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ABSTRACT 

This thesis studies extensively the finitely 

generated n-ideals of a lattice. The idea of n-ideals in a 

lattice was first introduced by Cornish and Noor in 

studying the kernels around a particular element n, of a 

skeletal congruence on a distributive lattice. Then Latif in 

his thesis "n-ideals of a lattice" studied thoroughly on the 

n-ideals and established many valuable results. For a fixed 

e I em en t n of a I attic e· L, a convex sub lattice of L 

containing n is called an n-ideal. If L has a " O" , then 

replacing n by 0, an n-ideal becomes an ideal and if L has 

a " l" then it becomes a filter by replacing n by 1. Thus, 

the idea of n-ideals is a kind of generalization of both 

ideals and filters of lattices . The n-ideal generated by a 

finite number of elements of a lattice is called a finitely 

generated n-ideal, while the n-ideal generated by a single . 

element is known as a principal n-ideal. Latif in his thesis 

has given a neat description on finitely generated n-ideals 

of a lattice a'nd has provided a numb er of important results 

on them. According to Latif, for a lattice L, the lattice of 

all n-ideals of L and the lattice of all finitely generated 

n-ideals of L are denoted by In(L) an d Fn(L) respectively, 

while P
11
(L) represents the set of principal n-ideals of L. 

In this thesis, we devote ourselves in studying severa l 

properties on Fn(L) which will certainly enrich many 
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branches of lattice theory. Our results in this thesis 

generalize many results on Boolean, generalized Boolean, 

Stone, generalized Stone, and relatively Stone lattices. We 

also generalize several results on pseudocomplemented 

lattices satisfying the Lee's identity. 

In this connection it should be mentioned that if L 

has a 0, then putting n=0 we find that Fn(L) is the set of 

all principal ideals of L which is isomorphic to L. Thus, 

for every result on Fn(L) in this thesis, we can obtain a 

result for the lattice L with 0 by substituting n=0. Hence 

the result in each chapter of the thesis regarding F
11
(L) are 

g en er a 1 i z at i o n s o f the c o rr e s p o n d i n g re s u l ts i n 1 a tt i c e 

theory. 

In chapter 1, we discuss some fundamental properties 

of n-ideals which are basic to this thesis. Here we give an 

explicit description of F 11 (L) and P 11 (L) which are essential 

for the development of the thesis. Though F 11 (L) is always 

a lattice, Pn(L) is not even a semilattice. But when n is a 

neutral element, Pn(L) becomes a meet semilattice. 

Moreover, we show that Pn(L) is a lattice if and only if n 

1s a central .element, and then in fact, Pn(L)=Fn(L). We 

also show that, for a neutral element n, the lattice L is 

complemented if and only if Pn(L) is so . In this chapter we 

also discuss on prime n-ideals. We give several properties 
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and characterizations of prime n-ideals. We include a 

proof of the generalization of Stone's representation 

theorem. We also include a new proof of the result that for 

a distributive lattice L, Fn(L) is _generalized Boolean if 

and only if prime n-ideals are unorderd. 

C h a p t e r .2 d i s c u s s e s o n m i n i m a 1 pr i m e n - i de a I s o f a 

lattice. We give some characterizations on minimal prime 

n-ideals which are essential for the further development of 

this chapter. Here we provide a number of results which 

are generalizations of the results on Stone and generalized 

Stone lattices . We prove that if Fn(L) is a sectionally 

pseudocomplemented distributive lattice then Fn(L) is 

generalized Stone if and only if each prime n - ideals of L 

contains a unique minimal prime n-ideal, which is also 

equivalent to <x>/v<x>/ +=L for all xEL. 

In chapter 3 we introduce the notion of relative 

n-annihilators <a, b> 11
• We characterize distributive and 

modular lattices in terms of relative n-annihilators. Then 

we generalize several results of Mandelker on 

annihilators. We use these results to characterize those 

Fn(L) which are Stone lattices. Among many results we 

have shown that if Fn(L) 1s a relatively 

pseudocomplemented distributive lattice, then Fn(L) is 

relatively Stone if and only if a ny two in comparable prime 
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n-ideals of L are comaximal. Vvrhat is more, this Is also 

equivalent to the condition 

Pseudocomplemented distributive lattices satisfying 

Lee's identities form equational subclasses denoted by Em, 

-l~m<ro. Cornish and Mandelker have studied distributive 

lattices analogues to B 1-lattices and relatively E 1-lattices. 

Moreover, Cornish, Beazer and Davey have each 

independently obtained several characterizations of 

(sectionally) Em-lattices and relatively Em-lattices. In 

chapter 4 we generalize their results by studying finitely 

gnerated n-ideals which form a (sectionally) Em-lattice 

and a relatively Em-lattice. We show that if Fn(L) is 

(sectionally) pseudocomplemented and distributive, then 

F 11 ( L) is (section a 11 y) in B m if and on I y if for any 

+ + L h' h . Xi, Xz,- - ------,XmEL, <xo>n v---------v<xm>n = ) w IC IS 

also equivalent to the condition that for any m+l distinct 

minimal prime n-ideals Po,--------,Pm of L, 

P 0 v--------vPm=L. In this chapter we also show that if 

F 
0
(L) is relatively pseudocomplemented, then F n(L) IS 

relatively 1n Bm if and only if any m+l pairwise 

incomparable prime n-ideals are comaximal. 

Chapter 5 introduces the concept of distributive and 

modular n-ideals of a lattice. Here we include several 
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characterizations of those n-ideals. We prove some 

interesting results which generalize several results on 

distributive and modular ideals in lattices. Latif in his 

thesis has introduced the concept of standard n-ideals of a 

lattice. We conclude this thesis with some more properties 

of standard and neutral n-ideals . 



Introduction: 

Chapter-1 

n-ideals of a lattice. 

The intention of this chapter is to outline and fix 

the notation for some of the concepts of n-ideals of a 

lattice which are basic to this thesis. The idea of n-ideals 

was first introduced by Cornish and Noor in several 

papers [10] and [41]. Then-ideals have also been used 

in proving some results in [42]. 

The n-ideals of a lattice have been studied extensively 

by Noor and Latif in [31], [32], [33], [34], [35], [48], [49], 

[50], [51] and [52]. For a fixed element n of a lattice L, a 

convex sublattice containing n 1s called an n-ideal. If L 

has "0", then replacing n by "0" an n-ideal becomes an 

ideal. Moreover if L has 1, an n-ideal becomes a filter by 

replacing n by 1. Thus the idea of n-ideals is a kind of 

generalization of both ideals and filters of lattices. So any 

result involving n-ideals of a lattice L will give a 

generalization of the results on ideals if OE L and filters if 1 EL. 

The set of all n-ideals of a lattice L is denoted by 

In(L), which is an algebraic lattice under set inclusion. 

Moreover, {n} and L are respectively the smallest and the 
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largest elements of In(L), while the set theoretic 

intersection is the infimum. 

For any two n-ideals I and J of a lattice L, it 1s easy 

to check that 

InJ={x: x=m(i, n, j) for some iEI, jEJ}, where 

m(x, y, z)=(xAy)v(yAz)v(zAx) and 

IvJ={x i,Aj,:s;x~~;;i2vj2, for some i1, i2El and j 1, j2EJ} . 

The n-ideal generated by a 1, a 2, ...... . .. .. ,am 1s 

denoted by <a1, a2, ...... ,am>n, Clearly <a 1, a 2 , ...... ,an>n 

The n-ideal generated by a finite number of elements 

1s called a finitely generated n-ideal. The set of all 

finitely generated n-ideals is denoted by Fn(L) . Of course, 

Fn(L) is a lattice . The n-ideal generated by a single 

element is called a principal n-ideal. The set of all 

principal n-ideals of a lattice L is denoted by Pn(L). We 

have <a>n={xEL: a/\n:s;x:s;avn}. 

The median operation m(x, y, z)=(xA y )v(yAz)v(zAx) 

is v e ry v,,ell knov,1 n in lattice theory. This has been used by 

several authors including Birkhoff and Kiss [4] for 

bounded distributive lattices, Jakubik and Kalibiar (22] 

for d j stri buti v e 1ani ces and Sho land er [ 5 7] for median 

:a]gebras. 



Ann-ideal P of a lattice Lis called prime if 

m(x, n, y)EP (x, yEL) implies XEP or yEP. 

3 

Standard and neutral elements in a lattice were studied 

extensively in [ 14] and [ 18). An element s of a lattice L is 

called standard if for all x, y EL, 

XA(yvs )=(xAy)v(X/\S). 

An element nEL 1s called neutral if it is standard and 

for all x, ye:L, 

nA(xvy)=(nAx)v(nAy). By [15), we know t hat nEL 1s 

neutral if and only if for all x, yEL, m(x, n, y) 

=(xAy)v(xAn)v(yAn)=(xvy)A(xvn)A(yvn). Of course 0 and 

1 of a lattice are always neutral. In a distributive lattice 

clearly every element is standard and neutral. 

Let L be a lattice with 0 and 1. For an element aEL, 

a' is called the complement of a if aAa'=0 and ava'=l. A 

bounded lattice in which every element has a complement 

1s called complemented lattice. In a distributive lattice it 

1s easy to see that every element has at most one 

complement. 

An element nEL is called central if it is neutral and 

complemented in each interval containing it. 
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A lattice L with O is called sectionally complemented 

if (0, x] is complemented for all xEL. A complemented 

distributive lattice is called a Boolean lattice, while a 

distributive lattice with 0, which 1s sectionally 

complemented is called a generalized Boolean lattice. For 

the background material on lattices we refer the reader to the 

texts of G. Gra tzer [ 13], B irkhoff [3], Rutherford [ 5 5], 

Khanna [2 8] and Maeda and Maeda (3 7]. 

In this thesis we have studied the lattice Fn(L) in 

different situations. If Lhasa 0, then putting n=O, we find 

that <a 1 -------- a > =(a 1v--------va ] , , m n m · Hence for n=O 
' 

Fn(L) is the set of al.I principal ideals of L which is 

isomorphic to L. Thus, for every result on Fn(L) in this 

thesis, we can obtain a result for the lattice L by 

substituting n=O. Hence the result in each chapter of the 

thesis regarding F n(L) are generalizations of several 

results on Boolean, generalized Boolean, Stone, 

generalized Stone and relatively Stone lattices. Chapter 4 

gives generalizations of several results on those lattices, 

which are in Bm, sectionally in B 111 and relatively in B 111 

respectively . 

In section 1 we have given an explicit description of 

Fn(L) and Pn(L) which will be needed for the development 

of the thesis. We have shown that Pn(L)= Fn(L) if and only 
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if n is central. We have proved that a lattice L is 

(modular) distributive if and only if Fn(L) is so. We have 

also shown that for a neutral element n, lattice L is 

comp I em e n't e d if and on I y if P n ( L) is comp 1 em en t ed. 

Moreover, if a' is the complement of a in L, then <a'>n is 

the complement of <a>n in Pn(L). 

In section 2 we have discussed on prime n-ideals. We 

have given several properties of prime n-ideals . We have 

included a proof of generalization of Stone's 

representation theorem. Finally we include a new proof of 

the result that for a distributive lattice L, Fn(L) is 

generalized Boolean if and only if prime n-ideals of L are 

unordered. 
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1. Finitely generated n-ideals. 

We start this section with the following proposition 

which is due to [31], also see [33] and [48]. This gives 

some simpler description of F n(L). 

Proposition 1.1.1. Let F 11 (L) be a lattice and nEL. 

(i) <a1, az, ........ ,am>nc{yEL : (ai]n ...... :.n(am]n(n] 

c(y]c(ai]v .... .. .. v(am]v(n]}; 

(ii) <a1, az , .. .. .. ,am>n={yEL: a1/\a2/\ .... .. .. /\am/\n 

~y~a1va2v . ................ vamvn} ; 

(iii) <a1, az, ....... ,am>n={yEL: a1/\a2/\ ...... .. /\am/\n~y 

=(y/\a 1)v ....... v(y/\am)v(y/\n)}, where Lis distributive; 

( i v) For any a E L , < a> n = { y E L : a/\ n ·~ y = ( y /\ a) v ( y /\ n) } = 

{yEL: y=(y/\a)v(y/\n)v(a/\n)L where n is standard; 

(v) Each finitely generated n-ideals is two generated. 

Indeed <a1, az, .. .... ... . ,am>n=<a 1/\a2/\ .... . ..... /\am/\n, 

a1Vazv . . ...... vamvn>n; 

(vi) Fn(L) is a lattice and its members are simply the 

intervals [a, b] such that a~n~b and for each intervals 

[a, b] and [a1, b1], 

[a, b]v[a 1, b 1]=[a/\a 1 , bvbi] and 

[a, b]n[a 1, bi]=[ava 1, b/\bi]. [I 



7 

For nEL, suppose (n]d denotes the dual. of the lattice 

(n]. Then for any x, y E (n], xvdy=xAy and XA dy=xvy. 

Theorem 1.1.2. Let L be a lattice and nEL. The maps 

CD : F n ( L) ➔ ( n] d x [ n) and '-I' : ( n J d x [ n) ➔ F n ( L) is given by 

CD([a, b])=(a, b) and \J'((x, y))=[x, y] where [a, b] EFn(L) 

and (x, y)E(n]dx[n), are mutually inverse lattice 

isomorphisms. In other words, F 11 (L)=(n]dx[n) . 

Proof: Let [a, b]c[a1, bi]. Then a 1sasnsbsb 1, and 

so asda 1 in (n]ct and bsb 1 1n [n). Thus, (a, b)s(a 1, bi) m 

(n]dx[n) . Hence CD is order preserving. If (a, b)s(a 1, b 1) in 

(n]dx[n), then asda 1 1n (n]d and bsb 1 1n [n). Thus 

a 1sasnsbsb 1 in Land so [a, b]c[a 1 , bi]. That is, 4' is also 

order preserving . But cD and '-I' are mutually inverse and so 

the theorem is established . D 

When n is a neutral element of a lattice L, then it is 

very easy to check that Pn(L) is a meet semilattice . In fact, 

for any a, bEL, <a>nn<b>n=<m(a, n, b)>n, 

But Pn(L) is not necessarily a lattice. The case is 

different when n is a central element. The following 

theorem also gives characterization of central elements of 

a lattice L. 
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Theorem 1.1.3. Let n be neutral element of a lattice 

L. Then P 0 (L) is a lattice if and only if n is central. Then 

of course P 0 (L)=F 11 (L). 

