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ABSTRACT

The work in this thesis describes an investigation of the
static, dynamic, and defect properties of hydrides and deuterides
of lighter lithium in addition to a heavier sodium alkali metal.
A combination of various theoretical techniques are utilized to
obtain a poteﬁtial model that gives a good unified description of
all the properties, e.g. static, dynamic, and defect properties

of the lighter as well as the least studied heavier compounds.

The first part of the work reviews the directions along which
the study on crystal interactionsfis progressing on the basis of
the phenomenological and microscopic theories. The basic theories
of these models have been reviewed with a view to developing an
interaction potential applicable in all respects in the field of

élkali metal hydrides and deuterides.

The second part of the work is concerned with the development
of a set of interionic potentials of the Born-Mayer form using
the shell model. Some of the earlier potentials suffer from
serious drawbacks particularly when applied to dynamic and defect
properties. These deficiencies are taken into cosideration in the
present study. The development is carried out through using a
combination of theoretical techniques, empirical fit, and a few

plausible assumptions.

The third part of the work assesses the derived potentials by
calculating the lattice statics and dynamics of the crystals and
then by comparing results with experimental data (where

available) and with other calculations. The potentials are found

( iii )



to describe the elastic and dielectric properties reasonably
well. The phonon dispersion curves of hydrides and deuterides of
lithium and sodium are compared with the observed data (where
available) and the calculations of Dyck and Jex based on force
constant model appfoach and the results Idiscussed. For the
assessment of the potential, in case of a defect lattice the
energies of formation of Schottky and Frenkel defects are
calculated together with activation energies for defect migration
mechanisms. The predicted anion vacancy activation energies are
smaller and comparable with the cation value. The values , thus,
obfained are insufficient to explain the curvature 1in the
conductivity plot of ionic compounds. From this study it is
sugdested that both interstitial and vacancy play an important
role in ionic conduction in all these four compounds. Finally,
the good agreement with the observed data (where available) shows

the validity and reliability of the derived potentials.
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CHAPTER 1

INTRODUCTION

1.1 General Introduction:

Metal hydrides possess properties that make them desirable
for nuclear applications, for chemical reducing agents, f£for
deoxidation and desulphurization. of molten ferrous alloys, and
for use as high energy fuels. Some of the hydrides can be used as
portable sources of hydrogenl.The hydrides of the alkali metals
are all gquite similar in their overall phyéical. and chemical
properties. * LiH 1is a material unique in its simplicity of
electronic structure and its nuclear preparation. Thus it is not
surprising to find that there are considerably more literature

1-11

pertaining to LiH AND LiD than to any of the other saline

hydrides. & survey of literature shows that both theoretical and
exXxperimental investigations on the perfect and defect properties
of the hydride and deuteride of lithium have been maae. Pandey
and Stoneham11 reported both the perfect (static and dynamic) and
defect lattice properties of the lightest hydride and deuteride,

12

Verble et al have investigated rigid ion model and shell

model and presented the phonon dispersion in LiD, also Jaswal et

6

al.” and Jaswal and Dilly7 have calculated the phonon dispersion

of LiH and LiD using the deformation dipole model as well as the
extended form of this model, the deformable-ion model.
Experimental studies on the phonon dispersion in LiD and the
frequency distribution function of LiH and LiD were performed on

12

the basis of inelastic neutron scattering by Verble et al. and

Zemnialov et a1.13, respectively. Raman and infrared measurements

1



3’6’14'15, the elastic

on both the compounds have been reported

15-18  4nd the specific heat'® of the crystals,LiH and

20

constants
LiD, have been published . Singh and Laplaze21 have carried out
theoretical investigation on rigid and deformable shell models,
respectively. From the survey of literature it has been found
that a limited number of lattice properties of perfect crystals
of heavier hydrides and deuterides have been made. Following
LiH, more is known of NaH and CaH,, the remaining saline hydrides
fall into a category about which relatively 1little specific
information is available. This is not surprising since, Dbecause
of the similarity among the hydrides ,the hydrides that was most

readily available and least expensive would naturally be chosen

for a particular application.

Most o©f the theoretical investigations on the properties of
perfect crystal (static and dynamic) and defect lattice have lieen
concentrated on the alkali halides. Also from the experimental
point of view, a good description of these compounds are
available in literature. However, less attention has been paid on
the study of these properties for alkali hydride crystals. This
may be due to the nonavailability of experimental data. The
author feels that more study of these crystals 1is necessary
because they possess simple structure and important application.
Hydride ion possesses a noble gas electron configuration and so
the alkali hydrides are considered to be very close to the ideal
picture of alkali halides as far as the nature of chemical bond
and the crystal structure are concerned. The alkali hydrides are

then considered to be the members of the alkali halide family.



The nature of binding in ionic crystals plays an important rcle
in solid state physics and it is possible to describe a crystal
in all respects if the true nature of binding between the ions of
the crystal is known. The development of potentials for hydrides
and deuterides has been largely driven by the increased use of
modelling methods in studying both structural and defect
properties of these materials. The works of several

11,22-26 jave clearly established the predictive

investigators
role , of defect calculations and have shown that the reliability
is largely limited by the quality of the interatomic potentials

used in the simulation.

Force constant models have been developed from the rigid ion

model of Kéllermann27

28

through the shell model  of Dick and

29

Overhauser”™ " ,Woods et al to the breathing shell model of

schroder or its extension-°7 33

in order to explain the dynamical
behaviour of c¢rystal lattices. But such potentials are of 1little
use outside this sphere and hence are not suitable for static or
defect properties. Observed values for the hydrogen centres in
alkali halides are available in literature. One can estimate -the
local mode frequencies for isolated and H  substitutional (U-
centre) and interstitial impurities,H -cation impurity and H -
anion impurity pairs in alkali halides, because the modelling of
interstitial H  serves as a good test for any interionic
. potential, A sharply defined single mode property, e.g. local-
(or gap-) mode frequencies yields an excellent and stringent test

of the transferability of the derived potentials in dynamical

application. There are several physical differences between the



parameters used in the force constant models and those wused in
the potential models34. In fact, new parameters are introduced at
each stage of such development. The ultimate goal of all such
calculations should be to develop a fully unified approach, 1in
which the same model and interionic¢ potentials are used
consistently for all these types of calculations, e.g. static

lattice, lattice vibration, and defect properties.

Bowman35 derived empirical potentials for alkali hydrides and
deuterides using the Born-Mayer model and reported cohesive
energies which are in excellent agreement with the observed data.
The results indicate a constant value for the hardness parameter,
P determined from LiH (LiD) compressibility data and showed an
adequate description of alkali hydride (deuteride) short-range
fo;ces when next nearest neighbour and van der Waals terms are
included 1in the model. Although the potentials vyield lattice
energies 1in good agreement with the experimental values, their
use 1in other calculations shows serious drawbacks in the
calculation. As will be shown later the potentials fail miserably
to describe elastic, dielectric, and defect properties. In fact,
defect energy calculation on the basis of these potentials was
not possible owing to the invalidity of minimisation caused by
the potentials which give excessive shell displacement and it 1is

11

a serious deficiency in the potential. Pandey and Stoneham also

presented a model potential and reported values for the perfect

and defect crystals of LiH and LiD compound. Prior to P811

work,
nearly all investigations were made for the lattice dynamics of

LiH and LiD only except the work of Dyck and Jexg who for the



first time calculated the phonon dispersion curves for the
heavier alkali metal hydride and deuteride compounds. As

2,30 involve shell model,

mentioned earlier all these works
distortion dipole mcdel and their extended versions. The models
were shown to be reasonable for the lattice dynamics of LiH and
LiD which may successfully be used for the calculation of any
physical properties of these crystals that is related to the

lattice dynamics. But these are not suitable for defect

calculation including some static calculation.

36 has extended an existing set

Recently Hussain and éangster
of model potentials for alkali halides (S-A) to incorporate
alkali hydrides. The important feature of the potentials for
alkali 'halides is that all pair interaction potentials are
spgcified solely in terms of parameters of the ions involved. The
undesirable thing 1is the use of LiH data for the scheme since
dielectric data and optic frequencies for heavier hydrides are
not évailable. The choice is the least favourable because lithium
halides are the salts least well represented in the S-A scheme. A
further problem arises from the chosen form of parametrization
which necessifates relaxation of the restriction on Pauling
parameter -R.- to unacceptable value. There is also a 'difficulty
in - fitting cohesive energy with a reasonable choice of OZ. They
had to increase 0., with corresponding reduction in S. in order
to reduce the value of B.., which then improved the fit to
cohesive energy without seriously degrading the fit to lattice

36

parameters of the hydrides except CsH ~ . Although cochesive

energy, dielectric, and lattice dynamic properties are



represented in LiD by virtue of a fit to eqg, €4, W, the elastic
constants predicted by the model (calculated by the author) are
tco  high. The significant differences between  different
potentials 1in predicting both cation migration and, even more
important, the relative values of the Schottky and Frenkel

4,37 serve to emphasize the

formation energies in ionic compound2
importance of using potentials that simulate both the dielectric
and elastic properties as closely as possible. The lattice
constants found by Hussain and Sangster36 for NaH and CsH are
higher. Aalso the use of a non-integral value of Z 1is less
transparent physically and introduces various problems associated
with the definition of the energies of charged defectsll.
Some ©potentials are more complex than others. The more
complex potentials have been set up specifically to account for
the cauchy violation, yet these do n§t predict better defect
calculation537. The breathing shell models or extensions of
these models fitted to phonon spectra to account for finer
details of these spectra do not require the lattice to be in
equilibrium, whereas for defect calculations it 1is absﬁlutely

37 In view of the problems assoclated

necessary to ensure this
with the potentials as described above, it seems that an accurate
evaluation of the interatomic potential will be a major work.
This is particularly true if there are insufficient experimental
data to derive a reliable potential.

Defects which require a good potential for their estimation,
do determine many of the technologically important properties of

solids and the knowledge of defect study will be applicable in

the fields Where technical requirements demand materials with



high ionic conduction, viz. in solid state batteries and fuel
cells. Hence an ever increasing amount of attention 1is heing

devoted to the study of interionic potential,

The work presented in the thesis is to derive, using a
combination of different approaches, a potential model that would
describe not only the static but also lattice dynamic and defect
properties for the lighter and heavier alkali hydrides and

deuterides.

The plan of the thesis is as follows:

Chapter 2 1is concerned with the structure and bonding'of the
alkali hydride and deuteride crystals. Chapter 3 describes
various theoretical models of ionic crystals,e.g. rigid 1ion
model, point polarizable ion model and shell model, together with
a discussion of theoretical techniques which helped to formulate
the present potential model. A brief account of the static and a
detailed desqription of the dynamilcal properties of the perfect
lattice includiﬂg estimation of the phonon qispersion relations
in principal symmetry directions have been given in chapter 4.
The work on defect lattice which largely consists of computer
simulation studies of transport properties, used in» comparisons
and interpretations of conductivity and diffusion experiments,
and investigating mechanistic features of defect migration, etc.
have been presented in cﬁapter 5. Chapter 6 is'concerned with the
calculations and discussions of the results obtained on the basis
of the derived potential. The conclusions and suggestions which
provide a definite guideline for future work have been given in

chapter 7.



CHAPTER 2

STRUCTURE AND BONDING

2.1 Introduction:

The solids have a long range-order or spatial periodicity of
atoms in three dimensions. In solids the atoms are, in general,
rigidly fixed at their positions or sites except for small
vibrations ( or sometimes localised group rotation). Such solids
are called crystals, and the afrangement of atoms is termed the
crystal structure. The properties of crystals are closely related
to their structures. The Dbasis on which crystals are
distinguished from non-crystals is that the atoms in crystals are
arranged in the form of a periodic array. Such an array consists
of a representative unit of the structure which can be repeated
in many different ways satisfying the basic requirement of
periodicity. The internal regularity of atom placement in solids
often leads to a symmetry of their external shapes. Rock salt
crystals, e.g. rectangular parallelopipeds with faces which are
ldentical when loocked at from several different directions and
which ©possess a high degree of symmetry. On the other hand, the
glasses are not crystalline at all and the structure has a short-
range order; in a fluid the order is confined to an extremely
smail range or it is absent completely. Section 2.2 is concerned
with the Bonding in Solids. Section 2.3 discusses the structure
of the «c¢rystals and the final section describes the Cohesive

Energy of Ionic Crystals.



2.2 Bonding in Solids:

As solid exilsts in equilibrium at temperatures lower than
those of the corresponding liquids and gases, they must have the
lowest (free) energy configuration at the low temperatures.
Furthermore, since solids do possess symmetry, a symmetrical
spatial arrangement of atoms must be of lower energy than a
random spatial arrangement. As the atoms of a solid do stick
together and as they do not collapse to a very high density,
there must be an attractive force counter-balanced hy a repulsive .
force. There are several mechanisms which can give rise to an
attractive force between atoms. The nucleus of an atom 1is
surrounded by clouds or shells of electronic charge distribution.
The stability of a shell is greater when it has a specified
number of electrons In it. This situation is only possible by
ldsing electrons from the outermost valence shells or acquiring
some electrons to fill a shell. Most of the mechanisms available
in literature to bind atoms are concerned with the manner in
which the closed shell structure is attained. The solids are
classified according to the types of binding, a description of
which 1is presénted below:

{a) Ionic: Atoms are bounded together and attain the stable
equilibrium -0of closed shell structure by the loss or by the
addition of one or more electrons. Consequently, the ionic bond
is the result of the Coulombic type attraction between the
essentially spherically distributed charges of opposite sign.
Owing to thel spherical symmetry this ionic bond is non-

directional and the ions have a tendency to surround themselves



with as many ions of opposite sign as can possibly fit around the
central ion. The surrounding ions are of like sign and ténd to
repel each other, but in practice, some types of compromise 1s
attained. Each ion has a tendency to surround itself in the same
way and instead of forming small discrete molecules they form the
crystal through the continuous network cf ions. In other words, a
block of <c¢rystal is not made up of many individual molecules,
rather the entire block is one gigantic molecule in which the
effect on a given ion of all other ions is significant. This
ionic bond is relatively strong and the crystals are
characterized by their strength, hardness, high melting points

and low coefficient of expansion.

(b) Covalent: In this type of bonding the electrons are
shared between binding atoms without transferring the electrons
from one to another. The electrons are shared in such a way that
there 1is no way to say definitely whether the electron now
belongs to any particular atom.” The shells of all thé atoms are
then complétely filled. The covalent bond is usually fofmed from
two electrons, one from each atom participating in the bond. The
electrons from the bond tend to be partly localised in the regibn
between the two atoms joined by the bond. This covalent bond 1is
directional and the sharing makes the bona very strong; the

solids ére, thus, hard with high melting points.

(c) Metallic: Here, the electron clouds asscciated with the
atoms can escape and freely migrate from one atom to another

instead of being confined to the neighbouring atom. Positively

charged ion cores are then held together by their attraction to

10



the free electrons which form a cloud between them. The metallic
crystals have high electrical and thermal conductivity, high

optical reflection and absorption coefficients.

(d) Hydrogen Bonding: Hydrogen has only one electron and it
should then form a covalent bond with only one other atom. Under
certain conditions an atom of hydrogen is attracted by streng
forces to two atoms. If the second atom is strongly
electronegative, then the electron of the hydrogen atom is mostly
tranéferred to it and leaves the atom positively charged. This is
then atﬁracted by another neighbouring electronegative ion and

form the bond.

(e) van der Waals Bonding: In case of atoms with closed
shell structures, high energy is required to remove an electron
from their shells to make it available for sharing or transfer.
Such atoms are held together to from a solid by the forces which
arise from some relative motion between the electrons around an
atom and the positively charged core. The electrostatic field
then, fluctuates with the movement of the electrons. When two
atoms approach each other this gives rise to a set of fluctuating
dipoles with the result of an attractive force between the two.
The van dgr Waals binding is weak and the solids, thus; formed

are dgenerally soft with low melting points.

2.3 The structure of Crystals:

The structure adopted by a particular crystalline compound
depends, to a great extent, on three main factors:(a) the general

formula of the compound and the valencies o¢of the elements
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present, (b) the nature of bonding between the atoms, and (c) the
relative size of the atoms or ions. A description of the above

factors is presented below:

(a) The General Formula: The term General Formuia is used
here to denote the relative number of atoms of eégh type that are
present, without specifying what the atoms are. As for
example,the formula associated with the compound AxBy gives the
values of x and y without identifying A and B. Here, the
cooréination numbers of A and B are related directly to the
general formula. In this connection, the general rule is that:
the coordination numbers of A and B are 1in the ratio vy:x,
provided that direct A-A or B-~B contacts do not occur. The rule
does not predict absolute coordination numbers for a given
formula but it imposes restriction on the combination of

coordination numbers that are possible in a structure.

In a compound AyByCy, in which the atoms A and B are cations
and coordinated only to anions C, the average cation coordination

number (CN) is related to the anion coordination number by

Average cation CN Z
= o (2-1)
Anion CN X+Y
Here, the average cation CN is expressed by
X (CN of A) + Y (CN of B)
(2-2)
X+Y
Using (2-2) in (2-1), the egqn. stands as
X (CN of A) + Y (CN of B) = Z (CN of C) (2-3)

12



The relationship between general formula and coordination
number has little importance in the absence  of structural
information and breaks down when bonding occurs between atoms of
the same type. These comments are applicable to the relative
coordination .numbers in a compound and take no account of the
valency of the atoms. In molecular c¢rystals, however, the
absolute coordination numbers are controlled by the valency and
this 1is due to the electron pair covalent bends hold the
molecules together. Unless multiple or partial bonds occur, the
number of bondslto a particular atom in a molecule is equal to
the coordinatioh number which is then equal to the wvalency of
that ion. In molecular crystals although the valency of an atom
or 1on has its importance in controlling the general formula of
the cbmpound, it does not have a direct bearing on coordination

number and structure.

(b) Bonding: The nature of bonding between atoms affects
considerably the coordination number of the atoms and it has,
thus, a major influence on the crystal structure. The structures
with ionic bonding possess high symmetry and involve coordination
numbers as high as possible. In this way, the net electrostatic
attractive force which holds crystals together {and hence the
lattice energy) is maximized. In'contrast, covalent bending is
highly directional and one or all of the atoms of the compound
hds a definite preference for a certain coordination environmenf.
The coordination numbers associated with a -covalently bonded
structure are wusually small and may be less than those of

correspending ionic structures.

13



(c) Size: The relative size of the atoms in a compound plays
an important role in the structure, especially, in more ionic
structures. The principle that 1l1lies here s that the
coordination number of a particular ion will be as large as
possible,- provided that it can be in contact with all of its
neiéhbouring ions of opposite charge. The 1limiting situation
takes place when a cation is too small to fit snugly i1inte a
particular hole in the array of anions. In this respect a
hypothetical stfucture is regarded as unstable>when a cation 1is
found to rattle inside its holes. Thé limiting size of the
interstitial hole in various anion arrays, é.g.;f.c.c. and b.c.g.
canE be estimated on the basis of the radius ratio rules, but in
reaiity, exception of the rule also occurs. The general relation
between size and coordination number yields a value for the later
aésociated with a structure and, here, the coordination number of
the cation increases with the increase of - the ratio (cation

radius/aniqq:radius).

In molecular materials, however, size considerations are less
important. This is partly due to the fact that the coordination
numbers in molecular materials are controlled by wvalency and
partly due to the covalent radii of elements which do not show

the same spread of values as do the ionic radii.

2.3.1 Icnic Structure:.

Purely ionic bonding in crystalline compounds is an idealized
or extreme form of bonding. But in reality, this type of bonding
exists rarely. Even 1in structures which are regarded as

essentially ionic , there is usually a certain amount of covalent

14



bonding between cation and anion which in turn reduces the charge
on each. The rules which explain the formation of different

structures are:

(a) Ions are treated as charged, elastic and peolarizable

spheres,

(k) Ionic structures are held together by electrostatic
forces and hence the ions are arranged in such a way that cations

are surrounded by anions, and vice versa,

(c) In order to maximize the net electrostatic attraction
between dions in a structure (i.e. the lattice energy) the
coordination numbers become as high as possible provided that the
central ion maintains contact with all its neighbouring ions of

opposite charge.

{d) As next nearest neighbour interactions are between the
ions o©¢f 1like nature they are repulsive. Like ions arrange
themselves to be as far apart as possible and hence, this leads

to structures of high symmetry with a maximized volume.

