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ABSTRACT

This thesis studies extensively the finitely
generated n-ideals of a lattice. The idea of n-ideals in a
lattice was first introduced by Cornish and Noor in
_studying the kernels around a particular element n, of a
skeletal congruence on a distributive lattice. Then Latif in
his thesis “n-ideals of a lattice” studied thoroughly on the
n-ideals and established many valuable results. For a fixed
element n of a lattice L, a convex sublattice of L
containing n is called an n-ideal. If L has a “0”, then
replacing n by 0, an n-ideal becomes an ideal and if L has

a 6‘137

then it becomes a filter by replacing n by 1. Thus,
the idea of n-ideals is a kind of generalization of both
tdeals and filters of lattices. The n-ideal generated by a
finite number of elements of a lattice is called a finitely
generated n-ideal, while the n-ideal generated by a single
element is known as a principal n-ideal. Latif in his thesis
has given a neat description on finitely generated n-ideals
of a lattice and has provided a number of important results
on them. According to Latif, for a lattice L, the lattice of
all n-ideals of L and the lattice of all finitely generated
n-ideals of L are denoted by I,(L) and F,(L) respectively,
while P,(L) represents the set of principal n-ideals of L.

In this thesis, we devote ourselves in studying several

properties on F.(L) which will certainly enrich many
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branches of lattice theory. Our results in this thesis
generalize many results on Boolean, generalized Boolean,
Stone, generalized Stone, and relatively Stone lattices. We

also generalize several results on pseudocomplemented

lattices satisfying the Lee’s identity.

In this connection it sl:lould be mentioned that if L
has a 0, then putting n=0 we find that F,(L) is the set of
all principal ideals of L which is isomorphic to L. Thus,
for every result on F,(L) in this thesis, we can obtain a
result for the lattice L with 0 by substituting n=0. Hence
the result in each chapter of the thesis regarding F.(L) are
generalizations of the corresponding results in lattice

theory.

In chapter 1, we discuss some fundamental properties
of n-ideals which are basic to this thesis. Here we give an
explicit description of F,(L) and P,(L) which are esseuntial
for the development of the thesis. Though F,(L) is always
a lattice, P,(L) is not even a semilattice. But when n is a
neutral element, P,(L) becomes a meet semilattice.
Moreover, we show that P,(L) is a lattice if and only if n
is a central .element, and then in fact, P,(L)=F,(L). We
also show that, for a neutral element n, the lattice L is
complemented if and only if P,(L) is so. In this chapter we

also discuss on prime n-ideals. We give several properties
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and characterizations of prime n-ideals. We include a
proof of the generalization of Stone’s representation
theorem. We also include a new proof of the result that for

a distributive lattice L, F.,(L) is generalized Boolean if

and only if prime n-ideals are unorderd.

Chapter 2 discusses on minimal prime n-ideals of a
lattice. We give some characterizations on minimal prime
n-ideals which are essential for the further development of
this chapter. Here we provide a number of results which
are generalizations of the results on Stone and generalized
Stone lattices. We prove that if F, (L) is a sectionally
pseudocomplemented distributive lattice then F (L) is
generalized Stone if and only if each prime n-ideals of L
contains a unique minimal prime n-ideal, which is also -

equivalent to <x>,"v<x>," "=L for all xeL.

In chapter 3 we introduce the notion of relative
n-annihilators <a, b>". We characterize distributive and
modular lattices in terms of relative n-annihilators. Then
we generalize several results of Mandelker on
annihilators. We use these results to characterize those
F,(L) which are Stone Jattices. Among many results we
have shown that if  Fn(L) is a relatively
pseudocomplemented distributive lattice, then F,(L) is

relatively Stone if and only if any two incomparable prime
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n-ideals of L are comaximal. What is more, this is also

equivalent to the condition

<<a>;, <b>,>v<<b>,, <a>,> =L for all a, beL.

Pseudocomplemented distributive lattices satisfying
Lee’s identities form equational subclasses denoted by Bn,
-1<m<®. Cornish and Mandelker have studied distributive
lattices analogues to B-lattices and relatively B,-lattices.
Moreover, Cornish, Beazer and Davey have each
independently obtained several characterizations of
(sectionally) Bp-lattices and relatively Bp-lattices. In
chapter 4 we generalize their results by studying finitely
gnerated n-ideals which form a (sectionally) Bp-lattice
and a relatively B,-lattice. We show that if F.(L) 1is
(sectionally) pseudocomplemented and distributive, then
F.(L) is (seétionally) in B, if and only if for any

+ +_ . “
X1{, Xg,~=------ XmeLl, <xX¢>», v--------- v<Xm>, =L, which is

minimal prime n-ideals Pg,-------- ,Pn of L,

Pov--=-n=-~ vP,=L. In this chapter we also show that if
F.(L) 1is relatively pseudocomplemented, then Fq(L) is
relatively in By if and only if any m+1 pairwise

incomparable prime n-ideals are comaximal.

Chapter 5 introduces the concept of distributive and

modular n-ideals of a lattice. Here we include several



characterizations of those n-ideals. We prove some
interesting results which generalize several results on
distributive and modular ideals in lattices. Latif in his
thesis has introduced the concept of standard n-ideals of a
lattice. We conclude this thesis with some more properties

of standard and neutral n-ideals.



Chapter-1

n-ideals of a lattice.

Introduction:

The intention of this chapter is to outline and fix
the notation for some of the concepts of n-ideals of a
lattice which are basic to this thesis. The idea of n-ideals
was first introduced by Cornish and Noor in several
papers [10] and [41]. The n-ideals have also been used

in proving some results in [42].

The n-ideals of a lattice have been studied extensively
by Noor and Latif in [31], [32], [33], [34], [35], [48], [49],
[50], [51] and [52]. For a fixed element n of a lattice L, a
convex sublattice containing n is called an n-ideal. If L
has “0”, then replacing n by “0” an n-ideal becomes an
ideal. Moreover if L has 1, an n-ideal becomes a filter by
replacing n by 1. Thus the idea of n-ideals is a kind of
generalization of both ideals and filters of lattices. So any
result involving n-ideals of a lattice L will give a

generalization of the results on ideals if 0eL and filters if 1eL.

The set of all n-ideals of a lattice L is denoted by
I,(L), which is an algebraic lattice under set inclusion.

Moreover, {n} and L are respectively the smallest and the



largest elements of I,(L), while the set theoretic

intersection is the infimum.

For any two n-ideals | and J of a lattice L, it is easy

to check that
InJ={x : x*m(i, n, ) for some iel, jeJ}, where
m(x, ¥y, 2)=(xAy)v(yaz)v(zax) and

IVI={x 1 [ |A]);<x<ipvjy, for some iy, el and j, jel}.

The n-ideal generated by a;, aj,........... ,d, 1S
denoted by <a;, a,,...... ;ap>n. Clearly <a;, a,,...... ,a,> 0
=<a > v<a>pv.o..o.... vV<anp>g.

The n-ideal generated by a finite number of elements
1s called a finitely generated n-ideal. The set of all
finitely generated n-ideals is denoted by F,(L). Of course,
F.(L) is a lattice. The n-ideal generated by a single
element is called a principal n-ideal. The set of all

principal n-ideals of a lattice L is denoted by P,(L). We

have <a>,={xeLl : aann<x<avnj}.

The median operation m(X, ¥. Z)=(xAy)v(yAz)v(zax)
is very well known in lattice theory. This has been used by
several authors including Birkhoff and Kiss [4] for
bounded distributive lattices, Jakubik and Kalibiar [22

for distributive lartices and Sholander [57] for median

zlgebras.



An n-ideal P of a lattice L is called prime if

m(x, n, y)eP (x, yeL) implies xeP or yeP.

Standard and neutral elements in a lattice were studied
extensively in [14] and [18]. An element s of a lattice L is

called standard if for all x, yelL,

XA(YVS)=(XAY)V(XAS). -

An element neL is called neutral if it is standard and
for all X, yel,

nA(xvy)=(nax)v(nay). By [15], we know that nel is
neutral if and only if for all x, yeL, m(x, n, y)
=(xAy)v(xan)v(yan)=(xvy)a(xvn)a(yvn). Of course 0 and
1 of a lattice are always neutral. In a distributive lattice

clearly every element is standard and neutral.

Let L. be a lattice with 0 and 1. For an element aeL,

a' is called the complement of a if ana’=0 and ava'=1l. A
bounded lattice in which every element has a complement
is called complemented lattice. In a distributive lattice it

is easy to see that every element has at most one

complement.

An element neL is called central if it is neutral and

complemented in each interval containing it.



A lattice L with 0 is called sectionally complemented

if [0, x] is complemented for all xeL. A complemented
distributive lattice is called a Boolean lattice, while a
distributive lattice with 0, which is sectionally
complemented is called a generalized Boolean lattice. For
the background material on lattices we refer the reader to the
texts of G. Grétzer [13], Birkhoff [3], Rutherford [55],
Khanna [28] and Maeda and Maeda [37].

In this thesis we have studied the lattice F,(L) in

different situations. If L has a 0, then putting n=0, we find

that <a----~--- sam>p=(a|V-----u-- va,]. Hence for n=0,
F.(L) is the set of all principal ideals of L which is
isomorphic to L. Thus, for every result on F,(L) in this
thesis, we can obtain a result for the lattice L by
substituting n=0. Hence the result in each chapter of the
thesis regarding F,(L) are generalizations of several
results on Boolean, generalized Boolean, Stone,
generalized Stone and relatively Stone lattices. Chapter 4
gives generalizations of several results on those lattices,
which are in B,, sectionally in B, and relatively in By

respectively.

In section I we have given an explicit description of
F,(L) and P,(L) which will be needed for the development
of the thesis. We have shown that P,(L)=F,(L) if and only



if n is central. We have proved that a lattice L is
(modular) distributive if and only if F,(L) is so. We have
also shown that for a neutral element n, lattice L is
complemented if and only if P.(L) is complemented.
Moreover, if a’ is the complement of a in L, then <a'> is

the complement of <a>, in P,(L).

In section 2 we have discussed on prime n-ideals. We
have given several properties of prime n-ideals. We have
included a proof of @generalization of Stone's
representation theorem. Finally we include a new proof of
the result that for a distributive lattice L, F.(L) is
generalized Boolean if and only if prime n-ideals of L are

unordered.



1. Finitely generated n-ideals.

We start this section with the following proposition
which is due to [31], also see [33] and [48]. This gives

some simpler description of F (L).

Proposition 1.1.1. Let F,(L) be a lattice and neL.

For ay, az,........ ,amel,
(1) <ay, az,.cunn.s sam>aC{yel : (a;]M........ N(an]N(n]
c(ylc(ai]ve...... v(an]v(n]} ;
(i1) <ap, az,.-.... sam>n={yel : ajAnasn........ AdmAn
SY<a|VarV.eiiiieniiinnnns vapvn} ;
(111) <ay, @z,.ce.-.. ,am>n={yeL : ajAna;a........ AapANSy
=(yAa)V....... v(iyAaam)v(yan)}, where L is distridbutive;

(iv) For any ael, <a>,={yeL : ann<y=(yaa)v(yan)}=
{yeL : y=(yana)v(yan)v(aan)}, where n is standard ;
(v) Each finitely generated n-ideals is two generated.

Indeed <a,, a;,.......... ,Am>n=<a1A82A ittt AdpAn,

(vi) Fo(L) is a lattice and its members are simply the
intervals [a, b] such that a<n<b and for each intervals
[a, b] and [a, bi],
[a, b]v[a;, bi]=[ana,, bvb,] and
[a, b]"[a,, by]=[ava,, bab,]. W



For neL, suppose (n]® denotes the dual of the lattice

(n]. Then for any x, ye(n], xvly=xAy and X/\dy=xvy.

Theorem 1.1.2. Let L be a lattice and neL. The maps
®:F(L)=>(n]%[n) and ¥:(n]’x[n)—>F.(L) is given by
®([a, b])=(a, b) and ¥((x, y))=[x, y] where [a, b]eF,(L)
and (x, y)e(n]*x[n), are mutually inverse lattice

isomorphisms. In other words, F,(L)=(n]%%[n).

Proof: Let [a, blc[a;, b;]. Then a;<a<n<b<b,, and
so a<%,; in (n]® and b<b, in [n). Thus, (a, b)<(a,, b;) in
(n]“x[n). Hence @ is order preserving. If (a, b)<(a,, b,) in
(n]%%[n), then a<%, in (n]® and b<b;, in [n). Thus
a;<as<n<b<b; in L and so [a, b]lg[a,, b;]. That is, ¥ is also
order preserving. But @ and ¥ are mutually inverse and so

the theorem 1s established. 0

When n is a neutral element of a lattice L, then it is

very easy to check that P,(L) is a meet semilattice. In fact,

for any a, belL, <a>,n<b>,=<m(a, n, b)>,.

But P,(L) is not necessarily a lattice. The case is
different when n is a central element. The following
theorem also gives characterization of central elements of

a lattice L.



Theorem 1.1.3. Let n be neutral element of a lattice
L. Then P,(L) is a lattice if and only if n is central. Then
of course P,(L)=F,(L).

Moreover, for a central element neL, L is bounded if

and only if P,(L) is bounded.

Also if L is bounded and n is a central element of L,
then for any x, yel, <x>,v<y>;=<m(x, n', y)>, where n' s the

complement of nin L.

Proof: Suppose n is central. Since for all a, beL,
<a>,N<b>,=<m(a, n, b)>,, we need only to check that
<a>,v<b>,eP (L). Now, <a>,v<b>,=[aanbAn, avbvn].
Since n 1s central, there exists cel such that cAn=aaban
and cvn=avbvn which implies that <a>,v<b>,=<c>, and so

P.(L) is a lattice.

Conversely, suppose that P,(L) is a lattice and a<n<b.
Then [a, b]=<a>,v<b>,. Since P,(L) is a lattice,
<a>,v<b>,=<c>, for some cel. This implies that caAn=a

and cvn=b. This implies c is the relative complement of n

in [a, b]. Therefore n is central.

For the second part, if L=[0, 1], then .{n} and <n’>,

are the smallest and the largest elements of P,(L), where



!

n' is the complement of n in L. Also if P (L) is bounded,
then there exists n'el such that <n’>, is the largest
element of P,(L). Therefore for any xel, <x>,c<n'>,.
That is nAan’sxAan<x<xvns<nwvn’. This implies nan’ and nvn'

are the smallest and the largest elements of L and so L is

bounded. Last part is easily verifiable. O

Thus the following results are obvious from the

Theorem 1.1.2.

Theorem 1.1.4. Let L be a lattice. Then F, (L) is
sectionally complemented if and only if for each a, beL
with as<n<b, the interval [a, n] and [n, b] are

complemented. Ll

Corollary 1.1.5. For a distributive lattice L, F (L)

is generalized Boolean if and only if the interval [a, n]

and [n, b] are complemented for each a, beL with a<n<b.[

Corollary 1.1.6. For a distributive lattice L, F (L)
is generalized Boolean if and only if both (n]d and [n) are

generalized Boolean. 0

[t is clear from the Corollary 1.1.4 that if L is
relatively complemented, then F,(L) is sectionally

complemented and in fact F,(L)=P,(L). If L has 0 and 1,



the largest element L of I,(L) is finitely generated. Then
in fact, L=[0, 1].

A lattice L with 0 1is said to be section-semi-
complemented lattice (disjunctive) if 0<a<b (a, bel) implies
there is an element xeL such that xAa=0 and 0<x<b, while
a lattice satisfying the definition which is dual to that of a
section-semi complemented lattice is called a dual

section-semi complemented lattice (dual disjunctive).

A lattice L is called implicative (relative
pseudocomplemented) 1f for any given elements a and b,
the set of all xel. such that aax<b contains a largest
element which is denoted by a—b. A dual implicative

lattice is defined dually.
The following corollary holds because of Theorem 1.1.2.

Corollary 1.1.7. Let L be a lattice and xelL. Then
(1) F.(L) 1is section-semi complemented if and
only if (n] is dual section-semi complemented and [n) is
section-semi complemented ;
(ii) Fo(L) is implicative if and only if (n] is dual

implicative and [n) is implicative. O



Theorem 1.1.8. Let n be a neutral element of a
bounded lattice L. Then L is complemented if and only if

P.(L) is a complemented lattice.

Movreover, a’ is the complement of a in L if and only

if <a'>, is the complement of <a>, in P (L).

Proof: Suppose L is complemented. Then by Theorem
1.1.3, P,(L) is a lattice with {n} and <n’>, as the smallest
and the largest elements. Moreover, P,(L)=F.(L). Now let
<a>,eP,(L). Suppose a’' is the complement of a in L. Then
<a>;Nn<a'>,=[aan, avn]nfa'an, a’vn]=[(ava’)An, (ana’)vn]
=[1lan, Ovn]={n}. Also, <a>,v<a'>,=[ana’'An, ava'vn]
=[0, 1]=<n'>,. This implies P,(L) is complemented, and

<a'>, is the complement of <a>, for each aeL.

Conversely, suppose P,(L) is complemented. Let
ael, and let <b>, be the complement of <a>, in P,(L).
Then <a>;N<b>,={n} and <a>,v<b>,=[0, 1]. Thus,
[(avb)an, (aab)vn]={n} and [aanbAan, avbvn]=[0, |]. Now,
[(avb)Aan, (aab)vn]={n} implies anb<n<avb. Hence [0, I]
=[anban, avbvn]=[aab, avb] and so aanb=0 and avb=1.
This implies b is the complement of a in L. Therefore L is

complemented. [l

-_’.',’s IR S

Thus we have the following corollary: x ;] j)—

NN TYNEY:



Corollary 1.1.9. For a bounded distributive lattice L
with nelL, L is Boolean if and only if P,(L) is a Boolean

lattice. O

In lattice theory, it is well known that a lattice L is
modular (distributive) if and only if the lattice of ideals
I(L) is modular (distributive). Our following theorems are
nice generalizations of those results in terms of n-ideals when

n is a neutral element which is due to [31]. Also see [48].