Moreover, for a central element nEL, L is bounded if 

and only if P 11 (L) is bounded. 

A !so if L is bounded and n is a central element of L, 

then for any x, y EL, <x> 0 v<y>0 =<m(x, n', y)>n where n' is the 

complement of n in L. 

Proof: Suppose n is central. Since for all a, bEL, 

<a> 0 n<b> 0 =<m(a, n, b)>n, we need only to check that 

<a>nv<b>nEPn(L). Now, <a>nV<b>n=[aAbAn, avbvn]. 

Since n is central, there exists cEL such that cAn=aAbAn 

and cvn=avbvn which implies that <a> 0 v<b> 11 =<c> 0 and so 

P 0 (L) is a lattice. 

Conver_sely, suppose that P 0 (L) is a lattice and a~n~b. 

Then [a, b]=<a> 0 v<b> 11 • Since P 0 (L) is a lattice, 

<a> 0 v<b> 11 =<c> 11 for some cEL. This implies that cAn=a 

and cvn=b. This imp! ies c is the relative complement of n 

in [a, b]. Therefore n is central. 

For the second part, if L=[O, 1], then {n} and <n'>n 

are the smallest and the largest elements of P 11 (L), where 
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n' is the complement of n in L. Also if Pn(L) 1s bounded, 

then there exists n'EL such that <n'>n is the largest 

element of Pn(L). Therefore for any XEL, <X>nc<n'>n. 

That is nAn 'sxAnsxsxvnsnvn ' . This implies nAn' and nvn, 

are the smallest and the largest elements of L and so L is 

bounded. Last part is easily verifiable. D 

Thus the following results are obvious from the 

Theorem 1.1.2. 

Theorem 1.1.4. Let L be a lattice . Then Fn(L) is 

sectionally complemented if and only if for each a, bEL 

with asnsb, the interval [a, n] and [n, b] are 

complemented. ::_i 

Corollary 1.1.5. For a distributive lattice L, Fn(L) 

is generalized Boolean if and only if the interval [a, n] 

and [n, b] are complemented for each a, bEL with asnsb. O 

Corollary 1.1.6. For a distributive lattice L, Fn(L) 

is generalized Boolean if and only zf both (n]d and [n) are 

generalized Boolean. □ 

It is clear from the Corollary 1.1.4 that if L is 

relatively complemented, then F 11 (L) 1s sectionally 

complemented and in fact F 11 (L)=P 11 (L). If L has O and 1, 
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the 1 a r g est e I em en t L of In ( L) 1 s finite 1 y generated. Then 

in fact, L=[O, I]. 

A lattice L with O 1s said to be section-semi­

complemented lattice (disjunctive) if O~a<b ( a, b EL) imp 1 i es 

there is an element XEL such that xAa=O and O<x~b, while 

a lattice satisfying the definition which is dual to that of a 

section-semi complemented lattice 1s called a dual 

section-semi complemented lattice (dual disjunctive). 

A lattice L 1s called implicative (relative 

pseudocomplemented) if for any given elements a and b , 

the set of all xEL such that aAx~b contains a largest 

element which is denoted by a➔ b. A dual implicative 

lattice is defined dually. 

The following corollary holds because of Theorem 1.1.2. 

Coro II a r y 1.1. 7. let L be a lattice and x E L. Then 

(i) F 0 (L) LS section-semi complemented if and 

only if (n] is dual section-semi complemented and [n) is 

section-semi complemented; 

(ii) F
0
(L) is implicative if .and only if (n] is dual 

implicative and [n) is implicative . □ 
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Theorem 1.1.8. Let n be a neutral element of a 

bounded lattice L. Then L is complemented if and only if 

Pn(L) is a complemented lattice. 

Moreover, a' is the complement of a in L if and only 

if <a'>n is the complement of <a>n in Pn(L). 

Proof: Suppose L is complemented. Then by Theorem 

1.1 .3, Pn(L) is a lattice with {n} and <n'>n as the smallest 

and the largest elements. Moreover, Pn(L)=Fn(L). Now let 

<a>nEPn(L). Suppose a' is the complement of a in L. Then 

<a>nn<a'> 11 =[aAn, avn]n[a' An, a'vn]=[(ava')An, (aAa')vn] 

=[lAn, Ovn]={n}. Also, <a>nv<a'> 11 =[a/\a 1An, ava'vn] 

=[O, l]=<n'>n. This implies Pn(L) is complemented, and 

<a'>n is the complement of <a>n for each a EL. 

Conversely, suppose Pn(L) is complemented. Let 

a EL, and let <b>n be the complement of <a>n in Pn(L). 

Then <a>nn<b>n={n} and <a>nv<b>n=[O, 1]. Thus, 

[(avb)An, (a1/\b)vn]={n} and [aAb/\n, avbvn]=[O, l]. Now, 

[(avb)An, (aAb)vn]={n} implies a/\b:s;n:s;avb. Hence [O, 1] 

=[a/\b/\n, avbvn]=[aAb, avb] and so aAb=O and avb=l. 

Th is imp 1 i es b i s the comp 1 em en t of a in L. Therefore L 1 s 

complemented. IJ 

Thus we have the following corollary: 
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Corollary 1.1.9. For a bounded distributive lattice L 

with nEL, L is Boolean if and only if Pn(L) is a Boolea n 

lattice . □ 

In lattice theory, it 1s well known that a lattice L is 

modular (distributive) if and only if the lattice of ideals 

I(L) is modular (distributive) . Our following theorems are 

nice generalizations of those results in terms of n-ideals when 

n is a neutral element which is due to [31]. Also see [48]. 

Theorem 1.1.10. For a neutral element n of a lattic e 

L, the following conditions are equivalent: 

(i) L is modular ; 

(ii) In(L) is modular 

(iii) Fn(L) is modular. □ 

Following result is also due to [31 ]. 

Theorem 1.1.11. Let L be a lattice with a neutral 

element n. Then the following conditions are 

equivalent: 

(i) Lis distributive 

(ii) In(L) is distributive 

(iii) Fn(L) is distribut ive. □ 

For any two n-ideals I and J of a lattice we have 

already defined IvJ in the introduction. Now we include 
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the following result, which will be used to prove several 

theorems in different chapters of the thesis. 

Theorem 1.1.12. Let I and J be two n-ideals of a 

distributive lattice . Then for any XElvJ, xvn=i 1vj 1 and 

XAn=i 2Aj 2 for some i, , i2EI, j 1, j 2EJ with i 1, j 12n and i2, jiSn. 

Proof: Let xEivJ. Then iAj5x5i'vj' for some 

1, i'EI, j, j1EJ. Now, xSi'vj' implies xvn$i'vj1vn . Thus 

xv n = (xv n) /\ ( i 'v j 'v n) = [ (xv n) /\ ( i' v n)] v [ (xv n) /\ (j 'v n)] . But 

nS(xvn)A(i'vn)Si'vn implies by convexity that 

(xvn)A(i'vn)=i 1(say)EI. Similarly, (xvn)A(j 'vn)=j 1(say)EJ. 

Thus, xvn=i 1vj 1; i 1EI, j 1 EJ and i 12n, j 12n. Similarly we can 

show that X/\n=i 2Aji for some i2El, j 2EJ with i2, j 25n. [I 

We conclude this section with the following useful 

result which is due to [31]. This result will also be used in 

proving several results in different chapters of the thesis. 

Theorem 1.1.13. For a neutral element n of a lattice 

L, any finit'ely generated n-ideal of L which is contained 

in a principal n-ideal is a principal n-ideal. 0 
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2. Prime n-ideals. 

Rec a 11 t h at an n - i d e a 1 P o f a 1 at t i c e L i s p r 11n e i f 

m(x, n, y)EP, x, yEL implies either xEP or yEP. 

Since for any two n-ideals I and J of L, 

InJ={m(i, n, j): iEI, jEJ}, so it is very easy to see that 

for any prime n-ideal P, InJcP implies either IcP or JcP. 

Theorem 1.2.l. If P is a prime n-ideal of a lattice , 

then for any XEL, at least one of X/\n and xvn is a 

member of P. 

Proof: Observe that m(xAn, n, xvn)=n E P. Thus, 

either XAnEP or xvnEP. □ 

Theorem 1.2.2. If P is a prime n-ideal of a lattice, 

then P contains either (n] or [n), but not both. 

Proof: Suppose P is pnme and P::i>(n]. Then there 

exists r<n such that r~ P . Now let SE [n). Then 

m(r , n, s)=(rAn)v(nAs)v(sAr)=rvnvr=nEP implies that 

sEP. That is, P=:)[n) . Similarly, if P::i>[n), then we can show 

P=:)(n]. 
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Finally suppose that P contains both (n] and [n). 

Let tEL. Then tAnEP and tvnEP. Then by convexity 

of n-ideals tEP. This implies P=L, which 1s a 

contradiction to the primeness of P. D 

Thus we have the following corol-lary: 

Corollary 1.2.3. If P is a prime n-ideal of a lattice 

L, then there exists at least one xEL such that both xAn 

and xvn does not belong to P. D 

Theorem 1.2.4. Let n be a neutral element of a 

lattice L. Then an n-ideal P is prime if and only if it is a 

prime ideal or a prime dual ideal (filter). 

Proof: Suppose the n-ideal P 1s pnme. Then by 

Theorem 1.2.2, either P:::J(n] or P:::J[n). Suppose P:::J(n]. Let 

xEP and tsx, tEL . Then tAnE(n]cP. Thus, by convexity of 

P, tAnstsx implies that tEP. This implies that P is an 

i d e a 1. A 1 s o .1 et a A b E P , a, b E L . Th en ( a A b) v n E P and 

m(a, n, b)=(aAn)v(nAb)v(bAa)::S;(aAb)vn implies that 

m(a, n, b)EP. Thus, either aEP or bEP, and so P is a 

prime ideal. 
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On the other hand if P:)[n), we can similarly prove that 

P is a prime dual ideal. We omit the proof of the converse 

is trivial. C 

Following lemma 1s due to [31, Lemma-1.2.8]. 

Lemma l.2.5. In a distributive latti ce L, a p rime 

ideal containing n is also a prime n-ideal. □ 

Dually we can easily prove the following result. 

Lemma 1.2.6. In a distributive lattice L, a prime 

du a l idea l (Jilter) co n ta in in g n is a ls o a prim e n - ideal . lJ 

The set of all prime n-ideals of L is denoted by P(L). 

The following separation property for distributive lattices 

was given by M. H. Stone [13, Theorem-15, Page-74), 

which is known as Stone's representation theorem. 

Theor~m 1.2. 7. Let L be a distributive lattice, let I 

be an ideal, let D be a dual ideal of L , and let 

InD=0, then there exists a prime ideal P of L such that 

P:)I and PnD=0. CJ 

Following result is an improvement of above theorem 

which is due to [31, Theorem-1.2.3]. 
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Theorem 1.2.8. Let L be a distributive lattice, let I 

be an ideal, let D be a convex sublattice of L and let 

InD=0, then there exists a prime ideal P of L such that 

P:)I and PnD=0. C] 

Now we give a separation property for distributive 

lattices in terms of prime n-ideals which is of course 

an extension of Stone's representation theorem . It should 

be mentioned that this result has also been obtained by 

Latif and Noor in [52]. Here we include a separate proof 

as it is much more simpler than that of [52]. 

Theorem 1.2.9. In a distributive lattice L, suppose I 

is an n-ideal and D is a convex sublattice of L with 

InD=0. Then there exists a prime n-ideal P of L such that 

P:)I and PnD=0. 

Proof: Since InD=0, so either (I]nD=0 or 

[l)nD==0. If (ljnD=0, then by Theorem 1.2.8, there 

exists a prime ideal P:)I such that PnD=0. Similarly if 

[I)nD=0, then there exists a prime filter Q:)[I) such that 

QnD=0. But by Lemma 1.2.5 and Lemma 1.2.6, both P 

and Qare prime n-ideals. !] 
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Corollary 

lattice L is 

containing it. 

1.2.10. Every n-ideal I of a distributive 

the intersection of all prime n-ideals 

Proof: Let I 1=n{P: P:=>I, Pis a pr11ne n-ideal of L}. 

If l:;tcl 1, then there is an element aEI 1-I. Then by above 

corollary, there is a prime n-ideal P with P:=>I, a~P. But 

a~P:=>I, gives a contradiction. D 

For an n-ideal I of a distributive lattice L, the 

congruence 0(1) has been studied in [53] and [31]. By [53], 

x=y0(l) if and only if X/\i 1=y/\i 1 and xvi 2=yvi 2 for some 

i 1, i 2 EI. Moreover 0(1) is the smallest congruence of L 

containing I as a class. In chapter 2 of [31], Latif has 

proved the following result: 

Theorem 1.2.11. Let L be a distributive lattice. Then 

for any two n-ideals I and J of L 

(i) 0(InJ)=0(I)n0(J) 

(ii) 0(IvJ)=0(I)v0(J). 

Moreover, the correspondence 1 ➔0(1) zs an embedding 

from In ( L) to C ( L) . [ I 

Theorem 1.2.12. For a neutral element n of a lattice 

L, I 0 (L)=C(L) if and only if F 0 (L) is generalized 

Boolean. □ 
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For an n-ideal I of a distributive lattice L, Latif has 

also studied the congruence R(I) 1n [53]. By [53], the 

relation R(I) defined by "x=yR(I) if and only if for any 

tEL, m(x, n, t)EI 1s equivalent to m(y, n, t)EI" is the 

largest congruence of L containing I as a class. With the 

help of this congruence we will provide the following 

characterization of prime n-ideals of a distributive lattice. 

Theorem 1.2.13. Let L be a distributive lattice and 

nEL. An n-ideal P is prime if and only if the quotient 

lattice L/R(P) is a two element chain. 