(e) Around cation or anion sites electroneutrality must be
preserved. In other words, the valency ¢of an ion is equal to the
sum of the electrostatic bond strengths between it and adjacent

icens of opposite charge.

A brief account of the rules is given below:
Ions are charged as it is ohvious from the cchesion o¢f the
ion. These are also elastic as their size varies with

coordination number and are polarizable when departures from

15



purely ionic bonding occurs. Points (a) and (b) infer that the
forces which hold ionic crystal together and the net energy of
interaction between the ions are the same. This is obtained by
assuming the «crystal as a three-dimensional array of point
charges and considering the net Coulombic energy of the array.
The general Coulomb's law of interaction between any two ions is
then applied to each pair of ions in the crystal and evaluation
of the resulting force between all the ions leads to the lattice
energy of the c¢rystal. According to (c¢), the neérest neighbour
ions»should be in contact with each other.'From the nature of the
electron density distributions in ioni¢ crystals, it 1is, 1in
practice, hard tolquantify what is meant by in contact. -It is,
however, an important factor since, although the variation in
apparent size of ions with the coordination number occurs, most
ions, especially, smaller ones, appear to have a maximum
coordination number, e.g. for Be2+ this is four whereas for Li it
is six. 1Ions are, therefore, flexible, but expand or contract
only within fairly narrow limits. Point (d) on the maximizatiocon
of volume of ionic crystals is not expected, on the ground that
one 1is accqstomed to regarding ionic structures and derivative
close packed structures, especially, as having minimum volume,
However, conflict does not exist. The.primé bonding force 1in
ionic c¢rystals is the nearest neighbour cation-anion attractive
force which 1s maximized at a small cation-anion separation;
Also, when the ions are too close, additional repulsive forces
come into play and then reduces the net attractive force, The
effect of next nearest neighbour repulsive forces between 1like

ions 1is then superposed on the former force and with the

16



constraints that (i) cation-anion distances be as ‘short as
possible, and (ii) coordination numbers be as large as possible,
like ions arrange themselves to be as far apart as possible 1in
order to reduce their mutual repulsion with' the result of a
regular and high1y>symmetrica1 arrays of 1iké-ions. The regqular
arrays of ions, then, tend to possess maximized volumes and that,
by distorting the structures, a réduction in volume is
possible,which may exist, at least in principle. Acéording to
Pauling' s electrpstatic rule {e), the charge on a particglar lon,
e.g. an_aqion, ﬁust be balanced by an edual and opp?site charge
on the shrfounding cations. As these catiohs a}e also shared with
o;her anions, it is necessary to estimate the gquantity of
positive charge which is effectively associated with each cation-
anion bond. For a cation Mm+ surrounded by n anions, Xn-, ‘the
électrostatic bond strength (e.b.s.) of the cation-anion bond is
expressed by

e.b.s. = m/n

Hence, for each anion, the sum of the electrostatic bond
strength of the éurrounding cations must balance on negative

charge on the aniocn, i.e.

il

-———x

n

2.3.,2 structure of the Crystals under Study:

The hydrides and deuterides of lithium and sodium solidify in
the rock salt structure. This structufe consists éof two face

centéred cubic sublattices, one of cations and the other of

17



anions. The unit cell of the structure is shown in fig. 2.1. This
is simple cubic if the difference between the cation and anion
positions is ignored. In fig. 2.2, the coordination environment
of each ion is shown. As shown in fig. 2.2, both the anions and
cations are octahedrally coordinated. From the general rule of
coordination numbers of A and B associated with AxBy, the number
must be in the ratio y:x. In this rock salt structure, x=y and
therefore, anions and cations have the same coordination number.
Here, each octahedron has twelve edges and each edge is shared
between two octahedra. In fig., 2.3, a unit cell of one of the
compounds under study is outlined (dotted) and is in the same
orientation as in fig. 2.1. Octahedra 1 and 2 share a common
‘edge, indicated by the thick dashed line, and octahedra 2 and 3
share a common edge, shown by the thick solid 1line. As each
octahedron is linked by its edges to twelve other octahedra it is

very difficult to represent satisfactorily in a drawing.

2.4 Cohesive Energy of Ionic Crystals:

Ionic c¢rystals may be regarded as arrays of positively and
negatively charged ions. The forces that hold the c¢crystals
together are entirely electrostatic in origin. The interaction
ﬁpotentials are divided, on the basis of ranges over which the
individual terms are significant, into two parts:

{a) a short-range part, including both repulsion and van der

Waals terms, and

(b} the long-range cOulombic part.
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The cohesive energy of a crystal is defined as the net
potential energy of the arrangement of crystals that forms the
structure. The value of the energy depends on the manner in which
the ions are arranged, i.e. structure, the charges on the ions
and the inter-nuclear separation between the anion and cation.
The calculation of cohesive energy requires summation of both

short-range and long-range terms,

It 1is ?agsumed that the short—rénge_ interactions with a
particular iéﬁ?are truncated on a sphere centered on the ion and
witﬂ the radiﬁs of the inscribed sphere of the cubic box. If two
particles within the box are labelled by i and j and if their
force on the particle i associated with j is required, then in
addition to the particle j, all its images are also considered.
with the above truncation, the contribution is from at most only
one of the set of particles {j} (particle j and all itsVimagess.
At first, it is required to find the particle from the set {j}
which lies ciosest to 1 and then the components of the force
which this particle exerts on particle i is evaluated. The

cohesive energy is given by

2
e

U = 2424 ~ + ¢ij(r) (2-4)

r
where i and j can be either + or ~. In this case of alkali halide
crystals, the system has been assumed to be fully ionic and the
values of Zj and Z5 are +1; r is used to denote the interionic
separation. A detailed description of the short range terms
¢ij(r) has been given in the last part of chapter of 3. Short-

range repulsive .forces are important when ions are so close
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together that their eléctron clouds begin to overlap. This short-
range interactions of an ion with its neighbours are summed
directly up to a specified distance beyond which the interaction
has a neqgligible effect. Although significant contributions
diminish rapidly with distance, this does not present problems
for a real space gummation. on the ofher hand, the 1long-range
electrostatic summation involves great problems and an accurate
calculation of the long-range Coulombic part is considerably
harder. To obtain the Coulombic force on particle 1 associated
with particle j, contributions from the complete set of particles
{j} , as even distant terms are significant, must be taken into
consideration. Thus, the summation <¢an not be effectively
truncated when handled in real space. However, rapid convergence
occurs when .it is transferred into reciprocal space. Although
tﬁo-body, three-body, and higher order terms éoutribute to short-
range interéctions, in this study only the two-body terms have
been taken into consideration., This is due to the fact that the
approximation 1s wvalid 1in these systems of strongly ionic
crystals, the alkali halides, but is 1less secure fof more
cova}ent systems. The electrostatic summation is calculated by -

38

the Ewald method, a description cf the methed is given in the

next section.
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2,4.1 The Ewald Summation Method:

The Coulombic interaction of an array of dions 1 with a
particular ion j is given by
ZiZj
(2-5)
1 ry '
where Z; and Zy are the charges on ions i and j. Here, 1rj

indicates the distance between ion i and j.

: . ; -1
The convergence 1in real space 1s very slow due tc the r

term. Faster convergence is obtained by applying a mathematical
transformation developed by Ewald. In this method a Gaussian
charge distribution was added and then subtragted to each point
charge in the array. In the method the various terms are arranged
into rapidly and slowly converging series. By exploiting the
periodicity of the lattice, the slowly converging series 1is
Fourier transformed into reciprocal space and a rapid convergence
is resulted. The transformation is discussed in most standard
solid state texts and applications to crystals are given by Born

and Huang39.

The object of the Ewald method 1is to calculate the
electrostatic potential experienced by one ion, in the presence
éf all the other basis species. The problem is then simplified by
considering the interaction between the reference ion and each

sublattice separately and then the summation is evaluated.
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The total potential at the reference ion 1s expressed as the

sum of the two potentials:
V/ - \7‘/1 —,L\V;Z (2-6)

The potential Y% is that of the sublattice, with a Gaussian
distribution of charge replacing each point charge; the Gaussians
are taken to have a width of n. The charge distribution on the
reference point does not contribute to ¥ and so 7; may be written

as

\’V'l :\f’a—\rb (2-7)

¥a 1s the potential of a continuous series of Gaussians and,
#’b the Gaussian charge distribution at the reference point. The
potential 7& corresponds to a lattice of point charges with an
additional egqual but oppositely charged Gauésian distribution.
Summation of the two potentials cancels out the Gaussian charge
distribution, and thus the potential is independent of the

Gaussian width n.

The charge density of the potential VQ is Fourier transformed
and as the charge is periodic in the 1lattice, the transform
involves only contributions from reciprocal lattice vectors, i.e.

Hpa may be written as;

iGr
\//CL.: g Cge (2-8)

where G 1is the reciprocal 1lattice vector and Cg are the

coefficients of the Fourier terms. The charge distribution is

then made smooth by the transform and only the neighbouring

lattice vectors make a significant contribution to the potential.

23



A suiltable choice of Ky leads to a rapidly converging series in
reciprocal space and Hﬁ is obtained after subtraction of the
charge distribution at the reference point; 4& is rapidly
converging in real space. Although the combined botential is
independent of Gaussian width, the choice of f is critical for
rapid series convergence. Large values favour fast convergence in
reciprocal space, in contrast, small values are suitable for real
space- convergence. The coptimum width is, however, obtained from

the balance between the extreme values.

With the help of the above methoed electrostatic energy 1is
calculated precisely, leaving only the short-range component of
the cohesive energy. This short-range part is evaluated by direct
summation of the analytical expression used to model short-range

interactions.
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CHAPTER .3

THEORETICAL MODELS OF IONIC CRYSTALS

3.1 Introduction:

It is known that the conditions for equilibrium of a crystal
require that at small separations the inter-particle forces are
dominated by repulsive terms. At equilibrium these forces are
balanced by the attractive Coulomb terms (and also the van der
Waals, interactions). Thus, an interaction potential is required
which must accurately model short-range interactions and the
physical origin of which lies in the opposition to the overlap of
closed electron shells. Although some guantum-mechanical
calculations of the repulsive interactions have been performed,
these have been found to be restricted , to light ion and serve
only to provide some justification for assuming a simple
functional dependence of interionic distance for the repulsive
energy. The short-range requirement has led to the adoption of
either inverse power potentials or exponentially decaying

potentials ( to be discussed in subsequent sections).

Chapter 2 discussed the division.of cohesive energy into
long-range electrostatic terms and short-range interactions. It
has been shown that the long-range part ma& be exactly evaluated
using the Ewald method. On the other hand, accurate calculation
of the short-range terms presents a much greater <challenge and
the limitation on the reliability of léttice simulation
techniques is almost exclusively due to these terms. The aim of

the present chapter is to highlight the limitations associated
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with the old potential models and then to derive a potential
model to reproduce the widest range of crystal properties.
Section 3.2 consists of a description of The Rigid Ion Model.
Section 3.3 discusses The Point Pclarizable Ion Model. Section
3.4 is concerned with The sShell Model. Section 3.5 describes the
Theoretical Techniques which are used to derive Interionic
Interactions, and the final section, 3.6, is concerned with the

Present Potential Model.

3.2'The Rigid Ion Model:

In the Rigid Ion Model (RIM) the iong are regarded as the
rigid and unpclarizable point ions. They are prevented from

collapsing under their mutual Coulomb attraction by the presence

of a short-range overlap repulsion.

The energy of the perfect crystal is then given by

1
u = —~— L % ———— + ¢(rjj) (3-1)
2 i=j I'j §

where Ze is the ionic charge and rij4j denotes distance between

ions i1 and j.

In the simplest treatments, the overlap forces are considéred
to be restricted to nearest neighbour atoms. Itbis then possible
to describe the overlap forces in terms of a single function éf
the anion~cdtion distance . The values of the two parameters
associated with any convenient energy function are then

evaluated on the basis of experimental values of the compounds.
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The two principal expressions for ¢ are:

(i) The Born potential ¢ = br " (3-2)
(1i) The Born-Mayer potential ¢ = Ae-r/P (3-3)
In each c¢ase, r denotes the interionic distance . The

parameters linking (i) are b and n and those associated with (ii)

are A and P .

The overlap forces due to second neighbours have been taken
into consideration approximately by Paulingqo, Huggins and

1 42. As the overlap energy TnoOwW

Mayer4 and then by Fumi and Tosi
involves cation-cation and anion-anion interactions, more
parameters are then included in the expression for ¢ unless

simplifications are made.

Pauling40 utilised the crystallographic concept of ionic
radii to relate the b-parameters of the Born potential to the
radii of the two ions involved in the intevraction. According to
Pauling the parameter n is used to be the same for all alkali
halides. Pauling’s exﬁression for the overlap énergy between the

two ions i and j then takes the form:

n
$ij(r) = Bjj(bj+by) / r (3-4)
Zi Z5
where Bij = 1 + +

n4 1

Zy = valency of ion i

nj = number of valency electrons in outer

shells, and
bj, m, n = parameters to be evaluated.
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Tosi and Fumi?®> also investigated a form of the Born-Mayer

potential. They allowed the hardness parameter p to be wvaried
from crystal to crystal and took b as a constant, According to

them the potential is:
r 4+r -r
bijlr) = By4 b e( i 3 )/lcij (3-5)

Here, Pij gives tne valua of the hardness parameter in a crystal

composed of ions i and j.

Due to the omission of the polarization effects simulation
of high frequency dielectric properties of s lattice 1is not
possible on the basis of the model. At optical frequencies only
the electrons (and not the ions) respond to the electric field of
light. The electronic polarizaticn gives rise to the dieleciric
constant &4, as The Rigid Ion model ignores the electronic
polarizabilities, it predicts e, = 1. In contrast, accurate
simulation of crystal properties requires inclusion of
polarizability. In addition to the above drawback, the model

fails to account for the Cauchy violation44-46,

47,48

the phcnoen

9

dispersiocn , the szigeti effective charge4

and the long-wave
o

optical modes of vibrationsJo. Howevel, the advantage of such a
. model 1s the reduction both in the number of parameters and

degrees of freedom needed to model a system.

3.3 The Pecint Polarizable Ton Model:

The simple Rigid Ion Model is not suitable in situations
where the ions are polarized, such as the polarization of the
lattice by an external electric field or by the field due to a

vacancy. The analysis of Keller‘mann51 of the lattice vibrations
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of alkali halides by means éf The Rigid 1Ion Model was also
unsatisfactory because the vibrating ions create an alternating
electric field which polarizes the ions themselves. The
circumstantial evidences, however, make one to helieve that the
deficiencies of The Riygid Ion Model can be overcome by the use of
a model which takes the electronic polarizability of the ions

into account.

Tessman et al.52

obtained ionic polarizabilities by assuming
the molecular polarizability of a given salt to be approximately
egqual to the sum of the polarizabilities of the domponent ions.
The resulting polarizabilities are different from the free ion

polarizabilities owing to the polarization of any ion is

constrained by the presence of its neighbours. Thus,

Qp = &i + a4 +Acqn (3-6)
where ap = molecular polarizability of the compound consisting
of ions i and j,
aj = ionic polarizability of ion 1
A ap = error in additivity rule.

The molecular polarizabilities were obtained from the high
frequency dielectric constant by the relation
E‘,(r‘-l

am = Vn (3-7)
L{eg -1)+4n

where Vp is the molecular volume.
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The Lorentz factor L arises in (3-7) relating the effective

field Egff and the applied field E and is expressed by:
Ecff = E + LP (3-8)

Using the wvalue of L(=4n/3) the expression for molecular
polarizability relating the high frequency dielectric constant is

given by

ap = . _ (3-9)
4n Eq +2
The dielectric properties on the basis of the point
polarizable ion model (PPI) which incorporates such ionic
polarizabilities c¢an be investigated by comparing the atomic
equations for longwave infrared vibrations with the corresponding

continuum equations.

For an isotropic medium, Huang39 presented the following
continuum equations

" ee

W

H

by W+ bjo E ) (3-10)
P = boy W+:boy E (3-11)

where W is given by

M, M. 1/2
W={—— (wp - w) (3-12)
M, +M.
Here, M,,M_. = masses of the positive and negative ions,
u4,u. = displacements of the positive and negative ions
E = electric field vector,

P = polarization vector
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It is known in the electromagnetic theory of light that the
square of the refractive index is equal to the -dielectric
constant; the phenomenon of dispersion (the dependence of the
refraction of a monochromatic wave on its ffequency) follows
directly from a frequency dependent dielectric constant. By

solving equations (3~-10) and (3-11) for the plane waves given by

W= W el(Wt—k.r)

{(3-13)
and *

i(#t-Kk.r)
e

E = Epy (3-14)

Born presented the dispersion formula which is an expression for
the frequency dependence of the dielectric constant € and given

as under:

EO"Ew
e{#)

H

Eqp + (3-15)

2
1 - (W/vg)
where gg 1s the static dielectric constant and Wy 1is the

transverse optical fregquency.

A combination of equations (3-10), (3-11) and (3-12) with the
Maxwell’ s equations yields expreséions for the longitudinal and
two transverse wave solutions. The longitudinal wave has no

magnetic field, and its frequency & does not depend on the wave

vector ¢g; Lyddane, Sachs and Teller’s50 relation is then written
as
2
Wy o\ €9
—_— = {3~16)
Wo Eq
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For the transverse waves, the dispersion relation is given by

(ck)® €0 - Eq
5 = Ept 5 (3-17)
i 1- (R/%g)
The peclarization vector P is given by
1
P = — [ Ze{uy - w) + (ajp + a.) Egff 1]
v
(3-18)

It is the inclusion of the electronic polarization terns
1
— (a4 + a-)Egff (3-19)
v ,
in (3-18) which distinguishes the point polarizable ion model

from the rigid ion model of the last section.

For sinusoidal waves of frequency W it can be shown that

(R-W?M) (0, - W) = Ze Eaff (3-20)
Where
2 ¢'(rp)
R =2 |————— "+ ' (rg) (3-21)
o

Here, ¢ denotes the non-~Coulombic part of the potential.

Substituting the values of u, - u. in (3—18)'one gets

1 (Ze)2 :
P = - t a4 + a- Eaff
v R-M®%
(3-22)
a(W)
= Eeff
v
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2
(Ze)
where a(@) = ap + a- + (3-23)

R0’
The expression for the dielectric constant (W) at £frequency @
can be written in terms of «a(®) as:

e(®) - 1 4

= a(W) (3-24)
e(W) + 2 3v

The expressions for the limiting cases where w-->0 (static
dielectric <c¢onstant éo) and w-->a¢ (high ffequency dielectric

constant eggp) can be expressed by

£g-1 in Lim
= a(w)
eg+2 3v. W —0
an 22e2
= aQy +ta_ + ———
3v R
(3-25)
and
Eq - 1 4n  Lim
= a(w)
in
= [ay + al] : (3~-26)
3v

2

The relation (3-26) was used by Tessman et al.5 and is Kknown as

the Lorentz-Lorentz eqguation.

The transverse optical frequency wd occurs when the relation
(3-15) for e(®w) becomes infinite. Rearrangement of (3-24) shows
that wgy occurs when

3v
a(w) =

(3-27)
an
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Thus,

{3-28)
The solution of this equation with the help of equations (3-25)

and (3-26) can be expressed in terms of R, £, and ey as under:

- 2 Eq +2
MW, = R

(3-29)
gg +2
The displacement polarization is the same as that of reduced
charges moving with the nucleil. Szigeti49 postulated that the
ions during the vibrations, behave és if they carry an effective
charge e*, which is smaller than the full electronic charge, e.

Szigeti derived the following expression

an (Ze*)z(qx +2)2

80 - ea'-: ¢ - 2
ov MWD

(3-30)

which defines the effective charge e¥*,

Although many phenomena in solid-state physics can he
explained on the basis of the PPI model, it fails to account for
the defect properties of so0lids. In defect simulations with the
PPI model, a ﬁolarizability, a, is ascribed to each 1ion. The
studies of defect involves two major inadequacies associated with
the model. Firstly, if short-range forces are obtained by
fitting to the elastic constants the statib-dielectric ‘constant
is overestimated by the model. The consequence of this error of

dielectric constant 1s an underestimation of the energy of
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formation of charged defects, due to the incorrect calculated

relaxation energy. In a study Norgett53 predicted a value 2.1 eV

for the Frenkel formation energyﬁ Whereas, the corresponding

experimental value in 2.7 ev. A great failure occurs in the work
54

of Tharmalingam™ , where negative values were estimated for

Schottky formation energies.

