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A B S T R A C T 

The work in this thesis describes an investigation of the 

static, dynamic, and defect properties of hydtides and deuterides 

of lighter · lithium in addition to a heavier sodium alkali metal. 

A combination of various theoretical techniques are utilized to 

obtain a potential model that gives a good unified description of 

all the properties, e . g. static, dynamic, and defect properties 

of the lighter as well as the least studied heavier compounds . 

The first part of the work reviews the directions along which 

the study on crystal interactionsf is progressing on the basis of 

the phenomenological and rnicrosc6pic theories. The basic theories 

of these models have been reviewed with a view to developing an 

interaction potential applicable in all respects in the field of 

alkali metal hydrides and deuterides. 

The second part of the work is concerned with the development 

of a set of interionic potentials of the Born-Mayer form using 

the shell model. Some of the earlier potentials suffer from 

serious drawbacks particularly when applied to dynamic and defect 

properties. These deficiencies are taken into cosideration in the 

present study. The development is carried out through using a 

combination of theoretical techniques, empirical fit, and a few 

plausible assumptions. 

The third part of the work assesses the derived potentials by 

calculating the ·1attice statics and dynamics of the crystals and 

then by comparing results with experimental data (where 

available) and with other calculations. The potentials are found 
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to describe the elastic and dielectric properties reasonably 

well. The phonon dispersion curves of hydrides and deuterides of 

lithium and sodium are compared with the observed data (where 

available) and the calculations of Dyck and Jex based on force 

constant model approach and the results discussed. For the 

assessment of the potential, in case of a defect lattice the 

energies of formation of Schottky and Frenkel defects are 

calculated together with activation energies for defect migration 

mechanisms. The predicted anion vacancy activation energies are 

smaller and comparable with the cation value. The values , thus, 

obtained are insufficient to explain the curvature in the 

conductivity plot of ionic compounds. From this study it is 

suggested that both interstitial and vacancy play an important 

role in ionic conduction in all these four compounds. Finally, 

th~ good agreement with the observed data (where available) shows 

the validity and reliability of the derived potentials. 
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CHAPTER 1 

INTRODUCTION 

1.1 General Introduction: 

Metal hydrides possess properties that make them desirable 

for nuclear applications, for chemical reducing agents, for 

deoxidation and desulphurization- of molten ferrous alloys, and 

for use as high energy fuels. some of the hydrides can be used as 

port~ble sources of hydrogen1 . The hydrides of the _alkali metals 

are all quite similar in their overall physical and chemical 

properties. · · LiH is a material unique in its simplicity of 

electronic structure and its nuclear preparation. Thus it is not 

surprising to find that there are considerably more literature 

pertaining to LiH AND LiDl-ll than to any of the other saline 

hydrides. A survey of literature shows that both theoretical and 

experimental investigations on the perfect and defect properties 

of the hydride and deuteride of lithium have been made . Pandey 

and Stoneham 11 reported both the perfect (static and dynamic) and 

defect lattice properties of the lightest hydride and deuteride. 

Verble et al.
12 

have investigated rigid ion model and shell 

model and presented the phonon dispersion in LiD, also Jaswal et 

al. 6 and Jaswal and Dilly7 have calculated the phonon dispersion 

of LiH and LiD using the deformation dipole model as well as the 

extended form of this model,the deformable-ion model. 

Experimental studies on the phonon dispersion in LiD and the 

frequency distribution function of LiH and LiD were performed on 

the basis of inelastic neutron scattering by Verble et a1 . 12 and 

Zemnialov et al. 13 , respectively. Raman and infrared measurements 
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b t -d3,6,14,15 th l t · on both the compounclB have een repor e , e e as 1c 

constants15 - 18 and the specific heat
19 

of the crystals,LiH and 

LiD, have been published, Singh20 and Laplaze
21 

have carried oµt 

theoretical investigation on rigid and deformable shell models, 

respectively. From the survey of literature it has been found 

that a limited number of lattice properties of perfect crys tal s 

of heavier hydrides and deuterides have been made. Following 

LiH, more is known of NaH and caH2, the remaining saline hydrides 

fall into a category about which relatively little specif i c 

information is available. This is not surprisj.ng since, beca~se 

of the similarity amo11g the hydrides ,the hydrides that was most 

readily available and least e xpensive would naturally be chosen 

for a particular application . 

Most of the theoretical investiga tions on the properties of 

perfect crystal (static and dynamic) and defect lattice have been 

concentrated on the alkali halides. Also from the experimental 

point of view, a good description of these compounds are 

available in literature. However, less attention has been paid on 

the study of these properties for alkali hydride crystals. This 

may be due to the nonavailabi~ity of experimental data. The 

author feels that more study of these crystals is necessary 

because they possess simple structure and important application. 

Hydride ion possesses a noble gas elec tron configuration and s o 

the alkali hydrides are considere d to be very close to the ideal 

picture of alka li halide s as far a s the nature of chemi cal bond 

and the crystal struct.ute are concerned. The alkali hydr ide s a re 

then considere d t o b e the members o f the alkali halide family. 
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The nature of binding in ionic crystals plays an important role 

in solid state physics and it is possible to describe a crystal 

in all respects if the true nature of binding between the ions of 

the crystal is known. The development . of potentials for hydrides 

and deuterides has been largely driven by the increased use of 

modelling 

properties 

methods in studying both structural and defect 

several of these materials. The works of 

. t" t 11,22-26 inves 1ga ors have clearly established the predictive 

role. of defect calculations and have shown that the reliability 

is largely limited by the quality of the interatomic potentials 

used in the simulation. 

Force constant models have been developed from the rigid ion 

model of K~llermann 27 through the shell model · of Dick and 

ov~rhauser 28 ,woods et al. 29 to the breathing shell model of 

Schroder or its extension 30 - 33 in order to explain the dynamical 

behaviour of crystal lattices. But such potentials are of little 

use outside this sphere and hence are not suitable for static or 

defect properties. Observed values for the hydrogen centres in 

alkali halides are available in literature. one can estimate the 

local mode frequencies for isolated and H- substitutional (U­

centre) and interstitial impurities,H--cation impurity and H -

anion impurity pairs in alkali halides, because the modelling of 

interstitial H serves as a good test for any interionic 

potential. A sharply defined single mode property, . e.g. local­

(or gap-) mode frequencies yields an excellent and stringent test 

of the transferability of the derived potentials in dynamical 

application. There are several physical differences between the 



parameters · used in the force constant models and those used in 

the potential models 34 . In fact, new parameters are introduced at 

each stage of such development. The ultimate goal of all such 

calculations should be to develop a fully unified approach, in 

which the same model and interionic potentials are used 

consistently for all these types of calculations, e.g. static 

lattice, lattice vibration, and defect properties. 

Bowman35 derived empirical potentials for alkali hydrides and 

deuterides using the Born-Mayer model and reported cohesive 

energies which are in excellent agreement with the observed data. 

The results indicate a constant value for the hardness parameter, 

p determined from LiH (LiD) compressibility data and showed an 

adequate description of alkali hydride (deuteride) short-range 

forces when next nearest neighbour and van der Waals terms are 

included in the model. Although the potentials yield lattice 

energies in good agreement with the experimental values, their 

use in other calculations shows serious drawbacks in the 

calculation. As will be shown later the potentials fail miserably 

to describe elastic, dielectric, and defect properties. In fact, 

defect energy calculation on the basis of these potentials was 

not possible owing to the invalidity of minimisation caused by 

the potentials which give excessive shell displacement and it is 

a serious deficiency in the potential. Pandey and stoneham11 also 

presented a model potential and reported values for the perfect 

and defect crystals of LiH and LiD compound. Prior to Ps11 work, 

nearly all investigations were made for the lattice dynamics of 

LiH and LiD only except the work of Dyck and Jex9 who for the 
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first time calculated the phonon dispersion curves for the 

heavier alkali metal hydride and deuteride compounds. As 

mentioned earlier all these works 9 , 3o involve shell model, 

distortion dipole model and their extended versions. The models 

were shown to be reasonable for the lattice dynamics of LiH and 

LiD which may successfully be used for the calculation of any 

physical properties of these crystals that is related to the 

lattice dynamics. But these are not suitable for defect 

calculation including some static calculation. _.-

Recently Hussain and sangster36 has extended an existing set 

of model pot~ntials for alkali halides (S-A) to incorporate 

alkali hydrides. The importa11t feature of the potentials for 

alkali halides is that all pair interaction potentials are 

sp~cified solely in terms of parameters of the ions involved. The 

undesirable thing is the use of LiH data for the scheme since 

dielectric data and optic frequencies for heavier hydrides are 

not available. The choice is the least favourable because lithium 

halides are the salts least well represented in the s-A scheme. A 

fut'ther problem arises from the chosen form of parametrization 

which necessitates relaxation of the restriction on Pauling 

parameter a __ to unacceptable value . There is also a difficulty 

in· fitting cohesive energy with a reasonable choice of 0--::. They 

had to increase 0:, with corresponding reduction ins_ in order 

to reduce the value of a __ , which then improved the fit to 

cohesive energy without seriously degrading the fit to lattice 

parameters of the hydrides except CsH36 . Although cohesive 

energy, dielectric, and lattice dynamic properties are 
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represented in LiD by virtue of a fit to e:o, e:a-, .,o, the elastic 

constants predicted by the model (calculated by the author) are 

too high. The significant differences between different 

potentials in predicting both cation migration and, even more 

important, the relative values of the Schottky and Frenkel 

f t . . . . . d 2 4 I 3 7 t h . th orma ion energies in ionic compoun serve o emp as1ze e 

importance of using potentials that simulate both the dielectric 

and elastic properties as closely as possible. The lattice 

const,ants found 
36 by Hussain and Sangster for NaH and CsH are 

higher. Also the use of a non-integral value of z is less 

transparent physically and introduces various problems associated 

with the definition of the energies of charged defects11
. 

some potentials are more complex than others. The more 

complex potentials have been set up specifically to account for 

th~ Cauchy violation, yet these do not predict better defect 

calculations 37 . The breathing shell models or extensions of 

these models fitted to phonon spectra to account for finer 

details of these spectra do not require the lattice to be in 

equilibrium, whereas for defect calculations it is absolutely 

necessary to ensure this37 . In view of the problems associated 

with the potentials as described above, it seems that an accurate 

evaluation of the interatomic potential will be a major work. 

This is particularly true if there are insufficient experimental 

data to derive a reliable potential. 

Defects which require a good potential for their estimation, 

do determine many of the technologically important properties of 

solids and the knowledge of defect study will be applicable in 

the fields where technical requirements demand materials with 

6 



high ionic conduction, viz. in solid state batteries and fuel 

cells. Hence a11 ever increasing amount of attention is being 

devoted to the study of interionic potential. 

The work presented in the thesis is to derive, using a 

combination of different approaches, a potential model that would 

describe not only the static but also lattice dynamic and defect 

properties for the lighter and heavier alkali hydrides and 

deuterides. 

The p1an of the thesis is as follows: 

Chapter 2 is concerned with the structure and bonding of the 

alkali hydride and deuteride crystals. Chapter 3 describes 

various theoretical models of ionic crystals,e.g. rigid ion 

model, point polarizable ion model and shell model, together with 

a discussion of theoretical techniques which helped to formulate 

the present potential model. A brief account of the static and a 

detailed description of the dynamical properties of the perfect 

lattice including estimation of the phonon dispersion relations 

in principal symmetry directions have been given in chapter 4. 

The work on defect lattice which largely consists of computer 

simulation studies of transport properties, used in comparisons 

and interpretations of conductivity and diffusion experiments, 

and investigating mechanistic features of defect migration, etc. 

have been presented in chapter 5. Chapter 6 is concerned with the 

calculations and discussions of the results obtained on the basis 

of the derived potential. The conclusions and suggestions which 

provide a definite guideline for future work have been given in 

chapter 7. 
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CHAPTER 2 

STRUCTURE AND BONDING 

2.1 Introduction: 

The solids have a long range-order or spatial periodicity of 

atoms in three dimensions. In solids the atoms are, in general, 

rigidly fixed at their positions or sites except for small 

vibrations ( or sometimes localised group rotation). such solids 

are called crystals, and the arrangement of atoms is termed the 

crystal structure. The properties of crystals are closely related 

to their structures. The basis on which c r ystals are 

distinguished from non-crystals is that the atoms in crystals are 

arranged in the form of a periodic array. such an array consists 

of a representative unit of the structure which can be repeated 

in many different ways satisfying the basic requirement of 

periodicity. The internal regularity of atom placement i n solids 

often leads to a symmetry of their e xternal shapes. Rock salt 

crystals, e.g. rectangular parallelopipeds with faces wh ich are 

identical when looked at from several different directions and 

which possess a high degree of symmetry . On the other hand, the 

glasses are not crystalline at ail and the structure has a short­

range order; in a fluid the order is confined to an extremely 

small range or it is absent completely. Section 2.2 is concerned 

with the Bonding in Solids. Section 2.3 discusses the structure 

of the crystals and the final sec tion describe s t he Cohes i ve 

Energy of Ionic Crystals. 
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2.2 Bonding in Solids: 

As solid exists in equilibrium at temperatures lower than 

those of the corresponding liquids and gases, they must have the 

lowest (free) energy configuration at the low temperatures. 

Furthermore, since solids do possess symmetry, a symmetrical 

spatial arrangement of atoms must be of lower energy than a 

random spatial arrangement. As the atoms of a solid do stick 

together and as they do not collapse to a very high density, 

there must be an attractive force counter-balanced by a repulsive 

force. There are several mechanisms which can give rise to an 

attractive force between atoms. The nucleus of an atom is 

surrounded by clouds or shells of electronic charge distribution. 

Tha stability of a shell is greater when it has a specified 

number of electrons in it. This situation is only possible by 

losing electrons from the outermost valence shells or acquiring 

some electrons to fill a shell. Most of the mechanisms available 

in literature to bind atoms are concerned with the manner in 

which the closed shell structure is attained. The solids are 

classified according to the types of binding, a description of 

which is presented below: 

(a) Ionic: Atoms are bounded together and attain the stable 

equilibrium -of closed shell structure by the loss or by the 

bond 

the 

sign. 

non-

addition of one or more electrons. Consequently, the ionic 

is the result of the coulombic type attraction between 

essentially spherically distributed charges of opposite 

Owing to the spherical symmetry this ionic bond is 

directional and the ions have a tendency to surround themselves 
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with as many ions of opposite sign as can possibly fit around the 

central ion. The surrounding ions are of like sign and tend to 

repel each other, but in practice, some types of compromise is 

attained. Each ion has a tendency to surround it~elf in the same 

way and instead of forming small discrete molecules they form the 

crystal through the continuous network of ions. In other words, a 

block of crystal is not made up of many individual molecules, 

rather the entire block is one gigantic molecule in which the 

effect on a given ion of all other ions is significant. This 

ionic bond is relatively strong and the crystals are 

characterized by their strength, hardness, high melting points 

and low coefficient of expansion. 

(b) covalent: In this type of bonding the electrons are 

s~ared between binding atoms without transferring the electrons 

from one to another. The electrons are shared in such a way that 

there is no way to say definitely whether the electron now 

belongs to any particular atom.· The shells of all the atoms are 

then completely filled. The covalent bond is usually formed from 

two electrons, one from each atom participating in the bond. The 

electrons from the bond tend to be partly localised in the region 

between the two atoms joined by the bond. This covalent bond is 

directional and the sharing makes the bond very strong; the 

solids are, thus, hard with high melting points. 

(c) Metallic: Here, the electron clouds associated with the 

atoms can escape and freely migrate from one atom to another 

instead of being confined to the neighbouring atom. Positively 

charged ion cores are then held together by their attraction to 

10 



the free electrons which form a cloud between them. The metallic 

crystals have high electrical and thermal conductivity, high 

optical reflection and absorption coefficients. 

(d) Hydrogen Bonding: Hydrogen has only one electron and it 

should then form a covalent bond with only one other atom. Under 

certain conditions an atom of hydrogen is attracted by strong 

forces to two atoms. If the second atom is strongly 

electronegative, then the electron of the hydrogen atom is mostly 

transferred to it and leaves the atom positively charged. This is 

then attracted by another neighbouring electronegative ion and 

form the bond. 

(e) van der Waals Bonding: In case of atoms with closed 

shell structures, high energy is required to remove an electron 

from their shells to make it available for sharing or transfer. 

such atoms are held together to from a solid by the forces which 

arise from some relative motion between the electrons around an 

atom and the positively charged core. The electrostatic field 

then, fluctuates with the movement of the electrons. When two 

atoms appr·oach each other this gives rise to a set of fluctuating 

dipoles with the result of an attractive force between the two. 

The van d~r Waals binding is weak and the solids, thus, formed 

are generally soft with low melting points . 

2.3 The structure of crystals: 

The structure adopted by a particular crystalline compound 

depends, to a great extent, on three main factors:(a) the general 

formula of the compound and the valencies of the elements 
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present, (b) the nature of bonding between the atoms, and (c) the 

relative size of the atoms or ions. A description of the above 

factors is presented below: 

(a) The General Formula: The term General Formula is used 

here to denote the relative number of atoms of each type that are 

present, without specifying what the atoms are. As for 

example,the formula associated with the compound AxBy gives the 

values of x and y without identifying A and B. Here, the 

coordination numbers of A and Bare related directly to the 

general formula. In this connection, the general rule is that: 

the coordination numbers of A and Bare in the ratio y:x, 

provided that direct A-A or B-B contacts do not occur. The rule 

does not predict absolute coordination numbers for a given 

fQrmula but it imposes restriction on the combination of 

coordination numbers that are possible in a structure. 

In a compound AxByCz, in which the atoms A and Bare cations 

and coordinated only to anions c, the average cation coordination 

number (CN) is related to the anion coordination number by 

Average cation CN z 
= (2-1) 

Anion CN X+Y 

Here, the average cation CN is expressed by 

X (CN of A) + Y (CN of B) 
(2-2) 

X+Y 

Using (2-2) in (2-1), the eqn. stands as 

X (CN of A) + Y (CN of B) = Z (CN of C) (2-3) 
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The relationship between general formula and coordination 

number has little importance in the absence .of structural 

information and breaks down when bonding occurs between atoms of 

the same type. These comments are applicable to the relative 

coordination .numbers in a compound and take no account of the 

valency of the atoms. In molecular crystals, however, the 

absolute coordination numbers are controlled by the valency and 

this is due to the electron pair covalent bonds hold the 

mole9ules together. Unless multiple or partial bonds occur, the 

number of bonds to a particular atom in a molecule is equal 

the 

that 

coordination number which is then equal to the valency 

ion. In m~lecular crystals although the valency of an 

to 

of 

atom 

or ion has its importance in controlling the general formula of 

the compound, it does not have a direct bearing on coordination 

n~mber and structure. 

(b) Bonding: 

considerably the 

The nature of bonding between atoms affects 

coordination number of the atoms and it has, 

thus, a major influence on the crystal structure. The structures 

with ionic bonding possess high symmetry and involve coordination 

numbers as high as possible. In this way, the net electrostatic 

attractive force which holds crystals together · (and hence the 

lattice energy) is maximized. In contrast, covalent betiding is 

highly directional and one or all of the atoms of the compound 

has a definite preference for a certain coordination environment. 

The coordination numbers associated with a covalently bonded 

structure are usually small and may be less than those of 

corresponding ionic structures. 
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(c) Size: The relative size of the atoms in a compound plays 

an important role in the structure, especially, in more ionic 

structures. The 

coordination number 

possible, provided 

neighbouring ions 

principle that lies here is that the 

of a particular ion will be as large as 

that it can be in contact with all of its 

of opposite charge. The limiting situation 

takes place when a cation is too small to fit snugly into a 

particular hole. in the array of anions. In this respect a 

hypothetical stiucture is regarded as unstable when a cation is 

found to rattle inside its holes. Th~ limiting size of the 

interstitial hole in various anion arrays, e.g. : f.c.c. and b.c.c. 

can · be estimated on the basis of the radius ratio rules, but in 

reality, exception of the rule also occurs. The general relation 

between size and coordination number yields a value for the later 

associated with a structure and, here, the coordination number of 

the cation increases with the increase of · the ratio (cation 

radius/aniqn radius). 

In molecular materials, however, size considerations are less 

importan~~ This is partly due to the fact that the coordination 

numbers in molecular materials are controlled by valency and 

partly due to the covalent radii of elements which do not show 

th~ same spread of values as do the ionic radii. 

2.3.1 Ionic structure: 

Purely ionic bonding in crystalline compounds is an idealized 

or extreme form of bonding. But in reality, this type of bonding 

exists rarely. Even in structures which are regarded as 

essentially ionic , there is usually a certain amount of covalent 
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bonding between cation and anion which in turn reduces the charge 

on each. The rules which explain the formation of different 

structures are: 

(a) Ions are treated as charged, elastic and polarizable 

spheres. 

(b) Ionic structures are held together by electrostatic 

forces and hence the ions are arranged in such a way that cations 

are surrounded by anions, and vice versa. 

(c) In order to maximize the net electrostatic attraction 

between ions in a structure (i.e. the lattice energy) the 

coordination numbers become as high as possible provided that the 

central ion maintains contact with all its neighbouring ions of 

opposite charge. 

(d) 

ions of 

themselves 

As next nearest neighbour interactions are between the 

like nature they are repulsive. Like ions arrange 

to be as far apart as possible and hence, this leads 

to strtictures of high symmetry with a maximized volume. 