Proof: Suppose P is prime. Let x, y E L-P. Then for any 

tEL, m(x, n, t)EP implies tEP. Since tAn~m(y, n, t)~tvn, so 

by convexity of P, m(y, n, t)EP. Therefore X=yR(P). 

Moreover, let r=xR(P) for some x E L-P. Then m(r, n, x) ~ P 

as m(x, n, x)=x~P. This implies r~P. For otherwise, 

rAn~m(r, n, x):s;rvn, would imply that m(r, n, x)EP by 

convexity of P and that is a contradiction. Thus L/R(P) is a 

two element chain {P, L-:P}. 

Conversely, suppose L/R(P) is a two element chain. 

Then L-P is a congruence class of the congruence R(P). If 

p is not prime, then there exists x, yEL-P such that 

m(x, n, y)EP. Since L-P 1s a congruence class, so 
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X=yR(P). Thus m(x, n, y)EP implies m(y, n, y)=yEP 

which is a c'ontrad icti on. Therefore P mu st be prime. 0 

For any n-ideal J of a distributive lattice L, we 

define 

r" = { X E L : m ( X ' n ' j ) = n f O r a 11 j E J } . 0 b V i O u s 1 y ' J + i s 

an n-ideal and JnJ+={n}. We will call J+ as the annihilator 

n-ideal of J. 

It is well known from [13, Theorem-22, Page-76] that 

a distributive lattice with O is generalized Boolean if and 

only if the set of prime ideals is unordered . We conclude 

the chapter with a nice generalization of that result which 

is due to [31, Theorem-1.2.9]; also see [48]. Here, we 

prefer to include a new proof of (i)⇒ (iii), as it is much 

easier than that of [31] . 

Theorem 1.2.14. Let L be a distributive lattice and 

n EL. Then the following conditions are equivalent: 

(i) Fn(L) is generalized Boolean ; 

(ii) For each principal n-ideal <X>n, <X>nv<x>/=L, 

where <x>/={yEL: m(x, n, y)=n} ; 

(iii) The set of prime n-ideals P(L) is unordered by 

set inclusion. 

Proof: (i)<=?(ii) and (iii)⇒ (i) . follows from 

[31, Theorem-1.2 .9]. 
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(i)⇒ (iii). Suppose (i) holds. Then by Theorem 

1.1.5, the intervals [x, n] and [n, y] are complemented for 

each x, yEL with x~n~y . Let P and Q be any two prime 

n-ideals of L. Then by Theorem 1.2.4, P and Q are either 

prime ideals or prime filters of L. If one of them is a 

pnme ideal and the other is a prime filter, then of course 

they are unordered. If both P and Q are prime ideals, then 

Pn[n, y] and Qn[n, y] are prime ideals of [n, y]. Since [n, y] 

is a complemented lattice, so by [13, Theorem-22, Page-76], 

Pn[n, y] and Qn[n, y] are unordered. Therefore P and Q 

are unordered. If P, Q are fi I ters, then using the same 

argument we find that Pn[x, n] and Qn[x, n] are unordered. 

Thus P and Qare unordered and this establishes (iii) . D 



Chapter-2 

Lattices whose finitely generated n-ideals 

form a Stone lattice. 

Introduction: 
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Minimal prime ideals and Stone (generalized) lattices 

have been studied extensively by many authors including 

[ 1 ], [ 5], [ 6], [ 7], [ 1 9], [ 2 9], [ 5 8] and [ 6 1 ]. Chen and in 

Gratzer [5] and [6] studied the construction and structures 

of Stone lattices. Katrinak has given a new proof of 

construction theorem for Stone algebras 1n [25] and 

studied these algebras in [24], [26] and [27]. 

In this chapter we introduce the concept of minim·al 

prime n-idel;l.ls and generalize some of the results on 

minimal prime ideals. Then we used these results to 

generalize several important results on Stone and 

generalized Stone lattices in terms of n-ideals. 

A prime n-ideal P is said to be a minimal prime 

n-ideal belonging to n-ideal I if, 

(i) IcP, and 

(ii) There exists no prime n-ideal Q such that Q*P 

and IcQcP. 
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A prim~ n-ideal P of Lis called a minimal prime 

n-ideal if there exists no prime n-ideal Q such that Q:;t:P 

and QcP. Thus a minimal prime n-ideal is a minimal 

prime n-ideal belonging to {n}. 

Let L be a lattice with 0 and 1. An element a* EL is 

called a pseudocomplement of aEL, if aAa* =0 and aAx=0 

implies that x::;a*. Of course 0*=l and 1*=0. L 1s called 

pseudocompl eme nted if its every element has a 

pseudocomplement. Lattice L IS called relatively 

pseudocompl emented if its every interval lS 

pseudocomp I emented. That IS every element of each 

interval has a relative pseudocomplement in that interval. 

A lattice L with 0 1s called a sectionally 

pseudocomplemented lattice if the interval [0, x] 1s 

pseudocomplemented for each xEL. 

A distributive lattice L with 0 and 1 is called a Stone 

lattice if it is pseudocornplernented and for each a EL, 

a*va**=l. 

By [13, Theorem-3, Page-161], we also know that a 

distributive pseudocomplemented lattice is a Stone lattice 

if and only if for each a, bEL, (aAb)*=a*vb * . 
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A distributive lattice L with O is called a generalized 

Stone lattice if (x]*v(x]**=L for each XEL. By [24] and 

[7], a distributive lattice L with O is called generalized 

Stone if and only if [O, x] is Stone for each XEL. 

A distributive lattice L is called a relatively Stone 

lattice if every interval [a, b], a, bEL is a Stone lattice. 

For any n-ideal J of L, we have already defined 1n 

chapter 1 that 

J+={xEL: m(x, n, j)=n for all j EJ}. 

Observe that J+ is an n-ideal and J nJ+={n}. In fact, this is 

the largest n-ideal which annihilates J . Latif in [31] called 

this an annihilator n-ideal of J. We prefer to call this as 

the pseudocomplement of J in · I 11 (L). Moreover, for a 

distributive · lattice L , I 11 (L) ts a distributive algebraic 

lattice and so it is pseudocomplemented. Observe that 

F 11 (L) has always the smallest element viz. {n}. But it does 

not necessarily contain the largest element. So in a 

general distributive lattice L with nEL, we can not talk on 

pseudocomplementation in the lattice F 11 (L). But we can 

discuss on section pseudocomplementation in F 11 (L). Let 

[a, b]EF 11 (L). By the interval [{n}, [a, b]] in F 11 (L), we 

mean the set of al 1 finitely generated n-i deals contained 1 n 

[a, b]. F 11 (L) is called sectionally pseudocomplemented if 
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for each [a, b]EFn(L), the interval [{n}, [a, b]] in F 11 (L) 1s 

pseudocomplemented. That is, each finitely generated 

n-ideal contained Ill [a, b] has a relative 

p s.e u doc om p 1 em en t 1 n [ { n} , [a, b]] which is a Is o a member 

of F 11 (L). 

We shall denote the relative pseudocomplement of 

[c, d] by [c, d] 0
, while [c, d( denotes the 

pseudocomplement of [c, d] in l 11 (L). 

We shall call two prime n-ideals P and Q of L 

comaximal if PvQ=L. 

In section I, we have studied minimal pr11ne n-ideals 

of L . There we have g iven some characterizations of 

minimal prime n-ideals, also see [43]. These results give 

nice generalizations of several results on minimal prime 

ideals which will be used to prove some important results 

in section 2. 

In section 2, we have given several characterizations 

of those F 11 (L) which are Stone and generalized Stone 

lattices in terms of n-idea ls. If F 11 (L) is sectionally 

pseudocomplemented , then we hav e proved that F 11 (L) is 

generalized Stone if and only if each prime n-idea l 

contains a unique minim a l prime n-ide a l. 



1. Minimal prime n-ideals. 

Recall that a prime n-ideal P is a minimal pr11ne 

n-ideal belonging to an n-ideal I iJ 

(i) IcP and 
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(ii) There exists no prime n-ideal Q such that Q:;t:P 

and IcQcP. 

Following theorem 1s a generalization of [ 13, Lemma-4, 

Page-169] . 

Lemma 2.1.1. Let L be a lattice with an element 

n. Then every prime n-ideal contains a minimal prime 

n-ideal . 

Proof: Let P be a pr11ne n-ideal of L and let x 

denotes the set of all prime n-ideals Q contained in P. 

Then xis not void, since PEX, If C is a chain in x and 

Q=n(X : XEC), then Q is nonvoid because nEQ and Q is 

an n-ideal, in fact, Q is prime. Indeed, if m(a, n, b)EQ for 

some a, bEL, then m(a, n, b)EX for all XEC. Since Xis 

prime, either aEX or bEX. Thus, either Q=n(X: aEX) or 

Q = n(X : bEX), proving that aEQ or bEQ. Therefore, we 

can apply to x the dual form of Zorn's lemma to conclude 

the existence of a minimal member of X· D 
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Now we give a characterization of minimal prime 

n-ideals of a distributive lattice . L, when F 0 (L) 1s 

sectionally pseudocomplemented. In order to do this, we 

need the following lemmas: 

Lemma 2.1.2. let L be a distributive lattice and 

nEL. Then for any [a, b]EF 0 (L) and for any n-ideal I. 

+ + 
(In[a, b]) n[a, b]=I n[a, b]. 

Proof: Since [a, b]nlcl, so R.H.ScL.H.S. To prove 

the reverse inclusion, let xEL.H.S. Then asxsb and 

m(x, n, t)=n for all tE[a, b]nl. Since xE[a, b], so 

m(x, n, i)E[a, b]nl for all iEI. Thus, m(x, n, m(x, n, i))=n. But 

it can be easily seen that m(x, n, m(x, n, i))=m(x, n, i). 

This implies m(x, n, i)=n for all iEI. Hence, xER.H.S. D 

Lemma 2.1.3. Suppose F n(L) zs a sectionally 

pseudocomplented distributive lattice, and [c, d]c[a, b] in 

Fn(L) then, 

( i ) [ C , d] O = [ C , d r n [ a,· b ] and 

(ii) [c, dJ 00 =[c, dt+n[a, b]. 

Proof: (i) is trivial. For (ii), using (i) we have 

[c, dJ 00=([c, d] 0f n[a, b]=([c, dtn[a, b]tn[a, b] . 

Thus, by Lemma 2.1.2, [c, dJ 00=[c, dt+n[a, b]. D 
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Now we give the follo wing characterizations of 

minimal prime n-ideals. (Also see [43]). 

Theorem 2.1.4. Let Fn(L) be a sectionally 

pseudocomplemented distributive lattice , and P be a 

prim e n - idea I of L . Th e n th e fo fl o w inf? co n di t i o n s a r e 

equivalent: 

(i) Pis minimal ; 

(ii) XEP implies <x> n + Q'.:P ; 

(iii) XEP implies ++ <x>n cP ; 

( i V) PnD(<t>n)=0 for all tEL-P 

where D( < t> 11 ) = {xe<t> 11 : <x>n°={n}}. 

Proof: (i)⇒ (ii) . Suppose P is minimal. If ( ii ) fails, 

then there ex ists xEP such that <x>n+ cP . Since P is a prime 

n - i de a 1, so b.y Theo rem 1 . 2 . 4 , P i s a p rime i de a 1 or a prim e 

dual ideal. Suppose Pis a prime ideal. Let D = (L-P)v[x). We 

claim that nl2:D. If nED, then n = qAx for some qEL-P. 

Then impl_ies 

< q > nc< x > n + cP . Thus q E P, which 1s a contradiction . 

Hence n~D. Then by Stone's representation theorem for 

n-idea l s [52, Lemma- 1. 3], there exists a prime n- i deal Q 

with QnD= 0. Then QcP as Qn(L-P)=0 and Q;t:P since 

x l2: Q. But this contradicts the minimality of P. 

Hence, < x > n+c P. 
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Similarly, we can prove that <x>/cP if P 1s a prime 

dual ideal. 

(ii)⇒ (iii). Suppose (ii) holds and xeP. Then 

<x>/ctP. Since <x>/n<x>/+={n}cP, and P is prime, so 

(iii)⇒ (iv). Suppose (iii) holds and teL-P. Let 

XEPnD(<t>n), Then XEP, XED(<t>n), Thus, <X>n°={n} and 

so <X>n° 0 =<t>n- By (iii), XEP implies <x>/+cP. Also by 

L oo ++ H emma 2 . 1.3, <x> 11 =<x> 11 n<t> 11 • ence 

<X>n++n<t>n=<t>n, and so <t>nC<X>n ++cP. That is, tEP , 

which is a contradiction. Therefore, PnD( <t>n)=0 for all 

t E L-P. 

(iv)⇒ (i). Suppose P is not minimal. Then there exists 

a prime n-ideal QcP. Let XEP-Q. Since 

<X>nr'l<X>n+={n}cQ. so <X>n +cQcP, Thus, <X>nV<X>n +CP. 

Choose any tEL-P. Then <t> 11 n(<X>nv<x>/)cP. Now 

<t> 11 n( <X> 11 V <X> / )=( <t> 11 n <x> 11 )v( <t> 11 n<X>n +) 

=<m(t, n, x)>n v(( <t> 11 n<X>nf n<t>n) (by Lemma 2.1.2) 

=<m(t, n, x)> 11 v(<m(t, n, x)>/n<t>n) 

=<m(t, n, x)> 11 v<m(t, n, x)>n ° [by Lemma 2.1.3] where 

<m(t, n, x)>n ° is the relative pseudocomplement of 

<m(t, n, x)>n in <t>n, 



Since F n ( L) is section a I I y pseudo comp 1 em e n.t e d, 

<m(t, n, x)>n° is finitely generated and so 
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<m(t, n, x)>nv<m(t, n, x)>n° is a finitely generated n-ideal 

contained in <t> 11 • Therefore by Theorem 1.1.13, 

<m(t, n, x)>nv<m(t, n, x)>n°=<r>n for some rE<t>n­

Moreover, <r>n°=<m(t, n, x)>n°n<m(t, n, x)>n° 0 ={n}. 

Thus, rEPnD(<t> 11 ), which is a contradiction. Therefore P 

must be minim al. 1:...: 
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2. Lattices whose finitely generated n-ideals 

form generalized Stone lattices. 

