fluorides [141]. They than added harmonic 

angle bending forces for the five O pairs showing a 

common. nearest neighbour cation and a least squar-es 

technique fitted the nine free parameters. 

suits for dB/dp ar-e much better than all 

Their re-

previous 

calculations, but as pointed out by Shanker and Jain 

[144] this improvements of dB/dp has been achieved at 

cost of reducing the ionic charges which are about one 

third of the nominal values, such small ionic charges 

would reduce the Madelung energy and hence the lattice 

energy significantly with respect to the experimental 

energy. 

With the same polarizability values the potential 
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with th
e B-M repulsion reduces the lattice energies to 

within 8.59'1/. of the evperim t 1 " en a values, where as this 

is not so for dB/dp ■ In the case of B-M repulsion, the 

pressure derivative of bulk modulus dB/dp shows a deri-

vative from average experimental values amounting to 

59'1/. • But the use of the modified islam potential the 

lattice energy agrees within 8.7% compared to the expe-

rimr~n t.al values and the dB/dp is on the average 56'1/. 

smaller compared to the experimental value. Al tt-1ough 

with B·-L fonn, the lattice energy, dB/dp show a devia-

tion from experimental value by 14.86% and 44.55'1/. res-

pectively. Hence it may be remarked that the present 

approach with the new modified Islam potential seemf to~ 

able to describe resonably both the lattice energy and 

dB/dp values simultanuouslj.The improvement results 

mainly from the inclusion of vdW energy calculated with 

a estimated consistent set of polarizability values 

obtained in the study and the new modified Islam paten-
,, 

tiat. The resulting values seems to imply that the 

binding in rutile, while somewhat more ionic than some 

of the previous studies would indicate, (e.g.Baur,(130] 

and Kingsbury) [142] whose calculation suggested an 

· bl covalent ct1aracter in the M-0 bond because apprecia e 

the calculated lattice energies have been found to 25'1/. 

larger or more positive than the thermodynamic values) 



does contain a covalent t can ributian. 

It is worth mentioning here that theoretical mo-

dels based on rigid ion and shell models, with either 

axially symmetric or tensor the first and second neig-

hbour forces have been fi{ted to the measured disper-

sion relation available f ll f T"O u .. y or 1.. only [150]. It 

was also shown that both the second neighbour rigid-ion 

and s hr"" 11 models, when used with central forces are 

unable to predict the qualitative features and only the 

shel 1 model with tensor forces far all interaction 

except the second neighbour 0-0 interaction was able to 

give accepta~!e qualitative agreement with data and 

that agreement is good tor only some models. From this 

discussion it is apparent that a comprehensive theory 

which can correlate all physical properties of rutile­

type compounds, is still not available. In view of this 

we conclude that a relatively simple treatment with a 

ne~ly derived polarizability set is moderately succes-
\. 

sful in explaining at least some of the properties of 

the compounds under study. 
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l'IODUL l. 
PROGRAM 
IMPLICIT 
INTEGER 
CHARACTEf< 
CHAF~ACTER 
PARAMETER 

-

* 

* 

CLLE 
11EAL rn-z) 
MAXROW,MAX~OL, IROW,JCOL 
l·~LJLL 
COMP-li-4 
CMAXROW=00004 ,MAX COL=00024,NN=7.0) 

DIMENSION DI1 (MAXROW,MAXCOL) 
DIMEl'-ISIOIIJ DX2 (lv1flX,~Oi,.J, f11fiXCOU 
DIMENSION DI1<B,15>,DI2<B,23J 

OPEN(UNIT=22,STATUS="OLD",FILE="CLLE.DAT") 
O,JEN <UNIT= 1:.., STATUS=•· l\1r::: v-J", i:- l L[~= "CLLE. OUT 11

) 

OPEI\J <UNIT=33, STATUS="NEW", FILE="CLLE. TXT") 
c --·Calc1.1iat1,:.:,n ,:,f v a11 □Qr lrJa a~s cc,-- eff.1.Clt:l'1ts (D.D->-­

