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ABSTRACT

A theoretical analysis of the interionic potential
in four rutile—type oxide crystals has been made within
the framework of ionic model using eight repulsive
interactions including one proposed in this work. The
suitability of the new jpteraction potential as applied
to these system is discussed. A new complete set of
polarizability wvalues of the ions concerned has also
been derived. The lattice energy and pressuré deriva-
tive of bulk moduli are evaluated for the entire family
of crystals under study. The resulting values are com—
pared with the available exaerimental data and other

recent theoretical calculations.

,We have also considered the gquestion of fhe degree
of .ionicity of the compounds under study as there seems
to. be some controversy regarding these in literature.
The present study indicates that the bonding in rutile
is predominantly ionic, although some covalent contri-

bution is present.
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CHAFTER 1

INTRODUCT 10N
1;1 General Introduction i

A golid has an arrangement of atoms (or mole-—
cules) in which the atoms are arranged in some regular'
repet;tious pattern in three dimensions. It can be
classified according to a variety of criteria.f Among
the mqre.significaht of these is the description of a
‘solid as being neither crystalline or amorphous. The
sample of macroscopic crystalline solids bhave been
chosen by chemists %nd physicists for studying the
structures of matters, ‘interatomic bonding'and other
related chemical properties on an atomic scale. All of
the mechanisms which cause bonding between atoms derive
from electrical attraction and repulsion. The differing
strengths and differing types of hond are determined by
the particular electronic structures of the atoms invo-
lved. The weak van der Waals(or residual) bond provides
& universal weak attraction between closely spaced
atoms and its influence is overridden when the condi-
tions necessary for ionic, covalent or metallic bonding

are also present.

An ionic bond may be thought of as the result of



the complete transfer of an,electrén from one atom to
another. The afkali halides such as MNaCl are typical
“members of the class of ionic solids. NaCl crystallizes,
as nNat c1o The alkali metals such as sodium have a
single valence electron outside a closed shell. Where
as halogens such as chlorine are one electron short of
having a complete ocuter shell. An electron transfer
from the alkali metal X to the halogen Y will result in
closed shells for both X and Y ions .This happens in a
salt XY. For example in NaCl, Na has an electronic
configuration 1522é22p6whiéh is the same as that of
neon, whereas Cl has 15225 2553523p which is the same
as that of argon. Since these elec£ronic configurations
are very stable, it can be said that an ionic crystal
consists of positive and nedétive ions. Hesides alkali
halides, ionic crystals can also be made of divalent
and tr%valent atoms for example Cal, MgC13ﬁ1205, NaES
and'Znﬁ etc.

.: Ions have the same electronic structure as the
nearest inert gas atoms except that they are electrica-
lly charged. This charge is spherically distributed and
represénts the difference between the charge on the
nucleus and the sum of the electronic charge surroun-

ding it. When oppositely charged ions are hrought toge-

ther each ion tends to neutralize its charge by surrou-



nding itself with ions having an oppogite charge.
Because ions having like charges repel each other, the
stable packing attained is determined by the relative
sizes of the ions and their respective charges. A
periodic array therefore results in which the environ-
ment of all similar atoms is the same and the sum of
all positive and negetive charges and upto zero so that

the ionic solid is electrically neutral. .
.‘
5

Ionic bond is fairly strong as known from the

amount of work required to dissociate an ioﬁic solid
into its components. PBinding energy of NaCl is 7.8 ev
and binding energy of LiF is 10.4 ev. This strong
binding means that iénic crystals are hard and have
relatively high melting and boiling points. Normally
they are transparent to visible light while they exhi-
bit a single characteristic optical reflection peak in
the infrared region. Crystals are quite soluble in

ionizing solvents such as water, the solutions being
highly dissociated with free ions. The valence elec—
trons are also bound quite tightly to ionic nuclei so
that electrical conductivity via electrons is not pos-
sible and ioniec crystals are insulators at room tempe—
rature. At high temperatures ions themselves . become
more and more mobile and ionic conductivity become

possible.



As a consequence of the spherical charge
distribution ionic bond is non~directional. Far special
cases, lonic bonds have some directional characters.
Ionic crystals usually crystallize in the relatively
closed packed NaCll and CsCl structure.

In covalent bond two electrons become shared
between the atoms which are being joined. The covalent
bond, sometime referred to as a valence or homdpolar
bond, is an electron pair bond. The result of this
sharing 1is that the electron charge density is high in
the region between the two atoms.The hydrogen molecule,
Haserves as a simple example of the covalent bond. The

other examples of covalent bond:

—
;
oz
;:

;

;

I (3

s

The dots between the atoms indicate the electron pair

L‘
- bdnd.

Characteristics of a Cavalent bond:

l.Covalent bond has a saturation property. Let us con-
sider the interaction of a hydrogen atom with a helium
atom. An exchange of e;ectrons between H and He with
parallel spins result in repulsion, whereas an exchange

with antiparallel spins violates the Fauli exclusion



principle. Therefore, covalent bonding exists only
between atoms with unpaired spins. For example in CH4
for carbon to have unpaired spins, the four valencel
electrons must have the configuration Zs EpSin contrast’

2

to the ground state configuration 252 2pT The four
orbital wave functions are mixtures of the one 28 and
three 2Z2p wave functions called the sgihybrid orbital
and they have electron distributions directed towards
the four corners of a tetrahedron. Typical examples of
crystals with nearly pure covalent bonds are diamond,
silicon and germaniun.

2. Covalent bonds are strongly directional in character

i.e. the electrons tend to be concentrated along the

lines Jjoining the adjacent atoms.

3. Covalent crystals are usually hard brittle with
quite high binding energies and thus have high melting
and boiling points.

Y

R
4. They are transparent to long wavalengthslbut opaque

to shorter wavelength, the transition is abrupt and
occur at a characteristic wavelength usually in the

visible or infrared.

3. Covalent crystals are typical semiconductors whose

electrical conductivity is gquite sensitive to impurity



and change of temperature. In molecular crystals bin-
ding arises _soiely from dipolar forces between the
atoms o+ molecules of the crystal. Even when an atom or
ﬁolecule has no average dipole moment it will in gene-—
ral have instantaneous fluctuating dipole moment ari-
sing from instantaneous positions of the electrons in
their orbitals. For example Germanium. Here anair
bonds ewxist at the boundary of the structure. These
unpaired bonds are generally referred to as dangling
bonds and they are responsible for the fact that germa-

nium and silicon surfaces are gquite active chemically.

Covalent binding is all that is needed for Ge
atoms to form a germanium crystal. This is not the case
with CHy . The bonds inACH4are all used up. Thus no
additional bond pairs can be formed with neighbouring
CH4molecules. The binding between such molecules comes
from 'binding force arising from fluctuating dipole
iqteraction called as van der Waals forces. It turns
lDQt that an atom or a molecule is polarizabie not only
under an external electric field but under the field of
other atoms or molecule as well, As a result a very

small electric dipole develops.

The instantenuous dipole moment is the source of

an electrostatic dipole field which in turn may induce



é dipole moment in other atom or molecule. The interac-
tion between the'original and.induced dipole moment is
attractive and can serve to bind a crystal in the
absence of ionic or covalent binding. Binding forces\
are usually quite weak, the binding energy due to
them falls off as 1/r where r is the distance between
the dipoles .

Molecular crystals have small binding energy and
consequently have low melting and boiling proints. They
are usually poor electrical conductors. Crystals of
organic compounds are usually of this type as are the

inert gases He ,Ne , A etc. in the solid state.

In metallic crystals free electrons are present.
The éutstanding characte?istic of a metal is its high
electrical conductivity. |

The fig 1-® shows the wave function of the valence
eleéiron in a sodium crystal indicated by solid line.
aé compared to 35 wave function of a sodium atom indi-
cated by dashed line. The wave function is not distur-—
bed near the ion core but in the outer region it 1is
considerably flattened and squcezed in by neighbouring
valence electrons. Since the distribution of electrons
in wvolume element 4nrldr is given by'bW%JTrzdr over

Q07 . of the electron distribution is in this flat re-—
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Fige 1-©0: Wave function of valence electrons 3 S wave
function ( theoretical)



gion. The potential energy of the electranjis obviously
lowered because the average electron distribution is
now close to the nucleus. The kinetic energy being
. L hodw
proportional to {Tﬁf ar— 7 is also reduced because of
d
a smaller ?ﬁ£ in the flattened region. The reduction in

the total energy constituted a bond between atoms in &

metallic crystal.

In the case of metallic sodium the situatidﬁ s
changed for two essential reasons. ,
(i) First, each sodium atom has eight nearest neig-
hbout's in a body centred cubic structure. Therefore on
the average, each atom forms only one eighth of an
electron pair bond with~one particulat+ neigﬁbour.
(ii) SBSecondly, as a result of electrostatic interac-

tions the energy levels of the atom broaden out to form

a hond as the interatomic distance decreases.

The number of guantum states in each bond is
exactly equal to the number of atomic states multiplied
by the number of atoms involved. If the model of cova-—
lent binding is adopted we see that guantum states are
now available to the third sodium atom. From the view
point of covalentlbond the metallic bond is unsaturated
one and hence there is no contradiction between the two

view points.



(a) Diamond (covalent) (b) Sodium ( metallkc)

"+ (c) Sodium chloride (d) Crystalline ( argon
‘ ( ionic ) (van der Waals )

Fig + 1-1 :The Principal types of crystalline bonding forces.



Monoatomic Ge, Si Valence
metals Bi crystals
8102 van der Waals
SiC
Crystals
. Ionic
Alloys tal
, Crystals
MEBS b2

Fig. 1~2 : Classification of solids , Indicating intermediate cases



The transitions between crystal types is not sharp
at all, e.g. tin can exist in two crystal forms one

being metallic and the other covalent.

It should also be noticed that all semiconductors
-are not covalently "bound. Crystals sucffas Cud, ZnO
and Cd§ are more-ionic than covaleﬁt but they have also
energy ‘bands as also Ge and Si when sufficient elec-
trons are 1in the ubper bond these will behave like
saemiconductors. Other examples of transition cases
include some metal alloys such as Mg , Sh Zn and A;
which can be considered partly metallic and partly ionic
and some molecular crystals such as § and P are partly

mnlecular and partly covalent.

Metallic crystals have high electrical and thermal
conductivity. They bhave high optical reflection and
absorption co"efficients. The binding energy of ideal
metals such as alkali metals arise from the interaction

of the free electron gas.

Hydragén bond is formed by a hydrogen ion located
between two anions. Since hydrogen has only one elec-—
tron it can lose it to either of the two adjoining ions
with the result that there is an equal probability of

finding the electron on either ion. The positive hydro-



gen ion tends to draw the two anions more closely
together than £heir normal seperation in crystals so
that such a shortering of their interatomic seperation
serves to indicate the presence of a hydrogen bond. It
is noticed that the hydrogen bond is largely ionic in
character being formed only between the most electirone-—
gative atoms, particularly F, 0, and N. In the extreme
ionic form of the hydrogen bond the hydirogen atom loses
its electron to another atom in the molecule; the bare

proton forms the hydrogen bond.

Crystal structure H

The study of the physical  properties of the solid
state began in the early years of @ this century. A
century ago the study of crystals was concerned only
with their external form and with symmetry relation-
ships among the various co—-efficients that describe the
physiéal properties. All atoms are constructed of va-
rious elementary particles (electrons, protons, nuetron
etc) and a complete description of a solid wﬁuld simul-—
taneously specify the condition of all these particles.
The solids have an arrangement of atoms (or
molecules}in which the atoms are arranged in some regu-
lar repetitious pattern in three dimensions. Such
solids are called crystals ana the arivrangement of atoms

is ter@ed-the crystal structure. The logical relation
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for crystal structure is,
Lattice + basis = crys#al stru&ture.

Where a lattice is a regulér periodic‘arrangement of
points in space. A lattice is a mathematical abstrac—
tion; the crystal structure is fDrmea only when a basis
of atom is attached identically to each lattice point.. .
The set of points r ' specified by r'=r + nia +npb + Nz C
for all wvalues of the integers nl, n2, nsdefines a
lattice. The structure ofvall crystals in terms of a
single periadic lattice, but with a group of atams
attached to each lattice point. This group of atoms is
called the basis; the basis is repeated in space to

form the crystal.

A typical structure a* simple ionic solid is il-
iustrated in fig.1-3i0l1-&- The structure is composed of a
number of interpenetrating simple cubic or face-cen-—
ter;d cubic Bravais lattices. With reference to the
cabe axes, the CsCl structure is composed of two sc
lattices, one for each species of ions, shifted by.a {%
4, % 7 relative to one another, while the NaCl struc-
ture and the Zinc blende structure aFe composed of two
fcc lattices, shifted by {%’%3 % } and {éa %, % b
respectively. Similarly, the CaF  structure is composed

of three fcc lattices, one for one species of ions and

. Rajshahi University Library
: Docuinieatition Section
Documernt Ny 2753350
Dute. . 23:.2.9, D-~IS8S
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two for the other species, shifted with respect to the
former by {%-’-i-,-} ¥ and {3 4 % ¥- Finally, the Cug0
structure is composed of six sc lattices, two for one
species of ions, with their origins at {},4, 4+ I and {-2-,},
%} and four for the other species, with their origins at
{0,0,07, Hi 3 3. {4,0,% 3, {0,%,% 3. The unit
cell of stoichiometric rutile is tetragonal and con-
tains six ions per unit ceil as shown in fig.(l—g). The

crystals have the space—group p 42 %-
n n
cations occupy equivalent position 2{a} at {0,0,0} and

2 with Z=2, the
m

{%.L%).%} with site symmetry m m m, the anions reside
in 4(f) at%{(X,X,D),1/2+X,1/2~X,1/2},' with symmetry

mma

The existence of a %tgble bonding arrangement im-—
plies that the spatial configurationm of positive ion
cores and outer electrons ha% less total energy. than
any  other configuration. The energy deficit of the
configuration compared with isolated atoms is known as
gﬁe cohesive energy and ranges in value frém 0.1 ev
atom for solids which can.muster oniy the weak van der
Waals bond to 7ev/atom or more in some covalent and
ionic compounds and some metéls. The cohesive Energ;
constitute the reduction in potential energy of the
bonded system minus the additional kinetic energy which

the Heisenberg_uncertaintyprincipie tells us must re-—



) ( CF

Fig. 1-4 : A unit cell of sodium cliride

structure,
- Fig, 1-3 1 A lattice cell of sodium O —y C|
| cloride structure.
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Fig- 1=5

“Alattice cell of
rutile structure.

Fig, 1-6 ¢ A .untk
structure.

@ —— X

O— v

.cell of‘rutile

v



13

sult from localization of the nuclei and outer shell
electrons. It shall now'be considered the forces whiﬁh
holds the atoms or constituent particles together in a
crystalline solid. These forces or bonds are of prime
important in undergtanding differences in the gross
structqres and characteristic. of different solids.
Since atoms contain chargé particles, they exgrt farces
on each other when brought together. It is due to the
influence of these interatomic farces thét the consti-
tuent particles of a crystal obtain the position cofre—
sponding to a minimum energy configuration and thus get
bonded together. These interatomic forces were first
observed in the field of crystal chemistry dims studies
on thé composition and stépilization of molecules. It
is sigﬁificant to note that investigations of the na-
ture and origin of the interatomic forces did not
await. the development of X-tray diffraction and crystal
spructure analysis techniques. Around the mideighteenth
céntury; Desaguliers suggested that these fo?ces were
of an electrical n;ture. This theory was further im-
proved upon by Herzellius in the early ninteenth centu-
ry; The development of Bohr’'s theory on atomic struc-—
ture in 1213 provided the physical basis for the
interprétation of the interatomic forces. The discovery

of -X—ray diffraction and the subsequent advances in
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crystal structure analysis provided the necessary means
to find out the atomic configuration of molecules whose
forms were pPreviously conjectured on the basis of vale-
ncy ?heories of chemistry. One significant fact that
which emerged from the earlist analysis of the struc-—
ture of crystals was that no essential distinction
existed between the chemical forces which bound the
atoms of the chemical molecules and the physicai forces
which held together the atoms in a crystal. This impor-
tant finding was éignificant in two ways. First, if
provided physicists with the means to explore the na-
ture of the forces which bound the atoms in crystals by
utilizing ideas from chemistry and suitably extending
them.  Secondly, it opened a way to the physical inter-—
pretation of the concent oflchemical bonds pioneetred by
chemists.. For the present purpose one shall | be
conqerﬂed with the first of the two aspects. The direct
anaiogy which exists between the two forces alsoc makes
ié evident as to why one classify the discussion on the

P

bonding of atoms in crystals'as chemical bonding.

Next we turn our attaintion to discuss ionic crys-
tals. The nature of binding in ionic crystals have bheen
a subject of extensive study over the past few decades

Ei-1i]. These studies have been made possible accurate
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study on the investigation of the nature of the bonds,
cohesive energy énd other related chemical properties.
A number of attempts have been made to approximate the
interionic potential in such crystals by assuming them
to be composea of completely ionized atéms, and earlier
models along these lines have been proposed by Born and
l.ande [11, Born and Mayer [2],Rittner [3]1, Varshni and
Shuklal4] and Fatel et. al.[5]. These evidences have
been accepted as being reasonably successful in déscri"
bing the ionic bondlin diatomic, ionic molecules and
crystals. Reviews of the progress in this field have
been made by Sherman[é6],Waddington[7], Ladd ahd Lee[8].
The improved in recent years has made possible study of
bonding and other related chemical proberties in ionic
molecules and crystals byf kachhava and Baxenal?],
Mathur and 8ingh[101, Fandey [111, Fandey and

Saxenal[l12], Barr and Lidiard [13] and Redington([14].

, Recently Ch.Satyanarayan{139] studiéd the static
pé;perties and stability of structure of ammonium ha-—
lides. Ammonium halides are diamorphic, crystallizing

in the CsCl-type crystal. Structure at low temperature
and in the NaCl-type crystal structure at high tempera-
ture with the exception of NH4F which crystallizes in
the Wurtzite-type lattices[16]. A predominantly ionic

charéctér of binding in ammonium halides[17,18) , moti-
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vated the recent researchers to concentrate on the
stﬁdies of their static and dynamic properties.
Bleick[16] comput the cohesive energies of ammanium
halides. The van der Waals terms were computed by using
London Margena(LM) formulas. But thése formulas have
been criticized because they are subject to considerab-—
le uncertainties. Attempts to compute the cohesive
energies have been made by Ladd and Lee[19] 5 by Murthy
et. al.17]. and by Singh et. al.18]1 with varying-

degrees of success.

In -recent vyears, a large number of potential
energy functions have been applied to study the various
thermodynamic properties of alkali halides, by.Cubic~
ciotti[f20] , Sharma and MadénEEl] ,Kachhava[EE],Mishra
and Sharﬁa {231 and Sharma and Tripathif24]. J.Shanker
and GﬁD.Jain[Eﬁj have devloped an interionicv force
model for mixed alkali halide crystafs. Using empirical
BD;H and Mayer exponential form. But it has some short-—
commings in describing various praperties. Therefore,
Harrrison [26] has presented a gquantum mechanical trea—
tment to calculate the cohesive energy and bulk modulus

at NaCl - NaBEr, kKCl-KB and KB—KI mixed crystals.

Studies on the alkali halides provide a critical

test of different interionic poteatial s mainly because
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they exist or three different states viz. (i) molten
states (ii) crystalline state and (iii) molecular
state. The B-M form on alkali halide can not .explain
the molecular properties of diatomic alkaii halides [3
» <27]1. MWoodcock [28] propeosed a compoité . form and
applied in alkali halides molecules and crystals by
calculating the binding energy and compressibility.,
This potential [28] has been also épplied by Michiel~-
sen et. al. [29] in crystalline mplecular and molten
states . Some errors have been noticed in the treatment
vof Michielsen et.al. [2?2]1. The errors are corrected by

Woodcock[28].

An analysis of interionic potentials in CaF
SrF and BaF crystalsfhas been performed [30] by
maodifying Ehe traditional EBorn model treatmént. The
cohesive energy, bulk modulus and its pressure deriva-
tiQé ‘for alkaline earth fluoride crystals are calcu-
Lgted. The values ére inconsistent in some cases. Alka-—
li halides because Df'their widg—ranging importance as
ionic crystals and molecules have been the subject of
extensive studies. For the study of their structures
and properties one generally prefer a model potential
for them. These potentials are mainly based on elec-

trostatic treatment of interionic interactions and are



very simple and suitable for applications in various
fields of physiéa chemical intercepts. With this viewva
large number of attempts [2,3,27,31-341] Have heen per-—
formed for ionic molecules. .Excellent results of thesg
potentigls_ have been given by Varshni and Shukla [271],

and by Das and Saxena [35].

More than twenty compounds crystallize with rutile
structure (oxide crystals). The structure consists of a
primitive tetragonel lattice with six atoms per Qnit
cell and belongs to the space group Dif(P42/mnm). Such
solids exhibit several unusual and interesting features
['36] which deserve thorough investigation. Many physi-
cal properties of rutileFtype compounds have been
measﬁred by Grants [37]'aqd Rogers et. al. [38]. The
rutile structure oxides with interesting dieleetric
magnetic and chemical properties have thus been subjec—
ted to many investigations [1,2,28,39-446]. But the
controversy about the degree of the ionic nature of
fhese compounds has not yet been settled. Thus an
attempt bhas been made for a thorough theoretical study

of rutile structure oxides compounds in this thesis.