Theorem 1.1.10. For a rzeutlral element n of a lattice
L, the following conditions are equivalent:

(1) L is modular ;

(i1) I,(L) is meodular ;

(iii) Fo(L) is modular. [

Following result is also due to [31].

Theorem 1.1.11. Let L be a lattice with a neutral
element n. Then the following conditions are
equivalent:

(i) L is distributi?e ;

(i1) I,(L) is distributive ;

(i11) Fo(L) is distributive. O

For any two n-ideals I and J of a lattice we have

already defined Iv] in the introduction. Now we include



the following result, which will be used to prove several

theorems in different chapters of the thesis.

Theorem 1.1.12. Let | and J be two n-ideals of a
distributive lattice. Then for any xelv], xvn=ivj, and

XAN=iyA]y for some iy, 1,€l, ji, jo€l with 1y, }j12n and i,, jo<n.

Proof: Let xelv]. Then ianj<x<i'v]j' for some
i,i'el, j, j'e)J. Now, x<i'vj' implies xvn<i'vj’'vn. Thus
xvn=(xvn)a(l'vj'vn)=[(xvn)a(i'vn)]v[(xvn)a(j'vn)]. Buf
n<(xvn)a{i'vn)<i'vn implies by convexity that
(xvn)a(i'vn)=i(say)el. Similarly, (xvn)a(j'vn)=j,(say)el.
Thus, xvn=i,vj; i1€l, j €J and i,2n, j;2n. Similarly we can

show that xAan=iyAj, for some i,€l, joe] with iy, jo<n. O

We conclude this section with the following useful
result which is due to [31]. This result will also be used in

proving several results in different chapters of the thesis.

Theorem 1.1.13. For a neutral element n of a lattice
L, any finitely generated n-ideal of L which is contained

in a principal n-ideal is a principal n-ideal. C



2. Prime n-ideals.

Recall that an n-ideal P of a lattice L is prime if
m(x, n, y)eP, x, yeL implies either xeP or yeP.

Since for any two n-ideals I and J of L,
INJ={m(i, n, j) : 1€l, jel}, so it is very easy to see that

for any prime n-ideal P, InJcP implies either IcP or JCP.

Theorem 1.2.1. If P is a prime n-ideal of a lattice,
then for any xe€l, at least one of xAn and Xvn is a

member of P.

Proof: Observe that m(xan, n, xvn)=neP. Thus,

either xAneP or xvneP. L)

Theorem 1.2.2, If P is a prime n-ideal of a lattice,

then P contains either (n] or [n), but not both.

Proof: Suppose P is prime and P2(n]. Then there
exists r<n such that r¢ P. Now let se[n). Then
m(r, n, s)=(ran)v(nas)v(sar)=rvnvr=neP implies that
seP. That is, P2[n). Similarly, if P2[n), then we can show
Po(n].
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Finally suppose that P contains both (n] and [n).
Let teL. Then tAneP and tvneP. Then by convexity
of n-ideals teP. This implies P=L, which is a

contradiction to the primeness of P. O
Thus we have the following corollary:

Corollary 1.2.3. If P is a prime n-ideal of a lattice
L, then there exists at least one xeLl such that both XAn

and xvn does not belong to P. O

Theorem 1.2.4. Let n be a neutral element of a
lattice L. Then an n-ideal P is prime if and only if it is a

prime ideal or a prime dual ideal (filter).

Proof: Suppose the n-ideal P is prime. Then by
Theorem 1.2.2, either Po(n] or P2{n). Suppose Po(n]. Let
xeP and t<x, telL. Then t/\ne(n];P. Thus, by convexity of
P, tAn<t<x implies that teP. This implies that P is an
ideal. Also let anbeP, a, beL. Then (aanb)vneP and
m(a, n, b)=(aan)v{nab)v(baa)<(aab)vn implies that
m(a, n, b)eP. Thus, either aeP or beP, and so P is a

prime ideal.



On the other hand if Po[n), we can similarly prove that

P is a prime dual ideal. We omit the proof of the converse

1s trivial. G
Following lemma is due to [31, Lemma-1.2.8].

Lemma 1.2.5. In a distributive lattice L, a prime

ideal containing n is also a prime n-ideal. 0
Duélly we can easily prove the following result.

Lemma 1.2.6. In a distributive lattice L, a prime

dual ideal (filter) containing n is also a prime n-ideal. 1l

The set of all prime n-ideals of L is denoted by P(L).
The following separation property for distributive lattices
was given by M. H. Stone [13, Theorem-15, Page-74],

which is known as Stone's representation theorem.

Theorem 1.2.7. Let L be a distributive lattice, let 1
be an ideal, let D be a dual ideal of L, and let
IND=, then there exists a prime ideal P of L such that
P>l and PnD=O- r

Following result is an improvement of above theorem

which is due to [31, Theorem-1.2.3].



Theorem 1.2.8. Let L be a distributive lattice, let |
be an ideal, let D be a convex sublattice of L and let
IND=, then there exists a prime ideal P of L such that
P2l and PND=UJ. [

Now we give a separation property for distributive
lattices in terms of prime n-ideals which is of course
an extension of Stone's representation theorem. It should
be mentioned that this result has also been obtained by
Latif and Noor in [52]. Here we include a separate proof

as it is much more simpler than that of [52].

Theorem 1.2.9. [n a distributive lattice L, suppose |
is an n-ideal and D is a convex sublattice of L with
IND=C. Then there exists a prime n-ideal p of L such that
P2l and PND=O.

Proof: Since InD=C, so either (I]nD=gd or
[DND=g. If (I]nD=J, then by Theorem 1.2.8, there
exists a prime ideal P2l such that PnD=¢. Similarly if
[I)ND=J, then there exists a prime filter Q2[I) such that
QnD=@. But by Lemma 1.2.5 and Lemma 1.2.6, both P

and Q are prime n-ideals. 0
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Corollary 1.2.10. Every n-ideal 1 of a distributive
lattice L s the intersection of all prime n-ideals

containing it.

Proof: Let I,=n{P : PoI, P is a prime n-ideal of L}.
If I#l,, then there is an element ael,-I. Then by above
corollary, there is a prime n-ideal P with P>I, agP. But

agP2l, gives a contradiction. O

For an n-ideal I of a distributive ‘lattice L, the
congruence ®(I) has been studied in [53] and [31]. By [53],
x=y®(I) if and only if xAi;=yAi; and xvi;=yvi, for some
i;, iel. Moreover ®(I) is the smallest congruence of L
containing [ as a class. In chapter 2 of [31], Latif has

proved the following result:

Theorem 1.2.11. Let L be a distributive lattice. Then
for any two n-ideals 1 and J of L

(i) OUI~AN=0()neJ);

(i1) @IvhH=el)ved).
Moreover, the correspohdence I->0(1) is an embedding

from 1,(L) to C(L). u

Theorem 1.2.12. For a neutral element n of a lattice
L, 1. (L)zC(L) if and only Iif F.(L) is generalized

Boolean. O



For an'n-ideal I of a distributive lattice L, Latif has
also studied the congruence R(I) in [53]. By [53], the
relation R(I) defined by “x=yR(I) if and only if for any
tel, m(x, n, t)el 1is equivalent to m(y, n, t)el” is the
largest congruence of L containing I as a class. With the
help of this congruence we will provide the following

characterization of prime n-ideals of a distributive lattice.

Theorem 1.2.13. Let L be a distributive lattice and
nel. An n-ideal P is prime if and only if the quotient

lattice L/R(P) is a two element chain.

Proof: Suppose P is prime. Let x, yeL-P. Then for any
tel, m(x, n, t)eP implies teP. Since tAn<m(y, n, t)<tvn, so
by convexity of P, m(y, n, t)eP. Therefore x=yR(P).
Moreover, let r=xR(P) for some xeL-P. Then m(r, n, x)&P
as m(x, n, x)=xeP. This implies reP. For otherwise,
ran<m(r, n, x)<rvn, would imply that m(r, n, x)eP by
convexity of P and that is a contradiction. Thus L/R(P) is a

two element chain {P, L-P}.

Conversely, suppose L/R(P) is a two element chain.
Then L-P is a congruence class of the congruence R(P). If
P is not prime, then there exists x, yeL-P such that

m(x, n, y)eP. Since L-P is a congruence class, so
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x=yR(P). Thus m(x, n, y)eP implies m(y, n, y)=yeP

which is a contradiction. Therefore P must be prime. o

For any n-ideal J of a distributive lattice L, we
define | _

"={xeL : m(x, n, j)=n for all jeJ}. Obviously, J* is
an n-ideal and JNJ'={n}. We will call J* as the annihilator

n-ideal of J.

[t is well known from [13, Theorem-22, Page-76] that
a distributive lattice with 0 is generalized Boolean if and
only if the set of prime ideals is unordered. We conclude
the chapter with a nice generalization of that result which
is due to [31, Theorem-1.2.9}; also see [48]. Here, we
prefer to include a new proof of (i)=>(iii), as it is much

easier than that of [31].

Theorem 1.2.14. Let I be a distributive lattice and
nel. Then the following conditions are equivalent:

(1) Fn(L) is generalized Boolean ;

(ii) For each principal n-ideal <x>,, <x>,v<x>, =L,
where <x>, ={yeL : m(x, n, y)=n} ;

(i11) The set of prime n-ideals P(L) is unordered by
set inclusion.

Proof: (i)<(ii) and (iii)=(i) -follows from

[31, Theorem-1.2.9}.
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(i)=(iii). Suppose (i) holds. Then by Theorem
1.1.5, the intervals [x, n] and [n, y] are complemented for
each x, yeL with x<n<y. Let P and Q be any two prime
n-ideals of L. Then by Theorem 1.2.4, P and Q are either
prime ideals or prime filters of L. If one of them is a
prime ideal and the other is a prime filter, then of course
they are unordered. If both P and Q are prime ideals, then
PNi[n, y] and' QN[n, y] are prime ideals of [n, y]. Since [n, y]
is a complemented lattice, so by [13, Theorem-22, Page-76],
PN[n, y] and QN[n, y] are unordered. Therefore P and Q
are unordered. If P, Q are filters, then using the same
argument we find that Pn[x, n] and QM[x, n] are unordered.

Thus P and Q are unordered and this establishes (iii). 7]
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Chapter-2

Lattices whose finitely generated n-ideals

form a Stone lattice.

Introduction:

Minimal prime ideals and Stone (generalized) lattices
have been studied extensively by many authors including
[1], [5], [6], [7], [19], [29], [58] and [61]. Chen and in
Grétzer [S] and [6] studied the construction and structures
of Stone lattices. Katrinak has given a new proof of
construction theorem for Stone algebras in [25] and

studied these algebras in [24], [26] and [27].

In this chapter we introduce the concept of minimal ~
prime n-ideals and generalize some of the results on
minimal prime ideals. Then we used these results to
generalize several important results on Stone and

generalized Stone lattices in terms of n-ideals.

A prime n-ideal P is said to be a minimal prime
n-ideal belonging to n-ideal 1 if,
(i) IcP, and
(ii) There exists no prime n-ideal Q such that Q#P
and [cQcP.
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A prime n-ideal P of L is called a minimal prime
n-ideal if there exists no prime n-ideal Q such that Q#P
and QcP. Thus a minimal prime n-ideal is a minimal

~prime n-ideal belonging to {n}.

Let L be a lattice with 0 and 1. An element a*eL is
called a pseudocomplement of aeL, if ana*=0 and aanx=0
implies that x<a*. Of course 0*=| and 1*=0. L is called
pseudocomplemented if its every element has a
pseudocomplement. Lattice L is called relatively
pseudocomplemented if its every interval is
pseudocomplemented. That is every element of each

interval has a relative pseudocomplement in that interval.

A lattice L with 0 is called a sectionally
pseudocomplemented lattice if the interval [0, x] is

pseudocomplemented for each xeL.

A distributive lattice L with 0 and 1 is called a Stone
lattice if it is pseudocomplemented and for each ael,

a*va**=1,

By [13, Theorem-3, Page-161]}, we also know that a
distributive pseudocomplemented lattice is a Stone lattice

if and only if for each a, beL, (aanb)*=a*vb*.
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A distributive lattice L with 0 is called a generalized
Stone lattice if (x]*v(x]**=L for each xeL. By [24] and
[7], a distributive lattice L with 0 is called generalized

Stone if and only if [0, x] is Stone for each xeL.

A distributive lattice L is called a relatively Stone

lattice if every interval [a, b], a, beL is a Stone lattice.

For any n-ideal J of L, we have already defined in
chapter 1 that

J*’={xelL : m(x, n, j)=n for all jel}.
Observe that J™ is an n-ideal and JnJ"={n}. In fact, this is
the largest n-ideal which annihilates J. Latif in [31] called
this an annihilator n-ideal of J. We prefer to call this as
the pseudocomplement of J in 1,(L). Moreover, for a
distributive lattice L, I,(L) is a distributive algebraic
lattice and so it is pseudocomplemented. Observe that
F,(L) has always the smallest element viz. {n}. But it does
not necessarily contain the largest element. So in a
general distributive lattice L with nelL, we can not talk on
pseudocomplementation in the lattice F,(L). But we can
discuss on section pseudocomplementation iﬁ F.(L). Let
[a, b]eF,(L). By the interval [{n}, [a, b]] in F (L), we
mean the set of all finitely generated n-ideals contained in

[a, b]. Fo(L) is called sectionally pseudocomplemented if
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for each [a, b]JeF,(L), the interval [{n}, [a, b]] in F (L) is
pseudocomplemented. That is, each finitely generated
n-ideal contained in [a, b] has a relative

pseudocomplement in [{n}, [a, b]] which is also a member

of F,(L).

We shall denote the relative pseudocomplement of

[c, d] by [c, d]° while [c, d]+ denotes the

pseudocomplement of [¢, d] in I,(L).

We shall call two prime n-ideals P and Q of L

comaximal if PvQ=L.

In section 1, we have studied minimal prime n-ideals
of L. There we have given some characterizations of
minimal prime n-ideals, also see [43]. These results give
nice generalizations of several results on minimal prime
ideals which will be used to prove some important results

in section 2.

In section 2, we have given several characterizations
of those F,(L) which are Stone and generalized Stone
lattices in terms of n-ideals. If F, (L) is sectionally
pseudocomplemented, then we have proved that F,(L) is
generalized Stone if and only if each prime n-ideal

contains a unique minimal prime n-ideal.
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1. Minimal prime n-ideals.

Recall that a prime n-ideal P is a minimal prime
n-ideal belonging to an n-ideal I if
(i) IcP and
(ii) There exists no prime n-ideal Q such that Q#P
and IcQcP.

Following theorem is a generalization of [13, Lemma-4,

Page-169].

Lemma 2.1.1. Let L be a lattice with an element
n. Then every prime n-ideal contains a minimal prime

n-ideal.

Proof: Let P be a prime n-ideal of L and let g
denotes the set of all prime n-ideals Q contained in P.

Then y is not void, since Pey. If C is a chain in % and
Q=M(X : Xe(), then Q is nonvoid because neQ and Q is
an n-ideal, in fact, Q is prime. Indeed, if m(a, n, b)eQ for
some a, bel, then m(a, n, b)eX for all XeC. Since X i1s

prime, either aeX or beX. Thus, either Q=h(X :aeX) or

Q=M(X : beX), proving that aeQ or beQ. Therefore, we

can apply to % the dual form of Zorn's lemma to conclude

the existence of a minimal member of 7. O



27

Now we give a characterization of minimal prime
n-ideals of a distributive lattice L, when F.,(L) is
sectionally pseudocomplemented. In order to do this, we

need the following lemmas:

Lemma 2.1.2. Let L be a distributive lattice and

nelL. Then for any la, bleF, (L) and for any n-ideal 1.

(In[a, b]) ~[a, b]=I [a, b].

Proof; Since [a, b]nIcl, so R.H.ScL.H.S. To prove
the reverse inclusion, let xeL.H.S. Then éngb and
m(x, n, t)=n for all te[a, b]nI. Since xe{a, b], so
m(x, n, i)e[a, b]nI for all iel. Thus, m(x, n, m(x, n, 1))=n. But
it can be easily seen that m(x, n, m(x, n, 1))=m(x, n, i).

This implies m(x, n, i)=n for all iel. Hence, xeR.H.S. O

Lemma  2.1.3. Suppose F.,(L) is a sectionally
pseudocomplented distributive lattice, and [c, d]c[a, b] in
F.(L) then,

(i) [c, d1°=[c, d]"N[a, b] and

(ii) [c, d]%=[c, d]""N[a, b].

Proof: (i) is trivial. For (ii), using (i) we have
[c, d]°%=([c, d]9)"n[a, bl=([c, d]"N[a, b]) N [a, b].
Thus, by Lemma 2.1.2, [¢, d]°°=[c, d]*"n[a, b]. O
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Now we give the following characterizations of

minimal prime n-ideals. (Also see [43]).

Theorem 2.1.4. Let F. (L) be a sectionally
pseudocomplemented distributive lattice, and P be a
prime n-ideal of .. Then the following conditions are
equivalent:

(i) P is minimal ;

(ii) xeP implies <x>, @P ;

(iii) xeP implies <x>,""cP ;

(iv) PnD(<t>,)=0 for all teL-P ;

where D(<t>,)={xe<t>,: <x>."={n}}.