The second major inadequancy of the PPI treatment is 1its
succeptibility to the polarization catastrophe. This
instability, an account of which has been given by Faux55 occurs
in the calculation when two dipoles increases without bound due
to their mutual dipole-dipole interaction outweighing the self-
energy of polarization. Faux also showed that the instabilities
occurs in any PPI calculation ih which any two ions with i and j

are closer than a minimum separation:

riy = (4 aiaj)l/6

The origin of the above two errors associated with the
PPI treatment 1is 1in the omission £from the model of any
description o¢f the physical basis of ionic polarizatioh. The
polarization involved in the model has been considered to be -due
to a resbonse of a point ion, solely to electrostatic forces.
The ionic dipole, however, 1s owing to the distortion of the
ionic charge cloud. This distortion may be effected by both the
electrostatic and short-range force fields, hence polarization
and short-range forces are interdependent. Thué the displacement
of an anion in a static electric field causes an imbalance in the

repulsive forces ac¢ting on that 4dion, and the corresponding
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induction of a deformation dipole. This feature has not been
included in the PPI model, and then a high wvalue cof staﬁic
dielectric constant is predicted.' Similarly the neglect of the
damping ofépolérization by short-range force fields leads to the
polarizatién catastrophe. The inclusion of some description of
such polaéization damping is necessary in a model to have wide

application in'defect studies.

3.4 The Shell Model:

A good model should consist of a few, but physically
meaningful, parameters. The choice of the model depends on the
typé of binding between the atoms. In ionic <c¢rystals, strong
Coulomb forces and shprt—range repulsive forces operate Dbetween
the dons. In the rigid ion model, an account of which has been
given 1in the previous Fection, the charges are approximated by
point charges centred at the nuclei. In reality, the ions are not
rigid but polarisable. In the course of a lattice vibration, the
electric field set up by the displacement of the ions is modified
by the electronic polarisability which modifies the forces and
affects the phonon frequencies. The widely used model for ionic

crystals with polarisable ions is the shell model.

The physical basis of polarizability is the displacement of
electrons by an electric field. Such displacements will change
the short-range interactions between ions due to overlappinhg
charge clouds. Therefore, the models which treat polarization as
being solely due to the electrostatic field on the ion, e.d.
the PPI model, are inadequate 56. A successful treatwment 6f

polarizability must include coupling between short-range
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repulsion and polarization. The shell - model of Dick and

Overhauser 28 as shown in fig. 3.1, simulates such behaviour
using a simple mechanical description. The core, in which the
mass of the ion resides, is connected to a massless shgll, which
represents the polarizahble valance electrons. Here, ionic
polarization is described as the displacement of a shell relative
to a core. This treatment of polarization, therefore, includes a
simp;e description of the distortion of the ionic charge clecud,
and .as. short-range forces are taken to act;befween shells the
modei iLcludes the ﬁe&uired inter-dependence of those forces and

polarization. The' shell mocdel then correctly simulates both

glastic and dielectric properties of the crystal.

The model has been extensively developed since the original
work of Dick and Overhauser. Cowley 57 gave »a comprehensive
treatment in which expressions are derived for bulk crystal
properties including elaétic and dielectrié constants. Later on,
the model was fouhd to work good in \the treatments for the
fluorite 1lattice, e.g. the model was used to account £for the

internal strain contribution to the difference between C12 and

Cq4q4 and to derive expressions for third order elastic constants.

The most extensive use of the shell model has been in the

29

studies of lattice dynamics. Woods et al. presented an

analysis of lattice dynamics for the alkali halides on the basis
of the'shell modeli Also several studies on fluorite compounds
have used this shell model to analyse inelastic neutron data,

e.g. work 1is reported by Elcombe and Pryor58

59

for caF, , by

60

Elcombe for SrFp, by Hurrell and Minkiewicz for BaFp and by
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Fig. 3.1: The shell model .
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Dolling et al.bl for co,. The fit, however, obtained by the
model to the experimental dispersion curves 1is generally fairly

good.

In the Shell Model it is assumed that each ion consists of a
spherical electronic shell which is isotropically coupled to its
rigid-ion core by a spring of constant k; the charge of the shell
is taken to be ye.

The free ion polarvrisability is given by

(ye)®
Q= ——— (3-31)
k .

The eqgns. of motion on the basis of The Shell Model are given

2
'M+w u1

ki(uy - W) + Xi1eEBaff
(3-32)

0 = -kp(uz - uy) - R(uz - ug) + YieEaff
(3-33)

-M-W2u2

i

kp(ug - up) + XpeEgff
(3-34)

0 = -kp(ug - up) - R{ug - uz) + YseEgff

(3-35)

where u's denote the displacements of the positive and negative
ion cores and the positive and negative ion shells. R is used to

describe repulsive force constant.
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Also (X7 +Yj)e = Z,e = (X, +Y¥p) = Z_e are the total charges

the ions.
Eqff = Effective field
P = polarization vector
e .
= —— [Xqu; + Yyu3z + Xpup; + ¥You]
v

(3-36)

on.: . .

The shell inertia forces are very small due to the relatively

small mass of the electron and hence are omitted. Egns. (3-32) to

(3-35) can be written in the matrix form as follows:

Er4+wz 0 R -R | up 21
0 -M_Wz -R R up Z2
= eBeff
_kl 0 k1+R -R uj ¥q
0 Lk ~R k»+R ug Y,
| ) 2 2 1L { i 2.i
(3~37)

These eqns. are now solved to get ujq, us,u3, and ug in terms

of Eoff and then eqgn.(3-36) is used to express P in terms of Ecff

as:
()
P = ———— Egff (3-38)
v
Now
4r
Ecff = E + — P, so that
- 3
a(R)/v
P = E
dna(w)
1 - —
3v

40



Also
e(w) - 1

E
in

where (W) is the dielectric constant at frequency ®. Thus

ge(w) - 1 am

a{w) (3=-39)
e(w) + 2 3v

The solution of (3-37) for a({d) is expressed by:

' M+M_W2[k2Y12+krY22+R(Y1+Y2)2]-(M++H_)[sz1k2+R(k2X12+k1X2 )]
a(@)=

M_M (k1K p+R(k1+ko) 1= (M4 +M_) Rkiko

(3-40)
where Z = 7, = Z..

The limiting values of (3-39) as #—>0 and ¢-—> are given by:

gg - 1 4T Lim
= a(@)
Eg + 2 3v A—>0
an 29K 1K o+R (KX £ +k1X 22 )
3v RKj ko
4an 72 %1 2 xzz
= + +
3v R K1 ko
(3-41)
Taking X{ = (2-Yj), the equation for g3 can be written as
go -1 3 1 (z-v7)2 (Z+Y5 )2 7%
e re——— —_— D e + +
€g + 2 4m v kq ko R
(3-42)

and



8a\ - 1 4“. le

= a(e)
Ep + 2 3v W—3a
8@"1 3 1 Y12 Y22 Yl Y2
—_— T —— + - RO -
£ + 2 4n \' k k k k
a 1 2 1 2
{3~-43)
where
1 1 1 1
S —t = % (3-44)
129} R kl k2
and
Anion polarizability is given by:
2
Yo 1 1 Yq1Y>
2o = Ro +
ko R k1 kiko
(3-45)
3v
The dispersion frequency occurs when a{f) =
4T
Thus,
- ) Cl‘.o“3/4T[ Rklkz
Mg~ =
A3/4n k1ko+R(kq+k2)
= (3-46)
gg + 2 k1k2+R(k1+k2)

and the expression for the Szigeti charge using (3-40) is:

aex R(Yiko> -~ ¥Yokj)
1 - — = (3~47)
e Z(k1kz + R{kqp+21)

42



3.5 Theoretical Techniques to Derive Interionic Interactions:

(a)Electron Gas Methed:

For the calculation of forces between atoms it is convenient
to divide the interactions into bonded and non-bonded types. It
is Kknown that bonded interactions occur between open cell atoms
which involve considerably rearrandement of the electron density
and the formation of covalent bonds. On the other hand, non-
bonded interactions are between closed cell species, such as
inert gas atoms or i1ions 1in crystals. They involve 1little
distortion of the interacting species from spherical symmetry. In
this part of the thesis an account is given on the method of

calculating the non-bonded interactions.

For the purpose of calculation of the forces, a method 1is
required which can be applied to a large range of interatomic
separations. On the basis of the guantum mechanical theories, one
can use perturbaticon thecry at large distances and variational
methods when the atoms are close together,.but both the two
techniques do not work satisfactorily at intermediate distances.
Many authors worked on the problem and finally Gordon and Kim62
presented a method as a solution. In medern implementations, the
structures of the individual atoms are calculated accurately by
guantum mechanical methods. The resulting charge densities are
assumed to be unchanged when the atoms are brought together and
the interaction energy of the two atoms is calculated ﬁsing
electron gas model, with the total charge density being a simple
superposition of the individual ateomic densities. 1In this

technique, the electron kinetic energy in any small volume is
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related by a simple power law to the local electron density. The
total interaction energy Ej4(r) of two interacting ions i and j
is written as:
Eij(r)=E5(r) +E355%(r) +E4570 (r) +E15°°F ()
(3-48)

Where Eijc(r) is the electrostatic interaction energy and
EijEx(r), EinE(r) and EijCor(r) denote the exchange, kinetic,
and short-range correlation contribution to the interaction
energy. Approximate expressions for all of the contributions are
calculated in terms of the densities Pi(r) and Pj(r). A detailed
description of the procedure and approximations, presented here,

are given by Gordon and Kimbz. Kim and Gordonsa, and Mackrodt

and stewart24. According to Gordon and Kim the energy of an

isolated, closed-shell ion is given by

E(P) = Ck 5 Ep(r)5/3] dr + Cg ! lo(r)ll/3 dr -

pA [ P(r)/r dr + 1/2'[J P(rﬁ P(r')/lr - r'| dxr dr'+

J €c L p(r) ] p(r) dr - (3-49)

where Z denotes the nuclear charge and

3 .
o =— (3n%)%/3
10
3
1
Co =-— (3/m)%/3
4
The first four terms of the eqn. represent the kinetic,

exchange, and Coulomb energies respectively, while the last term

is an approximation to the electron pair correlation energy and

7
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can be determined simply by interpolating between the high énd
low density limits for a homogeneous electron gas. For a pair of
ions, AB, the total electron density, PAB(r) is assumed to be the
superposable - sum of the separated ion densities, pA(r) and

pB(r).The total energy of AB is, then, expressed by

Eap = E [ Pap 1 = E [ Pa + OB ] (3-50)

so that the interaction energy can be written as

Eint = E |Pa + P8} -E PA} - E [Op] (3-51)

Now, particularly at or near the minimum energy separation,
is a small difference ( © 1 eV) between two considerably larger
quantities. To minimise numerical errors in the evaluation of
Eint Gordon and Kim proposed a re~arrangement of the integral

expression in (3-49) and the expression for Eipr takes the form
Eint(R) = ZpaZp/R - Zp J pPalry)/
rip dry - Zp KPB(I'Z)/
rpp drp + Ej pPatry) pg(r

21/r12 drp drp + S {lPa

(£) + pp(r)] Eg [Pa(r) + Pg

(r)) - Pal(r)EglPalr)] - P8

(r) Eglpp(r)l}) dr (3-52)

in which

/3

Ee [ p(r)] = cxlp(r) 1/ +celp(r) 1t/ +

Eclp(r)] (3-53)
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where r, 7Iq1g, I2p and ryp are functions of the inter-nuclear

separation, R.

(b) Quantum Mechanical Method

Fisher et al4 performed a quantum mechanical calculation of
the two-bcdy SR interaction in LiH by taking determinantal wave
functions consisting of various one-electron functions. They
used - the Heitler-London method to calculate the repulsive
interaction energy, Erep expressed by:

Erep(r) = E(r) - E(&) - qaqp/T (3-54)
Here, E{(r) is used to denote the total energy as a function of
internuclear distance, r.

E{ar) gives the total energy of the separated pair, and gj

and gy are the net charges of the ions a and b, respectively.

The energy E(r) is calculated from the relation:

E(r) = K\f* H'Y dt ‘ (3~55)

where
1 Z3 1 ZaZp
H=— 3$V; - & + I +
2 1 1,8 rjg 1>J rij r

(3-56)

The Hamiltonian involves the electronic kinetic energy,
electron-nuclear, electron-electron, and nuclear-nuclear
operators. The wave function‘fis‘given as a linear combination of
Slater functions of the form, e_ér. Wave function parameters are
then -varied until the repulsive interactions obhtained for the

corresponding charge distributions result in a good fit to

c¢rystal data.
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3.6 Present Potential Model:

The chosen form of' the interionic¢ potential has been
developed oh the basis of the points mentioned below with a view
to describe, in a right manner, the lighter (lithium) and heavier
(sodium) hydrides and deuterides (little work is available in
literature fof the heavier compounds)}. Short-range potential
réported by Bowman35 in the Born-Mayer form involving second
neighbour interactions and van der Waals' terms is a two-body
potential. As outlined in INTRODUCTION, this potential reproduces
the perfect crystal data only in part but fails completely ¢to
describe a defect lattice. In this field, Hussain and Sangsteq:36
has extended the potentials for alkali halides to incorporate
alkali hydrides. Here, also, it has been found that the potential
is nét sultablz for a complete description (particularly defect

properties) ¢f the compounds under study.

In ah exercise for the development of interionic potentials

Catlow et 'a122

reported that the contribution of many-body
effects should be assessed. The effects as seen frowm the observed
difference between Cqp and Cg4q, must be equal for a compound with
the rock salt structure under central pairwise 1interactions.
However, this many-body effects as observed, generally, from the
Cauchy violation may be erroneous owing to the over simplified
treatment of the thermal contributiohs. This many-body effects
may arise from the symmetric distortion of an ion or assymmetric
distortions. It 1s known that the éffects arising from the

symmetric distortion contribute only to volume changing

deformations but none to shear moduli, 1/2(Cy1-C12) and Cgq4. On
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the other hand, this effect that results from the assymmetric
distortions of the ions or their environment does not contribute

23 also, from their work on the

to the bulk modulus. Corish et al
interionic potentials for alkali metal chlorides found that the
best potential should be a central force potential in the
Buckingham form with the repulsive part as hard as possible Dby
omitting the van der Waéls attraction between nearest
neighbours. According to them the non-central forces do nbt

improve the potential as judged by the criterion of the results

of defect célculation.

It 1is Xnown that dispersive interactions arise from the
correlated 'motions of electrons on different atomic (or
molecular) centres. This correlation, which 1is due to the
Coulombicl‘:interaction of the electrons, results in an
instantaneous dipole on each of the interacting species. The
interaction of these dipoles and of the higher-order multipoles
whichi they include gives rise to what is usually referred to as
the van der Waals energy, ¢ygy. Within the framework  of
perturbation theory it can be expressed as an asymptotic

expansion of the form:
Pyawi(r) =1 T Cu T (3-57)
where Cpj are the so-called van der Waals coefficients.

From the above description, it is clear that the van der
Waals interaction is a pelarization phenomenon. The lowest energy

can be expressed by
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a
(3f/nr®) [ ap (iW)ap (iwW)de (3-58)

0
where ap and apg are the polarizabilities of the two species at
imaginary ffequency (iw). Although the estimates of the
coefficients, én: are available in 1literature, 1in general,
the values are poorly known. Early work attempted to determine
these coefficients from optical absorption data, but there are
two difficulties associated with the apgroach. First, the energy
cf the optical excitaticns of aniéns'and cations often overlap;
second, it 1s uncertain as a to how much adjustment should be
made for “local field  corrections in an ionic solid. Empifical

estimates are given by:

3, 6A63 ap ag
6

(3-59)
2 L &ptdp r
Here thg dependence 1s on the choice made for the average
polarizabilities, apn and ap and the effective “excitaticn
energies 6p and &g . Consequently there are large variations
hbetween the van der Waals coefficients reported by various
authors using this approach. The methods, then, based on
effective ionic polarizabilities and excitation energies, are
unable to yield realistic wvalues of the van der- Waals
coefficientg. The study of dispersion energies:in ioni¢ solids

is, thus,far from complete.

Taking into account these points and the points made by

Corish et a125 a potential model in the Buckingham form
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including next near neighbour interactions has been developed.

Here, complete quenching of the van der Waals' interactions

between adjacent ions has been assumed.

The interionic potential energy based on the incompressible

shell model is then expressed as a sum of pairwise terms as

follows:
2175 e2 Yi ¥y e2 ¥4 2 e2
Uij (r, Wi,Wy) = + + +
[ r] ClTHW-W ] [ r-Wi
YiZje2 eZ 2 5
+ (kiWj + kyWy7)
lr+wjl 2v
+ ¢i4{r, Wi, Wy) (3-60)
Where r = (ry - rj) is the position of ion core j relative to ion

-core 1, Wi and W4 the shell-core displacements, Yj; and Y5 the
shell charges, ki and kj the spring constants, Zi and Z5 the core
charges of ions i and j, e the electronic charge, v the volume
and ¢ijr the short-range part as discussed earlier is assumed to

act between the shells only.

The short-range interaction between ions i and j 1s then

given by:
C..
- r i]
91 (r) = By e ¥57 - x (3-61)
Where pjj = aij_l is the hardness parameter. Here, Cj4j (for

anion-anion interaction) is a fitted quantity and all other Cij's

e.g. C;y and C,. are made equal to zero.
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. 35
It may be mentioned here that in the potential of Bowman

and HS>® a further term -Dij/r8 has been included.