If 0, 1 EL, then of course, [O, 1 ]=L which is the 

largest element of F n(L). Then we can talk on 

pseudocomplementation in Fn(L). Since by Theorem 1 . 1.2, 

Fn(L)=(n]dx[n). So we have the following result: 

Theorem 2.2.1. Let L be a lattice and nEL. 

(i) F n(L) is sectionally pseudocomplemented if and 

only if (n] is sectionally dual pseudocomplemented and [n) 

is sectionally pseudocomplemented. 

(ii) If 0, l EL, then Fn(L) is pseudocomplemented tf 

and only if.(n] is dual pseudocomplemented and [n) is 

pseudocomplemented. □ 

For any n:s;b:s; 1, b + denotes the pseudocomplement of 

b in [n, l], while for o::;a:s;n, a+d denotes the dual 

pseudocomplement of a in [O, n]. 

Now we have the following result: 

Corollary 2.2.2. Let F 11 (L) be a distributive 

pseudocomplemented lattice (Then of course Fn(L) has a 

largest element, and so 0, l EL). Then/or [a, b]EFn(L), 

[a, bt=[a+d, b+]. 
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Proof: Since F 11 (L) is pseudocomplemented. So by 

above theorem, (n] is dual pseudocomplemented and [n) is 

pseudocomplemented . Here Osa::;nsbs 1. Since a+d 1s the 

dual pseudocomplement of a in [O, n] and b+ 1s the 

pseudocomplement of b in [n, 1]. 

So [a, b]n[a+d, b+]=[ava+d, bAb+]={n}. 

Now Let xE[a, b]"'. Then [xAn, xvn]c[a , bf. Thus 

{ n} = [ x /\ n, xv n] n [a, b] = [ ( x An) v a, b /\ (xv n)] and so 

(xAn)va=n=bA(xvn). This implies X/\n~a+d and xvnsb+. 

Hence, [xAn , xvn]~[a+d , b+] and so [a, brc[a+d, b+]. 

Therefore, [a, bf=[a+d, b+]. D 

If [a, b]E[{n}, [c, d]] . Then {n}c[a, b]c[c, d]. The 

relative pseudocomplement of [a, b] in above interval is 

denoted by [a, b] 0
. Here csasnsbsd. a 0

d denotes the dual 

relative pseudo comp I em en t of a in [ 1: , n] and b O den oh! s 

the relative pesudocomplement of b in [n, d]. Since by 
0 + . 

Lemma 2.1.3, [a, b] =[a, b] n[c, cl]. Using Corollary 2.2.2 

above we have the following result: 

Corollary 2.2 .3 . Let F 11 (L) be a sectionally 

pseudocomplemented distributive lattice. Then for 

{n}c[a, b]c[c, d], [a, b] 0=[a0
d , b 0

] . O 
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A distributive lattice L with O is called a generalized 

Stone lattice if for each XEL, (x]*v(x]**=L. By Katrinak 

[24], we know that a distributive lattice L with O is a 

generalized Stone lattice if and only if for each interval 

[ 0, x], · x EL 1 s a Stone lattice. Thus if F n (L) 1 s a 

distributive sectionally pseudocornplemented lattice , then 

Fn(L) is a generalized Stone lattice if for each [a, b] EFn(L), 

the interval [{n}, [a, b]] in Fn(L) is a Stone lattice. 

Generalized Stone lattices have been studied by many 

authors including [7], [24] and [27]. Following result is a 

generalization of some of their work. This gives several 

characterizations of those F n(L) which are generalized Stone. 

To prove this result we need the following results. Lemma 

2.2.4 and Corollary 2.2.5 are trivial from Theorem 1.1 .2. 

Lemma 2.2.4. Suppose Fn(L) is a sectionally 

pseudocomplemented distributive lattice. Then Fn(L) is 

generalized Stone if and only if (n] is dual generalized 

Stone and [n) is generalized Ston e . □ 

Corollary 2.2.5. S upposes is a 

pseudocomplemented distributive lattice (Then of course, 

O, 1 EL) . Th en F 11 (L) is Stone if and only if (n] is a dual 

Stone lattice and [n) is a Stone lattice. □ 
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Le m m a 2 . 2 . 6 . Suppose F n (L) is a sectionally 

pseudocomplemented distributive lattice. Let x, yEL with 

<X>nn<y>n={n}. Then the following conditions are 

equivalent: 

(i) <x>n+v<y> n+=L; 

(ii) For any t EL' <rn(x, n, t)> n °v<m(y' n, t)> n'' =<t> n, 

where <m(x, n, t)>n ° denotes the relative 

pseudocomplement of <m(x, n, t)>n in [ {n}, <t>n]-

Proof: (i)⇒ (ii). Suppose (i) holds. Then for any 

tEL, using Lemma 2 . 1.3, 

<m(x, n, t)>n°v<m(y, n, t)>n° 

=( <x>n n<t>n) 0 v( <y>n n<t>n) 0 

=( ( <x>nn<t>n) + n<t>n)v( ( <y>n_n<t> n) + n<t>n) 

=(( < x > /0<t>n)v(<y>/n<t>n) (by Lemma 2.1.2) 

=( <x>n +v<y>n +)n<t>n=Ln<t>n=<t>n . 

(ii)⇒ (i). Suppose (ii) holds and tEL. By (ii), 

<m(x, n, t)>n°v<m(y, n, t) >n°=<t > 11 • Then by calculation of 

(i)⇒ (ii), we have ( <x>/v<y>/)0 < t >n =<t>n. This implies 

and so 

0 

Therefore, 
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Theorem 2.2.7. Let Fn(L) be a sectionally 

pseudocomplemented distributive 'lattice. Then 

following conditions are equivalent: 

(i) Fn(L) is generalized Stone 

(ii) For any XE L, < x > n' v < x > n 1--1- == L 

(iii) For all x, y EL-, ( <x> 11 n<y>nt =<x>n +v<y>/. ; 

(iv) For all x, yEL, <x>nn<y>n={n} implies that 

the 

Proof: (i)⇒ (ii). Suppose (i) holds and tEL. Then for 

any XEL, m(x, n, t)E<t>n and so <m(t , n, x)>nEf{n}. <t > n] , 

Since Fn(L) is generalized Stone, so 

( ) 
0 

( · ) 
00

- Th b L ? I 3 <m t, n, x > 11 v<m t, n, x > 11 -<t> 11 • en y emma -· .. , 

<t>n=(<m(t, n, x)>n+n<t>n)v(<m(t, n, x)>n++)n<t>n, 

=( ( <x> nn<t>n ( n <t> n)v( ( <x>nn<t>nf + n<t>n). 

Thus by Lemma 2.1 .2, <t>n=( <x> 11 + n<t> 11 )v( <x>n ++ n<t>n) 

=(<x>n +v<x>n H)n<t>n, This implies <t>n~;<x>/v<x>n '·r 

and so tE<x>/v<x> 11 ++ . Therefore, <x>/v<x>/+=L . 

(ii)⇒(iii). For any x , yEL. (<x>nn<y> 11 )n(<x>/v<y>/) 

=( <x>nn<y>nn<x>n +)v( <x>nn<y>nn<y~n +) 

={n}v{n}={n}. Now, let <x> 11 n<y>nnl={n} for some 

n-ideal I. Then <y>nnlc<x>/. Meeting <x>++ with both 

sides, we have <y>nnln<x>/+={n}. This implies n-ideal 

I. Then <y>nnlc<x>/. Meeting <x>++ with both sides, we 



36 

have <y>nnln<x>/+={n} . This implies In<x>/+c<y>/. 

Hence I=InL=In(<x>/v<x>n ++) 

=(ln<x>n +)v(ln<x>n ++)c < x>n +v<y>n +. Therefore, 

+ + ( )+ <x> n v<y>n = <x>nn<y>n . 

( i ii ) ⇒ (iv) , Let < x > ri n < y > ,, == { n } for Borne x I y 'iii L. 

Then by (iii), L={n}+=(<x> 11 n<y> 11 )+=<x>/v<y>n+· Thus 

(iv) holds . 

(iv) ⇒ (ii) . Let tEL. By Lemma 2.1.2, and by Lemma 

2.1.3, for any XEL, (<x>/v<x>/+)n<t>n 

= ( < X > 11 +fl< t > 11 ) V ( < X > 11 I·+ n < t > 11) 

=(( <x>nn <t>nf n<t>n)v(( <x > nn<t>nt+ n < t>n) 

=(<m(t, n, x)>n+n<t>n)v(<m(t , n, x)>n++n<t> n) 

=<m(x, n, t)> 11 °v < m(x, n, t)>n °0
. Here <m(x, n, t)>n ° 

1s finitely generated n-ideal contained in <t>n, as Fn(L) is 

sectionally pseudocomplemented. Then by Theorem 

1.1 . 13, <m(x, n, t)>n° is a principal n-ideal, say <r> 11 • Now 

<m(x, n, t)> 11 n<r> 11 ={n}. So by (iv) and Lemma 2.1.3, 

<m(x, n, t)>n°v<r>n°=<t>n. Therefore, (<x>n+v<x>n++)n<t>n=<t>n 

+ ++ + ++ 
and so tE<x>n v <x>n . This implies <x>n v<x>n =L. 

Thus (ii) holds . 

To complete the proof we shall show that (iv)⇒ (i). 

Since Fn(L) is sectionally pseudocomplemented, so by 



Theorem 2.2.1, (n] is sectionally dual pseudocomplemented 

and [n) is sectionally pseudocomplemented. 

Suppose Let b 0 be the relative 

pseudocomplernent of b 111 [n, d]. Now b 0 Ab 00 =n. Thus 

<b0>nn<b00 >n=[n, b 0 Ab00]={n}. Also, <b 0 >n, <b 00>nc<d>n, 

Then by e'quivalent condition of (iv) given in Lemma 

2.2.6, we have <m(b 0
, n, d)>n°v<m(b 00

, n, d)>n°=<d>n. But 

m(b 0
, n, d)=b 0 and rn(b 00

, n, d)=b 00 as n~b 0
, b 00 :s;d . But by 

Corollary 2 .2.3 , <b 0 >n°=<b 00 > 11 and <b 00>/=<b000 >n=<b 0 >n . 

Therefore, <d>n=<b 00> nv<b 0>n=<b 0 vb 00 >n which gives 

b 0 vb 00=d. This implies [n, d] is a Stone latt.ice. That is [n) 

is generalized Stone. 

A d u a 1 p r o o f o f a b o v e s ho w s that (iv ) al s o i mp l i e s 

that (n] is a dual generalized Stone lattice. Therefore, by 

Lemma 2.2.4, Fn(L) is generalized Stone . D 

Following corollary is an immediate consequence of 

above result. This has also been proved in [44, Theorem-2 .4]. 

Corollary 2.2.8. Let Fn(L) be a pseudocomplemented 

distributive lattice. Then the following conditions are 

equivalent : 

(i) F n(L) is Stone ; 

(ii) For all xEL, < x>/v<x>/+=L 
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(iii) For all x, yeL, (<x> 11 n<y> 11 )+=<x> 11 +v<y> 11 +; 

(iv) For all x, yEL, <x> 11 n<y> 11 ={n} implies that 

<x>/v<y>/=L. 0 

For a prime ideal P of a distributive lattice L with 0, 

Cornish in [7] has defined 

O(P)={xEL : XAy=O for some yeL-P} . Clearly 

O(P) 1s an ideal and O(P)cP. Cornish in [7] has shown that 

O(P) is the intersection of all the minimal prime ideals of 

L which are contained in P. 

For a prime n-ideal P of a distributive lattice L, we 

write n(P)={yEL: m(y, n, x)=n for some xEL-P}. Clearly, 

n(P) is an n-ideal and n(P)cP. 

Lemma 2.2.9. Let P be a prime n-idea/ tn a 

distributive lattice L. Then each minimal prime n-ideal 

b e lo n gin g to n ( P ) is c o n ta in e d in P . 

Proof: Let Q be a minimal prime n-ideal belonging 

to n(P). If Q<Z:P, then choose y~Q-P. By Theorem 1.2.4, 

we know that Q is either an ideal or a filter. Without loss 

of generality suppose Q is an ideal. Now let 

S={seL : m(y, n, s)En(P)}. We shall show that So:Q . 

If not, let D=(L-Q)v[y). Then n(P)nD=0. For otherwise, 

yAren(P) for some rEL-Q. Then by convexity, 
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yAr~m(y, n, r)~(yAr)vn implies m(y, n, r)En(P) . Hence 

reScQ, which 1s a contradiction. Thus, by Stone's 

representation theorem for n-ideals, there exists a pr1111e 

n-ideal R containing n(P) disjoint to D. Then RcQ. 

Moreover, R:;tQ as y ~ R, this shows that Q is not a minimal 

prime n-idea-1 belonging to n(P), which is a contradiction. 

Therefore, Sg_Q . Hence there exists Z!t.Q such th.Ht 

m(y, n, z)En(P). Thus m(m(y, n, z), n, x)=n for some xEL-P. 

It is easy to see that m(m(y, n, z), n, x)=m(m(y, n, x), n, z). 

Hence, m(m(y, n, x), n, z)=n. Since P is prime and y, x~P, 

so m(y, n, x)~P. Therefore, ZEn(P)cQ, which 1s a 

contradiction. Hence QcP. Cl 

Proposition 2.2.10. If P Ls a prime n-ideal in a 

distributive lattice L, then n(P) is the intersection of all 

minimal prime n-ideals contained in P. 

Proof: Clearly n(P) is contained in any pr11ne n-ideal 

which is contained in P. Hence n(P) is contained in the 

intersection of all minimal prime n-ideals contained in P. 

Since Lis distributive, so by Corollary 1.2.10, n(P) is the . 

intersection of all minimal prime n-ideals belonging to it. 

By Lemma 2.1.1, as each prime n-ideal contains a minimal 

prime n-ideal, above remarks and Lemma 2 .2.9 establish 

the proposition. D 
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Theorem 2.2.11. Let F 11 (L) be a sectionally 

pseudocomplemented distributive lattice. Then the following 

conditions are equivalent: 

(i) 
' ++ For any x EL, <x>n .,.v<x>n =L, 

equivalently, F n(L) is generalized Stone 

(ii) For any two minimal prime n-ideals P and Q, 

PvQ=L : 

(iii) Every prime n-ideal contains a unique minimal 

prime n-ideal ; 

(iv) For each prime n-ideal P, n(P) is a prime n-ideal. 