Proof: (i)=(ii). Suppose P is minimal. If (ii) fails,
then there exists xeP such that <x>n+<;P. Since P is a prime
n-ideal, so by Theorem 1.2.4, P is a prime ideal or a prime
dual ideal. Suppose P is a prime ideal. Let D=(L-P)v[x). We
claim that negD. If neD, then n=qax for some qeL-P.
Then <g>,n<x>,=<(qax)v(gan)v(xan)>,={n} implies
<q>,c<x>,'cP. Thus qeP, which is a contradiction.
Hence ngD. Then by Stone's representation theorem for
n-ideals [52, Lemma-1.3], there exists a prime n-ideal Q
with QnD=@. Then QcP as QN(L-P)=C and Q#P since
x#Q. But this contradicts the minimality of P.

+
Hence, <x>, cP.



29

Similarly, we can prove that <x>,"cP if P is a prime

dual ideal.

(ii)=(ii1). Suppose (ii) holds and xeP. Then
<x>,*¢P. Since <x>,"m<x>,""={n}cP, and P is prime, so

<x>, TP,

(ii1)=>(iv). Suppose (iii) holds and teL-P. Let
xePAD(<t>,). Then xeP, xeD(<t>,). Thus, <x>,’={n} and
s0 <x>,%=<t>,. By (iii), xeP implies <x>,"*cP. Also by
Lemma 2.1.3, <x>,""=<x>, " n<t>,. Hence
<x>, Tn<t>,=<t>,, and so <t>,c<x>, cP. That is, teP,
which is a contradiction. Therefore, PnD(<t>,)=0 for all

teL-P.

(iv)=(i). Suppose P is not minimal. Then there exists
a prime n-ideal QcP. Let xeP-Q. Since
<x>,Mex>, ={n}cQ. so <x>, <QcP. Thus, <x>,v<x>, cP.
Choose any teL-P. Then <t>,n(<x>,v<x>,")cP. Now
<t>,N(<X>,v<x> )= (<t> i N<x> I v(<t>n<x>, )
=<m(t, n, x)>,v{((<t>,N<x>,)'N<t>;) (by Lemma 2.1.2)
=<m(t, n, x)>,v(<m(t, n, X)>, " N<t>,)
=<m(t, n, x)>,v<m(t, n, x)>,° [by Lemma 2.1.3] where
<m(t, n, x)>,° is the relative pseudocomplement of

<m(t, n, X)>, in <t>,.
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Since F,(L) is sectionally pseudocomplemented,
<m(t, n, x)>,° is finitely generated and so
<m(t, n, x)>,v<m(t, n, x)>,° is a finitely generated n-ideal
contained in <t>,. Therefore by Theorem 1.1.13,
<m(t, n, x)>,v<m(t, n, x)>,°=<r>, for some re<t>,.
Moreover, <r>no=<m(t, n, x)>n°m<m(t, n, x)>n°°={n}.
Thus, rePnD(<t>,), which is a contradiction. Therefore P

must be minimal. [
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2. Lattices whose finitely generated n-ideals

form generalized Stone lattices.

[f 0, 1eL, then of course, [0, 1]=L which is the
largest element of F,(L). Then we can talk on
pseudocomplementation in F (L). Since by Theorem 1.1.2,

Fa(L)=(n]%x[n). So we have the following result:

.Theorem 2.2.1. Let L be a lattice and ne L.

(i) F.(L) is sectionally pseudocomplemented if and
only if (n] is sectionally dual pseudocomplemented and [n)
is sectionally pseudocomplemented.

(i) If 0, leL, then F (L) is pseudocomplemented if
and only if . (n] is dual pseudocomplemented and [n) is

pseudocomplemented. U

For any n<bs<l, b* denotes the pseudocomplement of
b in [n, 1], while for 0<a<n, a*! denotes the dual

pseudocomplement of a in [0, n].

Now we have the following result:

Corollary 2.2.2. Let F (L) be a distributive
pseudocomplemented lattice (Then of course F (L) has a
largest element, and so 0, 1 eL). Then for [a, bleF.(L),

[a, b]+=[a+d’ b*].
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Proof: Since F,(L) is pseudocomplemented. So by
above theorem, (n] is dual pseudocomplemented and [n) is

¢ is the

pseudocomplemented. Here 0<a<n<b<l. Since a’
dual pseudocomplement of a in [0, n] and b" is the
pseudocomplement of b in [n, 1].

So [a, b]n[a™, b"]=[ava*®, bab*]={n}.

Now Let xe[a, b]". Then [xAn, xvn]c[a, b]". Thus
{n}=[xAn, xvn]n[a, b]=[(xAn)va, ba(xvn)] and so

d

(xAn)va=n=ba(xvn). This implies xan=a"® and xvn<b".

Hence, [xan, xvn]c[a*?, b*] and so [a, bl c[a™, b"].

Therefore, [a, b]*=[a"9, b*]. 0

If [a, .b]e[{n}, [c, d]]. Then {n}c(a, blc[c, d]. The
relative pseudocomplement of [a, b] in above interval is
denoted by [a, b]°. Here c<a<n<bs<d. a’® denotes the dual
relative pseudocomplement of a in [¢, n] and bY denotes
the relative pesudocomplement of b in [n, d]. Since by
Lemma 2.1.3, [a, b]°=[a, b]"n[c, d]. Using Corollary 2.2.2

above we have the following result:

Corollary 2.2.3. Let F,(L) be a sectionally
pseudocomplemented distributive lattice. Then for

{n}cla, blcle, d], [a, b]°=[a", b°]. O
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A distributive lattice L with 0 is called a generalized
Stone lattice if for each xeL, (x]*v(x]**=L. By Katrinak
[24], we know that a distributive lattice L with 0 is a
generalized Stone lattice if and only if for each interval
[0, x], xeL 1is a Stone lattice. Thus if F,() is a
distributive sectionally pseudocomplemented lattice, then
F,(l.)is a generalized Stone lattice if for each [a, b]eF,(L),

the interval [{n}, [a, b]] in F,(L) is a Stone lattice.

Generalized Stone lattices have been studied by many
authors including [7], [24] and [27]. Following result is a
generalization of some of their work. This gives several
characterizations of those F,(L) which are generalized Stone.
To prove this result we need the following results. Lemma

2.2.4 and Corollary 2.2.5 are trivial from Theorem 1.1.2.

Lemma 2.2.4. Suppose F.,(L) is a sectionally
pseudocomplemented distributive lartice. Then F,(L) is

generalized Stone if and only if (n] is dual generalized

Stone and [n) is generalized Stone. O

Corollary 2.2.5. Supposes F.(L) is a

pseudocomplemented distributive lattice (Then of course,
0, 1€L). Then F,(L) is Stone if and only if (n] is a dual

Stone lattice and [n) is a Stone lattice. O
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Lemma 2.2.6. Suppose F,(L) is a sectionally
pseudocomplemented distributive lattice. Let x, yel with

<x>,n<y>,={n}. Then the following conditions are

equivalent:

(i) <x>,"v<y> ., =L

(ii) For any teL, <m(x, n, t)>,"v<m(y, n, t)>," =<t>,,
where <m(x, n, t)>n0 denotes the relative

pseudocomplement of <m(x, n, t)>, in [{n}, <t>,].

Proof: (1)=(1i). Suppose (1) holds. Then for any
tel, using Lemma 2.1.3,
<m(x, n, t)>,"v<m(y , n, t)>,°
=(<X>nﬁ<t>n)ov(<y>nﬂ<t>n)0.
=((<x>,N<t>)) ' N<t> ) v((<y>n<t>)) T TA<t>)

-=((<X>n+,ﬁ<t>n)V(<y>n+ﬁ<t>n) (by Lemma 2.1.2)

=(<x>, v<y> ) Nn<t> =LA<t> =<t>,

(i1)=(i). Suppose (ii) holds and teL. By (ii),
<m(x, n, t)>n0v<m(y, n, t)>nO=<t>n. Then by calculation of
(1)=>(ii), we have (<x>,"v<y>,")n<t>,=<t>,. This implies
<t>,c<x>,"v<y>," and so te<x>,"v<y>,". Therefore,

<x>, v<y> =L, Cl
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Theorem 2.2.7. Let F, (L) be a sectionally
pseudocomplemented  distributive lattice. Then the
following conditions are equivalent:

(1) Fo.(L) is generalized Stone

(ii)  For any xel, <x>, v<x>, =L ;

(iii) For all x, yel, (x> n<y>,) =<x> "v<y>";
(iv) For all x, yeL, <x>,n<y>,={n} implies that

<x>,"v<y>,"=L.

Proof: (i)=(ii). Suppose (i) holds and teL. Then for

any xe L, m(x, n. t)e<t>, and so <m(t, n, x)>,e[{n}. <t>,].

Since F (L) is generalized Stone, so

<m(t, n, x)>,"v<m(t, n, x)>,""=<t>,, Then by Lemma 2.1.3,

<t>,=(<m(t, n, x)>, N<t>)v(<m(t, n, x)>, " )N<t>,.
=((<x>pN<t>) TNt )V ((Sx>N<t> ) Tn<e>y).

Thus by Lemma 2.1.2, <t>,=(<x>, " N<t>,)v(<x>,""n<t>))

=(<x>, v<x>, )n<t>,. This implies <t>,g<x>, v<x>, "

+ ++
and so te<x>,"v<x>,"". Therefore, <x>, v<x>, " =L.

(i1)=(iii). For any X, yeL. (<x>,N<y>)N(<x>, v<y>,")
=(<X>,N<y>,N<x> V(x> N<y> N<y> ")
={n}v{n}={n}. Now, let <x>,Nn<y>;NI={n} for some

n-ideal I. Then <y>,nIc<x>,". Meeting <x>"" with both
sides, we have <y>,nIn<x>,""={n}. This implies n-ideal

I. Then <y>,nIc<x>,". Meeting <x>"" with both sides, we
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have <y> nIn<x>,""={n}. This implies In<x>,""c<y>*.
Hence I=INL=1n(<x>,"v<x>,"")
=(In<x>, )v(In<x>,"c<x>,"v<y>,". Therefore,

+ +_ +
<X>n V<y>n _(<X>nm<y>n) .

(iti)=(iv). Let <x>;n<y>,={n} for some x, yel.
Then by (iii), L={n} =(<x>,n<y>,) =<x>,"v<y>,*. Thus

(iv) holds.

(iv)=>(i1). Let teL. By Lemma 2.1.2, and by Lemma
2.1.3, for any xeL, (<x>, v<x>,")n<t>,

=(<x>, A<t ) v(<x>, Th<t>,)

=((<x>,N<t> ) <> v ((<xz,n<t> ) T Ta<e))

=(<m(t, n, x)>,"N<t> )v(<m(t, n, x)>," " TA<t>)

=<m(x, n, t)>n0v<m(x, n, t)>n00. Here <m(x, n, t)>,,O
is finitely génerated n-ideal contained in <t>,, as F,(L) is
sectionally pseudocomplemented. Then by Theorem
1.1.13, <m(x, n, t)>,” is a principal n-ideal, say <r>,. Now
<m(x, n, t)>,N<r>,={n}. So by (iv) and Lemma 2.1.3,
<m(x, n, t)>,'v<r>,=<t>. Therefore, (<x>n+v<x>n++)r\<t>n=<t.>n
and so te<x>,"v<x>,"". This implies <x>, v<x>," =L,

Thus (ii) holds.

To complete the proof we shall show that (iv)=(i).

Since F (L) is sectionally pseudocomplemented, so by
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and [n) is sectionally pseudocomplemented.

Suppose n<b<d. Let b’ be the relative
pseudocomplement of b in [n, d]. Now b%Ab’’=n. Thus
<b?> . N<b?> =[n, b°Ab"]={n}. Also, <b’>,, <b""> c<d>,.
Then by equivalent condition of (iv) given in Lemma
2.2.6, we have <m(b°, n, d)>n0v<m(b°°, n, d)>n0=<d>n. But
m(b’, n, d)=b" and m(b"’, n, d)=b"? as n<b?®, b"’<d. But by
Corollary 2.2.3,<b"> %=<b%>_ and <b%%> "=<p00> =<p0s> |
Therefore, <d>.=<b’"> v<p?> =<b’vb?">_ which gives
b’vb%%=d. This implies [n, d] is a Stone lattice. That is [n)

is generalized Stone.

A dual proof of above shows that (iv) also implies
that (n] is a dual generalized Stone lattice. Therefore, by

Lemma 2.2.4, F,(L) is generalized Stone. U

Following corollary is an immediate consequence of

above result. This has also been proved in [44, Theorem-2.4].

Corollary 2.2.8. Let F,(L) be a'pseudocomplementea’
distributive lattice. Then the followi‘ng conditions are
equivalent:

(i)  Fa(L) is Stone ;

(ii) For all xeL, <x>."v<x>, =L ;
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(iil)  For all x, yelL, (<x>,Nn<y>,) =<x>,"v<y>,";
(iv) For all x, yeL, <x>,n<y>.,={n} implies that
<x>,"'v<y> "=L. 0§

For a prime ideal P of a distributive lattice L with 0,
Cornish in [7] has defined

O(P)={xeL : xAy=0 for some yeL-P}. Clearly

O(P) is an ideal and O(P)cP. Cornish in [7] hés shown that

O0(P) is the intersection of all the minimal prime ideals of

L which are contained in P.

For a prime n-ideal P of a distributive lattice L, we
write n(P)={yeL : m(y, n, x)=n for some xeL-P}. Clearly,
n(P) is an n-ideal and n(P)cP. |

Lemma 2.2.9. Let P be a prime n-ideal in a
distributive lattice l.. Then each minimal prime n-ideal

belonging to n(P) is contained in P.

Proof: Let Q be a minimal prime n-ideal belonging

to n(P). If QzP, then choose y<Q-P. By Theorem 1.2.4,

we know that Q is either an ideal or a filter. Without loss
of generality suppose Q is an ideal. Now let

S={seL : m(y, n, s)en(P)}. We shall show that SzQ.

If not, let D=(L-Q)v[y). Then n(P)nD=¢. For otherwise,

yaren(P) for some reL-Q. Then by convexity,
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yarsm(y, n, r)<(yar)vn implies m(y, n, r)en(P). Hence
reScQ, which is a contradiction. Thus, by Stone's
representation theorem for n-ideals, there exists a prime
n-ideal R containing n(P) disjoint to D. Then RcQ.
Moreover, R#Q as y¢R, this shows that Q is not a minimal
prime n-ideal belonging to n(P), which is a contradiction.
Therefore, S¢Q. Hence there exists z¢Q such that

m(y, n, z)en(P). Thus m(m(y, n, z), n, x)=n for some xeL-P.
It is easy to see that m(m(y, n, z), n, x)=m(m(y, n, X), n, z).
Hence, m(m(y, n, x), n, z)=n. Since P is prime and y, x¢P,
so m(y, n, x)gP. Therefore, zen(P)cQ, which is a

contradiction. Hence QcP. {1

Proposition 2.2.10. If P is a prime n-ideal in a
distributive lattice L, then n(P) is the intersection of all

minimal prime n-ideals contained in P.

Proof: Clearly n(P) is contained in any prime n-ideal
which is contained in P. Hence n(P) is contained in the
intersection of all minimal prime n-ideals contained in P.
Since L is distributive, so by Corollary 1.2.10, n(P) is the.
intersection of all minimal prime n-ideals belonging to it.
By Lemma 2.1.1, as each prime n-ideal contains a minimal

prime n-ideal, above remarks and Lemma 2.2.9 establish

the proposition. O
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Theorem 2.2.11. Let F, L) be a sectionally
pseudocomplemented distributive lattice. Then the following
conditions are equivalent:

(1) For any xelL, <x>, v<x>, "=L,

equivalently, F,(L) is generalized Stone ,
(i1) Fo.r any two minimal prime n-ideals P and Q,
PvQ=1. .

(ii1) Every prime n-ideal contains a unique minimal

prime n-ideal ;

(iv) For each prime n-ideal P, n(P) is a prime n-ideal.

Proof: (i)=>(i1). Let xeP-Q. Then <x>,cP-Q. Now,
<x>M<x> " ={n}cQ. So <x>,"'¢Q as Q is prime. Again
xeP implies <x>,""cP by Theorem 2.1.4. Hence by (i),
L=<x>,"v<x>,""cQvP. Therefore, PvQ=L.

(1i)e(iii) is trivial.

(iii)=(iv) is direct consequence of Proposition 2.2.10.

(iv)=>(i). Suppose (iv) holds. First we shall show that
for all x, vyeL with  <x> N<y>,={n} implies
<x>,"v<y> "=L. If it does not hold, then there exists
x, yeL with <x>,n<y>,={n} such thaf <x>,"v<y> *#L. As
L is distributive, so by Theorem 1.2.9, there is a prime
n-ideal P such that <x>,"v<y>,*cP. Then <x>, cP and
<y>,"cP imply x¢n(P) and y¢n(P). But n(P) is prime and

so m(x, n, y)=nen(P) is contradictory.



41

Thus for all x, yeL with <x>,n<y>,={n} implies that
<x>,'v<y>,"=L. Hence by equivalent conditions of

Theorem 2.2.7, (i) holds. B

Following result is an immediate consequence of above

theorem, which has also been proved seperately in [44].