(e) Around cation or anion sites electroneutrality must be 

preserved. In other words, the valency of an ion is equal to the 

sum of the electrostatic bond strengths between it and adjacent 

ions of opposite charge. 

A brief account of the rules is given below: 

Ions are charged as it is obvious from the cohesion of the 

ion. These are also elastic as their size varies with 

coordination number and are polarizable when departures from 
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purely ionic bonding occurs. Points (a) and (b) infer that the 

forces which hold ionic crystal together and the net energy of 

interaction between the ions are the same. This is obtained by 

assuming the crystal as a three-dimensional array of point 

charges and considering the net coulombic energy of the array. 

The general coulomb 1 s law of interaction between any two ions is 

then applied to each pair of ions in the crystal and evaluation 

of the resulting force between all the ions leads to the lattice 

energy of the crystal. According to (c), the nearest neighbour 

ions should be in contact with each other. From the nature of the 

electron density distributions in ionic crystals, it is, in 

practice, hard to quantify what is meant by in contact. It is, 

however, an important factor since, although the variation in 

apparent size of ions with the coordination number occurs, most 

ions, especially, smaller ones, appear to have a maximum 

coordination number, e.g. for Be2+ this is four whereas for Li it 

is six. Ions are, therefore, flexible, but expand or contract 

only within fairly narrow limits. Point (d) on the maximization 

of volume of ionic crystals is not expected, . on the ground that 

one is accustomed to regarding ionic structures and derivative 

close packed structures, especially, as having minimum volume. 

However, conflict does not exist. The prime bonding force in 

ionic crystals is the nearest neighbour cation-anion attractive 

force which is maximized at a small cation-anion separation. 

Also, when the ions are too close, additional repulsive forces 

come into play and then reduces the net attractive force, The 

effect of next nearest neighbour repulsive forces between like 

ions is then superposed on the former force and with the 
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constraints that (i) cation-anion distances be as ·short as 

possible, and (ii) coordination numbers be as large as possible, 

like ions arrange themselves to be as far apart as possible in 

order to reduce their mutual repulsion with · the result of a 

regular and highly symmetrical arrays of like ions. The regular 

arrays of ions, then, tend to possess mijximized volumes and that, 

by distorting the structures, a reduction in yolume is 

possible,which may exist, at least in principle. According to 

Pauling's electr9static rule (e), the charge on a partic~lar ion, 

e.g~ an atiion, must be balanced by an ~qual and opp~site charge 

on the surrounding cations. As these cations are also shared with 

other anions, it is necessary to estimate the quantity of 

positive charge which is effectively associated with each cation­

anion bond. For a cation M111+ surrounded by n anions, x11-, · the 

electrostatic bond strength (e.b.s . ) of the cation-anion bond is 

expressed by 

e.b.s. = m/n 

Hence, for each anion, the sum of the electrostatic bond 

stiength of the surrounding cations must balance on negative 

charge on the anion, i.e. 

m 

11 
= X 

2.3.2 structure of the crystals under study: 

The hydrides and deuterides of lithium and sodium solidify in 

the rock salt structure. This structure consists :of two face 

centered cubic sublattices, one of cations and the other of 
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anions. The unit cell of the structure is shown in fig . 2.1. This 

is simple cubic if the difference between the cation and anion 

positions is ignored. In fig. 2.2, the coordination environment 

of each ion is shown. As shown in fig. 2.2, both the anions and 

cations are octahedrally coordinated. From the general rule of 

coordination numbers of A and B associated with .A.xBy, the number 

must be in the ratio y:x. In this rock salt structure, x=y and 

therefore, anions and cations have the same coordination number. 

Here, each octahedron has twelve edges and each edge is shared 

between two octahedra. In fig. 2.3, a unit cell of one of the 

compounds under study is outlined (dotted) and is in the same 

orientation as in fig. 2.1. Octahedra 1 and 2 share a common 

·edge, indicated by the thick dashed line, and octahedra 2 and 3 

share a common edge, shown by the thick solid line. As each 

octahedron is linked by its edges to twelve other octahedra it is 

very difficult to represent satisfactorily in~ drawing. 

2.4 Cohesive Energy of Ionic Crystals: 

Ionic crystals may be regarded as arrays of positively and 

negatively charged ions. The forces that hold the crystals 

together are entirely electrostatic in origin. The interaction 

potentials are divided, on the basis of ranges over which the 

individual terms are significant, into two parts: 

(a) a short-range part, including both repulsion and van der 

Waals terms, and 

(b) the long-range coulombic part. 
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The cohesive energy of a crystal is defined as the net 

potential energy of the arrangement of crystals that forms the 

structure. The value of the energy depends on the manner in which 

the ions are arranged, i.e. structure, the charges on the ions 

and the inter-nuclear separation between the anion and cation. 

The calculation of cohesive energy requires summation of both 

short-range and long-range terms. 

It is assumed that the short-rang~ interactions with a 

particular ion : are truncated on a sphere centered on the ion and 

with the radius of the inscribed sphere of the cubic box. If two 

particles within the box are labelled by i and j and if their 

force on the particle i associated with j is required, then in 

addition to 'the particle j, all its images are also considered. 

With the above truncation, the contribution is from at most only 

one of the set of particles {j} (particle j and all its images). 

At first, it is required to find the particle from the set {j} 

which lies closest to i and then the components of the force 

which this particle exerts on particle i is evaluated. The 

cohesive ener~y is given by 

e2 
(2-4) 

r 

where i and j can be either+ or-. In this case of alkali halide 

crystals, the system has been assumed to be fully ionic and the 

values of Zi and Zj are +1; r is used to deQote the interionic 

separation. A detailed description of the short range terms 

tij(r) has been given in the last part of chapter of 3. Short­

range repulsive .forces are important when ions are so close 
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together that their electron clouds begin to overlap. This short­

range interactions of an ion with its neighbours are summed 

directly up to a specified distance beyond which the interaction 

has a negligible effect. Although significant contributions 

diminish rapidly with distance, this does not present problems 

for a real space summation. on the other hand, the long-range 

electrostatic summation involves great problems and an accurate 

calculation of the long-range coulombic part is ccinsiderably 

harder. To obtain the Coulombic force on particle i associated 

with particle j, contributions from the complete set of particl~s 

{j} , as even distant terms are significant, must be taken into 

consideration. Thus, the summation can not be effectively 

truncated when handled in real space. However, rapid convergence 

occurs when it is transferred into reciprocal space. Although 

two-body, three-body, and higher order terms contribute to short­

range inter~ctions, in this study only the two-body terms have 

been taken into consideration. This is due to the fact that the 

approximation is valid in these systems of strongly ionic 

crystals, the alkali halides, but is less secure for more 

covalent systems. The electrostatic summation is calculated by 

the Ewald38 method, a description of the method is given in the 

next section. 
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2.4.1 The Ewald summation Method: 

The coulombic interaction of an array of ions i with a 

particular ion j is given by 

(2-5) 

where Zi and Zj are the charges on ions i and j. Here, ri 

indicates the distance between ion i and j. 

The convergence in real space is very slow due to the -1 r 

term. Faster convergence is obtained by applying a mathematical 

transformation developed by Ewald. In this method a Gaussian 

charge distribution was added and then subtracted to each point 

charge in the array. In the method the various terms are arranged 

into rapidly and slowly converging series. By exploiting the 

periodicity of the lattice, the slowly converging series is 

Fourier transformed into reciprocal space and a rapid convergence 

is resulted. ·The transformation is discussed in most standard 

solid state texts and applications to crystals are given by Born 

and Huang 39 

The object of the Ewald method is to calculate the 

electrostatic potential experienced by one ion, in the presence 

of all the other basis species. The problem is then simplified by 

considering the interaction between the reference ion and each 

sublattice separately and then the summation is evaluated. 
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The total potential at the reference ion is expressed as the 

sum of the two potentials: 

(2-6) 

The potential 'f1 is that of the sublattice, with a Gaussian 

distribution of charge replacing each point charge; the Gaussians 

are taken to have a width of ij, The charge distribution on the 

reference point does not contribute to~ and so~ may be written 

as 

(2-7) 

fa is the potential of a continuous series of Gaussians and, 

fb the Gaussian charge distribution at the reference point. The 

potential 'fz corresponds to a lattice of point charges with an 

additional equal but oppositely charged Gaussian distribution. 

summation of the two potentials cancels out the Gaussian charge 

distribution, and thus the potential is independent of the 

Gaussian width f'j. 

The charge density of the potential ~ is Fourier transformed 

and as the charge is periodic in the lattice, the transform 

involves only contributions from reciprocal lattice vectors, i.e. 

<fa may be written as; 

ya..= E C iGr (2-8) Ge 
G 

where G is the reciprocal lattice vector and CG are the 

coefficients of the Fourier terms. The charge distribution is 

then made smooth by the transform and only the neighbouring 

lattice vectors make a significant contribution to the potential. 
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A suitable choice of~ leads to a rapidly converging series in 

reciprocal space and l,__j/ is obtained after subtraction of 7., the 

charge distribution at the reference point; 'f2 is rapidly 

converging in real space. Although the combined potential is 

independent of Gaussian width, the choice of q is critical for 

rapid series convergence. Large values favour fast convergence in 

reciprocal space, in contrast, small values are suitable for real 

space convergence. The optimum width is, however, obtained from 

the balance between the extreme values .. 

With the help of the above method electrostatic energy is 

calculated precisely, leaving only the short-range component of 

the cohesive energy. This short-range part is evaluated by direct 

summation of the analytical expression used to model ihort-range 

in_teractions. 
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CHAPTER .3 

THEORETICAL MODELS OF IONIC CRYSTALS 

3.1 Introduction: 

It is known that the conditions for equilibrium of a crystal 

require that at small separations the inter-particle forces are 

dominated by repulsive terms. At equilibrium th~se forces are 

balanced by the attractive coulomb terms (and also the 

Waals_,, interactions). Thus, an interaction potential is 

which must accurately model short-range interactions 

van der 

required 

and the 

physical origin of which lies in the opposition to the overlap of 

closed electron shells. Although some quantum-mechanical 

calculations of the repulsive interactions have been performed, 

these have been found to be restricted . to light ion and serve 

only to provide some justification for assuming a simple 

functional dependence of interionic distance for the repulsive 

energy. The short-range requirement has led to the adoption of 

either inverse power potentials or exponentially decaying 

potentials ( to be discussed in subsequent sections). 

Chapter 2 discussed the division of cohesive energy into 

long-range electrostatic terms and short-range interactions. It 

has been shown that the long-range part may be exactly evaluated 

using the Ewald method. on the other hand, accurate calculation 

of 

the 

the short-ran1Jc: t1.::rms presents a much greater challenge and 

limitation on the r~lid~ility of lattic e simulation 

techniques is almost exclusively due to the se terms. The aim of 

the present chapter is to highlight the limitations associate d 
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with the old potential models and then to derive a potential 

model to reproduce the widest range of crystal properties. 

section 3.2 consists of a description of The Rigid Ion Model. 

section 3.3 discusses The Point Polarizable Ion Model. Section 

3.4 is concerned with The shell Model. section 3.5 describes the 

Theoretical Techniques which are used to derive Interionic 

Interactions, ~nd the final section, 3.6, is concerned with the 

Present Potential Model. 

3.2 The Rigid Ion Model: 

In the Rigid Ion Model (RIM) the ions are regarded as the 

rigid and unpolarizable point ions. They are prevented from 

collapsing under thiir mutual coulomb attraction by the presence 

of a short-range overlap repulsion. 

The energy of the p erfec t crystal is then given by 

u = 
1 

2 i=j [ (3-1) 

where Zeis the ionic charge and r1j denotes distance between 

ions i and j. 

In the simplest treatments, the overlap forces are considered 

to be restricted to nearest neighbour atoms. It is then possible 

to describe the overlap forces in terms of a single function of 

the anion-cation distance . The values of the two parameters 

associated with any convenient energy funct ion are then 

evaluated on the basis of experimental values of the compounds. 
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The two principal e:xprE!ssions for¢> are: 

( i) The Born potential <t> br -n (3-2) = 

(ii) The Born-Mayer potential <I> = 
-r/p Ae • (3-3) 

In e:ach case, r denotes the inter ionic distance The 

parameters linking (i) are band n and those associated with (ii) 

are A and p . 

The overlap forces due co second neighbours have been taken 

into consideration approximately by Pauling40 Huggins and 

4 l d l b . d . 4 2 th 1 Mayer an t1en y Fumi an Tosi . As e over ap energy now 

involves cation-cation and anion-anion interactions, 

parameters are then included in the expression for <t> 

simplifications are made. 

more 

unless 

· 40 Pauling utilised the crystallographic concept of ionic 

radii to relate the b-parameters of the Born potential to the 

radii of the two ions involved in the interaction . According to 

Pauling the parameter n is used to be the same for all alkali 

halides. Pauling'~ expression for the overlap energy between the 

two ions i arid j then takes the form: 

¢;J· ( r) = B · · ( b · +b · ) / rn ... J.J :\. J (3-4) 

where 
Zi Zj 

Bij = 1 + + --
11 i n j 

zi = valency of ion i 

ni = number of valency electrons in outer 

shells, and 

bi, m, 11 = parameters to be evaluated. 
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Tosi and Fumi 43 also investigated a form of the Born-Mayer 

potential. They allowed the hardness parameter p to be varied 

from crystal to crystal and took bas a constant, According to 

them the potential is: 

(3-5) 

Here, fij yiveu ti)@ va.l.u~, of the l,a):-dness parameter in a cryt;tal 

composed of ions 1 and j. 

Due to the omission of the polarization effects simulation 

of high frequency dielectric properties of il lattice is not 

possible on the basis of the model. At optical frequencies only 

the electrons (and not the ions) respond to thE! electric fiel<l of 

light. The electt·onic p,Jlari.zaticn gives rise to the dielE:,:1 rh: 

constant Ea, as The Rigid Ion model ignores the electronic 

polarizabilities, it predicts e~= 1. In contrast, accurate 

simulation of crystal properties requires inclusion of 

polarizability. In addition to the above drawback, the model 

fails to account: for the Cauchy . 44-46 v:t.olation , the phcnon 

dispersion47 ' 48 , the s:~ :l~1eti effecttve charge49 and the long-wave 

optical modes of vibrat:ions~iO. HOWE!Ver, the ad.vantage of such a 

. model is the reduction both in the number of parameters and 

degrees of freedom n~eded to model a system. 

3.3 The Point Polarizable Ion Model: 

The simple Rigid Ion Model is not suitable in situations 

where the ions are polarized, such as the polarization of th•~ 

lattice by an external electric field or by the field due to a 

vacancy. The analysis of Kellerrnann 51 of the lattice vibrat i ons 
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.. ··. 

of alkali halides by means of The Rigid Ion Model was also 

unsatisfactory 

electric field 

because the vibrating ions create an alternating 

which polarizes the ions themselves. The 

circumstantial evidences, however, make one to believe that the 

deficiencies of The Rigid Ion Model can be overcome by the use of 

a model which takes the electronic polarizability of the ions 

into account. 

Tessman et ai. 52 obtained ionic polarizabilities by assuming 

the molecular polarizability of a given salt to be approximately 

equal to the sum of the polarizabilities of the component ions. 

The resulting polarizabilities are different from the free ion 

polarizabilities owing to the polarization of any ion is 

constrained by the presence of its neighbours. Thus, 

(3-6) 

where am= molecular polarizability of the compound consisting 

of ions i and j, 

a1 = ionic polarizability of ion i 

~am= error in additivity rule. 

The molecular polarizabilities were obtained from the high 

frequency di8lectric constant by the relation 

L(ea; -1)+4rc 

where Vm is the molecular volume. 
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The Lorentz factor L arises in (3-7) relating the effective 

field Eeff and the applied field E and is expressed by; 

Eeff = E + LP (3-8) 

Using the value of L(=4n/3) the expression for molecular 

polarizability relating the high frequency dielectric constant is 

given by 

am= -- --- (3-9) 
4n ca; +2 

The dielectric properties on the basis of the 

polarizable ion model (PPI) which incorporates such 

point 

ionic 

polarizabilities can be investigated by comparing the atomic 

equations for longwave infrared vibrations with the corresponding 

continuum equations. 

F . t . d. 39 or an iso ropic me ium, Huang · 

continuum equations 

•• w = b11 w + b12 E 

p = b21 w + ;b22 E 

where w is given by 

( M+M- f /2 
W= (U+- lL) 

1'f++l-L 

presented the following 

(3-10) 

(3-11) 

(3-12) 

Here, M+,M- = masses of the positive and negative ions, 

u+,U- = displacements of the positive and negative ions 

E = electric field vector, 

P = polarization vector 
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It is known in the electromagnetic theory of light that the 

square of the refractive index is equal to the dielectric 

constant; the phenomenon of dispersion (the dependence of the 

refraction of a monochromatic wave on its frequency) follows 

directly from a frequency dependent dielectric constant. By 

solving equations (3-10) and (3-11) for the plane waves given by 

and 

W W i(<-lt-k. r) 
= o e 

E E i(~t-k. r) = o e 

(3-13) 

(3-14) 

Born presented the dispersion formula which is an expression for 
' 

the frequency dependence of the dielectric constant E and given 

as under: 

where eo is the static dielectric constant 

transverse optical frequency. 

(3-15) 

and W0 is the 

A combination of equations (3-10), (3-11) and (3~12) with the 

Maxwell's equations yields expressions for the longitudinal and 

two transverse wave solutions. The longitudinal wave has no 

magnetic field, and its frequency W1 do~s not depend on the wave 

vector q; Lyddane, Sachs and Tellerts50 relation is then written 

as 

(3-16) 
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For the transverse waves, the dispersion relation is given by 

(ck) 2 

,..,2 

The polarization vector Pis given by 

1 

(3-17) 

p = [ z e ( 'll+ - u_ ) + ( a+ + a_ ) Ee f f ] 
V 

(3-18) 

It is the inclusion of the electronic polarization terms 

1 
(3-19) 

V 

in (3-18) which distinguishes the point polarizable ion model · 

from the rigid ion model of the last section. 

For sinusoidal waves of frequency Wit can be shown that 

(3-20) 

Where 

[ 

2 <t> ' ( r 0 ) ] 
R = 2 ---·+ ¢ 11 (ro) 

ro 
(3-21) 

Here, <t> denotes the non-Coulombic part of the potential. 

substituting the values of 'll+ - lL in (3-18) one gets 

1 t1zd + + a_] p = a+ Eeff 
V R-M~ 2 

(3-22) 

a(W) 
= Eeff 

V 
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where (3-23) 

The expression for the dielectric constant e(Q) at frequency W 

can be written in terms of a{~) as: 

= a(W) (3-24) 
E(W) + 2 3v 

The expressions for the limiting cases where w-->O (static 

diel~ctric constant i 0 ) and w-->~ (high frequency dielectric 

4 re Lim 
= 

e0 +2 3v 

4 re 
= 

3v 

(3-25) 

and 

Ea; - 1 4n Lim 
= a(W) 

Ec;r + 2 3v w ~ct 

4 T{ 

= [a+ + a_] (3-26) 
3v 

The relation (3-26) was used by Tessman et al. 52 and is known 

the Lorentz-Lorentz equation. 

as 

The transverse optical frequency Wci occurs when the relation 

(3-15) for E(~) becomes infinite. Rearrangement of (3-24) shows 

that Wo occurs when 

a(W) = 
3v 

4n 
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Thus, 

3v 

4 Tl R - M(.jo 2 · 

(3-28) 

The solution of this equation with the help of equations (3-25) 

and (3-26) can be expressed in terms of R, Eo, and Ea as under: 

M"' 2 0 
= R (Ea' +

2 
) 

EQ +2 
(3-29) 

The displacement polarization is the same as that of reduced 

charges moving with the nuclei. Szigeti49 postulated that the 

ions during the vibrations, behave as if they carry an effective 

* charge e , which is smaller than the full electronic charge, e. 

Szigeti derived the following expression 

(3-30) 

which defines the effective charge e*. 

Although many phenomena in solid-state physics can be 

explained on the basis of the PPI model, it fails to account for 

the defect properties of solids. In defect simulations with the 

PPI model, a polarizability, a, is ascribed to each ion. The 

studies of defect involves two major inadequacies associated with 

the model. Firstly, if short-range forces are obtained by 

fitting to the elastic constants the static· dielectric constant 

is overestimated by the model. The consequence of this error of 

dielectric constant is an underestimation of the energy of 
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formation of charged defects, due to the in~orrect calculated 

relaxation energy. In a study Norgett53 predicted a value 2.1 ev 

for the Frenkel formation energy. Whereas, the corresponding 

experimental value in 2.7 ev. A great failure occurs in the work 

f l 1
. 54 o T1arrna 1ngam , where negative values were estimated for 

Schottky formation energies. 

The second major inadequancy of the PPI treatment is its 

succeptibility to the polarization catastrophe. This 

instability, an account of which has been given by Faux55 occurs 

in the calculation when two dipoles increases without bound due 

to their mutual dipole-dipole interaction outweighing the self­

energy of polarization. Faux also showed that the instabilities 

occurs in any PPI calculcition in which any two ions with i and j 

are closer than a minimum separation: 

The origin of the above two errors associated with the 

PPI treatment is in the omission from the model of any 

description of the physical basis of ionic polarization. The 

polarization involved in the model has been considered to be ·due 

to a response of a point ion, solely to electrostatic forces. 