Proof: (i)⇒ (ii). Let XEP-Q. Then <x>ncP-Q. Now, 

<x>nn<x>/={n}c:Q . So <x>n"-~Q as Q is prime. Again 

xEP implies <x>n ++cP by Theorem 2.1.4. Hence by (i), 

L=<x>/v<x>n ++ cQvP. Therefore, PvQ=L. 

(ii)<=>(iii) is trivial. 

(iii)⇒(iv) is direct consequence of Proposition 2.2.10. 

(iv)⇒(i). Suppose (iv) holds. First we shall show that 

for all x, yEL with <x>nn<y>n={n} implies 

<x>n+v<y>n+=L. If it does not hold, then there exists 

x, yEL with <x>nn<y>n={n} such that <x>/v<y>/:;tL. As 

Lis distributive, so by Theorem 1.2.9, there is a prime 

n-ideal P such that <x>/v<y>/.cP. Then <x>/cP and 

<y>/cP imply x\ln(P) and y~n(P). But n(P) is prime and 

so m(x, n, y)=nEn(P) is contradictory. 
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Thus for all x, yEL with <x> 0 n<y> 0 ={n} implies that 

<x>/v<y>/=L . Hence by equivalent conditions of 

Theorem 2.2.7, (i) holds. [l 

Following result is an immediate consequence of above 

theorem, which has also been proved seperately in [ 44] . 

Corollary 2.2.12. Let 

pseudocomplemented distributive lattice. 

following conditions are equivalent: 

(i) F 11 (L) is Stone ; 

be 

Then 

(ii) For any two minimal prime n-ideals P and Q, 

PvQ=L, that is, they are comaximal; 

a 

the 

(iii) Every prime n-ideal contains a unique minimal 

prime n-ideal ; 

(iv) For each prime n-ideal P, n(P) is a prime 

n-ideal. □ 



Chapter-3 

On finitely generated n-ideals, which form 

relatively Stone lattices. 

Introduction: 
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Relative annihilators 1n lattices and semilattices have 

been studied by many authors including Mandelker [39] 

and Varlet [62]. Also Cornish [7] has used the 

annihilators 1n studying relative normal lattices . In this 

chapter we shall introduce the notion of relative 

annihilators around a fixed element nEL and then we will 

use it to generalize several results on relatively Stone 

lattices. 

For a, bEL, <a, b>={xEL : xAa~b} is known as 

annihilator of a relative to b, or simply a relative 

annihilator . It 1s very easy to see that in presence of 

distributivity, <a, b> is an ideal of L. 

Again for a, bEL we define <a, b>d={x : xvazb}, 

which we call a dual annihilator of a relative to b, or 

simply a relative ~ual annihilator. In presence of 

distributivity of L, <a, b>d is a dual ideal (filter) . 

For a, bEL and a fixed element nEL, we define 
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<a, b>n={xEL: m(a, n, x)E<b>n}={xEL: bAn::;m(a, n, x)::;bvn}. 

We call <a, b> 11 the annihilator of a relative to b around 

the element n or simply a relative n-annihilator. It 1s easy 

to see that for all a, bEL, <a, b> 11 is always a convex 

subset containing n. In presence of distributivity, it can be 

easily seen that <a, b>n is an n-ideal. 

For two n-ideals A and 8 of a lattice L, <A, B> 

denotes {xEL: m(a, n, x)EB for all aEA}. In presence of 

distributivity, clearly <A, B> is an n-ideal. Moreover, we 

can easily show that <a, b>n=<<a>n, <b>n>-

Recall that a distributive lattice L is called a Stone 

lattice if it is pseudocomplemented and x*vx**=l, for 

each XEL. Also recall that a lattice L 1s relatively 

pseudocomplemented if its every interval [a, b] (a, bEL, a<b) 

is pseudocomplemented. A distributive lattice L is called a 

relatively Stone lattice if its every interval [a, b] is Stone. 

In section 1 of this chapter we shall give several 
n 

characterizations of <a, b> . We will also give some 

characterizations of distributive and modular lattices in 

terms of relative n-annihilators. If OEL, then putting n=O, 

the n-ideals become ideals and <a, b>n=<a, b>. So this 
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section will generalize most of the results on annihilators 

in [39]. 

In section 2 we will characterize those Fn(L) which 

are relatively Stone in terms of n-ideals and relative 

n-annihilators. These results are certainly generalizations 

of several results on relatively Stone lattices. At the end 

we will show that Fn(L) is relatively Stone if and only if 

any two incomparable prime n-ideals of Lare comaximal. 
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1. Relative annihilators around a neutral 

element of a lattice. 

We start with the fo !lowing characterization of <a, b> n. 

Theorem 3.1.1. Let L be a lattice with a neutral 

element n in it. Then for all · a, b EL, the following 

conditions are equivalent: 

(i) <a, b>n is an n-ideal; 

( i i ) <a/\ ·n , b /\ n > d ; s a /ii t er an d 

<avn, bvn> is an ideal. 

Proof: Suppose (i) holds. Let x, yE<avn, bvn>. Then 

xA(avn):s:;bvn. Thus (xA(avn))vn:s:;bvn, then by the 

neutrality of n, (xvn)A(avn)~bvn: Also m(xvn, n, a) 

=(x vn va)A(xvn)A( a vn)=(xvn)A( a vn):s:;bvn implies that 

xvnE<a, b>n. Similarly, yvnE<a, b>n. Since <a, b> 11 1s an 

n-ideal, so xvyvn E <a, b> 11
• This implies rn(xvyvn, n, a):s:;bvn. 

That is, (xvyvn)A(avn):s:;bvn and so (xvy)A(avn):s:;bvn . 

Therefore, xvyE<avn, bvn>. Moreover, for XE<avn, bvn> 

and t:s:;x (tEL) obviously tE<avn, bvn> . Hence <avn, bvn> 

1s an ideal. A dual proof of above shows that <aAn, bAn>d 

1s a filter. 

(ii)⇒ (i). Suppose (ii) holds and x, ye<a, b> 11
• Then 
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m(x, n, a)E<b>n- Then using the neutrality of n, 

b /\ n s(xAa)v(xAn )v( a An )=(x va)A(x vn )A( a vn)sbvn. 

Simi 1 ar l y, bAns( y Aa )v(y An )v( a/\ n)=(yva)A(yvn)A( a vn)sbvn. 

So, bAns[(xAa)v(xAn)v(aAn)]An=(xAn)v(aAn). This implies 

X/\nE<aAn, bAn>d. Similarly, yAnE<aAn, bAn>d. Since 

<aAn, bAn>d is a filter, so we have xAyAnE<aAn, bAn>d. 

Thus, (xAyAn)v(aAn)~(bAn), and this implies xAy/\nE<a, b>n. 

Again, by the neutrality of n, (xvn)A(avn) 

=[(xva)A(xvn)A(avn)] vnsbvn. Similarly, (yvn)A(avn)sbvn. 

Thus ((xAy)vn)A(avn)sbvn. But ((xAy)vn)A(avn) 

=m((xAy)vn, n, a), as n is neutral. Therefore, (xAy)vnE<a, b>'\ 

and so by the convexity of <a, b>\ X/\yE<a, b>n. 

A dual proof of above also shows that xvyE<a, b>n. 

Clearly <a, b>n contains n. Therefore, <a, b>n is an 

n - idea 1. [J 

Proposition 3.1.2. Let L be a lattice with a 

neutral element n. For all a, bEL the following hold : 

(i) <avn, bvn> is an ideal if and only if [n) is a 

distributive sublattice of L ; 

(ii) <a/\n, b/\n>d is a filter if and only if (n] is a 

distributive sublattice of L. 
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Proof: (i). Suppose for all a, bEL, <avn, bvn> is an 

ideal. Thus , for all p, qE[n), <p, q>n[n) is an ideal in the 

sub lattice [n). Then by [39, Theorem-1], [n) 1s 

distributive. 

Conversely, suppose [n) is distributive. Let x, ye<avn, bvn>. 

Then XA(avn)~bvn. Since n is neutral, so (xvn)A(avn) 

=[xA(avn)]vn~bvn implies that xvnE<avn, bvn>. Similarly, 

yvnE<avn, . bvn>. Then (xvy)A(avn)~(xvyvn)A(avn) 

=[(xvn)A(avn)]v[(yvn)A(avn)]~bvn, as [n) is distributive. 

Therefore , xvyE<avn, bvn> . Since <avn, bvn> has always 

the hereditary property, so <avn, bvn> is an ideal. 

(ii) can be proved dually. □ 

By Theorem 1. 1.2, we know that Fn(L)=(n]dx[n), 

where (n]d denotes the dual of the lattice (n]. Thus by 

Theorem 3 .1 . 1 and above result we have the following 

result. 

Theorem 3.1.3. Let L be a lattice and nEL be 

neutral . Then for afl a, b EL, <a, b>" is an n-ideal if and 

only if Fn(L) is distributive. □ 

Now by [31], we know that Lis distributive if and 

only if Fn(L) is distributive. Therefore, we have the 
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following corollary which 1s a generalization of 

[39, Theorem-1]. 

Corollary 3.1.4. For all a , bEL and for a neutral 

element nEL, <a, b>n is an n-ideal if and only if L i s 

distributive. lJ 

Following result also generalizes [39, Theorem-I] 

Theorem 3.1.5. Let n be a neutral element of a 

lattice L . Then the following conditions are equivalent : 

(i) Lis distribut ive ; 

(ii) < avn, bvn> is an ideal and <aAn, bAn >d is 

a Jilter whenever <a>nc<b>n , 

Proof: (i)⇒ (ii). Suppose (i) holds. Then by Corollary 

3 .1.4, <a, b>n is an n-ideal for all a, b EL. Thus (ii) holds 

by Theorem 3 . 1 . 1. 

(ii)⇒ (i). Suppose (ii) holds and x, y, ZE [n) . Clearly 

(xAy)v(xAz)sx. So <x, (xAy)v(xAz)> 1s an ideal as 

<(xAy)v(xAz)>nc<x>n· Since xAys(xAy)v(xAz), so 

YE<X, (xAy)v(XAZ)>. Similarly ZE<X, (xAy)v(XAZ)>. 

Hence yvzE <x, (xAy)v (xAz)> and so XA(yvz)s(xAy)v(xAz). 

This implies xA(yvz)=(xAy)v(xAz), and so [n) 1s 

distributive. Using the other part of (ii) we can similarly 
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show that (n] is also distributive. Thus, by Theorem 1.1.2, 

F n ( L ) i s d i st r i b u t i v e , a n d s o b y [ 3 ] ], L i s d i st r i b u t i v e . IJ 

Theorem 3.1.6. let n be a neutral element of a 

lattice L. Then the following conditions are equivalent : 

(i) F 0 (L) is modular; 

(ii) For a , bEL with <b> 0 c<.a> 0 , XE<b> 0 and 

YE<a, b> 0 imply X/\Y, xvyE<a, b> 0
• 

Proof: (i)⇒ (ii). Suppose F 0 (L) is modular . Then by 

Theorem 1.1.2, (n] and [n) are modular. Here <b> 0 c<a> 11 • 

So aAn~bAn~n~bvn~avn. Since XE<b> 0 , so bAn~x~bvn. 

Hence, a/\n~b/\n~x/\n~xvn~bvn~avn . Now, yE<a, b> 0 

implies m(y, n, a)E<b> 0 • Then by the neutrality of n, 

(yva)A(yvn)A(avn)~bvn, and so ((yva)A(yvn)A(avn))vn 

=(yvn)A(avn)~bvn. Thus, using the modularity of [n), 

m(xvyvn, n, a)=(xvyvn)A(avn)=[(avn)A(yvn)]v(xvn), as 

xvn~bvn~avn. This implies m(xvyvn, n, a)~bvn, and so 

xvyvnE<a, b> 0
• Since n is neutral, so a/\n~b/\n~x/\n 

imp 1 i es that bAn~(xAn)v(y An) v( a/\ n )=( (x vy )An) v( aAn)= 

m((xvy)An, n, a)~bvn. Therefore, (xvy)An E <a, b> 0
• Hence 

by the convexity of <a, b>°, xvy E <a, b>". Again using the 

modularity of (n], a dual proof of above shows that 

xAyE<a, b>". 
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Conversely, suppose (ii) holds. Let x, y, ZE [n) with 

x~z. Then xv(yAz)~z. This implies <xv(yAz)>nc<z> 11 • 

Now x~xv(yAz) implies XE<xv(yAz)> 11 • Again yAz~xv(yAz) 

implies m(y, n, z)=yAzE<xv(yAz)> 11 • Hence yE<Z, xv(yAz)> 11
• 

Thus by (ii), xvyE<Z, xv(yAz)> 11
• That is, (xvy)Az~xv(yAz) 

and so (xvy)Az=xv(yAz). Therefore, [n) is modular. 

Similarly, using the condition (ii) we can easily 

show that (n] is also modular. Hence by Theorem 1.1.2, 

F 11 (L) is modular. C 

By [48, Theorern-3.2], we know that a lattice L 1s 

modular if and only if the lattice of all n-ideals I 11 (L) 1s 

modular. Following their proof it can be easily seen that 

L is modular if and only if Fn(L) is modular. Hence we 

have the following resu 1 t which generalizes [3 9, Theorem-2]. 

Corollary 3.1.7. Let n be a neutral element of a 

lattice L. Then the following conditions_ are equivalent : 

(i) L is modular ; 

(ii) For a, bEL with <b>nc<a> 11 , XE<b> 11 and yE<a, b> 11 

imp Ii es x A y, xv y E <a, b > 
11 

• IJ 

We conclude the section with the following 

characterization of minimal prime n - ideals belonging to an 
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n-ideal. Since the proof of this 1s almost similar to 

Theorem 2.1.4, we omit the proof. 