Corollary 2.2.12. Let F,(L) be a
pseudocomplemented distributive lattice. Then the
following conditions are equivalent:

(1) F.(L) is Stone ;

(1i) For any two minimal prime n-ideals P and Q,

PvQ=L, that is, they are comaximal ,

(i11) Every prime n-ideal contains a unique minimal

prime n-ideal ;

(iv) For each prime n-ideal P, n(P) is a prime

n-ideal. ol
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Chapter-3
On finitely generated n-ideals, which form

relatively Stone lattices.

Introduction:

Relative annihilators in lattices and semilattices have
been studied by many authors including Mandelker [39]
and Varlet [62]. Also Cornish [7] has wused the
annihilators in studying relative normal lattices. In this
chapter we shall introduce the notion of relative
annihilators around a fixed element neL and then we will
use it to generalize several results on relatively Stone

lattices.

For a, bel, <a, b>={xel : xana<b} is known as
annihilator of a relative to b, or simply a relative
annihilator. It is very easy to see that in presence of

distributivity, <a, b> is an ideal of L.

Again for a, belL we define <a, b>3={x : xvazb},
which we call a dual annihilator of a relative to b, or
simply a relative dual annihilator. In presence of

distributivity of L, <a, b>4 is a dual ideal (filter).

For a, belL and a fixed element nelL, we define
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<a, b>"={xel : m(a, n, x)e<b>,}={xeL : ban<m(a, n, x)<bvn}.
We call <a, b>" the annihilator of a relative to b around
the element n or simply a relative n-annihilator. It is easy
to see that for all a, bel, <a, b>" is always a convex
subset containing n. In presence of distributivity, it can be

easily seen that <a, b>" is an n-ideal.

For two n-ideals A and B of a lattice L, <A, B>
denotes {xeL : m(a, n, x)eB for all aeA}. In presence of

distributivity, clearly <A, B> is an n-ideal. Moreover, we

can easily show that <a, b>"=<<a>,, <b> >,

Recall that a distributive lattice L is called a Stone
lattice if it is pseudocomplemented and x*vx**=1, for
each xelL. Also recall that a lattice L .is relatively
pseudocomplemented if its every interval [a, b] (a, beL, a<b)
is pseudocomplemented. A distrib.utive lattice L 1s called a

relatively Stone lattice if its every interval [a, b] is Stone.

In section 1 of this chapter we shall give several

» - n . -
characterizations of <a, b>. We will also give some
characterizations of distributive and modular lattices in

terms of relative n-annihilators. If OeL, then putting n=0,

the n-ideals become ideals and <a, b>"=<a, b>. So this
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section will generalize most of the results on annihilators

in [39].

- In section 2 we will characterize those F,(L) which
are relatively Stone in terms of n-ideals and relative
n-annihilators. These results are certainly generalizations
of several results on relatively Stone lattices. At the end
we will show that F,(L) is relatively Stone if and only if

any two incomparable prime n-ideals of L are comaximal.
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1. Relative annihilators around a neutral

element of a lattice.

We start with the following characterization of <a, b>".

Theorem 3.1.1. Let L be a lattice with a neutral
element n in it. Then for all a, bel, the following
conditions are equivalent:

(i) <a, b>"is an n-ideal ;

(ii) <aAn, bAan>4 is a filter and

<awvn, bvn> is an ideal.

Proof: Suppose (i) holds. Let x, ye<awvn, bvn>. Then
xA{avn)<bvn. Thus (xa(avn))vn<bvn, then by the
neutrality of n, (xvn)a(avn)<bvn: Also m(xvn, n, a)
=(xvnva)a(xvn)alavn)=(xvn)a(avn)<bvn implies that
xvne<a, b>". Similarly, yvne<a, b>". Since <a, b>" is an
n-ideal, so xvyvne<a, b>", This implies m(xvyvn, n, a)<bvn.
That is, (xvyvn)a(avn)<bvn and so (xvy)a(avn)<bwvn.
Therefore, xvye<avn, bvn>. Moreover, for xe<avn, bvn>
and t<x (teL) obviously te<avn, bvn>. Hence <avn, bvn>
is an ideal. A dual proof of above shows that <aan, ban>y

is a filter.

(ii)=>(i). Suppose (ii) holds and x, ye<a, b>". Then
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m(x, n, a)e<b>,. Then using the neutrality of n,
bang(xaa)v(xan)v(aan)=(xva)a(xvn)a(avn)<bwvn.
Similarly, bang(yaa)v(yan)v(aan)=(yva)a(yvn)a(avn)<bwvn,
So, bang[(xra)v(xan)v(aan)]an=(xan)v(aan). This implies
xAne<aan, ban>y. Similarly, yane<aan, ban>,. Since
<aann, ban>4 is a filter, so we have xAyane<aan, ban>,.
Thus, (xAyAn)v(aan)2(ban), and this implies xAyAane<a, b>".
Again, by the neutrality of n, (xvn)a(avn)
=[(xva)a(xvn)a(avn)]vn<bvn. Similarly, (yvn)a(avn)<bwvn.
Thus ((X/\y)lvn)/\(avn)ébvn. But ((xAy)vn)a(avn)
=m((XAy)vn, n, a), as n is neutral. Therefore, (xAy)vne<a, b>",

and so by the convexity of <a, b>", xaAye<a, b>".
Yy y y )

A dual proof of above also shows that xvye<a, b>",
Clearly <a, b>" contains n. Therefore, <a, b>" is an

n-ideal. [

Proposition 3.1.2. Let L be a lattice with a
neutral element n. For all a, beLl the following hold:
(i) <avn, bvn> is an ideal if and only if [n) is a
distributive sublattice of L ;
(i1) <aAn, ban>4 is a filter if and only if (n] is a

distributive sublattice of L.
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Proof: (1). Suppose for all a, bel, <avn, bvn> is an
ideal. Thus, for all p, qe[n), <p, q>N[n) is an ideal in the
sublattice [n). Then by [39, Theorem-1], [n) is

distributive.

Conversely, suppose [n) is distributive. Let X, ye<avn, bvn>.
Then xa(avn)<bvn. Since n is neutral, so (xvn)a(avn)
=[xA(avn)]vn<bvn implies that xvne<avn, bvn>. Similarly,
yvne<avn, B bvn>. Then (xvy)a(avn)<(xvyvn)a(avn)
=[(xvn)a(avn)]v[(yvn)a(avn)]sbvn, as [n) is distributive.
Therefore, xvye<avn, bvn>. Since <avn, bvn> has always

the hereditary property, so <avn, bvn> is an ideal.

(ii) can be proved dually. O

By Theorem 1.1.2, we know that Fn(L)E(n]dx[n),
where (n]® denotes the dual of the lattice (n]. Thus by
Theorem 3.1.1 and above result we have the following

result.

Theorem 3.1.3. Let L be a lattice and nel be
neutral. Then for all a, beLl, <a, b>" is an n-ideal if and

only if Fy(L) is distributive. O

Now by [31], we know that L is distributive if and
only if F.(L) is distributive. Therefore, we have the
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following corollary which is a generalization of

[39, Theorem-1].

Corollary 3.1.4. For all a, bel. and for a neutral
element nel, <a, b>" is an n-ideal if and only if L is

distributive. L]
Following result also generalizes [39, Theorem-1]

Theorem 3.1.5. Let n be a neutral element of a
lattice L. Then the following conditions are equivalent:
(i) L is distributive ;
(i1) <awvn, bvn> is an ideal and <aan, ban>4 is

a filter whenever <a>,c<b>.

Proof: (1)=(ii). Suppose (i) holds. Then by Corollary
3.1.4, <a, b>"is an n-ideal for all a, beL. Thus (ii) holds
by Theorem 3.1.1.

(ii)=(i). Suppose (ii) holds and x, y, ze[n). Clearly
(xAy)v(xaz)<x. So <x, (xAy)v(xaz)> 1s an ideal as
<XAY)IV(XAZ)>,C<x>,. Since XAYS(xAay)V(xAaz), so
ye<x, (xAy)v(xaz)>. Similarly ze<x, (xay)v(xaz)>.
Hence yvze<x, (xay)v(xaz)> and so xA(yvz)S(xay)v(xaz).
This implies xa(yvz)=(xay)v(xaz), -and so [n) is

distributive. Using the other part of (ii) we can similarly
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show that (n] is also distributive. Thus, by Theorem 1.1.2,
F.(L) is distributive, and so by [31], L is distributive. [

Theorem 3.1.6. Let n be a neutral element of a
lattice L. Then the following conditions are equivalent:

(i) F.(L) is modular ;

(ii) For a, bel with <b>,c<a>,, xe<b>, and

ye<a, b>" imply xaAy, xvye<a, b>",

Proof: (i)=(ii). Suppose F,(L) is modular. Then by
Theorem 1.1.2, (n] and [n) are modular. Here <b>,c<a>,.
So aan<ban<n<bwvn<avn. Since xe<b>,, so ban<x<bvn.
Hence, aans<ban<xan<xvn<bwvn<avn. Now, ye<a, b>"
implies m(y, n, a)e<b>,. Then by the neutrality of n,
(yva)a(yvn)a(avn)<bvn, and so ((yva)a(yvn)a(avn))vn
=(yvn)a(avn)<bvn. Thus, using the modularity of [n),
m(xvyvn, n, a)=(xvyvn)a(avn)=[(avn)a(yvn)]v(xvn), as
xvn<bvn<avn. This implies m(xvyvn, n, a)<bvn, and so
xvyvne<a, b>". Since n is neutral, so aan<ban<xan
implies that ban<(xan)v(yan)v(aan)=((xvy)an)v(aan)=
m((xvy)an, n, a)s<bvn. Therefore, (xvy)ane<a, b>". Hence
by the convexity of <a, b>", xvye<a, b>". Again using the
modularity of (n], a dual proof of above shows that

XAy €<a, b>".
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Conversely, suppose (ii) holds. Let x, y, ze[n) with
X<z. Then xv(yAz)<z. This implies <xv(yAz)>,c<z>,.
Now x<xv(yaz) implies xe<xv(yaz)>,. Again yAz<xVv(yAz)
implies m(y, n, z)=yaze<xv(yaz)>,. Hence ye<z, xv(yaz)>".
Thus by (ii), xvye<z, xv(yaz)>". Thatis, (xvy)arz<xv(yAaz)

and so (xvy)az=xv(yaz). Therefore, [n) is modular.

Similarly, using the condition (ii) we can easily
show that (n] is also modular. Hence by Theorem 1.1.2,

F,(L) is modular. [

By [48, Theorem-3.2], we know that a lattice L is
modular if and only if the lattice of all n-ideals I,(L) is
modular. Following their proof it can be easily seen that
L is modular if and only if F,(L) is modular. Hence we

have the following result which generalizes [39, Theorem-2].

Corollary 3.1.7. Let n be a neutral element of a
lattice L. Then the following conditions are equivalent:
(i) L is modular ;
(i1) For a, beL with <b>,c<a>,, xe<b>, and ye<a, b>"

implies xny, xvye<a, b>". N

We conclude the section with the following

characterization of minimal prime n-ideals belonging to an



51

n-ideal. Since the proof of this is almost similar to

Theorem 2.1.4, we omit the proof.

Theorem 3.1.8. Let L be a distributive lattice and P
be a prime n-ideal of L belonging to an n-ideal J. Then the

following conditions are equivalent:

(i) P is minimal belonging to ] ;

(i1) xeP implies <<x>,, I>&P. O
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2. Some characterizations of those F (L)

which are relatively Stone lattices.

The following result is a generalization of [7, Lemma-
3.6] which plays an important role in proving our main

results in this section.

Theorem 3.2.1. Let L be a distributive lattice. Then
the following hold:

(1) <<X>,v<y>,, <x>,>=<<y>,, <x>;> ;
(i1) <<x>,, J>=>{J<<x>n, <y>,>, the supremum of

n-ideals <<x>,, <y>.,> in the lattice of n-ideals of L, for

any xelL and any n-ideal J.

Proof: (i). L.H ScR.H.S is obvious. Let teR.H.S,
then te<<y>,, <x>,>. This implies m(y, n, t)c<x>,. That is

<m(y, n, t)>,C<x>, and so (<y>N<t> )v(<x>pN<t>;)c<x>,.

That is, <t>,n[<x>,v<y>,]c<x>, which implies

te <<x>,v<y>, <x>,>. Thus, teL.H.S and so (i) holds.

(ii). R.H.ScL.H.S is obvious. Let teL.H.S, then

m(x, n, t)el that is m(x, n, t)=j for some jelJ. This

implies te <<x>,, <j>,>. Thus teR.H.S and so (ii) holds. 1]



53

Following lemma will be needed for further
development of this chapter. This is in fact, the dual of
[7, Lemma-3.6] and very easy to prove. So we prefer to

omit the proof.

Lemma 3.2.2. Let L be a distributive lattice. Then
the following hold.

(l) <XAys X>d=<}’, X>q 3
(i1) <[x}), F>d=ye\{<x, y>4, where F is a filter of L,

(iil) {<x, a>4v<y, a>4}NJ[a, b]

={<x, a>4M[a, b]l}v{<y, a>4n[a, b]}. 1

Lemma 3.2.3 and Lemma 3.2.4 are essential for the

proof of our main result of this section.

Lemma 3.2.3. Let L be a distributive lattice with

nel. Suppose a, b, cel.
(1) If a,b, czn, thén <<m(a, n, b)>,, <c>,>
=<<a>,, <c>,>VI<b>,, <c>,> is equivalent to
<aab, c>=<a, c>V<b, ¢c> ;
(i1) If a, b, c<n then
<<m(a, n, b)>,, <c>,>=<<a>,, <c>,>Vv<I<b>,, <c>,>

is equivalent to <avb, c>g=<a, c>gv<b, c>q.
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Proof: (i). Suppose a, b, c2n and
<<a>,N<b>,, <c>>=<<a>,, <c>,>v<<b>,, <c>,>. Let
- xe<anb, ¢>. Then xAnaanb<c, <x>,N<aab>,=<x>,N[n, anb]
=[n, (xvn)a(aab)]=[n, (xAaab)vn]cn, c].

Hence xe<<anb>,, <c>,>=<<m(a, n, b)>,, <c>,>
=<<a>,, <c>,>v<<b>,, <c¢>,>. Thus x<pvq, where

pe<<a>,, <¢c>,>, qe<<b>,, <c>,>. Then <p>,N<a>,c<c>,.

That is, [pan, pvn]n[n, a]Jc[n, c]. Thus, [n, (pvn)aalc(n, c]
which implies paa<c, and so pe<a, ¢>. Similarly,

ge<b, ¢> and so xe<a, ¢>v<b, ¢>. Hence <anb, c>¢<a, c>v<b, ¢>.
But <a, c>v<b, c>c<anb, ¢> is obvious. Therefore, <aab, ¢c>

=<a, c>v<b, c>.

Conversely, suppose <aab, c>=<a, c>v<b, c>. Let

xe<<m(a, n, b)>,, <c>,>. Then <x>,n<m(a, n, b)>,
=[xAn, xvn]n[n, aab]c[n, c]. That is, [n, (xvn)Aa(aab)]c[n, c].
Thus, [n, (xAnaab)vn]c[n, ¢] which implies xAanb<c, and
so xe<aab, c>=<a, c>v<b, ¢>. This implies x=rvs, where
re<a, ¢> and se<b, ¢>. Then raa<c and sab<c. Now

<r>,Mn<a>,=[ran, rvn]N[n, a]=[n, (rvn)aa]

=[n, (rana)vn]c[n, c]=<c>,. Hence, re<<a>,, <c>,>.
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Similarly, se <<b>,, <c¢>,>. Thus xe<<a>,, <c>,>Vv<<b>,, <c>,>
and so <<m(a, n, b)>,, <c>>c<<a>, <c>,>Vv<<b>, <c>.>.

Since <<a>,, <c>,>v<<b>, <c>.>c<<m(a, n, b)>,, <c>,> is

obvious, so <<m(a, n, b)>,, <c>,>=<<a>,, <c>,>v<<b>,, <c>,>.

A dual calculation of above proof proves (ii). 4

Lemma 3.2.4. Let L be a distributive lattice with
nel. Suppose a, b, cel

(i) For a, b, c2n,
<<e>,, <ar,v<b> >=<<c>, <a>,>v<<c>,, <b>,>
is equivalent to <c, avb>=<c¢, a>v<c, b> ;

?

(i1) For a, b, c<n, <<¢>,, <a>,v<b>,>

=<<c>,, <a>,>v<<c>,, <b>,> is equivalent to

<c, anb>4=<c, a>4v<c, b>y.

Proof: Suppose <<c>,, <a>,v<b>,>

=<<¢c>,, <a>,>Vv<<c>,, <b>,>. Let xe<c, avb>. Then

xac<avb. Then <x>,N<c>,=[xAn, xvn]n[n, c]=

[n, (xvn)ac]=[n, (xac)vn]c[n, avb]=<a> v<b>,.
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Thus, x e <<c>,, <a>,v<b> >=<<c>,, <a>,>V<<c>,, <b>,>

so0, x<pvq where pe <<c>,, <a>,> and qe <<c>,, <b>;>.

Then [pAn, pvn]n[n, c]c[n, a]. Thus [n, (pvn)aclc(n, a].
That is, [n, (pac)vn]c[n, a]. This implies pac<a, and so
pe<c, a>. Similarly, qe<c, b>. Hence xe<c, a>v<c, b>
and so <c, avb>c<ec, a>v<c, b>. Since the reverse

inequality is trivial, so <¢, avb>=<c, a>v<c, b>.