General introduction is discussed in chapter 1.
Lattice energy and pressure derivative of Bulk moduli

are described in chapter 2. The origin and different
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empirical forms for repulsive potential (from 1918-
1983) are diSCugsed in chapter 3. The origin of wvan
der Waéls energy and derivation of van der Waals co-
efficients are presented in chapter 4, The origin of
polarizability,a discussion of polarizability versus
ion environment and methods of calculating polarizabi-
lity are also presented in chapter 4. The calculations
" and results are discussea in chapter- 3. Chapter 6
contains a discussion and a conclusion of the results
obtained where it is shown that.relativély simple theo—
ry with a new RPE function is moderately successful in

explaining the properties of crystals under study.



CHAFTER 2

LATTICE ENERGY AND FRESSURE DERIVATIVE OF BULK MODULI.

2.1 Introduction:

The attractive electrostatic interaction bétween
the negative charges of the electrons and the positive
charges of the nuclei is extremely responsible for the
cohesion of solids. To understand cohesion one compare
the total energy of the solid with the energy of the
same number of free neutral atoms at infinite sepera-
tion. A crystal can only be stable if its total energy
is lower than the total energy of the atoms or mole-—
cules when free. The difference (free atom energy)-

(crystal energy) is defined as the lattice energy.

The total energy per molecule of a crystal rela-

tive to infinite separated ions is

u = uﬁ + UR + Ude+ U

7 tRT Yset “sr 2P (2-1)

s

where UER= t.ong~irange coulomb potential.

R vdW
Ysp= Ysp* UYsr
U;; = éhort—range repulsive potential.
U;gw= short-range van der Waals energy.
u = Zerg—point energy.
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A. Long—range Coulomb energy (UER )
The coulomb‘interaction energy of point like char-
ges Zpe and Zpepertaining to the pth ion in the 1th
unit cell and to the p‘th ion in the reference cell is

2 .
z e/ (ri-rrp.-rp)

p Zp . The corresponding electros-—
tatic energy of the crystal per molecule is then given

by ¢
=1 7 | -
Ur = (28YXET z 7 97 (r +x-7) o5
1p,p P
where the superscript in the summation indicates that

the case 1 = 9O is excluéed for p = p', and n is the
number of molecules in the unit cell. Equation (2-2)
can be rewritten in the form :

UER = - e)zocfyca | (2-3)
where , Z is the largest common factor of the Z° s and
R is-a characteristic leagth of the crystal structure.

The additional quantity &g the Madelung constant ref-

fered to the characteristic lenght R is defined as
R

oK = _ = o
IR gn);—“\’p\ll(rp) (2-4)
. P P \p
R\ = Y - L (2-5)
(l"'p ? P T(rl +rp_rpy’/R

is the electrostatic self potential of the crystal at
the lattice point + when the ionic charges are mea-
sured in units of Z e and the interionic distances in
‘units of R. The Madelung constént is clearly indepen-—
dent of the absolute value of the ionic charges and of

the'absplute value of the cell edges; it depends only
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on the crystal structure.

E. Evaluation of Madelung’constant=

The coulomb energy coﬁstant (iAwas made by Made-
lung [471. The aeneral method for lattice sum calcula-
tions was developed by Eﬁald[48]and Evien and Frank[4%]
have given simple methods which arrange the counting in

rapidiy convergent ways. e

The Madelung constant is defined as:

-

/ N
(B
M = 5 ‘..._.;__._,,.,__ . ’ (2'—6)
3 P43 :

where pij is the quan?ity difinedgy the relation qd Egu
R where R is the neérest neighbour seperation in the
crystal. If one takes the reference ion as a negative
charge the plus sign will be used for positive ions and
the negative sign for negative ions. An equivalent

definition is
V4 '
——?ﬁ—— = 2 (1) | (2-7)
J

where 'rj is the distance of the jth ion from the refe-

rence ion and R is the nearest-neighbour distance.

For example one picks a negative ion as reference
ion, and 1let R denote the distance between adjacent
ions. Then

1 .
“““““ =2 —R—" - E:!RL + —%R"‘ - _-m‘ 4 sease ) (2—-8)



+ .
Na'© ion at arbitrary zero position

Ha” c1” Na', c1” Nat c1” Na 01"

Iy
Y
A

R =R

L.

Fig. 2= 13 One dimenbional approximation te s NaCl structure.
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the factor 2 pccurs because there are two ions, one to
the right and one to the left, at equal distance ?’ .

One sums this series by the expansion

log (1;H) = x - g+ ?$5 - —E4 +

Thus for the one~dimensional chain the Madelung con-

stant o = 21a0g2 .

C. Repulsive energy:

The equilibrium conditions for a solid can be sati-
sfied only if the interatomic faorces become repulsivé
at small interatomic distances. The short-range repul-
sion between atoms is-connected witﬁ the role of the
excluéion principle in Dpﬁosing overlap of closed elec—
tron shélls. This is explained simply in the case of
two hydrogen atoms with parallel electron spins in
fheir'ground state by the comparison between the energy
DE the triplet state of the molecule compﬁted by first
D}der perturbafion theur? and the corresponding pseudaoa—
classical energy. These are given respectively[30] by
the mean value of the'ﬁolecular Hamiltonian over the
antisymmetrized product of hydrozen 1s wave functions

and by the mean value of the molecular 1s wave fun-—

ctios,
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R I A N
_______ r 1 2
47 e, T Yap) (2-9)

Here Uy is the energy of the hydrogen atom in its

ground state, r is the interatomic distance-gnd.aH is
the first Bohr radids. It is showed clearly that the
repulsion is due largely to effects which are neglected
in the pesudoclassical calculation. It is also seen
that the repulsive energy of equation (2-9) in the
rgnge of large interatomic distance where this first
order perturbation expression applies, decays almost
exponentially with incresing interatomic distance,
although with a logarithmic rate smaller than ( jg} f[
The analogous problem of the interaction between two
hydroéen like ions, of nét:charge Zle and Zle « bhas
been worked out by Fauling[31] in the same approxima-
tion. The resulting formula for the energy of the
triplet state of the mglecule involves, besides the
coulomb interaction energy of the net. ionic chatrges,

the repulsive energy of eqguation (2-9) multiplied by a

factor approximately equal to 1 + Z1 + 22.

Further discussion about repulsive energy and 1its
different empirical forms are presented in details in

chapter 3.
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Fige. 2-2 : Interaction energy of the two hydrozen atoms with
perallél electron spin in their ground state. The solid
curves pives the ancrpy of the triplct state of the
molecule and dashod curve rives the pescudoclassical int-
eraction energy.
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Fige 2.3 ¢ Schemetic repreasentaticn of the energy (®) and
force (b) between two etome os function of their
separation r. The dashed curves are the sums of
the attractive and repulsive curves.
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D. van der Naals energy:

The emistenée of condensed phases for the rare gas
elements shows that there are attractive interactions
between closed shell atoms which are of a differenty
nature from ‘the €coulomb interactions between ions and
from the overlap attractive interactioné. The physical
origin of these so called van der Waals forces is
connected with correlations of the electronic motions
in different atoms and can actually be understood iﬁ
semiclassical terms{S2]. Indeed, the instantanuous
dipole mDment,ﬂ of a closed shell atom induces " on &
similakiatom a distance r away a dipole moment, which
is proportional tao JK%? where X is the atomic polariza-

r
bility and produces at the location of the first atom a

oCAL -

field proportional to —;Ew The related term in the
. . . Y .
interaction energy is thus of the form -~ “ﬁ’/r.s whered

is thelmean dipole moment of the first atom. In addi-
tioa to such a dipole—-dipole eﬁergy term, the conside-
rétion of the instanteneous higher homent of the charge
distribution of the atoms yields other attractive
terms, which decay more trapidly with increasing intera-
tomic seperation. The actual evaluation qf the van der
Waals energy in a solid is uﬁfortunately subject to

considerable uncertainties. However, this is only a

minor part of the cohesive energy of an ionic solid in



standard . thermodynamic conditions and possible  errors

in its value are largely compensated in a Born model
treatment inp the fitting of the parameter entering the

overlap repulsive energy. The detailed of the van der

Waals energy-are described in chapter 4

E. Zero point energy:

A great step forward toward an understanding .of
the specifié heat curves at low temperatures was made
by Einstein{533] in 190&. For the average energy of an
osillator Einstein made use of a result obtained by
Flanck in 1900, in connection with the theory of black-
body radiation. According to Flanck, a harmonic oscil-
lator does not have a continuous energy spectrum as
assuméd in the classicalltheory, but can accept only
energy values equal to an integer times h , where h
is Flanck's constant. The possible energy levels of a

harmonic oscillator are given quantum mechanically by:

e = (n + —12- ) hY where n = 0,1, (2-10)

n

-

This has the effect of shifting all energy levels by
the constant amount h=w /2 and instead of Flanck's
average energy of an oscillator shown in the Fig. 2-3

at a temperature T, one obtains

.o, b _
(?) f 5 + 11/KT (2—-11)



The first term is called the zero—point energy of the
DSiCilléth because (e)= -b2 for T=0. Now in the
Debye theory of the specific heat of solids, a crystal
is represented formally by a system of harmonic oscil-

lators with a frequency spectrum given by:

F (D) dd =4 v (-5 + - 19p%a (2-12)

C5 .

v G

where v is the volume of the crystal and G, and Cl
are, respectively the velocities of propagation of
vtransverse and of longitudinal elastic waves. Making

use of the definition of the Debye frequency*ﬂn . DOne

may write

i 2
F(2») dy = —3’%—) Y d? (2-13)
S P .

where N stands for the total number of atoms or ions in
the crystal.Hence, at abselute zero, the contribution

of the zero—point energy is

p
A

*"2" F() h')) dy = Q/BNh'I)D _ (2-14)

0
per ion pair, this corresponds to 2hYp/4. With a Debye

frequency of the order of 1012—101@96J'this gives about
0.1 ev. As a correction to the lattice energy the zero-—
point energy,this contributes about 1 percent. The
tero-point energy is very important for light elements

(hiéh Debye frequency).



2.2 Pressure derivative aof bulﬁ modulus:
In order to evaluate the pressure derivative of
bulk modulus let us first censider the definition of

bulk modulus. The bulk modulus B defined as:

dp
B o= V “5¢ (2-15)
Neglecting thermal effects, from the first law of ther-—
modynamics one may write,
dl = - pdVv (2—-16)
a 3
or % _ _ _4U (2~17)
dv dav
Therefare EB =V . (2—-18)
. dve 3
It is well known to all ¥V =.2NR°~ as volume per maolecule
is -&-d,?’ and a= 2R. Where N is the total number of male-
cules and R is the nearest neighbour distance. Thus one
may write
.dU dU . dR
————— 2 e i ) [ e e -
v T e e (2-19)
._.d_.p_.__ = _..(.i._. ( ( ._..q.[‘_]...) ( .._.__qg__ ) )
av? B\ 5 R av
= .—dU. - __d..R + ( _CLII__ ) (_.._QB_._.__ )2 - (2_20)
dR 2 2 av.
av dR au
At the eqailibrium seperation R=R and (—“dR—) = O so that
. -0
: 1 - i
B = === U(R R =R
18 R ) o
i AR 2 o
using ( W ) 36N2R¢ 3
+R
( -dB .y = - ( —==2— ) U (R
dp T 27V
(2-22

]
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where q= 1/B,  is the compressibility and is defined

as the reciprocal of the bulk modulus. Thus equation

(2-22) may be written‘as:
(9B R3 (U (Ro ) )
T
R (U ®, )

-
2

-3 The energy from the Born-Haber cycle:

The theoretical value of the lattice energy can be
compared with the experimental value determined by a
Born—Haber cycle analysis. In this method, one consi-
ders all the steps involved in transforming one mole af
Ti, &5i, Ge and Sn respectively and one mole of molecu-
lar oxygen gas into one mole of rutile. The energy
assaciated with each step of the cycle can be deter-—
mined . from thermochemical data. The formula for the

energy is:

U = 44 - L - D + 2A —- 1
L
where H is the heat of formation of rutile, L is the
hgat of vaporization of Ti, 5i, Ge and Sn respectively,
D is the disociation energy of 0 gas, A.is the affini-
ty of the oxygen atom for two electrons and I is the

sum of the first four ionization potential of the §8i,

Ti, Ge and Sn atom respectively.

(2-23)



CHAFTER 3

REFPULSIVE INTERACTIONS

3«l. Origin of Repulsive interaction:

A Qualitative picture of the origin of the repul-

sive farce may be given as follows:

when MY and X~ ions approach each other closely
enough so that the orbitals of the electron = i; the ions
begin_to overlap each other, then the electron begins
to repel each other by virtue of the repulsive @lectros-
tatic Coulomb force. Of course, the closer together the
ionslare, the greater the repulsive force, which is in
gqualitative -agreement with experimental abservation.
Without paying attention to the physical origin of the
forces between the atoms, let ﬁs assume that the poten-—
tial energy of atom M due to the presence of atom X is
given by an expréssion of the type:

Ury = - % . B

\ rn rm
whereé + is the distance between the nuclei of the two
atoms; o, B, m and n’ are gonstants: characteristic for the
MX molecul®. The zero of energy is chosen such that for
infinite seperation, U=0. The first term, which 1is
negative, corresponds to the energy associated with the

force of attraction, the second(positive) term corres-—

ponds to the forces of repulsion. In fact, the forte beiween
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that twe atoms as a function of r is given by

du
F(r) =-—o . _ Ax = mf>
dr rn*l o+l
The energy and the force between two atoms MY and X~

which form a chemical compound are represented in Fig.

3I-i(a), Fig. 3F-1(b).

The stable configuration for the system corres-
ponds to the minimum U(r) curve, which occurs for a
particular seperation, r=r'o The corresponding . | energy
U(r'0 } is negative; .thus the positive guantity D= -
U“B ) is the diésociation energy of the molecule i.e.

the energy required to seperate the two atoms.

" Dissociation may occur, for example, at high tempera-
tures or .as a result of othet;process in which the
mloecule can absorb sufficient energy. The dissociation
energies are of the order of one or a few electorn

volts.

Y

Rgsuming that the energy curve exhibits a minimum,
one may express the equilibrium disFance "o and Fhe
corresponding binding energy U(ﬁ. ) in terms of the
consténts Nuﬁ?m, and n by making use of the condition

( —g-g——— ) _=0 i = () £,

(o]

According to (3-2) this condition is equivalent to the

requirement that the attractive and repulsive forces

( 3-3)
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balance i.e. F(r) = 0. substituting from (3-3) into (3-

1) one obtains for the energy in the - equijlibrium state
ad ' ' '

UGk ) = = === 4 B - (%, - B, (3-4)

7o %o o .

It is noted that although attractive and repulsive

forces are equal in  equilibrium the attractive and

regulsive energies are not equal sincé n;&m. In fact if

m»n, to total binding energy is essentially determined

by the energy of attrction - L.

by

o

As one may expect already by looking at fig. Z-
-B(a), a minimum in the energy curve is possible only if
m = n; thus the formation of a chemical bond requires
that repulsive forces be of short range than the gttrac—

tive ones. This may be shown by employing the condition

that ( ==~» ) =0 if must have a minimum at ro . In
dr r=r_ =

fact, this condition leads to

- % mmEl1) _
nin + 1) F + rm+2 > 0 (3-93)
o

which upon substitgtion of r from (3-3) immediately gives

m >N ' (3-6)}

y
3.2 5ifferent empirical forms:

i) Born-Lande potential (1918):

Many years ago EBorn and Lande[ll used an inverse
power repulsive term in the potential function for
alkali Halide crystals. For gagseous ionic molecule

Born—Lande proposed a potetial function in which the

repulsive energy is expressed as:
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gir) = br-n
where b and n are constants. This repulsive energy was
much used in the potential energy during the twenties
for investigating ionic crystals. Kfebs[54] applied
equation (3=7) to LiH and NaH and later paper[55]
discussed the nature.of alkali hydrides'in the gaseous
state. Rice[346] has 3etermined the value of n from the
lattice energy data and has used it to calculate the
binding energy of gaseous alkali hydrides. The above
equation has also been employed by Mulliken[&71] in

discussing the nature of the binding in LiH.

Investigation of interionic forces that have bheen
carried out on the basis of quantum mechanical.célmﬂa—‘
tions of forces between ionszshowed that an inverse
power repulsive term was not satisfactory. The calcu-—
lated valges of xe(rotational constant and vibrational
constaﬁés aémeare too high and the ionic binaing energy

15

DL'aFE tbo_low. Thus it is found that BL potential is
-not satisfactory forralkali hydrides. However, it is
interesting that for a particular constan£ Uﬁ’hy%, or
Dy ) the percentage error is in the same direction,

for all the molecules.

4

ii) Born—Mayer potential (1932):

In most applications of the Born model since 1930,

(3-7)
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the repulsive energy of the closed shell ions has been

assumed to vary eéxponentially with their distances, in
keeping with quantum mechanical results (Heitler and
London[501] . 1927). The repulsive energy, asla fun-—
ction of the nearest-neighbour distance ry is expressed
by Born and Mayer[2] (1932) in the form: |
gir) = a e'r/P

where a and @ are the repulsive parameter. The BL madel
is the most sucessful of the previous models. However,

in other respects a representation of the repulsive

term- as good an exponential function (EBorn and Maver).

One ~argument that has been frequently advanced in

support of the exponential function is that such a term
is predicted by quantum mechaﬁi;al calculations. Theo-
retical treatment of the rebulsive forces between
closed shell anion and>point cations have ténded tg
supporﬁ»the assignment.of'anexyxmnﬁalqi term. However,
severgl of the theoreticsl results are in serious disa-
greé&ent with the experimental data. Thus the avéilable
evidence guggests. that present quantum mechanical tréat—
ments can not be applied to the representation of the
binding energy in diatomic ionic crystals. Finally, as
Dobbs and Jones{581 remark ‘"The exponential form for

the +repulsive potential makes calculation of the lat-

tice propertes rather complicated and in any case is
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perhaps, not valid.in the region near the minimum of
the total potential which is of course the essential

part in considering the properties of the lattices.’‘

iii) Wasastjerna potential (1935):
Wasastjernal33,34] »  1n 19239 investigated an
extended form of the repulsive potential for Ma, Rb and

Cs halide crystal. This is as follows:

¢ (r) = «c r‘7e=—/b‘r (3-9)
where ¢ and A arevconstants.
With the repulsive potential the Wasastjerna potential
gives rise to nagative xb(rotational constants). The
vibrational .constants W, Hgvery high and the ionic bin-
ding energy Di are excellent agreement with the obser—
ved ones. It is the remarkablé phenomenon that it is
. able to reproduce one of the constant (Di) very succes-—
.sful, but fails completely for the other two.
iv) Hgllmann potential (1936):
éome 20 years ago, Hellmahn[31,32] introduted the
following repulsive potential in the potential energy
to represent the interaction between the valence elec-—
tron and the core in an alkali atoms
¢(r) = -'-II:_ . C-'Ar (3-1Q)

where T and are constants. Since then it has been used

for thé electron—core interaction by & number of



workers{539-463]. However, as for as we have been able to

find, this potential has never been used before as the
interaction potential. It has been found that such a
potential vields satisfactory results for rapresenting

the shape of interatomic potential energy curves of

alkali hydrides at least in the neighbourhood of the

equilibrium internuclear distance.

v) HM potential:

M.L.Huggins and J.E.Mayer[&4] in 1937 proposed a
form of repulsive potential which is as follows:
r/

_ - 2 2 <[P
W . = Mﬁa+b_+b_ e +%M (ﬂ4$3+ +é_b_ + b ) e’ (3-11)

where b+ and b_ are the charactristic parameters and
the parameterf)can be determined by a simultaneous fit
for Fhe salts of the family. Itishould be simultanuous—
ly emphasized that the fit of the repulsive parameters
to crystql data is effectively uéed in tHe Born model
to corr;ct, in an appropriate way, the approximations
made ;in the assumed expression of the lattice energy.
The mean deviation of the values of n in the indivi-
dual salts yielded by eqguation n = (-%Y -1 from their
mean value amounts to 6% as for the original Born—Mayer
calculation, but the root—-mean square deviation is as

large and 10% as large discrepancies between the ave-

rage and the individual value of n are apparent in a



few salts. This implies that the Huggins-May¥er form of
ihe Born repulsive energy does not provide a good- fit

of the compressibility for all the salts.

vi) Verwey potential (1944) =
Verwey[45]1 in 1944 proposed a harder core poten-

tial function in which the repulsive every is expressed
as:

giry = mrt?
where s is the repulsivé parameter. The Verwey poten-—
tial have been used by workers (Guccione, Tosi®~ and
Asdentel[66] 19592, Tharmalinghm[47] in 1963,1944, Bos-

Wwarva and lidiard[&8]1 in 1947) in the calculations of

activation energies and defect energies.

vii) Dick—-Overhauser potential (i?EB):

Regardless of the attractive force between atoms
it known thgt the atoms vremain a finite distence apart
at equiiibrium. Thus a repulsi?e farce must set in
suddenﬁy at short distances and balance the attractive
faorce at the equilibrium distance between atoms. This
repulsive force arises in part from the application of
the pauling exclusion principle, since thg exclusion

principle opposes the overlapping of the saturation

electron clouds of the different atoms.

The l.sim'pliest mathematical form for a potential which



vields a sudden repulsion at short.distances is expres-—
sed within the Born-Mayer model[2] as ¢= a e’rAO.
The ' form of the potential is not obtained from first
principles but, neverthless, represents the repulsive
interaction satisfactorily between two ions, as for
example, between two helium atoms or two neon atoms.
However,as a general model the potential is gquite un-—

suitable for the whole alkali halide series.