Theorem 3.1.8. Let L be a distributive lattice and P 

be a prime n.-ideal of L belonging to an n-ideal J . Then the 

following conditions a r e equivalent : 

(i) P is minimal belonging to J ; 

(ii) XEP implies <<x>n, 1><1:P. 0 



2. Some characterizations of those F n(L) 

which are relatively Stone lattices. 

52 

The following result is a generalization of [7, Lemma-

3 .6] which plays an important role in proving our main 

results in this section. 

Theorem 3.2.1. Let L be a distributive lattice. Then 

the following hold: 

(ii) <<x>n, J>=){i<<x>n, <y>n>, the supremum of 

n - idea Is < < x > n , < y > n > in the I attic e of n - ideals of L , Jo r 

any x EL and any n-ideal J. 

Proof: (i). L.H.ScR.H .S is obvious. Let tER .H.S, 

then tE<<y>n, <x>n>· This implies m(y, n, t)c<X>n. That is 

<m(y, n, t)>nC<X>n and so (<y>nn<t>n)v(<x>nn<t>n)c<x>n. 

That 1s, <t>nn[<x> 11 v<y>n]c<x>n which implies 

tE<<x> 11 v<y> 11 , <x> 11 >. Thus, tEL.H.S and so (i) holds. 

(ii) . R .H.ScL.H.S is obvious. Let tEL.H .S, then 

m(x, n, t) E J that is m(x, n, t)=j for some j E J. This 

implies tE<<x>n, <j> 11>. Thus tER.H.S and so (ii) holds. [) 
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Following lemma will be needed for further 

development of this chapter. This 1s in fact, the dual of 

[7, Lemma-3 . 6] and very easy to prove. So we prefer to 

omit the proof. 

Lemma 3.2.2. Let L be a distributive lattice. Then 

the following hold. 

( i i ) < [ x) , F > d = V < x, y > d, where F is a filter of L 
yeF 

(iii) {<x, a>dv<y, a>d}n[a, b] 

={ <x, a>dn[a, b]}v{ <y, a>dn[a, b]}. □ 

Lemma 3.2.3 and Lemma 3.2.4 are essential for the 

proof of our main result of this section. 

Lemma 3.2.3. Let L be a .distributive lattice with 

nEL. Suppose a, b, cEL. 

(i) If a, b, c~n, then < <m( a, n, b)>n, <c>n> 

=<<a> 0 , <c> 0 >v<<b>n, <c>n> is equivalent to 

(ii) If a, b, c::;n then 



Proof: (i). Suppose a, b, c:2:n and 

<<a>nn<b>n, <c>n>=<<a>n, <c>n>v<<b> 11 , <c>n>. Let 

-· x E <aA b, c>. Then X/\a/\ b:::;c, <X>nn<aA b> 11 =<x>nn [n, a/\ b] 

=[n, (xvn)A(aAb)]=[n, (x/\aAb)vn]c[n, c]. 

Hence XE<<a/\b>n, <c>n>=<<m(a, n, b)>n, <c>n> 
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That is, [pAn, pvn]n[n, a]c[n, c] . Thus, [n, (pvn)Aa]c[n, c] 

which implies pAa:::;c, and so pE<a, c>: Similarly, 

q E <h, c> and so x E <a, c>v<b, c>. Hence <a.1,b, c>~;:;<a, c>v<b 1 c>. 

But <a, c>v<b, c>c<aAb, c> is obvious. Therefore, <aAb, c> 

=<a, c>v<b, c>. 

Conversely, suppose <aAb, c>=<a, c>v<b, c> . Let 

xE<<m(a, n, b)>n, <C>n>. Then <X>nn<m(a, n, b)> 11 

=[xAn, xvn]n[n, aAb]c[n, c] . That is, [n, (xvn)A(aAb)]c[n, c]. 

Thus, [n, (x/\a/\b)vn]c[n, c] which implies X/\a/\b:::;c, and 

so xE<aAb, c>=<a, c>v<b, c>. This implies x=rvs, where 

rE<a, c> and sE<b, c>. Then r/\a:::;c and S/\b$c. Now 

<r>nn<a> 11=[rAn, rvn]n[n, a]=[n, (rvn)Aa] 

=[n, (r/\a)vn]c[n, c]=<c> 11 • Hence, rE<<a>n , <c> 11 >. 
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obvious, so <<m(a, n, 6)>0 , <c>11 >=<<a>0 , <c>0 >v<<b>n, <c> 0 >. 

A dual calculation of above proof proves (ii). D 

Lemma 3.2.4. Let L be a distributive lattice with 

nEL. Suppose a, b, cEL 

(i) For a, b, c~n, 

<<c>n, <a>nv<b>n>=<<c>n, <a>n>v<<c> 0 , <b> 11 > 

is equivalent to <c, avb>=<c, a>v<c, b> ; 

=<<c> 11 , <a> 0 >v<<c> 0 , <b> 0 > is equivalent to 

<c, aAb>d=<c, a>dv<c, b>d . 

Proof: Suppose <<c> 11 , <a>11v<b>11> 

=<<c>n, <a>n>v<<c>n, <6>11>, Let XE<c, avb>. Then 

X/\C~avb. Then <x> 0 n<c>n=[xAn~ xvn]n[n, c]= 

[n, (xvn)Ac]=[n, (xAc)vn]c[n, avb]=<a>nv<b>n. 
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so, x::;pvq where p E <<c>n, <a>n> and q E <<c>n, <b>n> • 

Then [pAn, pvn]n[n, c]c[n, a]. Thus [n, (pvn)Ac]c[n, a]. 

That is, [n, (pAc)vn]c[n, a]. This implies pAc::;a, and so 

pE<c, a>. Similarly, qE<c, b>. Hence XE<c, a>v<c, b> 

and so <c, avb>c<c, a>v<c, b>. Since the reverse 

inequality is trivial, so <c, avb>=<c, a>v<c, b>. 

Conversely, suppose <c, avb>=<c, a>v<c, b>. Let 

xE<<c>n, <a>nv<b> 11 >. Then, [xAn, xvn]n[n, c]c[n, avb], 

and so [n, (xvn)Ac]c[n, avb]. That is, [n, (xAc)vn]c[n, avb]. 

This implies X/\c::;avb, and so xE<c, avb>=<c, a>v<c, b>. 

Thus x=rvs, where rE<c, a> and sE<c, b>. Now, <r>nn<c>n= 

[r An, rvn]n[n, c]=[n, (rAc)vn]c[n, a]=<a>n, So rE<<c>n, <a>n>-

Similarly, s.E<<c>n, <b> 11 >. Hence 

and so <<c>n, <a>nv<b>n>c<<c>n, <a>n>v<<c> 11 , <b> 11 >. 

Since the reverse inequality is trivial, so 

<<c>n, <a>nv<b>n>=<<c>n, <a>n>v<<c> 11 , <b> 11 >. By the 

dual calculation of above we can easily prove (ii). □ 
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Following result on Stone lattices is well known due 

to [13, Theorem-3, Page-161] and [7, Theorem-2.4]. 

Theorem 3.2.5. Let L be a pseudocomplemented 

distributive lattice . Then the following conditions are 

equivalent: 

(i) L is Stone ; 

(ii) For each x, yEL, (xAy)*=x*vy* ; 

(iii) If xAy=O, x, yEL, then x*vy*=l. □ 

Similarly we can easily prove the following result 

which ls dual to above theorem. 

Theorem 3.2.6. Let L be a dual pseudocomplemented 

distributive lattice. Then the following conditions are 

equivalent: 

(i) L is dual Stone ; 

(ii) For each x, yeL, (xvy)"'d=x"'c1AY"'d; 

(iii) /fxvy=l, x, yEL, then x*dAy*d=O, 

where x*d denotes the dual pseudocomplement of x. ~ 

Now we prove the following result, which is dual to 

[7, Theorem-3.7]. This will be needed to prove the main 

result of this chapter. 

Theorem 3.2.7. Let L be a relatively dual 

pseudocomplemented distributive lattice. Let a, b, cEL be 



\ 

l 
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a r b it r a r y elements , and A, B are a r b it r a r y filters . Then 

the .following are equ;valent : 

( i ) L ·is re I a t iv e l y du a I St on e 

(ii) <a, b>c1v<b, a>c1=L; 

Proof: (i)⇒ (ii). Let zEL be arbitrary. Consider the 

interval I=[z, avbvz]. Then avbvz is the largest element 

of I. Since by (i). I is dual Stone, then by Theorem 

3.2.6(iii), there exist r, sEI such that avs=avbvz=bvzvr 

and z=s/\r. Now, avs~b implies sE<a, b>c1 and bvr=bvzvr 

=avbvz~a implies rE<b, a>c1. Hence (ii) holds. 

(ii)⇒ (iii). In (iii), R.H.ScL.H.S is obvious. Let 

ZE<c, aAb>c1, then zvc~a/\b. Since (ii) holds, so z=xAy, 

where x E <a, b>c1 and y E <b, a>c1- Then . xva2::b and yvb~a. 

Thus, xvc=xvzvc~xv(aAb)=(xva)A(xvb)~b, which implies 

Similarly, yE<c, a>c1. Hence z=x/\yE<c, a>c1v<c, b>c1, 

and so <c, aAb>c1c<c, a>c1v<c, b>c1- Since the reverse 

inclusion is obvious, so (iii) holds . 



(iii)⇒ (iv) follows from Lemma 3.2.2(ii). 

(iv)⇒ (iii) is trivial. 
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(iii)⇒ (ii) follows from Lemma 3.2.2(i) by putting c=a/\b. 

(ii)⇒ (v) . Let ZE<avb, c>d- Then by (ii), z=xAy, 

where xva2'..b and yvb2a. Also xva=xvavb2'..zvavb2'..c. This 

implies XE<a, c>d-

Similarly, yE<b, C>ct- It follows that 

<avb, C>ct::::)<a, c>dv<b, c>d. Since the reverse inequality is 

obvious, so (v) holds. 

(v)⇒ (i). Let xE[a, b], a<b. Suppose x+d denotes the 

relatively dual pseudocomplemented of x in [a, b]. Then 

clearly [x+d)=[xfd={tE[a, b] : tvx=b, the largest element 

of [a, b]}. It is easy to see that [xfd=<a, b>ctn[a, b]. 

Now Suppose x, yE[a, b] with xvy=b, then by (v), 

[ +d +d) [ +d) [ +d) [ )+cl [ )+cl X /\Y = X V y = X V y 

=(<x, b>dn[a, b])v(<y, b>ctn[a, b]) 

=(<x, b>ctv<y, b>c1)n[a, b] (by Lemma 3.2.2(iii)) 

=<xvy, b>dn[a, b] 

=<b, b>ctn[a, b]=Ln[ai b] 

=[a, b]. 

This implies x+JAY +c1=a. Hence by Theorem 3.2.6, [a, b] 1s 

dual Stone and so L is a relatively dual Stone lattice. D 
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Now we prove our main results of this chapter, which 

are generalizations of [7, Theorem-3.7] and [39, Theorem-SJ. 

These give characterizations of those F 0 (L) which are 

relatively Stone in terms of n-ideals . 

Theorem 3.2.8. Let F 0 (L) be a relatively 

pseudocomplemented distributive lattice and A and B be 

two n-ideals of L. Then for all a, b, CEL, the following 

conditions are equivalent: 

(i) F 0 (L) is relatively Stone 

Proof: (i)⇒ (ii) . Let ZEL, consider the interval 

I=[<a> 0 n<b> 0 n<z> 0 , <z> 0 ] in F 0 (L). Then 

<a>
0
n<b>

0
n<z> 0 is the smallest element of the interval I. 

By (i), I is Stone. Then by Theorem 3.2.5, there exist 

finitely generated n-ideals [p, q], [r, s] El such that, 

<a>nn<z>nn[p, q] 

=<a> 0 n<b>nn<z>n 

=<b> 0 n<z> 0 n[r, s] and 

<z> 0 =[p, q]v[r, s]. 
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Now, <a>nn[p, q]=<a>nn[p, q]n<z>n=<a>nn<b>nn<z>nC<b>n 

implies [p, q]c<<a>n, <b>n>- Also <b>nn[r, s]=<b>nn<z>nn[r, s] 

Thus, <z>nc<<a>n, <b>n>v<<b> 11 , <a>n>, 

(ii)⇒ (iii). Suppose (ii) holds. For (iii), 

R.H.ScL.H.S is obvious. Now, let zE<<c> 11 , <a>nv<b>n>. 

m(zvn, n, c)E[a/\b/\n, avbvn]. That is, (zvn)/\(cvn)savbvn. 

Now by (ii), zvnE<<a>n, <b>n>v<<b>n, <a>n>• So 

zvns(pvn)v( qvn) for some pvn E < <a>n, <b>n> 

and qvnE<<b>n, <a> 11 >. Hence, 

zvn =( (zvn) /\ (p v n) )v ( (zv n)/\( q vn) )=rvs (say). 

Now, m(pvn, n, a)=(pvn)/\(avn).::;bvn. So 

(b/\n)sr /\( a vn)sb vn. Hence, r /\( cvn)=r /\(zvn )/\( c vn) 

sr/\(avbvn)=(r/\(avn))v(r/\(bvn))sbvn. This implies 

rE<<c>n, <b>n>· Similarly, sE<<c>n, <a>n>· Hence 



Again zE<<c>n <a> v<b> > · 1· 
' n n Imp Jes 

Z/\n E < <c>n, <a>n v<b>n>. Then a dual calculation of 

above shows that ZAnE<<c> <a> >v<< > <b> >. n, 11 C n, 11 

Thus by convexity, zE<<c> 11 , <a>n>v<<c>
11

, <b>
11
> and 

so (iii) holds. 

62 

(iii)⇒ (iv). Suppose (iii) holds. In (iv), R.H .ScL.H.S 

is obvious. Now let xE<<c> 11 , AvB>. Then 

xvnE<<c> 11 , AvB>. Thus m(xvn, n, c)EAvB. Now 

m(xvn, n, c)=(xvn)A(nvc)2:'.n implies m(xvn, n, c)E(AvB)n[n). 