The ionic dipole, however, is owing to the distortion of the 

ionic charge cloud. This distortion may be effected by both the 

electrostatic and short-range force fields, hence polarization 

and short-range forces are interdependent. Thus the displacement 

of an anion in a static electric field cause~ an imbalance in the 

repulsive forces a t ting on that ion, and the corresponding 
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induction of a deformation dipole. This f~ature has not been 

included in the PPI model, and ~hen a high value of static 

dielectric co~stant is predicted. Similarly the neglect of the 

damping of ,pol~rization by short-range force fields leads to the 

polarizati~n catastrophe. The inclusion of so~e description of 
, 

such polaiization damping is necessary in a model to have wide 

application in defect studies. 

3 . 4 The Shell Model: 

A good model should consist of a few, but physically 

meaningful, parameters. The choice of the model depends on the 

type of binding between the atoms. In ionic crystals, strong 

Coulomb forces and short-range repulsive forces operate between 

the ions. In the rigid ion model, an account of which has been 

given in the previous ~ection, the charges are approximated by 

point charges centred at the nuclei. In reality, the ions are not 

rigid but polarisable. In the course of a lattice vibration, the 

electric field set up by the displ~cernent of the ions is modified 

by the electronic polarisability which modifies the forces and 

affects the phonon frequen~i e s. The widely used model for ionic 

crystals with polarisable ions is the shell model. 

The physical basis of polarizability is the displacement of 

electrons by an electric field. such displacements will change 

the short-range interactions between ions due to overlapping 

charge clouds. Therefore, the models which treat polarization as 

being solely due to the elec trostatic field on the ion, e.g. 

the PPI model, are inadequate 56 . A successful treatment of 

polarizability must include coupling between short-range 
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repulsion and polarization. The shell model of Dick and 

overhauser 28 as shown in fig. 3.1, simulates such behaviour 

using a simple ~echanical description. The core,· in which the 

mass of the ion· resides, is connected to a massles~ shell, which 

represents the polarizable valance electrons. Here, ionic 

polarization is described as the displacement of a shell relative 

to a core. This treatment of polarization, therefore, includes a 

simple description of the distortion of the ionic charge cloud, 

and . as . short-range forces are taken to act ~e~ween shells the 

modei i~cludes the ie~uired inter-dependence of those forces and 

polarization. The shell model then correctly simulates both 

elastic and dielectric properties of the crystal. 

The model has been extensively developed since the original 

wqrk of Dick and overhauser. Cowley 57 gave a comprehensive 

treatment in whlch e xpres s ions are derived for bulk crystal 

properties including elastic and dielectric constants. Later on, 

the model was found to work good in the treatments for the 

fluorite lattice, e.g . the model was used to account for the 

internal strain contribution to the difference between c 12 and 

C44 and to derive expressions for third order elastic constants. 

The most extens ive use of the shell model has been in the 

studies of lattice dynamics. Woods et al. 29 presented an 

analysis of lattice dynamics for the alkali halides on the basis 

of the shell model.; Also several studies ori fluorite compounds 

have used this shell model to analyse inelastic neutron data, 

e.g. work is reported by Elcombe and Pryor58 for CaF2 by 

Elcombe 59 for SrF2, by Hurre ll and Minkiewicz 60 for BaF 2 and by 
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Dolling et 61 
al. for CO2, The fit, however, obtained by the 

model to the experimental dispersion curves is generally fairly 

good. 

In the Shell Model it is assumed that each ion consists of a 

spherical electronic shell which is isotropically coupled to its 

rigid-ion core by a spring of constant k; the charge of the shell 

is taken to be ye . 

The free ion pqla~isability is given by 

. 2 
( ye) 

a= (3-31) 
k 

The eqns. of motion on the basis ot The Shell Model are given 

by: 

? 
-M+~- u1 = k1 ( u3 - u1) + X1eEe ff 

(3-32) 

0 = -k1 (u3 - u1) - R(u3 - U4) + Y1eEeff 

(3-33) 

2 
k2 ( U4 u2) -M-~ u2 = - + X2e Eef f 

(3-34) 

0 = -k2 (u4 - u2) - R(u4 - u3) + Y2eEef f 

(3-35) 

where u's denote the displacements of the positive and negative 

ion cores and the positive and negative ion shells. R is used to 

describe repulsive force cons tant. 
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the ions. 

Eeff = Effective field 

P = polarization vector 

e 
= [X1u1 + Y1U3 + X2u2 + Y2t1,t] 

V 
(3-36) 

The shell inertia forces are very small due to the relatively 

small mass of the electron and hence are omitted. Eqns. (3-32) to 

(3-35) can be written in the matrix form as follows: 

2 
0 -M+W R -R u1 Z1 

0 -M_w 2 -R R u2 Z2 
= eEeff 

-ti 0 k1+R -R u3 Y1 

0 -kz -R k2+R U4 Yz 

(3-37) 

These eqns. are now solved to get u1, u2,u3, and u4 in terms 

of Eeff and then eqn. (3-36) is used to express Pin terms of Eeff 

as: 

a(W) 
p = Eeff (~-38) 

V 

Now 
4 rt 

Eeff = E + P, so that 
3 

a(~) /v 
p = E 

4rra(~) 
1 -

3v 
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Also 
e:(W) - 1 

p = E 
4 rt 

where e:(~) is the dielectric constant at frequency W. Thus 

e:(w) - 1 4n 
= (3-39) 

e:(W) + 2 3V 

The solution of (3-37) for a(W) is expressed by: 

(3-40) 
where z = Z+ = z_. 

The limiting values of (3-39) as w~o and w~ct are given by: 

e:o - 1 4n Lim 
= a(~) 

e:o + 2 3V ~---?"0 

4n 2 2 '2 Z k1k2+R(k2X1 +k1X2) 
= 

3v Rk1k2 

=~ [-z_2 
3v R 

+ + 

(3-41) 

Taking Xi = (Z-Y1), the equation for £.o can be written as 

3 1 [ 
2 ( Z+Yz )2 ~] e:o - 1 ( Z-Y1) 

- = - + + 
e: 0 + 2 4Tl V k1 kz 

(3-42) 

and 
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where 

and 

Anion 

£ + 2 
a: 

= 

1 

Ro 

polarizability is 

[ y 2 . 2 
a2 = Ro 

k2 

47t 

3v 

+ 

Lim 

1 

k 
2 

a(W) 

1 
=- + - + 

R 

given by: 

(-; 1 )+ +-
k1 

1 

Y1Y2 ] k1k2 

The dispersion frequency occurs when a(~) = 

Thus, 

2 
i:-, 0-3; .1 n Rk1k2 

MHo = 
aa--3/ 4n k 1k2+R ( k 1 +k2) 

ew + 2 Rk1k2 
::; 

£0 + 2 k1k2+R(k1 +k2) 

(3-43) 

(3-44) 

(3-45) 

3v 

4n 

(3-46) 

and the expression for the szigeti charge using (3-40) is: 

1 - = (3-47) 
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3.5 Theoretical Techniques to Derive Interionic Interactions: 

(a)Electron _Gas Meth<:>d: 

For the calculation of forces between atoms it is convenient 

to divide the interactions into bonded and non-bonded types. It 

is known that bonded interactions occur between open cell atoms 

which involve considerably rearranye ment of the electron density 

and the formation of covalent bonds . on the other hand, non­

bonded interactions are between closed cell species, such as 

inert gas atoms or ions in crystals. They involve little 

distortion of the interacti11g species from spherical symmetry . In 

this part of the thesis an account is given on the meth6d of 

calculating the non-bonded interactions. 

For the purpose of calculation of the forces, a method is 

required which can be applied to a large range of interatomic 

separations. on the basis of the quantum mechanical theories, one 

can use perturbation theory at large distances and variational 

methods when the atoms are close together, but both the two 

techniques do not work satisfactorily at intermediate distances. 

Many authors worked on the problem and finally Gordon and Kim62 

presented a method as a solution. In modern implementations, the 

structures of the individual atoms are calculated accurately by 

and 

quantum mechanical methods . The resulting charge densities 

assumed to be unchanged when the atoms are brought together 

the interaction energy of the two atoms is calculated using 

simple electron gas model, with the total charge density being a 

superposition of the individual atomic densities. In this 

technique, the electron kinetic energy in any small volume is 
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related by a simple power law to the local electron density. The 

total interaction energy Eij(r) of two interacting ions i and j 

is written as : 

C Ex KE Cor 
Eij (r)=Eij (r) +E1j (r) +E1j (r) +Eij (r) 

(3-48) 

Where Eijc(r) is the electrostatic interaction energy and 

EijEx(r), EijKE(r) and Eijcor(r) denote the exchange, kinetic, 

and short-ran<Je co1Telat.iou contribution to the interaction 

energy. Approximate expressions for all of the contributions are 

calculated in terms of the densities fi(r) and pj(r). A detailed 

description of the procedure and approximations, presented here, 

are . b d d . 62 given y Gor on an Kim . Kirn and Gordon63 , and Mackrodt 

and stewart24 . According to Gordon and Kim the energy of an 

isolated, closed-shell ion is given by 

E(pl = CJ< l [p(r)
513

] dr + Ce l p(r)
413 

dr -

Z J p(r)/r dr + 1/2· JJ p(r) p(r')/lr - r' I dr dr'+ 

I •c [ f ( r) ] f ( r) dr (3-49) 

where z denotes the nuclear charge and 

3 
(3Tt2)2/3 ck=- ; 

10 

3 
(3/n)l/3 C =--e 

4 

The first four t erms of the eqn. represent the kinetic, 

exchange, and Coulomb energies respective!~, while the last term 

is an approximation to the electron pair correlat i on energy and 
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can be determined simply by interpolating between the high and 

low density limits for a homogeneous electron gas. For a pair of 

ions, AB, the total electron density, PAB(r) is assumed to be the 

superposable · sum of the .separated ion densities, PA ( r) and 

pa(r) .The total ene rgy of AB is, then, expressed by 

(3-50) 

80 that the interc1ction energy can be written as 

(3-51) 

Now, particularly at or near the minimum energy separation, 

is a small differenc e ( - 1 eV) between two considerably larger 

quantities. To minimise numerical errors in the evaluation of 

Eint Gordon and Kim proposed a re-arrangement of the integral 

expression in (3-49) and the expression for Eint takes the form 

Eint(R) = ZAZa/R - Za I fA(r1)/ 

in which 

rm dr1 - ZA I pa ( r2 ) / 

r2A dr2 + H PAI r1.) Pa ( r 

2) /r12 dr1 dr2 + I { lpA . 

(i) + PB(r)] EG [pA(r1 + PB 
( r) J - PA( r)EG[PA( r) J - PB 
(r) EG(PB(r) ]} dr 

EG [ p(r)] = Cklp(r)J 213 +Celp(r)]l/3 + 

Ee [p ( r) ) 
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where r, r 18 , r 2A and r 12 are functions of the inter-nuclear 

separation, R. 

(b) Quantum Mechanical Method : 

Fisher et al 4 performed a quantum mechanical calculation of 

the two-body SR interaction in LiH by taking determinantal wave 

functions consisting of various one-electron functions. They 

used · the Beitler-London method to calculate the 

interaction energy, Erep expressed by: 

repulsive 

(3-54) 

Here, E(r) is used to denote the total energy as a function - of 

internuclear distance, r. 

E(m) gives the total energy of the separated pair, and qa 

and clb are the· net charges of the ions a and b, respectively. 

The energy E(r) is calculated from the relation: 

E(r) = l y* H'(d, (3-55) 

where 
1 Za 1 ZaZb 

H =- i: Vi - ~ + ~ - + 
2 i i,a ria i>j rij r 

(3-56) 

The Hamiltonian involves the electronic kinetic energy, 

electron-nuclear, electron-electron, and nuclear-nuclear 

operators. The wave function ~is given as a linear combination of 

-or Slater functions of the form, e . Wave function parameters are 

then varied until the repulsive interactions obtained for the 

corresponding charge distributions result in a good fit to 

crystal data. 
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3.6 Present Potential Model: 

The chosen form of the interionic potential has been 

developed on the basis of the points mentioned below with a view 

to describe, in a right manner, the lighter (lithium) and heavier 

(s6dium) hydrides and deuterides (little work is available in 

literature for the heavier compounds). Short-range potential 

reported by Bowman 35 in the Born-Mayer form involving second 

neighbour interactions and van der Waals' terms is a two-body 

potential. As outlined in INTRODUCTION, this potential reproduces 

the perfect crystal data only in part but fails completely to 

describe a defect lattice. In this field, Hussain and 
36 Sangster 

has extended the potentials for alkali halides to incorporate 

alkali l1ydrides. Here, also, it has been found that the potential 

is not suit&bla for a complete description (particularly defect 

properties) of the compounds under study. 

In an exercise tor the development of interionic potentials 

Catlow 
' 22 

et al reported that the contribution of many-body 

effects should be assessed. Tl1e effect~ as seen from the observed 

difference between C12 and C44, must be equal for a compound with 

the rock salt structure under central pairwise interactions. 

However, this many-body effects as observed, generally, from the 

Cauchy violation may be erroneous owing to the over simplified 

treatment of the thermal contributions. This many-body effects 

may arise froM the symmetric distortion of an ion or assymmetric 

distortions. It is known that the effects arising from the 

symmetric distortion contribute only to volume changing 

deformations but none to shear moduli, 1/2(C11-C12) and C44. On 



the other hand, this effect that results from the assyrnmetric 

distortions of the ions or their environment does not contribute 

to the bulk modulus. Corish et a125 also, from their work on the 

interionic potentials for alkali metal chlorides found that the 

best potential should be a central force potential in the 

Buckingham form with the repulsive part as hard as possible by 

omitting the van der Waals attraction between nearest 

neighbours. According to them the non-central forces do not 

improve the potential as judged by the criterion of the results 

of defect calculation. 

It is known that dispersive interactions arise from the 

correlated motio11s of electrons on different atomic (or 

molecular) centres. This correlation, which is due to the 

Coulombic interaction of the electrons, results in an 

instantaneous dipole on each of the interacting species. The 

interaction of these dipoles and of the higher-order multipoles 

which they include gives rise to what is usually referred to as 

the van der Waals energy, <t>vctw· Within the framework of 

perturbation theory it can be expressed as an 

expansion of the form: 

<Pvdw(r) = r-6 t Cn r-2n 
n=O 

asymptotic 

(3-57) 

where c 0 are the so-called van der Waals coefficients. 

Ftom the above description, it is clear that the van der 

Waals interaction is a polarization phenomenon. The lowest energy 

can be expressed by: 
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C£ 

{3fi/nr 6 ) f aA {iW)aB {iW)dW 

0 

(3-58) 

where aA and aB are the polarizabilities of the two species at 

imaginary frequency (iW). Although the estimates of the 

coefficients, c11 , are available in literature, in general, 

the values are poorly known. Early work attempted to determine 

these coefficients from optical absorption data, but there are 

two difficulties associated with the approach. First, the energy 

of the optical excitation~ of anions and cations often overlap; 

second, it is uncertain as a to how much adjustment should be 

made for · ·1ocal field' corrections in an ionic solid. Empirical 

estimates are given by: 

(3-59) 

Here the dependence is on the choice made for the average 

polarizabilities, aA and aB and the effective ·excitation 

energies oA and °B . consequently there are large variations 

between the van der Waals coefficients reported by various 

authors using this approach. The methods, then, based on 

effective ionic polarizabilities and excitation energies, are 

unable to yie ld realistic values of the van der· Waals 

coefficients. The study of dispersion energies in ionic solids 

is, thus,fir from complete. 

Taking into account these points and the points made by 

Corish et a1 25 a potential model in the Buckingham form 
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including next near neighbour interactions has been developed. 

Here, complete quenching of the van der Waals' interactions 

between adjacent ions has been assumed. 

The interionic potential energy based on the incompressible 

shell model is then expressed as a sum of pairwise terms as 

follows: 

2 
i · z · e l J 

I rl 

2 2 
Y1 Yj e Yi Zj e 

+ ---- + 
I r+Wj-Wi I I r-wi I 

+ 
2v 

+ 

(3-60} 

Where r = (r1 - rj) is the position of ion core j relative to ion 

.core i, Wiand Wj the shell-core displacements, Yi and Yj the 

shell charges, ki and kj the spring constants, Z1 and Zj the core 

charges of ions i and j, e the electronic charge, v the volume 

and ¢ij, the short-range part as discussed earlier is assumed to 

act between the shells only. 

The short-range interaction between ions i and j is then 

given by: 

(3-61) 

Where -1 
fij = aij is the hardness parameter. Here, Cij (for 

anion-anion interaction} is a fitted quantity and all other Cij'S 

e.g. C++ and C+- are made equal to zero. 
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It may be mentioned here that in the potential of Bowman
35 

and Hs
36 a further term -Dij/r8 has been included. 

The electron gas method is employed for the like particle 

(cation-cation) interaction. Because of the problem associated 

with diffused hydrogen wave function in using electron gas method 

for anion-anion interaction quantum mechanical method is then 

applied 

the form 

with the closed shell screened hydrogenic functions 
-6r e involving the one electron functions with 

adjustable screening parameter 6 for the negative ion. 
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CHAPTER 4 

PERFECT LATTICE 

4.1 Statid Properties: 

crystals are characterized by their various properties, viz. 

static, vibrational, and defect. The quantities which have been 

taken into consideration in the present work under the head of 

static properties are: lattice constant, lattice cohesive energy, 

second order elastic constants, static and high frequency 

dielectric constants, and transverse optic frequencies. The 

formulas for the second order elastic constants used in the 

present study are given as follows: 

It is known that the matrices involved in the equations of 

motion (given in the later part of this chapter) which depend on 

the interactions between the different atoms and their associated 

dipole moments can be expressed as the sum of matrices which 

depend on the interactions between point charges and dipoles 

placed at the centers of the atoms and on the short-range forces. 

Thus, a matrix A is defined as the sum of a matrix R consisting 

of the short-rdnge interaction and another involving the coulomb 

interaction between point charges, 

A = R + z~z 

where€ is the matrix of coulomb co-efficients. In a similar 

fashion: 

B=T+z§y 

C = TT+ yf;,y 

D=f + Y&Y 

52 

(4-1) 



When the wave vector q of the normal mode is expressed in 

terms of an expansion parameter~ as 6q, the matrices, A's, may 

be presented in the form of a series as follows: 

A(t.q) =A(O) + iJ\~A)l)q>' +1/2.6
2

'tiA.1' (
2

)q>..qt+ .. 

(4-2) 

Where is the matrix A for q.::O and 

derivative of A with respect to iqy, 

A ( 1) 
y is the first 

Using similar expression for the other matrices the following 

relations can be written: 

A ( 0) = (A ( 0) ) I 

B{O)=(C(O)) I 

D{O) =(D(O)) I 

Ai ( 1 ) = - ( Ai ( 0 ) ) I 

Il,; ( 1 ) = - ( c, ( 0 ) ) I 

Dy ( 1 ) = _ ( n, ( o ) ) , 

A (2)_(A (2)) '-A (2) 
iA - iA - A¥ 

B>' ~ ( 2) = ( Cy_./ 2)) , = B ,\t ( 2) 

D (2)_(D (2))'-D (2) 
YA - IA - ~t 

(4-3) 

When the whole crystal is translated bj a constant vector, 

the·equati-ons of motion and dipole moments remain the same on the 

basis of 

I: CaB 
( 0) ( kk I ) = 0 

k' ( 0) 
for all a and B, 

I: BaB ( kk I ) = 0 
k ( 0) ( 0) 
~ AaB ( kk I ) = I: Aa,13 ( kk I ) = 0 
k k'. 

(4-4) 
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The macroscopic equations of motion for a small element of 

the crystal is given by 

(4-5) 

where, p is the de:nsi ty of the crystal, lla is the a-component of 

the three dimensional displacement vector, Ea is the a-component 

of the macroscopic field, Cay,B/ and er.,,at are used to denote the 

elastic and piezo-electric constants. If the displacement vector 

u and the macroscopic field E are expanded as plane waves, then 

and 
u(x,t) = uo e(2~iq.x-iwt) 

E(x,t) = Eo e(2niq.x-iWt) 

(4-6) 

the macroscopic equation of motion then takes the form 

(4-7) 

The second-order elastic constants Caa,aa, Caa,aa, and Caa,ae 

which in Voigt's notation are C11, C12, and C44 are then 

estimated on the bas is of the relation that satisfies all the 

symmetry: 

Cat,ID,. = [aB,)'>,] + [By,a~] - [B~,a)'] + [a}',B>.] 