The electronic shells in thé ions of alkali ha-
lides are closed shells and thus éan be thought af as
being similar to helium atoms except for the in;reased
electronic and nucléar charges. It can reasonablyAlex—
pect that the results obtained from a study of the

interaction of two atoms (helium) can be applied to the

more general case of alkali halides. By evaluating the
helium—helium interaction integrals, Dick and
Dverhauéer[b?} have shown that the total repulsion in

this Ssystem can be represented by:

g=e.n, /or
where Qex is the exchange charge. The nature of the
exchange charge can he inferred from a considerable
methad of Lowdin's technique of symmetrical orthogona—

lizationfL70] , which takes into account the lack of

orthogonality of the ionic electronic wave function due
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to overlap. When the value of Ele =4 g SMXaS determined

by Hefemeister and Zahrt[{71] is substituted in (3~13 )

becomes
2 2
g = 2.5 e /r (3-14)
Tep MX .
It may be noticed that the overlap integral S._ in

MX

equaEiDn (3~14) is a complex.function of r. Rather than
being & single exponential it is the sum of number of
exponentials, each with complex multiplicative terms.
The Borﬁ—Mayer form for g!m;s thus an oversimplification
of the actual results.

viil) Varshni-Shukla potential (19&1)

Varshni and Shuklal72] in 1661 proposed a mare
complicated form of potential for the repulsioﬁ between
closed shéll'ions, :

g = ?\1e"k1r2 (3-15)
rep
Where A1and klare the repulsive parameters. Recently it
has béen found that Fhe potential is reasonably satis—-
factory for the alkali halides. The rotational con-
stanésq%for LiH and NaH negative, which is contfary to
observation. Except for LiH, the vibrational constants
Wyig are 207% lower than the observed ones. The ioniﬁ
binding energy Dy is satisfactory. But the potential is
very much unsatisfactory in EQPEO¢MﬁﬂS : other molecu-—

lar constants. For the above model, one has:

lim U(r) = —og¢ (3-14)
r-30



ix) Benson-Dempsey potential (1962):
Jai Shanker et.al.[30] in 1981 used Benson—
Dempsey{73Z] repulsive potential for analysis of
interionic 'potential in alkaline earth fluoride crys-—
tals. The repulsive energy by taking into account the
interaction between nearest and next nearest neighbour
cation—cation, cation—anion and anion—-anion can be
written as follows: ((r) =8 @, be (Tt T = r)/,0+..+6 .
o =K/ p +6 p b of2r, -k r)/,oH-a2,6__;b ol Kr) o (3-17)
where ﬁij are the co—efficients introduced by f

Faulingl[74] is order to provide approprite weightage

for the various pair interactions. b and pijare the

strength and hardness parameters. r+ and +r_ are the
radii of cation and anion respectively;: kl = 1.1547
and k2 = 1.63F30. Values foajare derived using the

correlation between repulsive energy and overlap integ-—

v

rals for the pair of neighbouring ions[74]

bij

where \’ is " a dimensionless proportionally constants

o 5
eria/ﬁ'-j= zye"l Siy 7/ ryy - (3~-18)

introduced by Dick and Overhauserl[&69]. Sijfor various

ion pairs in CaF2 and BaF2 crystals have been reported

by Ra{75] -. Values of fﬁjbased on these overlap integ-

rals. The repulsive strength parameter b can be calcu-

lated from the crystal equilibrium condition. The cohe-
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sive energy obtained by Benson and Dempsey[73] are in

slightly better agreement with e%periment.

#) HF potential (1945) ;

The Hefemeister and Flygar[741 form of SR overlap
repulsive energy extended to the newxt nearest neighbour

ions with b and,@lis the hardness and range parameters
a .
can be written as:
- T+ -
g(r) = ;zgxgbbea b ab/pab : | (3-19
= 2 i -
where a, b 1, 2, ...... and ‘@abare the Fauling co
efficients defined as:

Ka _ 27 &y

= 1 —— —
ab n, n.-
where Z1 and Zpare the valencies and nj and np the
number of outermost electrons of the 1th and mth ions.

ri and p ere the ionic radii.

R.K. Singh and F. Khare[77] analaysed the anharmo-
nic properties of silver thallium and copper halides by
means of this interiénic potential model incorporating
the e%fects of the long—range coulomb and three body
interactions and the short-range vdW attractive and
averlap repulsion. The results by using HF pptential
agreé fairly well with the avaiable experimental data

and show a consistant trend through out.

)

(3-20)
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®1) Modified Varshni-Shukla potential:

Patel, Gohel énd Trivedi et.al.[(5,78]1 adopted a
élightly different potential function for the repulsion
to that proposed by Qarshni and Shuklal[72]. Specifical-
ly, this potential functien can be expressed as:

gir) = ze"kZ r/? (3-22)
where'}zand k2 are the repulsi&e parameters. The rota-
tional constants %,are too high. The average percentage
error of vibrational constant W X%, is the lowest a-
mongst the potential. Tﬁe binding D; are about ' 10%
lower than the observed ones. For @gXs, (3-22) improves
upon (3-10) but for average percentage error by (3-22)
is nearly twice of that by (3—-10).For D¢ als; « the
results by (3-22) are uniformly less satisfactory than

those by (3—10).

#ii) HZ form of overlap repulsion potential:

R.f.  singh and S.FP. sanyal{79] used an overlap
repulsion “potential  for analysing the cohesive and
therm;dynamic properties of alkaline earth oxides by
extending HF and HZ potentials to include the three-
body interaction effects. The extended HZI [71] poten-

tial can be written as:

: giry = Nb T 41 e(ri ¥ )/fOfJ' (3-23)

1 Tij
where i and j denotes respectively either ion 1 or 2;515

are the.Pauling co-efficients defined as:
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p i = 1 + —_a-«- + ...._.Z.j_
j ni n
with 23 (Zj) and ny (ny ) as the ionic charge parameters

( + 2) and the numbers of electrons ( = 8) in the

outermost shells of cations and anions; ry and rj are

(3—-24)

the ionic radii whose values have been taken from.

Pauling[74]. The cohesive energies calculated from the
present extended HZ form of potential are in better
agreement with experimental data than those abtained by
previous investigators. It is also seen that the re-
sults obtained with HZ potential are much better than
those of the HF potential. The exkendea HZ potential
has vyielded results much closer to the experimental
results on cohesive energy, its owerall superiority has
been Dbtained by performing cqlculations of various

thermophysical properties of AED crystals.

xiii) BT potential (19&8):
The appropriateness of the Born-theory of ionic

h.
crystals is being successfully for alkali hydride crys—

tals for which a 1ittle work 1is available in litera-
ture. A new form of overlap repulsion energy terml8Q]
for alkali hydride earlier suggested by Gohel and
Trivedi[45] for alkali halides of the form.

gir) = F/r e

where P and K are the repulsive parameters and r is the

(3-24a)
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interionic distance. This form (3-24a) has been sugges-—

ted to study the lattice properties: of hydrides.

The crystal energy may be expressed as the sum of
coulombian attraction energy, the overlap repulsive
energy, the point energy and the van der Wagals interac-
tion energy terms. The compressibility predicted by[(80]
and ies superior to those predicted by Das and
Sexenal33] . The co-efficient of thermal expansion is

good agreement with the experimental value.

#iv) Frakash-Behari logarithmic potential (1949):
Frakash and BRehari[81] suggested a logarithmic. -
form repulsive energy in ionic crystals that has subse-—
quently been adopted.by Mishra et. al.[?E]-(1971)_ and
by Sharma and Jain[83] in 1973; to study the proper-
ties of these crystals. The new potential is given by
g(r) = a log (b + br> ) ﬂ (3-25)
where a’and b are the +epulsive parameters. It has been
found-tthat depends sensitively on the farm of the
. potential for the repulsive energy used within the
" frame work of the Barn model. It should be remarked
that the logarithmic ~ potentials yield almost identical
values of the cohesive energies and that these a}e

consistently higher in magnitude than those based on

experimental thermodynamic data. In contrast, the va-
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lues of S'derived from these two forms of potential

Verway and log.differ significantly each other.

¥v) Redington potential (1970):
Redingtonfi4] in 1970 proposed a form of repulsive
potential

which can be represented by:

giry = 2, e pT+ a, o—PY% a’y pr/ s - (3-26)

whetre al . a o and a8y are some constants and ;~ is the

repulsive parametrs.

®vi) Katiyar potential (1970):

For the analysis of internic potential in rutile
structure - MXo crystals corresponding to MRIM,
Kativarl84] presented a SK rebufsive energy given by

girr = 4 iRy + BURY + toWgRs) + 2 Wu(Ry)  (3-27)

where R, . R, R ,and K, are the four different cation-
1. 2, 3 4

anion, and anicon—anion distances in ‘rutile structure

[}

defined by Striefler and Barsch.[38]

where \l/l(F\'l) =B, b e(r+ tr.-K R )/p_,. - (3-28)
WgRg) = B, b elry +7 =k R )//°+_ (3-29)
\l;(F:s) =B el2r -ky R)p (5-30)
Urg) = B _ _ Z =K R )Mp (3-31)

where b and pP are the strength and range parmaters,

respectively, k (i = 1 - - — - 4) are the dimensionless



factors defined by Striefler and Barsch[36], (1973), B
are the Pauling co-~effecients (8ingh and Tiwary[85],
1980) introduced to prdvide appropriate weighting for
different ion—pair interactions and ry and r _are the

crystalline radii ofcgationg:and anions.

f

xvii) RMS potential (1574):

The repulsive energy contribution to the lattice
energy per ion pair in an NaCl-type crystal has been
proposed by [B6] as follow

giry = 6 B, e+ o B4 e-@r+ 8 K, e-ﬁ‘r + 3 Be.e

) u
where interactions upto fifth neighbours are included.
The parameters ¢, Bu . El are determined crystal by
crystal data at atmospheric pressure and at temperature
in the range 300 = 700 K via the Hildebrand equation of

state.

-

One can make a comparison of the potential with
tﬁe Fu%i and Tosi [87] potential by performing calcula-
tions for NaCl, KCl1 & KBr. The comparison shows that
the FT potential and RMS potential as reported gives
quite comparable values for the. total repulsive energy
contribution to the lattice energies per ion pair a
function of the nearest neighbour distance around the

equilibrium wvalue in standard thermodymanical condi-
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tions, but  that the RMS potential gives much smaller
values than FT potential for the repulsive energy con-—

tribution due +to the nearest and next pearest - neig~

hbours.

®viii) Thakur potential (1976).
For many of the previous model it is found that

lim U (r) = oC (3-332)

5 0

and thus the potential energy curves will approach
infinity in the negative energy region. The exponential
repulsion terms suffer from the fundamental physical
draw back that they gave a constant finite value-ét ry
ao. The formg of the pair potential for an LiF crystal
as predicted by the models BL [11], BM [2]1., VS[72], &
PGTLS] .are shown in figure ; -1 . where it is
" seen that, after the usual minimum at equilibrium ionic
seperation P the curves have a minimum in.the region
r'(IB and ‘tend to infinity as r>» 0. The height of the
potential barrier for the BL model is about lD; kj/mol;

-

very much greater than for the other model.

The potenfial energy curves in fig. %1 as predic-—
ted by these models are not satisfactory. . Since there
must be a finite probability for penetration of ions in
each direction through the potenial barrier under these

condition a crystal would not remain stable and could
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either collapse. or contain heavier muclei formed by
fusion following such tunneling. There is no evidence

to show that diatomic ionic crystals have these charac-—

teristics.

Uir
The force F(r) = - §H;) between an ion pair, as

given by the models BL, EM, VS & PGT, is plotted as a
function of the ionic seperation r in fig. 3 - 2 . Again
the curves are not satisfactory since they all give
F(r) zeré for two values of +r indicating a stable
crystal for two values of ionic radius, together with
the possibilities of crystals collapse and the forma-—
tion of the heavier wuclei by the application of an

external force equal to he height of the force curve.

For predicting the forh of the potential energy
curve then, firom the above discussion the BL. model({l1l]
is the most successful to the previous models. However
in D¥her respects an inverse power function is not as
gobd a representation of the repulsive term as exponen-
tial function. One argument that has been frequently
advanced in suppqrt,of the exponeﬁtial function is that
such a term is predicted by gquantum pechanical calcula-
tions. Theoretical’. treatments of the repulsive force
between closed shell anions and point cations and bet-

ween. inert—gas atoms have tended to support the assig-



&

‘.
—> r(in 8 )

2
¥ lou fopmol> 4

4
H-K

[ - z
€ (L3 adaog

-

’

_Figs - 32 : Force curves(inieviewic Jovee)



nment of an exponential form. However, several of the
theoretical result are in serious disaggrement with the
experimental data. Thus the available evidence-suggest
that present quantum mechanical treatments cannot be
applied to the representation of the bindiﬁg in diato-
mic ionic crystals. Dobbs and Jones(98] remarks "The
exponential form for the repulsive potential makes
calculations of the lattice properties rather cémpli*
cated and, if any case, is perhaps, not valid in.the
region near the minimum of the total potential which is
of course the essential part in considering the proper-—

ties of the lattices."

Until & complete mechanical treatment of ions in
close ICDntact is availablé,:‘the overall effect of the
short—-range forces can only be representedi by an -empiri-
cal term in any model of the potential energy. However-—
sexisting models_above are not entirely satisfactory
anq it would seen worthwhile to consider an alternative
form for the repulsive potential term. It is accepted
that this form will not only be adequate representation
within_the region rir rg where, Fy is the interionic
distance at which the electronic shells come into con-—
tat. In accordance with Fauling principle the short-—
range repulsion should become infinty when the closed

sheli electron clouds of the anion and cation overlap
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and  taking account of this, the following logarithmic

'formEBBJ far the repulsive potential is proposed:
Bir) = F 1log ( 1 + p” ) (3-34)

where F and ﬁ'and n are the constants. With inclusi&n'
of the terms for the other interactionsj,the final form
for the potential energy of the ion pair is then

U(r)y = - _%ﬁf - ;06'1128 _%%2+ Flog (1 +pr ) + (3-35)
The last two terms of this equation may be combined to
give I

P log (1 + pr ) =P log (a+prr ) .(3—36)
where EE= P log a now represents the zero point energy
and P = aﬁf The mmdel proposed by Thakur[88] is inves-—
tigated for a parameter value of n = 4. The form of the.
preseﬁt potetial function.is satisfactory since ﬁnlike
the previous curves it has a single turning point at
(Ul ).ty ) and tends to infinity in the +ve energy
domain outside region QUrary .

&
¢

The previous proposed models for the potential
energy function in an'ionic crystal are not entirely
satisfactory. In order to overcome these difficulties
this new repulsive interaction has been proposed in
which the interionic potential energy tends to infirlty

in the positive energy domain. 1t has been found that

the. new model gives a better representation .: of the
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experimental data for the cohesive energy, the Grunei-

sen and Anderson - Gruneisen parametes and reststrahlen
frequency than previous models, and is ecomparable in

its predictions of the atomization energy.

The form for the potential proposed is an~improve—
ment on previous models and although far from perfect,
it may help in obtaining a better understanding of the

nature of the ionic bond.

Hiﬁ) SkM potential (1977):

" The main feature of the existing potential models
which have been suggested so far is the direct functio—
‘nal depedence of potential energy on the interionic

distance at egquilibrium.

Actually the force of repulsion depends directly
an the depth of overlaping of wave functions of the
outer. most Drbits‘and thus it will be appropriate to
assign. such a form Df the repulsive energy term which

is function of interorbital distance.

Introducing the concept of interorbital distance
instead of interionic distance for ionic crystals a new
form of overlap repulsion energy was proposed by
M.N.Sharma et.él[393(1977)- The form of oyerlap repul-

sion[3I?] is as follws:
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Biry = £ (&) C(3-37).
where f( 51 ) is a-function of 3interorbital distance.
Assuming @ (R) to be function of 51 . the potenfial
Energy per unit in an ionic crystal ma; be expressed as

Uir) = —%E + B(R) ~  —1§—~ - ——:-g* (3-38)
where the notations have their usual meaning. To deter-

mine the form of the repulsive potential the values DfSi

were determined by the following method.

For NaCl-type crystal each metal ion is surrounded
by six nearest neighbour halogen ions, four of which
can be taken in the same plane with the central metal
ion. The distance between the centres of the two oppo-
site halogen ions can be determined as 21{?, half of
‘which will be egual to the distance between centres of

metal and halogen ion. Thus

i

(t:.(’:'_’ -(r+ - r) )

- ( 0.414 r_ ~ r. ) (3-39)
similarly for CsCl’ type crystals

= (0.732r -~ ) , (3—40)

.
n

Thus 'one can obtain as : ¢(r) = A 51 (3-41)

where A and n are potential parameters.

This model is more suitable for predicting. the beha-

Qour of alkali halide crystals regarding infrared abso-

rptioh frequency as compared to previous. values by

other workers. Thouwgh its performance is poorer for
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flurides amang other crystals, the model shows a marked
- improvement in the case of fluorides as compared to the
results obtained with other model. Thus the overall
performances of the properties of the crystals shows a
marked improvement to the previous médels. The uniform
behaviour of the crystal properties may be observed

which was one the short~comings of the previous models.

xa) ﬂohammed potential (1979):
5. Noor Mohammad[42] proposed a general faorm for
repulsive potential of the given below:

f(r) =5 e —AT/T

(3-42)
where S,7L’m and n are the parameters of the potential.

With this form for f(r) the total potential energy can

be wiiten:
t

Z 2( oy +&
u(r) = - —%—i——f— + 5 e~ KL 0.5e (__M.__4__1_(_)_
C 232mﬁx r_ -
. - 5 TS (3-43)
r T

In equation (3—-45) XM and & X are the polarizabilities
ana ZMand Zxare the atomic weights of the N+éﬁd X and C
is the van der Waals constants, given by
C =1.55«¢ X I E /(I + Ex) (3—-44)

M X M X M

IM is the second ioni=sation potential of the ions and E

is the electron affinity of the negative ion.

It is possible to derive this potential from =&



54

series of empirical consideration. .In order to derive
the improved moael we assume that the total potential
energy of a system is E = E;*+ Eg+ Eg , where E,is the
combination of the éxchange énd coulomb energies and E1
+ E2arises from the polarization of charges of the ions
of the system. Other contributions to E- are assumed
neglighble. The electronic energy E depends la}gely on
the charge denéity in the bond region. To determine it
we then be used the.charge density model of Anderson
and Farr can be used. We then write

szl =Fun = 4 n Z,. pp/( x! ) = an Zg’ (3-45)
where Z“, is the atomic number of nucleusa’an_d /’001( d’,)
is the first—order electron density at nucleus due to
the part of the total electron density which perfectly
follows nucleus during vfsratipn. Each first order
density function Fq (r) in equation (3-43) determines a
thential‘El(r) and conversely. The simpliest possible

.7 Z
assumption about P,( & ) may be that it is exponentia-

A
Y
11y decaying and with this assumption we take_Fi (r) as’
: n+2
e'nJﬁvr ( ne

Fl(r) = § m2r®- nm(ma-2n + 1)r®

+n (n — 1)) (3I~-44)
in which n—, 5, m and n are the parameters of the

function Fl(r); with this function we get from equation

oy /0
El(r) = - Ez/F + 3 e ?L (3—-47)

In order to determine Eg and E 3 (considering only term
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which are zeroth order in overlap ) we write the inte-
raction potential V as a multiple expansion. Using the

relation due: to Buckingham, one can write

v +t

taua, + by (q1ﬂ2-q2'/u.1“.)
°2+ ]/5q1°1 - )+.....-.....

Index 1 refers to M+ and index 2 to X- . The quantities

qi M OPE respectively, the monopole, dipole and quad-
, -
rupole operators associated with specis i(i = 1, 2).

With this V, Eo and E gcan be approximated as

~ - 2 4 C_
Ezhﬁ +Es(r)~ 0.5 e(o(M “x)H' 5

2 EZD(M dx T
Sum of El . E2 and E5 given the potential U(r) as in

equation (3-43).

Comparison to other potentials:
The average bercentage errors for quantities for
all the system of alkali halide series it can be stated

that the new potential with variable m predicts consis—

tently better results than the other. It has been’

observed that with m = 1.4 and n = 1.795 thé proposed
can also given satisfactory results. The calculated
values of the spectroscopic: constants are quite poar.
However these values using thus 'new potential with
vairable m are better than  using Rittner's
potential(3]. Thus the proposed potential with variable

m is ‘'more flexable and much better than the Rittner

€1/3q,

(3-48)

(3—-49)



potentialf3y,

Defect of the potential:

The main defect of the potential is that it is a
semiemperical one and uses either the free ion polari-
zabilities (qﬁ,uk) or the crfstal polarizabilities as
input. Since one can use in principle only the effec-
tive polarizabilities ¢ efﬂagf% viz., the polarizabili-

" % ’
ties of the ions as part of the alkali halide -mole—
cules, the use of any of these two should lead to
inaccurate results. The crystal polarizabilities can
not be used since they differ greatly from the effec—
tive polarizabilities. The free—~ion polarizabilities
can not be used because the polarizability of a posi-
tive ion M+ is increased in the gaulomb field of an
anion, while the polarizability of a negative ion X~

is decreased in the coulomb field of a cation.