The electron gas method is employed for the 1like particle
(cation-cation) interaction. Because of the problem associated
with diffused hydrogen wave function in using electron gas method
for anion-anion interaction guantum mechanical method 1is then
applied with the closed shell screened hydrogenic functions of
the form e—&r involving the one electron functions with an

adjustable screening parameter & for the negative ion.
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CHAPTER 4

PERFECT LATTICE

4,1 Static Propertiec:

Crystals are characterized by their various properties, viz.
static, vibrational, and defect. The guantities which have been
taken into consideration in the present work under the head of
static properties are’ lattice constant, lattice cohesive energy,
second order elastic constants, static and high frequency
dielectric constants, and transverse optic (frequencies. The
formulas for the second order elastic constants wused in the

present study are given as follows:

It is known that the matrices involved in the equations of
motion (given in the later part of this chapter) which depend on
the interactions between the different atoms and theilr associated
dipole moments can be expressed as the sum of matrices which
depend on the interactions between point charges and dipoles
placed at the centers of ﬁhe atoms and on the short~range forces.
Thus, a matrix A is defined as the sum of a matrix R consisting
of the short-range interaction and another involving the Coulomb

interaction between point charges,

A= R+ Z¢Z

where € is the matrix of Coulomb co-efficients. In a similar

fashion:
B=T+ ZB8Y
C =T +vY6Y
p=X+ véy (4-1)

52



when the wave vector g of the normal mede is expressed in
terms of an expansion parameter A as A&q, the matrices, A's, may

be presented in the form of a series as follows:

(0) . (1) 2 (2)
A(ag) = A + 1AT A qy +1/2A° T A qyqQut..
'd Y 4 YA 7 Y
(4-2)
Where A(O) is the matrix A for g=0 and Ay(l) is the first

derivative of A with respect to iqy.
Using similar expression for the other matrices the following

relations can be written:

Al0)_(al0) ),
B(0). cl0)),
p(0) 2 (p(0) .
5, (Ve-(c, (0)).
n (1am(p, (0
(2)_ 2)y, (2)
By )"(AYA( ) '=Ryy
(2)_ (2),,_ (2)
Byy =(G, 0 T)'=Byy
(2)_ (2},.._ (2)
Dy F(Dpy ) '=Dyy

(4-3)
When the whole crystal is translated by a constant vector,
the  equations of motion and dipocle moments remain the same on the

basis of

)]

£ cqn'®! (kk') = 0

for all a and B,

i

£ Bep'®) (kx') = 0
k
iAaB(o) (kk') = }E{.Aafs(o) (kKk') = 0

(4-4)



The macroscopic equations of motion for a small element of

the crystal is given by

2
Ug=25%cC 9 8 T e OFs
= B T - B,
e By A oy B2 Dx.{axh By 4 Oxy
(4-5)

where, P is the density of the crystal, u; is the a-component of
the three dimensional displacement vector, Ep is the S-component
of the macroscopic field, Cgy, py and eg gy are used to dencte the
el&stic and piezo-electric constants. If the displacement vector

u and the macroscopic field E are expanded as plane waves, then

e(2niq.x—iwt)

u(x,t) ugp
and . ,
E(x,t) (2nig.x-iwt)

Epg e
(4-6)
fhe macroscopic equation of moticen then takes the form

) 2 :
PRe ug = 4 T T 3 Cay padyaalp * znléi’eﬁfaiquB

Bx
(4-7)

The second-order elastic constants Cgq, qq: Caq,pss and Cop,ag
which in ”Voigt's notation are Cyq, Cyp, and Cggq are then
estimated on the basis of the relation that satisfies all the
symmetry:

Cay,sx = [aB,¥a] + [By.ax} - [Bxr,ay] + [ap, BA]
(4-8)
In this context, the shoftfrange force constant Dbetween

nearest~neigbour is estimated from:

ea a% ¢(r)

it

and



(4-9)

The second-nearest neighbour interaction is presented by

1/2 (Al+Bl) 1/2 (Al-Bl) 0]
el/av 1/2 (A;-B1) 1/2 (A+B7) 0 for (1,1)
0 0 D interaction
and
1/2 (A>+By) 1/2 (RA-B2) 0
el/2v 1/2 (Ap-B,)  1/2 (Ap+Bp) O for (2,2)
0 0 Do interaction
(4-10)

The co-efficients for the short-range interaction can be

wirritten as:57

2
e
Ry (1l 2) = - == JA Cos2ng, rg + B (Cos2ngprg + Cosani rg)
v
o2
Rgal(l 1) = --- | A+2B+2A1+2B1+2Dq - (Aq1+B1) (Cos2ngusrg)
v ‘

(Cos2nqg rp + Cos2ng, rg) - 2D COSZRqBr0COSZKqY rg
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Neglecting

short~range

the elastic

the case of

Raal(2 2) =

(Cosz2ngy rg + Coszngy, rg) - 2Dy Cosz2ngprgCoszngy, Ip

2
e

—r—

v

A+2B+2A5+2B »+2D o~

(A>+B>o}

(Cos2nqyr)

Rap (1 2). =
eZ
Rap(l 1) = —- A7 - By Sin2nq,rg Sin2nggrp
v
e
Rgp(2 2) = ——- A - Bo S5in2ng,rg Sin2ngprg
\'
(4~-11)
the inner strain and using the coefficients for
interactiong and the relation
- 2 (2)
faB,yal = (1/8rt7v) T (Agp ")y,
kk
(4-12)

Waals'

Ci1 =

1
2

ikl

central forces can,

contribution and also taking Bj =

then,

be represented by

Dj and.Bp =

constants for the compounds under study with the

64

A+A1+A2+B1+B2)~2.55604Zz:}

Vil

v

(4-13)

(Ay +Ay-5B -5B;-2B)+0.112982°

Vi2

v

(4-14)

D>

the

-van
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e? 1 ,
Cag = — (2B+A( +Ap +3B; +3Bp )+1.278022
Vrg 4
Vag
- (4-15)
v
Where
Vig = r 0[3.4759 C,_ + 1.3831 (Cuy + C—_)]
+ v7801.3162 Dy + 0.4353 (Dyy + Do),
Vip = T °[3.6171 Cyn + 0.6881 (Cyy + C__)]
+ r°8[1.4784 D,_ + 0.1498 (Dyy + D__)]
and
Vgg = T O[1.2367 Cyo + 0.0747 (Cypy + Cos)]
-8

+ r [0.7016 D4_ + 0.0162 (D4y + D) ]

The general equations for the elastic constants presented
here involve all co-efficients of Cj4's and Dj5j's. These have
been included to facilitate some calculations made in chapter 6

with Bowman35 and H836 potentials which contain C and D terms.

The relations for the dielectric constants and transverse
optic frequencies have already been derived in the previous

chapter.
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4.2 Dynamic Properties:

4.2.1 1Introduction:

Lattice dynamics is an old branch of Solid State Physics
owing to: the research on'Planck’s Theory of Radiation and the
Theory of Specific Heat' reported by Einstein in 1907,
“vibrations in Space Lattice' by Born and von Kerman in 1912 and
on the "“Theory of Specific Heat by bebye in the same year. Other

early papers on lattice dynamics included those by Debye65 and by

66

Waller on the effect of temperature on the scattering of X -

rays by a crystal.

Inspired with the work of Einstein on his model of
independent atomic oscillators Debye67 developed a more
meaningful model of coupled atomic oscillators. He presented a
ﬁrequency spectrum in which each normal mode possesses the mean
energy of a Planck oscillator and the normal modes of vibration
were treated as if they were waves in a continuous 1isotropic
medium instead of in a system in which the mass is c¢oncentrated
at discrete points. Debye's theory considers the solid to be
continuous and due to this <¢ontinuous background the model
ignored dispersion, polarization, and isotropy cf the waves in
the lattice. Debye's theory of specific heat was generally in
good agreement with most of the experimental data till 1930 when
deficiencies of the theory began to be noticed in comparisocn with

the experimental results.

In 1912, Born and von Kerman 68 introduced a model of lattice
dynamics. According to them the atoms are arranged in a periodic

three-dimensional array. In such an array, the force on an atom
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depends not on its displacements from its equilibrium position
but on its displacements relative to its neighbours. They
introduced the periodic boundary conditions which greatly
simplifies the calculations without affecting the bulk
properties. Here, the motion of the system is described not 1in
terms of the vibrations of individual atoms but in terms of
collective motions in the form of travelling waves called lattice
vibrations by Born. Each lattice vibration is characterized by a
wave vector, a frequency and certain polarization properties. A
quantised lattice vibration 1is <called a phonon which has
particle-like properties analogous to photon which is a quantised

electromagnetic wave.

In Debye and Waller's study on the theory of the influence of
thermal motion on the scattering of X-rays on crystals, the
thermal motion of the atoms causes a decrease in the intensity of
the Bragg reflections with increasing temperature. The part of
intensity lost from the main beam appears as diffusely scattered
radiation which is observed in directions not allowed by Bragg's
law. In 1838, Laval69 experimehtally detected this thermal
diffuse scattering and correctly explained in terms of the Born-

1

von Kerman theory. Olmer70 and Walker7 continued the research

and deduced dispersion curves for aluminium, Other workers used
this technique and obtained the dispersion curves of iron,
copper, and zinc. Born72 presented comprehensive theoretical
investigation on the relationship between crystal dynamics _qnd‘

the scattering of X-rays.
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Rubens and Hollnagel73 and Barnes74 first performed

experimental investigations on the electromagnetic waves with
wavelengths from the visible to the infra red region and found
that the waves interact in various ways with lattice vibrations.
From the experimental research they reported that these long wave
length lattice wvibrations which produce an oscillating dipole
moment interact strongly with light in the infra and far-infrared
regions - and lead to ahsorption and reflection bands in narrow
frequency Eregions. The waveleﬁgths' cbrreséonding "to the

absorption frequencies are termed as'Reststrahlfwavelengths.

Light in the visible region is scattered by both acoustic

75 estimated

sound waves and by certain optical ﬁhonons. Brillouin
the spectrum of light scattered by density fluctuations
.associated with sound waves. He observed that the spectrum
consists of a doublé split symmetrically around the frequency of
the incident 1light. The splitting, which i1s very much smaller
than the frequency of the incident light, is determined by the
velocity of those sound waves whose wavelength is close teo phat

.0of the light and the experimental technique is known as Brillouin

scattering.

In 1923, Smekal76 studied the scattering of light by a system
with two gquantised energy levels and predicted the existence of
sidebands in the spectrum. Subsequéntly, in 1928 Raman Krishnan77
obgerved this effect and they reported that light scattered by
liquids contains sharp side bands symmetrically arranged around
the incident frequency with shifts:identical to the frequencies

of some of the infrared vibrational absorption bands. This
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inelastic scattering of light by molecular and crystal vibrations
is known as the Raman effect. This is caused by those 1long
wavelength optical phonons which modulate the electronic

polarizability of the system.

Brockhoﬁée78 used inelastic scattering of thermal neutrons
and presented the first dispersion curves for lattice vibrations
in aluminium. At present, inelastic scattering of neutrons is the
most important technique for studying phonons for the reason that
in contrast to X-rays, neutrons which have come into thermal
equilibrium with matter at about room temperature have energies
of the same order of magnitude as phonons. The wave length
associated with a beam of monochromatic neutrons in this range is
of the same order of magnitude as interatomic distances and the
beam will be diffracted by a crystal. As in the case of X-rays,
there 1is again elastic scattering according to Bragg s law. The
neutron beam is, however, also diffracted in other directions by
travelling waves and exchanges energy with them in units of the
phonon energy, which is diréctly proportional to the frequency,
Consequently, by measuring tﬁe change in direction and in energy
of the scattered neutrons, it is possible to get the phonon
frequency as a function of the wave vectors for all the acoustic
and optic branches and on the bhasis of this new technique it 1is
also possible to obtain detailed information about the inter-
atomic-forces.‘The next. section describes the dynamics of a Three
Dimensional Crystal. Section 4.2.3 is concerned with the Phonon
Dispersion and Interioconic Forces on the basis of Rigid Ion Model

and Shell Model.
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4.2.2 Dynamics of a Three Dimensional Crystal:

(a) Equations of Motion and Atomic Force Constant:

A crystal 1is considered to be composed of an infinite number
of unit cells, each of which is a parallelopiped defined by three
non-coplanher vectors aj, ap, and a3 (Fig.4.1). The equilibrium
position vector of the lth unit cell relatiQe to an origin

located at some atom is expressed by

r(l) = lja; + lpay lzaz (4-16)
where 17, 1o, 13 are any three integers, positive., negative, or
zero and collectively taken as 1. The vectors aj,ap, ajz are the
primitive translaticn vectors and they define the primitive unit
cell which is the c¢ell with the smallest volume from which the
crystal structure can he generated by the translations of the
la;tice (4-16). If the primitive unit cell consists of only one
atom, the vector r(l) giveun by (4-16) defines the equilibrium
positions of the atoms. If there are n>l1 atoms in the primitive
unit cell, this group of n atoms counstitute the basis of the
crystal structure. The eqhilibrium positions of the n atoms
within the unit cell are given by the vectors r(k) with k = 1,2,
+..,n. Thus, the equilibrium position of the kth atom in unit
cell 1 is given by
1 :
r = r(l) + r{k) (4-17)
K

The atoms in a crystal are capable of executing vibrations
about their equilibrium positions owing to the thermal
fluctuations at non-zero temperatures and the zero-point motion

at absolute zero. In vibrating states, the instantaneous position
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of the atom,( l) is given by
k
1 1 1
R = I + u (4-18)
' k k k
1 1
where u denotes displacement of the atom from its
k 1 k
equilibrium position r( )
k
1 ] 1 1 1
k _ k k k

1 1
Here, ua(’ ) expresses the displacement of the atom ( ) in the
k k
direction a (a=x,v,z).
The Kinetic¢ energy of the vibrating crystal is
1 v 2 1

T = — I mg Uy (4-20)
2 1,k.a k

1
where mig is the mass of the atom (k) . The potential energy §, is

assumed to be some function of the instantaneous positions of all

atoms:

-

For small displacements, § may be expressed in a Taylor s series
1

in powers of atomic dicsplacements u as follows:
K
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\

1 1 1 11! 1 l“
» =¢ Ir + I Py u +1/2 & $yp u ug

k/] 1k a { k k l1ka\kEKk' k k'

1'k'p!
111 1 1! i
+ 1/6 £ Z z any lq up Uy +
lka 1'k'B1"k"y K k'k" k k' k"

(4-21)

The terms beyond third represent the anharmonic contributions
to the crystal potential energy and are neglected in the
description of the lattice dynamics in the harmonic
approximation. Since g is the static potential energy of the
crystal (i.e. independént of the displacement coordinates), it is

ignored for the time being. The coefficients .

{1 1Y
$u and  $gp ,| are defined by
k k
1 =
i - = . (4~22)
k 1
duy )
k 0
11 | >%% ]
San = (4-23)
’ k k' 1 I
_ | k X!
—_ - 0

where the subscript =zero indicates that the derivatives are -

evaluated in the equilibrium configuration (4-17). The force that

1
acts on the atom ) in the a-direction due to the displacements
l 1

)is given by
k! '

of all atoms(
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1 5
Fg = - — /1 (4-24)
Kk bua( )
k

Now, eqn. (4-21) takes the form:

1 [ 11 1!
Fol = = ¢a - Z  Qgp )UB (4-25)
k k[ 1'k's k k' k*

If all the atoms are in their equilibrium positions, i1.e. the

ll
displacements up ) , are zerc then the following condition
kl

must hold, i.e.
l .

In the harmonic approximation (4-25)then can be written as

1 11 1!
'Fa = -5 (baB u (4"27)
k/ 1'k's! Kk k' k! ‘

Hence the potential energy is given by:

1 f1 1 1\ 1
TN
2 k k' k k'

5
l,k,a
1,k,8
(4-28)
The Hamiltonian of the system is then written as:
1 AVEAN 11 1 1
H=— % mx U, + —— L $qap Ug up
2 lka k 2 k k! k k!
lka
1'k'8s
(4-29)
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The eqn. of motion of an atom of mass mi is given by

Lol 11 1
Mxug == Z 8qp ug (4-30)
k 1'k's k k! k'

11
The coefficients, @aﬁ( ) termed as atomic force constants
k k'

indicate the negative force exerted in the a-direction on the

1
k

l 1
when the atom( k')is displaced a unit distance in the B

atom
direction, while all other atoms are kept at their equilibrium

positions.

(b) Dynamical Matrix and Eigen Vectors:

The egns. of motion (4-30) represent an infinite set of
simultaneous linear differential egns. The wave like solution of
the system can be expressed in the form:

(1 1
Ug )= Ug(k/q)exp [i{q-r( )- Wiqt}] (4-31)
“\k k

Here, Ug(k) 1is independent of 1, g, and @¥(q) are used to
indicate the wave vector and angular fregquency associlated with
the wave, Trespectively. Since the lattice 1is translationally
invariant, the solution of the eqgns. depends only on the
difference between cell indices 1 and 1'. Thus a solution for one
ion is in fact a solution for all ions of the given sublattice in
the whole grystal. Substitution of (4-31) in (4-30) 1leads for
each value of q to set of 3n simultaneous egns.

W @mg Ug(k/Q) =z Dap(kk'/@) Ug(k'/q) (4-32)
'R
in terms of the wave amplitude Ug(k/q).

67



In matrix notation (4-32) can be written as:
®%(a@) m U(q) = Da) Ula) (4-33)
where U(q) is a column matrix containing 3n elements and D(q) is
a square Hermitian matrix known as the dynamical matrix. This

matrix consists of 3nX3n elements given by:

Dap(kk'/q) = % ¢qp{l-1', kk') exp{iq.R(1k;1'k')]
l !
(4-34)

The condition for (4-33) to have a solution is that
D(@) - w(q@ mI| = 0 (4-35)

where I is a unit matrix of order 3n and m is a (3nX3n) diagonal

matrix defined by
Mgyg (kk') = mk BG.B 5kk' (4~-36)

Eqn. (4-35) 1is an eqn. of 3nth degree in Wz(Q) and the 3n
solutions for each value of g will be denoted by w?(Q) where
j=1,2,....,3n. These are the eigen values of the dynamical
matrix. The corresponding eilgen vectors are Ug5(k/q). These
determine the pattern of displacement of the atoms in a
particular mode of vibration and the Uj(k/q) may be referred to

as polarization vectors. The relation given by

W =45(q (4-37)
is called the dispersion relation. The curves obtained from
(4-37) are the dispersion curves and depend on the c¢rystal
structure and the nature of the interionic forces. Translational
invariance of the potential ensures that three branches of the

spectrum are acoustic, i.e. they have Wj(q) proportional to q
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when q is small. The remaining 3{n~1) branches, generally, tend
to finite frequencies as gq tends to zero. Such modes in binary
crystals are found to interact strongly with light and hence they

are called the optic modes.

(c) Reciprocal Lattices and Brillouin Zones:

The discussion on vibrational properties was started with an
infinitely extended crystal. For the purpose of periodic boundary
conditions the crystal is subdivided into macrocrystals; these
are parallelopipeds defined by the vectors Njaj,Njap;,Njaj where
aj,ap,a3z are the primitive translation vectors and Nj ,Np ,N3 are
large integers. Each macrocrystal contains N = NjNpN3 primitive
unit cells. The periodic boundary conditions require that the
atomic displacements for atoms separated by a translation Nja4,

or a sum of such translations, must be the same

1+N4 1
u = u (4-38)
k k
also
exp(ig Njaj) =1 {4~39)
this relation specifies the possible values of g for i = 1,2,3,.

Using reciprocal lattice the conditions can be expressed in the

manner as follows:

The primitive translation vectors of the reciprocal 1lattice

are the three vectors bj,bs, and b3 defined by

aj.by = 2néj; (4—40)”_
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these eqns. can be satisfied by putting

21
by =—
v

2

b2 = —
v

21

by =——
v

where

v=a1

is the volume of

(ap; X asg)
(4~41)
(a3 X aj)
(ap X ap)
.{ax» X a3) (4-42)

the primitive unit cell of the direct lattice. A

lattice vector in the reciprocal lattice is given by

T(n)

where the ny are

negative, or zero.

vector r{(l) = ljaq +

is given by

r(l) t{n) = 2n

1

Hence an expression

g

q:
Ny

Also

and

arbitrary integers

The scalar product between a

2 1liny = 2n X (integer)

for gq which

= nibq + nobs + nabj

(4-43)

whiich can be positive,

direct lattice

loas + l3zaz and a reciprocal lattice vector

(4-44)

satisfies (4-39) is glven by

112 i3
b +—-by + b
N2 N3 '
(4~-45)
wilart) = wy (a) (4-46)
1 g+t 1 q
= u (4-47)
K J k 3
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Therefore, all the distinct solutions can be obtained if the
allowed values of q are restricted to lie in one unit cell of the
reciprocal lattice defined by the three vectors by, bz, b3, in
other words, the integers nj in (4-46) are restricted to:

nj =0,1,2,..... Ny -1
or,
ny =1,2, ......,N5

The unit cell described by by, by, bz doces not,in general,
reflect the symmetry of the reciprocal lattice. It is, however,
possible to construct a primitive unit cell in such a way that
the point symmetry of the reciprocal lattice can be made. This is
achieved by taking a point, g=0, in the reciprocal lattice and
then constructing vectors to neighbouring points of the

reciprocal lattice and bounding the unit cell by planes which are

perpendicular bisectors of the vectors to the neighbouring

points. Such a cell is termed as Brillouin zone and the volume of

the zone is given by:

Vh by . {by X b3)

(2n)3
= . (4-48)
\"

In Fig. 4.2 the Brillouin zone of the compounds under study,

is exhibited.

4.2.3 Interionic Forces and Phonon Dispersioq

Phonon dispersion curves Q(q) can be determined by inelastic
neutron scattering techniques. These experimentally measured
curves are mainly of interest owing to the fact that they provide

chance of testing various meodels of interionic forces. The forces
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between the ions are governed by the electronic structure of the
atoms involved. The vibrational properties of the ionic crystals
has been given here on the basis of the Rigid Ion Model and the

Shell Model in sections {a) and (b), respectively.