Conversely, suppose <c, avb>=<c, a>v<c, b>. Let
xe<<c>,, <a>,v<b>,>. Then, [xAn, xvn]n[n, c]c[n, avb],

and so [n, (xvn)ac]c[n, avb]. That is, [n, (xAc)vn]c[n, avb].
This implies xac<avb, and so xe<c, avb>=<c, a>v<c, b>.

Thus x=rvs, where re<c, a> and se<c, b>. Now, <r>nN<c>,=

[r A n, rvn]N[n, c]=[n, (rac)vn]c[n, a]=<a>,. So re<<c>,, <a>>.
Similarly, se<<c>,, <b>,>. Hence
x e <<c>,, <a>,>v<<c>,, <b> >,

and so <<c>,, <a>,v<b>,>c<<c>, <a> >v<<c>,, <b> >,
Since the reverse inequality is trivial, so
<<e>,, <a>,v<b>,>=<<c>,, <a> >v<<c>,, <b>,>. By the

dual calculation of above we can easily prove (ii). O
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Following result on Stone lattices is well known due

to [13, Theorem-3, Page-161] and [7, Theorem-2.4].

Theorem 3.2.5. Let L be a pseudocomplemented

distributive lattice. Then the following conditions are

equivalent:
(1) L is Stone ,
(ii1) For each X, YEL, (xAy)*=x*vy* ;

(ii1) If xay=0, x, yeL, then x*vy*=1, O

Similarly we can easily prove the following result

which is dual to above theorem.

Theorem 3.2.6. Let L be a dual pseudocomplemented
distributive lattice. Then the following conditions are
equivalent:

(1) L is dual Stone ;

(ii) For each x, yeL, (xvy)y*d=x*day*d,

(iii) If xvy=1, x, yeL, then x**ay*‘=0,

where x*% denotes the dual pseudocomplement of X. 0

Now we prove the following result, which is dual to
{7, Theorem-3.7]. This will be needed to prove the main

result of this chapter.

Theorem 3.2.7. Let L be a vrelatively dual

pseudocomplemented distributive lattice. Let a, b, ceL be
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Now we prove our main results of this chapter, which
are generalizations of [7, Theorem-3.7] and {39, Theorem-5].
These give characterizations of those F,(L) which are

relatively Stone in terms of n-ideals.

Theorem 3.2.8. Let F,(L) be a relatively
pseudocomplemented distributive lattice and A and B be

two n-ideals of L. Then for all a, b, cel, the following
conditions are equivalent:

(1) F.(L) is relatively Stone ;

(i1) <<a>,, <b>,>v<<b>,, <a>,>=L ;
(ii1) <<ec>,, <a>, v<b> >=<<c>,, <a>,>v<<c>,, <b>.> |
(iv) <<c>,, AvB>=<<c>,, A>v<<c>,, B> |

(v) <<mf(a, n, b)>,, <c>,>=<<a>,, <c>,>Vv<<b>,, <c>,>.

Proof: (i)=(ii). Let zeL, consider the interval
[=[<a>,n<b> N<z>,, <z>,] in F,(L). Then
<a> N<b>,N<z>, is the smallest element of the interval I.
By (i), I is Stone. Then by Theorem 3.2.5, there exist
finitely generated n-ideals {p, q], [r, s]€l such that,

<a>,N<z>.N[p, q]

=<a>,N<b>,N<z>,

=<b> n<z>,N[r, s] and

<z>,=[p, qlvIr, s].
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Now, <a>,n[p, q]=<a>,N[p, q]n<z>,=<a>,"<b> N<z>,S<b>,

implies [p, qle<<a>,, <b>>. Also <b>,N[r, s]=<b>,n<z>,NIr, s]
=<a>,N<b>,N<z>,c<a>, implies [r, s]le<<b>,, <a>,>.
Thus, <z>,c<<a>,, <b>,>v<<b>,, <a>, >,

and so ze<<a>,, <b> >v<<b>  <a> >,

n»

Hence <<a>,, <b>,>v<<b>,, <a> >=L.

(i1)=(ii1). Suppose (ii) holds. For (ii1),

R.H.ScL.H.S is obvious. Now, let ze<<c>,, <a>,v<b>,>.
Then zvne <<c>,, <a>,v<b>,>, and so

m(zvn, n, c)e[anban, avbvn]. That is, (zvn)a(cvn)<avbwvn.
Now by (ii), zvne<<a>,, <b>>VI<b>,, <a>,>. So

zvn<(pvn)v(qvn) for some pvne<<a>,, <b>,>

and qvne<<b>,, <a>,>. Hence,

zvn=((zvn)A(pvn))v((zvn)a(qvn))=rvs (say).

Now, m(pvn, n, a)=(pvn)a(avn)sbvn. So
(bAan)<ra(avn)<bwvn. Hence, ra(cvn)=ra(zvn)a(cvn)
Sr/\(avbvn)=(r/\(avn))v(r/\(bvn))sbvn. This implies

re<<c>,, <b>,>. Similarly, se<<c>,, <a>,>. Hence

zvne<<c>,, <a>,>y<<c>,, <b>,>.
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Aoai < : :
gain ze <<c¢>,, <a> v<b> > implies

ZAN € <C>;, <a>;v<b>'> Then a dual calculation of

above shows that zane < <o
n

> <a>n>v<<0> <b>n>'

n»
Thus by convexity, ze <<c¢>,, <a>,>v<<c>,, <b>,> and

so (iii) holds.

(iii)=(iv). Suppose (iii) holds. In (iv), R.H.ScL.H.S

is obvious. Now let xe<<c>,, AvB>. Then

xvne<<c>,, AvB>. Thus m(xvn, n, c)eAvB. Now

m(xvn, n, ¢)=(xvn)Aa(nvc)>n implies m(xvn, n, c)e(AvB)n[n).

Hence by Theorem 3.2.1(ii), xvne<<c>,, (An[n))v(BN[n))>

Ve (An[mv(Ba[n) < <C>,, <r>>. But by Theorem 1.1.12,

re(Aﬁ[n))v(Bm[n)) implies r=svt for some seA, teB and

s, t2n. Then by (iil), <<c>,, <r>,>=<<c>,, <svt>,>
=<<e>,, <s> v<t> >=<<c>, <S>n>\/<-<C>nn <t>,>
c<<c>,, A>Vv<<c>, B>. Hence xvne<<c>,, A>v<<c>, B>.
Also xe<<c>,, AvB> implies xanne<<c>,, AvB>. Since
m(xAn, n, c)=(xAan)v(nac)<n, s0 xAne <<c>,, (AvB)YN(n]>.

Then by Theorem 3.2.1(ii), xAne<<c>,, (An(nDv(BN(n])>
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=Me(An)vBA)<<c>,, <t>y>. Using Theorem 1.1.12 again,

we see that t=paq where peA, qeB, p, q<n. Then by (iii),

LLe>y, <t>p>=<<c>,, <pag>,>=<<c> | <p>,v<qg>,>
=<<c>,, <p>n>V<<c>n, <> >oe<<c>,, A>v<<c>,, B>,
Hence xAane<<c>,, A>V<<c>,, B>, Therefore by
convexity, xe <<c>;, A>v<<c>,, B>, and so (iv) holds.
(iv)=>(iii) is trivial.
(1i)=(v). In (v) R.H.ScL.H.S 1is obvious. Let
zeL.H.S. Then ze <<m(a, n, b)>,, <c¢>,>, which implies

zvne<<m(a, n, b)>,, <c>,>. By (ii),
zvne <<a>,, <b>>v<<b>),<a>>. Then by Theorem 1.1.12,

zvn=xvy for some xe<<a>,, <b>,> and ye<<b>,, <a>,> and

X, y2n. Thus, <x>;n<a>,c<b>,, and so
<x> N<a>,=<x>,N<a>,N<b> E<zvn> nN<a>,N<b>,.

=<zvn>,n<m(a, n, b)>,c<c>,. This implies

xe<<a>, <c>,>. Similarly ye<<b>,, <¢>,>, and so
zvne<<a>, <c>,>V<<b>, <c>,>. Similarly, a dual calculation

of above shows that zane<<a>,, <c>>v<<b>, <c>,>. Thus
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by convexity, ze<<a>,, <¢> ,>v<<b>,, <¢>,> and so (v)

holds.

(v)=(i). Suppose (v) holds. Let a, b, ¢=n. By (v),

<<mf(a, n, b)>,, <c>>=<<a>,, <c>,>v<<b>,, <c>,>.

But by Lemma 3.2.3(i), this is equivalent to

<aab, c¢>=<a, ¢>v<b, ¢>. Then by {7, Theorem-3.7], this
shows that [n) is a relatively Stone Lattice. Similarly, for
a, b, c<n, using the Lemma 3.2.3(ii).and Theorem 3.2.7,

we find that (n] is relatively dual Stone. Therefore F,(L)
is relatively Stone by Theorem 1.1.2.

Finally we need to prove (iii)=(i). Suppose (iii)

holds. Let a, b, ceLn[n). By (i11),
<<c>,, <a>,v<b> >=<<c>,, <a>,>v<<c>,, <b>,>. But by

Lemma 3.2.4(i), this is equivalent to <c, avb>=<c, a>v<c, b>
which says by [7, Theorem-3.7] that [n)A is relatively Stone.
Similarly for a, b, c<n, using the Lemma 3.2.4(ii) and
Theorem 3.2.7, we find that (n] is relatively dual Stone.
Therefore by 1.1.2, F,(L) is relatively Stone. O

We conclude the chapter by proving the following

result, which is a generalizations of [7, Theorem-3.5].
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To prove this we have used the following lemma

which is due to [7, Lemma-3.4].

Lemma 3.2.9. [f L, is a sublattice of L and P, is a
prime ideal in L, then there exists a prime ideal P in L

such that P,=L,nP. [

Theorem 3.2.10. Let F (L) be a relatively
pseudocomplemented  distributive lattice. Then the
following conditions are equivalent:

(1)  Fu(L) is relatively Stone ;

(i1) Any two incomparable prime n-ideals P and Q

are comaximal, that is PvQ=L.

Proof: Suppose (i) holds. Let P, Q be two
incomparable prime n-deals of L. Then there exist a, bel

such that aeP-Q and beQ-P. Then <a>,cP-Q, <b>,cQ-P.
Since F,(L) is relatively Stone, so by Theorem 3.2.8,

<<a>,, <b>,>v<<<b>,, <a>,>=L. But as P, Q are prime, so

it is easy to see that, <<a>,, <b>,>cQ and <<b>,, <a>;>c P.
Therefore LcPvQ and so PvQ=L. That is, (ii) holds.
Conversely, suppose (ii) holds. Let Py and Q; be two

incomparable prime ideals of [n). Then by Lemma 3.2.9,

there exist incomparable prime ideals P and Q of L such that
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P;=Pn[n) and Q,=QN[n). Since neP, and neQ,,so by
Lemma 1.2.5, P, Q are in fact two incomparable prime
n-ideals of L. Then by (ii), PvQ=L. Therefore,
PivQ=(PvQ)n[n)=[n). Thus by [7, Theorem-3.5],

[n) is relatively Stone. Similarly, considering two prime
filters of (n] and proceeding as above and using the
dual result of [7, Theorem-3.5] we find that (n] 1is
relatively dual Stone. Therefore by Theorem 1.1.2, Fq(L)

is relatively Stone. O
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Chapter-4

Characterization of finitely generated n-ideals

which form sectionally and relatively B,,-lattices.

Introduction:

Lee in [36] also see Lakser [30] has
determined the lattice of all equational subclasses of the
class of all pseudocomplemented distributive lattices.
They are given by B_jcByc----- CcBnc-----cB,, where all
the inclusions are proper and B, is the class of all
pseudocomplemented distributive lattices, B.; consists of
all one element algebra, By is the variety of Boolean

algebras while By, for -1<m<w consists of all algebras

n
satisfying the equation (x;AX;A----~ AXm)*V\/l(XlAXZA ------
=
————————— AXi AR FAX e AmmmmmeeamaAX ) ¥=1 where x* denotes
the pseudocomplement of x. Thus B, consists of all Stone

algebras.

He also generalized Gréatzer and Schmidt's theorem
by proving that for -1<m<o the mth variety consists of all
lattices such that each prime ideal contains at most m

minimal prime ideals.
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Cornish in [7] and Mandelker in [39] have studied
distributive lattices analogues to B,-lattices and relatively
Bi-lattices. Cornish [8], Beazer [2] and Davey [11] have
each independently obtained several characterizations of
(sectionally) B, and relatively. B,-lattices. Moreover,

Grédtzer and Lakser in [16] and [17] have obtained some

results on this topic.

A distributive lattice L with 0 is called sectionally in
Bun, -1<m<w if each interval [0, x] xeL is in B,. A
distributive lattice L is called relatively in B, if each

interval [0, x] xeL is in B,.

Recall that a family of ideals of a lattice L is
comaximal if their join is L. Similarly a family of n-ideals

of a lattice L is comiximal if their join is L.

In section 1 we will study finitely generated n-ideals
which form a (sectionally) B, lattice. We will include
several chara'cterizations which generalize several results
of [8], [11], [2] and [16]. We shall show that if F,(L) is
(sectionally) pseudocomplemented and distributive then
F.(L) is in (sectionally) By if and only if for any
X1, Xg,m-mm=mn= Xp€L, <Xg>p Vemmme—n-- V<Xm>n =L, which is

also equivalent to the condition that for any m+1 distinct
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In section 2 we will study those F,(L) which are
relatively in B,,. Here we will include a number of
characterizations of those F.(L) which are
generalizations of results on relatively Bqn-lattices given
in [8], [9] and [11]. We shall show that if F,(L) 1is
relatively pseudocomplemented, then F,(L) is relatively
in B, if and only if any m+1 pairwise incomparable

prime n-ideals are comaximal.
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1. Lattices whose F.(L) form (sectionally)

B, -lattices.

The following result is due to [11, Lemma-2.2]. This

follows from the corresponding result for commutative

semigroups due to Kist [29],

Lemma 4.1.1. Let M be a prime ideal containing an

ideal J. Then M is a minimal prime ideal belonging to J if
and only if for all xeM, there exists x' M such that

xax'e]. 0

Now we generalize this result for n-ideals.

Lemma 4.1.2. Let M be a prime' n-ideal containing
an n-ideal J. Then M is a minimal prime n-ideal
belonging to J if and only if for all xeM there exists

x'e¢M such that m(x, n, x')el.

Proof: Let M be a minimal prime n-ideal belonging

to J and xeM. Then by Theorem 3.1.8, <<a>;, J>ZM. So

there exists x’ with m(x, n, x")el such that x' ¢ M.

Conversely, suppose xeM, then there exists x'¢M

such that m(x, n, x")eJ. This implies x' gM,
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but x'e<<x>,, J>  that is <<x>_, J>ZM. Hence by

Theorem 3.1.8, M is a prime n-ideal belonging to J. (I

Davey in [11, Corollary-2.3] used the following
result in proving several equivalent conditions on
Bn-lattices. On the other hand, Cornish in [8] has used

this result in studying n-normal lattices.

Proposition 4.1.3. Ler My,-------- My, be n+l distinct
minimal prime ideals. Then there exist Ag,---==—=—-- ,an€Ll
such that ajnajel (i#)) and ajeM; j=0,-------- ,n. [

The following result is a generalization of above result

in terms of n-ideals.

Proposition 4.1.4. Ler Mgy,--------- M, be n+1 distinct
minimal prime n-ideals. Then there exist ag,-------- ,anel
such that m(a;, n, a;)el) (i#j) and a;eM; (j=0,---------- ,n).

Proof: For n=1. Let xoeM;-My and x,eMy,-M,. Then
by Lemma 4.1.1, there exists x," € My such that
m(x;, n, x;’')eJ. Hence a;=x;, ap=m(Xe, n, x,’) are the
required elements. Observe that

m(ag, n, a;)=m(m(xg, 0, X;'), N, Xy)

=(xoAX1AX; )V (XoAn)V(XjAN) V(X AR)

=(xoAm(x;, n, X;'))Vv(xeAan)v(m(x,, n, X1')An)
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=m(X0a n, m(X|, n, X]’))'
Now, m(x, n, x;")an<m(x,, n, m(x;, n, x;"))

< ! :
sm(xy, n, X;’)vn and m(x,, n, x1")el], so by convexity

m(ag, n, a;)el.

Assume that the rlesult is true for n=m-1, and let
Mo,=--===--=-- ,Mn be n+l distinct minimal prime n-ideals.
Let b; (j=0,------ ,m-1) satisfy m(b;, n, bj)el (i#j) and
b;gM;. Now choose bmeMm-;g)]Mj and by the Lemma 4.1.2,
let by, satisfy by, 'gM, and m(by, n, bm')el. Clearly,

a;=m(b;, n, by) (j=0,----mc-mu- ,m-1) and a,=b,’, establish
the result. [l

Let J be an n-ideal of a distributive lattice L. A
set of elements xgy,------ ,Xpn€L 1s said to be pairwise in

J1f m(x;, n, xj)=n for all i=j.

The next result is due to [8, Lemma-2.3], which was

suggested by Hindman in [21, Theorem-1.8].

Lemma 4.1.5. Let ] be an ideal in a lattice L. For a
given positive integer n22, the following conditions are
equivalent:

(i) For any Xj,--=---- ,Xn€L which are "pairwise in J"

that is, xinx;€l] for any i#], there exists k such

that xye€l ;
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(i1) For any ideals Jy,------- Juin L such that J;nJ,c]

for any i#j, there exists k such that J,c) ;

(111) J is the intersection of at most n-1 distinct prime

ideals. [}

Our next result is a generalization of above result.
This result will be needed in proving the next theorem
which is the main result of this section. In fact, the

following lemma is very useful in studying those F,(L)

which are (sectionally) in B,.