(4-8) 

In this context, the short~range force constant tietween 

nearest-neigbour is estimated from: 

2v 
and 

(

d
2 

q>(r) ) 

- dr2 r=ro 
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=----
2v rdr r=ro 

(4-9) 

The second-nearest neighbour interaction is presented by 

1/2 (A1+B1) 1/2 (A1-B1) 0 

e
2
;2v 1/2 (A1-B1) 1/2 (A1+B1) 0 for ( 1, 1) 

0 0 D1 interaction 

and 

1/2 (A2+B2) 1/2 (A2-B2) 0 

e 2
;2v 1/2 (A2-B2) 1/2 (A2+B2) 0 for ( 2, 2) 

0 0 D2 interaction 

(4-10) 

The co-efficients for the short-range interaction can be 

written as: 57 

2 G cos2n'la ro + B + cos2nq1 ro)] e 
Raa ( 1 2) = ( cos2rrq8 r 0 

V 

Raa( 1 1) = 
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Raa!2 2) = :

2 

[A+2B+2A2+2B2+2D2- (A2+B2) (Cos2nqarol 

( cos2nq3 r 0 + cos2nq>' r 0 J - 202 cos2nq3 rocos2nq1 ro] 

e2 [Al RaB ( t- 1) = B1 s in2TtCJa ro Sin2nqB ro 
V 

2 

[A2 B2] 

e 
RaB ( 2 2) = Sin2nCJaro Sin2nq13 r 0 

V 

(4-11) 

Neglecting the inner strain and using the coefficients for the 

-short-range interactions and the relation 

(4-12) 

the elastic constants for the compounds under study with the · van 

der Waals' contribution and also taking Bi= D1 and . B2 = D2 in 

the case of central forces can, then, be represented by 64 

.2 L 1 
( A+A1 +A2 +B1 +B2 ) -2, 55 6 04 z2

] C11 = 
vr 0 2 

V11 
- -- (4-13) 

V 

2 

L7 (A1+A2-5B1-5B2-2B)+0.11298Z 2] 
e 

C12 = 
vr 0 

V12 
(4-14) 

V 
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Where 

and 

_e_2_[_41 

vr 0 

(2B+A1+A2+3B1+3B2)+1.27802Z
2

] 

V44 

V 

V11 = r- 6 [3.4759 C+- + 1.3831 (C++ + c __ )] 

+ r-8 [1.3162 D+- + o.4353 (D++ + n __ )], 

V12 = r- 6[3.6171 C+- + 0.6881 (C++ + c __ )] 

+ r-8 [1.4784 D+- + 0.1498 (D++ + n __ )] 

-6 V44 = r [1.2367 C+- + 0.0747 (C++ + c __ )] 

+ r-8 (0.7016 D+- + 0.0162 (D++ + n __ )] 

(4-15) 

The general equations for the elastic constants presented 

here involve all co-efficients of Cij 'sand Dij 's. These have 

been included to facilitate some calculations made in chapter 6 

with Bowman35 and Hs 36 potentials which contain c and D terms. 

The relations for the dielectric constants and transverse 

optic frequencies have alre~dy been derived in the previous 

chapter. 
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4.2 Dynamic PropE:rties : 

4.2.1 Introduction: 

Lattice dynamics is an old branch of Solid state Physics 

owing to: the research on'Planck's Theory of Radiation and the 

Theory of Specific Heat' reported by Einstein in 1907, 

·vibrations in Space Lattice' by Born and von Kerman in 1912 and 

on the "Theory of Specific Heat· by Debye in the same year. Other 

early papers on lattice dynamics included those by Debye
65 

and by 

Waller66 on the effect of temperature on the scattering of X 

rays by a crystal. 

Inspired 

independent 

with the work of Einstein on his model 

atomic oscillators Debye67 developed a 

of 

more 

meaningful model of coupled atomic oscillators. He presented a 

frequency spectrum in which each normal mode possesses the mean 

energy of a Planck oscillator and the normal modes of vibration 

were treated as if they were waves in a continuous isotropic 

medium instead of in a system in which the mass is concentrated 

at discrete points. Debye's theory considers the solid to be 

continuous and due to this continuous background the model 

ignored dispersion, polarization, and isotropy of the waves in 

the lattice. Debye's theory of specific heat was generally in 

good agreement with most of the experimental data till 1930 when 

deficiencies of the theory began to be noticed in comparison with 

the experimental results. 

In 1912, Born and von Kerman 
68 

introduced a model of lattice 

dynamics. According to them the atoms are arranged in a periodic 

three-dimens~onal array. In such an array, the force on an atom 

58 



depends not on its displacements from its equilibrium position 

but 011 its displac~ments reldtive to its neighbours. They 

introduced 

simplifies 

the periodic bou11dary conditions which 

the calculations without affecting the 

greatly 

bulk 

properties. Here, the motion of the system is described not in 

terms of the vibrations of individual atoms but in terms of 

collective motions in the form of travelling waves called lattice 

vibrations by Born. Each lattice vibration is characterized by a 

wave vector, a frequency and certain polarization properties. A 

quantised lattice vibration is called a phonon which has 

particle-like properties analogous to photon which is a quantised 

electromagnetic wave. 

In Debye and Waller's study on the theory of the influence of 

the~mal motion on the scattering of X-rays on crystals, the 

thermal motion of the atoms causes a decrease in the intensity of 

the Bragg reflections with increasing temperature. The part of 

intensity lost from the main beam appears as diffusely scattered 

radiation which is observed in directions not allowed by Bragg's 

law. In 1938, Lava169 experimentally detected this thermal 

diffuse scattering and correctly explained in terms of the Born­

von Kerman theory. Olmer70 and Walker71 continued the research 

and deduced dispersion curves for aluminium. Other workers used 

this technique and obtained the dispersion curves of iron, 

copper, and zinc. Born72 presented comprehensive theoretical 

investigation on the relationship between crystal dynamics and 

the scattering of X-rays. 
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Rubens and 73 Hollnagel and Barnes
74 first performed 

experimental investigations on the electromagnetic waves with 

wavelengths from the visible to the infra red region and found 

that the waves interact in various ways with lattice vibrations. 

From the experimental resea rch they reported that these long wave 

length lattice vibra tions ~1ich produc e an oscillating dipole 

moment interac t strongly with light in the .infra and far-infrared . . 

regions and lead to absorption and reflection bands in narrow 

frequency · regions. The wav~ler1yths · corres1,onding to 

absorpti'on frequencies are t e rmed as Reststrahl .wavelengths. 

Light in the visible region is scattered by both acoustic 

sound waves and by certain optical ~honons. Brillouin75 estimated 

the spectrum of light scattered by density fluctuations 

. associated with s ound wave s. He observed that the spectrum 

consists of a double split s ymmetrically around the frequency of 

the incident light. The s plitting, which is very much smaller 

than the frequency of the incident light, is determined by the 

velocity of those sound waves whose wavelength is close to that 

. of the light and the experime ntal technique is known as Brillouin 

scattering. 

In 1923, Smekal 76 s tudied the scattering of light by a system 

with two quantised E:nergy levels and predicted the existence of 

sidebands in the spectrum. Subs equ~ntly, in 192~ Raman Krishnan77 

obs erve d this e ff e ct and the y reporte d that _light scattered by 

liquids contains sharp side bands symmetrically arranged around 

the incident frequ e n c y with shifts identical to the frequencies 

of s ome of the infra red v :Lbrational absorption bands. Th is 
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inelastic scattering of light by molecular and crystal vibrations 

is known as the Raman effect. This is caused by those long 

wavelength optical phonons which modulate the electronic 

polarizability of the system. 

' 78 
Brockhouse used inelastic scattering of thermal neutrons 

and presented the first dispersion curves for lattice vibrations 

in aluminium. At present, inelastic scattering of neutrons is the 

most important technique for studying phonons for the reason that 

in contrast to X-rays, neutrons which have come into thermal 

equilibrium with matter at about room temperature have energies 

of the same order of magnitude as phonons. The wave 1ength 

associated with a beam of monochromatic neutrons in this range is 

of the same order of magnitude as interatomic distances and the 

beam will be diffracted by a crystal. As in the case of X-rays, 

the~e is again elastic scattering according to Bragg's law. The 

neutron beam is, however, also diffracted in other directions by 

travelling waves and exchanges energy with them in units of the 

phonon energy, which is directly proportional to the frequency. 

Consequently, by measuring the change in direction and in energy 

of the scattered neutrons, it is possible to get the phonon 

frequency as a function of the wave vectors for all the acoustic 

and optic branches and on the basis of this new technique it is 

also possible to obtain detailed information about the inter­

atomic .forces. The next section describes the dynamics of a Three 

Dimensional crystal. section 4.2.3 is concerned with the Phonon 

Disp~rsion and Interionic Forces on the basis of Rigid Ion Model 

and Shell Model. 
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4.2.2 Dynamics of a Three Dimensional Crystal: 

(a) Equations of Motion and Atomic Force Constant: 

A crystal is considered to be composed of an infinite number 

of unit cells, each of which is a parallelepiped defined by three 

non-coplaner vectors a 1 , a 2 , and a3 (Fig.4.1). The equilibrium 

position vector of the 1th unit cell relative to an origin 

located at some atom is expressed by 

(4-16) 

where 11, 12, 13 are any thre~ integers, positive . , negative, or 

zero and collectively taken as 1 . The vectors a1,a2, a3 are the 

primitive translation vectors and they define the primitive unit 

cell which is the cell with the smallest volume from which the 

crystal structure can be generated by the translations of the 

lattice (4-16). If the primitive unit cell consists of only one 

atom, the vector r(l) given by (4-16) defines the equilibrium 

positions of the atoms. If there are n>l atoms in the primitive 

unit cell, this group of n atoms constitute the basis of the 

crystal structure. The equilibrium positions of the n atoms 

within the unit cell are given by the vectors r(k) with k = 1,2, 

... ,n. Thus, the equilibrium position of the kth atom in unit 

cell 1 is given by 

r ( ~ ) = r( 1) + r( k) (4-17) 

The atoms in a crystal are capable of executing vibrations 

about their equilibrium positions owing to the thermal 

fluctuations at non-zero t e mperatures and the zero-point motion 

at absolute zero. In vibrating states, the inst~ntaneous position 
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Orlotn 
(atom) 

Fig. 4.1: Tht= unit cell witn equilibrium posit.ions of atoms. 
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of the atom, ( ~ ) is given by 

a(:)= r(:)+ u( :) 

where u( ~) denotes di?lacement of the 

equilibrium position r ( k )· 

atom 

(4-18) 

(kl) from its 

(4-19) 

Here, ua (:) expresses the displacement of the atom (:) in the 

direction a (a=x,y,z). 

The kinetic energy of the vibrating crystal is 

T = 
1 

:E mk 
2 l,k . a 

(4-20) 

where mk is the mass of the atom lt). The potential energy f, is 

assumed to be some function of the instantaneous positions of all 

atoms: 

For small displacements, ~maybe expressed in a Taylor's series 

in powers of atomic displacements u ( 
1 

) 
. k 
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+ 1/6 E L E p 
lka l'k'Bl"k"y 

(4-21) 

The terms beyond third r epresent the anharmonic contributions 

to the crystal potential energy and are neglected in the 

description of the 1-attice dynamics in r:he h a1·mon i c 

approximation. Since ,~0 is the static potential energy of the 

crystal (i.e. independent o f t l1e clisplacE:ment . coordinates), it is 

ignored for the time being. The coefficients 

·( 1 ) 'Pa k and ( 
1 l') 

TaB ~ 
k k 

are defined by 

(4-22) 

PaB ( l 1' ) = 
k k' 

(4-23) 

0 

where the subs cript zero indicates that the derivatives are 

evaluated in the equilibrium conf i gur ation (4-17). The forc e that 

acts on the atom( : ) in the a-direction due to the displacements 

of all atoms(::) is given by 
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Fa ( 
1 

) = - oqi ( 1 J 
k ~ua 

. k 

(4-24) 

Now, eqn. (4-21) takes the form: 

_ :E <12a.B ( l 1 
1 

) Ur., ( 1 
1 

) 

l'k'B k k' k' 
(4-25) 

If all the atoms are in their equilibrium positions, i.e. the 

displacements u1, ( ~.') , are zero then the following condition 

must hold, i.e. 

In the harmonic approximation (4-25)then can be written as 

. Fa ( 1 )::: -I:: cp aB ( 1 1' \ u J 1 ') ( 4- 2 7) 
k l'k'B' k k'} 'k' 

Hence the potential energy is given by: 

1 

2 
l,k,a 
l;k,B 

(4-28) 

The Hamiltonian of the system is then written as: 

H=_: :E mkt~(
1)+ 

2 lka k 

1 

2 
q ~Be : } a ( : ) U B ( : : ) 

1 k a 
l'k'B 

6 6 

(4-29) 



The eqn. of motion of an atom of mass mk is given by 

- I: ia.a ( 1 1, ) u a ( kl ,• ) 
l'k'J3 k k' 

(4-30) 

The coefficients, ~a.a(
1 

l'J termed as atomic force constants 
k k' 

indicate the negative force exerted in the a-direction on the 

atom(~)when the atom ( t: )is displaced a unit distance in the 

direction, while all other atoms are kept at their equilibrium 

positions. 

(b) Dynamical Matrix and Eigen Vectors: 

The eqns . of motion (4-30) represent an infinite set of 

simultaneous linear differential eqns . The wave like solution of 

the system can be expressed in the form: 

(4-31) 

Here, Ua(k) is independent of 1, q, and W(q) are used to 

indicate the wave vector and angular frequency associated with 

the wave, respectively. Since the lattice is translationally 

invariant, the solution of the eqns. depends only on the 

difference between cell indices 1 and l'. Thus a solution for one 

ion is in fact a solution for all ions of the given sublattice in 

the whole crystal. Subs ti tut ion of ( 4-31) in ( 4-30) leads for 

each value of q to set of 3n simultaneous eqns. 

W2 ( q)mk Ua(k/q) = I: DaJ3(kk' /q) U13(k 1 /q) 
k'B 

in terms of the wave amplitude Ua ( k/q) . 
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In matrix notation (4-32) can be written as: 

W 
2 

( q) m U( q) = D( q) U( q) (4-33) 

where U(q) is a column matrix containing 3n elements and D(q) is 

a square Hermitian matrix known as the dynamical matrix. This 

matrix consists of 3nX3n elements given by: 

Das(kk'/q) = E taa(l-1', kk') exp[iq.R(lk;l'k')] 
l' 

(4-34) 

The condition for (4-33) to have a solution is that 

D(q) - W2 (q) mI = 0 (4-35) 

where I is a unit matrix of order 3n and mis a (3nX3n) diagonal 

matrix defined by 

(4-36) 

Eqn.(4-35) is an eqn. of 3nth degree in w2 (q) and the 3n 

solutions for each value of q will be denoted by WJ(q) where 

j=l,2, .... ,3n. These are the eigen values of the dynamical 

matrix. The corresponding eigenvectors are Uaj(k/q). These 

determine the pattern of displacement of the atoms in a 

particular mode of vibration and the Uj(k/q) may be referred to 

as polarization vectors. The relation given by 

(4-37) 

is called the dispersion relation. The curves obtained from 

(4-37) are the dispersion curves and depend on the crystal 

structure and the nature of the interionic forces. Translational 

invariance of the potential ensures that three branches of the 

spectrum are acoustic, i.e. they have Wj(q) proportional to q 

68 



when q is small . The remaining 3(n-1) branches, generally, tend 

to finite frequencies as q tends to zero. such modes in binary 

crystals are found to interact strongly with light and hence they 

are called the optic modes. 

(c) Reciprocal Lattices and Brillouin Zones: 

The discussion on vibrational properties was started with an 

infinitely extended crystal. For the purpose of periodic boundary 

conditions the crystal is subdivided into macrocrystals; these 

are parallelepipeds defined by the vectors N1a1 ,N2a2,N3a3 where 

a1,a2,a3 are the primitive translation vectors and N1,N2,N3 are 

large integers. Each macrocrystal contains N = N1N2N3 primitive 

unit cells. The periodic boundary conditions require that the 

atomic displacements for atoms separated by a translation Niai, 

or a sum of such translations, must be the same 

= (4-38) 

also 

exp ( i q Ni ai ) = 1 (4-39) 

this relation specifies the possible values of q for i = 1,2,3. 

Using reciprocal lattice the conditions can be expressed in the 

manner as follows: 

The primitive translation vectors of the reciprocal lattice 

are the three vectors b1,b2, and b3 defined by 

(4-40) 
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these eqns. can be satisfied by putting 

2rr 
b1 =- (a2 X a3) 

V 

2rr (4-41) 
b2 =- ( a3 X a1) 

V 

2Tt 
b3 = ( a1 X a2) 

V 
where 

V = a1 . ( a2 X a3) (4-42) 

is the volume of the primitive unit cell of the direct lattice. A 

lattice vector in the reciprocal lattice is given by 

(4-43) 

where the 111 dre arbitrary integers which can be positive, 

negative, or zero. The scalar product between a direct lattice 

is given by 

r(l) 1:(11) = 2 rt .... l ini ::: 2fl X (integer) (4-44) .:., 

i 

Hence an expression for q which satisfies (4-39) is given by 

n1 112 n3 
q =-- b1 +--b2 + --b3 

N1 N2 N3 
(4-45) 

Also 
Wj ( q+ ,:) = Wj ( q) {4-46) 

and 

u(: q:•): u(l :) (4-47) 
k 
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Therefore, all the distinct solutions can be obtained if the 

allowed values of q are restricted to lie in one unit cell of the 

reciprocal lattice defined by the three vectors b1, b2, b3, in 

other words, the integers ni in (4-46) are restricted to: 

ni = 0 , 1 , 2 , ..... , Ni -1 
or, 

11i = 1,2, ...... ,Ni 

The unit cell described by b1, b2, b3 does not,in general, 

reflect the symmetry of the reciprocal lattice. It is, however, 

possible to construct a primitive unit cell in such a way that 

the point symmetry of the reciprocal lattice can be made. This is 

achieved by taking a point, q=:O, in the reciprocal lattice and 

then constructing vectors to neighbouring points of the 

reciprocal lattice and bounding the unit cell by planes which are 

perpendicular bisectors of the vectors to the neighbouring 

points. such a cell is termed as Brillouin zone and the volume of 

the zone is given by: 

vb = b1 . ( b2 X b3 ) 

(2n) 3 

= 
V 

(4-48) 

In Fig. 4.2 the Brillouin zone of the compounds under study, 

is exhibited. 

4.2.3 Interionic Forces and Phonon Dispersion : 

Phonon dispersion curves Q(q) can be determined by inelastic 

neutron scattering techniques . These experimentally measured 

curves are mainly of interest owing to the fact that they provide 

chance of testing various models of interionic forces. The forces 
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Fig. 4.2: The Brillo u i 11 zon e of the f. c. c. lattice. 
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between the ions are governed by the electronic structure of the 

atoms involved. The vibrational properties of the ionic crystals 

has been given here on the basis of the Rigid Ion Model and the 

Shell Model in sections (a) and (b), respectively. 

(a) The Rigid Ion Model: 

In the rigid ion model an ion of type k carries a point 

charge Zke, where e denotes the magnitude of the electronic 

charge; the ions are, therefore, not polarizable. The interaction 

energy of two ions 1 ■(:) and k ■(::)separated by a distance Rik 

is expressed by 

(4-49) 

where ~{R) is a short-range repulsive or overlap energy and 

¢(C)represents the long-range coulomb energy; In this case of 

central forces, the total force constants are : 

(4-50) 

Here, ¢R aa(ik) and ¢c aa(ik) denote the force constants derived 

from the repulsive and coulomb energy, respectively . The 

dimensionless short-range parameters are given by 

( R) I I 

e2 
q> ( r ikl = Aik (4-Sla) 

2v 

1 
<P(R)' (rikl 

e2 

= Bik (4-Slb) 
rik 2v 

where rik is the equilibrium distance between the ions i and k 

and vis used to represent the volume of the primitive unit cell. 
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The repulsive force constants for i + k can be expressed by 

rika rikB 
+0 aBBik] 

(4-52a) 
also 

R 
~ aB (ii) = - ~· ~aB (ik) (4-52b) 

k 

Similarly, the force constants of the coulomb forces for i =k 

are given by 

C 2 6ar.,r ik-3r ikar ikB 
q> aB (ik) = ZiZke (4-53a) 

rik 

and 
C 

<P aB (ii) = - ~'4>aB ( ik) (4-53b) 
k 

The dynamical matrix can be written as 

Dar..( q ) = I: cfiar.. ( 
1 

l 'J exp[iq{r ( l' ) - r ( 
1 

)) ] ( 4-54) 
kk' l' kk' k' k 

The corresponding secular eqn. is 

D( q) - ~ 2 
( q) = 0 

Using (4-50) in (4-54), the eqn. takes the form 

D = R + ZCZ 

The eqn. of motion for RIM is then given by 

w2mu = Ru + zczu 

(4-55) 

(4-56) 

(4-57) 

Here R(q) is the matrix of the repulsive forces given by 

(4-58) 
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and C(q) is the coulomb matrix, the elements of which are given 

by 

(4-59) 

The repulsive matrix R(q) is evaluated directly due to the 

rapid convergence of the series (section 4.1). on the other hand, 

it is very difficult to evaluate the series (4-59) due to the 

reason that, 1t does not tend to a unique value as q-->O, but to 

a value which depends on the relative directions of q and the 

electrical polarization associated with the mode concerned. 

However, the problem is solved using Ewald's method (an account 

of which has been given earlier). The condition for the 

solubility of the set of eqns. given by (4-57) presents a 

determinantal relation for w(q), 

(R + zci) - w2mr = 0 (4-60) 

This determinant is of order six for a cubic diatomic 

crystal. Along principal symmetry directions, the determinant 

factorises and yields three different (2X2) determinants which 

can be solved as a quadratic eqn. to determine Wj(q) for every 

q . In case of a face-centred cubic lattice, when q is in a 

special direction of high symmetry such as (1 o O), the matrix 

C(q) is also diagonal in a and B. Thus,when q = (qx,0,0), one 

finds that the dynamical matrix has the following structure: 

(4-61) 
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where Daa(q} are two dimensional and real matrices. In this 

case, the direction of the eigen vectors are determined by 

symmetry and the modes are purely longitudinal or purely 

transverse. If q = (qx,0,0), the matrix Dxx(q) gives the 

dispersion W(q} for the longitudinal modes LA and LO, while 

Dyy(q} and Dzz(q) yield identical solutions for the doubly 

degenerate TA and TO-modes. The two principal frequencies, 

longitudinal and transverse, thus, determined are given by: 

2 
81tZ

2 e 2 

P~ LO = Ro + (4-62} 
3v 

? ? 