’
s

®1xi) Islam potential (1980):

| The simple Born—Mayer potential compared to other
form has been fairly successful in preaicting some of
the properties of the ionic compounds with NaCl struc-
ture. But for bivalent metal oxides, sulphides, sele-
nides .and tellurides having NaCl structure and other
ionic compounds with different structures the results

cseen to be less satisfactory. Similar conclusions can
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also be made for other available potential, some of

which are suitable for one of the crystals and not for

other andg vice-versa,

The available repulsive terms in their simple form
thus do not describe the interaction energy properly at
all distances and involving cation and anion which
differ considerably in size from each other. Moreover,
the lattice energy generally is larger for compounds
containing atoms of higher valency than for compounds
containing atoms of lower valency. It is stated that
this in not fully understood by the difference in
coulomb interactions and by the repulsion of simple
exponential type. Thus a potential is meeded which will
not too be difficult to handie and at the same time it
gives a simple dependence on the charge and the rela-
tive sizes of the ions and be able to account for the

difference in structure type.
k,
* .
In view of the above considerations a modified

short—-range repulsive potential has been suggested by

Islam[B9] in 1980 which is as follows:

[card
giry =1 g3 T
Where v = Z + 75}— ;5 + and d are equilibrium ionic
0

seperation and the difference of the ionic radii, Z is

largést common factor of the valencies of the cation

{3-30)
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and anion. I and S are two parrmeters .of the potential.

This specific form of the potential has been tes-—
ted by calculating the crystals energy and the Anderso-
n-Gruneisen parameters of the alkali halides, alkaline
earth chalcogenides and titanium dioxide (rutile). The
interaction potential includes the Coulmob, the two-
body overlap confined to nearest neighbour and the van
der Waals interactions which approximate the dipole-

dipole and dipole~quadrupole attractions: --

The lattice energy calculated using the Horn~Mayer
form showed significant deviation (average 7%4), com—
pared with either the present(89] {(4.1%4) or the
Thakuris form[éB] (4.7%).The50verall prediction becomes
much better with the present potential than obtained
using Thakur’'s form,Thus the chief merit of the sugges-—
ted potential lieg in the fact that it leads to a good
coqection between the observed and the calculated re-—
sults not only for simple NaCl type crystalsibut also

for a wide varity of ionic crystals.

#®ii) Harrison potential (1981):
Harrison{2&] has presented a guantum mechanical
treatment of the short —-range repulsive energy can be

written as:



s _
B(r) = nhyem or o 5T

where r ig intgriﬁnic distance, n is-adjustable parame=
ter, h planck’'g constant divided 2T, m the electron
mass, K a numerical factor taken as 53/3 by Harrison,
equal for the kinetic energy term.. R is an average of
the quantities_Aﬁﬁnd Aagor cations and anions respecti-
vely, such that _ais related to the valence p state

energy @ as given below:

P 2,2
= T
g , -

On the basis of (3-34) one can write the total overlap
repulsion energy ¢(r) extended up to second neighbour

ions as follows:

2 -
-3 -k Mr 3 kY2 Myr
¢(r)= --——-'ai“-— (M e + fé Al e 1

+ ﬁyg e e"kﬁ“?r)
where ¢ is the nearest neighbour distance and + is the
second neighbour distance in the NaCl structure solids.
The Harrison repulsive potential is represented by a
quan‘t.:um mechanical _-.analytica'}._"n'. potential form derived
fﬂém the tight binding theory. Accordind to J.Shankep
and B8.D. Jain[251, we have used the Born—-Mayer poten-
tial for mixed crystals by taking the repulsive har-
dness parameter corresponding to overlap integrals. The
results using Harrison’'s potential for mixed obtained
in the study are in better aggrement with experimental

data. obtain the corresponding values obtained from the

(3-352)

(3—-53)
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Born-Mayer potential for mixed crystals[25].

¥x11ii) Narayan-Ramaseshan potential (1982):

In the compressible ion model(90,91) a radius is
associated with an ion in the direction of each of its '
nearest and next nearest néighbour. The ions are then
pictured to be in the form of a Jpolyhedron . whose faces
are perpendicular to the interionic bonds at distances
from the ions centre equal to the corresponding radii.
For each bond the sum of the padii . of ions is taken to
be equal to the bond length and so the whole crystal 1is
made up of space filling polyhedra. The compression
energy af the face i of an ions of polyhedral shape is
assumed to be of the form(90.91]3:

. /,

Firy = B/r-_-*nJf._-e‘r(s)/"~ ds (3-54)
where r?s) is the distance from the centre of the cell
to an area element ds on the face and the integral |is
over. the face area. B andevare the repulsion parameters
far the ions under consideration. The cell face can be
aﬁproximated to a circle af equal area (Nérayan and
Ramaseshan) and one can then write the compression
energy of the ith face as:

gry = Bo[(xy +o) o-TL/0( 1; +o)e~li/ov (3-55)
where r, is the distance to the ith face from the ion
centre and li is the distance to the circumstance of

the'éorresponding circular cell face. The 14 ‘s dépend
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e@n the interionic distance r as well as the crystal

8tructure ,. The above theory of repulsion has been
rather successtul in explaining - the structure of the

alkali halides and is a natural choice for the others

studies.

In calculations on the alkaline earth chalcogenides,
the repulsive energy was computed using the simplified
formula 1 = I ' Th tual d
e e e e T e e e . e actua rrocedure
1~ 2/ 4 k(r;/rgy -1) P
of the optimising the repulsion parameters B and gvis
explained elsewhere (Marayan and Ramaseshan[46,901,

1976, 1979)

The free energy per molecule of the crystal is given by
UL = - LT —;—'g— - —-“;g-— + ¢1'ep+ pv (3-56)
where + is the nearest neighbour distance, p the pires—
sur and volume per molecule. The Madelung constants A
is known for stﬁucture of interest. The van der Waals
ca-efficients C and D be calculated in terms of the
pglarizabilities of the ions and the effective numbers
of participating electrons. However, it has been shown

that the polarizabilities of the chalcogen ions can not

be considered to be constants but must be taken to wvary

in the form.
({3-597)
The above theory of repulsion has been rather succes-

Sfui in explaining the structures of the alkali ha-
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lidest43]. Detailed formula are given by Narayan &

Ramaseshan for NaCl, (sCl and ZnS structures. However s

the labour involved in deriving exact formula for the

different l; can become quite excessive when one deals
with other lower symme try s£ruchues.' and this would
defeat the very purpose of the present approach which
seeks to develop a simple semiemperical theory of repu—
Ision. Instead an alternative simplified approach is

presented here where 1l; is computed in terms of only

the co-ordination number and ionic radii.

If there are n faces symmetriclly disposed at

equal distance from the ion centre, the solid angle

4n

subtended by each face at the centre is ¢ = - If

the n faces are at different distances r¢ from the
centre, a weighted average distance Moy MY be defined

as

. - FBZV' = Vn‘% 1‘1 : - (‘3 - 58)

Ifﬂ& < ey the solid angle subtended'by such a face will

be greater than i%g while the reverse will be true when

> Motivated by this one can approsximately write,

I’i ks I"&v.
T
@f 4 ¢ —i_ + —%* (1L - —Ei;"))) (3-39)

where we 1}5 written in a form which ensures that ¢f in.
K is a suitable constants which has to be determined,

It can be easily shown that equation (3-39) leads to

the féllowing relation for H



1-2/n 4K (H /1)
The constants K=0.85 has been found by a least squares

fit

14 = i

to the known exact values of the H_‘s in the NaCl,

CsCl, and ZnS structures.

The main advantage of the relation (3-60) is that only
input rquired for calculation of 1 are the number of

nearest neighbour and the corresponding radii.

Using the repulsive parameters of the chalcogen
ions, one can determine the repulsion parameters for
the other divalent cations. However, considering the
low compressibility of the cations compared to anions,
one can assume the cations to be hard spheres to a
radius which can be fitted to reproduce the experimen-—
tal interionic distance of fhe correspohding chalcoge-

nides.

The/ CDmpressiblg ion theory of repulsion has been ap-
piied to the alkaline earth chalcogenides using a sim—
‘
alified formulation of the polyhedral cell approach.The
theory correctly shows that most of the crystals should
occur in the NaCl structure. The repulsion parameters
of the chalcogenide ions have been used to derive hard
sphere radii for few divalent ions. Also the theory has
been wtended to the rutile and perovskite where the

interionic distances and compressibilities are satisfa-—

(Z—60)
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ctorily predicted. These results indicate that the

theory, which is based on a purely ionic picture, is

quite wvalid for divalent ions in crystals. However

there is a mild discrepancy in the matter of relative
stability of different crystals strugture. The approach
appears to over-estimate the stability of the NaCl
structure and underestimate the binding energies of the

competing ZnD and CsCl structures. The presence of the

covalency might possibly explain the discrepancy.

X¥iv) Satyanarayana potential (1984):

An empirical expression for the repulsion enerqy
has been proposed for computing the lattice energies of
alkaline earth chalcogenides and alkali halides in view
of the short—comings of eSrlier forms{?2] which is
given by:

g(ry =nmb (e¥/P- 1)-1 (3~61)

whefé M is the number of nearest neighbour, and b and p
are repulsion parameters to be determined under static
equilibrium conditions from crystal data. The defensi-

bility of the present form equation (3-61) is discussed

in details below. Expanding equation (3-61) in a power

series one obtains,

-~ —2r
¢(r)=Mbe"r/?1+er/p . 2/ toeeee )

Wb &P s e/ (3-62

n

n=0
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Generally p is of the order of 1/10 of r, and hence r/p
will be of the 6rder of 10. " Therefore the sum of the
infinite series is g rapidly converging one, and hence,
to a good approximation, the series sum can be trun—

cated at the second term. In this approximation the

expression for the repulsion energy can be written as:

gir) =M b &VPrra=P ) = b /P 4y pe PP

il

i

¢1~l+¢r2 (3-63)
This results in a two term expression for the repulsion
energy, the first term being simple BM form. For NaCl-

type crystal structure the formula for repulsion energy

is

gir) =M b /P 4 y5 A /P (3-64)
and for CsCl - type crystal structure it is

g(r)=nbeP s A/ ' (3-65)

where A’'s are the structure—independent constants ac—

counting for the short—range three’ body interactions.

I
’

¥xv) Yadav potential (198%5):
Yadav[93] proposed a new repulsion term in the

ionic interaction potential. The form of the potential
is as follows: )

gir) =A . PT/N | (3-66)
where A, n and X are constants. He has utilized this to
determine the cohesive energy of several alkali halide

crystals. In going through this work some discrepancies
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are found in the evaluation of the potential parameters

which leads the theoretical results meaningless.

The total potential energy of the alkali halide

crystals is given by: \

4
- 22 &
U(r) = _nfi;Ji____ + a reBT/A (3-67)
There are three unknown parameters namely, A, n
and which can not be obtained by solving then above

equation. Varshni(94] and Varshni and Shuklal[95] have
used experimental vibrational enetgy af the crystals 1in
computing the unknown parameters. Yadav[93] on the
other hand, has introduced an arbitrary condition

d ¢(r) -3

Tt = oA Y (3-68)

But  —gg—— = —3F ° —ar- (3-69)

and the explicit form of abave equation (3-66) with the

help of (3-68) and (3-69)

dg (@ xR 4 (na)
& - 3r r2 | ?\ - .
‘ e T + éE* ) (3-72)

-

Equation (F-6&) and (3~38) are identical and a compari-—
san of these equations shows that while the explicit
form of gFggQ constants all the three parameters, A, n
‘and A, Yadav suppresses Aand n. He could have chosen
J%ggg_ = A r-B, withm=1, 2, 3, 4 or any ather
interger. The eqguation (Z~646) thus constitutes a se-

rious restriction on the form of potential function and

is ‘not warranted by any stability condition about the
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latti .
tice. Moreover Since the equation is not written at

the equilibrium, it should be true for any value of r.
On  the other hand if the eguation (3-67) were written
for the equilibrium value, the right hand side of the

equation should be zero. This point has been missed by

Yadavi?Z1 and in order to evaluate the model parameter

Wlr) _

-he has used dr
r=
(o)

A ry” and not zero. To prove, = this

is trivial but given here in order to clearify this

point.
dg(r) 3
Write ——mmme— = -
i
d dv -3 2
Th —— e B, D - -
en ar v . i o A r°.3k..r6 or
a4 % BAKS °
dr p—p r
K
thus daﬁ/dl’"% = - —:ﬁ—-z——A—-— and now equating gt= RS )
o To r=r, A

from equation (3-6%?) for Yadav, we have the result of

Yadav[937. Thus shows the Yadav has used #'(r) = O

34K - o
and T at the gsame time to determine the model
[o)

parameters which makes his theoretical results invalid.

x;vi Fotential of Buekingham type:—
In our study we would also use a short-range
potential of the familar Buckingham type
g(r) = Ae -z/p _g/8 (3-73)
where the constant have their usual meanings. James and
[159]while studing the interionic potential

Catlow

derived the wvarious interactions utilizing Shell model.
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A major problem in deriving &uch poten-

tials for oxide crystals is the lack of experimental

datas. This problem has been overcome by wusing the

following assumptions:

. 2- .
i) The 0O -0 interaction is taken to be the same for

all crystals and the potential derived by James and
Catlow is used. At equilibrium oxygen—oxygen sepera-
tions this interaction is very small. ?

ii) Cation-cation interactions are assumped to be pure-
ly Coulombic. Since cations generally smaller than the

. 2- 2 .
coxygen ion and 0~ O7interaction already very small at
equilibrium lattice spacings this assuption seems to be
resonable.
iii) The cation—anion interaction is considered to be
of the Born—-Mayer form

-x/,

g P (Z=74)
i.e. the attractive r-%erm is ignored. The small con-
tribution of such terms to the short-range potential at
the lattice interatomic spacing will be incorporporated

by small modifications of the Born-Mayer parameters.



XXVI) A new Proposed forms:

Many of the repulsive poten-
tialg
drawbacks. As r-3o, the repulsive forms consisting of

e@xponential term give finite values. As a result the

potential €nergy predicted by previous models are not
satisfatory and hence there must be a finite probabili-
ty for ions in each direction through the potential
barrier, uwnder these conditions a crystal would not
remain stable and could either collapse or contain
heavier nuclei formed by fusion following such tunnel-
wling. Evidence shows that the crystals donot have these
characteristics.

In fig. 3.2 the force f(r)= ——%—‘JL}
=0 for two values aof r, wHich indicates that the crys-
tal is stable for two values of ionic radius. Thus U(r)
and hen;e.g(r) is not satisfactory due to this possibili-—
tié; in addition to collapse gndto formation of heavier
naclei by the application of an external force equal to
the height of the force curve. The-electronic shells of
the ions in question will have overlapped long before
the interionic seperation has been reduced to (1-2) ﬂ
the ions M*(M*), X" (X") can not exist in the region and

an interionic potential as such cannot be defined in

such a distance.

Proposed thus far suffer from some fundamental -

69
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ple, between helium atoms, charge distribution is sphe-

rically symmetric so that these atoms have no dipole,

quadrupole or higher electric moment . A second impor-
tant property of these forces is that tHey are indepen-
dent of temperéture[q7], If the charge distribution on
thE atoms were rigid,the interaction between atoms
would be zero, because the electrostatic potential of a
spherically symmetric distribution of electronic charge
is cancelled outside a neutral atom bY the electros-
tatic potential of the charge on the nuéleus. Then the
inert gas atoms could show no cohesion and could not
condense, contrary to experiment. It is true that the
time-average electric moments are all zero. éut the
electrons are in motion -arround the nucleus even in
lowest electronic state, and at any instant of time is
likely to be a non-vanishing electric dipcle moment
from this motion[98]. An instantanUDQS dipole moment of

magnitude F, on one atom produces an electric field E of

1
magnitude 2 Pl /R%at the center of the second atom
distance R from the first atom. This field will induce

an instantaneous dipole moment ?2=°(€ = E‘F'I’Rs on the
second atom. Here«is the electronic polarizability

defined as the dipocle moment per unit electric field.

van der Waals forces have two outstanding charac-
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teristics:

(1) They ére much weaker than the forces ‘in
chemical honds.

(2) In many cases, they are additive and can not
be saturated. That is, the van der Waals force hetween
two atoms A and B, is not very much affected if energy .
.0f say, three neon atams, Ney, : Ney and Neg in a given
configuration can be calculated by adding the energy
that would be 6btained if only Neg and Nep were ptre-
sent, plus the energy of Ng, and Ne, by themslves, plus
behaviour of chemical forces. For instance if there are
no other hydrogen atoms in the vicinity, the interac-—
tion, of two hydrogen atoms, Ha and Hy, , is not at all
the same as the interaction that occurs when Hy 1is
already chemically bonded to another[79] gydrogen atom
Hg -

The wvan der Waals force is not precisely a two
body force since the moment inducéd in an atom by a
,sécond will interact with a third but in the case of
neutral atoms 1t may be.regarded as a th»body force
for large seperation, when power laws mentioned are
valid. In the two—-body approximation, it is also cen-
tral force and it>is certainly of short range, so that

in general the effect of any but the nearest—-neighbours

are negligible(1001.
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The van der Waals potential are short range attra-

ctive between closed shell atoms or ions, having an

origin  connected with correlations of the electronic

motions in different atoms. In the case of tare Qgas

solid like 2"5 ». the van der Waals forees are the
sources of binding where their contributions to the
binding energy of ionic crystals is small. However, the
consideration for producing better aggrement with expe-
rimental values of cohesive energies and also for stu—
dying various other properties of ionic crystals, for
example, the studies on phase transformation, lattice
dynamicil behaviour and evalution of defect energies
require the reliable knowledge of van der Waals poten—
tial. The contributions toifhe van der Waals energy
mainly arise fraom the dipole—dipole (d-d) and the dipo-
1e~quadfupole (d-g) interaction. 0Other higher order
terms such as quadrupole-quadrupole (g—q) , interaction
deqhy more rapidly with increasing interionic sepera-—

tion and theretfore can be neglected.

Several explanations for van der Waals forces have
been proposed. In 1921 Keesom pointed out that if two
molecules bear permanent electric d;pdle moment m,and LY
and 1if they undergo thermal motion, they will on the

average assume orientations leading to attractive for-
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ce. If R is the vector joining the two dipoles the
potential energy of & pair of dipoles is

> (B B )

L
( m s M B ey —

Since the thermal motions are subject to the FEoltzmann
distribution,  so that an arrangement whose energy is V
has th babili - V/KT - ; ;

e probability e ., Orientations with low energy
are f e i . ~V/KT

avoure on average the guantity Ve over all
orientation and assuming that KT»>VY , it is found that
the average potential energy so a pair of dipoles whose

seperation is R is approximately

v = —E!..m;_lli.lzl_.___
3 KTR®

This force evidently decreases in importance as the
temperature increases. It is known as the dipole orien-—
tation force, or the Heesom_force. The (d—d) energy 1is
proportional to-;g' i.e. Hgg= — ﬁ; and the (d—q) ener-—

D
gy is proportional to-;g'i.e. %-q = e =

. The van der Waals energy is mainly represented by

the relation.

(4-2

(4-3)

6 8 -
U =Uu, . +U, =~ Cr -d/r (4-4)

vau G-d d-q

where C and D are known as the van der Waals co-effi-
cients and K is the interionic separation. The co-
efficients C and D are linear combinations of the van
der Waals co—efficients (Cij’ dij) for interactions of
the wvarious ion pairs weighted by appropriate lattice

sums. In the particular case of an ionic crystal formed
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by two Bravais lattice of ions one has,

6 6 ' '

C = - ) - -
C+...E’r (rl_ +.b.( C-H-+ c__) 5r_((_)) (4-5)
o ( F_) + 1/,_(d_H_ +d_) Sr (0) (f‘ b)

where r is position vector of the negative ion in the

unit cell, the positive ion is being at the arigin and

the sum[102].

4.2 Derivation of van der Waals co—efficients:

In this section we will consider the derivation of
the van der Waals co-efficients CU and dU . The follo-
wing three methods will be discussed in details for
aobtaining culand dg

i) l.London—Margenauvl[103%,104](LM) formulation based
on the perturbation treatment.-

ii) Slater—Kirkwood[1l03] (SK) treatment based on
variational theory.

'fii) Kirkwood—Muller[106,107] (KM) -fDrmulatiDn.
Thé expression for the dipole—dipole(d-d) and dipole-
quadrupole(d—q) co-efficients obtained from these theo-

ries are given below:

LM theory:

Ejpi
c 13 = '/:'(3. [ j_E"iIEj « E_‘.l . . (4-7)
d,.= q/4 L 'ilﬁ fi"ﬁ"j (4-8)
e? i J
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.= 52 O Xi-Ky ' ~

13 & WNLRCRINT . )
d35= 27/8m h?xi“j (%/ Ng)ZH(%/ Ry) (4-10)
M thecp.-'“\,/:‘5 ' (xi/“i) + m/s(xidj/ﬂiﬂj)'b:(_dj/ Nj)

me
.= - — gy 7 4 —

13 DA VAT | (4-11)
g4, .= -2.1B8_ C.o(x (4-172)

147 Tomy 15 Ty PN )

where e and m(grE'the charge and mass of an electron,.
is the Planc#‘s constant divided by 21 , ¢ is the
velocity of light. Ey and Nj are respectively the
polarizability, molar susceptibility, characteristic
excitation energy and effective number of electrons in
ion 1i. Equation (4-7) to (4-12) have been used by
various workers to calculate cijand dijin alkali halide
and other ionic crystals. These calculations require
the knowledge of excitation energies, effective number
of electrons and électronicfpmlarizabilities of 1ions.
There are considerable variations in the values of
these guantities used in different caICQIatiDns. A
critical discussion along this line is presented in the
foilowing section. As far as the soundness of mathema-
tical formulation 1is concerned, " the - EM[lEé,lES]
equation (3-11) and (4-12) has the great advantage that
it does not suffer from uncertaiﬁtiés regarding the
off-diagonal term ledefined by Fitzer. On the other
hand, the LM and Sk theories neglect the contribution

of these off-diagonal terms which are not without sig-
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nificance. The KM formulae have been derived in such a

manner that off-diagonal terms eliminated with the use

of expressions for molar susceptibilities and electron

palarizabilities.