Lemma 4.1.6. Let ] be an n-ideal in a lattice L. For
a given positive integer n22, the following conditions are
equivalent:

(1) For any X, Xg,-=--==-~ XmeL with m(x;, n, xj)€)
(that is, they are pairwise in J) for any i#], -there
exists k such that xx€lJ;

(i1) For any n-ideals J,------ Jn in L such that
Jinl,c] for any i#], there exists k such that JxCJ ;

(iii) J is the intersection of at most m-1 distinct

prime n-ideals.

Proof: (i) and (ii) are easily seen to be equivalent.
(iii)=(i). Suppose P, Py,---=----- P are k (1<k<m-1) distinct
prime n-ideals such that J=P;m----- NP,. Let X, Xg,------ Xm€L

be such that m(xi, n, Xj)€J for all i#j. Suppose no element x;
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is a member of J. Then for each r (1<r<k) there is at most

one 1 (1<i1€m) such that Xi€P,. Since k<m, there is some i

such that x;€eP NPy .

(i)=(iii). Suppose (i) holds for n=2, then it implies
that J is a prime n-ideal. Then (iii) is trivially true. Thus
we may assume that there is a largest integer t<m such

that the condition (i) does not hold for J (consequently

condition (i) holds for t+1, t+2,------ ,m). For some t<m, we
may suppose that there exist elements a|, az,—;~---,aleL such
that m(a;, n, a;)el] for i%j, 1=1, 2,------ 6, j=1, 2,-w=--- b, yet
ay, dg,---=-- ,a gl

As L is a distributive lattice, <<a;>,, ]> is an n-ideal
for any ie{l, 2,------ ,t}. Each <<a;>,, J> is in fact a
prime n-ideal. Firstly <<a;>,, J>#L, since a;el. Secondly,

suppose that b and ¢ are in L and m(b, n, c)e<<a;>,, J>.

Consider the set of t+1 elements {a;, az,--=-------- ,8i.1,
m(b, n, a;), m{c, n, &), Ajr1,"="mTT7w" ,a,}. This set 1is

pairwise in J and so, either m(b, n, a;)e] or m(c, n, a;)el

since condition (i) holds for t+1. That is, be<<a;>,, J> or

ce<<a;>,, J> and so <<a;>,, J> is prime.
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Clearly, Jc <<a>,, I>. If wel) <<a;>,, J>. Then

1gigt 1<igt

W, a1, dg,mmmees »8 are pairwise in J and so weJ. Hence

J= l<isi<<ai>n, J> is the intersection of t<m prime n-ideals. 7

An ideal J=L satisfying the equivalent conditions of

Lemma 4.1.5 is called an m-prime ideal.

Similarly, an n-ideal J#L satisfying the equivalent

conditions of Lemma 4.1.6 is called an m-prime n-ideal.
Now we generalize a result of Davey in [11, Proposition-3.1].

Theorem 4.1.7. Let J be an n-ideal of a distributive
lattice L. Then the following conditions are equivalent:
(i) For any m+1 distinct prime n-ideals Py, Py,----,Pp
belonging toJ, PovPiv-----u- vP.,=L ;
(i1) Every prime n-ideal containing J contains at most
m distinct minimal prime n-z'delals belonging to ] ;

(ii1) If ag, aj,------ ,ameL with m(a;, n, a;)e] (1#]) then

\/ <<aj>,, I>=L.
[ <<a

Proof: (i)=(ii) is obvious.

(ii)=(iii). Assume ag, aj,--==--~ ,aneL with m(a;, n, a;)e€]
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and \j<<a_;>n, J>=L. It follows that ajeJ, for all j. Then

by Theorem 1.2.9, there exists a prime n-ideal P such that

\(<<a_i>

/ n» J>CP. But by Theorem 1.2.4, we know that P is

either a prime ideal or a prime filter, Suppose P is a prime

ideal.

For each j, let Fj={xnAy : Xzd), X, yan, ygP},
Let xiAy1, Xanya€eF,

S XIAY DA (X2AY2)=(X AX2)A(Y | AYS).
Now, x1AX22a; and y Ay,=m(y;, n, y,)

so t2xAy implies t=(tvx)a(tvy).
Since yeP, so tvyg¢P, Hence teF;, and so F;is a dual ideal.
We now show that F;nJ=, for all j=0, 1,----- - ,m.
If not, let beFjnJ, then b=xAay, X2aj, X, yzn, ygP.
Hence m(a;, n, y)=(ajan)vnv(a;ay)=(a;ay)vn=(a;vn)a(yvn).
But (ajvn)a(yvn)eF; and n<(ajay)vn<b implies
m(a;, n, y)€J. Therefore, m(a;, n, y)eF;n]. Again, m(aj, n, y)el
with yeP implies <<a;>,, J>gP, which is a contradiction.
Hence FjnJ=© for all j. For each j, let P; be a minimal
prime n-ideal belonging to J and F;nP;=U. Let yeP;. If

yeP, then yvngP. Then m(aj, n, yvn)=(a;vn)a(yvn)eF;. But

m(a;, n, yvn)e<yvn>,c<y>,=P;, which is a contradiction. So yeP.
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Therefore P;cP, and ajeP;. For if ajeP;, then a;vneP;.
Now, ajvn=(ajvr1)/\(ajvnvy)eF_.l folr any ygP. This implies
PinF;#<, which is a contradiction. So a;eP;.

But m(ai, n, aj)eJcP; (i#]) which implies a;eP; (i#]) as P;
is prime. It follows that P; form a set of m+!1 distinct

minimal prime n-ideals belonging to | and contained in P.

This contradicts (ii). Therefore V<<a;>,, J>=L.
J

Similarly, if P is filter, then a dual proof of above

also shows that V<<a;>, J>=L, and hence (iii) holds.
] .

(iii)=>(1). Let Py, Py,-=-mmn--- P, be m+1 distinct
minimal prime n-ideals belonging to J. Then by

Proposition 4.1.4, there exist ag, aj,----------- ,am€L such

that m(a;, n, a;)€J (i#}) and a;&P;. This implies

<<a;>,, I>cP; for all j. Then by (iii) <<ae>,, I>

v<<a >, I>Ver-aam--- v<<a, >, I>cPovP v VP,

which implies PovPv---=---- vP,=L. W

We have already mentioned that Lee [36] and
Lakser [30] have shown that the equational classes of
pseudocomplemented distributive lattices form a chain
B.,cByicBc-------""" —B, where B_| is the trivial class, By

is the class of Boolean algebras and B is. the class of
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Stone lattices. Cornish in [7] and Mandelker in [39]
considered distributive lattices analogues to

B,-lattices and relative B -lattices. In the following result

characterizations are given for the distributive lattices

analogues of B-lattices. This result is due to Cornish

[8]. Beazer [2] and Davey [11] have each independently
obtained a version of this result. Grdatzer and Lakser in
[16] (also see [13, Lemma-2 Page-169]) have shown that
condition (iii) of the following theorem is equivalent to
Lee’s condition which characterizes the ﬁth variety, for
0<n<®, of distributive pseudocomplemented lattices.

Thus, this theorem should be compared with Lee's
Theorem 2 of [36].

Recall that for a prime ideal P of a distributive

lattice L,
0(P)={x : xAy=0 for some yeL-P}, which is an ideal

contained in P.

Theorem 4.1.8. Let L be a distributive lattice. Then

the following conditions are equivalent:

(i) For any m+1 distinct minimal przme ideals
PO) Pl: """"""" :Pm; POVP]V --------- VszL ;
(ii) Every prime ideal contains at most m minimal

prime ideals ;

(iii) For any Xo, X1,7=7=="~ Xm€L such that XiAnx;=0
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(iv) For each prime ideal P, 0(P) is m+1-prime ;

3

(v) If L is (sectionally) pseudocomplemented, then L
is (sectionally) in B,,. [

Qur next result is a nice extension of above result in

terms of n-ideals.

Theorem 4.1.9. Let L be a distributive lattice. Then

the following conditions are equivalent:
(1) For any m+1 distinct minimal prime n-ideals
(i1) Every prime n-ideal contains at most m-minimal

prime n-ideals ;

(iii) For any ag, aj,~--=---- ,amel with m(a;, n, a;)=n,
(i#)) i=0, 1,------- ,m, j=0, | i ,m,
<ag>, V<A >y Vemmmmmnmne v<an>, =L ;

(iv) For each prime n-ideal P, n(P) is an mtl-prime

n-ideal.

Proof: (i)=(ii), (ii)=(il1) and (iii)=>(i) easily hold
by Theorem 4.1.7 replacing J by {n}. To complete the
proof we need to show that (iv)=(iii) and (ii)=(iv).
(iv)=(iii). Suppose (iv) holds and Xg, X1,--=="="" ,Xm are

m+1 elements of L such that m(x;, n, X;)=0 for (i#]).
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Suppose that <xy>,"v<x > *\o____ V<Xm>;"#L. Then by
m-"n ‘

Theorem 1.2.9, there ig 3 pPrime n-idea| p such that

¢ 4
<Xp>2np V<X |2, Ve-eeoaoo___ V<Xn'|>nFCP.

Hence Xp, Xp,----ooone »Xm€L-n(P). This contradicts (iv) by
Lemma 4.1.6, since m(x;,

(iii) holds.

n, Xj)=nen(P) for all 1#j. Thus,

(i1)=>(iv). This follows immediately from Proposition
2.2.10 and Lemma 4.1.6 above.

Following result is due to [8].

Proposition 4.1.10. Let L be a distributive lattice
with 0. If the equivalent conditions of Theorem 4.1.8 hold,

then for any m+1 elements xg, Xj,~=-=-=- »Xm,
(XoAXTA===-AXn]F=V  (XgAXK|A====AX[ | AXj4|A-===AXm]*. O
0<i<gn

Proposition 4.1.11. Let L be a distributive lattice

and nel. If the equivalent conditions of Theorem 4.1.9

hold, then for any m+1 elements Xg, Xj,======--- JXm o
+
(<Xo>nM<X | >Mmmmmmmmn MN<Xm>n)
= (<Xg>pM--=----- M<K ZnOV<Xj4 [ >pNmmmm===== N<Xm>n)
0<i<n )
Proof: Let <b;>,=<Xg>yMN---=-----~ M<K 1> <X+ >N

____________ N<xp>, for each 0<i<m.
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Suppose X €(<Xo>,(Vmrmenom- N<xm>,)". Then

NS SN A LS ¥ N N — _
n 0~ n M M<Xm>,={n}. For all ixj;

(<X>nM<bi>n)N(<x>,M<b;>,)={n}.
S0 (<x>,M<bg>y) Vemooaoo. V(<x>,N<bp>,) =L,

Thus X €(<X>,N<by>, ) Vvemaono . V(<x>,N<by>,)".

Hence by Theorem 1.1.12, xvn=agv-cccee-- va, where
aje(<x>,N<b;>,)" and aizn, for i=0, 1,
Then xvn=(agA(Xvn))v-----aoo. V(apA(xvn)).

Now a;€(<x>,N<b;>,)" implies <a;>pN<x>,N<b;>,={n}.
Then by a routine calculation we find that (a;axAb;)vn=n.
Thus, <ajA(xvn)>,n<bi>,=[n, (a;axab;)vn]={n} implies
that a;a(xvn)e<b;>," and so xvne<by>, ' v-rmeaauaa- v<bn>a'.

By a dual proof of above, we can easily show that

XANE<bg>,  Vemmmmam e v<bn>,". Thus by convexity,
Xe<by>, Varaarnan- v<bn>,". This proves that L.H.ScR.H.S.
The reverse inclusion is trivial. O

Theorem 4.1.12. For a distributive lattice L, if F (L)
is sectionally pseudocomplemented then the following
conditions are equivalent:

(i) Fo(L) is sectionally in Bn ;

(i1) For ag,~-=------ an, with m(a;, n, a;)=n (i#]) implies
<ag>, V--------- v<an>, =L
Proof: (i)=(ii). Suppose tel, <ag>p,---=----- ,<am>n

with m(a;, n, a;)=n, for all i#]. Consider the interval
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[{n}, <t>,]. Then

nlc<mf(ag, n, t)>
n»

----------- ,<ln(a-m: n, t)>“g<t>n’ and
<m(ai, n, U>A<m(ay, n, 1)>,

={n}.

Thus, <m(aj, n, t)>,c<m(a;, n, t)>,°, for all i#j. Therefore,

<m(a05 n, t)>nc_:<m(a., n, t)>n0m """"" m<m(am, n, t)>n0>
00
<m(a, , t>n&<m(a, n, )>, "MN<m(ay, n, t)>nom """"" N<m(anm, n, t)>ﬂ0'

e e e Pt e M e v e T L TS W W M we m e M MW M e e me e
- e vm e g me e e ke M me e e e m M e ke me w We wm  w M

<m(am, 0, t)>,c<m(a, n, t)>, ' M---nmu- A<m(am, n, t)>,°°.

Since F,(L) is sectionally in By, so applying Lee’s

identity to <m(a,;, n, t)>n0, ------ ,<m(any, 0, t)>," we obtain
0
<m(ag, n, t)>n0v ---------- v<m(any, n, t)>n0,;_>(<m(a1, n, t)>,
00
[ T A<m(am, 1, )>0) v(<m(ay, n, t)>, N=m-mmm=mmes-
o 0
A<m(am, N, 1)>p ) Vermmmenmnenoe v(<m(ay, n, t)>, M-----=--~
c--n<m(ap, 1, 1)>,°0) =<t
N> 0 < )>, 1<t
Therefore <t>,=[<m(aqg, n, t)>, V--==="-- v<m(am, n, 1)~y n
+
=(<m(ag, N, t)>y N<t>,)V-=mmm=m==- v(<m(anm, n, t)>n N<t>,)

(by Lemma 2.1.3).

+
=((<ay>,N<t>,) T N<t>,)Vemmmmmos v((<ap>aN<t>y) N<t>y)
.
=(<ag>, N<t>,)v------=" v(<ap>, N<t>q) (by Lemma 2.1.2)
=(<ag>, Veremmnmmmooe v<a>n )N<t>,. This implies



(11)=>(i). Consider the interval [n, d].

Let xy,-------- Xm€[n, d]. xlo, xzu, --------- ,xm” denotes the
relative pseudocomplements of p S PR —— ,Xm in [n, d].
Let  bo=xXjAcmmameaa L. AXm
by=X ) A AXm
bo=X ARy Amcmmeeea AXm
Dn=X AX A= AXp'

Then bjAab;=n for all i#j. That is <bi>nm<bj>n¥{n}.
Hence by (ii), <bg>, Vermommmmoeoeaa v<b,>,=L.
So <d>,NL=(<by>, " N<d>,)Vmmmmmmmaaean v(<bn>Tn<d>,)

Thus by Lemma 2.1.3 and Corollary 2.2.3,

83

[n, d]=<bg>, Vermmcmmmmannnae v<b >’
S SV P AXp> 0 V<K OA e AX >
Ve VX AKX Ammmmmmmm e m = AXp >0
[n, (XjA-==------ /\xm)o]v[n, (X1 AXgA===-=--=n- /\xm)o]
Voo mmmmm e v n, (X|AXgA=-===--==nm-- AXm)°]
Thus, [n, d]=[n, (X;AX2A====-= /\xm)ov(xlox\xzx\ ------- AXm)"
Voo V(X AXgA=======- AxXm®)’]
This implies d=(x1AXaA-------~~ AXm ) V(X1 P AX Ao
ce AKXV e V(X |AXgA-=====-m=-=- Axn)?, which is

Lee’s identity.
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Therefore, [n) is sectionally in By,. A dual proof of
above shows that (n] is sectionally in dual B,,. Therefore
by Theorem 1.1.2, F (L) is sectionally in B,. L

For a pseudocomplemented lattice L, we write

S(L)y={a* 1 ael}. which is known as the skeleton of L. We
know that S(L) is a Boolean lattice, but it is not
necessarily a sublattice of L. It is well known that S(L) is

a subalgebra of L if and only if L is a Stone algebra.

We have already mentioned that if 0, 1€L, then
L=[0, 1] is the largest element of F,(L), and so F,(L) is a
bounded lattice. Also we know that F, (L) is distributive

if and only if L is distributive, so we have:

Theorem 4.1.13. For a distributive lattice L with 0
and 1, if Fu(L) is pseudocomplemented then the following
are equivalent:

(1) F.(L) is in B,

(i) For ag,-------- an, with m(a;, n, aj)=n (i#])
implies <ag>y V--====-" v<an>, =L ;

(iii) m(a;, n, a;)=n, (i#]) 1, j=0, 1,---====-- ,m such
that <ag>p,----=-==-="- ,<an>,€S(Fn(L)) then
<ag> g Vememm s v<ap>, =L.

Proof: (i)=>(ii) is trivial by above theorem.
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(i1)=(111) is obvious.

(ii)=(i).

------------------ N<an>,
+

<bl>n—<a;>n B R L LT TP, N<an~n

<b2>n'—<al>nm<a2>n+m """"" N<ap>n

<bp>,=<a; > Nmcmm e m<am>n+.

These intersections are principal n-ideals as we know that
any finitely generated n-ideal contained in a principal
n-ideal is principal. Hence we also have <b;>,N<b;>,={n},

for all i#j. So, (<b;>,N<b;>,)"=<b;>,""M<b;>,""={n}, for

all i#] and <bg>,"™,-----mmnnn- <b,>.TeS(F.(L)).
Thus by (iii), <bg>, V--=n-zememm- v<b,>, =L.
That is (<a|>pM--=----===---~ ﬂ<am>n)+v ---------- v(<a;>,N--

____________ N<an>, ) =L, which is Lee’s identity. That is,

F,(L) isin B,. L]
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2. Generalizations of some results on

relatively B.-lattices.