2 4rrz-e-
P~ TO = Ro - (4-63) 

3v 

where i1 is the reduced mass, given by: 

m1m2 
µ- = (4-64} 

m_1 + m2 

The optical splitting between the LO and TO modes is written 

as 

2 2 
µ ( W LO - W TO) = (4-65) 

V 

and the Lorentz field is 

4Tt 
E( L) = p (4-66} 

3 

The macroscopic field E(M} have values which are different 

for the TO and LO - modes. For a TO - mode, (q perpendicular to 

P}, the macroscopic field vanishes while for the LO-mode (q 

parallel to P), the macroscopic field is 

E (M) = - 4 p Tl • 
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The effective fields are thus: 

'I( 

E = 

* 

4Tt 

3 
P (TO-mode) 

8Tt 
E = - -- P (LO-mode) 

3 

(4-67) 

(4-68) 

Macroscopic field is, therefore, responsible for the result 

(b) The Shell Model: 

A description of this model has been presented in chapter 3. 

As shown in fig 3.1, k1 and k2 denote spring constants which 

couple the shells to the ion cores . The core charges are given by 

Xie and X2e while Y1e and Y2e are used to express shell charges. 

The net charge on the cation and anion are 

ze = (X1 + Y1)e and -ze = (X2 + Y2)e, 

respectively. As the unit cell as a whole is electronically 

neutral 

:E Z ke = :E ( xk + Yk) e = 0 (4-69) 
k k 

If the spring constant between core and shell be kk, the 

polarizability is given by 

Y 
2 2 

k e 
(4-70) 

Here the interaction of a shell has been considered with the 

core of the same atom and of neighbouring atoms. 
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The harmonic potenti· ai energy of the crystal is expressed ·by 

~=-E E ~ 1 ( 
2 l,k,a{ l',k',B aB e ~:) "a(~) ua(~} 

( : : :)ua ( : ) Wa ( ::)+ ~T Ba ( : : : ) ll3 ( : : ) Wa ( : ) )+ 

~ aB ( : : ) Wa ( : ) 113 [ ) + kk Wa ( : )­

[yk eWa ( : ) + zk Ol~ ( : )] Ea ( : ) ) 

{4-7i) 

Here, W gives the displacement of the shell relative to the 

core. 

Relation (4-71) yields the dynamical eqn. for the shell model 

and can be written as: 

2 
frJ ( q) mu = ( R + ZCZ) u + ( T + ZCY) w (4-72a) 

0 = ( TT + YCZ) U + ( J + YCY) W (4-72b) 

The shell masses have been taken to be zero and this 

assum~tion is ~quivalent to the adiabatic approximation which 

expresses that the electron distribution is always :· that 

appropriate to the instantaneous configuration of the nuclei, in 

this case, of cores. 

Here, y is a (3n X 3n) diagonal matrix of shell charges (Yk), 

m and z re the ionic mass and and charge matrices, respectively. 

u and ware the 3n-compouent column matrices represented by the 

core and relative core-shell displacements such that 
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and 

(4-73) 

R, T, and J denote, as shown ir1 · Fig. 4.3, the short-range core-core 

, core-shell, and shell-shell interaction matrices such that 

R = D + S + 2F T = S 

and TT gives tl1e t1·a11spo~e · ..., conJugate of T . 

+ F 

(4-74) 

Here, D, S, and F represent (3n X 3n) matrices on the basis 

of interactions exhibited in Fig. 4.3 and is related to s by 

f aB( q .\= SaB( q ) + kk ◊aB Dkk 
k k1 k k 1 

(4-75) 

Here, J = ( S ·+ K) · with S as t:he short-range interaction matrix 

(3n X 3n) and .K is the diagonal rnatrix - (3n X 3n) specified by 

the core-shell spring force constant kk. c is a (3n X 3n) coulomb 

interaction matrix. The short-range forces are assumed to act 

through the shells and under this condition the matrices R, T, 

ands are taken to be equal: Elimination of W from (4-72b) yields 

w2(q) mu= D(q)U (4-76) 

where the dynamical matrix corresponding to the shell model is 

expressed by 

D(q) = (R + ZCZ) - (R + ZCY)(S + K + YCY)-
1

(TT + YCZ) 

(4-77) 

The first term of (4-77) is the dynamical matrix found with 

the RIM mbdel. The second term gives contributions arising from 

the electronic polarization. It is, however, interesting to note 
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that many-body forces are preR~11t 1·n the 
1 1 

1 
- ~ second term a t1oug1 R, 

T, ands involve only two-body forces. 

A SUbS t itution of the dynamical matrix (4-77) in the secular 

e~uation ( 4-35) and its solution then, yields 3n vibration 
2 

frequencies Wj (q) corresponding to each phonon wave vector q. 

Along the principal symmetry directions ~ , I: .A the 

determinant reduces to, as in the case of RIM, lower order 

determinant, ( 2 X 2), for cliatomic cubic crystals.:. 

It should be pointed that The Shell Model treatment of 

d1electric behaviour satisfies the Lyddane-sachs and Teller and 

Clausius-Masotti rel a tions . The additional polarization me chanism 

associated with the shell model which arises owing to the 

electronic distortions does not have any effect on the dielectric 

constant. The frequencies for the TO a nd LO-modes can be 

written as: 

2 
pW TO = Ro' -

2 
itH LO = Ro' + 

2 
4 rt ( ea+ 2 ) ( Z I e ) 

9v 

8 rt ( Ecc + 2 ) ( Z ' e) 
2 

The optical splitting is the n given by : 

2 2 
4 n ( z I e ) ( e:a-+ 2 ) 

where' Ro I 
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and 
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and the electrical and mechanical.polarizabilities, ak and dk 

are given by: 

ak = 
kk+lR(kk) ]q➔ O 

82 

-Yk[R(kk) ]q➔ O 

kk+lR(kk) ]q~O 
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CHAPTER 5 

DEFECT LATTICE 

5.1 Introduction: 

A perfect lattice may be defined as one in which all the 

atoms are at rest on their correct lattice positions in the 

crystal structure. Such a perfect crystal can be obtained, 

theoretically, only at absolute zero. As the temperature of a 

crystal is raised, the amplitude of the thermal vibrations of the 

atoms about their mean positions increases. Lattice vibrations, 

also referred to as phonons, constitute an important defect in 

solids since they are the agents whereby the lattice reaches a 

state of thermal equilibrium. The energy distribution of the 

phonons is important in problems involving optical absorption, 

heat capacity, electrical resistivity, X-ray diffraction, line 

broadening, luminescence and many others. The changes in the 

phonon spectrum accompanying the formation of atomic defects in 

solids contribute to the entropy of the solid. Apart from the 

fact that atoms are vibrating, a number of atoms are inevitably 

misplaced in a real crystal. According to Frenkel79 Wagner et 

a1 80 , and Jost81 there exist in a crystal in themodynamical 

equilibrium a number of vacant lattice points also a number of 

ions will be situated in interstitial positions. In some 

crystals, the number of defect present may be very small, e.g. 

high purity diamond or quartz crystals. In other crystals, very 

high defect concentrations may be present. In highly defective 
·. ;. ~ ! : ... ; .• •:..-· 

crystals, the question arises as to whether or not the defects 

themselves . should be regarded as forming a fundamental part of 
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the crystal structure rather than as some imperfections in an 

otherwise ideal structure. 

Various schemes have been proposed for the classification of 

defects. They are broadly divided into two parts: (a) 

stoichiometric defects: In this category the crystal composition 

is unchanged on introducing the impurities and (b) non-

stoichiometric defects: This type of defect is a consequence of a 

change in crystal composition. Alternatively, the size and shape 

of the defects can be used as a basis for classification and 

accordingly described as: 

(i) Point Defects: This type of defects includes: vacant 

lattice sites, interstitiai atoms, impurity atoms, atoms on wrong 

sub-lattices, and ions with different valencies . 

(ii) Line Defects: Here the defects are: 

(a) Edge dislocation: Row of atoms marking edge of a 

crystallographic plane extending only part way in crystal, and 

(b) screw dislocation: Row of atoms about which a normal 

crystallographic plane appears _to spiral. 

(iii) Plane Defects: Under this head the defects are: 

(a) Linear Boundary: Boundary between two adjacent perfect 

regions in the same crystal that are slightly tilted with respect 

to each other, 

(b) Grain Boundary: Boundary between two crystals in a 

polycrystalline solid, 

(c) stacking Fault: Boundary between two parts of a closest 

packing having alternate stacking sequences, and 
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(iv) Volume Defects includes: clusters of atoms of different 
chemical composition· d . 

, or ered regions; clusters of point defects; 

divacancies; trivacancies· 
, impurity atom vacancy or interstitial 

complexes; small 

configurational 

decomposition. 

regions of disorder; 

defects and initial 

extended, 

stages of 

long range 

spinodal 

Many of the ;m t t 4 por an properties of ionic crystals are 

largely influenced and often determined by the defect structure 

and in particular by the properties of the point defects 

(Crawford et al. 
82

, Stoneham 83 ). Point defects play an important 

part in determining the physical properties of most crystalline 

substances, most notably those controlling the transport of 

matter and the properties that stem from it. They also strongly 

influence the resistivity of metals by scattering conduction 

electrons, the low temperature thermal conductivity of all 

crystalline solids by scattering the phonons, the electronic 

conduction and related properties of semi conductors by acting as 

donors or acceptors and the optical properties in ionic solids by 

introducing electron states with optical transitions. 

knowledge of defect properties of solids will be applicable in 

the fields where technical requirements demand materials with 

high ionic conduction, e.g . (a) there are ion monitors in which 

the presence of a low concentration of some species is measured 

electrochemically as a voltage across a suitable electrolyte. The 

important features are discrimination and low electronic 

conductivity, to avoid dissipating the potential generated in 

driving an electric current, (b) high ionic conductivity can be 
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valuable in 
electrolytes for batteries and fuel cells. These 

electrolytes 
need low electronic conductivity to avoid leakage 

losses. The batteries are b eing tested in several countries for 

use in, viz. electric cars and for power station load levelling. 

For these processes the various energies of the defects are some 

of their most important parameters. The energies needed to form 

the defects determine the concentrations in which they are 

present in thermal equilibrium, while the activation energies 

needed for them to jump from one lattice position to another 

determine the rates of their migration through the lattice. 

Because defects do determine many of the technologically 

important properties, an ever increasing amount of attention is 

being devoted to their study. The next section of this chapter is 

concerned with the concentration of defects in crystals. section 

5.3 describes the calculation of defect energies. 

5.2 concentration of Defects: 

5.2.1 Schottky Defect: 

The Schottky defect which is stoichiometric in ionic crystals 

is a pair of vacant sites, a cation vacancy and an anion vacancy. 

For a cation vacancy in a normal lattice to occur, a positive ion 

must some how migrate out of its proper position in the structure 

to the crystal's exterior. If only positive ions migrate out of 

the crystal and collect on its surface the surface will become 

positively charged. This positive surface charge opposes the 

migration of additional positive ions out of the crystal's 

interior. simultaneously, the excess negative charge created 

inside the crystal is conducive to the formation of negative 
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vacancies. In the absence of exter·11al f . 0 1 ~:es, therefore, the 

number of oppositely· 1 c1arged vacancies inside a crystal tends to 

be equal. 

If there are N ions in the crystal an~ n Schottky defects are 

produced by removing n cations and n anions from the crystals 

interior, the different ways in which each kind of ion can be 

removed is given by 

N! 
{5-1) 

(N-n) !n! 

As the number of cation and anion vacancie~ are equal the 

different ways in which Schottky defects can be formed is then 

obtained by squaring (5-1). According to the Boltzmamn formula, 

the increase in entropy on creating n Schottky defects is 

s = k log l N 1 ] 

2 

(N-n) !n!_ 
( 5-2) 

This in turn produces a change in the Hemholtz free energy 

[ 
N' J 

2 

_(N-n) !n! 

F = E - TS 

= nEp - kTlog (5-3) 

l · tl · er·,ry required to remove a pair of ions from the w 1ere Ep 1s 1e e11 '::l 

crystal's interior to sites on the surface so that nEp represents 

the total energy in its internal energy. When equilibrium is 

t F must be a minimum with respect attained at a given tempe ra·ure, 

1· 11 11 . Tl1e condition for this is that '. to changes 

= 0 
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eqn. (5-4) then gives 

N - 11 

n 
= exp (Ep/2kT) (5-5) 

In practice, n<<N and N-n ~ N 

as 

eqn. (5-5) can, then, be written 

n ~ N exp(-Ep/2kT) (5-6) 

the concentration of Schottky defects -is 1 , , .;·( . trns, given ·· by 

n 

N 
- exp (-Ep/2kT) (5-7) 

The concentration of Schottky defects, thus, increases 

exponentially with temperature. 

5.2.2 Frenkel Defect: 

Frenkel defect is also a stoichiometric defect and involves 

an ~tom displaced off its lattice site into an interstitial site 

that is normally empty. 

Let Ei be the energy required to displace an atom from its 

proper position to an interstitial position in a perfect crystal. 

Then, if there are N atoms in the crystal and N1 interstitial 

positions in its structure, there are 

N! N! 
(5-8) 

(N-n) !n! (N-n) !n! 

ways in which n Frenkel defects can be ;i6rmed. The increase in 

entropy of the crystal due to putting the ions into interstitial 

position becomes 

[ 

N! N! ] 
s = k log-----+ log 

(N-n) !n! (N-n) !n! 
(5-9) 
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The change in the Helmholtz 
free energy produced by the creation 

of n Frenkel defects is 

[

. N! N! ] 
F = nEi- kT. log +- log 

(N-n) In! (N-n) !n! 
(5-10) 

Differentiation of 

formula yields 

(5-10) with respect to n using Stirling's 

(N-n) (Ni-n) 

112 
(5-11) 

At equilibrium the free energy should be a minimum with respect 

to changes inn. The condition for this is given by 

/ oF \ 
I·- 1 = 0 and since N>>n and N1>>n, 
\ 6n / T 

n = (NNi)l/ 2 exp(-Ei/2kT) (5-12) 

the equilibrium concentration of Frenkel defects taking N = N1 is 

then expressed by 

n 
.::.. exp(-E1/2kT) (5-13) 

N 

Usually both kinds of defects are present in all solids; however, 

there is always a tendency for one type of defect to predominate 

since their energies of formation are generally unequal. on the 

basis of the experimental evidence and theoretical calculations, 

as shown in Table 6.11 of Chapter 6, next, it has been 

established that the predominant defects present in the compounds 

under study, are Schottky defects. 
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5.3 Method of Evaluation of D f ___ e--..::ec_t Energy: 

The various defect energi~s which have been reported in the 

thesis were e st imated using the minimisation method (described in 

subsequent sections)• What happens ~n the ·region of crystal where 

the vacancy has been created is shown schematically in fig. 5.1. 

Removal of the cation will have the same effect on the neighbours 

as the substitution of a negative charge. The inter ionic 

distances in the crystal are governed by the balance of positive 

and .negative charges. Extraction of the cation will allow the 

cations surrounding the vacancy to relax inward because of 

repulsion from neighbours surrounding the ions. conversely, the 

anions will move outward. The ions that are far removed from the 

defect site also move inwards or outwards according to the 

effective charge on the defect because of the long range nature 

of the coulomb field. In this context, the relaxation of the ions 

in case of saddle point configuiation required to evaluate 

migration energy is shown in fig. 5.2. The main problem 

associated with the defect calculation is the treatment of 

lattice relaxation . The dominant contribution to the lattice 

response is due to the effective charge of the defect. The ions 

immediately adjacent to point defect , initially at their regular 

sites on the perfect crystals, s11ffer displacements which are too 

large to be adequately described in terms . of linear elastic 

theory. Because of this, these ions, in the presence of the 

defect at the centre of the region, are treated as discrete 

particles. Ions, which lie well away from the defect are 

displaced by small amounts and are susceptible to treatment by 

the elastic theory. In other words, the dielectric response in 
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the strong field 
region Glose to the defect is incorrectly 

represented by any continuum approach based on the macroscopic 

dielectric con~tant o · 1 
w • n t1e other hand, the calculation of the 

relaxation of the more distant weak fi'eld region by the continuum 
methods is quite adequate. As a result, the crystal containing 

charged defects is considered to be divided into an inner strong 

field and an outer weak field regions. In the inner region, 

termed as region I, the displac~ments are treated independently 

~nd determined by allowing it to interact with surrounding ions 

accordirig to a pairwise central force law. In the outer region, 

region II, the ions are also regarded as discrete particles 

embedded in an elastic continuum. Here the relaxation is taken to 

arise solely from interaction of the polarizable medium with the 

defect at the origin. Region II has further been subdivided into 

two zones: Region IIa forms an annulus about region I, within 

this, the deformations due to its polarization interaction with 

the defect are assigned to the lattice sites of the crystal, i.e. 

in Ila tlle discrete ions are relaxed by amounts determined by the 

relaxation of the polarizable continuum of Mott and Littleton84 . 

According to Mott and Littleton, the macroscopic polarization P, 

at a distance r from a defect of effective charge Z, is given by: 

1 1 Zer 
p = ( 1- 3 

(5-14) 
4n BQ r 

The polarization per unit cell is then divided into 

constituent polarization terms. For the shell model, the 

polarization is broken down into core and shell displacements. 
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5.3.1 Division of the Lattice into two 
Regions: 

The 

Proceeding formally, the crystal is divided into two regions. 

energy of defect formation is then expressed by 

(5-15) 

Here x and Y are vectors of shell and core coordinates for 

region I and region II, respectively. E1 (x) is the energy of the 

inner region depending only on the independent coordinates x 

describing the configuration of region I, E3 (y) is the energy of 

the outer region and is a quadratic function of the displacements 

of region II. The interaction energy between the two regions is 

included in E2 and 

1 
E3 ( y) =- y, A. y 

2 
(5-16) 

·where A is the force constant matrix and the components of Y 

describe all the displacements in the outer region. on the basis 

of the equilibrium condition: 

6E2 
= - A.y (5-17) 

By 

and then 
6E2 1 

E3 ( y) = y 
2 6y 

(5-18) 

5 _3 , 2 Short-Range Potential: 

Potential function that acts between ions i and j Here the SR 

is denoted by 

(5-19) 

l.·s the position of the ith ion. All the ions, where ri 
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those removed from the crystal to form vacancies and also those 

added to the crystal to form interstitials are numbered. 

Substitutional ions are regarded as vacancies plus interstitials. 

Each lattice ion and interstitial now has a position denoted by 

ri· In the sum over actual ions, those which are removed to 

infinity to form vacancies are always excluded. It is visualised 

by implicitly assigning a lattice position to the removed ions at 

some distance far from the crystal. The potential interaction is 

then becomes zero. Analogously, the sum over lattice sites 

denoted by R1 which excludes term corresponding to interstitials 

and whose lattice sites are assigned at infinity are required. 

Unrelaxed 01· ideal positions in the crystal are described by Ri 

and relaxed ion positions by r1 , 

Also 

R1j = I Ri - Rj I 

rij = I ri - rj I (5-20) 

The convention then used corresponds to the process of 

removing ions to infinity to form vacancies and bringing ions 

from infinity to form interstitials. Also a notation t' is 
i£I 
jeI 

used 

to imply summation only over pairs of ions in region I where 

prime denotes re:;;triction to i > j is used. On the bas is of th8 

h Par-f~_ct c-1·ystal energy is expressed by convention t e ... ..., 

E p = ~ I ct> ( Ri j ) 
ieI&II 
JeI&II 
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The energy of the defect lattice formed : y the addition or 

removal of ions for an ar-bi'tr·ar-y f' b con 1guration is then given y 

The 

~• <P(rij) 
ieI&II 
JeI&II 

summation implicitly excludes vacancies 

(5-22) 

but includes 

interactions with interstitials. E3 is the quadratic relaxation 

energy of region II and on the basis of: 

(5-23} 

E3 gives the energy of a lattice in which every region II ion 

is at equilibrium when all displacements in the outer region is 

zero. It is the energy of a displaced region II with all ions in 

t .he inner region held at their perfect lattice sites, i.e . 

without defects. The expression for E1 and E2 then stands as: 

and 

Tile 

E1 = ~• { ¢(rij) - i~(Rij)} 
ii::I 
JeI 

(5-24) 

(5-25) 

ar-e 110w r-ecti:-1· ctgd to ions in reuion I and summations .., ..., :J 

· E3 1· s tl1e11 expressed in the form: region Ila. 

= 

.y 

1 ocp(rij) ~· ~----
2 isl 6rj 

jt:Ila 
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5.3.3 Coulomb Potential : 

The formalism for the energ1·es 1·s extended when the potential 
is a long range coulomb . 

interaction. The basic aim here, is to 
modify the summations t o separate off interactions between 
explicit ions in a finite region of the crystal. The remaining 
long r ange part involves Madelung t!nergy and it is calculated 

analytically by Ewald's m8th0d (described in chapter 2) . Here, 
the 

and 

expressions for Ei j anl E2 Cdn be written 

s s 
qi qj 

C' 

I r1 
s -rj..., I 

s s 
qi qj 

s s 
lr1 -rj I 

- qi . 