4.2.1 Dipole-dipole term, C.J
° L)

(a) London farmulas

The ground state wave function of the closed
shell atom can be written by Slater determinant for N
electrons:

\u ""}2'

CN= (M) det (d, « a,eee o ) (4-13)
To define the polarizability one can write the pertur-

bing potential as:

N
: Vv = F s  z _ (4-14)

where F is the electric field along the Z-axis. The

: . . . /.
variational wave function Jis taken ta be

V= W+ %—1 8y B (4-15)

Fn = ni)¥  det Qg + Gp e e By (4-16)

. = I Bata (4-17)
where ﬁhis either unity or a function such as (1 + le

+0295%The follawing three quantities need to be defined

hoy = (\17(';-_ | fa ) (4-18)
Pom= (A5 1H] gu) | (4=19)
PR B o Pm) (4-20)

Heré H. is the complete Hamiltonian for the unpertured
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system and the usual quantum mechanical integrals over

all space are indicated.

The energy change up on imposing the field is
4

h = 2 I : —a
FZ A *ZE anem fan (4-21)
. 0 % M
which is tD/bE minimized with respect to each api.e.
- dh O 2 Fh =] Z ¢ - | (4-22)
~~~~~ = Qo= 2 + 2 a M -
de, A L. M PA _
From the determimant theory,the solution is:i@x= Jég (4-23)
. - . I
and the minimized energy is: h = Z Aa 7~-2i ¢7\.«.
= - 4-24
F EAA 7\ ( )
The expression for polarizability is:
/
2h
= e e —na— = -325
X = ‘_E.A}‘h;\ (4-25)

It is assumed that the q, are orthogonal to all ;5\.
This assumption is not necessarily true although the f)\
can be selected to make it true. Then

C =0 if NFM (4-26)
hen ¥

The calculation of @ is more complex. If f is unity and
Hartree wave function are used Q = 1/2 . This value

AR

was taken as an approximation -by previous worker-—

ki

s[10Z,108]7. The off diagonal Q%k$erm which have been

neglected previously are not without significance. AA}S

given by:
hx
A = —mh o (4-27)
So thato= 2 FoTf--m = -Tooo- . (4-28)

T Qam 2 Qam

Using the above appro rimations we can get the following
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expression for the dipole,

B R
A 2 (h” )
6 .
U = - 5 (%) p A
dd B Zg hkqg) CET o/l /i o,
(QB B ); ~Pq (4-29)
: )
Pg qpp 5 B, =
( A * BATT (4-30)
| q%_ /(hk Y o+ ng / %“,) i .
the equation . (4-29) takes the following form
Us g = - _E_‘).(_Ai(_ll* By - Ep _ (4-31)
2 6 E, + )
n s tEBs

This formula was first derived by London. The main
assumptions in deriving (4-17) are that
(PD (i) all g are orthogonal to Y

(1) fp = 1 and (iii) off-diagonal terms f,  do not
contribute to polarizability and dipole-dipole energy.

The assumption lead to the following results:

— —— o * 2 ., -t |
G = hn= @n Zx B (4-32)
so that we have;
| h‘:\' 2 Np
oy =2F oo o= oESE- (4-33)
~ A By
From equation (4-30) and (4-33) we get,
A X
e e e S T (4-34)

S AT
AR 0k |
Inserting (4-234) in (4-31) and assuming that off-diago-~-

L

nai terms do not contribute i.e.}i Q =-§, we get,

d-d B°

which is the 8k formula for the van der Waals dipole-

o, X
u = - 3/2 ~—A- B__ (O(A/N‘? + (DCB/NB% (4—39)

dipole interaction.
(c)‘HM formula
Ancther ugefuléquation for the dipole-dipole energy is

that obtained by Kirkwood[10&] and Muller[107]. This
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contains the diamagnetic gugceptibility as well as the

polarizability per atom of a spherically symmetric

system is given by:

D<=-(2mc2)‘1}:k (z]f )2 : (4-36)

In view of electronic arrangement we can for a sub-

shell of equivalent electrons ‘

D(-A = e e e s s (4—'37)
Equations . (4-3&) and (4-3%7) imply that the assumption
that the same number of electrons contribute to polari-

zability as to susceptibility. Such an assumption has

been found to be fairly satisfactory. Thus we have,

-1 X
EZ=- ( 4mcrl A, (4-38)
XA
Then the dipole-dipole energy then becomes
__ 6mc? XA, XB -1
U 4 = W, RO Xy Mgl ( " + P ) 3 (4-39)

In Equatioﬁ (4—39),N° is the Avogadro’s ﬁumber andXis
naow the molar susceptibility in cﬁ{ The most remarkable
feature in deriving (4-3%) is that 3 @ has been elimi-
nated. Thus the Kirkwood-Muller formula (4-39) has the

great advantage that it does not suffer from the uncer-

tainties regarding the off-diagonal term Qyq.

4.2.2 Dipole—-guadrupole term qj

To derive the SK thedrylof the type:
I BRI e W VAt M D LI
i} 8m (oy / N3)+20/30E My ) (5 /M5 J(%5 /N5

tem have the ground state wave-function with energy Eo

et a sys—
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for the unperturbed Hamiltonian H i.e.
Ho Wy = E_ v, L (4-40)
Let the perturbed Hamiltonian be H whose
H = Hg + Y (4-41)
We assumed that the perturbed wave—function closely
approximated be a function of the farm,
= L]Jo( 1+ V) (4-42)
where V is small compared to unity. From the variatio-—
nal theorem in quantum mechanics, the excess energy Df
the system arising from the perturbation approxiﬁation
closely reduces of the value.
E = <H:y -E . (4—43)
=V, o+ awr) o+ 2 o -l dv

2
- oo comords g dxy 0o
where the summation goes over all the electrons and

over the three co-ordinates for each electron.
Using the above formula, the polarizability of an
atom can be derived to be
| & = dme -® /90" N(r%og | (4-44)
Erom the multiple expansion aof the charge distribution

in two atoms we get the dipole—quardrupole interaction

potential of the two atoms to be

v o= 5/2 el/rty rﬁ Zos ~ %y r23?+ (2% 13 % gy
(7]
+ 2 -3 2,2, (L, 1 -45
yliyzj 1:123(11 ﬂj) (4-43)

where the subscripts 1,2 refer to electrons in the

first and second atom and i,J goes from 1 to N,N the



83

respective numbers of electrons participating in  the

interaction.
We use the first approximation in Hasse ' s[109]
method and express v as
\Y) = v - 2 \ — 2 L2V ue 2
(¢ r‘li z 2.] le rz:j"" =¥ 4 fnzj + -I'-Yl_i ng
=33y Zp) (219 - Zpy)
where ais an undetermined multiplier.

It is determined the matrix elements in (4—43)

that,
VOO: Q
Yoo© ¥ o
_ _2e 4 2 2 4
Also ( vao - 5‘4 Nl N2 (( " %o (r2%o + (i )m)(FZ%m
From eguation (4-44) we have
._.g'! = Z_ ("?\ Z s 4+ L PP Z —_— Z )
dx]k = A 3 <k 2] 2xpy( 21k 23 )
. dv 2 R 4
i.e. ( 7ﬁ5£_“ éo“ %Nz (8/9(r1)00(ré)oo+ 4/19 (FZ%b)

Thus we obtain for the kth electron of the first atom
( =T )2 = fib(4o/9(r2) (rz) + 4/3(#4 )
co-brls X1k 00 100" R ‘00 2 5?
Finally summing over all the electrons of the first

atom and adding a symmetrical term for the second atom

we have

av. .2 _ 2. 4 - 2 »
...,a;:j-.—- 50 = '7\N1 N2( 4/3 (l"l )00+ 8(_}/9(I"1) (l"2)
4+ 4/F f% )00 )

Substituting (4-54,) (4-48), (4-4%) and (4-43) we have

the perturbation energy o be

2
4o 2 L (2 4
B o= -r Nl € dog (B5)e + () (gt ) )0)

(4-46)

(4.47)
(4-48)

(4.49)

(4-50)

(4-91)
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h

+ —e

2

! -
N 1N2(4/¢'("1 bo * 80/9(3 g (Falye

= 4 ' 2
* AT () ) (4-54)

The result (4-54) contains the undetermined multiplier

To eliminate it .we minimize (4-54) with respect toA

we then get the dipale~quadrupole interaction energy

as:

AE L . _a 2 mo”
dq 1'8 = - ‘9"52}'_."8‘ N4 Mo

(4r Jool 5 oo Hri_Joo(rd Joo )* (4-55)

(4/3(r% Yog 80/2(rF Yoo (rh Yoo*4/3(r% Yoo )

From equation (4-44) we can express r¥ in terms af the

polarizability
Co® = (2B 3 X
as: (r% 00" ( —z7e2 ) ¢ H ) . (4-56)
We also make the approximation that
( )y = (r% P (4~57)
00 00 .

which - .is reasonably valid whenever the electrons are
distributed in a shell around the nucleus with a strong
speaking of the electron density aL some radius.

Substituting (4-3%6) and (4-57) in (4—55) we thus obtain
the‘following formula for the dipole—-quadrupole intera-—

ction co—efficient.

A7hR Ky oA o

2

CCVARICY L
————————————————————————— (4—-58)
4.3.1 Origin Of polerizability s

In arder to understand the origin of polarizabili-
ty of an atom let us first define dipole rmoment and

local electric field.

The dipole moment of the pair Df‘charge +q is 3'=



85

CI?L" q’%=q!:‘?

» and is directed from the negative charge
toward the positive charge. The local electric field at
an atom is the sum of the electric field E, from exter-—

nal sources and of the field of the dipoles within the

specimen, we write,

Soca1 T Bt Ext Ept Eg (4-59)
The contribution of the local field are as given in
figure 4-2.

The polarizability of an atom is defined in terms
of the local electric field at the atom:
o= E]Dcal (4-60)
where F is the dipole moment. The polarizability-is an
atomic properties,but the dielectric constants will
depend on the manner in which the atoms are assembled
to form crystal. The polarizability bas the dimension
of (Length)? The total polarizability ma? be seperated
into three parts:

, 1) Electronic,

ii) lomic and (iii) Dipolar,
The electronic polarizability arises from the displace-
ment of the electronic shell relative to a nucleus. The
ionic «contribution comes from the displacement of a
charged ion with respect to other ions. The dipolar

polarizability arises’ from molecules with a permanent

ele&tronic dipole moment that can change orientation in
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an applied electric field. The contributions to the
polarizability are as given in figure 4-2. |

lLLet us now calculate
.the polarizability of an ionic crystal. The polarizabi-—
lity of molecules plays an important role in several of
the theories of long rangé intermolecular forces. Acco-
rdingly we devote this section to a discussion of the
calculation of polarizability. First the general quan-—
tum mechénical theory is presenfed and this theary is
applied to Ithe calculation of the polarizability of
molecule. Then the principle of additivity of polariza-
bility- is discussed and finally the use of scfeening
constants to calculaté polarizability and other molecu-

lar properties is considered.

4.2.2. FPolarizability versus ion—environment:

;The polarizability of an ion is sensitive to its
en§irohment. For example. the best spectroscopic value
foé polarizability of the lithium ion is 0.0283‘35 and
thé most recent theoretical estimation for the polari-
zability of the free fluoride' ion are 1.56 and 1.40 R
The sum of these lies between 1.39 and 1.43 33 whereas

the experimental polarizability per ion pair in crysta-—-

3
1line LiF is ©.915 A.
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The existence of such effects was demonstrated in

principle over 40 years age by GSpangenbergl[110] who

showed that the polarizability per ion-pair in crystal-

line alkali halides cannot be accurately described as
sums  of constant polarizabilities for the compénent
ions. This is illustrated by the fact that the differe—

- - : o . 3
nce  1n  polarizability between NaF and NaHr is 3.24 A

whereas the corresponding difference in the rubidium

)
salts is 3,43 A.

Fajans and joos[111]1 proposed on the basis of
quite aeneral arguments that the polarizability of a
positive ion i& increased in the Coulomb field on an
anion, while the learizability of a negative 1l1on
should be decreésed in the Coulomb field of a catién;
In an extensive review D% the information available at
T the time, they applied these idea to correlate not only
the polarizability of ionic component in crystalé and
in solution but also those of molecule composed of
}groups differing substantially in electronegativity.
The application of these concepts to a greét variety of
substances has .been pursued subsegently by Fajans and
his collaboraters in a long series of publication-
s[112,113]. Fajans and Joos also proposed a formalism
for estimating .the polarizability of the free ions,

both positive and negative, on the basis of two quali-—
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tative ruless
0

4o X .
X A
(1) Aa)éiwheFE the subscripts positive, 0, nega-
tive refer to monoatomic cation, noble gas and anion in
an isoelectronic series and 2 *rx® - Xt/ or®
(2) (o /x” - o)

where n is- the Principal guantum number of the balance

shell in an isoelectronic pair. These rules together

o

with experimental values for the polarizabilities Xy s

independent estimates of «* for the lighter cations and
pPlausible assumptions about the trends in the inequali-
tieg in rules (1) and (2), led to estimates for the
polarizabilities of the ions. Thesé estimates were
influenced alsoc by the estimated polarizabilities[111]
of the heavier aﬁions in agqueous solution; with minor
modifications, they are current to dayl[114]1. They ap-
pear to have had a significénce influence on £he selec—
tion of parémeters for Fauling’'s semi empir;cal calcu—
lation[113%]1 of the polarizabilities of the free alkali

halide 10Ns.

Despité the evidence summarized above that
ionic polarizabities vary with environment, many wor-
Lers have based their estimates of polarization ener-—
gies and London energies in ionic system on the
"Constants® or additive ionic polarizabilities assigned
by Tessman, kKahn and Shockley[116]. These values were

chosen to minimize the mean square deviations ftrom
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additivity in the polarizabilities of ionic crystals,

but with due to consideration of independent estimates
of the polarizabilities of the ligther free alkali
ions, especially Liﬁ Clearly the use of these additive
polarizabilities must be regarded as only a first ap-
proximation. More realistic estimates of the secondary
interactions in ionic systems could be made if reliable
values were available for ionic polarizabilities in
different environments. Indeed the values deduced by

TkS for the polarizabilities of the oxide ion, [f— in a

. >
number of crystals ranged from 0.2 to 3.2 5, illus—

trated again the existence of a substantial environmen—

~tal effect.

At the level of appreximation represented by the
lightly succesful Born—-Mayer modell[2] of ionic crys-
tals, it 1is neutral to represent the polarizabilitity
of aﬁrionic crystal as the sum of anionic and cationic
coﬁponent polarizabilities. From the point of view of
the guantum mechanical description of the system,
howevef, this procedure can not be strickly justified.
The nature and validity of the quantum mechanical ap-
proximations involved in this additivity concepts have
been discussed by Ruffalll7]1. Making use of a well

established description of the polarizabilities of an
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a OF 10n as proportional to a weighted mean sguare

excitation e”ergy;,Ruffa extended his analysis, to carry
out what amounts to a semi-quantitative of the hypothe-—
sis of Fajams & Joos. On the basis of a some what
intuitive estimates of the effects of the lattice inte-—
ractions on  the mean—square excitation energy, he
confirmed their contention that the polarizability of a
cation is increased by lattice interactions, whereas
the polarizability of an anion is decreased even more.
As Ruffa himself admits, however, some of the parameter
that enteréd his theary could be estimated only roughly
and Hhis estimates of the magnitude of the changes in
polarizability may have been.too large. In addition, bhe
based his estimates of tge mean square excitation ener-—
gies of the unperturbed ions on Fauling’s estimates of
. the free ion—polarizabilities. As will be shown below,
sﬁbsequent work has made available more reliable esti-—
mate; for the polarizabilities of the lighter ions in
thé free states and has raised doubts about the accura-—

cy of Pauling’'s estimates for the polarizabilities of

the heavier aones.

The effect of lattice interaction on the polariza-
bilities of the component ions in the . chlorides and
fluorides of lithium, sodium & potassium has also been

analyzéd by Mitskevich[l18] on basis of variation theo-
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ry. His treatment leads to the same qualitative conclu-

sions that the polarizabilities of the ions is
increased in the crystal and that of the negative ions

is decreased relative to the values tHat &haracterize

the free ionsg,

Fentrashen, Aparenekov and Krostofell{119]1have pre—=
sented a.model which allows for the modification of the
Hartreefock distribution by the Madelung potential. The
expected dilution.of the cation and construction of the
anion were demonstrated. The corresponding perturba—
tions of the polarirabilities have been investigated by
Ledovskayal120]. Qualitative similar results have been -
obtained by Faschalis and Weis[121] using the model of
an ion embedded in a holléw sphere, a sphere which
carries an electric charge of the samé magnitude ‘but

opposite in sign to that of the ion considered.

Wilson and Curtis have treatea the variation of
a%ion polarizabilities in the alkali halides'using the
model of a compressible conducting'sphere. They assume
that the relative decrease of the polarizability expe-
rienced by the anion is proportionai to the compressive
force acting upon the anion. This force was approxi-
mated by the Coulomb force. Applying their model to the

alkéli halides having the sodium chloride structure,
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they found free anion polarizabilities that were essen—
tially " equal to the cube of the anion radii. The
refractive index

data did not seem to require signi*

fiant enhancement of the cation polari:abilities;

Firenne and Kartheuser{122] have obtained a set of
free ion polarizabilities that is based on the presum—
tion that crystal polarizabilities are enchanced by a
dipole~dipole interaction. Some theoretical support for
this position, which contradicts Fajans principle, i

given by Heinrich.

An  alternative approach to this problem was made
earlier by Burns and Wikner[124], who calculated the
polaricabilitiee of the fuleride ion from the approxi-
mate wave functions proposed by Yamashital[l125] for the
frree ion and for the fluoride ion in the crystal of
LiF. . They obtained a polarizability of 1.31 asfor the
free ion but a smaller polarizability of 1.11 5ﬁfor the

: .
contracted wave function, of the fluoride ion in the

crystal. The model which we present below is related

conceptually to the results of these calculations.

A model for the polarizability of anion in crystals:
This model can be based on the following argu-

ments. The major contribution to the polarizabilities
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of a closed shell atom or ion is made by the electrons
of its highest OCtcupied sub-shell. In the halides ions
these

electrons and relatively weakly bound and might

therefore be expected to respond to a pelarizing field

rather as if they were the electrons D+ a conduction
sphere. Classically the polarizabilities of a conduc-—
ting sphere is the cube of its radicus. In applying
this concepts to a halide ion, it is not clear how the
radius should be chosen. We shéll defer cosideration o%
that question until a later section; for the moment,AWE
simply assume that the polarizability of an énion res—

ponds to its environment as if it were propotional to a

radius cubed i.e. to a volume.

We would not except this model to apply as well to
the polarizabilities of cations and of the noble gases
since the ionization potentials of these systems are
much lighter than those of the halide ions. That one
should not except a proportionality between polarizabi-