Several characterizations op relative B,-lattices

given by Davey in [11]. Also Cornish have
studied these lattices in [

have been

€] under the name of relatively
n-normal lattices.

Recall that a lattice L is relatively in B, if its every

interval [a, b] (a, bel a<b) is in B,,.

Following result gives some characterizations of
F.(L) which are relatively in By, which is a

generalization of [11, Theorem-3.4].

Theorem 4.2.1. Let L be a distributive lattice with
nel. Suppose F,(L) is vrelatively pseudocomplemented.
Then the following conditions are equivalent:

(i) F,(L) is relatively in Bm;

(11) For all Xg, Xp,-=-=-="="""=""77 aXmEL
LK > M<K >y Dmmmmmmmm === N<Xm>n, <X0Zn>

VR TNl S CEdVAT bbb N<Xm>n, X172

Vmmmmm VG GRS S e VO bbby N<Km-17 0 KXm™a> L;
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0 P o W

1 n T T T T T T e e e e e — - m<Xm>n, <Z>n>
\/<<X0>nm<X2>nm """"""""""""""" m<Xm>n, <Z>n>
Vimmmmememe o V<<X0>nm<xl>n """" r\<Xm-l>na <Z>n>-

(1v) For any m+1 pairwise incomparable prime
I’l—ideals PO, Pla --------- ’Pm’ POV _________ vP. =L.
(v) Any prime n-ideal contains at most m mutually

incomparable prime n-ideals.

Proof: (1)=(ii). Let zeL, consider the interval
[=[<X o> <X > Ve m e e mmeem A<Xpm>a<Z>,, <z>,] in F.(L).
Then <X N<X > Nmmmm e N<Xp>aMN<z>, is the
smallest element of the interval 1. For 0<i<m, the set of
elements <t;>,=<x¢>,N<X|> MN-==--mm-uu-- N<X; >N <X+,
AEEEEEEE N<Xnp>.MN<z>, are obviously pairwise disjoint in

the interval I. Since I is in B,,. Then by Theorem 4.1.13,

DTS VR V<t >, =<z>,. So by Theorem |.1.12,
ZVN=P Voo e mmmm e vP, where P;=n.
Thus, <Py>,N<ty>,=<P >Nt >p=-----~ =<P >, N<ty>,

= The smallest element of I

=X gD V<X D pNmmmmmmmmmmm o m o= ANLX >n<Z> .
Now, <Po>,M<te>n=<X>nN<X [ >pMN=mmmsmmmn-s M<K > nM<Z>,
which implies <P¢>M<te>S<Xo>n.

Again, <Py>aN<tg>n=<Po>N<K>pM=mmmmmoee M<K > MN<Z>,



=<Poe> <X )>N

e an e e e e

This implies, <Py>,n<x,>,M

-------------- M<K > S <X o>y
and so, <Pyp>,e<<x|>,NM<X3> MNmmmmmma- N<X iy >n, <Kop>o>

<P > e <X > M<K > Mmoo M<K >, <X1>p>

<Pna>ne<<Xo> N<X > Mmmmmmmmm- N<Xma1>ns <Xm>p> .
Therefore, zvno <<X | >yN<Xy>pMN-m-==-- N<Xm>n, <Xo>p>
VL <KXg> M<K > qMmmmmmmmmmmm s e = (X >, <X > >
Vommmmmmm IERRVI S (Ao S TatEL L N<Xm-1>n, <Xm>n>>-

By a dual proof of above we can easily show that

Z/\n(;<<xl>nm<x?_>n -------------------- m<Xm>n, <X0>n>
v <LK > MK > - =mmmmmmm s mm e m o= N<Xm>n, <X1>n>
Ve = V<<X0>nm<X]>nm """" m<xm.]>n, <Xm>n>-

7z e <<X > <X >\ -mmmmmmem =T m T N<Xm>n, <X0>n>
V<KD M<K >N =mmmmmmm oo m T N <X >0, <X1>0>
Vemmamm- V< <X M<X | >pMmmmmmmmmos A< Xy 105 <Xm>n>

This implies (i1) holds.

MN<Xm>y, 88 <Po>,C<z>,.

88
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be<<xy>,n<x ——
0-n <)\|>nm °---m<xm>na <Z>n>- Then by
11) and The =
(1) heorem 1.1.12, byp SOVS|Vommmmaons VS, for some
S0€ <<X1>0M<Xg> M mmemmee N<Xp>p, <Xo>,>
1€ <T<Xp>n M<K > Mmememe oo N<X >y, <X|>,>
Sm€ T<X(> M<K > Mmmmm e M<K 1>, <Xp>,>
and si2n, =0, 1,---caoeeeo. ,m,
Thus, <x|>,N<Xy> M omcecama N<Xp>aMN<S >, CT<X >y,
<X > M<K P> Ve e e N<Xy>nMN<S |1>,C<X >,
<X > M<K (>N mmmmmem N<X 1> N<S > S<X > .
This implies <x;>,N<Xy> Memmmcomaame- M<X p>nM<Se>,
:<X0>nm<x]>nm ------------------- m(Xm>nm<SO>n
C<X> M<K | > MNmmmm e N<Xp>,N<bvn>,c<z>,.
[—]_ence, SpE <KX > NMN<X > MNmmmmm e mem - MN<Xm>y, <Z>,>.
Similarly, s; e <<Xp>,M<Xy>,MN-=mnn=nn- MN<Xp>p, <Z>p>

e e e e e e M e e e
- e e mm o e e e e e e o e

P L
- e e e o e R e o A e
- ey e -
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Therefore, bvne <<X > N<KXs> - A
n

m<xm>n: <zZ>,>

V<X > VK> e

m<xm>na <Z>n>

v<<x0>nr\<x,>nm—---m<xm_1>n, <zZ>.>.

The dual proof of above gives

MN<Xm>q, <2>,>
------------ N<Xy>p, <Z>,>V----

N<Xm-1>n, <Z>,>.

Thus by convexity,

be<<X|>nM<Xy> Mmoo NL<Xp>q, <Z>,>

V<LK aMN<X > Mmmmm e e e e e M<K y>,, <zZ2>,>

VEEEETE VL<LXg> NLKX | > pM-mmm - - N<X .| >h, <Z2>,>.

N<Xp>n, <Z>,>

g<<x]>nm<xz>nm """""""""""""" m<Xm>n, <Z>n>
V<X > M<K > Mimmmmmmmmmm o N<Xp>n, <Z2>,2>
N V<LK > M<K > N<X o>, <Z>p2.

Since the reverse inequality always holds, so (iii) holds.

(iii)=(i). Suppose, n<b<d.

Let Xg, X{,----==--- Xme[b, d] such that x;ax;=b, for all i#j.
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------------------- VX
L1=XoVXoVmomm oo
DV e m e e e e e ... —— me
=XV X Vo VXm-1
clerly, n<b<t;<d and
Xo=iATgA - m e e At
X1=toAtgA--mmmm e Atm
Xm—to/\t]/\ ------------------ /\tn]_l
Then [b, d]N{<<xy>,, <b> > Vveun-n-- v<<Xp>n, <b>,>}
=[b, d]N{ <<t > N<ty>pMmmmmmmnnne A<t >, <b>,>
v <Lty>  N<ty>pMmmmmmmm o N<ty>n, <b>,>
Vemm-- \/<<’[0>nﬁ<t|>n>v """" vVZ<th 1>, <b>.>}
:[b, d](’\{<<t0>nﬁ<t]>n(‘\ """" MN<tm>n, <b>n>}

=[b, d]n<<b>,, <b>,>=[b, d]nL=[b, d], that Ls,

[b, d] is in By,. Hence, [n) is relatively in Bm.

A dual proof of above shows that (n] is relatively in dual

Bn. Since Fn(L)E(n]dx[n) so, Fa(L) is relatively in Bn.



(i)=(iv). Suppose (ii) holds. Let Py, p,,

be m+1 pairwise incomparable prime n-ideals. Then, there

- »Xm€L such that
xier-igl Pi. Then by (ii),
i#j

<<xl>nm<x2>nm

————m-———-—-—-———-——

N<X >y, <Xo>,>

e e

N<Xp>g, <Xi>,>

N<X 1>y, <Xp>,>=L,

Let tye LK > M<K >, M

----------------- M<Xm>p, <Xg>,>,
then, <> n N <X | > N<X > N mmmm e ee N<X >, S<Xg>,CPy.
Now, x;2Pg, for i=1, 2 -cemomacamo . ,m implies that
<Xi>a@Po for i=1, 2, -mmm L ,m. Thus
<X 1> M<K > M mmmm e N<Xp>,&Pg as Py is prime.
This implies <tg>,=Py, and so tyePy.
Therefore, <<x;>,N<x3>,N-=--nn-- MN<X >0, <Xe>,>CPy.
Similarly, <<Xy>,M<X3> M ===cmmnm- N<Xp>y, <X1>,>cP
LLXg> M<K >\ mmmmmm == N<X >y, <X2>,>CP)
<X p>pMN<X > M==mmms N<Xm. >0, <Xm>n>CPa.



(1v)<(v) is trivial by Stone’s representation theorem.

(iv)=(i). Let any m+1 pairwise incomparable prime

n-ideals of L are comaximal. Consider the interval [b, d]

in L with b, d2n, let Py, Pyl e ,Pm’ be m+1 distinct

minimal prime ideals of (b, d]. Then by Lemma 3.2.9

there exist prime ideals Py,--eeees ,Pm of L such that

Po'=Pon[b, d]------- Puw'=Pnn[b, d]. Since each P; is an
ideal, so beP;. Moreover, n<b implies that neP,.
Therefore each P;is a prime n-ideal by Lemma 1.2.5.

=0, 1,---=--- ;M. Since Py, ---cuu_ . ,Pn’ are incomparable,
so Pg,-=---n--- ,Pm are also incomparable. Now by (iv),
Povemmaaaa- vP,=L. Hence Py’ v---muu-- vP,’

T vPn)N[b, d]=LA[b, d]=[b, d]. Therefore by

Theorem 4.1.8, [b, d] is in B,. Hence [n) is relatively in B,,.

A dual proof of above shows that (n] is relatively in dual

Bpn. Since Fo(L)=(n]x[n), so Fu(L) is relatively in B,. O

We conclude this chapter with the following result

which is also a generalization of [11, Theorem-3.4].

Theorem 4.2.2. Let L be a distributive lattice with
nel. Suppose F,(L) is relatively pseudocomplemented.
Then the following conditions are equivalent:

(i) F.(L) is relatively in Bn ;
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(i1) If b, ag, ay,-----=---- .am€Ll with m(a;, n, a;)e<b>,

(i#]), then <<ap>,, <b>,>v--eeoa- v<<ag>,, <b>,>=L

Proof: (i)=(ii).

By Theorem 4.2.1(v), any prime n-ideal containing b
contains at most m minimal prime n-ideals belonging to

<b>,. Hence by Theorem 4.1.7 with J=<b>,, we have

<<ag>g, <b> >v------v<<ay>,, <b>,>=L. Thus (ii) holds.

(ii1)=(i). Consider b, ce[n) with bsc. Let ag,----- ,amelb, c]

with ajaa;=b (i=#]) then by m(a;, n, a;)=be<b>,. Then by (ii),

<<ap>y, <b>n>V """"""" v<<am>n, <b>n>=L- So,

Hence by Theorem 4.1.8, [b, c] is in By.

Therefore [n) is relatively in Bg.

A dual proof of above shows that (n] is relatively in

dual B,. Therefore, by Theorem 1.1.2, Fqo(L) is relatively
in By,. O
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Chapter-53

Distributive and modular n-ideals of a lattice.

Introduction:

The notion of standard n-ideals of a lattice was
introduced by Noor and Latif in [49]. Then they studied
those n-ideals extensively and included several properties
in {50] and [51]. Moreover, in [35] Latif has generalized
isomorphism theorems for standard ideals in terms of

n-ideals. In this section we give a notion of distributive

and modular n-ideals of a lattice.

An n-ideal S of a lattice L is called a standard n-ideal
if it is a standard element of the lattice I,(L). That is, S is

called standard if for all I, Jel (L), In(SvI)=(INnS)v(INJ).

Distributive elements and ideals were studied
extensively by Grétzer and Schmidt in [18]; also see [14].
On the other hand, [56] have studied the distributive elements

and ideals in join semilattices which are directed below.

An element d of a lattice L is called distributive if
for all x, yeL, dv(xay)=(dvx)a(dvy). An ideal I is called
distributive if it is a distributive element of the ideal

lattice 1(L).
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In [59] and [60], Talukder and Noor have given the

notion of a modular element and a modular ideal of g

lattice. According to them, an element m of a lattice L is

called modular if for all X, yelL with yxx,
xA(mvy)=(xAm)vy. An ideal of L is called modular if it is
a modular element of I(L). In [59], [60] authors have
given several characterizations of modular elements and-
ideals of a lattice. On the other hand, Malliah and Bhatta
in [38] have called an element m of a lattice modular, if
for all x, yeL with x<y, xAm=yAm and Xvm=yvm imply
that x=y. It is very easy to see that both the definitions

are equivalent. [59] have also shown that an element s is

standard if and only if it is both distributive and modular.

Recall from chapter 1 that an element seLl is standard
if for all x, yeL, xa(svy)=(xas)v(xay). An element neL is
called neutral if it is standard and for all x, yel,

nA(xvy)=(nax)v(nay) that is, n is dual distributive.

In this connection it should be mentioned that
Griatzer in [14] posed an open problem “generalize the
concept of standard, distributive and neutral ideals to
convex sublattices”. Fried and Schmidt in [12] have given
a neat description of standard convex sublattices.
Neiminen in [40] have tried to give some descriptions on

distributive and neutral convex sublattices. But some of



97

his results are completely wrong which we do not wish

to mention here, as it is beyond the scope of this thesis.

On the other hand, Malliah and Bhat(g [38] have given

the concept of D-sublattices which

generalization of distributive

is a nice
ideals to convex
sublattices. They have also introduced the notion of

M-sublattices which generalize the notion of modular

ideals. Recently Noor and Rahman in [46], [47], have
given new deflinitions ol distributive and modular convex
sublattices. Since the n-ideals are also convex sublattices,
the notion of distributive and modular n-ideals easily

follow from above notion as a particular case.

In section 1 of this chapter we introduced the concept
of distributive n-ideals of a lattice. Then we have given
several characterizations of it. For a distributive n-ideal I
of a lattice L we have also given a definition of ®(I), the
congruence generated by I. We have shown that for a
neutral element n of a lattice L, the principal n-ideal <a>,

is distributive if and only if aan is dual distributive and

avn is distributive.

Section 2 discusses the modular n-ideals with its
several properties. Here we included several
characterizations of modular n-ideals. We have proved

some results similar to the results on standard n-ideals in



98

[49] and [50]. We have also proved that for a neutral
element n, if for a modular n-ideal M and arbitrary n-ideal

I, both InM and IvM are principal, then I itself is

principal.

Finally we have discussed some of the properties of
standard and neutral n-ideals in section 3. We conclude
the section by showing that for a neutral element n, the
lattice of standard n-ideals is isomorphic to the lattice of

standard n-congruences.
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1. Distributive n-ideals of a lattice,

Recall that an n-ideal I of a lattice L is a distributive
n-ideal if it is a distributive element of the lattice I,(L).
That is, 1 is called distributive if for all I, Kel, (L),

Iv(INK)=(1vI)n(IvK).

We  start this section with the following

characterization of distributive n-ideal.

Theorem S5.1.1. An n-ideal 1 of a lattice L is
distributive if and only if

[v(<a>,n<b>,)=(Iv<a>,)n(Iv<b>,) for all a, beL.

Proof: If I 1s distributive, then the condition clearly
holds from the definition. To prove the converse, suppose
given equation holds for all a, beL. Let ] and K be any
two n-ideals of L. Obviously Iv(JnK)c(Ivl)n(IvK). To
prove the reverse inclusion, let xe(Iv])n(IvK). Then
xelv] and xelvK. Then i;n];£x<Zi,v],; and i3Aak;<x<isvky
for some 1y, ij, i3, is€l, J1, j2€J and k;, kseK. Now
n<xvn<i,vj,vn implies that xvnelv<j,vn>,. Similarly
n<xvn<isvk,vn implies that xvnelv<k,vn>,.

Thus, xvne(Iv<j,vn> )N(Iv<ksvn>,)

=lv(<javn> N<kyvn>))clv(Ink).
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By a dual proof of above, we

xAanelv(JnK). Thus by convexity,

can show that

xelv(JnK). Therefore,
Iv(InK)=(Iv])n(IvK), and so | is distributive. 0

Now we give another characterization of distributive
n-ideal. To prove this we need the following lemma which

is well known and is due to [14, Theorem-2, Page-139].

Lemma 5.1.2. 4An element a of a lattice L is
distributive if and only if the relation 0, defined by x=y0,

if and only if xva=yva is a congruence. O

Theorem 5.1.3. An n-ideal 1 of a lattice L is
distributive if and only if the relation ®(1) defined by
x=y®(l) (x, yeLl) if and only if xvij=yvi, and xai;=yni,

for some iy, 1€l is the congruence generated by 1.