C s qj qj 
+ 

I RrRj I I Ri -Rj I 

qi S qj C 

+ 
· S C 
I ri -rj I 

a <..· • ..., . 

] (5-27) 

+ 

(5-28) 

According to the Ewald's method, as the potential due to the 

complete Gauss i an l attice is ~valuated using a transformation to 

a rapidly conve rgent reciprocal lattice summation, the point 

charge lattice sum is estimated by correc~ing the value
0

for the 

Gaussian distribution lattice only for lattice sites close to the 

point where the ~um is eval ua ted . ThE: situation is different and 

compl ex in case of a lattice with defect where ions are 
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displaced. To get compreh~n~ive formulae for energies of a defect 

lattice, the evaluation ut: the potential 'f (r) at r due to 

a normalised charge density is carried out with the help of: 

p (r') = --rtl/2 

(5-29) 

The total charge nearer the origin than r may be considered 

t~ act at the origin and the potent ial due to the charge outside 
. . 

r . is uniform at all points nearer the origin than r itself and it 

is conveniently evaluated at the origin. The potential of a 

lattice of Gaussian charge distribution evaluated at each ion in 

region I is subtracted from the lattice summations and the same 

contribution evaluated at each lattice site is then added to the 

summations. Tl1ese terms are subsequently estimated analytically 

as a reciprocal lattice sum and the potential of the Gaussian 

. lattice is, thus, removed. In terms of lattice summation, the 

extra term is given by 

E''qi[qjc(­
ieI · ., 
jeI&II 

C 
<:! r f ( r, I r i - Rj I ) 

C 
I ri -Rj I 

.' s 
erf(ql ;ri -Rjl) 

+ 
s I r1 - Rj I 

+ 

(5-30) 

assoc 1·ated with the formulae is different with The summation 

respect to convention . rt excludes vacancies arid interstitials 

( wliert::! appropr i ctl.e J dJJd ~xle11cl~.: ovt::r all valui.•:.:. of 1 and j 

independently, including i = j. Before collecting this term with 
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other lattice sums it . . ' is expressed in terms of the restricted 
summation 

ions i and 

by 

over pa1· r~s of . ions. He1·e difficulty arises only 

j are in the same recr101,. N ~ • ow the extra term is 

erf(qlr/-RJ I) 

I r1 c_ Rj I 
e r f ( 11 I : is - R j I ) ) 

I ri -Rj I 

: ~ 1 q i [q . C ·( _ 

icI J 

er f ( q, I n1 - Rj I ) ] 

I R1 - Rj I 

erf(11lr1c-kj I) 
C 

lr 1 -Rj I 

erf(qlr/-Ril) 

C lrj -Rjl 
jcI 

+ 2 
er f ( .q I R1 - Rj I ) \ 

I R1 -Rj I 1 
erf(qlr1

5
-Rj I) 

s 
lr1 -Rj I 

er f ( 1) I r / - R i I ) 
C I ri -R1 I -

Lim 

erf(qlr/-R1I) 

s 
lrj -Ril 

erf(11 l :/-R1I) l 
I ri -R1 I 

(5-31) 

when 

given 

The summation E' accounts for terms in E'' when i = j. The 

term which is a function of I rJ-Ri I excludes both vac aucie s and 

interstitials. From the a s signment of coordinates at infinity for 

vacanci8 s and int. l •r:.;;t i t:i.,ll s , t his term, in both the cas es , i~ 
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zero. The term involving IR· - R· I . 
i J is zero only for interstitials. 

For small argument the 
error function yields: 

= 
r -i-1, 

T( -

+ 

erf(11rJ 

+ 

216 
211 

4 2 

- . ·] (5-32) 

then using 
Lim 

r~o = 1/2 ' 
fl. 

the expression for 
r 

, . 

and E2 can be written a c- • "" . 

E1 = t '' , 
isl 
jeI 

s erf(rllri s 
-Rj I) 

qi qj - q i q j 
lr1 

s 
- Rj I 

- qiqj 
s 

s er f ( I) I Ri - r j I ) 

s 
IRi-rj I 

+ 

c.; 
erf (ql ri -Ri I) 

C Ir · -R · I l l 

+ 

2 

C 
er f ( 11 I Ri - r j c I ) 

C 
IRi -rj I 

] erf(qlRi-Rjl)-1 

I Ri - Rj I 

er f ( l) 1 ri s - Ri I ) 

s lri -R1 I 

The summation, E' ', in this formula excludes vacancies and 

interistitials. rt e )~t ends over all values of i and j 

independently, including i =j . 
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e:rf(ql ri 8 -Rj I) 
s lri -Rj I 

C 
erf(qlri -Rj I) 

Ir· c_.R· I l . J 

+ 
erf(111Ri Rjl)] 

I Ri - Rj I 

(5-34) 

As given, the eqn. for E1 contains a term corresponding to 

the Gaussian lattice potentials which have been added and then 

subtracted to these explicit lattice sums. These are evaluated by 

expressing the charge density due to the lattice of Gaussian 

charges as follows: 

p ( r l = 

1 
~ p( g) exp( 2n:i g. r) 

V g 

reciprocal lattice vectors 

exc8pt g = 0 

(5-35) 

Here the summation extends over reciproc a l lattice vectors 

excluding g=O because of the overall charge neutrali ty of 

lattice. Then 

p(g) = { ~ 
. : 
'"' 

ions i11 

unit cell 

(5-36) 
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Denoting the structure f actor E qsexp(2nig.Rs) by s ( g) 
expression for p(r) can be written as: 

1 
p(r) =- E S(g) exp(­

v g ) exp(2nig.r) (5-37) 

the 

and then using Poisson's eqn. the w expression for r (r) due to a 

lattice of Gaussian charge distributions is expressed by: 

1 

nv 
E 
g 

exp exp (2nig.r) (5-38) 

The reciprocal lattice summation converges rapidly if n is 

chosen sufficiently small. 

The expression for E1 is then made complete with the help of 

the reciprocal lattice summation expressions to remove the 

potential of the Gaussian lattice added to the direct lattice 

expressions. 

5.3.4 Approximation of Region II: 

As discussed earlier, for the calculation of E2 and EJ, 

region II is subdivided into two parts: the inner part, region 

IIa, is taken to be large enough so that all the error function 

terms involving ions in region I and ions outside IIa are 

essentially ~qual to 1. For this region the displacements are 

estimated from the sum of those due to each component charged 

defect acting separately. E2 and 6E2/6y are then calculated by 

explicit summation over all pairs of ions in region I and Ila. In 

the . outer section, IIb, the displacements are calculated by the 

Mott-Littleton approximation using the net charge of the defect, 

localised at the most symmetric part, at the origin, of the 
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defect configuration . 
energy due to these displacements 

arises solely £~om 1 
po arization term and is of the form : 

E2 

It 

there 

b 
( 

1 1 = . r.q l.qj 
1.£I I ri - rj I I r i -Rj I j £ IIb 

1 

1 ) + (5-39) 
I Ri - rJ I I ni-Rj I 

is evident from the expression that if rj=Rj , i.e. 

is no displacement of ions in the outer region, 

if 

the 

con t ribution from this section becomes zero . The calculation i s, 

however, made tractable through separ ating the summation into a 

part by removing those terms corresponding to defect in region r, 

i,e, term where contribution of the form 

1 1 
r.md 

do not cancel for zero displacement . All the remaining terms 

invol ve interaction of displacement dipoles in region I with 

displacement dipoles in region IIb . These terms are small and the 

region I l a can b8 extended to such a size· that dipole - dipole 

interactions from region IIb are negligible. At a greater 

distance from the defect, the dominant perturbation of region II 

arises due to the electric fie l d produced by any net charge on 

the defect . The outer region is regarded as a continuum and in 

the case of these ionic crystals under study, this outer region 

is uniforml y polarized ~n a radial direction. The uniform 

polarization, tliuS, producl::d generat~s no electric field with iu 

t he continuum region and consequently t llc::re is no interaction 
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with displacement dipoles in 
region I. It is required to perform 

explicit summation only over limited region close to the inner 
region. However, thete remai·n 

the terms due to the interaction of 
region IIb with the detect · 111 the system. The remaining part 

b 
E2 can be writc~n as: 

Ez b: ~ qi qj ( 

1 over intersti­

tials in r egion I 

jeIIb 

( 
i over vacancies 

in region I 

j£IIb 

1 

1 

+ 

(5-40) 

of 

considering the polarisation effect of tlle monopole field 

which is due to the total charge Q of the defect at the origin, 

b . 
E 2 1s expanded to fir s t order in the displacements, Yj as 

follows : 

C C 
-Q E(qj Yj 

j£Ilb 

R · 
s s , J 

+ qj Yj . 3 
IRj I 

The other t erm associated with the region IIb is 

1 

2 

6 E2b I 
---1. y ~ 

oy ly =y -

(5-41) 

(5-42) 

where y ~ are the equilibrium values for the Y corresponding to 

arbitrary Of X. Tl1e total contribution of region values 
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then obtained from 

b 1 6E2b I 
E2 - I . y 

2 oy I Y=Y~ 

1 
= - - q I: (qj 

C 
Yj c + qj 2 JEIIb 

Expressing the displacements by 

y~ j = Kj Rj / I Rj I 3 , 

Rj s s 
Yj ) 

IRj 13 , 
(5-43) 

where Kj is a parameter 

characteristic of each sublatti·ce th , e above eqn. can be written 

as 
1 

2 
( C C S S 

QI: qj K· + qJ· KJ· ) 
jEIIb J 

1 
(5-44) 

The energy which is solely due to the polarization terms is, 

thus, estimated analytically and the sum over all lattice ions 

converges as 
1 

R4 

5.3.5 Minimisation Techniques: 

The equilibrium configuration of a lattice in the presence of 

defects is calculated by minimising the energy of the defect 

lattice. The minimisation may be performed in two ways: 

(a) Minimisation of the total energy, E(x), with y taken as 

an e xplicit function of x, is carried out by solving the eqns. 

dE 
= 0 (5-45) 

dx 

Here the use of total derivative equations implies rigorous 

differentiation of the y - which are implicit functions of the 
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x's, the displacements . . 
in region I. Although this approach is 

consistent it is difficult to apply. 

E (X) 

which 

The complicated nature of 
effectively precludes 

any analytic evaluation of dE/dx 

is a necessary step in the application of fast nume1·ical 

methods to the optimisation problem. 

(b) Minimisation of the energy of the defect lattice and the 

equilibrium co11£1·gu t· ra ion may be obtained through solving the 

partial differential eqns. 

OE 
= 0 . 

2> x y=const. 
(5-46) 

These eqns. are satisfied only when the force on each ion is 

zero. This force balance relation is used in the program 85 to 

calculate defect energy. It is found that for a sufficiently 

large size of region I, the equilibrium configurations estimated 

on the basis of both the above two methods are essentially 

equivalent. For simple defects the displacements in region II 

are left unchanged throughout the minimisation. But in case of 

more complex defects with substitutionals or interstitials which 

may be displaced during the minimisation, the forces 

may vary appreciably with the change of the defect configuration 

and the corresponding displacements are then recalculated each 

iteration. An important feature in the use of computational 

methods in these calculations is the efficiency of the numerical 

minimisation methods. 
The numerical problem is essentially an 
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optimisation Problem . There are several approaches, mainly in 

three classes to treat thi's optimisation problem. These are (a) 

direct searches, 1· 11 wl · h ( · bl 11c Ex) is evaluated for many possi e 

displacements; (b) conjugate-gradient methods, which evaluates 

first derivatives 

and which, 

OE 
ox 

after each iteration, concentrate on those 

displacements which appear to offer the largest energy reduction 

at the next step; and (c) Newton-Raphson methods, in which both 

first and second derivatives are used. 

In the simplest Newton-Raphson method, expansion of the 

function about any point x to second order is made and then the 

minimis ation of the function to this order is carried out. 

Thus, 

E ( X * ) = E ( X ) + g . 6 + 1 / 2 6 . . T W . o 

OE 
where g = 6 = x* - x and 

ox 

(5-47) 

(5-48) 

Here, the superscript T denotes the matrix transpose. E(x) has a 

minimum when g=-W.6 and hence the optimum displacement is 

evaluated from 

If the energy is perfectly harmonic, then eqn. 

(5-49) 

(5-49) would 

immediately yield the equilibrium positions for the components of 

the crystal. However, this assumption is only partially correct 
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a nd so values of O must be repeated through several iterations to 

obtain an overall minimum in the function. Updating of the 

coordinates res lt u s in a configuration closer to the minimum. 

The co:::-1di tion for reachi' ng th • i · b • f. · · that e equ1 1 r1um con 1gurat1on is 

the displa~ 2 ments between successive iterations are less than a 

present accuracy factor. 

The method is extremely efficient and it ~equires few 

iteration to perform minimisation, but it has also derious 

difficulties which severely limit its use. The method is 

unstable if the matrix w is not positive definite. It also ' 

requires a large amount of computer storage to preserve the 

matrix. In addition to this, computation time is the central 

problem associated with the method. There is also a practical 

difficulty that the calculation of the second derivative of the 

lattice energy for an arbitrary lattice configuration is 

extremely tedious. 

The problem of excessive computer time is removed through the 

86 procedure of Fletcher and Powell . The matrix of second 

derivatives (second derivatives of the energy with respect to the 

· lattice relaxation variables) after initial calculation, is 

updated at each iteration without recalculation and conversion. 

At each iteration a better geometry is calculated. The new 

coordinate positions for the *th iteration are then estimated 

using the Hessian, 

H = w- 1 and are given by 

X* = X - H. g 
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If His positive definite and the step reduces the function so 

that E ( x*) < E ( X), then a bE-tter approximation to H evaluated at 

x* can be estimated on the l)asi·s of tl1.~ ~ new gradients g-Jc, 

by: 

H 'k = H + 
T H.6g.6g .H 

T og .H . og 

where o = x* - x and 6g = g* - g 

(5-51) 

given 

Using the appropriate substitutions in (5-51) the new 

coordinate positions for the (*+l)th iteration can be evalua ted. 

Reinversion of W is performed after a specified number of 

iterations in order to maintain accuracy and the process 

continues until the equilibrium configuration is reached. This 

fast matrix method discussed by Norgett and Fletcher87 , is used 

to carry out minimisations which combine rapid convergence with 

reasonably low computer time per iteration. An important feature 

associated with the method is the time required for calculation 

is only a slowly varying function of the number of variables and 

this makes feasible calculations on large low symmetry defects. 

5.3.6 Displacements in Region II: 

one of the most important factors to be considered to start 

the iterative relaxation is the displacements in region II. In 

the present potential model only the shells are massless and 

follow a high frequency electric field. If the matrix R is the 

repulsive part of the dynamical matrix and if K is a diagonal 

matrix containing the spring constants for each ion of the 

sublattice then the change in repulsive energy per unit cell i s 

given by 

109 



A u R = 1 / 2 ( XS) T . ( R + K) . XS 

(5-53) 

where xs is the vector of shell displacements for the unit cell. 

If the displacements are due to the effective electric field 
eff t · 

E ac 1ng at each ion then the total energy change is given by 

(5-54) 

Here qs denotes vector of the shell charges for the unit cell. 

The equilibrium solution for the displacements in the 

effective field is then given by: 

(5-55) 

To eliminate Exeff conveniently, the Lorentz field expression 

for Exeff is used. This is valid for a cubic material and gives 

an expression for the displacements, 

dielectric constants. 

The polarization Px is given by: 

1 
{(gs) T (R + K).:.l s 

Px ::; . q } 
V 

eff 
4n 

Ex = Ex + Px 
3 

ecc + 2 
= Dx 

3ec;r 

The displacements are, then, expressed by 

ea + 2 
s K)-1 s Dx X = ( R + q 

3ea-
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s 
X ' 

E eff 
X 

in terms of the 

(5-56) 

(5-57) 



where, D x: = 4rtP 
ea 

X (5-58) . 
ea- - 1 

It is known that in a static field, the displacements of 
cores also take place d an the associated total energy change is 
given by 

6. u = - { ( qc ) T . Xe + ( qs ) T . XS} Exe ff + 

1/2 ( XS) T • R XS + 1/2 ( xs-xc) T . K. ( xs-Xc) 

(5-59) , 

Finally,the r e laiion describing the displacements is, then, 

given by 

V R,-1 . Q 
X = 

4n T -1 
Q . R . Q . 

where 
(5-60) 

·( 
C 

) ( :: ) q 
Q X = s q ' 

and 

(_: -K J R' = 
K + 

5. 3. 7 Description of the Co111puter Progr<?-!~: 

The method employed in the prograrn85 to calculate defect 

energies is based 011 the division of the . lattice into two 

r~gions, as described"earlier, the outer has been .treated by the 

Mott-Littleton approximation and inner by the explicit 

minimisation techniques. The program requires, as data, a 

specification o f the: lattice stn1cture, an initial defect 

configuration so that th t::: symmetry is retained throughout the · •··· 
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min1misuL.Lou, :;1;0cit1cut:iu11:.. l ,t n.'.yiu11::; I dllc.l II, aud pctrameten; 

to describe tlie crystal potential . calculations are performed by 

the program, on the basis of shell model. The program yields 

values of the rigid la t tic E energy for the defect, i.e. the 

energy before lattice relaxation and then the relaxation is 

calculated using the minimisation procedure about which a 

description has bee11 presented earlier. Finally, the total defect 

energy, and the shell and core co-ordinates of ions in region I 

and II are obtained. 

Detailed specification to run the program is given by 

88 
Rowell . The reported calculations were carried out on an IBM 

4331 machine. It is to be noted here that due to the rather 

considerable storage required by the program, mainly due to the 

size of the mat~ix H, ct larye system was needed to work with the 

program. 
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CHAPTER 6 

CALCULATIONS,RESULTS AND DISCUSSIONS 

6.1 Parameters of the Present Model: 

The potential which has been designed in the present study 

consists of short-range (SR) t · and po ent1als, e.g.$++,~--, 

~+- for the perfect lattice. Parameters are needed for these SR 

terms and the shell model description of polarization. They are 

derived and discussed as follows: 

The two-body interionic potential, u must satisfy the 

following conditions 25 , 29,57,64,89-93: 

(i) Equilibrium condition: 

dU 
= 0 

dr r=ro 

(ii) Elastic constants: 

(6-1) 

The second order elastic constants, C11 and C44 given by the 

eqns. (4-13) and (4-15). 

(iii) Dielectric constants: 

The static and high frequency dielectric constants, _eo and e« 

presented by the eqns. (3-42) and (3-43). 

(iv) Anion Polarizability: 

The anion polarizability, a2 given by the relation (3-45). 

The eqns. which are satisfied by the potential represent six 

conditions. In . the absence of the knowledge of many-body 

correction terms, c 12 is not included in the fitting procedure. 

since the dielectric properties are not affected by the usually 

considered deformations in the many-body contributions there is 
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no problem in using th ese properties. The present work is 
concerned 

and NaD. 

given by: 

with the study ff o our compounds, e . g. LiH, LiD, 

The parameters associated with the eqns. are, 

4B+-, 4B--, 4B++, 4a+-, 4a __ , 4a++, 4Y1, 4Y2, 4K1, and 4k2 

NaH, 

then, 

The total number of parameters to be determined is, thus, 40. 

Therefore, for the evaluation of the parameters at least 40 

properties of the crystals are required. Although observed values 

of elastic and dielectric constants for LiH and LiD are 

available, these are lacking for heavier hydrides and deuterides. 

Therefore, some additional assumptions have to be made with a 

view to eliminate or fix some of the parameters and reduce the 

number to that value for which the system becomes solvable. 

6.1.1 Reduction of the Parameters: 

The like ion cation-cation potential has been obtained by 

applying electron gas theory, a descriptioi of which has been 

given in the next section. The anion-anion interaction (H--H-) 

was assumed to be independent of crystal environment. This 

should not lead to any serious· error as the ionic separation 

varies by atmost 20% from one crystal to another . An account of 

how this interaction was obtained is presented in section 

6.1.2(a). These non-empirical calculations with the above 

assumption reduce the number of parameters by 16 . 

The 
. + d N + . t k f shell charges of Li an a ions are a en rom Catlow 

et at. 22,23 where shell parameters are from a set in which each 

parameter is specific to each ion. In order to reduce the number 

still further the shell charges of H and D- have been taken to 
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be same, irrespective of whether H- /D- is in lithium or 
compounds. 

This is due to the fact that nuclear 
substitution has negligible effect upon polarizability. 

sodium 

mass 

The 

total number of parameters now becomes 15 
I e.g. 4B+-, 4a+-, 

2k1 a nd 4 k2. The number is again reduced by assuming the same 

value for spring constant, k 2 associated with hydrides and 

deuterides
9

, and finally there are only 13 unknown parameters. 