1lty and volume in general is shown by the from of the
of these well Enown guantum theory expressions for ane
electron polarizability as the square of a sum of terms
of the form,

{ M ML F and [{’“t I’*LMJ)IP (4-61)
wheke ¢ is the radius from the nucleus to the ith

eleétron is the corresponding one electron wave fun-—
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ction. In - .
& condensed phase we assume that an increment

dF of the compressive force

Fesults in a propaortionate

decrease af the polarizability, similar to the decrease

in effective volume. Thus we write for the ith ion

ot = ~ K| & Fy , (4-62)
where i is the constant pnalogous ; to a coﬁpressibil—
ty. Integration vields

( In o, = 1n of - K; F; (4-63)
where a?is the polarizability of the free ion.

Let us approximate the lattice free energy U of a
crystal as a sum of the coulomb term and a repulsive
potential s we ignore for the moment the K.E. and
entropy terms and the London potentials. 7The use of a
more elaborate model will be discussed in a later
section. Thus we write

U = - =% 4 dhir) (4—64)
where « is the Madelung constant. At the equilibrium
ne§rest neighbouwr distance, r,

¢ =35 ) =HE7ry + gé/(ﬁg) =0 (4-653)
Here the attractive and repulsive forces actiné on the
ijons are in balance and we may write for the compres-
sive force F{rg )

Flra) = —p(rg) =oerry  (B=b6)
Then equation for correlating ionic polérizabilities

betwéen different crystals with the same structure
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because
o
or log «; = log G(?; - b/..-é‘ (4-68)

we have ignored the_differe%ce between the comptressive
forces acting on ions of differing "size".
Model — 1 |

It was assumed that the polarizabilities of Lf
and * of Né*remain constant at their well-known wvaccum
values of 0.028% and ©.148 8: respectively. In each of
the lithum and sodium salts the polarizability aof the
halide ion was obtained by subtracting the polarizabi-
lity of the cation, assumed to be constant, from the
polarizability per ion pair of the salt. These anion
polafizabilities were entrgpolated by means of egu. (4-
68) to the values of ﬁ: for the corresponding potassium
salts and the polarizability of the potassium:ion was
obtained for each salt by differnce. The values ob-—

3 .
tained for o K+) ranged from 0.73% to 0.84 3 with no

*
o -2 .
obvious trend with Ye it was therefore assumed that 0<(I<C+

-2
) was approximately independent of r, . The average

3 3
value was 0.787 A with an average deviation of 0.024 A
4 this wvalue was used to ®(X) at the values of fZ'Dbn
taining in the potassium salts. These from the lithium

and sodium salts to extrapolate to rézfor the rubidiuwm

. +
galts. The values of X(Rb), obtained as before ranged
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from 1.31 to.1.36, and again showed no systematic trend

. -2
with re” 3 the values obtained from fluoride and iodide
¢
salts were almost identical. The average value of X (Re
- o'-‘ . E . o3
3. 1.2328 A with an average deviation of Q.012 A was

then used as before to obtain a(C;) in CsF. Here the

3
. [~
value aobtained was 2.31 A.

P

Model - II: Variable cation polarizability.

It is very likely that the polarizabilities of the
alkali cations are larger in ionic crystals than in
free space. The magnitudé of the increase is far from
certain, however, since -the increase resulting from
electrostatic effects is opposed by the repulsive inte-
ractions with neighbouring ions.

The approximation pordpo5ed by Ruffa for the pola-
rizability of a cation in a crystal can be written in
the form

s o= (1-2.434 55 s n7A o) . (4-69)
w;erecgis the free—ion polarizability, n is the totatl
number of electrons in the ion, and r, 1is the nearest
neighbour aniopn—-cation distance. This expression has
been wsed to calculate cation polarizabilities in  the
alkali haiides on the basis of the spectroscopic esti-
mates of the free—ion polarizabilities ratheé than the

Fauling estimates used by Ruffas. The resulting values
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.-+ + +
for kK , FRb and Cs though smaller than Ruffa's, ap-—

peared still tq-be much too large on the basis of ‘the
values obfained by.difference for the polarizabilities
of the anions in the crystals. Thus for example in the
fluorides, the resulting value of “(F—) increased as
expected from LiF 10 NaF but then declined through the
salts  of H+and ke ta unreasonably low value of 0.23 32
in CsF. It therefore appeared likely that overestimates
also the polarizabilities of Lit and Natin their salts.

In the “bootstrqp” procedure, it has been assumed
that the functional foram provides a reagonable approxi-
mation for interpolation or extrapolation with respect
to v , but it has been used for this purpose in the
following empirical farm, in which C is a constant
characteristic of the 1th cation

( mmmBemm = g - e (4=70)
For the range of values of C, which has been found
useful to describe the experimental data is very-;lose~

N

ly9appronimated by

+ o+ 3%
DCC.'-_- O('o e

(4—-71)
Sum rule analysis of free ion polarizabilities:

First an analysis of the polarizability of a sys-—
tem of non interacting free idns will be made. Considg—

ring one of the isolated ions for the moment, its

static electronic polarizability may be obtained direc—
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tly from the quadratic Stark effect since at ordinary
temperature the'ground state aof the ion is the only one
having an appreciahble probability of being occupied. If
the electric.field is in the x direction, second order
perturbation theory yields for the polarizability, thé_

resul ts. ’ ] .

2
X = 2 I x p ~72
e ’}:v_,kv( [ PVE 4 (4-72)
where X =33, . the x being the x co-ordinates of the
&
ndivi ) o _ e _
individual electrons and Ef} EY’ Ey- There is no

first order contribution since for frees ions(ﬂ1%ﬁ>= Q.
Evaluatiun of the expression (4-71) is complicated by
the fact that it requires a knowledgé of the 'energies
and wave functions of all the states of the system,
which is generally no available. Consquently, it is
necessary to know the wave functions as well as the

épecific energies of all the guantum states.

Such a means is available in this case in the form
af a sum rule which was discovered independently by
.%hnmas and from a consideration of the dispersion
formula for optical freguencies from the standing point
of the corresponding principle. It follows directly
fram the commutation relations

Ca,» Py 1 = ﬂgj (4-73)
for the electronic co-ordinates and momenta and may be

written in the following manner:
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(8n m/ "o '
m , iy
3 z,v’E"V' I(Y X ‘Y} l = n (4-74)

wherg n is the number of electron in the ions. Identi-

cal relations hold for

Y = 2?: Yt and Z =%z

The use of (4-40) enables one to express (3-38) as

o = (2&2l

r-

3 2, E vy \(v‘x 'r’)ze" hnsanm Bl (4-75)
et

where E|is & parameter whose magnitude is determined by
the equlity of the right hand sides of (4-%72) and (4-
756). Because the sum rule is identical for all three
co-ordinates, the polarizability is independent of the
direction of the field. Moreover, it may be seen that
the empression for“ has been reduced to a dependence
upon only one unknown parameter i.e.xuéi The guantity E;;
may be loosely reffered to as being a ;ean excitation
energy although this designation is not a precise one

since the values of such guantities are dependent | upon

the sums from which they are obtained.

§ This fact may be illustrated by obtaining an ex-’
péésaion for fhe polarizability in another way. The: sum
ruie (4—-78) may be simplified by taking advantage of
the matrix sum rule, .

A R B DR IR T (4-76)
to yieldrthe following: .
( Bim/ n ) By LY )

S
h
Ceta/ ) XYY

It
3

1
3

(4-77)
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2 »
8\- b4 2
( nm/h)E1<T'Z'Y> = n
where advantage has been made of ~the fact that <V!X|t>=
re ~, o 5 ", 2 '
HY\Y\Y' Aoy I Z\Y‘ s = 0, and where Ex. 27, EZ.
2" 2 2
parameters whose magnitudes are determined by the equa-

lity of the left hand sides of (4-74) and (4—7%).

Equations (4-77) may be simplified further by the
use of the principle of spectroscepic stability . Acco-—
rding to this principle, sSUMmSs of the form

- m,‘(nm]A l m'm)‘[  Where m is a space-:quantization index, are
independent of the axis of the quantization so that
2
] 1 1
}(nmIAln )l = mml,(nmlAy[n m>l

z ESES \,

A (n m| Ay | n' mY
In this CdSE, the result is

e NG '/'1
‘Y)'—,;I‘fﬂxl'r)[:ﬂr(‘flvlr}\ - %Aﬁ'lzlf)l

Consequently, equations —-77) reduce to

(4
7(1
‘3’Y>-— n (4-78)

¢ g/t B, (]

Yl.
4 z = . .
where the E:have been replaced by El' In a similar

—>
mapner, one may define as E3
L

£,z 28Ky |*|r) | | (4-79)

given by

S0 that we have as a second expression for

I - J
o = 2e n c/ Ep-Ey (4-80)
kS
where ¢ = —_g» . The result is again independent of

g ntwm
- : N 2
direction in agreement with (4-78). The guantities Ey »
-3

-
Et and E4 which may be called the mean excitation

-eneréies of the first, second and third kinds respec-
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tively, satisfy the reiationship.

E:.= ?:. Es

(4-81)
Although they are not equal, one might generally expect
them to be of the same order of magnitude. A specific
comparison of these quantities 1 made by the relation
o\ E (1) /E (1)
-—.-—&—-’-—— = --—-& -2_—-_._.... ) ( _______ —— v ) . ( 4_82 )
R2 n1 2 (2) /E (2)
A system of non-interactin§ free 1ons is electric
dilute so that the effective and applied fields acting
on a given ion are the same. Under these conditions,
the polarizability of the system, is the sum of the
ionic polarizabilities, and is equal to the total
polarization divided by the applied field. If
N M
X = 2w o=22 N
=i ; 1]
where N is the number of electrons in the system and M
is the number of ions, then
K~-Z Xi = 2€ Zl{Yl xl\f)l /E.Y -
=l JM 1
= ze Z <a x‘|'|r>/|__%L =(2&/E,9 3. < x;_l'r>
,_ 1=\ ‘
' = De cz (ng /Eh- ) (4-83)
3 L )
where E;¢qis the mean excitation enerqgy of the third
kind for the system. It is evident that
M L M
Egg™ 2 ‘z(vrle[Y)/‘I“’(a—ZhE / Ef“ : (4-84)
Y] L=

Because there is some ambiguity in the value of the
mean excitation energy, it is dangerdus to attempt to
determine polarizabilities by estimating E's. However,

thé value of (4-75) and (4-B8Z2) to our approach to the
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determination opf the polarizabilities of ions in crys-—

tal lies in calculating E's directly from theoretically
determined free ion values. Then given a crystalline
environment in which the ions maintain their individua-—
lity to good approximation and the crystalline interac-—
tion is known to the extent that the change in the E’'s
from their free ions values may be estimated, values
for ?he ionic polarizabilities may be obtained. The
electronic polarizabilities of ions alkaline earth
chalcogenides were obtained by Tessman et.al.f1161 by
performing an analysis of the crystal refraction data
on the basis of the Lorentz-Lorentz relation employing
the additivity rule. The electronic polarizabilities of
ionsl in alkaline earth chalcogenides crystals obtained
by Tessman et.al. may by Boswarvalé8] differ fraom free
state values (Fajans and Jowos)., (Pauling), being larger

for cations and smaller for anions.

When the ions are transported from free state to a
crystal, their polarizabilities are changed. According

to Ruffal[ll7] one can write

o P
i = —-Eg2 (4-85)
¥ Eq:
= —_— 9 1
where Eg+ E** SV u%fnd c+are respectively the free

state and crystalline state polarizabilities of a ca-

tion. Vg4 is the Madelung potential, E* is the energy
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parameter defined as
[ + - —H.Ezj\.,_-l\._
: “‘“s ______ (4—-86)
*
where € and m are the electronic charge and mass respe—

ctively. n is the number of electrons in the ion. K is

the Flanck’'s constants diveded by 2ff . An equation
similar to (4-85) cannot, however, be used for anions
because of the excitation levels to the anion polariza-
bilities in the crystal which has no counterpart in
free state. In addition, quantum states above the first
ionization continum contribute substantially to the
free anion poalrizabilities. Ruffa therefore obtained a
different expression for anion polarizabilities which

is as follows

- R
e o _,_E.i:q._,. (4-87)
“{_ EC' '

where .- and d@- are the crystalline and free state
polarizabilities of anion, Ef' is the energy parameter
analogus tD‘Eif . Crystalline state parameter Ea- is

| E,,._m=-;‘1-((4—c.=}/R)+3(E5_ + A= E ))

‘ahere = 2e ( VM— Ve ) + E - I + Q@ (4-88)
where R is the interionic seperation, e Vgis the repul-

sive enerqgy, E the electron éffinity of anion, 1 the
ionizatiun potential of cation and Q is the energy of

interaction between the free atoms and the crystal

environment.
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A-3.3 Methods for the calculation of polarizabilities:

Variational pro&edure of screening constant method:
The polérizability of a molecule can be approxi-
mated by Hyllerrss{126] and Hasse[109]. Let us consider
an unperturbed molecule containing n electfons and
nuclei for which the guantum mechanical Hamiltonian
aperater is H,. The energy of the molecule in its
ground state is designated by EB .« Associated with this
energy 1is a wave function wo, which satisfies the
Schodinger equation and a normalization condition:
HoW, = E ¥ : (4-89)
Ju;%ﬂr“= 1 (4~90)
Qhen the molecule is subjected to an external distur-
bing influence there is a contribution to the Hamilto—
nian Hl ., due to the perturbation effect. The total
Hamiltonian for the perturbed molcule is then,
H = Hy + H, (4-91)
Co;responding to this Hamiltonian there is a wave fun-—
étion and an energy E. The perturbed wave function can
be written approximately as:
U= (1 + aH )by (4-92)
in which A is the variational parameter. This parameter
is evaluated by requiring that the approximate yalue of

the energy:

E = j————m—m (4-93)
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(a8
=

be a minimum. Substitution of the Hamiltonian given in

equation (4-91) and ofwgiven equation in (4-93) into

this expression for the energy gives,
2 aﬁ’wJ?
- = JYa(Hg M)y AQHH s Mot 12 H A G HM IO
J\UOU*. LAH, + .A‘LH:‘) L) dAv™®
When use is made of the properties of the unperturbed

wave functions, the eupression assumes theaform=
+ + 2W '
, (Q_,] 2)A+(Q2+w3)A

E ~Eo = - A 2 __ %2 a (4-93)
in which T+ 2Wp+ WA
W = j\boH,\bod"ﬂ (4.96)
Wy = fYHILdr"  (8-97)
Wy = S ™ (4-98)
a, =S Y tHy= £) Hy Y ar™ (4-99)
0, = fyH, (Hy= o) Hyplar” (4-100)
When the constant A i1s varied so as to minimize the
value of E, equation (4;95) gives the shift in the
energy level due to the perturbing effect. Let us now
apply this result to the special case of a molecule in
an'electric field. In order to study the pdlarizability
&f a neutral molecule, the perturbation is taken to be
uniform electric field of intensity E 1in the x direc-
tion. The perturbing potential is then
H = — e EgL - é"i +D§:_>__='2x><x] (4-101)

Here e is the absolute value of the charge on an elec-—
tron. The X andXyare the x co-ordinates of the elec-

trons and nuclei, respectively, and the Z, are the



106

atomic number of the nuclei. Now the x—component aof the

permanent dipole moment of the undistrubed molecule is

given by
n
e Sl e [Fxio3a TJude”
n _ = prlf
=[x % )j—_z“x“ (4-102)

L=y o=y
in which a bar indicates a quantum mechanical averaging

with respect to the unperturbed wave function. Since
all electrons are eqguivalent, we can drop the subscript
on ¥, and call is %, the average » co—ordinate of an
electron. Thus it may be seen that when the integral W,

- defined above 1is evaluated for the perturbation in
equation (4-101)., the result may be written as: Wy= -
MLxEx. The expression given in equation {(4-95) or the

energy shift is then,

E — Eg= === ir—mo e — e S e Yt e (4-103)
This expressicn fof the energy shift is of the same

form as equation E - Eo.

Hence the evaluation of the
integral ; and W;enables us to calculate the co-
eﬁficient ofg:, which is simply related to the polari-

zability. First :we notice from the definitions of theW;

’ 3
that both the Waand WeMgare proportional to Ex

Hence these terms do not contribute to the polari-
zability and need not be considered further here. The
integral Q, may be shown to be zero, and the other

integrals in equation (4-103) may be shown to have the
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- Al & 2 T — —rm_

"4%%'*95‘HV(x-§F+ (n = 1) (3 g #)

b 2 v
C!z]éaoea‘

in  which n is the number of the electrons in the mole-
cule and a,= ( __jf_ = 0 BR0e A .

) mei~ ) = 0.5292 A is the Bohr radius.
The term QX.:isz ig the mean square deviation of an

electron from its average position in the % direction.

The term (E - ®) (%, - %) gives the average correlation
between the instantaneous x co-ordinates of two diffe—
rent electrons. This correlation would be zero for ‘a
molecular wave function. However, for polyatomic mole-
cules this correlation is appreciably large if the wave
function 1s either of a chemical bond using a&atomic
orbitals or else the wave function is of the correlated

molecular orbital type.

The wvariational parameter A may be determined by
sefting { gﬁ } equal to zero and saolving for A. In the

Timit of low electric field strength, it may easily be

shown that A varies as E and the form,

2 T
foe oo Mx€x o Wa
Qg
with the result that
r R 2
- o (MxEx~ Wy )™
E - I:o =AM —— Ql

Compariason of this result with equation (4-104) and

the use of the expression given in equations (4-107),

107

(4-104)

(4~1039)

(4.106)

(4-107)
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and (4-103) for Byand Wyyields the following formula

for xwx component of the polarizability.

- n A = -
X, "%;— (Gy=5) + (0 = 1) (% = %) (- B)* (4-108)

This result, which is valid for molecules is a genera-
lization of the expression for the polarizability of

atoms which was obtained by Kirkwood. (106).

The polarizability of an atom is isotropic. If the

wave function for an atom is approximated by an atomic

orbital wave function, the second term in equation (4-
. . - " 3
108) vanishes. Further more, in an atom % = 0O and ¥y = Vi
- - =1 . )
= = 1/% r . Thus equation (4-108) becomes,
X= 4/9 Fot 10
= 8y 2 nyiry) (4.109)

v
When n is the principle gquantum number of an electron

-k . )
and r.is given.by. the relation

o
W _QJ YE+2IRLI"G"_— -

e L ot = (M (2np+ 3)) e (4-110)
' JE R 2(2-51) ) ‘ °

2=l
where r&is the effective guantum number and (Z —SL) is

the effective nuclear charge far various electrons in

an atom.

Estimation of screening constants:

The polarizability can be estimated easily and
gquite accurately by means of "Screening constants”
using the formulas (4-109) and (4-110). The basis for
this treatment is the fact that an electron in an  atom geoes

not "feel® the presence of the nucleus completely, in as