READ (22,938) NULL 
READ (22,998) NULL 

* DO 10000 IROW=l,4 
READ (22,100) COMP,AP,AN, NP,S PN,SPP,SNN,TPP,TNN,TPN,R,VM,BT,K, 

C IF<AP .EG!.ltZl0.t21)GOTCJ 11:.. 
I=I+1 

C - ------ -------------- - - -
Al =AP·1t/:1Pll-. 5 
A2= <AP/NP)**· 5 
A3=A1/A2 
CPP=A3*25.20 

C WRITE(11,*>CPP 
C ---------------

C 
C 

C 

C 
C 
C 

C 
C 

C 

B1=AN*AN*.5 
B2= CAN/NN) ·lHt·. 5 
B3=81 / B2 
CNN=83*25. 21ZI 
WRITE<11,*)CNN 

C1 =AP-11-AN 
C2=(AP/NP)**-5+(AN/NN>**•5 
C3=C1/C2 
CPN=C3*25.20 
WRIT~/(11, *> "CPN =", CPN, "CNN =", CNN; "CPP =", CPP 

CV=pPN*SPN+CPP*SPP+CNN*SNN 
WR DTE ( 11, *) "CV = 11

, C'.,I 
calculation of van der Waals co_efficients<D.Q) 

FR=6.666 
Dl=AP*AN 
D21=CAP/NP)**•5 
D22=(AN/NN>**•5 
D2= <D21+D22) **2 
D31=CAP/NP) 
D32=SQRT((AP*AN)/(NP*NN))*6.66 
D33=(AN/NN> 
D3=D31+D32+D33 
D4=D1*D2/D3 
DPN=D4*41.34 
WRITE<l~?*>"DPN = ",DPN 
-------~-------
El=AP*A~ 
E2=(2*(AP/NP)**·5)**2 
E3=2*(~P/NP)+FR*(AP/NP) 
E4~E1*E2/E3 
DPP=E4*41.34 
W~IT~_<_i_1, *>_Opp _______ ... 



C 

C 

C 

C 

. C •. 

C 

C 

F1==AN*AN 
F2=<2*(AN/NN) ~*-5)**2 
F3=2~<AN/NN)+FR*CAN/NN) 
F4~Fl -11-F2/F3 
DNN==F L; ~A 1. 3t1 

l.J 1~ I TE ( 1 1 , 11-) DNN 
DV =DPN~TPN+DPP-11TPP+DNN~TNN 
WRITE< i1 ,11-)"DV== "~DV ,"D,::;,\j.s-:: 
T . ::::14.40 

,::;;1lculat ic, r, of v.:.11·1 Cto."r ~-;aals 
UDD::- ( ·· CV I < R,j( ·ll G) ) jj T 
UDO ·=: ( .. DV / ( R iH: cl) ) ~ ;· 
UVT=UDD+UDQ 
wrnT[ ( ~ 1, -~) " 1 

.. NT-:::", U'.)T 
~-HH TE ( :!. l, -:.. ) " UDD=", UDG 
~JfU TC ( :t .'.., q "0DCi=", :JDO 
Caicu lc:d;i ,:,n o f :fr.:-9 1 .. 1lsiv0. E;~:-gies. · 
T ;1 ·=- 3 ill •ZI. ;Z, 

A::,( L; !t!ZI. 18/R) I· (Gl!C~/ /R·*~CH (8~:D \J/r~•~l( 8 ) 
B=- (880.36/R)-(42. • CV/R*N~) - (72 *DVi~• ~s > 

. M= 1. 35· -A 
M-== (3~·TP*'·/ i•HEIT) /f\ 
WR I TE C 11, ,j(. ) 1'1 
X::: ( 9;zu,•Vf•i/ I<) · · B 
1\1::::: ·- ( X / 111 > ... , 1 
Al=-CM /N )*( 2*~N> 
U~DL=Al * (R~~-N)~T 
wi~IT~(11,x)"M -::,",;11, "X -:-,.", )': , '':\ 
-. --•- .. -- .. --- ··· "-·--D:Y:- .... ....... ___ ......... . 
ROW-= · ( iY1 / X ) ·ll f~ 

BBM= .... (1v!/ J~)): ROW><':::X~1 ( R/RQL-i:o 
URE:J·•!""E:D:Vlli[XP ( ·· R/ fWvn ..,~-

. I I ,-.. 

'. ' 

w RI ~-E < 11 , -x-) 11 ;~oh: =:" , ~ow~ ,. [-'En•;~ =--- 1
' , r1[ (r·"; , "L.-;.,;~, :-·-: ==-.: " , ~ r~r.) :~: 

C - - ----·- -VERWEY-· - -· ·- -

C 

C 

"- ...... ·-....... . -

G1=12 
~UE=-(M/Gl) • IR• *G l) 
URV=MUE*(R**-Gl)~T 
WRITE(11, ·i<· ) "fVIUE ·=", MLJ[, "u ,~V '"" ", GR'v' 

--------vs --------
K2=-(X/M-·1) 