6.1.2 Evaluation of the Parameters: 

Two approaches have been used in determining the values of 

the unknown parameters. The first method is to theoretically 

derive the short-range parameters, a description of which is 

given below. The second method is through the procedure of 

empirical fitting which involves adjustment of parameters until 

the observed properties of a crystal are best reproduced. The 

technique employs a non-linear least squares procedure and is 

discussed later in this section 

(a) Non-empirical Methods : 

The work of Catlow et al. 22123 shows that the electron gas 

method gives adequate potentials for certain systems, but the 

procedure is developed on the basis of many approximations. In 

particular, the wave function does not include the effect of 

distortion of the ion charge clouds due both to the interaction 

between the two species and the environment of the solid. Both 

the two factors may considerably modify the wave functions of the 

ions, which in turn affect the calculated densities and then the 

interionic potential. A modified approach has been developed by 

Mackrodt ·and stewart94 and gives the solution of the problem of 
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interaction With crystal environment. They calculated the wave 

function for the · · t t · ions in the presence of the electros a ic 

potential which is found at the crystal site. Using the crystal 

adapted wave functions in the electron gas procedure they 

obtained potentials that were structure dependent and were more 

relevant to the solid state. Th l ' k · e 1 e 10n, cation-cation 

potential for NaH/NaD was obtained by ~pplying electron gas 

theory developed by Wedepoh1 62195 . The method of Harding and 

Hareker 96 
was utilized to evaluate the non-bonded + + Na -Na 

interaction in NaH crysta1 97 . The Li+-Li+ interactions were taken 

from the electron gas calculations of catlow et a1 22123 . The 

values are close to those of free Li+ -Li+ quoted by Wilson and 

Johnson5 . This is due to the fact that cations having tightly 

bound charge distributions will not be much affected by the 

crystalline field and hence show no appreciable change from their 

free ion radial density distribution ( and hence wave function). 

The approximation is therefore, taken to be reasonable. 

An attempt was made to evaluate the like ion anion-anion 

interaction by applying electron gas theory. A run of the 

electron gas code of Harding and Harker97 for this interaction in 

NaH gave values which was found to be not at all reliable. The 

calculations suggest that the short-range interaction is always 

attractive, even down to small distances. It approximately fits 
0 

a vdW expression in the range 3.0-3.6 A. The problem is probably 

the very diffuse H wave function. At likely interstitial 

position the total nearest neighbour H--H- contribution is found 

to be too large. Thus it is not clear that the electron gas 
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calculation approxim ti · · · · a on 1s particularly reliable in this case. 

Al th0Ugh some of the results of electron-gas calculation are 

encouraging one should emphasize that the theoretical methods for 

deriving electron gas model is crude 24 . A critical discussion of 

the electron gas density functional method has been given by Wood 

and Pyper 98 . 

Fisher et al.
4 

performed a quantum mechanical calculation of 

the two-body SR interactions in LiH by using determinantal wave 

functions consisting of various one-electron functions. They 

utilised determinants made up of screened hydrogenic wave 

functions. Using the same screened hydrogenic charge distribution 

for the ions, semiclassical interactions were also obtained. The 

Wedepohl type of semi-classical values of the H -H interaction 

were found to be ~40% too low compared to the diatomic quantum 

mechnical results. They also pointed uut that the finer details 

of the ionic charge distributions turn out to be not . very 

important when repulsive interactions are being calculated, and 

screened hydrogenic functions may yield adequately detailed 

charge distribution for the purpose4 . For various values of 

screening parameter 6 of the hydride ion, they obtained the H--H­

interaction. The smallest value, 6=0.68, corresponding to a free 

H--ion gives the most diffuse charge distributions and yields the 

most attraction. on the other hand, the most contracted H -

function with 6=0.95 results in the greatest repulsion. When 

relatively smaller screening constant than this is used, the 

results for the ranges of interest are somewhat similar to those 

obtained by 'crystal adapted I electron gas calculation of Pandey 
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and Stoneham 11 . Thus , the values of the screening parameter, 0 

has been chosen to be 0 _721 · t t·ons and the resulting in erac i 

obtained are well represented by a potential of type (3-61) with 

The anion-anion interactions of NaH has been evaluated from 

the material LiH owing to the fact that LiH has been studied 

extensively and its bulk properties are known very well. This 

interaction is assumed to be independent of crystal environment. 

As it is small at equilibrium anion-anion separation, it should 

not Cause ally . P d d d . 99 serious error. an ey an Haring 

calculations of defect structure of cas took s - s 

in their 

interaction 

from NazS by assuming ¢ss to be independent of crystal 

environment. several authors22 - 24 examined the possible use of 

common anion densities in series of similar ionic solids. The 

overall picture is that it can possibly be done with tolerable 

effect on various results of many systems. 

The non-empirical method has two great advantages over the 

empirical procedure discusse~ in the next section. Firstly, 

empirical fitting yields a reliable potential for interionic 

separations close to those observed in the crystal. However, the 

reliabilities of the potential for separations that deviate from 

this value is questionable. On the other hand, non-empirical 

potentials can be derived for a range of separations. Secondly, 

the whole approach of empirical fitting relies upon there being 

sufficient experimental data whereas non-empirical methods can be 

used to obtain potentials for materials for which little data is 

available. 
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(b) Empirical Methods: 

From a set of appropriate pair potentials for various 

interactions in a crystal, it is possible to calculate its 

propertieS, e.g. elastic, dielectric constants, phonon dispersion 

curves, etc. It is, however, important to note that the elastic 

and dielectric constants and the lattice vibrational frequencies 

do not depend on the inter-atomic potentials directly, but rather 

on first and second derivatives of the potentials with respect to 

the interionic separation. The extraction of information on the 

potential then requires the analytical form used to represent the 

interaction that reliably describe the variation of the potential 

with interionic separation. Cohesive energies do, of course, 

include direct information about the potential, but this is of 

limited value for the extraction of short-range potentials, · for 

the lattice energy is normally dominated by the coulomb term. 

Empirical methods adjust variable parameters in order to get 

the best agreement between calculated and observed crystal 

properties. An initial estimate of the parameters involved in the 

potential is made and then · the estimation of the crystal 

properties corresponding to the parameters is performed. The 

calculated and experimental properties are compared and the 

parameters adjusted accordingly using a non-linear least squares 

fitting routine 100 . The cycle is continued until the fitted 

parameters yield the best agreement between calculated and 

observed properties. 

rn the present study equilibrium condition (6-1) provides 

four eqns . . whereas C11, C44, ea, e~ (LiH) and a2 (NaH) gives 
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eight eqns. In the loast squar~es 100 ~ minimisation process 

value of k1 (Li+) was chosen first from 

y2 

a = 
k 

and using the free ion polarizability of Pauling101 . 

(6-2) 

Fowler 

the 

and 

Madden93 
showed that there is no significant difference between 

the free-ion and in-crystal polarizability values of cations like 

Li+ and Na+. Thus this, as has been shown later, does not affect 

the result in any way. The relation 

y2 
a = (6-3) 

k + R 
fitting k1 for N~ in NaH using was employed for TKS 

polarizability
52

. This approximate relation can be used for 

cations with small polarizability values because k1 is large 

compared to a 29157189
. The twelve eqns, were then utilised to fit 

the remaining 12 variables by keeping k1 (Li+) fixed at the above 

value. After a successful least-squares fit both the values of k1 

and + a(Na ) were varied in turn over a wide range to 

simulate any effect of crystal environments. The variation a(Na+) 

was made due to the fact that the crystal polarizability of Na+ 

in NaH may differ slightly from the TKS value. The procedure left 

output p~rameters virtually unaffected and the results thus 

obtained showed no noticeable change as expected. The sign of the 

anion 

charge 

shell charge is negative as expected but the cation shell 

taken from Catlow et al. 22123
, could be positive because 

of . t ' 102 overlap polariza ion A positive cation shell charge has 

also been obtained in a fitting by Pandey and Stoneham11 . The 

results of non-empirical calculations and empirical fitting 

procedures are shown in tables 6.1 and 6.2. 
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TABLE 6.1 

Short-range potential parameters for interaction 
between ion-pairs 

Source Inter­
action 

Li-Li 

Li-H 

Li-D 

Na-Na 
Present1 ' 

Na-H 

Bowman 2 ) 

Na-D 

H - H 

Li-Li 

Li-H 

Li-D 

H-H 

D-D 

Na-Na 

Na-H 

Na-D 

H-H 

D-D 

B 
(eV) 

C D 8 (ev-'1.6 ) (ev,A) 

7.3314 1153.80 0.0 o.o 

3.1000 187 . 29 0.0 0.0 

3 . 0915 181.93 0.0 0 . 0 
/ 

6".5232 1225293.0 0.0 0.0 

2.7966 233.82 0.0 0.0 

2.7659 216.81 0 . 0 o.o 

5.5411 915.50 4.986 0 . 0 

2.1598 15.98 0.05 0.02 

2.1598 30.69 0.52 0 . 61 

2.1598 30.34 0.52 0 . 61 

2.1598 54.61 13.94 28.25 

2.1598 53.99 13.94 28.25 

2.1598 61.00 3.29 2.21 

2.1598 59.95 4.40 5.93 

2.1598 59.27 4.40 5.93 

2.1598 54.61 10.81 21 . 88 

2.1598 53.99 10 . 81 21 . 88 

1) Experimental values of C11, C44, EQ, ea:{LiH), 

a
2

(NaH) employed in the fitting procedure are 

11 d92 
from an 

2) The potential parameters were obtained in this 

35 
form using published data 
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TABLE 6.2 

Shell parameters 

Source Ion Y(e) k(eV/ft. 2 ) 

Li 0.705 250.00 

Na 2.128 252.91 
Present 

H/D -0.9999 3.23 
(LiH/LiD) 

H/D -0 . 9999 5.03 
(NaH/NaD) 

Li(LiH) 0.998 40.08 

PSl) 
H -1.005 4.24 

Li(LiD) 0 . 998 40.99 

D -1.005 4.03 

1) Ref. 11 

122 



6.2 The Perfect Crystal: 

6.2.1 Static Properties: 

It is known that an accurate form of interionic potentials 

plays an important role in the study of structure and dynamics of 

ionic crystals. This part of the thesis is concerned with the 

static properties calculated on the basis of the 

potential. 

derived 

The utility of the potential can be assessed in two ways: (i) 

directly by comparing with experiment or (ii) indirectly by 

comparing with alternative or previously derived potentials. 

several physical quantities were estimated on the basis of the 

potentials which have been derived in the present study. The 

quantities calculated are: lattice cohesive energy Uo; the second 

order elastic constants, e.g. C11, c 1 2, and c 44 , static and high 

frequency dielectric constants (Eo and E~ ), and transverse optic 

frequency C,J0 • Values for the above quantities were also 

calculated utilizing two other potentials, e.g. Bowman and 

Hs35136 and shown in Table 6.3. The available experimental data 

are also collected in the same table. The table shows that there 

is a reasonable agreement between the calculations performed in 

the present work and experiment where these are available. Since 

coulomb-contribution dominates, agreement with Uo does not 

provide sensitive test of the SR potentials. Thus although the 

Bowman potentials yield good cohesive energy, these fail to give 

reasonable values (computed by the author) for both elastic and 

dielectric properties. For example, the computed C11 for LiH is 

found to be negative. The HS potential (fitted exactly for e
0 

and Eoe) gives very high values of elastic constants. The • 
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computed value of c 11 for the same compound is 40% higher 

compared to the observed value. on the other hand, the potential 

derived in the Present study yields a value in reasonable 

agreement with experiment. c 12 is overestimated and the Cauchy 

relation is obeyed since the potential used is central. This has 

to be allowed owing to the fact that there is uncertainty and 

inconclusive evidence for many body effects. 221231103 . rt may be 

mentioned here that even the model of Verble et a1 . 12 and Jaswal 

et al.
6 

underes timates or overestimates the values of C12, 

respectively. 

The estimated £ 0 with Bowman potentials (using shell 

parameters from the present work) are found to be negative for 

all the compounds. On the other hand, the present potential 

produces £ 0 , £o<:. and W0 reasonably well for 

The calculated values of these quantities 

lithium 

for 

compounds. 

the sodium 

compounds when compared to those of Hs 36 using S-A scheme are 

found to be very reasonable. It is to be noted that S-A 

reproduces dielectric properties well. 

From a study on the interionic potential for alkali metal 

chloride, Corish et al. 25 suggested that the best effective 

potential is obtainable by fitting simultaneously the bulk 

elastic and dielectric properties . Further, they pointed that the 

best potential should ignore many-body forces and hardening of 

the short-range interaction between unlike particle shoulkd be 

made by completely neglecting the vdW effects. The initial 

qualitative agreement with experiment indicates that the present __ _ 

potential with the above characteristics is suitable (discussed 

later) for defect studies also . 
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TABLE 6.3 

Prope1·ties of LiH, LiD, NaH, and NaD crystals. 

Properties Values 
Source 

LiH LiD NaH NaD 

Present 2. 0 ,117 2.0346 2.44 2.434 

ro Bowman 2.0420 2 . 0340 - 2.44 2.434 

( Al HS 2.0420 2.4836 

PS 2.0417 2.0324 

Exptl 1 
2.0417 2.0346 2.44 2.434 

Present -10.38 -10.41 -8.81 -8.81 

Uo Bowman - 9.73 - 9.76 -8.46 -8.48 

(eV) HS -10.22 -8.36 

PS -10.36 -10.43 

Exptl 1 ) - 9 . 44 - 9.63 -8.21 -8.25 

Present 7.89 7.86 4.73 4.60 

C11 Bowman -1.27 -1.41 1. 30 1. 24 

·. 11 
(10 dynE:s/ HS 10.25 5.27 

.. ,: . 

2 cm ) PS 7 . 98 7.78 

Exptl 1) 7.41+0.2 7.68±.0.2 

Present 4.43 4 . 49 2.25 2.28 

C12 Bowman 6.38 6 . 46 3.20 3.23 

(10 11ctynes/ HS 5.21 2.14 

? 
cm~) PS 4.59 4.67 

Exptl 1 ) 1.42+0.03 1.51+0.03 -

.contd. 

1 2 5 



Properties source 
Values 

LiH LiD NaH NaD ---------·-·-·--- -------------
Present 

C,14 Bowman 

PS 

4.41 

7.02 

5.67 

4.57 

4.47 

7.13 

4.67 

2.25 2.27 

3 . 32 3.36 

2.14 

E:>{ptl l) 4 .84±0.18 4.94+0.18 

Pnc!sent i3. 65 

BOWillaf1 
2 ) -A . 91 

HS 13.45J) 

PS 13.92 

14.46 

-4.84 

14.78 

9.94 10.66 

-9.37 -9.08 

10.68 

Exptl 1 1 2.9+0.5 14.0+0.5 

Present 3.61 

Bowman 2 ) 8 • 4 9 

HS 3.61J) 

3 . 67 

8 .7 9 

PS 3 . 32 3.45 

2.22 2.25 

2.60 2.62 

2 . 47 

Exptll) 3.61+0 . 5 3.63+0.5 

(,)04) 
Pn::sent 

14 -1
88 

(10 sec ) 
PS 

1 Exptl 

11 12, 35 
1) Refs. ' 

0.855 0.629 

1.1153 ) 

0.868 0.635 

1.115 0.860 

0.7999 0.559 

0.870 

2) using shell parameters from the present work . 

3) Fitted exac tly. 

4) ~O v al u es with Bowman potential not reported 

because 0 0
2 were all negative. 

126 



6.2.2 Dynamic Properties: 

This sub-section is concerned with the phonon dispersion 

relations for all the four compounds based the present on 

potential. The curves representing the dispersion of phonons 

along the principal symmetry directions are depicted in figures 

6.1-6.4. Due to the non-availability of observed data for LiH, 

NaH, and Nao, the calculated frequencies are compared with those 

9 
obtained by DJ (based on the force constant model). The shell 

parameters of thE,ir model have been deduced from the force 

constants and the ionic charge o f their best fit model DDM 13 for 

LiH/LiD. From fig. 6.1 (LiH) it is seen that although the 

dispersion curves for LiH in the optic branch bear little 

resemblance to those calculated by DJ, they are in good agreement 

in the acoustic branc h. In the optic branch, the calculated 

frequencies are smaller throughout the zone whe1·eas in the 

acoustic branch the agreement is much better e~cept near the zone 

boundary. Figure 6.2 displays the phonon dispersion curves for 

LiD. From the fig . it is observed that, in spite of some 

discrepancies associated with.the curves in the optic branch the 

agreement of the present calculation in the acoustic branch is 

excellent with the experimental values However, it is 

interesting to note that the agreement of the frequency ratios, 

W(LiH)/W(LiD) as shown in Table 6.4, when compared with those 
1 ') 

from the lattice-dynamic calculations of Verble et al. ~ based on 

shell model fitted to experimental neutron data, is amazingly 

well. The figures 6.3 and 6.4 consist of the phonon dispersion 

curves for the hydride and deuteride of sodium. From these two 
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TABLE 6.4 

Frequency ratios W(LiH)/W(LiD) for r, X and 
L point phonons of LiH and LiD. 

Phonon Source 
branch 

LO Present 

TO 

LA 

TA 

PS 

VWY 

Present 

PS 

VWY 

Pres (~nt 

PS 

VWY 

Present 

P S 

VWY 

11 
PS : Ref. 

12 VWY: Ref. 

r 

1. 33 

1. 35 

1. 33 

1. 35 

1.36 . 

1.33 
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X 

1. 31 

1. 38 

1.39 

1. 41 

1. 42 

1. 39 

1.08 

1. 04 

0.99 

1.00 

1.00 

1.00 

L 

1. 21 

1. 43 

1. 40 

1. 42 

1. 44 

1. 40 

1. 16 

0.99 

0.97 

1. 01 

1. 01 

0.97 
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curves the discussion can be presented as follows: 

(a) The increase in the mass of the vibrating cation yields 

somewhat flatter curves. o th n e other hand, 

influences the acoustic branches, these branches fall in the same 

frequency range. 

(b) The phonon dispersion curves for the hydrides differ 

from the ones for the corresponding deuterides in the optical 

mode only, the frequ.ency of which can be calculated from 

(c) The influence of sodium polarizability ( aNa >> a1 i) can 

be seen in the lowering of the longitudinal branches in the [100] 

direction near the zone boundary. 

(d) In the present model like-particle interactions are 

rather small.· Despite the differences between the L .+ L .+ 
1 - 1 

interaction and an unexpectedly strong interaction found by DJ9 , 

there is similarity of interaction strengths between other second 

neighbours. Thus, the dispersion.curves presented here are mainly 

determined by the nearest neighbour interactions and also the 

effects arising from the electronic polarizability of ions. It is 

worth mentioning that the model is a simple one and is not like 

the complex lattice dynamical models specifically introduced to 

explain only the neutron data. However, one has to await future 

experimental investigations in order to make further comments 

regarding the dispersion curves. 
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6.3 The Defect Lattice: 

The results obtained in the present study on various 

based on th e derived potential are displayed in 

defect 

tables 

other 
6.5-6.13. The available observed data as well as 

theoretical est imates are also listed in these tables. 

The defect formation energies along with the first nearest­

neighbour shell displacements are shown in Tables 6.5 and 6.6. 

From Table 6.5 it is seen that the extraction energy of a cation 

is less than the excraction energy of an anion. This is due to 

the fact that in these lithiun1 c.1nd ~;octium ionic crystals the 

anions are larger in size than the cations and hence the 

polarization energy associated with the cation is more negative 

than the polarization energy for the anions. From the table it 

appe_ars that the difference between the vacancy 

energies for cation and anion associated with the 

compounds is smaller than those of lithium compounds. 

formation 

sodium 

This is 

owing to the smaller differences 1n ionic: radii of the sodium 

compounds in comparison to that of lithium values. The table 

also shows that in case of a cation vacancy the shell of the 

first-nearest-neighbour displaces through a much smaller distance 

in comparison to that of an anion. As the vacancy energy of a 

cation is less than that of an anion it can be inferred from this 

that due to the mismatch in size of the ions the cation vacancies 

are more probable in crystals under study. 
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TABLE 6.5 

First-Nearest-Neighbour shell Displacements, 
Extraction Energies and Lattice Energies 

Compound 

LiH 

LiD 

NaH 

NaD 

Vacancy 

Li 

H 

Li 

D 

Na 

H 

Na 

D 

First-Nearest­
Neighbour Shell 
Displacement* 

0.020 

0 . 650 

0.0~0 

0.650 

0.010 

1.490 

0.010 

1 . 500 

f 10-3 r * In units o o 
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Defect 
Energy 
( eV) 

5.882 

6.037 

5.876 

6.034 

5.169 

5.222 

5.138 

5.192 

Lattice 
Energy 
(eV) 

-10.372 

-10.395 

-8.804 

-8.805 



From Table 6.6 it is seen that interstitial formation 
energies are negative. Th ' . 

is is _owing to the strong polarization 

in the lattice caused by th • 
e interstitial charge. In addition to 

th161 van der Waals terms make a negative contribution . In case 

of an interstitial, the shell ' of the first-nearest-neighbour 

displaces, as shown in the Table, through almost the same extent 

with respect to both cation and anion. 

The study of defect calculation involves consideration of the 

size of the inner region; in this respect, an exercise was 

carried out with different sizes of the region. rt is seen from 

table 6.7 that for the cation vacancy of a compound, e.g. LiH, 

the formation energy was found to change by ~1% due to the 

increase in size from 20 to 118 ions; the change was less than 

0.2% if the size is changed from 82 to 118 ions and after that 

there is practically no change in the energy values . In case of 

an anion (table 6.8) the variation of the values with respect to 

the size of region I was exactly the sam~ as chose obtained in 

case of cation. For the estimation of lattice vacancies of the 

ionic crystals under study it is, ther~fore, sufficient to 

include eo-100 ions in the inner region. The errors in the 

calculations with this region size are smaller than the absolute 

errors in the defect energies which arise from other inadequacies 

in the model used. The size of region Ila has also been chosen in 

such a way that has only a negligible effect on the calculations. 