(a) The Rigid Ion Model:

In the rigid ion model an ion of type k <carries a point
charge 2Zyxe, where e denotes the magnitude of the electronic
charge; the ions are, therefore, not'polarizable. The interaction
energy of two ions 1 =(i) and k =(i‘)separated by a distance Rjk

is exXpressed by

d(Rix) = ¢(R)(Rik) + ¢(C)(Rik) (4-49)

where ¢(R)

¢(C)

is a short-range repulsive or overlap energy and
represents the 1long-range Coulomb energy: In this case of

central forces, the total force constants are
. _ R . ¢ .
$aplik) = ¢° gplik) + ¢  gplik) (4~50)

Here, ¢R ap{ik) and ¢C ap{ik) denote the force constants derived
from the repulsive and Coulomb energy, respectively. The

dimensionless short-range parameters are given by

2

[ ] e
¢(R) (rix) = Ajk (4-51a)

2V

2

1 , e
o B (rip) = B ik (4-51b)

Tik v

where rik is the equilibrium distance between the ions i and k

and v is used to represent the volume of the primitive unit cell.
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The repulsive force constants for i s k can be expressed by

2
R ) € Yijka Tiks
¢ qplik) = - (A{ik-Bik) +6apBik
2v | ik
(4-52a)
also R
¢ qp (ii) = - dan  (ik) (4-52Db)

z 1
k
| Similarly, the force constants of the Coulomb forces for i =k

are given by

o _ 5 SapTik 3T ikaTikR
¢ qp (ik) = ZiZye (4-53a)
ik
and e
¢ qp (ii) = = T'dgp (ik) (4-53b)
k

The dynamical matrix can be written as
q 11 1 1
Dap = % ¢gp explig{r -r (4-54)
k k! 1 k k! \ k! k
The corresponding secular eqn. is

D(q) - m2(q)| = 0 (4-55)

Using (4-50) in (4-54), the egn. takes the form
D= R+ ZC%Z (4-56)
The eqn. of motion for RIM is then given by
wzmu = Ru + ZCZu (4-57)

Here R(qg) is the matrix of the repulsive forces given by

s lefoosfe ) =)

(4-58)

"

[

»
—
=
- Q
\:_,_-—

1
=™
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and C(qg) is the Coulomb matrix, the elements of which are given

q 11 1 1
ZxZx'Cqn =2 & gp 2xpliq|r - T
k k' 1’ k k' k! k

(4-59)

by

The repulsive matrix R{q) is evaluated directly due to the
rapid convergence of the series (section 4.1). On the other hand,
it is very difficult to evaluate the series (4-59) due to the
Treason that, it does not tend to a unique value as g-~>0, but to
a Qalue which depends on the relative directicns of g and the
electrical polarization associated with the mode concerned.
However, the problem is solved using Ewald s method (an account
of which has been given earlier). The condition for the
solubility of the set of eqns. given by (4-57) presents a

determinantal relation for w(q),

(R + 2CZ) - WonI = 0 (4-60)

This determinant 1is of order six for a cubic diatomic
crystal. Along principal symmetry directions, the determinant
factorises and yields three different (2X2) determinants which
can be solved as a quadratic egn. to determine Wj(q) for every
g. In case of a face-centred cubic lattice, when q 1is 1in a
special direction of high symmetry such as (1 0 0}, the matrix
Cc(q) 1is also diagonal in « and #. Thus,when q@ = (qyx,0,0), one

finds that the dynamical matrix has the following structure:

.D(q) = 0 D 0 (4-61)
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where Dgg(q) are two dimensional and real matrices. 1In this
case, the direction of the eigen vectors are determined by
symmetry and the modes are purely longitudinal or purely
transverse. If q = (dg,0,0), the matrix Dygy(q) gyives the
dispersion W(q) for the longitudinal modes LA and LO, while
Dyy(q) and Dg,(q) yield identical solutions for the doubly
degenerate TA and TO-modes. The two principal frequencies,

longitudinal and transverse, thus, determined are given by:

5 8n22e2
uW-"10 = Rg + =—mm (4-62)
3v
2.2
> 4nZ"e
MW mg = Rg - {(4-63)
3v
where p is the reduced mass, given by:
mqmy
B o= (4-64)
m + mp

The optical splitting between the LO and TO modes is written

as

2 2
2 2 4nZ e
WW 0 - W) = (4-65)
v
and the Lorentz field is
in _
E(L) = P (4-66)
3

The macroscopic field E(M) have values which are different
for the TO and LO - modes. For a TO -~ mode, (q perpendicular to

P), the macroscopic field vanishes while for the LO-mode (q

parallel to P), the macroscopic field is - e

M - anp.
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The effective fields are thus:

B 4m
E = P (TO-mode) (4-67)
3
* 8n
E = ~ —— P {LO-mode) (4-68)
3

Macroscopic field is, therefore, responsible for the result

wLo >Wro.

(b) The Shell Model:

A description of this model has been presented in chapter 3.
As shown in fig 3.1, k; and kp denote spring constants which
" couple the shells to the ion cores. The core charges are given by
X1e and Xjze while Yje and Yje are used to express shell charges.
The net charge on the cation and anion are
Ze = (X7 + Yp)e and -Ze = (X3 + Yp)e,
respectively. As the unit cell as a whole 1is electronically
neutral

L Zxe = % (X + Yx)e = 0O (4-69)
K k

If the spring constant between core and shell be kg, the

polarizability is given by
ak = ~———— (4-70)

Here the interaction of a shell has been considered with the

core of the same atom and of neighbouring atoms.
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The harmonic potential energy of the crystal is expressed by

1
1 1 1
¢ = — =5 ( by )
u u +
2 Lai 1,k 8l ks Uk ] Pl
@ 1 l')Ll (l) 1|' T l,l 1. l
aB : a Wi t+ §p u W +
kK k k! AT A NN R
3 (l) ') 1 :
aB W W + K W -
kx/ \k/ C\x ke ( k)
1) 1 1 c
Y eW, + Zkeua( Eq | '
k k k ‘

(4-71)
Here, W gives the displacement of the shell relative to the

core.
Relation (4-71) yields the dynamical eqn. for the shell model

and can be written as:

@ (q) mu

(R + ZCZ)U + (T + ZCY)W (4~72a)
0 = (TF + ¥YCZ)U + (F + YCU)W (4=72b)

The shell masses have been taken to be 2zero and this
assumption 1is 'equivalent to the adiabatic approximation: which
expresses that the electron distribution 1is always © that
appropriate to the instantaneous configuration of the nuclei, in

this case, of cores.

Here, Y is a (3n X 3n) diagonal matrix of shell charges'(Yk),
m and Z re the ionic mass and and charge matrices, respectively.
U and W are the 3n-component column matrices represented by the

core and relative core-shell displacements such that
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(4-73)

R, T, a“dtdeHOtE, as shown in Fig. 4.3, the short-range core-core

, core-shell, and shell-shell interaction matrices such that

R = D + 8 4+ OoF and T = 8§ + F

T ' (4-74)
and T" gives the transpose conjugate of T,

Here, D, S, and F represent (3n X 3n) matrices on the basis

of interactions exhibited in Fig. 4.3 and is related to S by

q q
Yas = sqp + kg 8ap Skk , (4-75)
k ky k!
Here,JP = {8+ K) with S as the short-range interaction matrix

(3ﬁ X 3n) and K is the diagonal matrix-(3n X 3n)} specified by
the core-shell spring force censtant kix. € is a (3n X 3n) Coulonb
interaction matrix. The short-range forces are assumed to act
through the shells and under this condition the matrices R, T,

and S are taken to be equal. Elimination of W from (4-72h) vyields
w?(q) mU = D(q)U (4-76)

where the dynamical matrix corresponding to the shell model 1is

expressed by

-1, T

D(g) = (R + ZCZ) - (R + ZCY)(S + K + ¥C¥) “(T" + ¥YCZ)
(4-77)

The first term of (4-77) is the dynamical matrix found with
the RIM model. The second term givgs contributions arising from

the electronic polarization. It is, however, interesting to note
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FPig. 4.3: The shell model showing interactions between two
neighbouring ions, k and K. ' ‘
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at many-bo - -
th y-body forces are present in the second term although R,

T, and S involve only two~body forces

A substitution of the dynamical matrix (4-77) in the secular

equation (4-35) and its golution then, yields 3n vibration

: 2,
frequencies Wy (q) corresponding to each phonon wave vector .

Along  the principal symmetry directions A y Lo, A the
determinant reduces to, as in the case of RIM, 1lower order
dete;minant, (2 X 2), for diatomic cubic crystals.

It should be pointgd that The Shell Modei treatment of
dielectric behaviour satisfies the Lyddane~Sachs and Teller and
Clausius-Mosotti relations. The additional polarization mechanism
associated with the shell nmnodel which arises owing to the
electronic distortions does not have any effect on the dielectric
constant. The frequencies for the TO and LO-modes can be

written as:

2 4n(8a+2)(Z'e)2
ne“po = Ro' -
(4-78a)
2 1 2
s 8rn(ey+2)(2'¢€)
Ll(‘.’hLo = Rg' +
9‘\/8@
{4-78b}
The optical splitting is then given by:
2
> an(z'e)’ (eq+2) (4-79)
W - W po) = -
. ( Lo T 9V8a‘
2
where, Rgr = Ro - € {(d1”°/a;) + (d°/az)} and
' = + A - d
’ T : (4-80)
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and the electrical and mechanical polarizabilities, ay and dx

are given by:

¥ice? -Yx[R(kk) Iq—0

= ; dk =
kkt{R(kk) Ig-s0 kit [R{kk) Jg—>0

(4-81)

ak
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CHAPTER 5

DEFECT LATTICE

5.1 Introduction:

A perfect lattice may be defined as one in which all the

atoms are at rest on their correct lattice positions i1in the
crystal structure. Such a perfect crystal can be obtained,
theoretically, only at absolute zero. As the temperature of a
crystal is raised, the amplitude of the thermal vibrations of the
atoms about their mean positions increases. Lattice vibrations,
also vreferred to as phonons, constitute an important defect 1in
solids since they are the agents whereby the lattice reaches a
state of thermal equilibrium. The energy distribution of the
phonons is important in problems involving optical absorption,
heat capacity, electrical resistivity, X-ray diffraction, 1line
broadening, luminescence and many others. The changes in the
phonon spectrum accompanying the formation of atomic defects in
solids contribute to the entropy of the solid. Apart from the
fact tﬁat atoms are vibrating, a number of atoms are inevitably
misplaced in a real crystal. According to Frenkel79 Wagner et
also, and Jost81 there exist in a crystal in themodynamical
equilibrium a number of vacant lattice points also a number of
ions will be situated in interstitial positions. 1In some

crystals, the number of defect present may be very small, e.g.

high purity diamond or quartz crystals. In other crystals, very

high defect concentrations may be present. In highly defective

crystals the question arises as to whether or not the defects

themselves .should be regarded as forming a fundamental part of
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the crystal
Y Structure rather than as some imperfections 1in an

otherwise ideal Structure

Vari
10us schemes have been proposed for the classification of

defects.  They are broadly divided into two  parts: (a)

stoichiometric defects: In this category the crystal composition

is  unchanged on introducing the impurities and (b) non-

stolchiometric defects: This type of defect is a consequence of a

change in crystal composition. Alternatively, the size and shape
of the defects can be used as a basis for classification and

accordingly described as:

(i) Point Defects: This type of defects includes: vacant
lattice sites, interstitial atoms, impurity atoms, atoms on wrong

sub-lattices, and ions with different valencies.

(i1) Line Defects: Here the defects are:

(a) Edge dislocation: Row of atoms marking edge of a
crystallographic plane extending only part way in crystal, and

(b) Screw dislocation: Row of atoms about which a normal

crystallographic plane appears‘to spiral.

(iii) Plane Defects: Under this head the defects are:
(a) Linear Boundary: Boundary between two adjacent perfect

regions in the same crystal that are slightly tilted with respect

to each other,

(b} Grain Boundary: Boundary between two crystals in a

polycrystalline solid,

(c) stacking Fault: Boundary between two parts of a closest

packing having alternate stacking sequences, and
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iv) Volum i
(iv) € Defects includes: clusters of atoms of different

chemical composition:
Position; ordered regions; clusters of point defects;

divacancies; trij i i ;
+ tllvacancies; impurity atom vacancy or interstitial

complexes; ; .
P small regions of disorder; extended, 1long range

configurational defects and {initial stages of spinodal

decomposition.

Many of the important properties of ionic crystals are
largely influenced and often determined by the defect structure
and in particular by the properties of the point defects
{Crawford et al.82, Stoneham83). Point defects play an important
part in determining the physical properties of most crystalline
substances, most notably those controlling the transport of
matter and the properties that stem from it. They also strongly
influence the resistivity of metals by scattering conduction
electrons, the 1low temperature thermal conductivity of all
crystalline solids by scattering the phonons, the electronic
conduction and related properties of semi conductors by acting as
donors or acceptors and the optical properties in ionic solids by
introducing electron states with optical transitions. The
knowledge of defect propertieé of solids will be applicable in
the fields where technical requirements demand materials with
high ionic conduction, e.g. (a) there are ion monitors in which
the presence éf a low concentration of some species 1s measured
electrochemically as a voltage across a suitable electrolyte. The
important features are discrimination and low electronic
conductivity, to avoid dissipating the potential generated in
an electric current, (b) high ionic conductivity-can be

driving
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valuable in
electrolytes for batteries and fuel cells. These

electrolytes .
Y need low electronic conductivity to avoid 1leakage

losses. The '
batteries are being tested in several countries for

se in, viz. i
u + V1z. electric cars and for power station load levelling.

For these processes the various energies of the defects are some

of their most important barameters. The energies needed to form

the defects determine the concentrations in which they are
present in thermal equilibrium, while the activation energies
needed for them to jump from one lattice position to another
determine the rates of their migration through the lattice.
Because defects do determine many of the technologically
important properties, an ever increasing amcunt of attention is
being devoted to their study. The next section of this chapter is

concerned with the concentration of defects in crystals. Section

5.3 describes the calculation of defect energies.

5.2 Concentration of Defects:

5.2.1 Schottky Defect:

The Schottky defect which is steoichiometric in ionic crystals
is a pair of vacant sites, a cation vacancy and an anion vacancy.
For a cation vacancy in a normal lattice to occur, a positive ion
must some how migrate out of its proper position in the structure
to the crystal's exterior. If only positive ions migrate out of
the c¢rystal and collect on its surface the surface will become
positively chafged. This positive surface charge opposes the
mijration of additiocnal positive ions out of the c¢rystal's
interior. Simultaneously, the excess negative charge created

inside the crystal is conducive to the formation of negative
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vacancies., 1In = s e g :
the absence of external fo; ;es, therefore, the

number of ' '
1 opp031tely charged vacancies inside a crystal tends to

be equal.

If t i -
f there are M ions in the crystal and n Schottky defects are
produced by removing n cations and n anions from the crystals

interior, the different ways in which each kind of ion can be
removed is given by
N!
A — (5-1)
(N-n) !
As the number of <c¢ation and anion vacancieé are equal the
different ways in which Schottky defects can be formed 1is then

ocbtained by squaring (5-1). According to the Boltzmamn formula,

the increase in entrepy on creating n Schottky defects is

N!
S = kK log| ——m——————o- (5-2)
(N-n)!nt

This in turn produces a change in the Hemholtz free energy

F = E - TS
N! 2

nEy - kTlog |—m—m—— (5=-3)
(N-n)!n!

i

where Ep is the enerygy requifed to removela pair of ions from the
crystal's interior to sites on the surface so that nEp represents
the total energy in its internal energy. When equilibrium is
attained at a given temperature, F must be a minimum with respect

to changes in n. The condition for this is that:

&F '
._—-) = 0 (5-4)
(Gn., T '
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eqn. (5-4) then gives

N -1

e ————— ™

- = exp (Ep/2KkT) (5-5)

In practice, n<<N and N-n ~ N / edqn. (5-5) can, then, be written

as
D = N exp(-Ep/2KT) (5-6)

the concentratyon of Schottky defects -is, thus, given:by
n o ' :

'Cg = — = exp (-Ep/2kT) (5-7)
N .

The concentration of Schottky defects, thus, increases

exponentially with temperature.

5.2.2 Frenkel Defect:

Frenkel defect is also a stoichiometric defect and involves
an atom displaced off its lattice site into an interstitial site

that 1s normally enmpty.

Let E4 be the energy required to displace an atom from its
proper position Eo an interstitial position in a perfect crystal.
Then, if there are N atoms in the crystal and Nj interstitial
positions in its structure, there are

N! N!

. (5-8)
(N~n)!n! (N-n)!n!

ways in which n Frenkél defects can be%ﬁdrmed. The increase 1in
entropy of tﬁe crystal due to putting the ions into interstitial

position becomes

) N! N!
k jlog + log ———— (5-9)
(N-n) !n! (N-n) !n!

S
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The change i
geé 1n the Helmholtg free energy produced by the creation

of n Frenkel defects is

N! N!
F = nEj- kT |log —— 0 log

(N-n)in! {N-n)tn!

(5-10)

leferentlat;on ©f (5-10) with respect to n using Stirling's

formula yields

OF , (N-n) (Nj-n)
——| = E{ - KT log (5-11)
én fmp n®

At equilibrium the free energy should be a minimum with respect

to changes in n. The condition for this is given by

[ 6F \
— 4 = 0 and since N>>n and Ni>>n,
6n /o
n = (NNJ'_)l/2 eXp(-E{/2KT) (5~-12)

the equilibrium concentration of Frenkel defects taking N = N4 1is
then expressed by ‘
| n
Cp = — = exp(-Eji/2kT) (5~13)
N
Usually both kinds of defects are present in all solids; however,
there is always a tendency for one type of defect to predominate
since their energies of formation are generally unequal. On the
basis of the experimental evidence and theoretical calculations,
as shown in Table 6.11 of Cchapter 6, mnext, 1t has been

established that the predominant defects present in the compounds

under study, are Schottky defects.
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5.3 Method of Evaluation*of Defect Energy:

The wvari : .
ous defect energies which have been reported in the

18518 were ] ; s
tl estimated using the minimisation method (described in

subsequent sections). what happens -in the region of crystal where

the vacancy has been created is shown schematically in fig. 5.1.

Removal of the cation will have the same effect on the neighbours

as the substitution of a negative charge. The interionic
distances in the crystal are governed by the balance of positive
and -negative charges. Extraction of the cation will allow the
caticns surrounding the vacancy to relax inward because of
repulsion from neighbours surrounding the ions. Conversely, the
anions will move outward. The ions that are far removed from the
defect site also move inwards or outwards according to the
effective charge on the defect because of the long range nature
of the Coulomb field. In this context, the relaxation of the ions
in case of saddle pecint configuration required to evaluate
migration energy is shown 1in fig. b5.2. The main problem
associated with the defect calculation 1s the treatment of
lattice relaxation. The dowminant contribution to the lattice
response is due to the effective charge of the defect. The ions
immediately adjacent to point defect, initially at their regular
sites on the perfect crystals, suffer displacements which are too
large to be adequately described in terms .of linear elastic
theory. Because of this, these ions, in the presence of the
defect at l%he centre of the region, are treated as discrete
particles. Ions, whicht 1lie well away from the defect are
1 amounts and are susceptible to treatment by

displaced by smal

the elastic theory. In other words, the dielectric response in
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Fig, 5.2: Saddle point configuration for migrafion of

a cation.
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stron i regi *
the 9 field region close to the defect is incorrectly

represented .
rep by any continuum approach based on the macroscopic

tri :

dielectric constant. on the other hand, the calculation of the
atio ;

relax N of the more distant weak field region by the continuum

methods 1s quite adequate. As a result, the crystal containing

charged defects is considered to be divided into an inner strong

field and an outer weak field regions., In the inner region,
termed as region I, the displacements are treated independently
and determined by allowing it to interact with surrounding ions
according to a pairwise central force law. In the outer region,
region II, the ions are also regarded as discrete particles
embedded in an elastic continuum. Here the relaxation is taken to
arise sc¢lely from interaction of the polarizable medium with the
defect at the origin. Region II has further been subdivided into
tﬁo zones: Region IIa forms an annulus about region I, within
this, the deformations due to its polarization interaction with
the defect are assigned to the lattice sites of the crystal, i.e.
in IIa the discrete ions are relaxed by amounts determined by the
relaxation of the polarizable continuum of Mott and Littleton84.
According to Mott and Littleton, the macroscopic polarization P,
at a distance r from a defect of effective charge Z, is given Dby:
1 1 Zer

P = (1"' "'")
an gg . T

(5-14)

The polarization Pper unit c¢ell is then divided into

constituent polarization terms. For the shell model,  the

polarization is broken down into core and shell displacements.

93



5.3.1 Division of the Lattice into two Regions:

Proceedin 5 |
9 formally, the c¢rystal is divided into two regions.