Kl:::}Q/K3 
LAMDA1=M/(2*<R*~2)*K1) 
LAMDA2=EXPCK1*(R* *2)) 
LAMDA=-LAMDA1~LAMDA2 
URVS 1 ::::ul!"1Dn If T 
URVG2=EX~( ·-~1*CR**2)) 
URVG=URVS1MURVS2 
, , " ,. ~ .- ( 1 1 v , 11 • r »~ Dr, ... 11 L. -~' ·,·• rJ ,r·1 " : ; c'! ·) ·~ .. ·' •• • , : : \ ' :=: • '· i,: l " " . , ~ w c, J. I c. . , ,..- }_ L.-r·,1 1 1 ,-1 ·· , .. , ,, •- , •- · - • 
·- -~ --··~ -· ····-, ..... GT·-·-· -- -- --· - ·-·-- ·-· 
CONA~-·X/ (2*M ) . 
EP=GQRT(-7+4~CO~A+4* CC□Nn •,2 )> 
P~{ 1 =- - :, :1· 2 ~·CONA + i:: P 
P~<2=1+-l(• ( R ·)Ht 2) 

Pf>=PK1/Pt<2 
P0=EXPCPK•CR**2>) 

P2:::· 2 ,~ r 1,: )r , R•o 2 , .,. : 
P=.- (ill / p;::~) 
U F'IG·1· l =P If~ 

URGT2~EX ~C - PK~ (R~•2l) 
URG~~uRGTl~U~GT2KT 
;,.ff{ I ·,r :- ( J , i; ) II;:") ·;:", }) • II ::' ;-', ·- ... ' ' ' 
-......... · · I C.L(W,•· · ·· ..... .. . .. 

. .. ...... -·· .... . .. . ~ . •· 

ti -\ • II I t -}T°' ._. ••;; II 

' I ' • ' ._ • •- • 

t 
i . 
I 
t 

i-: 

- - -----·--- -- --



""!"'"" ' 

., 

. I- -· . c~,ic=-i-----c-/%.i I G-)-::-( X / ( i'i.M-SrG~-~~) T) ~ -~~----~~'!J~•-~ .. !'.!l. !&11!! .. !!'! •• '!JIU -■---------•1111111•----..~ 

I=-M/(MC*SIG)-llEXP<MC) 
l..JrU=I l'li'::XP (··MC) ·M-T 

C WRITE(ll, ·ll·)"MC ==".,MC,"I =",I,"URI =", URI 
C -------AK--------

C 

C 
C 
C 
C 

C 
G 
c · 
C 
C 
C 
C 
C 
C 
C 
C 
C 

21=-·X/M 
MC11=((SIG•SIG)-(7~SIG)+(Z1•SIG)) 
MCl2=SQRT<<MC11**2)-(12*(SIG**2>*<4-Z1))) 
MC13-::2 11- (SIG*SIG) 
ll'!Cl= (~ICl 1 l·l";Cl.2) /!YIC13 
GA=M/ ( 3+1'>1C l ·M-S I G) 
OB=<R~*3>•EXP(MC1) 
G=--Gn·M-Gfl 
URAK1=EXPC-G2*(R**SIG)) 
URAK=(G/(R-**3))*EXP( -MCi)*T 
WRITE(ll,-t1·)"URAK =",URAK,"MC1 =",MC1,"G =",G 

Calculation of lattice Energy:-

, UE 
, UBL 
, UBM 
, UV 
'uvs 
, UGT 

UE= (-440. 18/ li) ·ll·T 
UBL=UE+UVT+URBL 
UDM=UE+UVT+URBM 
UV=UE+UVT+URV 
UVS=UE:+UVT+URVS 
UGT=UE+UVT+URGT 
U1=UE+UVT+URI 
UAl{=UE+UVT+URAK 
WRITE(ll,*)"UE = 
WRITE ( 11, *) "UBL= 
WRITE(11,*)"UBM= 
WRITE(11,*)"UV = 
WRITE(ll,-ll) "UVS= 
WRITE ( 11, ·-*> "UGT= 
WRITE Ci' 1, *) "UI = 
WRITE(11, ·*) "UAI-{= 

'. , UI 
", UAI-{ 

Calculation of pressure aer1vative of bulk moduli:-

-------BL--------~ 
U21=- (8~0.36/(R*•3)) - (42*CV/(R**8)) - (72*DV/(R**10)) 
U22=N'11• ( N+ i) -ll·A 1 * < R·lt:-ll·- ( N+2 > > 
U2=U21+U22 
U3t= (2641.08/(R••4))+(336*CV/(R**9))+(720*DV/CR•*11)) 
U3~=-N•CN+l}*(N+2 >•A1*<R•*- CN+3 )) 
U3=U31+U32 
BL=1-(R*U3)/C3•U2) 

C ------DM-----------
U42= CBBM/(ROW**2 ))*EXPC -R/ROW) 
LJLf=LJif 2+ U21 
U52=- <BBM/(ROW••3))~ ~XP (- R/ROW) 
LJ5=U52+U31 
BM=1-<R•Ll5)/(3~U4> 

C --- ---VERWEY------~-

c . 