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much as the electron jg screened from nucleus by the

other electrons, Hence, although the charge on the

nucleus is Xe, and electron in the atom acts as though
it is moving in the field of a nucleus of (Z-S)e. The
quantity S is called the screening constant. From the

vnowledge of one property of an atom it is possible to

determine a set of screening constants.

We assume that each electron in the atom may be
represented by a wave function of the form,
= R m
Vias R (YT (8,0)
] - v
Ryt (r) =1 e (Z-8)"/ptt

, m
Hence the (11) are the normalized spherical harmonics

defined by the equation

o Pl-w o e (L=m[]1 i,
- anfiZzirifl-mi). !
YL(9’¢) = { \ﬂﬂ(l+l “l p‘t(cose e

where 1is the units of the Bohr radius, a, = Q.5292 g.
At large distance this function behaves like a hydrogen
like wave function of principle quantum number n in a
field of nuclear charge (Z-5).The effective quantum
Humber ™ and the effective nuclear charge (Z -6 ) for
various electrons in an atom are given by the following
empirical rules:

(i) If the principle guantum number of an electron

is n the value of H‘is obtained from this table:

(4-111)
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(ii) qu determining (z-s), the electron are di-

vided into the following groups, each having a diffe-

rent shielding constant:

st b e ot B e TS e et s Mt i S S e i
S Tt it Bt s e i it it Lt Mttt i i St LA et B ey s Gobre LAl i S O e R it h ey s et e

ot Syt S L s . e — i e B S
— et b 2 e e
— I R e e et by it A e st o e i it e B R e o Sl vt B

is the 5 and p for a given s are grouped together,
but the d and the f each considered separately. The
groups are considered to be arranged from inside out in

the order given, above, with s as the inner most.

(iii) The screening constant § is fonﬂq& for any
group of electirons from the following contributions.

(a) Nothing from any shell outside the aone being
considered.

(b) An amount O.E5% from each other electron in the

group considered (except in the 1s group where 0.30 is
used instead).
. (c) If the shell considered is an s or p shell, an
;mount of 0.85 is contributed from each electron, with
total quantum number less by onej and an amount 1.00
from each electron still further in.

(d) If the shell is a d ar f shell each electron

in the groups closer contributes 1.00 to the screening

constant.
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CHAFTER S

CALCULATIONS AND RESULTS

9.1 Derivation of repulsive constantss

In order to take account different interactions
existing in rutile 5tructuré (oxide crystals), the
crystal energy can be expressed in equation (2-1) of
chapter 2. When two ions combine to form a stable
molecule two equilibrium cmnditioné have been establis-—
hed. These are presented in chapter 1. At equilibrium
position, the equilib?ium distance Q)is called the bond

length.

It may be observed that the bond between two atoms
obey Hooke's law by taking the analogy of a spring.
Thus the expression for restaring force may be written

as:
F = - kKe (r — ro) = I‘I'e‘:{
where K and r are the faorce constant and the inter
e

ndclear distance respectively. Therefore the energy of

a crystal is given by:

In this case, -the energy curve is parabolic. The crys-
tal formed by the analogy of Harmonic motion is called
the simple harmonic ascillation and the frequency of

the oscillation is given by

o

-1)



V= -t “?g—

where : 18 the reduced mass of thesystem and the energy

is given by

K
Uh (n +y) KF}]—‘I_
1,2

H

where n = W,1,2 ..., etc.

i

For n 0, equation (5-4) gan be expressed as:

- [K Cviny =
u = ¥ \f =Rt = ynd
The eupression (G-3) is called the zero point energy.
The vibration of molecule results in only small distor-—

tion of the bond from its equilibrium length. If x 1is

the displacement of the baond from its equilibrium

length, a Maclaurin series expansion about ®% = 0 gives
2
dU d°u
Uix) = U + (o) b W) b L el
x=0 ax &=0 é( ;12 )x=0
At % = o, the potential energy is a minimum and there-—
. fore, dU
( == ) = O
dx %=0

If bnly the next higher term in the expansion is re-—

tained, the expression valids near the equilibrium posi-

tion and have the Torm:

Comparing this expression with equation (5-4) gives :

d2U ) d2U - K
( Magzﬁ y = Ko or (==pn) =K
=0 ar r=r ~
o] [
) d U
Thus the force constant is then the value of —-—-2-- near

dr

112

on

-7)
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equilibrium distance r = ,
o

Now the total energy expressiopn (5-1) of a crystal |is

again written as:

(A C D
U o= -~  ZMO T - et L P . ) (5-8)
- 5 I
Here zero point is neglected because it has very small
contribution to the total energy.
Now equation (3-B) can be also be written as
Kuz2e® D
U = -~ MZe mgug_ - —g + B (5~9)
r2 r r
du 2L e 64 BD ’
et SRR R (3—10)
& 2 7 g A
L 20, 8%° k2o 72D . 5
2 Ty T § w0 " A (8-11)
are 2 r
From equation (5-10}, we have,
du :
o — = a + r Ej’ (9—-12)
dr
a6 8D
where a = ————— R A R (R-13)
r r r
o2 Eigh) 2 .
anpl r( ~Spg- ) = b ov g (371
22
2K L e LG 72D
where b = - —-——————r——=—r— S ——o—=
6 8
r r r
dau
but r (=———- ) = 3TV B v
o
ar r=r
2 JdU Nm
and r (-—yz~) = ~—Fg 7
o ¥ rer
o

Theretare (5-172) and (5—14) reduces tp
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_________ (5—-13)
K
. STVm
or r e = -—--J-—_K_ﬂ_ —a=HM
TV
ﬂ, = M/vr where M = __é_{%lg - a (5-16)
2 WV
d b+ om e —17
an ré ff R (5~17)
2 " = --.-—..2‘_,_”.]..___ —
or gf K b
e 9Vm
or r.ﬂ = ~—R~ - b =X
) v
or #* = ——2—{~— where £ = T _ b (5-18)
r ) K
”
)4
g’ r M ri

After solving equation (5-19) the repulsive parameters
can easily he found out for different repulsive poten-

tia‘lu
A. BL potential (1918)

The form of the repulsive potential

g=nr" (5—-20)
B’ =nAr (5-21)
;d” = + n (n+l) A r (5-22
-{u+

g” n{n+1) Ar (u+2)
o T TTTTI Yy T (5-23)
p n Ar~ ¥ t

n+1 _}__ 41 = - X
or """:E‘""“ = - rM or. n ' M

X X
n=- (== +1) = - 5 - 1 (5~24)
M
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From eguation (%-15) ane can write

a+r g = SV

Bubstituting (5-21) in equation (5-25) it may easily

write that,

G N W C LU D

A= — =t (1), M on
nr n
= — e e I (9-26)
B. BM potential:
The form of repulsive potential asg:
4 =B e"IP (5~-27)
ﬂf - S pTT/p {9—-28)
ﬂu_ 7§§" o ~r/p (5-29)
subétituting eguation (5-28) and (9-29) in (5-19) one
cah obtain, B e-m¢
PE X
B T/ rF:
p s
or 1/ = - “%“
i
' i .
R T (5-30)

From equation (5-15) may easily write that
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- TV
a + r (= - @ r/P) = ...B__E_{__
K
B
Or, r ——me—a TP _
P M
M
or, B = - —_.P e"r/f’
M
B o= = o P /P (5-31)
C. Verwey potentials
The form of the repulsive potential as:
g = a1 (5-32)
m/ = 12/‘(',. '-'13 (5"‘:3
B = - 13 x 12k -Ih (S5~34)
Substitufing equations (S-3X), (3—-Z24) in {(5-19) it can
be wiritten as:
-1
15641 1 X
12Mp” 3 rH
gz =1
La -
er rM
¥ or 12 = - - -1 (S—35)
From equation (5-13) one may write,
- VB
&+ r (- 12Mr7) ——
K
or. tr{- 1z M r—m% = M
or., 12Mr =12 = = M
or, M=~ b T2 (5-36)

12



D._VS potential:

The form of the repulsive potential as:

2
m =zl,e-K,|I‘
/ 2
B = - 2k 2re-Kr
A" 1
A -K r2 A 2
pro= -2 Gy e T TRAr A K kg 2

Substituting equation (5-38) and (5-39) in equation
19) one may obtain:

K, = = ( = - 1 )sze2
1 M

From equation (5-19) it can be written as:

o

FO-AK o 2re THY e

ar, % = — --—.:IH—-— =} K,Il"::

1 ErCKl

E. GT potentials

&

Thé form of the repulsive potential as:

II,,.E .
po= e
r —Krg
ok ke?  _ FE
¢ = - £2 2r.e i
r
2 Tk
IR . S S
= - 2
2 r
S
I T .
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(5—37)

(5-%8)

(5-39)

(3—40)

L

-432)



o —\d Kr™ + 1) Kre
2 T h &
»
° -~
oo . ._"‘t_ tielhezl
B = - 2pk. - K.or. oKL
b
2 £
=K *
2p o M
P e ————
r/
= I'F"‘L ¢ ®
= 2pe N2 kS o+ = L ey
r D
LB L2 P
e =K K = RKem o+ 1
= 2pe ( T )

Substituting equations (5-44) and

may write as:

L2 2
_ O A R T T
o X —mmem )
re
~_—_17;£' _______ 2 """""""""""""" =
- -
-re JKr™ o+ 1 T %
2650+ KeT 41 -
1 i L
or, =i Loy e =
r’ ZErS o+ 1
2 A 2 :
K'r + K™+ 1 {
ar, ~—m-——- ST = - ——-
2K 4 1 =
X
Let ~ =T = a.

o,
(]l 2rlhx+ r2(1_2a)H + (1-a) = o
K.

This is the quadratic equation in

(5-4%) in

(9-19)

118

(5-44)

ane

(3—-46)

(5-47)



"-u = —-_H—.-—-_-—_.—é ““““““““ rd
hr
From equation (5-15) one may obtain,
. 2
. r
_— Mre
(2kr? + 1)

F. Islam potential:

The form af the potential is

119

9-47) is

(5—48)

(5-49)

(3-350)

(353

Let m =‘>&r'6-' % o~ = Z + ._3.. ._..ANI;_
hf) ,LO
po=1 e M
p/ = - u,’.ﬂ__ d
11
pr o=~ ov—— @ —ov(ov- 1) - A
T I
P Sl W gy
""""" - ouy/T @ o
y
i - ovi/r. - an/r . g Aovlgv- Du/r g X
______ “ovi/r @
°"£Z£_Jl:ﬁtLQ:;J_E§L£ X _
OFs =777 s H
—ovi/r @
Ovm/r SJ (ova/r - (ov=1)/r )2 e
QF y —msrm oo See T
O\rll!/r g r
ov (ev-1) X
Ors =% r i

or, (vm — €6 + 1)= — %/M



Qr. d\-(m‘“l) +1=—H/M

- X X
ar e e
or, m — 1 = - .J_. { =2~ 4+ 1
o~ ; )
_ 1 n
OFy M == —2s g+ 1) + 1 (5-54)
But m= o
A = I
O~ (5-55)

Now from equation (5-15) gne may obtain,

. ) lV
a + r { _g\—._iﬂ.. ) = __Zil__l.i_ﬁ._.
T e
-1 Zy
a — mel e = _ﬁ_jﬂ%
K
_ oy
Imove = a - _,_:mﬁ__ = - M
K
I n K 1
L =~ w5 e =~ e e (8-36)

G. PFDpDSEd new potential:

%
.+ The form of the potential is

g = —5 e - (5-57)
r
. 1 ar “n=73

Where =L + —g= 17Ty

?5/ = — (% +ovm) —g (5-98)
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Pu = (12 + S evm —ov (o — 4)m +.'2m% ___g__ (5—-59)
I

and $ = (- 60+ 12em + zevon - 5) m — Sedm°

TOw=4) - S)m +o¥o- 4) m2+ GADV-5)m?
~ gom £ (5—60)
2

By solving equation (5~57) and equation (5~58) one obtains.

(of=7 +o0a)+( b7+ oda)mh 025 (limss)

M= (5-61)
2 0¥

and from equation (5-87) it can be easily written that

( 2 +evnn )
H.Buckingham potential:

The form of the potential is
. o .
pry=ae oo (5-63)
James and Catlow[139] has given the

following values for the parameters appropriate for the

nearest neighbour and next nearest neighbour interac—
v

tions

For TiDé

A =656.7 ev,  =0.40431 8, C =0
- +m +

-6
A =02764.3 ev, =0.1490 B, C ' =27.063 ev &

For SnDé
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A =1054.8 av = 0. = Tﬁ -
N S0 1 = 0,3687% c =0
fm P+_ » G

o= —_ o]
A =22744. 3 ev, 0= 0.1490 A, C =28.43 ev 36

-

2 i . Ly .
3.2 Electronic Polarizability and van der Waals constantss:

a) Electronic polarizability:

The electronic polarizability plays
a very important role in several of the theories of
long range intermolecular forces. Matter is made up of
two kinds of charges, free and bound. Free charges can
move through considerable distances, whereas bound
charges such as the electrons in atoms can shift their
average positions only by distances small compared to
atomic dimensions, that is, by a small fraction of an
angstrom. An electron in an atom maintains a stationary
orbit by balancing the force of attraction towards the
nucleus with centrifugal force generated by its motion.
The . internal elgctronic forces in atoms and molecules

are very large compared to the forces produced by

T
ot

external electric fields. In a conductor a fraction of
the electrons are free to move from one place to anot-—
her. These free electrons distribute themselves so as
to make the electric potential constant throughout the
conductor. Any other distribution of free electron
would have a higher energy. In an insulator the elec-

troﬁs are firmly attached to individual atoms, mole-—
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cules or ions. When such a insulator is placed in an

electric field, the electrons are pulled siightly in
one direction while the nuclei are pulled in the opo-
site direction. This relative displacement of charges
?n matter is referred to as polarization. When two
molecules approach one another a mutual polarization
takes place. This polarization of the molecules may be
an important contribution to the intermolecular poten-—
tial. The extent to which the polarization takes place
can be obtained from a study of the electric susceptib-
lity of the bulk substances. The detailed study of
polarizability are discussed in chapter 4.3 of this
thesis.

According to Fauling the free state
polarizability “TDf an atom or ion can be expressed in
an approximalte manner as follows:

“I = fZ (S5—64)
Nhgre Z 1is the nuclear charge and k is a constant
depending upon structure of the ion. Because ions and
atoms of the same species have different electrical
environments, the polarirzability of an ion or atom

varies some what with the substances. Thus a different

set of polarizability obtained for different ion envi-
i b 2=
ronment. Theo — values of Si Ti , 8n and 0 are avai-

lable in literature are shown in Table -1. TS values
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are shown in column 4 of Table -1. The free ion polari-—
zability values are presented‘in column 2 of Table-1.
It can be observed from Table -1 that polarizability
values for some ions in a particular column or set are
missing. Thus we estimated a consistant set of a €0 -
values for all the ions under discusion by means of "
Screening Constant " method and are shown in Table-1.
The basis of this treatment is the fact that an elec-—
tron in an ion does not " feel" the presence of the

nucleus completely, in as much as the electron is

screened from the nucleus by the other electrons.



Table - 1 ¢ Electronic Polarizability of ions X in & ).
B | a 1 b 1 c )} Present { Effective
Ion ~ | Pauling ¥ FJ X TKS I study Set II Y numbers of
1 I X J Set I { electron
L
Si 0,017 0.04 - 0.05 0,04 14
L+
Ti 0.185 0.2k - 0.63 0.24 19
GeLH' - - 1.0 0.8 1.0 21
sn™* - - 3,4 3,64 3.4 29
0%~ 3,88 2.75 0.5 to 3.2 2.16 2.75 v
Set II : Reference No, b with missing values from reference No. ce.
ae Refo 131
b. Ref. 127
¢ce Ref, 132

azL
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(b) van der Waals constants.

The van der Waals constants C and D

are the linear combinations of the van der Waals co-

effients (Cij’dij) for interactions of the various ions

pairs weighted by appropriate lattice sums. The de-—
tailed study for van der Waals energy, co-efficients
are presented in chapter iv. Here the above studies are
described very shortly. 1In this thesis Sk treatment
based on variational theory is used mainly for deriving
(Cij,dij)' This treatment is most appropriate than ot-
hers. Because in London and KM formulas have large
uncertainties. Thus one expresses the van der Waals
energy as in eqgn.(4-4). Where the constants have their

usual meaning. The calculated value of van der Waals

constants are shown in Table 2.

5.7 Lattice sums.

The lattice sums for rutile type
6

. 3
' ar tai i S d
%ompounds are obtained by summing %hykifor } oan ]ij/rij

(far T).where l'j is the number of j ions distant rij
' i
from ion i.The lattice sums for rutile type compounds

studied are listed in Table Z.

5.4 Effective number of electrons:

The effective number of electrons

are the nunber of outermost electrons of the cation and
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the anion. The values pf Cij when fitted in egn. given

% ;
below ¢.. = 3/2.efi/nf’X. & 1h 1
ij / § KR H(&X )
give the effective numbers of electrons Ni or Nj which

show a smooth trend of variation with atomic number Z .

It has been suggested C S

by Scott and Scherage [12] that the plot of quvs Zeéf
(Fig.8—1) can be used to predict the values of N for
any atom or ion. Values of Njand Nifor rutile so ob-

tained are given in Table-1.



Effective charges

50T

l‘o -~

w-—

207

107
1 1 1 3
1 ' | t

0 10 20 30 Lo

Effective number of elewtrons

Fig. 5-1 : Plot of effecyive number of electrons versus effective
charges.



Table = 2 : Input data

.

_ I r | N C 1 Y Ionic radii i Medelung = |
Crystal | (ﬁ) l (10-13 cma/dy.)l (‘IO-60 erg—cms)[ (10_7gerg—cm8) J (R)*> i constant {
. X X i I r+ i r- i (Rutile type {
Si0, 1.757 2.78 172,80 77 .64 0,506 1,251 4477 24212
234,53 116,03
Ti0, 1.945 4,91 443,08 236.92 0.9k 1.005 Lo77 2.22
35k 24 198.23
GeO, 1.872 3.86 52%.91 283,40 0.59 1,282 L,77 2.185
74387 453,51
2.052 4,69 1729.66 104541 0479 1.261 4,77 2,115
Sn0, 1941.75 1283.69

Different entries for C and D corresponding for different sets of polarizability values,

** Ref, 128
*** Ref. 129

Contlesnss

62l



Contd =--- Table = 2 : Input data

1 1 vdW
C]?ﬁtal I Lattice sums of four oxides X -0 .
. 3 S 3 = 7 m SR ( Kcal/mol )
. I e o T TR T
3102 5.963 0,362 103382 5.6L6 0.128 0.671 96.90
133,20
Tic, 8,097 0.371  1.412  5.79%  0.131 0.638 134,51
108.16
Geo2 165 0.375 1.425 54341 04132 G.6S4 2C2.35
291,20
=0, £.3€3  0.339 1.487 6.131 0.139 0.729 231,52
L33, 34

ozL
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5.9 Repulsive parameters and energy:

The repulsive parameters and ener-
gies calculated under study, have been shown in table 3
and in table 4. Different repulsive forms have been

used for calculating the parameters and energies.



Table - 3 : Values o revulsive varamesters.

§ Folariza- § 3 - L ] 3 -H g Veryey a5 )I v - ] —
Crystalg biiity 5_11 Fr_n(10—1aerg)B'—(aﬁ—gcm)i B(1o—ﬂaerg)g x (10 Terg E 1(10_12 cm) I 1e_',"’l"('10‘12erg)

510, I 5.3k 67.42 1142,.96 229 24,38 ~ 10398.56 16,15

IT 4,45 69,327 1315496 222 25,72 1202.66 47,86

4 I Le12 68,69 928,96 380 23,61 988.66 L46.25
102

II Lok 6741 829,91 286 22.66 920,98 45,06

Ge02 I 445 72,61 1381.70 z43 26.93 1260.95 50.16

I1 L 67 7771 1856.75 330 30424 152784 5hk.41

Sn02 I 513 74,18 28364,29 335 21,68 2880.46 53435

1I 5.21 77 47 3217.94 331 33,60 2053432 55497

Contdaesseca

2L



Contdess Table - 3 3 Values of repulsive parameters

Islam , I Buckingham ] M, Islam

1 G -~ T 2 i
Crystal -39 16. w>r e=h5r _ - - - -
rys Ir P(10 lK2(10 {&/O 82 i I1(10 azerg ) inc: r i #(r)=Ae r/ --C/r6(10 12ergl me ,=gr 2 G
510 1046 .49 0.80 48,71 868.71 2.96 - 1,04 847,14
2 1146.58  0.83 50,41 940,85 3,01 - 1.10 927.26
1039.74 0.63 49,03 77799 2.86 8.25 0.91 1030,62
Ti0, 967,60  0.62 47,86 727,58 2.82 - 0.85 959.58
1280.88 0.73 5277 1015.47 - 3,04 - 1411 1187.04
Ge02 1555458 0.76 58,00 1220417 3,14 - 1.2k _1439.49
2108,38 0.69 55.64 1610.95 3,42 6.26 1452 240,52
Snoz 2303,98 0.70 58,31 1755.52 T46 - 1457 2643,84

€<l



Table - 4

~

Different types of repulsive energies.

Polarizability I

Calculated repulsive energy in Kcal/mol

Crystal ¥ set | - i
’ i i B- L E B - M IVerweyI Vv -8 I G T 1 Islam lBucklnghamTM. Islam
810 I 970.80 789,02 351,14 664,57 701,40 643,07 - 794,96
2
II 998,97 815,61 0.3  689.12 725.90 667.19 - 816.77
I 989.26 796,20 339,98  666.19 706,10 643,08 118.97 813,28
TiO
2 I 970,66 777.86 326,35  648.96 689.55 626,14 - 800,27
I 1045,64 853,82 287.86  721.47 759.93 701.37 - 857437
GeQ
2 II 1118.95  921.62 435,48 783.45 822.24 762431 - 915,77
§00 I 1068 .14 893,74 456,15  768.20 801.22 756,14 90.19 880.10
2
II 1115.61 935,81 482,89 805.93% 839,63 993,32 - 919,51

el
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9.6 Output results:

S.6.1 Lattice energy:

The lattice energies
for rutile-type oxide crystals have been calculated
using the expression (3—-2) of this chapter.

The results of the
calculations using two different sets of electronic
polarizability as well as seven different forms (A—G)
for the repulsive interactions are presented in Table S