The energy of defect formation is then expressed by

E = Ex(x) + Ex(x,y) + E3(y) (5~15)

er
Here x and y are vectors of shell and core coordinates for

region I and region II, respectively. E1(x) 1s the energy of the

inner region depending only on the independent coordinates x
describing the configuration of region I, E3(y) is the energy of
the outer region and is a quadratic function of the displacements

of region II. The interaction energy hetween the two regions 1is

included in E; and
1
E3(y) =— y.A.y (5-16)
2

‘where A 1s the force constant matrix and the components of ¥y
describe all the displacements 1in the outer region. On the basis

of the equilibrium condition:

8E 5
= - A.Y (5=17)
Sy .
and then
1 6E»
Ez(y} =~ — Y (5~18)
2 65y

5.3.2 Short-Range Potential:

Here the SR potential function that acts between ions i and j

is denoted by
¢15(lry - ryl) (5-19)

where rj is the position of the ith ion. All the ions, including
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thoese renov .
ed from the Crystal to form vacancies and also those

added to th 1 )
€ crystal to form interstitials are numbered. -

substituti i
ional ions are regarded as vacancies plus interstitials.

Each lattice ion angd interstitial now has a position denoted by

ri- In the sum over actual ions, those which are removed to
infinity to form vacancies are always excluded. It is visualised
by implicitly assigning a lattice position to the removed ions at
some distance far from the crystal. The potential interaction is
then becomes =zero. Analogously, the ‘sum over lattice sites
denoted by R; which excludes term corresponding to interstitials
and whose lattice sites are assigned at infinity are required.
Unrelaxed or ideal positions in the crystal are described by Rj
and relaxed ilon positions by rj.

Also

Rjj = IRy - R_']l

Tj fry - I‘JI (5-20)

The c¢onvention then used corresponds to the process of
removing 1ions to infinity to form vacancies and bringing ions
from infinity to form interstitials. Also a notation &' is used

ieT
jel
to imply summation only over pairs of ions in region I where
prime denotes restriction to i>j is used. On the basis of the
convention the perfect crystal energy is expressed by
P — o | PR 5_21
E- = & ¢’(R1]) ( )

ieI&II
JeT&IT
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The e N : : .
nergy of the defact lattice formed :v the addition ov

removal of ion - e e .
s for an arbitrary configuration is then given by

d

E" = ' ¢(ry4) (5-22)
1eT&TIT
JEI&IT

The summation implicitly excludes vacancies  but includes

interactions with interstitials. E3 1is the gquadratic relaxation

energy of region II and on the basis of:

OE 3

=0 (5-23)
5

>

;<<
il
o

E3 gives the energy of a lattice in which every region II ion

is at equilibrium when all displacements in the outer region is
zero, It 1s the energy of a displaced region II with all ions in
the inner region held at their perfect lattice sites, 1i.e.

without defects. The expression for Ej and Ep; then stands as:

E1 = &' { ¢(rij) - ¢(Rij)} (5-24)
iel
Jel
and
Eo = D' {¢(ri4) = &(Ry-Ty) (5-25)
iel :
JEIT

The summations are now restricted to ions in region I and

region IIa. Ej is then expressed in the form:

1 SEo
Eg3 = - — —— Y
2 5y
1 &p(rij) 6p1(IRi~Tijl)
= - — ' - }. (r§-R5)
2 iel 6x 5§ 81 5
jella - (5-26)



5.3.3 Coulomb Potentigal .

The formalism for the e€nergies is extended when the potential

is a long range Coulomb interaction. The basic aim here, 1is to

modify the summations to separate off interactions between

explicit ions in a finite region of the crystal. The remaining

long range part involves Madelung energy and it is calculated
analytically by Ewald's method (described in chapter 2). Here,

the expressions for Eq and Y2 can be written as:

c_ ¢ .« 5 5 C
f qi a4 i gy q; " g5
El = ' c C+ C s -+ S (4 *
o Uri =571y ~ry” | lri”-ry |
ier
jel
'A Ty q;® qq° 1
i J
g : + (5-27)
|ry™-1y7 | Ri-Ry | IRi~Ry|
and
c c_ s 5..C
qi - d qi 3 di 93
E2 = n' C c C S S _C *
lri7-ry 1 dri -ryT ) frio-ryt|
iex ™
jeIl
s_ 5 C S
qdi qj qj qJ 5-28
— — qi + S ( - )
S _..8 ~r-C IRi-r4" |
lri”-r47 | IRi-T i7rj

According to the Ewald's method, as the potential due to the
complete Gaussian lattice i1s evaluated using a transformétion to
a rapidly convergent reciprocal lattice summation, the poiht
charge 1lattice sum 1is estimated by correcting the value for the
Gaussian distribution lattice only for lattice sites close to the
point where the sum is evaluated. The situation is different and

- ' i >t where ions are
; : a lattice with defec
complex in case of
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displaced. To get comprehensive formulae for energies of a defect

lattice, the evaluation of the potential{(r) at r due to

a normalised charge density is carried out with the help of:

77 e

j {5-29)

The total charge ﬁearer the origin than r may be considered

t§ act at the origin and the potential due to the charge outside
r:is uniform at éll pPoints nearer the origin than r itself and it
is; conveniently evaluated at the origin. The potential of a
1aﬁtice of Gaussian charge distribution evaluated at each ion in
rejion I is subtracted from the lattice summations and the same
contribution evaluated at each lattice site is then added to the
summations. These terms are subsequently estimated analytically
as a reciprocal lattice sum and the potential of the Gaussian

lattice 1is, thus, removed. In terms of lattice summation, the

extra term is given by

1 C_p. "y

( of erf(nlri =Ryl erf(n|Ri-Ryl)

Eailay |- — +
_ ri =Ry I Ri-R51
ieI -
JeI&II
( erf(qliri°-Ryl) erf(qmi—nj]))
+ q-s - = +
] | £i°-Rq| | Rj-Rj |

{5~30)
The summation associated with the formulae is different with

respect to convention . It excludes vacancies anid interstitials

(where appropriate) and  extends over all values of 1 and

independently, including i = j. Before collecting this term with
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ther lattice so .
© SUms, it is expressed in terms of the restricted

ummation over i1 .
s I pairs of jons. Here difficulty arises only when

i 5 1 and j ;
ions J are in the sape region. Now the extra term is given

by
r . erf(yir;“ory]) £ (n1r ;%R
. . C by erfinir R
.? l?l = =~ J _qjs HLi il)
}bI }ri -Rj| Iri“'R'I
jeI | j
erf(n|Ri~Rj|)
+di . Q5
[ Ry-Ry|
F L c .
I c. ert(firy -Rjl) erf(nlri -Ril)
_.ZIqi q] - = - ~
le 1x,° Ry | TR |
jeI J i Rj
erf(nlR{-Ryl)
+ 2 ] }
| Ri-Ry|
S erf(qlris—le) erf(qler—Ril)
T lri®-R4| ) lri%-Ry|
1 J ] 1
erf(g{Ri-Ry[)\]
+ 2 |
| Rj-Ry| i
s
( c erf(qlric—RiI) s erf(ylri”-R4il)
'qi | -9i —di S
ieI | i “-Ril | ri™=Rj|
5 Lim erf(nr)
r—>
{5-31)
The summation &' accounts for terms in &'' when i = Jj. The

term which 1s a function of |ri-Ryl excludes bpth vacancies and

interstitials. From the assignment of coordinates at infinity for

vacancies and inturstitials, this term, in both the cases, iy
2 55 1t s
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zero, The ternm invelving IRi—Rj| is zero only for interstitials.

For small argument the error function yields:

oY) N (Wr)3 (I]r)4 (Wr)s
SV 1 - N i
’ ; 3 10 42
(qr)8 J
* - .. (5-32)
216
. Lim ert{nr) 21
then using ———— , the expression for Eq
S r—s0 r 172 |

and-E; can be written as:

i S © CsS s _ ¢
o 9i 93 di” qj
+ +

....."1
& —igl Iric~rjcl Iric—rjsl |ris--rjc!+
jeI :
ai®q4® o erf(glri®-r5])
Iris~rjsl~ o | ry ®-Ry|
erf(nlriS—Rjj) c erf(ani-er[)
di 95 IriS—le - 4id5 IRi-rjcl
erf(ani-rjsl) . 5 erf(ani—Rj])—l
-qid4 |Ry-15° | | Ri-Ry |
erf(n[riC—RiI) s erf(qiriS—Ril)
;i;’qil-qi lri©-R; | o ITi°-Ry|
243N
o YL

i i ; formula excludes vacancies and
The summation, Z'', 10 this £ :

interistitials Tt extends over all values of 1 and j

independently, including i=3.

100



C_C c s 5
DL Gy ai%q;°
+

Ey = 3
izix Ir3®ory© r4%-r4%) Iris-rjcl+
_Ga o erf(yirs®oRy )

73 Srge D £k |
—_. rflnlr®-®)  ayay©
Iri®-Ry| Ryi-r;C |

_d@iay” erf(niRy - Ryl)

| Ri-1y % ' IRy - Ry
(5-34)

As given, the eqn. for E) contains a term corresponding to
the Gaussian lattice potentials which have been added and then
subtracted to these explicit lattice sums. These are evaluated by

expressing the charge density due to the lattice of Gaussian

charges as follows:
3
! 2 2
p(r) = | —173 L oexp((-n~iri - Ril")
et~ i
all ions
1
Se—— 3 P(g) exp(2nig. r) (5-35)
v g

reciprocal lattice vectors

except g = 0

Here the summation extends over vreciprocal lattice vectors

excluding g=0 Dbecause of the overall charge neutrality of the

¢ ' . Then 5
lattice. The nzigl (
exp( 2n Apl= ——= 5-36)
= b ccaxp(gnlg,R~)}enp( )
plg) { : [€ s qz.
ions in

unit cell
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Denoting the Structur

e factor g gdsexp(2nig.Rg) by S(g) the

expression fo i
P r P(r) can be written as:

pr) =_j . g2
v . S(g) exp(- ___;E—- ) exp(2nig.r) (5-37)

and then using Poisson's eqn. the expression for W(r) due to a

lattice of Gaussian charge distributions is expressed by

\{/(r) _ 1 - S(g) -rtzlgi2
= — eXp ~——m—— exp (2nig.r) (5-38)
wog |g|? I]Z

The reciprocal lattice summation converges rapidly if n is

chosen sufficiently small.

The expression for Ej is then made complete with the help of
the reciprocal lattice summation expressions to remove the
potential of the Gaussian lattice added to the direct lattice

expressions.

5.3.4 Approximation of Region TIT:

As discussed earlier, for the calculation of E; and Ej,
region II is subdivided into two parts: the inner part, region
IIa, 1is taken to be large enough so that all the error function
terms involving ions in region I and 1ions outside 1IIa are
essentially equal to 1. For this region the displacements are
estimated from the sum of those due to each c¢cmponent charged
defect acting separately. Ep and 8E,/6y are then calculated by

explicit summation over all pairs of ions in region I and IIa. In

the outer section, ITb, the displacements are calculated by the

Mott-Littleton approximation using the net charge of the defect,

localised at the most symmetric part, at the origin, of the
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defect configuratic .
Juration. The energy due to these displacements

rises sole . , . .
a ly from polarization term and is of the form:

E> b “__EFIlCIj ! - 1 _
Jerth |-zl | Ti~Ry|
1 1
IRi—r;T + e (5-39)

It 1is evident from the expression that if r4=Rj, 1i.e. if
there 1is no displacement of ions in the outer region, the
contribution from this section becomes zero. The calculation 1is,
however, made tractable through separating the summation into a
part by removing those terms corresponding to defect in region I,
i,e, term where contribution of the form
1 1
et and ——
lri-ryl | Rj~Ty |

do not cancel for zero displacement. All the remaining terms
involve interaction of displacement dipoles in region I with
displacement dipoles in region IIb. Thése fterms are small and the
region IIa can be extended to such a size that dipole-dipole
interactions from region IIb are negligible. At a greater
distance from the defect, the dominant perturbation of region II
arises due to the electric field produced by any net charge on
the defect. The outer region is regarded as a continuum and in
the case of these ionic crystals under study, this outer region
is uniformly polarized din a radial direction. The wuniform
polarization, thus, produced generates no electric field withiu

the continuum tregion and consequently there is no interaction
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ith displacemer ji ag i :
Wi B Nent dipoles ip region I. It is required to perform
wplicit surn ion :
exp mation only over limited region close to the inner

-egion. However . .
reg T, there remain the terms due to the interaction of

region IIb with tﬁe defect in the system. The remaining part of

b .
E-  can be writcen ag:

En = I g4 q -
‘ | £j =15 Ti-R4
1 over intersti- ' jl T j‘
tials in region 1
Jjellb
1 1
IRi-14] |#{-R5|

1 over vacancies
in region I
(5-40)
jeIIb
Considering the polarisation effect of the monopole field

which 1is due to the total charge @ of the defect at the origin,

E»” is expanded to first order in the displacenments, Yy as

follows:
b c s_.S R
c _
Ex~ = -Q Z(q§ ¥j + 4 ¥ }.—3
jeIlb IR5 1
where y4=(r§-Rj). (5-a1)
The other term associated with the region IIb is
1 5E2b [ o
- by (5-42)
2 &y ly=y

where vy~ are the equilibrium values for the y corresponding to

arbitrary values of x. The total contribution of region IIb 1is
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then obtained from

b
b 1 6E2 |
B2 = —— | ¥
2 8y |yy
1 Ra
‘_‘n-——.Qz (q_cY'c+q.S _5 J _
Expressing the displacements by
~ . _ . 3
Y j = KiRy/|IRy|" , where K4 is a parameter

characteristic of each sublattice, the above egn. can be written

as
! ¢, .C 1
- — Cre . S, .S :
Q Z(a37Kj” + a§7K5) . 7 (5-44)

The energy which is soclely due to the polarization terms 1is,
thus, estimated analytically and the sum over all lattice ions

converges as

5.3.5 Minimisation Techniques:

The equilibrium configuration of a lattice in the presence of
defects 1s calculated by minimising the energy o¢f the defect

lattice. The minimisaticn may be performed in two ways:

(a) Minimisation of the total energy, E(x), with y taken as
an explicit function of x, is carried out by solving the eqns.

dE
= 0 (5-45)

dx

Here the use of total derivative equations implies rigorous

differentiation of the y~ which are implicit functions of the
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X's the displacen i ;
, ents in region I. Although this approach is

consistent j i ; .
1t is difficult to apply. The complicated nature of

E{x effecti
(x) vely Precludes any analytic evaluation of dE/dx

which 1is - .
a4 necessary step in the application of fast numerical

methods to the optimisation problen.

(D) Minimisation of the energy of the defect lattice and the

equilibrium configuration may be obtained through solving the

partial differential eqns.

OF
=0 . (5~46)

E;;— y=const.
These egns. are satisfied only when the force on each ion is
Zero. This force balance relation is used in the program 85 to
.calculate defect energy. It is found that for a sufficiently
large size of region I, the equilibrium configurations estimated
on the basis of both the above two methods are essentially
equivalent. For simple defects the displacements in region II
are 1left unchanged throughout the minimisation. But in case of
more complex defects with substitutionals or interstitials which

may be displaced during the minimisation, the forces

0 E2
oy

may vary appreciably with the change of the defect configuration

and the corresponding displacements are then recalculated each

iteration An important feature in the use of computational

methods in these calculations is the efficiency of the numerical

minimisation methods. The numerical problem is essentially an
1
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optimisation problen. There are several approaches, mainly in

three classes to treat this optimisation problem. These are (a)

direct searches, in which E(x) is evaluated for many possible

displacements; (b) conjugate-gradient methods, which evaluates
first derivatives

OFE

ox
and which, after each iteration, concentrate on those

displacements which appear to offer the largest energy reduction

at the next step ; and (¢} Newton-Raphson methods, in which both

first and seccnd derivatives are used.

In the simplest Newton-Raphson method, expansion of the
function about any point X to second order is made and then the

minimisation of the function to this order is carried out.

Thus,
E(x*) = E(Xx) + g.6 +1/2 86 .TW.5 (5-47)
OE
where g = — , 6 = x*¥ - x and
X 5
b E
Wijj = —5—=— (5-48)
T e 2%

Here, the superscript T denctes the matrix transpose. E(x) has a

minimum when g=-W.58 and hence the optimum displacement is

evaluated from

6=-W'.g (5-49)
If the energy is perfectly harmonic, then egn. (5-49) would
immediately yield the equilibrium positions for the components of

the crystal. However, this assumption is only partially correct
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and so valu
€5 of & must be repeated through several iterations to

ocbtain ~dan overall minimum jin the function. updating of the

ord .
coordinates results ip 4 configuration closer to the minimum.

The condition for reaching the equilibriunm configuration is that

the displacements between Successive iterations are less than a

present accuracy factor.

The method is extremely efficient and it 1equires few
iteration to perform minimisation, but it has also serious
difficulties which severely 1limit its use. The method 1is
unstable if the matrix W is not positive definite. It also’
requires a 1large amount of computer storage to preserve the
matrix. In addition to this, computation time is the central
problem associated with the method. There is also a practical
_ difficulty that the calculation of the second derivative of the
lattice energy for an arbitrary 1lattice configuration is

extremely tedious.

The problem of excessive computer time 1s removed through the
procedure of Fletcher and _Powelles. The matrix of second
derivatives (second derivatives of the energy with respect to the

"lattice relaxation variables) after initial calculation, 1is
updated at each iteration without recalculation and conversion.
At each iteration a better geometry is calculated. The new

coordinate positions for the *th iteration are then estimated

using the Hessian,

H= W and are given by

xx = x - H.g (5-50)
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is 1t i
1f H Positive definite and the ctep reduces the function soO

’ . »
that E(X*) < E(x), then a better approximation to H evaluated at

x* can be estimat ; _ .
ced on the basis of the new gradients g*, givel

by: .

6.6 H.5g.6g" .H

T = {5-51)
6" .6g GgT.H.ég

H* = H +

wherz & = X* - x and 6g = g* - g

Using the appropriate substitutions in (5-51) the new
coordinate positions for the (*+1)th iteration can be evaluated.
Reinversion of W 1is performed after a specified number of
iterations 1in order to maintain accuracy and the process
continues until the equilibrium configuration is reached. This
fast matrix method discussed by Norgett and Fletcher87, is used
to carry out minimisations which combine rapid convergence with
réasonably low computer time per iteration. An important feature
associated with the method is the time required for calculation
is only a slowly varying function of the number of variables and

this makes feasible calculations on large low symmetry defects.

5.3.6 Displacements in Region II:

One of the most important factors to be considered tc start
~the iterative relaxation is the displacements in region II. 1In
the present potential model only the shells are massless and
follow a high frequency electric field. If the matrix R is the
repulsive part of the dynamical matrix and if K is a diagonal

matrix containing the spring constants for each ion of the

sublattice then the change in repulsive energy per unit cell is

given by
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R
AU =172 (T Ry k) . 5
(5-53)

-
where X~ 1s the vector of shell displacements for the unit cell.

If the displacements ar

eff . i
E acting at each ion then the total energy change is given by

& due to the effective electric field

_ _¢S,T s eff .
AU = -(a@) . X Et v2 35T R+ x) L X
(5-54)
s
Here q° denotes vector of the shell charges for the unit cell.

The equilibrium solution for the displacements in the

effective field is then given by:

xS = {(R +K)°1 4%} Exeff
| (5-55)
To ellminate ExEff conveniently, the Lorentz field expression
for Exeff is used. This is valid for a cubic material and gives

an expression for the displacements, xs, in terms of the

dielectric constants.

The polarization Py is given by:

1 .
-1 [ eff
Py = — ()T . (R + K)7" .a®) By
\'2
4n
Exeff = Ey + Py
3
ey + 2
. = Dy (5-56)
3Ea~

The displacements are, then, expressed by

1 s Eq * 2
x® = (R + K) B

Dx
3eq

(5-57)
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) £
where, D, = anp . -——-EL—- : (5~58)
Ea- - l ‘

is - . ) ’ .
te Known that in a static field, the displacements of

cores also take place and tpe associated total energy change is

given by
. _ ;C,\T : |
AU = {a)” . x" + (qS)T x"} Exeff +
172 (57T, R . x5 4 172 (x°-x% 7T K. (x°-x%)
(5-59)

Finally,the relation describing the displacements is, then,

given by

T -
an oF . r71.g £
(5-60)
where o .
q x°
Q = - ; X = .
q.‘: xb
and
( K -K
R' =
-K K+ Ry
5.3.7 Description of the Computer Program:
The method employed in the program85 to calculate defect

energies 1s based on the division of the. lattice into two
rggions, as describedfearlier, the outer has been .treated by ghe
Mott-Littleton  approximation  and inner by : the ekplicit
minimisation techniqﬁes. The progran requires, e daﬁa’ .
specificaticn of the lattice structure, an initial defect

configuration so that the symmetry is retained throughout tlLe
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pnimisatLo: SO Vo o
win Ll bobPecllications ot veylons 1 and I1, and parameters

to describe the crystal potential. caleculations are performed by

the program on the basis of shell model. The program Yyields

values of the rigid lattice energy for the defect, i.e. the
energy before lattice relaxation and then the relaxation is
calculated using the minimisation procedure about which a

description has been presented earlier. Finally, the total defect

enerdgy, and the shell and core co-ordinates of ions in region I

and II are obtained.