For interstitial formation energy, as it is seen from tables 

6.9 and 6.10 

around 100. 

the number of ions in region I should also be 
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TABLE 6.6 

First - Nearest-Neighbour Shell Displacements 
and Interstitial formation Energies . 

Compound 

LiH 

LiD 

. NaH 

NaD 

Inter-
stiti3l 

Li 

H 

Li 

D 

Na 

H 

Na 

D 

First-Nearest-
Neighbour Shell 
Displace111ent * 

0.97 

0.97 

0.99 

0.97 

2.17 

2.27 

2.17 

2.25 

0-3 ro * In units of 1 
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Defect 
Energy 
(eV) 

- 3.118 

-3.365 

-3.149 

-3.400 

-2.366 

-2.595 

-2.419 

-2.645 



TABLE 6.7 

Cation Vacancy Formation Energy (eV) 

Compound Number of Ions Values 
in Region I 

20 5.954 

LiH 34 5.900 

82 5 . 882 

118 5.893 

1 1! 8 5.893 

20 5.948 

LiD 34 5.895 

82 5.876 

118 5.888 

148 5.887 

20 5.229 

NaH 34 5.185 

82 5 . 169 

118 5.177 

148 5.178 

------------
NaD 

20 5.198 

34 5.152 

82 5.138 

118 5.145 

14 8 5.146 
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.., 

'l'ABLE 6. 8 

Anion Vacancy Format:Lon Energy (eV) 
-------·----------·--------·------·-

LiH 

20 

118 

148 
-------------·-----

LiD 

NaH 

NaD 

20 

34 

82 

118 

148 

20 

82 

118 

148 

20 

34 

82 

118 

148 

139 

6.106 

6.055 

6.037 

6.049 

6 . 049 

6.104 

6.052 

6.034 

6 . 046 

6.046 

5.277 

5.237 

5.222 

5.230 

5.232 

5.246 

5.206 

5.192 

5.200 

5.201 



TABLE 6.9 

Cation Interstitial Formation Energy 

compound Number of Ions 
in Region I 

LiH 

LiD 

NaH 

NaD 

22 

58 

78 

114 

15 0 

22 · 

58 

78 

114 

150 

22 

58 

78 

114 

150 

22 

58 

78 

114 

Values 
(eV) 

-2.832 

-3.123 

-3.118 

-3 . 127 

-3.141 

-2.859 

-3.154 

-3.149 

-3.158 

-3.172 

-2.060 

-2.370 

-2.366 

-2.378 

-2.390 

-2.101 

-2.-'117 

-2.413 

-2.425 

-2.438 150 -----------------
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TABLE G.10 

Anion Intei:sti t 1a:L Formation En21-gy 

Compound NumhE•r of Ions 
in Rec;i0n I 

LiH 

LiD 

NaH 

NaD 

58 

114 

150 

22 

58 

78 

114 

150 

22 

58 

78 

114 

150 

58 

7 fl 

114 

150 

Values 
(eV) 

- 3.108 

-3 .369 

-3.3 65 

-3 . .373 

- 3.385 

-3.140 

-3.405 

-3.400 

-3. 408 

-3.4 21 

-2.395 

-2.595 

-2.595 

-2.601 

-2. 601 

-2.442 

-2.646 

-2.645 

-2.651 

-2. 660 



The Schottky and F 
renkel defect energies, Es and EF of a 

compound are estimated 
using the relations : 

ES :: Ev+ + Ev- - EL and 
EF+ = Ev+ + Ei+ -

where Ev+ and Ev- are the defect energies associated with the 
extraction of a cation and an anion from the crystal 

respectively. Ei+ is the interstitial formation energy for the 

cation(anion) and EL is used to denote the lattice cohesive 

energy. 

Table 6.11 gives the Schottky, Frenkel, and antisite-pair 

defect energies. Schottky pair formation energy involves 

consideratiqn o f calculated value of lattice energy. The 

estimated latt i ce energies (for full ionic value, Z==l) for the 

lithium compou~ds differ from experimental values by 0.86 ev. 

This is reflec ted in the calculated Schottky energy and it is 

seen that the values of lithium compounds are lower than the 

reported data. The calculation shown under PS in Table 6.11 are 

much smaller than their earlier reported values11 . This is 

because Pandey and Stoneham111104 used experimental rather than 

calculated cohesive energies in deducing the defect energies. 

The calculations, here, for lithium compounds give slightly 

better agreement with the experimental results than 

achieved by Ps 11 . 
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TABLE 6.11 

Intrinsic Defect Energies ( eV) 

Properties Source 

Schottky Present 

Pair PS 1 

Exptl 

Frenltel 

Pair 

Cation Present 

PS 

Anion Present 

PS 

Antisite Present 

Pair .PS 

LiH 

1. 55 

1.49 

2.30±0,3 2 

2. 33+0 ·. 01 

2.76 

2.72 

2.67 

2.70 

8.10 

7.81 

Values 

LiD NaH 

1. 52 1. 59 

1.48 

3 
2.40+0.01 3 

2.73 

2 . 65 

2 . 69 

2. 61 . 

8.03 

7.98 

2.80 

2.63 

7.70 

NaD 

1. 52 

2.72 

2 . 55 

7.54 

(1) ps1 incorrectly reported these values as 2.42 ev 

and 2.29 ev, respectively. They used experimental 

rather than calculated cohesive energies. (Private 

communication with Dr. R. Pandey
104

) 

109 
(2) Ref. 

110 
(3) Ref. 
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From an observation of the e xperimental results of the 

Schottky defect eneruies for 
~ alkali halide it is s een that for a 

particular alkali metal the r.lefcct ct· ~ energy of the correspon ing 

halide increases in the seque nce I--~ Br--+ Cl-~ H-~ F-. A 

number of res 0 -r· 1 · · c!d c H:i:s wo1·ke:·d on the chipcnclence of the schot tky 

energy on the lattice properties and presented empirical 

expressions relating the defect energy with properties of the 

lattice involving numerical constants. According to Pathak and 

vasavacla105 

Es= 3.4 X 10-lJ V/X (6-4) 

where V is the mole volume, and x, the compressibility. The 

estimated Schottky defect e11ergies using the above relation for 

the hydrides and deuterides of lithium and sodium are 1.18, 1.17, 

1.13, and 1.11 ev, respective ly . on the other hand, Shukla and 

~ansigir106 presented a relation: 

Es = ro 
3 

X Hv/1650 (eV) (6-5) 

where ro is the lattice constant and Hv denotes Vickers hardnes s . 

This relation also yields un8at~sfactory results for the Schottky 

def ect energies for alkali halides of NaCl structure. Likewise, 

1
- 107 

according to Bo lmann 

ev mol 
E,, = 0. 08 2 9 .~ L ( 6-6) 

kJ 

wh~re 1 is the heat of fusion. on the basis of this expression 

the estimated Es values are ·1.89 and 1.86 ev, for the li t hium 

hydride and lithium dEuteride, respectively. Thus, it is seen 

that the calculated defect energies ( whether one uses rough 

] l
·e·l'-'tl· 0 1, or de taile:d calculation ) are always less than 

empiric a. •• 1 
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the experimental values. 

are not general formulae. 
This is because the empirical relations 

The relation (6-4) holds only for some 

of the alkali halides in the ri' ght manner. 1 t · Although the re a ion 

(6- 4 ) shows Es ~ro-
1
,(as v ~ ro 3 and x ~ r

0
4J, the dependence is 

not strictly borne out experimentally. The relation (6-5) is 

also not suitable for all the compounds as the hardness which is 

influenced by the degree of purity of the crystal is not a real 

constant. Likewise, the numerical constant of relation (6-6) may 

be different for different compounds. on the other hand, 

estimation of Schottky defect energies using detailed calculation 

also yields a lower value. The reason is that the expression for 

Es involves calculated lattice energy which turns out to be 

always larger for a fully ionic (Z=l) crystals. If one assumes a 

95% ionicity, then the calculated E1 is closer to the 

experimental data. This in turn reproduces a value of Es closer . 

to the experimental one. 

rt is known that NaH decomposes before melting and the 

temperature at which decomposition occurs is aoo
0 c. It can be 

inferred that the calculated ·Schottky energies for sodium 

compounds have the expected values based on the Es versus Tm 

. . l 108 
relationship and the corresponding Li-va ues 

Because of the paucity of experimental data for the Frenkel 

formation and antisite pair defect energies for all the four 

compounds, no useful comparison of these values seems possible. 

It is significant, however, that the calculated formation 

energies of Schottky pair are noticeably lower in comparison to 

both the Frenkel pairs. These confirm the suggestion of ps11 
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that vacancies, 

common defect 

rather than interstitials, will be the most 

species in these crystals. From the result of 

antisite-pair defect energies 1.·t • 
is seen that the values are very 

high. It predicts th t a as the cations and anions in these 

compounds are of different sizes, the interchange of sites is 

leaS t possible and hence this type of defect is unlikely to be 

observed. 

The energy for vacancy migration is defined as the difference 

in the energy of the crystal in the saddle point configuration 

and the energy of the solid containing a s i ngle vacancy. In other 

words, it is given by the difference between the energy to 

extract two next nearest neighbour ions and to introduce one of 

them into the saddle point configuration between the two 

n~ighbouring vacancies and the energy to extract a single ion 

from a perfect crystal. 

The migration energies for the movement of an ion by vacancy 

and interstitial mechanisms are calculated from: 

Emv(i) = Esv(i) - Ev(i) 

where Esv(i) is the saddle point energy for the vacancy 

vacancy (interstitial) mechanisms. Ev ( i) represents 

(interstitial) formation energy. 

Table 6 . 12 presents results for cation and anion migration 

activation energies. It is observed that our calculated values 

of the migration of cation by vacancy mechanism in the lithium 

compounds are both equal to 0.43 ev. Though the results are 

slightly larger than those obtained by PSll they are smaller when 

compared with the available experimental data. It is 
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TABLE 6.12 

Activation Energies for Migration (eV) 

compound Source Values 

Vac.3.ucy Interstitial 
Mechanism Mechanism 

LiH 

Li+ Present 0.43 0.17 

PS 0.42 Q.17 

Exptl 0.54±0,021 

H Present 0.43 0.18 

PS 0.40 0.19 

LiD 

Li+ Present 0.43 0.17 

PS 0.33 0.18 

Exptl 0.52+0.0l 2 

D Present 0.42 0.18 

PS 0.32 0.17 

NaH 

Na + Present 0.44 0.15 

H Present 0.43 0.16 

NaD 

Na + Pre s ent 0.43 0.15 

1' - Present 0.42 0.16 

( 1) Ref . 109 

( 2 ) Ref. 110 
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significant, however 
I that the analysis of the conductivity 

curves has 
been carried out taking cation vacancies 

species and treating th 
em as extrinsic defects 

as mobile 

due to the 

presence of divalent cation in the latticel09,110 The values in 

the present work, on the other hand, are for free cation vacancy 

migration, and hence the results, 111 as expected, are smaller 

Furthermore, analysis of the conductivity based on vacancy 

transport requires an anion vacancy activation energy that may be 

twice the cation value 112-114 In contrast, the anion 

activation energies reported by Ps11 and those in the present 

work are almost equal to the cation value. There is, in 

addition, evidence that the two vacancy activation energies are 

more nearly comparable: anion tracer diffusion measurements, when 

corrected for the divacancy contribution yields values which are 

similar to the cation results 1151116 , comparable and reliable 

estimates of anion transport are also obtained from conductivity 

measurements on materials which have been doped with divalent 

anions with a view to suppress the dominant cation 

contribution 117 . Beniere et al 118 also carried out research on 

both the diffusion and conductivity studies and presented similar 

values for the cation and anion activation energies. Thus, if 

the contribution in the conductivity is from both the vacancies 

with similar activation energies then the conductivity plot 

1 . hape This is contrary to experience and possesses a inear s • 

fails to separate cation and anion con~ributions in the curve. 

Hence the curvature in the plot requires some other explanation. 

ds t he activation energies for the For the sodium compoun 
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migration of cation and anion 
1
·n 

hydride and deuteride by vacancy 
mechanism are again comparable. 

The values for cation and anion 
migration energies for 1·nt · of 

erstitial mechanism in case lithium 

compou
nd

s are nearly same as those obtained by Ps11 . The 

corresponding values for sodium compounds are - 0.01 ev less than 

the lithium values. An examination of Table 6.12 further shows 

that although the Frenkel energies (Table 6.11) are higher, the 

activation migration energies in these compounds for both the 

ions by interstitialcy mechanism are significantly low. As the 

barrier heights for the interstitialcy mechanism are low, it is 

reasonable to infer following Ps11 that in addition to vacancy 

mechanism, interstitialcy also plays an important role in the 

conductivity at high temperature . 

The Arrhenius energies, EAv and EAr for diffusion are given 

by: 

and 

where 

EAv = Emv + 1/2 Es 

EAr = Emi + 1/2 EF 

EAv and EAI are associated with vacancy 

mode of migration, respectively. 

and interstitial 

Table 6 . 13 consists of Arrhenius energies for vacancy and 

f · t1·on From the comparison of the interstitial mode o m1gra • 

· Table 6.13 it is seen that our results for the values reported in 

lithium compounds are slightly better than those of 

h 1 d allies are smaller in comparison to the Te calcu ate v 

PSll,104_ 

available 

experimental data. This discrepancy is due to the lower values 

of defect energies which in turn are the results of the Schottky 

discussed earlier. Apart from Coulombic calculated EL values as 
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TABLE 6. 13 

Arrhenius Energies of Migration (eV) 

Compound 

LiH 

H 

LiD 

Present 

PS 

Exptl 

Present 

PS 

Li+ Present 

D 

PS 

Exptl 

Present 

PS 

NaH 

Na+ Present 

H Present 

NaD 

Na+ Present 

J) Present 

Values 

Vacancy 
Mechanism 

1.21 

1. 18 1 

1.70,;to.1 2 

1 . 1210.0053 

1. 21 

1.18 1 

1.19 

1.16
1 

l.695+0.0053 

1. 18 

1. 16 1 

1. 25 

1. 23 

1. 19 

1.18 

Interstitial 
Mechanism 

1. 55 

1. 53 

1. 52 

1. 54 

1. 54 

1. 51 

1.50 

1. 47 

1. 55 

1. 48 

1.51 

1.44 

(1) corrected values (See comment 1 of Table 6.1 ,1) 

109 
( 2) Ref. 

( 3) Ref. 
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interaction the nearest-nei'ghbour pairwise 

interaction. These forces are responsible 

force is the · dominant 

for the •similar values 

of activation and Arrheni· us energ1· es for cation and anion. Hence 
there is an _ambiguity in the assumption of immobility of anion 

vacancies in the experimental analyses109 , 110 . As the calculated 

Arrhenius energies presented in Table 6.13 are nearly equal for 

cation and ani·o · b h n in ot the lithium and sodium compounds, it 

again confirms the suggestion of Ps11 that the ratio of cation 

and anion contributions to conductivity will be temperature 

independent. Estimates of interstitial Arrhenius energies for 

all the four crystals in Table 6.13 show that they are slightly 

larger than the vacancy values. Thus, as discussed earlier, 

although the Frenkel energies are large, the interstitial is also 

very mobile because of interstitialcy migration. such a 

mechanism, in addition to vacancy mode of migration, presents a 

nearly linear shape in the conductivity curve. This sort of 

curve, in general, cannot be resolved in the analysis of 

conductivity curves associated with the ionic compounds. 

the 

An attempt was made to calculate various defect energies on 

basis of two more potential models, e.g. Bowman35 and Hs 36 . 

The exercise failed due to the invalidity of minimization which 

happens owing to the excessive displacements of shells caused by 

the potentials. Although the two potentials desctibe, to some 

extent, the lattice properties of these four lithium and sodium 

compounds, they are not suitable for defect studies. On the 

other hand, the present potentials are able to give a unified 

description of all the properties, e.g. static lattice, dynamics, 
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and defect properties of the lithium hydride and deuteride. 

Although we believe that the various defect energies and other 

calculated values for the heavier hydrides and deuterides are 

also of expected magnitude, their experimental results on the 

latter crystals are needed in order to make a fruitful 

comparison. 
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CHAPTER 7 

CONCLUSIONS 

We have made 
an assessment of the derived potential by 

calculating the properties of the perfect and defect lattices of 

the hydrides and deut ' d eri es of lithium and sodium. The present 

potential has had the greatest degree of quantitative success for 

uniformly describing the static, dynamic and defect properties of 

the compounds under study. Tl1is is in contrast to the previous 

potential models of Bowman35 and Hs36 which are partly suitable 

to reproduce the crystal data of alkali metal hydride and 

deuteride compounds. The former potentia135 fails to describe 

both the dynamic and defect properties and the latter 36 one is 

unable to model the defect lattices. Aithough the Ps11 potential 

d~scribes only the lightest of the hydrides and deuterides, the 

degree of success with the present potential is much better. In 

addition, the present potential model has been extended to the 

heavier hydride and deuteride. 

From the study of defect· lattice properties (Schottky, 

Frenkel, and anti-site pair defect energies, activation and 

Arrhenius energies of migration) based on the present potential 

it is predicted that as the Schottky pair formation energies are 

smaller this type of defect will predominate in these hydrides 

and deuterides of lithium and sodium compounds On the other 

h d · ·t pa1.· 1- defect energies are very high and hence this an, ant1.-s1. e 

sort of defect is least possible in the crystals under study. The 

estimated anion vacancy activation energies are smaller and 
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comparable wi th the cation values. The results, thus, obtained 

for the anion migration are insufficient to explain the reported 

curvature in ~he conductivity plotl09,110. The prediction for 

defect lattice, here, shows that interstitial as well as vacancy 

play a significant role for ionic conduction in all tl1ese 

crystals and the relative contribution of both the ions to 

conductivity in the intrinsic region is temperature independent. 

The parameters involved in the potentia l can further be 

refined if elastic and dielectric properties of heavier hydrides 

and deuterides are available. Thus, for a definitive study o f 

heavier alkali metal hydrides and deuterides the need for the 

measurements of other quantities, e.g., elastic and dielectric 

properties is stressed. 
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An intcrionic potential model is de;·~:0ped for lighter and hea\ier alkali h ydrides and deuterides. The 
method uses a combination of tbe0:::,ical techniques. ernpjrical fit. and a few plausible assumptions. 
An assessmec.: of the derive.: poter,:i.11s is made by Cc..lculating the lattice statics and dynamics of the 
crystals and 'b: comparing both "~:.:: experiment (where a,aila ble) and with other calculations. The 
P?tentia ls art found to de;.,.'Tibe ti:-e elastic and dieiectric properties reasonably well. The phono n 
d1spers1on cu:-ves of hydnde and de:::~ride of sodium are comp2.red with the calculations of Dyck and 
Jex based or: force ·constar.t mod~: a i:,proach and tbe result.5 are discussed. The need for further 
experiments o:i· heavier hydrides ar,.:: deuterides is stressed. 

Es wird ein 1nterionenpotentialm.:-:dl fiir leichtere und schwererc Alkalihydride und -deuteride 
entwickelt. Die Methode benu!Zi eine Kombinati0n von tbeoretischen Techniken, empirischer 
Anpassung u;;d einigen wen.igen pla.:.;iblen Annahme.::.. E ine Ei.nschiitzung der abgcleiteteu Po tentiale 
wird <lurch ~rechnung der Gitters:.:.ti.k und -dynami,. der Kris taBc und durch Vergkich sowohl -mit 
Experimente::. twenn vorbanden) a!s ouch mit anderei: Berechnt;ngen durchgefiihrt. Es wird gefunden, 
daB die Potc:niale die elastis.:hen !::i..i dielcktrischen Eigenschaftcn verhii.ltnismii.Big g ut beschrcibcn. 
Die Phononc>:!dispersionskt:rven_de: Hydride und De;_;tcride von Natrium wcrdcn mit den von Dyck 
und Jex auf O!r Grundlage des Kra::konstantenmode;:Js durchgefiihrten Bcrechnungen vcrglichen un'd 
die Ergebnis~ diskutiert. Die Ko:-;:;endigkeit weite,::!r Experimente an schwercren H ydriden und 
D euteriden " :rd hervorgeboben. · 

1. lntroductioo 

Alkali mete.: hydrides possess properties that make them desirable for many applications 
in chemical and nuclear industries including hig.b energy fu_els. These hydrides are all quite 
similar in their overall physieal and chemical properties. LiH is a material unique in its 
simplicity of electronic structu~e and its nuclear preparation. Thus it is not surprising to 
find that there are considerabl~ more literature data pertaining to LiH and LiD [1 to 10] 

f
i. • , .. -· . than to any of the other saline tydrides. Follov.ing LiH, more is known of NaH and CaH2, _

1

l 
simply because these hydrides we~e most readily available and least expensive for a particular 
application: This accounts for the fact that these hydrides arouse much interest for both 

t · theoretical and experimental studies. 
1 f The deveiopment of potential; for hydrides and deuterides, like other alkali halides, has . • 

, been large!~ driven by the increased use of modelling methods in studying both structural '! 
f and defect properties of these materials. The works of several investigators [10 to 14], have j 
l {1 
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