This 5 also contains experimental values of the lattice
energy far comparison.

5.6.2 Fressure derivative of Bulk moduli:

The potential repre-—

sented by (5-9) has also been used to calculate the
pressure derivative of Buik moduli, %g— . The results

of the calculations obtained for g@_ are listed in

p
Table 6 with available esperimental values for campari-—

S0Nn .



Table = 5 ¢ Lattice energies of four Rutile-type oxides.

(si0,, TiO,, GeO,, Sn0, )
Polariza- } - U ( Kcal/mol.) Calculated r T B —— %CUTKcaﬂmol) ‘
Crystal § vility 1 ) _ _ ucking 1§ M. Experimental
| set  § B - B-HM ]Vem’ jv-s j6-T ylslam PUORE T e
810 I 273373 2915451 3353,39  2039.95 3003.22 3061.45 - 2909.56 31663
2 II 2741,85 2925.21 3370,52 2051.70 2014.92 3073.63 - 2924 .65
710 I 2Lk, 16  2879.22  2053.4k 2727.24 2697.33 2750.34% 3139.89 2580.14 2858%,2873°
2 II 2396, 2589.21 20L0,72 2718.11 2677.92 27L40.9% - 2566481 2900d,2930e
I 542,72 2734.5h4 3200450 2866.89 2828.43 2886.99 - 2730.99 3037%,3050%
GeQ
2 II 2559.25 2756.58 242,72 2894,75 2855.,96 2915.87 - 2762.43  3090°
I 2h02.36 257676 201k, 3k 2702.20 2669.28 2714.,35 2998.88 2990.34 27833,2924d
Sn0
2 11 24067 2586.51 2038 4k 2716,39 2682.69 2729.00 - 2602.80 2838°
a Ref. 127
¢ Ref, 129
d Ref. 130
e Ref. 131

9L



t Pressure Derivative of Bulk Modulus

Table - 6
Y Polariza- %: ; T dlif;ip r 5 — { Experimental
Crystal { bility _ _ _ ucking E
I sot y B-L g B-M jyVerwey y V-5 gy G T ’ Islam I bam M, Islamy dB/dp
I 3,57 2,88 6,47 1,52 1451 1470 - 3,07 7,007
8i0
2 II 3.5}4’ 2-79 6052 1.’"‘3 1.}'{')4’ 1.53 - 2.97 -
I 3430 2,46 645k 1ok 1.28 0.98 - 2.76 6.768
Ti0 .
2 iI 2,33 2.5k 6451 1.22 1,23 1.1 1,56 2.86 -
) I 3,33 2,2 6.62 1.09 1,23 0.91 - 2,6k 6.168
n0 ) ’
2 I 3,24 2.18  6.71 - 0.88  1.09 0. ki - 2.36 -
I 3.49 2.36 €.83 0.93 1.11 0.66 - 244 5,138
Sno2 II 2 46 2.24 6.88 0.83 1.06 0.43 1630 2.0 -
f Ref. 132
g Ref. 133

Ll
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CHAFTER &
DISCUSSIONS AND CONCLUSIONS

Wackman Et-al-[129]-discussed the effect of polari-
zabilities. on energy values for TiD2 beacuse these are
not known exactly. They found that binding eneréy chan-—
ges Dby more than 10%Z. When one set of values is rep-—
laced by those obtained by Ruffa‘s methodii34]. In view
‘of this extreme situation with Ruffa's pnolarizability
values Wackman et.al.[1291 considered that these  va-—

B

lues of ions are incorrect. Thus the part played by

polarizability is apparent. The values of Si4t Ti4ﬂ
San' and 02~ available in the literature

[111,1158,116,129]are shown in Table 1. TKS values [116]
of simple additivity in Dﬁgde crystal leads to an
appreciable spread of the values of polarizability. As
suggested by TKS [116]1 this would result from a depar-
ture”frnm the ideal ionic crystal state and an overlap-
pigg and distortion of the ionic wave function. TKS
[1161 values give an approximate measure of various
ions in «crystals rather than of "free" ions. On the
other hand, the polarizability values in column 2 are

those for free ions. The experimental work suggests a

significant dependence of the values on the environ-

ment. The crystalline environment significantly reduces
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the polarizability of the anions and increase the pola-

rizability values of the cations

At
The value for X(Si' ) derived by us is consistent

with the value of 0.04 X 10 nagobtained by Born and

Heisenbergl137] an analysis of the Rydberg Ritz correc—
tion for a spectral series. From the indices of refrac—
tion of salts in aquous solution, Fajan and Joos
[127] also obtained the same value but Schmidt et.al.
[154] reported its value to be 0.51 X 10 nmJand 0.66
X 10 nmj'The first one refers to the result when the
influence of both the environment in the crystal ana
self consistency is not included. In their study the
effect of the crystal environment is incorporated by
the Naésnn—sphere model, while consistency effects are
included by a procedure adopted from many body pertur-
bation theory. The polarizability values of both Gqund
S#Hépe found to be consistent with the TES values (0 )
is, consistent with the crystal have values by Bisarya
an; Sthanker [1853].

Table 1 shows different sets of polarizability
values, including free ion sets and the chaice of
valueg is not necessarily clear-cut. It was thus
thought to be of interest to see how sensitive the

results were to the specific choice of polarizability
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and so a range of polarizability values with reasonable

physical justification will be considered. The use of

different sets of values affects constants and hence

other calculations. There is no direct method which can

yield experimental values of vdw energy in ionic crys-

tal. It bhas been indicated by many authors that the

London formulae involved excitation energies of ions
which are .subject to large uncertainties and these
seriously under estimate the actual vdiW interations.
Thus the vdW Co-efficients cijand dij are estimated

using 8KV approach to obtain an increased vdW bonding

effect.

The estimated values (set 1) are used to lcalcu—
late tHe values of C and D based on variational method.
The values of vdw energies calculated by Ladd [1Z7] and
by Shaker and Jain [128] vary between 40 to 50 and 30=
100 .kcal/mol.., fespectively for the compounds under
digcussion. The results are much smaller than those

i

obtained from present calculations.

The repulsive energy contributions to the total

“ M’e . .
energy for various crystalsAbeen shown in the six
columns of Table 4. Eight short-range repulsive

interactions are considered. It is observed that the

repulsive potential energy increases with the increase
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t d
o vdW  energy. The contribution of the second neig-—

hbour -~ repulsion is small., For this reason we have not
%ncluded the contribution of the second neighbour inte-—

raction in the repulsive energy calculations, except

for one case as mentioned earlier.

As shown in table § for any particular repulsive
potential form the-values of the lattice energies are
seen to vary from one set of polarizability values to
another. However the variation is small. For a particu-—
lar set of polarizability values, the lattice energy
vary appriciably when different repulsive potentials
are used. The lattice energy using Born—-Lande form with’
set I polarizability is lower than on the average
experimental values by 147862, but in case of Baorn-—
Mayer, Islam, Modified Islam and Buckingham potential
forms the discrepancy is 3.30%-9%4. In the case of
Verwey, Varshni-Shukla, Gohel-Trivedi forms the corres-—
pgnding values differ from experimental values‘by a-—

mount of —6.60% 4.25%, and 3.32% respectively.

In the light of the above calculated results it is

sear that although the calculated values are not in

exact agreement with the experimental values the devia-

tions or discrepancies are not much except Verwey and

Buckingham potential. This situation reveals that the
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ionic chara
cter of these Crystals are nearly correct.

Earlier investigationsg [73,129] assumed the short-

range parameters to be equal i,e.p=p:pln an attempt to .

remedy this deficiency Shanker and Jain [128] used a
more general short-range repulsive interaction but
could not determinea_because of the lacklofﬂ_values for
tetravalent positive ions. They chosefifo.0345 nm3 for
all oxide crystals. This model which assumes a full
ioniec. charge including a vdW energy term. and the

resulting dB/dp values were found to be not very satis-—

factory.

Anderson and Anderson [132] within the framework
of & simple Born model also calculated dB/dp for Sil:l.2

and TiO, by adjusting the potential parameters until

P
they yield the co?rect value of bulk modulus. Shanker
and.” Jain [144] pointed out that these results clearly
q§monstrated the fact that even the fitting of the bulk
modulus did not improved the agreement betwéen theory
and experiment. Contrafy to this agreement our simple
approach showed that not only lattice energy values but

also dE/dp values yield much agreement with experiments

than those due to either Shanker and Jain ({1281 or

Anderson and Anderson [132].

Anderson and Anderson [132] suggested that the
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directional and bond-bending forces are most likely

esent i .
pr ih these crystals. Striefler and EBarsch [141]

used the rigid ion model of Katiyar [84] where central

fe = : - C .
orce  short-range lnteraction between first and second

nearest neighbours is included and an effective charge
takes into account deviations from ionic binding. The
Six free parameters were determined from a least—-square
fit of the Raman and inactive fregquencies and ‘of  the
elastic constants to the available experimental data.
They concluded that the application of the model to the
rutile~type onides turned out to be much less satisfac—
tory thamn for flunrides [141]. They than added harmonic
angle bending forces for the five O pairs' showing a
caommon . nearest neighbour cation and a 1least sqgquares
technique fitted the nine free parameters. Their re-
sulte for diR/dp are much better than all previous
calculations, but as pointed out by Shanker and Jain
[144] +this improvements of dBE/dp has been achieved at
cost of reducing the ionic charges which are about one
third of +the nominal values, such small ionic charges
would reduce the Madelung energy and hence the lattice
significantly with respect to the experimental

energy

2Nergy.

With the same polarizability values the potential
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with the B-M repulsian reduces the lattice energies to

i i « 2% - " .
within B.39%Z of the €rxperimental values, where as this

is not so for qB/dp-In the case of EB-M repulsion, the

pressure derivative of bulk modulus dk/dp shows a deri-

vative from average experimental values amounting to

899% « But  the use of the modified islam potential the
lattice enerqgy agrees within 3.7% compared to the expe-
rimental values and the dB/dp is on the average 5bY%
smaller compared to the experimental value. Although
with B-L form, the lattice energy, dB/dp show a devia-
tion from experimerital value by 14.8&% and 44.55% res-
pectively. Hence it may-be remarked that the présent
approach with the new modified Islam potential seem¢ to
able to describe resonably both the lattice energy and
dB/dp values simultanuously.The improvement results
mainly from the inclusion of vdW energy calculated with
a estimated consistent set of polarizability values
obtained in the study and the new modified Islam poten-—
tiaa. The resulting values seems to imply that the
binding in rutile, while somewhat more ionic than some
of the previous studies would indicate) (e.g.Baur,[130]
and kKingsbury) [142] whose calculation suggested an
appreciable covalent character in the M-0 bond because
the calculated lattice energies have been found to 25%

larger or more positive than the thermodynamic values)
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does contain a covalent contribution.,

It is worth mentioning here that theoretical mo-

dels based on rigid ion and shell models, with either
arially symmetric or tensor the first and second neig-
hbour forces have been fidfed to the measured disper-
sion nelation available fully for Tid. only [130]. It
was also shown that both the second neighbour rigid-ion
and shell models, when used with central forces are
unable to predict the qualitative features and only the
shell model with tensor forces for all interaction
except the second neighbour 0-0 interaction was able to
give aanptabie gualitative agreement with data and
that agreement is good tfor only some models. From this
discussion it is apparent that a comprehensive theory
which can correlate all physical properties of rutile-
type compounds, is still not available. In view of this
we conclude that a relatively simple treatment with &
newly derived polarizability set is moderately succes-—
s%nl in explaining at least some of the properties of

the compounds under study .
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CALCULH v IUN UF CHTTLLE TENERG TES  HNU P reobUNE "DERTVATLOVE Ur  ouu

MODUL.1 .

PROGRAM CLLE

IMPLICIT REAL(A-Z)

INTEGER  MAXROW, MAXCOL, IROW, JCOL

CHARACTER MULL )
CHARACTER COMP%4

PARAMETER (MAXROW=Q@&Z4, MAXCOL=0QZZ4, NN=7. &)

DIMENSION DI1 (MAXROW, MAXCOL)
DIMEMNSION DIZ (MAXA0W, mAACOL
DIMENSION DIL(8,15),DI&(8,23)

OPEN(UNIT=22, STATUS="0LD", FILE="CLLE. DAT")
OPEN(UNIT=11, 5TATUS="MzW", TILE="CLLE. QUT")
OPEN(UNIT=33, STATUS="NEW", FILE="CLLE. TXT")
—=Calocdlation of van cer Waalis co-efficients (D.D)—-
READ (&2, 998) NULL

READ (22, 998) KHULL

DO 1@ IR0OW=1,4

READ (&, 1@@) COMP, AR, AN, NP, SPN, SPP, BaN, TRPP, TN, TRN, R, VM, BT, K,
IF(AR JEL. 1@, 0 G8T0 1112

I=I+1

Al=AR%AR*, 5

A2=(AP/NR) #%*. 3

A3=FALl/[A2

CPRP=A3*23.

WRITE(11,#)CPR

Bil=AN*AN%*, S

BE=(QN/NN)**.5
=R1/B2

ENN B..}*l_d- L..IZ‘

WRITE(11, %) CNN '

Ci=AP*AN . :

C2=(AP/NP) %%, S+ (AN/NN) #%, 5 - ¢

C3=Ci/Cz

CPN=C3*25. 2@

WRITE(11,*)"CPN =", CPN, "CNN =", CNN, "CPP =", CPP

EV=CPN*SPN+CPP*SPP+CNN*5NN

HRBTt(ll #)"CV = “,CV

calculatlun of van der Waals co_ eff1c1ents(D )

R

FR=6. 666

D1=AP*AN
D2l=(AP/NP)*%.5

D2e= (AN/NN) ¥%. 5

Da= (D21 +D22) **2
D31=(AP/NP)
D32=S0RT ( (AP*AN) / (NP*NN) ) ¥6. 66
D33=(AN/NN)
D3=D31+D32+D33
D4=D1%D2/D3

DPN= 04*41 34 ,
HRITE(l; #)"DPN = ", DPN
_______ Al

Eil= QP*Q#

E2= (2% (AP/NP) *#%, 5) ¥»x2
E37h*(hP/NP)4FR*(RP/NP)
E4=E1*E2/E3
DPP=E4%4]1. 34
WRITE(ii,*)DPP



ra

:.’fj ri

F1=AN*AN

Fa= (2% (AN/NND ¥%, S) agp

ca=o% (AN/NND) +FR% (AM/ NN
Fa=F1aFZ/F3

DNN=F4%41. 34

WRITE (11, %) DNN

DV =DPN* TPN+DPPX TOP+Dip e Ty
WRITE (1L, ¥ "DV= " Dy nppyn o
calculation of var cer waals
UDD= (- CV /A (R*xE) ) o T

uDo DV IR 3) ) e T

UvT= UDD+JDE

WRITZ (i, #) "V T=",uvT
HPITE(¥11*)”UDD=”,UDD

WRITE (DL, A3 "UDC=", 4D
Caiculation of Regulsive Chiwp:
TO=3uf, 2 '

2L Lol

O ledS. -

et min e vl TR e DL
A= (448, 18/ R) + (GACV/R*HE) + (BxDY/ % £0)
B=- (880, 36/R) ~ (42, xCU/R¥ 55 ) - (7hudv'::r5)

M=1.36-A

M= (SHTP#VIRET) /1

WRITE(L1L, %)M

X“(UW%UW/F)"B

Nz~ (X /W) -

Hl:~(T/N)¥(R%*N)

UsRBL=A1% (REX-N) =7

WRITZ(LL, x) "M =" M, "X =, %, "y o INLPASPAT
L et E}:y. bt e em e b
ROW=-{M/X) = -

BE= {M/ R 2 RDOWXZXD (R/R0W T
UREF=REM*IXP (- R/ RO 7
NufTE(ll,*;”“Dw =1 R0OW, "DRENM v T, LRI
e e e .__._VE_‘::I’\JE\‘/ [,

Gil=1Z

MUE=--(M/B1) v (R22G1)

URV=MUE® {R#*#—-51)«T

WRITE (11, %) "MUE =", mMUZ, "RV =", URY

K= - (X /M-1)

Ha=2% (RHAE)

Hl1=Ka/H3

LAMDA1=M/ (Z» (RxxZ) #K1)

LAMDAZ=CXP (A1% (R¥%Z) )

LQMDR=~LHMDG1¥LHNDO_
AVS1I=LNMDNeT -

URU“‘~EXF(~H1%(R%*E))
URVS=URVS 1 ¥URYS

TR T P S T =g

e L.JT._._.A e e revne b e o ==
CDNﬁ*'A/(_XM)

EPR=GORT (- 7+4*CDNQ|44<FGNH!‘E,
Wis- i +2eCOMNAER

]

DH:=4ﬁ(P*«h»
DH=PH 1 /DT

PZ=EXP (DPK*® (R¥EXZ))
Pl=mapx0Q

A= Pier (Rexrd) 1

P=~ (D10

URBT1=p/R
JRAGTI=2ZXD (-~ P (REAE))
URD* RGBT X URSTSNT

RITZ (11, s)mp =0, 0y 0 oy Doy W =0

.,.,.I-:‘Lni'(‘, P

WRITE (11, K‘“'ﬁmuﬂ e LANMDA, MEAYD e LTS, T

TX aaks TR

R

Xl



e e T R D s S M e SO oL LT o,
7 e MC=2~(1/820) - X/ (mMx51G)) T

I=—M/ (MC*BIG) AEXD (MC)
URI=IXEXP (-MC)*T

C HRITE(ll *) "MC z“,-mc' ny =",I,"URI =",URI
C < -
Zi==X/M

MCL1=((SIG*S8I6) ~(7*SIG)+{Z1x51G))
Mci_ SORT ((MCL1#%2) ~ (12# (SIG**2) % (4=21)) )
MC1Z=E%(SIG*SIG)
MClz(NCII‘YLIL)/MLlu
GA=M/ (Z+MCL*EIG)
GE= (R#*3) *EXP(MC1)
=-GAXGR

C URAKL=EXP (~G2* (R%*51G))
URAK=(G/ (R¥%¥3) ) *EXP (~mMC1) T
C WRITE (11, %) "URRK =", URAK, "MC1 =",MCi,"G =",06
c
C Calculation of lattice Erergy:-
C
UE=(~443. 18/R)*T
UBL=UE+UVT+UREL
UEM=UE+UVT+UREM
UV=UE+UVT+URV
UVE=UE-+UVT+URVS
UGT=UE+UVT+URGT
UI=sUE+UVTHURI
UAK=UE+UVT+URAK
C WRITE(11,*)"UE = ",UE
C WRITE (11, %) "UBL= ",UBL -
c WRITE (11, %) "UBM= ", UBM
C WRITE(11,#)"Uy = ", U
C WRITE (11, ) "UVS= ", UVS
C WRITE(11,*)"UGT= ",UGT
C WRITE(11,%)"UY = ", U]
C WRITE (11, %) "URK= *, UAK
C
C Calculation of oresswe aeravative of bullk maduliz- o
c : v
c - BL————————- 2

U2l=— (080, 36/ (R¥%x3) ) — (42%CV/ (R#8) )~ (75*DV/ (R*#13) )
UZ2=N% (N+1) #A1% (Rxx—(N+2) )
U= 1 +LEE
USL= (2641, @B/ (Ru*4) )+ (ZIEXCV/ (R%¥D) )+ (7EA#DY/ (R*%11) )
. U32=~N*(N+1)*(N+;)i91*(R**~(N+’)) .
U3=U21+uiz
BL=1- (R*U3) / (3xUZ)
C e e P o e e o e e
U42=(BEM/ (ROW**2) ) #*EXP (—R/R0OW)
Us=U42+U2 1
USZ=~ (BEM/ (ROW*%3) ) HEXP (—-R/ROW)
UsS=U52+U31
EBri=1~(R*15) / (3%U4)
C e e T RWEY e e e

UeE=15EMUE* (Ru*--14)

: Ue=UBE +US
U7&=-2184%MUE* (R®*~13)
UW7=07 .:1U.3‘
BV= 1~(R* 173 / (3#UG)
U8L~_uLﬁ IDA®H I ®EXP (~K1x (RIeaz))
L1=4kLAMDAXKI XKL #RREXD ( ~KL* (RE*Z) )

=L 1#R .

Ud=u&1 +Uaz+l2
U92= (3L 1)~ (SHLEAKI*R)
U2=U31+U922

W UGt (REIIS) /(DN 8YY



PRI PR ekl ToTTTE AL . R A AR R A T e 1 e
PnY'(P/n)*EXH( P (RexZy)

pr:‘PHY/(“*ku)

Opl=fHY/ (RX#3)

Uia= =yl k(l'pvi(P‘ﬁ”iﬂﬁ\jjuhh)g(\x‘r)),g

U11=U31~ (Ck (24 (Z#DM# (RER) ) + (4 (] V!A?)i(.llﬁ)\\y
LET=1~-(R®ULI1) /7 (ZxUle)

NQITI—(ll Ky " I:h---—” E”._ ' I:."'-?'"g E‘:m, o E'.'-/f.:ll, BV, " L\'VF' o]
muam—ﬂmwwquﬂM~—~-~~»~mn ’
PlI=L%ZXP(-MC)

PHII=“SIG*(ML/R)ﬂ R

PHISL=-8I0k (MC/R) v

PHIEZ=-8IG#* (& uwﬁ)*(mu/(ﬁ**a))¥pH:
pH*f~PHIu7rﬂW*£2

PHI ~OICW (MC/RY®PH[E

PHIEH='L aIG*““lG'*)*(HL,i(ix_);xl.,l
PRISE=--8I0% (GIG~ 1) (TIG -2 % ((MC/ (Rn=3) ) A PlI
PHIZ=0HIZL+0PRIZE L AHIEE

Uli=usi+sHle

W RN AR P )

Bl=1--({(RAULI)/(3xU2))

WRITE (Lo, »)Uta, U3, B

e it e o e o4 e 7 e e m;.-’ e o oy et e

A I0=(C0/ (R« a3 5 ®IXA-MEL)

AHIALl=-3¥PHIN/R

pHIﬁlE*“ u;D“MC;HDHLQ)/n

PHIAL= PLIMRL I+P-IALE

3

T I AL e e A

OHL)

, BVS, "

LG Tt

y BBT

PHINZL= (L2 (SSIEXMEL) ) - (GIEx (SI6--4) amCi) + ((GISxa) 1 (MTLxxZ))

PHIAK=PHIA/ (R*¥3)

PLINE=PHIA L4 IR

Du;ﬂSim—(Eﬂl(;L* IGHMI1))

DHTAZE= (SHBICH{SIG-5) #MC1) - (S (DI0#n ) v {xCoendy}

PHIASES=~((QIG# (GIE-4) % (BIG-5) #MCL) ~ (AGIGxx 2) « (BIB-4) % (MC1x#21))

PHIOZ4={ (SI0xxZ) x (ExGI0-") 2 {nC1Ax23 ) - ({(STEx%3) «(MC1 %3

PHIARS=(PHIAZL+P |IH|.JL..‘|I|ln~\_:||<i|.!r\._a"i) A4 IA/ (Rxad)
U-I‘!“"Ua_l‘ SH IS
UlE=U3i+PIA3
Bﬂ'"¢"((ﬂﬁu':)’(:NUlﬂ)) _
RITE (13, %) "BAK=Y, TN, - Bi=", B

Dfl(IRDA 2240 =071
Dri (4.1\D~e5 'L']l_) =N
D:i(zﬂau,®3)=wp
1OIR0K, B4 =50n
;1(] 10W, &5)=5PP
DI (IROW, 3G =S
DIl(IRDw @a7)=7PP
DIl(IRDH,&B)"T%N
DIi(IRCW,a2)=TPN
DILLIROW, 120 =R
DI1(IROW, 11)=VM
DI1(IROW, 12)=0T
D1 (IROW, 13)=
DI1(IROW, 14)=SIG
DIZ(IROW, 21)=UVT
DIZ(IROW, &2) =REL
DIZ(IROW, 03) =l REM
DIE(IRDN,@Q)=;RV
DIZ(IRC, B35) =l2VS
DIZ(IROW, B6)=URGT
DI h<TRDw @7) =uURI
Dll-(IRDvJ @AY =URAR
DIL(IRDN @9) =UBRL.
DIL(Ian 1@) =ULM

DAL(IHDH 1,)—UV

et i foet b e e 7 ed At A A n s s g e

))

iy ward #80F, S Pt
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1R

‘ c
L 2l A
vl
L aR998

o e T

L’Jh'\ LJ:', -J)"'ulvf
DIf(ZR0W, 13)=Lior
DICLIROM, 14) =51

—d

CIZ2(IA \.J':‘J, A5 =i

DIl (IROW, 10 =5
Dlh.a.ud,'7)#nm
DIDCIROW, 18) =&Y
DIZCIRG, 19) =000
TE(IRUW, sy =ECT
DIOCIRDY, 21y =BT
DIS(IF —‘jn, L..l_.)'_l_lh\
rG“,TrJE

DD 1@z $RGH

WitI FL\JH,LEW) CDM?,(DKE(IRGN,JCDL

CONT INUE
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