Detailed specification to run the program is given by
RowellBB. The reported calculations were carried cut on an IBM
4331 machine, It 1is to be noted here that due to the rather
considerable stcorage required by the program, mainly due to the
size of the matirix H, a large system was needed to work with the

program.



CHAPTER 6

CALCULATIONS,RESULTS AND DISCUSSIONS

6.1 Parameters of the Present Model:

The potential which has been designed in the present study
consists of short-range (SR) potentials, e.q. ¢+¥: ¢--, and
¢4~ for the perfect lattice. Parameters are needed for these SR
terms and the shell model description of polarization. They are

derived and discussed as follows:

The two-body interionic potential, U must satisfy the

following condition525'29r57,64.89-93:

(i) Equilibrium Condition:

du

= 0 , (6~1)
dr |r=rg

{ii) Elastic Constants:

The second order elastic constants, Cj71 and C44 given by the
eqns. (4-13) and (4-18).

(iii) Dielectric Constants:

The static.and high frequency dielectric constants,~eo and g,
presented by the eqns. (3-42) and (3-43).

(iv) Anion Polarizability:

The anion polarizability, a given by the relation (3-45).

The eqns. which are satisfied by the potential represent six
conditions. In the absence of the knowledge of many-body
correction terms, Ciz is not included in the fitting procedure.
Since the dielectric properties are not affected by the wusually

considered deformations 1in the many-body contributions there 1is
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o roblem i i
no P th Using these Properties. The present work 1is

n .
concerned with the study of four compounds, e.g. LiH, LiD, NaH,
and NaD. The parameters associated with the eqns. are, then,
given by:

4B4-, 4B--, 4B+, day., da._, dayy, 4Yq, 4Yp, 4Kj, and 4k»

The total number of parameters to be determined is, thus, 40.
Therefore, for the evaluation of the parameters at least 40
properties of the crystals are required. Although observed values
of elastic and dielectric constants for LiH and LiD are
available, these are lacking for heavier hydrides and deuterides.
Therefore, some additional assumptions have to be made with a

view to eliminate or fix some of the parameters and reduce the

number to that value for which the system becomes solvable.

6.1.1 Reduction of the Parameters:

The like 1ion cation~cation potential has been obtained by
applying electron gas theory, a description of which has been
given in the next section. The anion-anion interaction (H -H )
was assumed to be independent of <c¢rystal environment. This
should not 1lead to any serious error as the ionic separation
varies by atmost 20% from one crystal to another. An account of
how this interaction was obtained 1is presented 1in section
6.1.é(a). These non-empirical calculations with the above

assumption reduce the number of parameters by 16.

The shell charges of Li* and Na' ions are taken from Catlow
et at. 22,23 where shell parameters are from a set in which each
parameter 1s specific to each ion. 1In order to reduce the number

still further the shell charges of H and D have been taken to
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be same, irr i ~on”
» lIrespective of whether K /D is in lithium or sodium

compounds, i 1
P This is due to the fact that nuclear mass

substitution has negligible effect upon polarizability. The

total number of parameters now becomes 15, e.g. 4B,., 4a4+-, Y2,

2k; and 4k;. The number is again reduced by assuming the same

value for spring constant, k, associated with hydrides and

) 9 ,
deuterides”, and finally there are only 13 unknown parameters.

6.1.2 Evaluation of the Parameters :

Two approaches have been used in determining the values of
the wunknown parameters. The first method is to theoretically
derive the short-range parameters, a description of which 1is
given below. The second method is through the procedure of
empirical fitting which involves adjustment of parameters until
_ the observed properties of a crystal are best reproduced. The
technique employs a non-linear least squares procedure and 1is

discussed later in this section

{(a) Non-empirical Methods

22,23 shows that the electron gas

The work of Catlow et al.
method gives adequate potentials for certain systems, but the
procedure 1s developed on the basis df many approximations. In
particular, the wave function does not include the effect of
distortion of the ion charge clouds due both to the interaction
between the two species and the environment of the solid. Both
the two factors may considerably modify the wave functions of the
ions, which in turn affect the calculated densities and then the

interionic potential. A modified approach has been developed by

Mackrodt -and Stewart94 and gives the solution of the problem of
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interaction with crystal environment. They calculated the wave

function for the ions in the presence of the electrostatic
potential which is found at the crystal site. Using the crystal
adapted wave functions in the electron gas procedure they
obtained potentials that were structure dependent and were more
relevant to the solid state. The 1like ion, cation-cation
potential for NaH/NaD was obtained by applying electron gas
theory developed by WEdepohlﬁz’gs. The method of Harding and
Hareker96 was utilized to evaluate the non-bonded Na®-Na”
interaction in NaH crysta197. The Li+-Li+ interactions were taken

22,23. ' The

from the -electron gas calculations of catlow et al
values are close to those of free Li+ -Li+ guoted by Wilscn and
Johnsons. This is due to the fact that cations having tightly
bound charge distributions will not be much affected by the
'crystalline field and hence show no appreciable change from their

free ion radial density distribution ( and hence wave function).

The approximation is therefore, taken to be reasonable.

An attempt was made to evaluate the 1like ion anion-anion
interaction by applying electron gas theory. A run of the

37 for this interaction in

electron gas code of Harding and Harker
NaH gave values which was found to be not at all reliable. The
calculations suggest that the short-range interaction is always
attractive, even down to small distances. It approximately fits
a vdw expression in the range 3.0-3.6 A. The problem is probably
the very diffuse H  wave function. At 1likely interstitial

position the total nearest neighbour H -H contribution is found

to be too large. Thus it is not clear that the electron gas
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calculation approximation is particularly reliable in this case.
Although some of the results of electron-gas calculation are
encouraging one should emphasize that the theoretical methods for
deriving electron gas model is crude 2%. A critical discussion of

the electron gas density functional method has been given by Wood

and Pyperge.

Fisher et al.4 performed a quantum mechanical calculation of
the two-body SR interactions in LiH by using determinantal wave
functions consisting of various one-electron functions. They
utilised determinants made up of screened hydrogenic wave
functions. Using the same screened hydrogenic charge distribution
for the ions, semiclassical interactions were also obtained. The
Wedepohl type of semi-classical values of the H -H interaction
were found to be “40% too low compared to the diatomic dgquantum
méchnical results. They also pointed ¢ut that the finer details
of the 1ionic charge distributions turn out to be not. very
important when repulsive interactions are being calculated, and
screened hydrogenic functions may yield adequately detailed
charge distribution for the purpose4. For various values of
screening parameter & of the hydride ion, they obtained the H -H
interaction. The smallest value, 6=0.68, corresponding to a free
H -ion gives the most diffuse charge distributions and yields the
most attraction. oOn the other hand, the most contracted H -
function with 6=0.95 results in the greatest repulsion. When
relatively smaller screening constant than this is used, the
results for the ranges of interest are somewhat similar to those

obtained by " crystal adapted ' electron gas calculation of Pandey
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11
and Stoneham”". Thus, the values of the screening parameter, o

has been chosen to be 0.721 and the resulting interactions

obtained are well represented by a potential of type (3-61) with

Djy = 0.

The anion-anion interactions of NaH has been evaluated from

the material LiH owing to the fact that LiH has been studied
extensively and its bulk properties are known very well. This
interaction is assumed to be independent of crystal environment.
As it is small at equilibrium anion-anion separation, it should
not cause any serious error. Pandey and Harding99 in their
calculations of defect structure of CasS took S ~ S  interaction
from Nap8 by assuming ¢gg to be independent of crystal

environment. Several authors?? 2%

examined the possible use of
common anion densities in series of similar ionic solids. The
overall picture is that it can possibly be done with tolerable

effect on various results of many systems.

The non-empirical method has two great advantages over the
empirical procedure discussed in the next section. Firstly,
empirical fitting yields a reliable potential for interionic
separations c¢lose to those observed in the crystal. However, the
reliabilities of the potential for separations that deviate from
this value 1s questionable. On the other hand, non-empirical
potentials can be derived for a range of separations. Secondly,
the whole approach of empirical fitting relies upon there being
sufficient experimental data whereas non-empirical methods can be

used to obtain potentials for materials for which little data is

available.
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(b) Empirical Methods:
From a set of appropriate pair potentials for various

interactions in g crystal, it is possible to calculate 1its

properties, e.g. elastic, dielectric constants, phonon dispersion
curves, etc. It is, however, important to note that the elastic
and dielectric constants and the lattice vibrational frequencies
do not depend on the inter-atomic potentials directly, but rather
on first and second derivatives of the potentials with respect to
the interionic separation. The extraction of information on the
potential then requires the analy;ical form used to represent the
interaction.that reliably describe the variation of the potential
with interionic separation. Cohesive energies do, of course,
include direct information about the potential, but this is of

limited value for the extraction of short-range potentials, - for

the lattice energy is normally deminated by the Coulomb term.

Empirical metheds adjust variable parameters in order to get
the best agreement between calculated and observed crystal
properties. An initial estimate of the parameters involved in the
potential is made and then 'the estimation o©f the crystal
properties corresponding to the parameters 1is performed. The
calculated and experimental properties are compared and the
parameters adjusted accordingly using a non-linear least squares

100. The cycle is continued until the fitted

fitting routine
parameters yield the Dbest agreement between calculated and

observed properties.

In the present study equilibrium condition (6-1) provides

four eqns. . whereas Cy1., C44., 280 € (LiH) and ap (NaH) gives
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eight edns. In the least squares minimisation process100 the

+
value of k1 (Li") was chesen first from

a = (6-2)
. k
and using the free ion polarizability of PaulinglOI- Fowler and
aden®®  sn .
Ma showed that there is no significant difference between
the free-ion and in-crystal polarizability values of cations like

 + + .
Li and Na . Thus this, as has been shown later, does not affect

the result in any way. The relation

Y2
a = ———— (6-3)
kK + R +
was employed for fitting k1 for Na in NaH using TKS
. s 5 . . .
polarizability 2. This approximate relation can be used for

cations with small polarizability values because ki1 1is large

compared to R29’57’89.

The twelve egns, were then utilised to fit
the remaining 12 variables by keeping k; (Li+) fixed at the above
value. After a successful least-squares fit both the values of k;
(Li+) and a(Na+) were varied in turn over a wide range to
simulate any effect of crystal environments. The variation a(Na+)
was made due to the fact that the ¢rystal polarizability of Na+
in NaH may differ slightly from the TKS value. The procedure left
output pdrameters virtually unaffected and the results thus
obtained showed no noticeable change as expected. The sign of the
anion shell charge is negative as expected but the cation shell

charge taken from Catlow et al.22’23, could be positive because

102. A positive cation shell charge has

of overlap polarization
also been obtained in a fitting by Pandey and Stoneham®l. The

results of non-empirical calculations and empirical fitting

procedures are shown in tables 6.1 and 6.2.
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TABLE 6.1

short—range potential parameters for interaction
between lon-pairs

Source Inter-

action (EF (gv) N (ES.KG) (eg.AB)
Li-Li  7.3314 1153.80 0.0 0.0
Li-H  3.1000  187.29 0.0 0.0
Li-D  3.0915  181.93 0.0 0.0
Dresepne AN 6.5232 1225293.0 0.0 0.0
Na-H  2.7966  233.82 0.0 0.0
Na-D  2.7659  216.81 0.0 0.0
H~H 5.5411  915.50  4.986 0.0
Li-Li  2.1598 15.98  0.05  0.02
Li-H  2.1598 30.69  0.52  0.61
Li-D  2.1598 30.34  0.52  0.61
H-H 2.1598 54,61 13.94  28.25
2) DD 2.1598 53.99  13.94  28.25
Bowman :
Na-Na  2.1598 61.00  3.29  2.21
Na-H  2.1598  59.95  4.40  5.93
Na-D  2.1598 59.27  4.40  5.93
H-H  2.1598 54.61 10.81  21.88
D-D  2.1598 53.99 10.81  21.88

1) Experimental values of Cjy1, €44, €0 e(LiH),

ao(NaH) employed in the fitting procedure are

from 11 and92

2) The potential parameters were obtained in this

. 35
form using published data ;
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TABLE 6.2

Shell parameters

Source  Ion Y(e) k(ev/& %)
Li 0.705 250.00
Na 2.128 . 252.91
Present
H/D -0.9999 3.23
{LiH/LiD)
H/D -0.9999 5.03
(NaH/NaD)
Li(LiH) 0.998 40.08
1) H ~-1.005 4.24
Ps
Li(LiD) 0.998 40.99
D ~1.005 4.03
1) Ref.ll.
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6.2 The Perfect Crystal :

6.2.1 Static Properties:

It 1is known that an accurate form of interionic potentials
plays an important role in the study of structure and dynamics of
ionic crystals. This part of the thesis is concerned with the
static properties calculated on the basis of the derived
potential,

The utility of the potential can be assessed in two ways::(i)
directly by comparing with experiment or (ii) indirectly by
comparing with alternative or previously derived potentials.
Several physical quantities were estimated on the basis of the
potentials which have been derived in the present study. The
guantities calculated are: lattice cohesive energy Uo; the second
order elastic constants, e.g. Ci7, Cq2, and Cggq, static and high
frequency dielectric constants (eg and e4 ), and transverse optic
frequency Gj,. values for the above gquantities were also
calculated utilizing two other potentials, e.g. Bowman and
HS35’36 and shown in Table 6.3. The available experimental data
are also collected in the same Fable. The table shows that there
is a reasonable agreement between the calculations performed in
the present work and experiment where these are available. Since
Coulomb-contribution dominates, agreement with Uo does not
provide sensitive test of the SR potentials. Thus although the
Bowman potentials yield good cohesive energy, these fail to give
reasonable values (computed by the author} for both elastic and
dielectric properties. For example, the computed Cj3; for LiH is
found to be negative. The HS potential (fitted exactly for e,

and ¢g4,) gives very high values of elastic constants. The
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computed value of Cq; for the same compound is ~ 40% higher

compared to the observed value. On the other hand, the potential

derived in the present study yields a value in reasonable

agreement with experiment. Cp, is overestimated and the Cauchy

relation is obeyed since the potential used is central. This has
to be allowed owing to the fact that there is uncertainty and
inconclusive evidence for many body effects.22/23:103 1t may be

mentioned here that even the model of Verble et al.12 and Jaswal
et al. underestimates or overestimates the values of Ci2,
respectively.

The  estimated &, with Bowman potentials (using  shell
parameters from the present work) are found to be negative for
all the <compounds. On the other hand, the present potential
produces g,, &, and W, reasonably well for lithium compounds.
The calculated values of these quantities for' the sodium

compounds when compared to those of HS36

using S-A scheme are
found to be very reasonable. It is to be noted that S-A
reproduces dielectric properties well.

From a study on the intepionic potential for alkali metal
chloride, Corish et al.25 suggested that the best effective
potential is obtainable by fitting simultaneously the bulk
elastic and dielectric properties. Further, they pointed that the
best potential should ignore many-body forces and hardening of

the short-range interaction between unlike particle shoulkd be

made by completely neglecting the vdWw effects. The initial

qualitative agreement with experiment indicates that the present

potential with the above characteristics is suitable (discussed

later) for defect studies also.
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Properties

TARLE 6.3

of LiH, LiD, NaH, and NaD crystals.

Properties source values
LiH LiD NaH NabD
Present 2.0417 2.0346 2.44 2.434
g Bowman 2.0420 2.0340 2.44 2.434
(&) HS 2.0420 -- ‘2l4836 --
PS 2.0417 2.0324 . - -
Exptl' 2.0417 2.0346 2.44 2.434
Preseant -10.38 -10.41 -8.,81 -8.81
Up Bowman - 9.73 - 9.76 -8.46 -8.48
(ev) HS -10.22 - _ -8.36 -
PS ~10.36 -10.43 - -
Exptl’) - 9.44 - 9.63 -8.21 -8.25
Present 7.89 7.86 4,73 4.60
Ci1 Bowman ~i.27 ~1.41 1.30 1.24
(rolldynes/ HS 10.25 - 5.27 --
cm?) PS 7.98 7.78 - -
Exptll) 7.41&0.2 7.68+0.2 ~—. --
Present 4.43 4.49 2.25 2,28
Cy2 Bowman 65.38 6.46 3.20 3.23
(1011dynes/ HS 5.21 - 2.14 -
cm>) PS 4.59 4.67 - -

Exprl?)  1.4240.03 1.5140.03 -  --

Contd,

125



i . Values
Properties source

‘ LiH LiD NaH NabD
Present 4.41 4,47 2.25 2.27
Cag Bowniarn 7.02 7.13 3.32 3.36
(1011dynes/ HS 5.67 - 2.14 .
cn) PS 4.57 4.67 -- --
Exptll) 4.84+0.18 4.9410.18 ~- -
Present 13.65  14.46  9.94 10.66
€0 BOWMaﬂZ) %4.91 ~4.84 -9.37 -9.08
HS 13.45°) -~ 10.68 --
PS 13.92 14.78 - -
Exptl® 1 2.940.5 14.040.5 -- ==
Present 3.61 3.67 2.22 2.25
€ Bowmanz) 8.49 8.79 2,60 2.62
HS 3.613) - 2.47 -
PS 3.32 3.45 - -
Exptl®! 3.6140.5 3.63+0.5 -- -
4 Present 0.855 0.629 0.7999 0.559
Wo 3)
14 _1HS 1.115 - 0.870 -
(10 sec )
PS 0.868 0.635 - -
Exptl® 1.115  0.860 —— e
1) Refs.ll’ 12, 35_ )

2) Using shell parameters from the present work.
3) Fitted exactly.
4) Wo values with Bowman potential not reported

because w02 were all negative.,



6.2.2 Dynamic Properties:
This sub-section is concerned with the phonon dispersion

relations for all the four compounds based on the present

potential. The curves representing the dispersion of phonons
along the principal Symmetry directions are depicted in figures
6.1-6.4. Due to the non-availability of observed data for LiH,

NaH, and NaD, the calculated frequencies are compared with those
obtained by DJ° (based on the force constant model). The shell
parameters of their model have been deduced from the force
constants and the ionic charge of their best fit model DDM 13 for
LiH/LiD. From fig. 6.1 (LiH) it is seen that although the
dispersion curves for LiH in the optic branch bear little

resemblance to those calculated by DJ, they are in good agreement
in the acoustic Dbranch. In the optic branch, the calculated
frequencies are smaller throughout the zone whereas 1in the
acoustic branch the agreement is much better except near the zone

boundary. Figure 6.2 displays the phonon dispersion curves for
LiD. From the fig. 1t is observed that, in spite of somne

discrepancies associated with, the curves in the optic branch the
agreement of the present calculation in the acoustic branch is

excellent with the experimental wvalues . However, it is
interesting to note that the agreement of the frequency ratios,

Ww(LiH)/®(LiD) as shown in Table 6.4, when compared with those
from the lattice-dynamic calculations of Verble et al.}? based on
shell model fitted to experimental neutron data, is amazingly
well. The figures 6.3 and 6.4 consist of the phonon dispersion

curves for the hydride and deuteride of sodium. From these two
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TABLE 6.4

Frequency ratios W(LiH) /w(LiD) for [, X and
L point phonons of LiH and LiD.

Do e T x s
LO Present 1.33 1.31 1,21
PS 1.35 1.328 1.43
- VWY 1.33 1.39 1.40
TO Present 1.35 1.41 1.42
PS 1.36. 1.42 1.44
VWY -~ 1.32 1.39 1.40
LA Presant - 1.08 1.16
PS -- 1.04 0.99
VWY -- 0.99 0.97
TA Present - 1.00 1.01
PS - 1.00 1.01
VWY -~ 1.00 0.97
PS : Ref. 11
VWY: Ref. 12
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curves the discussion can be presented as follows:

(a) The increase in the mass of the vibrating cation yields

somewhat flatter curves. on the other hand, since the D ion

influences the acoustic branches, these branches fall in the same

frequency range.