Hence by Theorem 3.2. l(ii), xvnE<<c>n, (An[n))v(Bn[n))> 

=Ye (An[n))v(Bn[n))< <c>n, <r>n>. But by Theo rem 1. 1. 12, 

rE(An[n))v(Bn[n)) implies r=svt for some sEA, tEB and 

s, t2:'.n. Then by (iii), <<c> 0 , <r> 0 >=<<c>n, <svt>n> 

Also xE<<c>n, AvB> implies X/\nE<<c>n, AvB>. Since 

m(xAn, n, c )=(xAn)v(nAc)~n, so X/\n E < <c> 11 , (A vB )n(n]>. 

Then by Theorem 3.2.l(ii), XAnE<<c> 0 , (An(n])v(Bn(n])> 
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=V. te(An(n])v(Bn(n))<<c>n, <t>n>- Using Theorem 1.1.12 again , 

we see that t=pAq where pEA, qEB, p, qsn. Then by (iii), 

< < C > n, < t > n >= < < C > 11, <PI\ 9 > n >= < < C > 
11

, < p > n V < q > 
11 
> 

Hence X/\n E <<c>n, A>v<<c> 11 , B>. Therefore by 

convexity, xE<<c>n, A>v<<c>n, B>, and so (iv) holds . 

(iv)⇒(iii) is trivial. 

(ii)⇒(v). In (v) R.H.ScL.H.S 1s obvious. Let 

ZEL.H.S. Then ZE<<m(a. n, b)> 11 , <c>n> , which imp l ies 

zvnE<<m(a, n, b) > n, <c> 11 >., By (ii), 

zvnE<<a>n, <b> 11 >v<<b>n, <a>11>. Then by Theorem 1.1.12, 

<x> n fl <a>n =<x>n fl <a> J1 fl <b>n C<zv n> nn <a> nfl < b> n • 

=<zvn>nn<m(a, n, b)>nc<c> 11 • This implies 

zvn E <<a>n, <c>n>v< <b> 11 , <c>n> . Similarly, a dual calculation 

of above shows that Z/\nE<<a>n, <c>n>v<<b>n, <c>n>- Thus 
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by convexity, zE<<a> 11 , <c> 11 >v<<b>n, <c>n> and so (v) 

holds. 

(v)⇒ (i). Suppose (v) holds. Let a, b, c~n. By (v), 

But by Lemma 3.2.3(i), this is equivalent to 

<aAb, c>=<a, c>v<b, c>. Then by [7, Theorem-3.7], this 

shows that [n) is a relatively Stone Lattice. Similarly, for 

a, b, c~n, using the Lemma 3 .2.3(ii) . and Theorem 3 .2. 7, 

we find that (n] is relatively dual Stone. Therefore Fn(L) 

is relatively Stone by Theorem 1.1.2. 

Finally we need to prove (iii)⇒ (i). Suppose (iii) 

holds. Let a, b, cELn[n). By (iii), 

Lemma 3 .2.4(i), this is equivalent to <c, avb>=<c, a>v<c, b> 

which says by [7, Theorem-3. 7] that [n) is relatively Stone. 

Similarly for a, b, c~n, using the Lemma 3.2.4(ii) and 

Theorem 3.2.7, we find that (n] is relatively dual Stone. 

Therefore by 1 . 1.2, F n(L) is relati 'vely Stone. C 

We conclude the chapter by proving the following 

result, which is a generalizations of [7, Theorem-3.5]. 
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To prove this we have used the following lemma 

which is due to [7, Lemma-3.4]. 

Lemma 3.2.9. If L1 is a sublattice of L and P1 is a 

prime ideal in L1 then there exists a prime ideal P in L 

such that P 1=L 1nP. U 

Theorem 3.2.10. Let Fn(L) be a relatively 

pseudocomplemented distributive lattice. Then the 

following conditions are equivalent: 

(i) Fn(L) is relat ively Stone; 

(ii) Any two incomparable prime n-ideals P and Q 

are comaximal, that is PvQ=L. 

Proof: Suppose (i) holds. Let P, Q be two 

incomparable prime n-deals of L. Then there exist a, b EL 

such that a E P-Q and b E Q-P. Then <a>ncP-Q, <b>ncQ-P. 

Since Fn(L) is relatively Stone, so by Theorem 3.2 .8, 

<<a>n, <b>n>v<<b>n, <a> 0 >=L . But as P, Qare prime, so 

Therefore LcPvQ and so PvQ=L. That is, (ii) holds. 

Conversely, suppose (ii) holds . Let P 1 and Q 1 be two 

incomparable prime ideals of [n). Then by Lemma 3.2.9, 

there exist incomparable prime ideals P and Q of L such that 



66 

P 1=Pn[n) and 01=Qn[n) . Since nEP 1 and nEQ1, so by 

Lemma 1.2.5, P, Qare in fact two incomparable prime 

n-ideals of L. Then by (ii), PvQ=L. Therefore, 

P 1vQ1=(PvQ)n[n)=[n). Thus by [7, Theorem-3.5], 

[n) is relatively Stone. Similarly, considering two prime 

filters of (n] and proceeding as above and using the 

dual result of [7, Theorem-3.5] we find that (n] is 

relatively dual Stone . Therefore by Theorem 1.1.2, Fn(L) 

is relatively Stone. D 
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Chapter-4 

Characterization of finitely generated n-ideals 

which form sectionally and relatively Bm-:-lattices. 

Introduction: 

Lee 1n [36] also see Lakser [30] has 

determined the lattice of all equational subclasses of the 

class of all pseudocomplemented .distributive lattices. 

They are given by B_ 1cB 0c-----cBmc.-----cB 00 , where all 

the inclusions are proper and B 00 is the class of all 

pseudocomplemented distributive lattices, B_ 1 consists of 

all one element algebra, B 0 is the variety of Boolean 

algebras while Bm, for -l~m<m consists of all algebras 
n 

satisfying the equation (x 1AX 2/\-----/\Xm)*v\( (X1/\X2/\------
1= 1 

--- - ---- - /\Xi-i/\Xj*/\X i+l/\- -------- -1\X m)*=l where x* denotes 

the pseudocomplement of x. Thus B 1 consists of all Stone 

algebras. 

He also generalized Gratzer and Schmidt's theorem 

by proving that for -1 ~m<m the mth variety consists of all 

lattices such that each prime ideal contains at most m 

minimal prime ideals. 
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Cornish in [7] and Mandelker in [39] have studied 

distributive lattices analogues to B 1-lattices and relatively 

B,-lattices . Cornish [8], Beazer [2] and Davey [l I] have 

each independently obtained several characterizations of 

(sectionally) Bm and relatively Bm~lattices. Moreover, 

Gratzer and Lakser in [16] and [17] have obtained some 

results on this topic. 

A distributive lattice L with O 1s called sectionally in 

Bm, -l~m<oo if each interval [O, x] XEL is in Bm. A 

distributive lattice L is called relatively in Bm if each 

interval [O, x] xEL is in Bm, 

Rec a 11 that a family of ideals of a lattice L is 

comaximal if their join is L. Similarly a family of n-ideals 

of a lattice L is comiximal if their join is L. 

In section 1 we will study finitely generated n-ideals 

which form a (sectionally) Bm lattice . We will include 

several characterizations which generalize several results 

of [8], [11], [2] and [16]. We shall show that if Fn(L) is 

(sectionally) pseudocomplemented and distributive then 

Fn(L) is in (sectionally) Bm if and only if for any 

X1, X2,--------,XmEL, <Xo>n+V ---------V<Xm>n+=L, which lS 

also equivalent to the condition that for any m+ 1 distinct 



minimal prime n-ideals P 0 , - -------,Pm of L, 

Pov-------vPm=L. 
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In section 2 we will study those F 11 (L) which are 

relatively in Bm. Here we will include a number of 

characterizations of those which are 

generalizations of results on relatively Brn -- latti ces given 

in [8], [9] and [11] . We shall· show that if F 11 (L) is 

relatively pseudocomplemented, then F 11 (L) is relatively 

in Bm if and only if any m+l pairwise incomparable 

prime n-ideals are comaximal. 



1. Lattices whose F 0 (L) form (sectionally) 

Bm-lattices. 
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The following result is due to [11, Lemma-2.2]. This 

follows from the corresponding result for commutative 

se=migroups due to Ki5t l29]. 

Lemma 4.1.1. Let M be a prime ideal containing an 

ideal J. Then M is a minimal prime ideal belonging to J if 

and only if for all xEM, there exists x' ~M such that 

X/\X'EJ. D 

Now we generalize this result for n-ideals. 

Lemma 4.1.2. Let M be a prime n-ideal containing 

an n-ideal J. Then M is a minimal prime n-ideal 

belonging to J if and only if for all xEM there exists 

x'~M such that m(x, n, x')E.I. 

Proof: Let M be a minimal p-rime n-ideal belonging 

to J and x EM. Then by Theorem 3 .1. 8, < <a>n, J><t:M. So 

there exists x' with m(x, n, x')EJ such that x'~M. 

Conversely, suppose XEM, then there exists x'~M 

such that m(x, n, x')EJ. This implies x' ~M, 
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but x' E<<x>n, J>, that is <<x>
0

, J><ZM. Hence by 

Theorem 3.1.8, M ts a prime n-ideal belonging to J. 0 

Davey in [11, Corollary-2 . 3] used the following 

result in proving several equivalent conditions on 

Sm-lattices. On the other hand, Cornish in [8] has used 

this result in studying n-normal lattices. 

Proposition 4.1.3. let M0 ,--------,M 0 be n+l distinct 

minimal prime ideals. Then there exist a 0 ,----------,a 0 EL 

s u ch th a t a · /\ a · E J ( i :;tJ. ) a n d a· ct M • J. = 0 - - - - - - - - n □ I J jlC J , , , 

The following result is a generalization of above result 

in terms of n-ideals. 

Proposition 4.1.4. Let M 0 ,---------,M 0 be n+l distinct 

minimal prime n-ideals. Then there exist ao,--------,anEL 

such that m(ai, n, a.i)EJ (i:;tj) and a.i~M.i (j=0,----------,n). 

Proof: For n=l. Let x 0EM1-Mo and X1EM0-M1. Then 

by Lemma 4 . 1. 1, there exists X1' ~Mo such that 

m(x 1, n, x 1')EJ. Hence a1=x1, ao=m(xo, n, x1') are the 

required elements. Observe that 

m(a0, n, a 1)=m(m(xo, n, X1 '), n, x1) 

=(Xo/\X I /\XI I )v(Xo/\n)v(x I /\n)v(x I I An) 

=(xoAm(x 1, n, x1'))v(x0An)v(m(x1, n, xi')An) 



=m(xo, n, m(x 1, n, x 1 ')). 

N o w , m ( x 1 , n , x 1 ' ) /\ n:~ m ( x O , n , m ( x 1 , n, x 1 ' ) ) 

::;m(x1, n, x1')vn and m(x1, n, xi')EJ, so by convexity 

m(ao, n, a 1)EJ. 
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Assume that the result is true for n=m-1 and let 
' 

Mo,-----------,Mn be n+ I distinct minimal prime n-ideals. 

Let b j (j = 0, - - - - - - , m - 1 ) satisfy m (bi, n, b j) E J ( i :;t: j ) and 
m-1 

b.i~M.i. Now choose bmEMm-UMj and by the Lemma 4.1.2, 
J=O 

let bm' satisfy bm'~Mm and m(bm, n, bm')EJ. Clearly, 

a j = m ( b j , n, b m) (j = 0 , - - -- - - - - - - , m - 1 ) and am= b m ', est ab l i sh 

the result. [ I 

Let J be an n-ideal of a distributive lattice L. A 

set of elements x 0 ,------,XnEL is said to be pairwise 1n 

J if m(xi, n,. x.i)=n for all i:;t:j. 

The next result is due to [8, Lemma-2.3], which was 

suggested by Hindman in [21, Theorem-1.8] . 

Lemma 4.1.5. Let J be an ideal in a lattice L. For a 

given positive integer n2:2, the following conditions are 

equivalent: 

(i) For any x 1,-------,XnEL which are "pairwise in J" 

that is, Xj/\XjEJ for any i:;t:j, there exists k such 

thatxkEJ; 
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(ii) For any ideals J 1,-------,J 11 in L such that JinJjeJ 

for any i:;t:j, there exists k such that he] ; 

(iii) J is the intersection of at most n-1 distinct prime 

ideals. □ 

Our next result is a generalization of above result. 

This result will be needed in proving the next theorem 

which is the main result of this section. In fact, the 

following lemma is very useful 1n studying those F 11 (L) 

which are (sectionally) in Bm. 

Lemma 4.1.6. Let J be an n-ideal zn a lattice L. For 

a given positive integer n~2, the following conditions are 

equivalent: 

(i) For any x 1, x2 ,--~-----,x 111 EL with m(xi, n, Xj)EJ 

(that is, they are pairwise in J) for any i:;t:j, there 

exists k such that XkEJ; 

(ii) For any n-ideals J 1,------,Jm in L such that 

JinJicJ for any i:;t:j, there exists k such that heJ 

(iii) J is the intersection of at most m-1 distinct 

prime n-ideals. 

Proof: (i) and (ii) are easily seen to be equivalent. 

(iii)⇒ (i). Suppose P 1, P 2,---------,Pk are k (l~k~m-1) distinct 

prime n-ideals such that J=P I n-----nPk. Let x 1, X2,------,Xm EL 

be such that m(xi, n, Xj)EJ for all i:;tj. Suppose no element Xi 
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1s a member of J. Then for each r (l~r:~k) there is at most 

one i ( 1 ~i~m) such that xi E Pr. Since k<m, there is some i 

such that xi E PI nP2n------------nPk. 

(i)⇒ (iii). Suppose (i) holds for n=2, then it implies 

that J is a prime n-ideal. Then (iii) is trivially true. Thus 

we may assume that there is a largest integer t<m such 

that the condition (i) does not hold for J (consequently 

condition (i) holds for t+l, t+2,------,m). For some t<m, we 

may suppose that there exist elements a·1, a2,------,a1 EL such 

that m(ai, n, aj)EJ for i:;tj, i=l, 2,------,t, j=l, 2,------,t, yet 

As L is a distributive lattice; <<ai>n, J> is an n-ideal 

for any iE{l, 2,------,t}. Each <<ai>n, J> 1s in fact a 

prime n-ideal. Firstly <<ai>n, J>:;tL, since ai~J. Secondly, 

suppose that band care in Land m(b, n, c)e<<ai>n, J>. 