Proof: At first we shall show that x=y®(I) if and only if
<x>,=<y> 6, in [, (L). Let x=y®(I). Then xvij=yvi, and
xni,=yal, for some i), i,€l. Now XAI;=YALSLYy<yvi|=xvi,
implies that ye<x>,vIl. Similarly xe<y>nVI.. Therefore,
<x>,vI=<y>,vI, which implies that, <x>;=<y>,0; in L,(L).
Conversely, if <x>,=<y>,0; in [,(L), then <x>,vI=<y>,vI.
Then xe<y>,vI, and so yanai | <x<ywvnvip. Similarly
XANALSYy<SXvnvig. Thus X<yvnvi;$XvnvisVvig which

implies Xxvnvi;Vig=yvnvi;Vi.
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Similarly, XADALIAL3=YANAL ALy, That is, xVvi=yvi and

. : :
XA =yAl" where i=nvi,vi,

x=yO(I).

.
and i'=nai;Als. Therefore,

Above proof shows that ®(I) is a congruence in L if
and only if ®, is a congruence in [,(L). But by Lemma
5.1.2, ®y is a congruence if and only if I is distributive in

I,(L), and this completes the proof. il

We know from [14] that an ideal generated by a set
of distributive (standard) elements 1is distributive

(standard). Now we generalize this result:

Theorem 5.1.4. Let n be a neutral element of a lattice

L. Then a finitely generated n-ideal <a,,........... ,Am>y IS
distributive if ajan,....... ,anAn are dual distributive and

IRV | DU ,amVvn are distributive in L.

Proof: Suppose QYA ceevreennn ,amAn are dual

distributive and a;vn,......... ,amvn are distributive in L. Let

J, Kel,(L). Suppose xe(<aj,..... an>,vIhN(<ay,..... ,an>aVK).

Then using distributivity of ajvn,........... ,amvn, we have
x<(a| Voo, vagpvnviia(a;v........ vanvnvk)
=(a,vn)v[(asv.......... vapvnvi)a(azv.......... vapvnvk)]

for some jel, keK.
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-------------
.......
-----------------
...............

---------------
..................
...............
LI R

......... V(apvn)v(jak)
=(a;vasv......... Vapvn)v((jvn)a(kvn)).
But (jvn)a(kvn)=m(jvn, n, kvn)eJnK. Dually using the

dual distributivity of a,An,...... ,8mADN, it is easy to see that

NamANA((JiAan)v(kiAn))Sx for some jirel,
k;eK. Moreover, (Jinn)v(kyan)=m(jAn, n, kian)elnK.

Thus by convexity xe<a;,........... sam>nvV(JMNK). Since the
reverse inclusion is trivial, so <a,l, ........... ,amn>q 18

distributive . 0O

[t should be mentioned that the converse of above
result is not necessarily true. For example consider the

following lattice.

\L/ C
L if

Figure 5.1
Here <a, f>,=L which is of course distributive in I,(L).

But neither avn nor fvn is distributive in L.

But the converse holds for principal n-ideals.
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Theorem 5.1.5. Ler n pe a neutral element of q

lattice L. Then <a>, jg distributive if and only if ann is

dual distributive and avn is distributive.

Proof: If aan 1is dual distributive and awvn is

distributive. Then by Theorem 5.1.4, <a>_ is distributive.
To prove the converse, suppose <a>, is distributive. Let

b, ceL. Then <a>nv(<b>nm<c>n)=(<a>nV<b>n)m(<a>nv<c>n).
Thus, [aan, avn]v([ban, bvn]n[can, cvn])

=[anbAan, avbvn]n[aacan, avevn]. This implieé
annn((ban)v(can))=(aanban)v(aacan) and
avnv((bvn)a(cvn))=(avbvn)a(avcvn). That is,
(ann)a(bvc)=(anban)v(aacan) and
(avn)v(bac)=(avbvn)a(avcvn), as n is neutral. Therefore,

ann 1s dual distributive and avn is distributive in L. ]

For a distributive n-ideal I of a lattice L, consider

the lattice @—I(“I—) Suppose I“(ﬁ)‘ represents the lattice of

all convex sublattices of @—I(‘B containing I as a class. We

conclude the section by generalizing a result [14, Theorem-7,

Page-148] by the following theorem.

Theorem 5.1.6. Let | be a distributive n-ideal of a
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: L I
lattice L. Then In( ®(I)) s isomorphic with the lattice of

all n-ideals of L containing 1, that is, with [I, L] in 1,(L).

Proof: Let ¢ be the homomorphism x—=>[x]O(l) of L

onto

L Then it i &
o0 en 1t 1s easy to see that the map y:K—Kg

maps I“(@)IEI)) into [I, L]. To show that y is onto, it is

sufficient to see that [J]®@(I)=J for all JoI. Indeed, if jel
and aelL with j=a®@(l), then jvi=avi and jai;=aai; for some
i, i;el. Thus jai;<agjvi. Since jaly, jviel], so by convexity
aeJ., Moreover, ¥ is obviously an isotone and one-one.

Therefore, it is an isomorphism. O
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2. Modular n-ideals of a lattice.

An n-ideal M of a lattice L is called a modular n-ideal
if it is a modular element of the lattice I,(L). In other
words M is called modular if for all [, Jel (L) with JcI,
INn(Mv])=(InM)v].

We know from [59] that a lattice L is modular if and
only if its every element is modular. Also from [31], we
know that for a neutral element n of a lattice L, L is
modular if and only if I,(L) is so. Thus, for a neutral
element n, the lattice L is modular if and only if its every

n-ideal 1s modular.

Following result gives a characterization of modular

n-ideals of a lattice.

Theorem 5.2.1. Mel, (L) is modular if and only if for
any I, KeP (L) with Kgl, JrMvR)=(InM) VK.

Proof: Suppose M is modular. Then above relation
obviously holds from the definition. Conversely, suppose
IN(MvK)=(JnM)vK for all J, KeP,(L) with KcJ. Let
S, Tel, (L) with TcS. We need to show that
SAMvT)=(S"M)vT. Clearly (SNM)vTcSn(MvT). To

prove the reverse inclusion let xeSN(MvT). Then x €S and
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xeMvT. Then MAtSX<mvt, for some m, meM, t, t,eT.

Thus, xvn<m,vt,v ich i i g
, 1Vtivn which implies XVne<mpvn>,v<t,vn>,

cMv<t;vn>,. Moreover, Xvne<xvt,vn>, and
<xvtyvn>;o5<t;vn>_. Hence by the given condition,
xvne<xvtlvn>nﬁ(Mv<t|vn>,,)=(<xvt]vn>an)vSt1vn>ng
(SAM)VT. By a dual proof of above we can easily see that
xAne(SNM)vT. Thus by convexity Xe(SAM)VvT. Therefore,
SAMvT)=(SAM)vT, and so M is modular. (I

Now we give another characterization of modular

n-ideals when n is a neutral element in the lattice,

Theorem 5.2.2. Suppose n is a neutral element of a

lattice L. An n-ideal M is modular if and only if for any
XeEMv<y>, with <y>,Cc<x>,, x=(xAm)V(XAy)=(Xvm;)A(xVvy)

for some m,, mpeM.

Proof: Suppose M is modular and xeMv<y>,. Then
x € <x>,N(Mv<y>)=(<x>,nM)v<y>,. This implies
payAnsx<qvyvn for some p, qe<x>,nM. By Proposition
1.1.1, ge<x>,nM implies that g=(xaq)v(xan)v(gan)
=(xA(qvn))v(qan). Thus, xvns(xa{qvn))vyvn<xvn, which
implies Xvn=(XA(qvn))vyvn=(X/\(QVn))v(yA(xvn))vn
=(xa(qvn))v(xAay)vn, as n is neutral. Hence by the

neutrality of n again, x=xA{xvn)=xa[(xa(qvn))v(xay)vn]



107

=(xx\[(XA(qvn))v(XAy)])v(X/\n)=(X/\(qvn))v(xx\y)v(xx\n)
=(xA{qvn))V(xAy), which is the first relation where

m;=qvneM. A dual proof of above establishes the second

relation.

Conversely, let <y> c<x>_. By Theorem 5.2.1, we
need to show that <X> N (Myv<y> )=(<x>,NM)v<y>,.
Clearly R.H.ScL.H.S. To prove the reverse inclusion let
te<x>;N(Mv<y>,). Then te<x>, and teMv<y>,. Then
mAayAns<t<m,vyvn for some m, m;eM. Thus,
tvyvn<m,;vyvn, and so tvyvne Mv<yvn>, and
<yvn>,c<tvyvn>,. So by the given condition tvyvn=
((tvyvn)am')v(yvn) for some m'eM. Since t, ye<x>,, so
tvyvne<x>,. Moreover, by the neutrality of n,
((tvyvn)am')v(yvn)=[(tvyvn)a(m'vn)]vy
=m(tvyvn, n, m')vye(<x>,NM)v<y>,. Therefore,
tvyvne(<x>,NM)v<y>,. By a dual proof we can show that
tayane(<x>,mM)v<y>, Thus by the convexity,
te (<x>,"M)v<y>,. Therefore, <x>N(Mv<y>,)=(<x>M)v<y>;

and so by Theorem 5.2.1, M is modular. O

In [38], it has been proved that for a modular ideal M
and an arbitrary ideal I if IvM and InM are principal, then
I is itself principal. Now will generalize this result for

modular n-ideals. It should be mentioned that similar
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result on standard n-ideals has been proved by Noor and

Latif in [50].

Theorem 5.2.3. Let n be a neutral element of a lattice

L. Suppose M is a modular n-ideal and 1 is any n-ideal of
L. If MviI=<a>, and Mnl=<b>_, then | is principal.

Proof: Here MvI=<a> =[anan, avn], then avn<mvi for
some meM, iel. Since m, igavn, so avn=mvi. Similarly
ann=m;Al, for some m;eM and i;e€l. Again, MnI=<b>
implies ann<b<awvn. Thus, |

<a>,=MvIoMv[bAai,An, bvivn]o[m;An, mvn]
v[bAljAn, bvivn]=[aan, avn]=<a>,. This implies
MvI=Mv[bAi;an, bvivn]. On the other hand,
<b>,=MnNIoMn[baijan, bvivn]oMn<b>,=<b>, implies
that MNI=Mn[bai Aan, bvivn]. Since [bAai;An, bvivn]cl,
so by the modularity of M we have I=[bai,an, bvivn].
Now by Theorem 1.1.13, we know that for a neutral
element n, any finitely generated n-ideal contained in a
principal n-ideal is principal. Since [bAl;An, bvivn]c<a>,,

B

so I is principal. 0

We conclude this section with the following result:

Theorem 5.2.4. /f M is a modular n-ideal and n is
any n-ideal of a lattice L, then InM is also modular in the

sublaltice 1.
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Proof: Let J, K be any two n-ideals contained in I
with KcJ. Then In[(InM)vK]=IN[INn(MVvK)], as M is
modular and Kcl. Thus, In[(InM)vKij=InIn(MvK)
=]N(MvK)=(JAM)vK (using the modularity of M again)
=(Jn(INnM))vK. This implies InM is a modular n-ideal
in 1. 0O
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3. Some properties of standard and neutral

n-ideals of a lattice,

Recall that an n-ideal S of 3 lattice L is standard if
for any I, Jel, (L), [N(SvI)=(InS)v(INT). S is called
neutral if

(1) it is standard and

(ii) for all I, Jel, (L), SA(IvI)=(SAI)v(SAJ), that is,

it is a dual distributive element of I,(L).

By [60], we know that any element of a lattice is
standard if and only if it is distributive and modular.
Thus, in a modular lattice every distributive element is
standard. Not only that, in a modular lattice every
standard element is also neutral. Therefore, an n-ideal is
standard if and only if it is both distributive and modular.
Since for a neutral element n of L, L is modular if and only
if 1,(L) is modular, so every distributive n-ideal of L is

standard (also neutral) when L is modular and n is neutral.

Like Theorem 5.2.1, we can easily prove that the

following result:

Theorem 5.3.1. An n-ideal S is standard if and only if

<a>,N(Sv<b>,)=(<a>,NS)v(<a>N<b>y) for all a, bel. O
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Our next result is also Very easy to prove as it is dual

to the proof of Theorem 5.1.1. Thus we omit the proof.
Theorem 5.3.2. 4n n-ideal S is dual distributive if and
only if Sm(<a>nv<b>n)=(Sm<a>n)v(Sm<b>n)for all a, belL.[d

In [15] Gritzer have shown that an element n is neutral
if and only if m(x, n, ¥)=(XAY)V(xAn)v(yAn)=
(xvy)/\(xvn)/\(yvn)=md(x, n, y) for all x, yeL. Combining
this result with above theorems we obtain the following result

which is also a generalization of [14, Theorem-6 Page-148].

Theorem 5.3.3. An n-ideal S of a lattice L is neutral
if and only if (SM<a>,)v(SNn<b>,)v(<a>,n<b>,)

=(Sv<a>;)N(Sv<b>,)N(<a>,v<b>,) for all a, belL. ]

In [SO,‘Lemma—l.S], Noor and Latif have proved that
for a neutral element n of a lattice L, <a>, is standard if
and only if aan is dual standard and avn is standard.
Moreover, for a finitely generated n-ideal we have the

following result similar to Theorem 5.1.4.

Theorem 5.3.4. Let n be a neutral element of a
lattice L. Then <aj,-~---~=-====---- Jam>, 1§ standard if
AYAN,====------=mmmommoooes ,amAN are dual standard and

AV, == =mmmmmmmmmm e ,amVvn are standard.
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Proof: Let I, Jeli(L). Suppose xeln(<ay,--~,a,>,v]).
Then xel and xe<a,,-----

XVI=(XVN)A(@)Vremmmmma oo Vamvnvj,). Then using

the standardness of a;vn,-cccemeo. ,dmVN, we have
xvn=((xvn)A(a;vn))v------ v((xvn)/\(amvn))v((xvn)/\(jvn)).
But (xvn)a(a;vn)=m(xvn, n, ajvn)eln<a;vn>,
cln<ay,---=c-caeaann ;8m>y. Similarly, (xvn)A(jvn)eln].
Therefore, xvne(In<a;,------ »am>n)Vv(INT). Dually, using
the dual standardness of AYAN, = mmmmeee e ,amAn we can show
that xAne(In<a;,-------- ;am>n)V(INJ), and so by convexity

xe(lnm<ay,----=ncn-- ;am>n)V(INT). Therefore,

In(<ay,------- ,am>,vhc(ln<ay,«-------- ,aAn>n)v(IN]). Since

INn(<a;,------- san>avI)=(INn<a;,~=------- yam>n)Vv{IN]), and

hence <a,,-------- ,&n>n 1S standard. [

Recall that by [15] an element neL is neutral if and only
if for all a, beL, (anb)v(aan)v(ban)=(avb)a(avn)a(bvn),
Since this relation is selfdual, so the dual condition of
neutrality also implies the neutrality. Thus proceeding as

above we can show that for a neutral element n of a lattice
L, <a>, is neutral if and only if both aAnn and avn are

neutral.
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Figure 5.1 again shows that the converse of above
theorem is not true. There <a, >,=L is standard in I,(L)

but neither avn nor fivn is standard in L.

In [50, Theorem-1.10], Noor and Latif have shown
that in a relatively complemented lattice with 0 and 1, the
congruence lattice C(L) is Boolean if and only if every
standard n-ideal is a principal n-ideal, where n is a neutral
element. Since in a modular lattice, every standard

n-ideal is neutral, so we have the following result:

Theorem 5.3.5. For a neutral element n of a
complemented modular lattice L, the lattice of all
congruence relations of L is a Boolean algebra if and only

if every neutral n-ideal is principal. O

By [49] we know that an n-ideal S of a lattice L is
standard if and only if the relation ®(S) defined by
x=y®(S) if and only if xay=((xAy)vt)a(xvy) and
xvy=((xvy)as)v(xay) for some s, teS is the smallest
congruence containing S as a class. We also know by [50]
that for two standard n-ideals S and T, bofh ST and SvT
are standard. Moreover,

O(SNT)=0(S)NO(T) and

A(SvT)=0(S)ve(T).
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By [31], the congruence of the form ®(S) where § is

a standard n-ideal, are known as standard n-congruences.

Above relations show that the standard n-congruences
form a distributive lattice, We conclude the section with

the following result which is a generalization of [14,

Example-15, Page-150].

Theorem 5.3.6. For a neutral element n of a lattice
L, the lattice of all standard n-ideals is isomorphic to the

lattice of all standard n-congruences.

Proof: Between these two lattices consider the map
S—>0O(S). By above relations clearly this 1is a
homomorphism and onto. So we need only to show that
this is one-one. Suppose ®(S)=0(T) for two standard
n-ideals S aqd T. Let seS. Then for any teT, m(s, n, t)eS.
Then s=m(s, n, t)®(S)=O(T). Since n is neutral, so
m(s, n, t)=(sat)v{san)v(tan)=(svtia(svnla(tvn). Thus,
sam(s, n, t)=sa(tvn)=(sat}v(san), and svm(s, n, t)=sv(tan).
Since s=m(s, n, t)®(T), so sam(s, n, t)
=((sAm(s, n, t))va)a(svm(s, n, t)), and
svm(s, n, t)=((svm(s, n, t))ab)v(sam(s, n, t)) for some
a, beT. Thus, sa(tvn)=((sa(tvn))va)a(sv(tan)) and
sv(t/\n)=((sv(t/\n))/\b)v(s/\(tvn)). Hence,

antan<sa(tvn)<tvn which implies sa(tvn)eT. Then
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sAa(tvn)<s<sv(tan)<bv(sa(tvn)) implies by convexity that
seT. This implies SgT. Similarly TcS, and so S=T.
Therefore, above mapping is one—one and hence it is an

isomorphism. ]
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