U62=156*MUE*<R•*-14 ) 
U6=U62 ➔· U21 
U72=~21B4*MUE*<R••- 15) 
LJ7=U72·i LJ.31 
BV= 1 ·- ( R-lli~7) / ( 3 ·M·U6) 

U82=2 11L~~IDA-11K1-11-EX P (·- Kl ·M· U\·IH1 2 )) 

L1=4~L~MDA~K1~Kl•R~EXPC -K1•<R**2)) 
L2=Ll*R 
U8=U2 1 i--U82+:..2 
U92= (3•Ll) - C2*L2•Ki*R> 
U9-=U31 ➔• U92 
'R\!C:: 1 -· < < R:M 119) / C l ·ll1 18) l 



~ .-:-.: , . . .. M - c-r• • • • ' O • • • •- •N• •• .. • •• ~ • ~- --(,, _.._ ......... , . - . ... _.. • • , . ... O - ,r ...... ~ ,. 11• ~~ .. - · - -. .. ~- cw, ,..._,.. , __ .• , .. ~ .... .,..~ . ..., .. _ ~ .... .,<• "' ....... . , :, . ~ ..--

' PHY= (P/R) K[XP (·· Pl{·ll rn -w.;:2 )) 
p: -:2·,~1)HY / ( ,1>< ><2) 
PH1=PHY/ (Rl<·ll3) 

UJ.•0-=U2112l< (l+PI{>! (R ~li 2) ·i-l.1~ (,~J /,;,1ij ·1...=' ) ·1!·(=-' 1.-~ !- ) ) -~ ., .. ,:, . , . ~ r . . , ''--

LJ l 1 =LJ31 - ( 2* ( 3~ ( 3* PK* ( R~ R)) + ( ~ * ( PK )I * 3) W ( R**6 ))) * PH l ) 
DGT=i-(R~Uil)/(3*U10) 
l lRIT,::- ( 11 Ii) II [lL' ~=" f:{L JI [ ' 'Y' ·- " nr,, ,, ,.,) £Gr ~, .... , ,~ ' .,, .. , .... •; L: •. :-:, 11 ,D'.J, II DVS;-= 11 ,[,\.'!::i, II BGT·:c·. 11

, -1 - · 

.:..------·-·-·- I SLA:vt---·-- ··· ---~- ···--.. 
Pl·II=--=I McXP ( --,v;C) 
PHI 1=-SIG.,. (MC/Ii) ii P,-;: 
PtiI21==·-GIGli·(;YjC/R) il-Pl·Hl 

Pl·II22==-SIG'.1 <SIG-··l) '* (,viC/ (ii**2)) •j(•i:,1-1: 
Pl-1!2:::f.J~·IIc~: 1-11:-1:::22 
PHI31=-SIC*CMC/R)*P~I2 
Pl·ll 32= 2 ~ s r c )I ( s :i: G - 1 > 11- < ,,1c / (-< i( (~: :, ) >.( ::i , r 1 
PHI33=- SIG•CSIG-l)*(S I G··2) * ( MC/(R~*3))~PkI 
p:-1 I J==;l! ·ll 31 -~f"1i-i I:32 1- ;J;·JI JJ 
U 12=-U2: ·I· PH I 2 
u :: 3 ,:lJ]1 l·(Ji"J I 3 
BI=1-((R~U13)/(J~U~2)) 
hR1TE(1 ~, *)Ul 2 1 Ul3,Dr 
--· ... -· - -·· -·· --· -- --·· ... n i ". -· -- - ··· •.•. - - - ·· - - •-· •- · - · 

,1; : r n = rn ; < n -. ~ J > ) ,, .: x r, ( . :•: c 1 , 
PHIA11=- 3~PHIA/R 
PIH~H2=- ·· n::;rc11iv:C1 ll·fidIA) /R 
PHIAl=Pl iHU 1-1- PhIA12 
r1n n21 ::-.: < 12 1 < 3 )(-s r c )( MC :L > > - rn rs * <::, r G ·- r,. > !i-:vic 1, + < < s::: Gu 2, w < ViC 1-)( x 2 > > 