(b) The phonon dispersion curves for the hydrides differ
from the ones for the corresponding deuterides in the optical

mode only, the frequency of which can be calculated from
o)
Woy = (mp/my)t/? Wop

(c) The influence of sodium polarizability ( ayz >> api) can
be seen in the lowering of the longitudinal branches in the [100]

direction near the zone boundary.

{d) In the present model 1like-particle interactions are
rather small.-.Despite the differences. between the Lit-ri*
interaction and an unexpectedly strong interaction found by DJQ,
there is similarity of interaction strengths between other second
neighbours. Thus, the dispersion .curves presented here are mainly
determined by the nearest neighbour interactions and also the
effects arising from the electronic polarizability of ions. It is
worth mentioning that the model is a simple one and is not 1like
the complex lattice dynamical models specifically introduced to

explain only the neutron data. However, one has to await future

experimental investigations in order to make further comments

regarding the dispersion curves.
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6.3 The Defect Lattice:

he results i i
T obtained ip the present study on various defect

energies based on the derived potential are displayed in tables

6.5-6.13. The available observed data as well as other

theoretical estimates are also listed in these tables

The defect formation energies along with the first nearest-

neighbour shell displacements are shown in Tables 6.5 and 6.6.
From Table 6.5 it is seen that the extraction energy of a cation
is less than the extraction energy of an anion. This is due to
the fact that in these lithium and sodium ionic crystals the
anions are larger in size than the cations and hence the
polarization eneryy associated with the cation is more negative
than the polarization energy for the anions. From the table it
appears that the difference between the vacancy formation
energies for cation and anion associated with the sodium
compounds is smaller than those of lithium compounds. This 1is
owing to the smaller differeinces in ionic radii of the sodium
compounds in comparison to that of lithium values. The table
also shows that in case of a cation vacancy the shell of the
first-nearest-neighbour displaces through a much smaller distance
in comparison to that of an anion. As the vacancy energy of a
cation is less than that of an anion it can be inferred from this

that due to the mismatch in size of the ions the cation vacancies

are more probable in crystals under study.
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TABLE 6

.5

E;i§t~§§arest-Ne;ghbour Shell Displacements,
raction Energies and Lattice Energies

Compound Vacancy

Fi;st~Nearest- Defect Lattice
Nelghbour Sshell Energy Energy
Displacement* {eV) (ev)
LiH Li 0.020 5.882 -10.372
H 0.650 6.037
LiD Li 0.020Q 5.87¢6 -10.395
D 0.650 6.034
NaH Na 0.010 5.169 -8.804
H 1.490 5.222
NaD Ma 0.010 5.138 -8.805
D 1.500 5.192
. -3
* In unite of 10 o
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From Table ¢,¢6 : ;
1t is seen that interstitial formation

energies are ne i ; ;
dative. Thig 15 owing to the strong polarization

the latti i
in Ceé caused by the interstitial charge. 1In addition to

this, van der -
, Waals terms make a negative contribution. In case

an in iti 17"
of terstitial, the shell of the first-nearest-neighbour

isplace 5 & i !
displ S, as shown in the Table, through almost the same extent

with respect to both cation and anion.

The study of defect calculation involves consideration of the
size of the inner region ; in this respect, an exercise was
carried out with different sizes of the region. It is seen from
table 6.7 that for the cation vacancy of a compound, e.g. LiH,
the formation energy was found to change by %1% due to the
increase in size from 20 to 118 ions; the change was less than
0.2% 1if the size is changed from 82 to 118 ions and after that
there 1s practically no change in the energy values. In case of
an anion (table 6.8) the variation of the values with respect to
the size of region I was exactly the same as those obtained 1in
case of cation. For the estimation of lattice vacancies of the
ionic crystéls under study it is, therefore, sufficient to
include 8G-100 ions in the inner region. The errors 1in the
calculations with this region size are smaller than the absolute
errors in the defect energies which arise from other inadequacies
in the model used. The size of region IIa has also been chosen in

such a way that has only a negligible effect on the calculations.

For interstitial formation energy, as it is seen from tables

6 9 and 6.10 the number of ijons in region I should also be

around 100.
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TABLE 6.6

First*Nearest—Neighbour

Sl :
and Inter 161l Displacements

stitial formation Energies.

Compound Inper— Firgst-Nearest- Defect
STitial Meighbour shell Energy
Displacement* (eV)

LiH Li 0.97 -3.118
H 0.97 -3.365

LiD Li 0.99 -3.149
D 0.97 -3.400

- NaH Na 2.117 ~2.366
H 2.2 -2.595

Nab Na 2.17 -2.419

D 2.25 ~2.645

3

* In units of 10~ Iy
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TABLE 6.7

Cation Vacancy Formation Energy (eV)

Compound HNumbevr of Ions Values
in Region I

20 5.954
LiH 34 5.900
82 5.882

113 5.893

148 5.893

20 5.948

LiD 34 5.895
82 5.876

118 5.888

148 5.887

20 5.229

Na 34 5.185
82 5.169

118 5.177

148 5.178

20 5.198

NaD - 34 5.152
32 5.138

118 5.145

148 5.146
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1TABLE 6.8

Anion Vacancy ror

e e e s - st v, A e e g s e

nation Energy (ev)

20 6.106

LiH 34 6.055
82 5.037

118 6.049

148 6.049

20 6.104

LiD 34 6.052
82 6.034

118 6.046

148 6.046

20 5.27i

NaH 34 5,237
82 5.222

118 5.230

148 5.232

20 5.246

NaD 34 5.206
' 8o 5.192
118 5.200

la8 5.201
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TABLE 6.9

Cation Interstitial Formation Energy

Compound Number of TIons

\ Values

in Region I (eV)

22 -2.832

LiH 58 -3.123
78 -3.118"

114 -3.127

159 -3.141

22 ~2.859

LiD 58 ~3.154
78 -3.149

114 -3.158

150 -3.172

22 -2.060

NaH 58 -2.370
78 ~-2.366

114 ~2.378

150 ~2.290

29 -2.101

NaD 58 ~-2.417
78 ~2.413

114 -2.425

150 -2.438
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TALELE (.10

Alllon Interstitial formation Enevrgy

Compound Number of Ions Valuesg
i Reyion T {eVv)
22 -3.108
LiB 5g -3.369
73 -3.365
114 -3.373
150 ~3.385
22 -3.140
Lil 58 -3.405
78 -3.400
114 -3.408
150 ~3.421
22 -2.395
NaH 58 ~2.595
78 ~-2.595
114 -2.601
150 -2.601
a9 ~-2.442
NaD 58 ~2.646
78 -2.645
114 -2.651
150 -2.660
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The Schottk
Y and Frenkel defect eénergies, Eg and Erp of a

compound are estimated using the relations:

Eg = Eyy + Ey_ -
and v v- = Eg
EFy = Eyy + By,

where Ey,; and Ey- are the defect energies associated with the

extraction of & cation and an anion from the crystal

respectively. Ej, is the interstitial formation energy for the

cation(anion) and E;, is used to denote the lattice cohesive

energy.

Table 6.11 gives the Schottky, Frenkel, and antisite-pair
defect energies. Schottky pair formation energy involves
consideration of calculated value of lattice energy. The
estimated 1lattice energies (for full ilonic value, Z=1) for the
lithium compourds differ from experimental values by 0.86 eV.
This is reflected in the calculated Schottky energy and it is .
seen that the values of lithium compounds are lower than the
reported data. The calculation shown under PS in Table 6.11 are
11

much smaller than their earlier reported values This is

: 0
because Pandey and Stonehamll'1 4

used experimental rather than
calculated cohesive energies in deducing the defect energies.
The calculations, here, for lithium compounds give slightly

better agreement with the experimental results than those

achieved by Psll.
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TABLE 6.11

Intrinsic pefect Energies (ev)

Properties Source values
LiH LiD NaH NaD
Schottky Present 1.55 1.52 1.59 1.52
Pair psl 1.49 1.48 _ .
Exptl 2.3040.3% - - -
2.33+0.01° 2.40+0.01° --
Frenkel
Pair
Cation Present 2.76 73 2.80 2.72
PS 2.72 .65 - -
Anion Present 2.67 .69 2.63 2.55
PS 2.70 .61, - -
Antisite Present 8.10 .03 7.70 7.54
Pair PS 7.81 .98 -- -
(1) PS1 incorrectly reported these values as 2.42 eV

and 2.29 eV, respectively. They used experimental

rather than calculated cohesive energies. (Private

104
communication with Dr. R. Pandey )

(2) Rref. 1°7.

110

(3) Ref.
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From an observat i

Srvation of the experimental results of the
chottky def a1 i
5 ¥ fect energies for alkali halide it is seen that for a

~ticul cali N
paltl}u ar alkali metal the defect energy of the corresponding

halide increases in the sequence I = Br —> €l —> H —> F . A

number of researchers worked on the dependence of the schottky

enerdgy on  the lattice Properties and presented empirical

expressions relating the defect energy with properties of the

lattice involving numerical constants.,
05

According to Pathak and

Vasavada1

Eg = 3.4 X 10713 y/x (6-4)

where V 1is the mole volume, and ¥, the compressibility. The
estimated Schottky defect energies using the above relation for
thie hydrides and deuterides of lithium and sodium are 1.18, 1.17,
1.13, and 1.11 eV, respectively. oOn the other hand, Shukla and

Bansigir106 presented a relation:

Eg = I 3 x Hy/1650  (eV) (6~5)
where rg is the lattice constant and Hy denotes Vickers hardness.

This relation also yields unsatisfactory results for the Schottky

defect energies for alkali halides of NaCl structure. Likewise,

. L2107
according to Bollmann

eV mol
E. = 0.0829 ———— L (6-6)
') kJ

where L is the heat of fusion. On the basis of this expression
the estimated Eg values are'1.893 and 1.86 eV, for the 1lithium

hydride and lithium deuteride, respectively. Thus, it 1is seen

that the calculated defect energies { whether one uses rough
empirical relation nr detailed calculation ) are always less than
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the experimental va o,
lues, This ig because the empirical relations

e not genera
ar g 1 formulae. The relation (6-4) holds only for some

the alkali ' i
of i halides in the right manner. Although the relation

-4) shows Eq “ra- 1 ~ .3
(6-4) s To ,(as v o and X ~ r04), the dependence is

not sEtrictly borne out experimentally. The relation (6-5) is
also not suitable for all the compounds as the hardness which 1s

influenced Dby the degree of purity of the crystal is not a real

constant. Likewise, the numerical constant of relation (6~6) may
be different for different compounds. On the other hand,
estimation of Schottky defect energies using detailed calculation
also yields a lower value. The reason is that the expression for
Eg 1involves calculated 1lattice energy which turns out to be
always larger for a fully ionic (Z=1) crystals. If one assumes a
95%  ionicity, then the calculated E; is closer to  the

experimental data. This in turn reproduces a value of Eg closer.

to the experimental one.

It is known that NaH decomposes before melting and the
temperature at which decomposition occurs is 800°c. It can be
inferred that the calculated -Schottky energies for  sodium

compounds have the expected values based on the Eg versus Ty

. . 108
relationship and the corresponding Li-values .

Because of the paucity of experimental data for the Frenkel
formation and antisite pair defect energies for all the four

compounds no useful comparison of these values seems pessible.
!

It is significant, however, that the calculated formation

Y

energies of Schottky pair are noticeably lower in comparison to

both the Frenkel pairs. These confirm the suggestion of PS11
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that vacancies
+ Yather thap interstitials, will be the most
common defect species jp these crystals

antisite-pair defect ener

From the result of
gies it is seen that the values are very

igh. It i
hig Predicts that ag the cations and anions in these

ounds i .
comp are of different sizes, the interchange of sites is

least possible and hence this type of defect is unlikely to be

observed.,

The energy for vacancy migration is defined as the difference

in the energy of the crystal in the saddle point configuration
and the energy of the solid containing a single vacancy. In other
words, 1t 1is given by the difference between the energy to
extract two next nearest neighbour ions and to introduce one of
them into the saddle point configuration between the two
neighbouring vacancies and the energy to extract a single ion

from a perfect crystal.

The migration energies for the movement of an ion by vacancy
and interstitial mechanisms are calculated from:

Epv(i) = EBsv(i) ~ Ev(i)

where Egy(i) 1is the saddle point energy for the vacancy
(interstitial) mechanisms. Ev(1i) represents vacancy

{interstitial) formation energy.
Table 6.12 presents results for cation and anion migration

activation energies. It 1is observed that our calculated wvalues

of the migration of cation by vacancy mechanism in the lithium

compounds are

. 11 '
slightly larger than those obtained by PS they are smaller when

compared with the available experimental data. It is
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TABLE 5.12

147

— Activation Energies for Migration (eV)
Compound  Scurce Values
Vacancy Interstitial
Mechanism Mechanism
LiH -
Li*  Present 0.43 0.17
PS 0.42 0.17
Exptl o.sqio.oz1 -~
H- Present 0.43 0.18
PS 0.40 0.19
LiD
Lit  Present 0.43 0.17
PS 0.33 0.18
Exptl 0.5210.012 -
D Present 0.42 0.18
PS 0.32 0.17
NaH
Na+ Present 0.44 0.15
H ™ Present 0.43 0.16
NaD
Na* Present 0.43 0.15
D Present 0.42 0.16
(1) ref. *°7.
{2) Reft. 110



significant howe
’ Ver, that the analysis of the conductivity

curves has been ; ,
carried out taking cation vacancies as mobile

ecies and
5P treating them ag extrinsic defects due to the

presence of divalent cation ip the latticel99/110  ohe values in

the present work, on the other hand, are for free cation vacancy

migration, and hence the results, as expected, are smaller ‘11,

Furthermore, analysis of the conductivity based on vacancy

transport requires an anion vacancy activation energy that may be

twice the cation value 112‘114. In contrast, the anion

activation energies reported by pstl and those in the present
work are almost equal to the <cation value. There 1is, 1in
addition, evidence that the two vacancy activation energies are
more nearly comparable: anion tracer diffusion measurements, when

corrected for the divacancy contribution yields values which are

similar to the cation results 115’116, comparable and reliable

estimates of anion transport are also obtained from conductivity
measurements on materials which have been doped with divalent
anions with a view to suppress the dominant cation

contribution117. Beniere et al118 also carried out research on

both the diffusion and conductivity studies and presented similar
values for the cation and anion activation energies. Thus, 1if
the contribution in the conductivity is from both the vacancies
with similar activation energies then the conductivity plot
possesses a linear shape. This 1s contrary to experience and

fails to separate cation and anion contributions in the curve.

Hence the curvature 1in the plot requires some other explanation.

For the sodium compounds the activation energies for the
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igration of cation : .
mig and anion in hydride and deuteride by vacancy

mechanism are agaip Comparable

The values for cation and anion

ration energij : L
mig gles for interstitial mechanism in case of 1lithium

Same as those obtained by PSll- The

corresponding values for sodium compounds are -~

compounds are hearly

0.01 eV less than
the lithium values. ap examination of Table 6.12 further shows
that although the Frenkel energies (Table 6.11) are higher, the

activation migration energies in these compounds for both the

ions by interstitialcy mechanism are significantly low. As the
barrier heights for the interstitialcy mechanism are low, it is
reasonable to infer following PS11 that in addition to vacancy

mechanism, interstitialcy also plays an important role in the

conductivity at high temperature.

The Arrhenius energies, Epy and Ear for diffusion are given
by:

Eav
and

i

Enr Epmi + 1/2 Ep

where Epy and Epr are assoclated with vacancy and interstitial

mode of migration, respectively.

Table 6.13 consists of Arrhenius energies for vacancy and
interstitial mode of migration. From the comparison of the

values reported in Table 6.13 it is seen that our results for the

11,104
lithium compounds are slightly better than those of PS .

The calculated values are smaller in comparison to the available
experimental data.
of Schottky defect energies which in turn are the results of the

calculated E; values as discussed earlier. Apart from Coulombic
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TABLE 6.13

Arrhenius Energies of Migration (eV)

Compound  Source values
Vacancy Interstitial
Mechanism Mechanism
LiH

Li* Present 1.21 1.55
PS 1.18° 1.53

Exptl 1.7010.12 -—

1.7240.005 --

H™ Present 1.21 1.52
PS 1.181 1.54

LiD

Li* Present 1.19 1.54
PS 1.161 1.51

Exptl 1.695+0.005° --

D~ Present 1.18 1.50
PS 1.16° 1.47

NaH

Na' Present 1.25 1.55

H~ Present 1.23 1.48

NaD

Nat pPresent 1.19 1.51
P~ Present 1.18 1.44

(1) corrected values (See comment 1 of Table 6.11)

(2) ref. 199,

1.
(3) Ref. .
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interaction the . ;
hearest-neighbour pairwise force is the dominant

interaction. T
hese forces are responsible for the 'similar values

of activation :
and Arrhenius energies for cation and anion. Hence

there 1 i i
S @n ambiguity in the assumption of immobility of anion

vacancles in the experimental analyseslog’llo. As the calculated

Arrhenius energies presented ip Table 6.13 are nearly equal for

cation and anion in both the lithium and sodium compounds, it
again confirms the suggestion of Ps11 that the ratio of cation
and anion contributions to conductivity will be temperature
independent. Estimates of interstitial Arrhenius energies for
all the four crystals in Table 6.13 show that they are slightly
larger than the vacancy values. Thus, as discussed earlier,
although the Frenkel energies are large, the interstitial is also
very mobile because of interstitialcy migration. such a
mechanism, 1in addition to vacancy mode of migration, presents a
nearly linear shape in the conductivity curve. This sort of

curve, 1in general, cannot be resolved in the analysis of

conductivity curves associated with the ionic compounds.

An attempt was made to calculate various defect energies on
the basis of two more potential models, e.g. Bowman35 and HSBG.
The exercise failed due to the invalidity of minimization  which
happens owing to the excessive displacements of shells caused by
the potentials. Altﬁough the two potentials describe, to some
extent, the lattice properties of these four lithium and sodium
compounds, they are not suitable for defect studies. on the

other hand, the present potentials are able to give a unified

description of all the properties, e.g. static lattice, dynamics,
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and defect properties

of e
although we beli the lithium hydride and deuteride.
elieve that the various defect energies

calculated values

and other

for - o
the heavier hydrides and deuterides are

also of ex .
pected magnitude, their experimental results

latter crystals are

on the

ne i .
eded in order to make 2 fruitful
comparison.
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CHAPTER 7

CONCLUSIONS

We have
made an assessment of the derived potential by

calculating the properties of the perfect and defect lattices of

the hydrides and deuterides of lithium and sodium. The present

potential has had the greatest degree of guantitative success for

uniformly describing the static, dynamic and defect properties of

the compounds under study. This is in contrast to the previous
potential models of Bowman35 and H536 which are partly suitable
to reproduce the crystal data of alkali metal hydride and
deuteride compounds. The former potential35 fails to describe

both the dynamic and defect properties and the latter one36

11

is
unable to model the defect lattices. Aithough the PS potential
describes only the lightest of the hydrides and deuterides, the
degree of success with the present potential is much better. In

addition, the present potential model has been extended to the

heavier hydride and deuteride.

From the study of defect’ lattice properties (Schottky,
Frenkel, and anti-site pair defect energies, activation and
Arrhenius energies of migration) based on the present potential
it is predicted that as the schottky pair formation energies are
smaller this type of defect will predominate in these hydrides
and deuterides of lithium and sodium compeounds . On the other
hand, anti-site pair defect energies are very high and hence this
sort of defect is least possible in the crystals under study. The

estimated anion Vvacancy activation energies are smaller and
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comparable with the catijon values

The results, thus, obtained
- the ani j AT .

for 1lon migration are insufficient to explain the reported

curvature in %he conductivity Plotlog'llo. The prediction for

defect lattice, here, shows that interstitial as well as vacancy

play & significant role for ionic conduction in all these

crystals and the relative contribution of both the ions to

conductivity in the intrinsic region is temperature independent.

The parameters involved in the potential can further be
refined if elastic and dielectric properties of heavier hydrides
and deuterides are available. Thus, for a definitive study of
heavier alkali metal hydrides and deuterides the need for the
measurements of other gquantities, e.g

., elastic and dielectric

properties is strecssed.
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