PHIAK=PHIA/(R**2) 
P~ I~2=PH!A21*P~IA~ 
PrlIA31=-(60+(12*SIG*~C1)) 
f°lHIA32= ( 3 KS IC * (S IG·-5) )H V1C .l) .. (] .. ( C,::: C )!)i ;:::) k· ( ;:;C ~ :( 112)) 

PHIA33=- <CSIG*<S : G- 4) * (SIG- S)x~C:) - (CS:G*~2)~(S:G-4)*(~Cl*~2l)) 
PH I nJ4 =- ( ( S:;: C 11 "C::) ><· ( 2 ·* ~; I G -:5 ) -~ <,,:c:. ~ ~ 2) ) ·- ( (S IC x >i·3) ~- { 1v;c 1 iHl-3) ) 

Ph I A3== ( Pl : I 1131 +-;:i ;., ffl3~-::: 1 :Ji-·I i: r-'123·1 f:•; -; I A31i) -~ i1H Ir,; ( ~-i( -l( :n 
lJ 1 l,=-LJ21 ·I ;:JH: .-;2 
U 15=l..JJ 1 +Pl ·; I A3 
EnK=1-((R*U15)/(3~Ul4)) 
W~ITE ( 11, ~-) "Dfli{=--· 11

, DnI<, 11 

DI 1 < I ROW, 0:.) =i-iP 
D ·c ' ( T "0 · ' ·,;1 ·-, ) - rl ·" • J. ... )\ .,.,, , • ...:. - ·· t- ;.., 

DI i ( I~O~\: ., Q13) =;\!P 
DI:. ( l ;;Oil-; , 0t,) =SPf\i 
Dil (Ii1Ow, 05)==SPP 
DI1(IROW,0G)=SNN 
D:1 (I :1Ow, 07):::·TPP 
DI1(IROW,08)=TNN 
DI1 (Il~OW, 03)=TPN 
Dil <r 1:~mJ, 10)::::R 
Dil ( I RO~, 11) ===v'M 
DI1(IROW, 12)=DT 
D :fl ( I ROW, 1 3 ) = f< 
DI1 (IROW, ,.4)=SIG 

DI~",BI 

------------------------------------· 
DI2(IROW,01)=UVT 
D12 ( I ROW, 02) ='µRDL 
DI2CIROW,03)=~RDM 
DI2 ( I ROW, 0l1) =·-l~:~IJ 
DI2(IR□W~05)=W~VS 
Die<IROW,0G)~URG7 
DI 2 ( I rmi~, 12.17 )

1 
:;-,LJli I 

DI i:: ( I rmw' 1218) -.:.: LJR(-'ii~ 
DI 2 ( I iiOW, 1Z1'J) :=UBI.:.. 
DI2(IROW, 10) :LJDM 
DI2 ( I r-mw, l ~-) =UV 



--~- - -- •---• -~~ { ~---( l ;'. ~), ,1, .;.,2 ) .!.':: L,9·~; __ :.:_ __ a :..:_·~~:!,_ ~~--:,_--.:,..;.:_; ·~--:;:;..=-;,ao• ,_.- ----------• 

L 

L 

L 

L 

l 

l 

L 

l 

l 

l 

l. 

i 
'-

\.... 

o:2c: ~o~, 131 ~ucT 
J ~ 2 ( : RO ~-J., 1 l 1. ) ~ ·J : 
D ::: 2 cr ,:;:o:,..;, l5) =-G;::l,\ 
D:;: 2 < I :iOW, 1 C i ::::-[C 
D ·.· ".'• ( 7 -:,n , J f -, ·, :-- r ··-r. .l L., -'- 1, L/f' ? .a.,• - • •11 

D: 2 <:r.rmw, 18>~:B',,1 
D :C 2 ( I f;C -,., , 1 'J) :::[ :'/S 
DI2(! ~□W,20) ~BCT 
D :C .:::: ~ : r~ ;J!,J, 2:.. ) ~" D l 
DI2 Ci R0 ~,22) =En~ 

10000 c m .;i " I NU[ 
C ···- ----· - .... -·-· - ·-··----··-· ·- ·- - ··· ·------·-·· - - ·- ---·--·--

DO 1002 IROW= l, 4 
WR !TC ( 33,21ZrrZ1) COM;>, <DI2(IROL.J,JCOU,JCOL=l,22} 

11Zlr2r2 CONT I NU[ 
C ....... ··· ----- -- -- -·--- -· - ... ..... ---· ····--- - --------
00100 FORMAT(CA), 14F7.0) 
r.Z11Zr;::rZ11Z1 FO RIY; /lT ( rn) , 4 X .1 1 1 F 11. 3 / 8 X, 1 1 F 11. 3 / > 
00998 FORMA7 CA) 
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