Consider the set of t+l elements {a1, a2,-----------,ai-1, 

(b ) (C n a) a · 1 --------- a 1 } This set 1s m , n, ai , m , , i , ,+ , · , · 

pairwise in J and so, either m(b, n, ai)EJ or m(c, n, ai)EJ 

since condition (i) holds for t+l. That is, bE<<ai>n, J> or 
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w, a1, a2,------,at are pairwise in J 'and so wEJ. Hence 

J=n <<ai>n, J> is the intersection of t<m prime n-ideals. 1-1 
I :5 i:5t 

An idea I J * L sat i s fy in g the e q u iv ale n t conditions of 

Lemma 4.1.5 is called an m-prime ideal . 

Similarly, an n-ideal J:;tL satisfying the equivalent 

conditions of Lemma 4.1.6 is called an m-prirne n-ideal. 

Now we generalize a result of Davey in [11, Proposition-3.1]. 

Theorem 4.1.7. Let J be an n-ideal of a distributive 

lattice L. Then the following conditions are equivalent: 

(i) For any m+l distinct prime n-ideals Po, P1,----,Pm 

belonging to J, PavP1v-------vPm=L; 

(ii) Every prime n-ideal containing J contains at most 

m distinct minimal prime n-ideals belonging to J ; 

(iii) If a0 , a 1,------,amEL with m(ai, n, aj)EJ (i:;tj) then 

\( <<aj>n, J>=L. 
J 

Proof: (i)⇒ (ii) is obvious. 

(ii)⇒ (iii). Assume a 0 , a 1,-------,amEL with m(ai, n, aj)EJ 
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and \-:<<a.i>n, J>:;tL_ It follows that a·!iEJ for_ all J·. Then 
J J ' 

by Theorem 1.2.9, there exists a prime n-ideal P such that 

j< <a.i>n, J>cP • But by Theorem 1.2 .4, we know that P is 

e i th e r a p r i me i d e a l o r a p r i m e fi It er . S up p O s e p i s a pr IIn e 

ideal. 

For each j , let F.i =' {XAY x:2:a.1, x, y 2 n, y!i!:P} . 

Let X1AY1, X2AY2EFi 

:. (x I AY 1 )A (X2/\Y2)=(x 1 /\X2)A(y, AY2). 

Now, X1/\X2~a.i and y,Ay 2=m(y 1, n, y2) 

so t~xAy implies t=(tvx)A(tvy) . 

Since y12:P, so tvy!iEP . Hence tEFj , and so F.i is a dual ideal. 

We now show that FJ·nJ=0 for all J'=O 1 ------------ m ' ' ' . ' . 
If not, let bEF.inJ, then b=xAy, x~aj, x, y~n, y12:P. 

Hence m(a.i, n, y)=(ajAn)vnv(ajAy)=(ajAy)vn=(ajvn)A(yvn). 

But (ajvn)A(yvn)EFj and n:::;(ajAy)vn:::;b implies 

m(aj, n, y)EJ. Therefore, m(aj, n, y)EFjnJ. Again, m(aj, n, y)EJ 

with y ~ P implies < <a.i>n, J>g:_P, which is a contradiction. 

Hence F.inJ=0 for all j. For each j, let P.i be a minimal 

prime n-ideal belonging to J and F.inP.i=0. Let yEP.i. If 

y!iEP, then yvn!iEP. Then m(aj, n, yvn)=(ajvn)A(yvn)EFj. But 

m(aj, n, yvn)E<yvn> 11c<y> 0 cPj, which is a contradiction. So yEP. 
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Therefore PjcP, and a·lil:P· For 'f p h p 
J J· 1 ajE j, t en ajvnE .i· 

Now, a.ivn=(a.ivn)A(a.i vnvy)EF.i for any ylil:P . This implies 

P/1Fr;i=0, which is a contradiction. So a.ilil:Pj, 

But m(ai, n, .aj)EJcP.i (i=1=j) which implies aiEPj (i=1=j) as Pj 

is prime. It follows that P.i form a set of m+l distinct 

minimal prime n-ideals belonging to J and contained in P. 

This contradicts (ii). Therefore V<<a.i>n, J>=L. 
J 

Similarly, if P is filter, then a dual proof of above 

also shows that V<<a.i>n, J>=L, and hence (iii) holds. 
J . 

(iii) ⇒ (i). Let Po, P 1,--------,P 111 be m+l distinct 

minimal prime n-ideals belonging to J. Then by 

Proposition 4.1.4, there exist a 0 , a 1,-----------,amEL such 

wh ich implies P 0 vP 1v--------vPm=L. 0 

We have already mentioned that Lee [36] and 

Lakser [30] have shown that the equational classes of 

pseudocomplemented distributive lattices form a chain 

B.
1
cBocB 1c----------cB 00 where B. 1 is the trivial class, B 0 

is the class of Boolean algebras and B1 is the class of 



78 

Stone lattices. Cornish 1n [7] and Mandelk.er 1n [39] 

considered distributive lattices analogues to 

B 1-lattices and relative B 1-lattices. In the following result 

characterizations are given for the distributive lattices 

analogues of En-lattices. This result is due to Cornish 

[8] . Beazer [2] and Davey [11] have each independently 

obtained a version of this result. Gratzer and Lakser in 

[ 16] (also see [ 13, Lemma-2 Page-169]) have shown that 

condition (iii) of the following theorem is equivalent to 

Lee's condition which characterizes the nth variety, for 

O<n <co, of di stri b uti ve pseudocomple.men ted I atti ces. 

Thus, this theorem should be . compared with Lee's 

Theorem 2 of [3 6]. 

Re c a 11 th at f o r a p r 11n e i d e a 1 P o f a d i s tr i b u t i v e 

lattice L, 

O(P)={x : xAy=O for some yEL-P}, which 1s an ideal 

contained in P. 

Theorem 4.1.8. Let L be a distributive lattice. Then 

the following conditions are equivalent: 

(i) For any m+l distinct minimal prime ideals 

P P -- P · P vP 1v---------vPm=L; O, 1,------ ' m, o 

. 'd l t · s at most m minimal (ii) Every prime L ea con atn . 

prime ideals ; 

L h that x ·Ax·=O 
( . . . ) F ny X X I - - - - - - - ' x m E s u c i .I 111 ora o, , 



for (i:t:j), i=0, 1,--------,m, j=0, 1,---------,m 

(xo]*v(x 1 ] * v--------v(xm]*=L; 

(iv) For each prime ideal p 0(P) . +l . , zs m -przme ; 
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(v) If L is (sectionally) pseudocomplemented, then L 

is (sectionally) in Bm . □ 

Our next result 1s a nice extension of above result 1n 

terms of n-ideals. 

Th e o rem 4. 1. 9 . Let L be a dist rib u ti v e lattice . Then 

the following conditions are equivalent: 

(i) For any m+I distinct minimal prime n-ideals 

Po, Pi,---------,Pm, PovP1v---------vPm=L; 

(ii) Every prime n-ideal contains at most m-minimal 

prime n-ideals ; 

(iit) For any a 0 , a 1,- ------- ,amEL with m(ai, n, aj)=n, 

(i:t:j) i=0 
' 

l ------- m 
' ' ' 

j=0, 1 --------- m 
' ' ' 

(iv) For each prime n-ideal P, n(P) is an m+l-prime 

n-ideal. 

Proof: (i)⇒ (ii), (ii)⇒ (iii) and (iii)⇒ (i) easily hold 

by Theorem 4.1 .7 replacing J by {n}. To complete the 

proof we need to show that (iv)⇒ (iii) and (ii)⇒(iv) . 

(iv)⇒ (iii). Suppose (iv) holds and ·xo, X1 ,--------,Xm are 

m+l elements of L such that m(xi, n, x.i)=n for (i:t:j). 
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Suppose that <Xo> 0 +v<x 1> +v + L 
n ---------V<Xm>n :j:. . Then by 

Theorem 1.2.9, there is a prime n-ideal p such that 
+ ·I 

<Xo>n V<X1>11 V---------V<X > 'cp 
111 ll _ • 

Hence Xo, x 1,---------,xm E L-n(P). '.fhr' s 
contradicts (iv) by 

Lemma 4.1.6; since m(xi, n, xj)=nEn(P) for all i=t:-j. Thus , 

(iii) holds . 

(ii)⇒ (iv). This follows immediately from Proposition 

2.2.10 and Lemma 4.1.6 above. 

Following result rs due to [8]. 

Proposition 4.1.10. Let L be a distributive lattice 

with 0. If the equivalent conditions of Theorem 4.1 .8 hold, 

then for any m+l elements Xo, x 1,--------,x
01

, 

Proposition 4.1.11. · Let L be a distributive lattice 

and n EL. If the equivalent conditions of Theorem 4.1. 9 

hold, then for any m+I elements Xo, x,,---------,Xm; 

( <Xo> nfl <XI> 0 n- - - - - - - -n <Xm> n f 

=V ( <Xo>nn--- --- --n <X i-1 >nn<Xi+ I >nn- ---- -- --n<xm>nf · 
Os i s n 

proof: Let <bi>n=<xo>nn----------n<Xi-1 >nn<Xi+l>nn 

------------n<xm>n for each O ~ i ~m. 



Suppose x E ( <Xo>nn-------n<x > )+ Th 
m 11 , en 

<x>nn<xo>11n---------n<x111>11={ n}. 

( <X>nn<bi>n)n( <X>nn<bj>n)= { n}. 

For all i:;t:j; 

So (<X>nn<bo>nfv---------v(<x> n<b > )+=L 11 m . n • 

Thus XE ( <X>nn<bo>nf v---------v( <X>nn<bm>nf. 

Hence by Theorem 1.1.12, xvn=a0 v-------- - vam where 

ai E ( <x>nn<bi>n) + and ai~n, for i=O 1 --------- m 
' ' ' . 

Then xvn=( aoA(x v n) )v---------v(amA(x vn) ). 
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Now ajE(<X>nn<bi>nf implies <ai>nn<x>nn<bi>n={n}. 

Then by a routine calculation we find that (ai/\X/\bi)vn=n. 

Thus, <ai/\(xvn)>nn<bi>n=[n, (ai/\X/\bi)vn]={n} implies 

that ai/\(xvn) E <bi>n + and so xvn E <bo>/v---------v<bm>n +. 

By a dual proof of above, we can easily show that 

X/\nE<bo>/v-------------v<bm>/. Thus by convexity, 

XE<bo>/v---------v<bm>n+· This proves that L .H.ScR.H.S. 

The reverse inclusion is trivial. D 

Theorem 4.1.12. For a distributive lattice L , zf Fn(L) 

is sectionally pseudocomplemented then the following 

conditions are equivalent : 

(i) F
0
(L) is sectionally in Bm; 

(ii) For ao,---- - ---,am with m(ai, n, aj)=n (i:;t:j) implies 

+ > +_ L <ao>n v--- - ----- v <am n - . 

Proof: (i) ⇒ (ii). Suppose tEL, <ao> n,---------,<am>n 

with m(a i, n, ai)=n, for all i:;t:j. Consider the interval 



[{n}, <t>n]- Then 

{n}c<m(ao, n, t)> 11 ,----------- <m(a 
' m' 

<m(ai, n, t)>nn<m(a · n t)> 
.I , ' n 

=<ai>nn<t>nn<a ·> n<t> J n n 

={n}. 

Th us, <m( ai, n, t )> nc<m( aj, n, t )> n °, for all i:;t:j. Therefore, 

<m( ao, n, t)> nC <m( a 1, n, t)>n ° n--------n<m(a n t)> 0 
m, • , n , 
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<m(a1, n, t)>nc<m(a1, n, t)>n°0n<m(a2, n, t)>n°n-------n<m(am, n, t)>11°. 

- ---- ----------- -------- ---- --- ------ -----

<m(am, n, t)>nc<m(a1, n, t)> 11 °n-------n<m(am, n, t)>n°
0

. 

Since Fn(L) is sectionally in Bm, so applying Lee's 

identity to <m(a1, n, t)> 11 °,------,<m(a 111 , n, t)> 11 ° we obtain 

<m(ao, n, t)>
11
°v----------v<m(a111 , n, t)>n°:=)(<m(a1, n, t)>n° 

n------------n<m(am, n, t)>n°)0 v(<m(a1, n, t)>n°
0
n-----------­

n<m(am, n, t)>
11
°)0 v----------------v(<m(a1, n, t)>n°n---------

----n<m(am, n, t)>n°
0
)°=<t>n . 

Therefore <t>n=[ <m(a0 , n, t)>n°v-----·---v<m(am, n, t)>n °Jn<t>11 

=(<m(a
0

, n, t)>/n<t>
11
)v-----------v(<m(am, n, t)>/n<t>n) 

(by Lemma 2.1.3) . 

=( ( <ao> nn<t> n) + fl <t> l1 )v--- -----v(( <am> nn<t>11) + n<t> 11) 

=(<ao>/n<t>
11
)v--------v(<am>/n<t> 11 ) (by Lemma 2.1.2) 

=(<ao>n+V----- -------v <am>n+)n<t>n. This implies 
+ +_L + > + d so <~ > v--- ----v<am>n - . 

tE<a
0
>

11 
V-------v<am n , an 1-A-0 n 



(ii)⇒ (i). Consider the interval [n, d]. 

L et X I , - - - - - - - - , X n1 E [ n , cl ] . X I O , O O d X2 ,---------,Xm enotes the 

relative pseudocomplements of x,,---------,Xm in [n, cl]. 

Let b 0=x 11\----------------/\X 
Ill 

b - 0 1-X1 /\---------------1\Xm 

b2=X1/\X2° 1\-----------1\X 
m 

----------------------------

----------------------------

Th e n b i Ab j = n f o r a 11 i :;t: j . Th at i s < b i > n n < b j > n = { n } . 

Hence by (ii), <bo>n +v-------------------v<bm>n +=L. 

So <d>nnL=( <bo>n + n<d>n)V--------------v( <bm>n + n<d>n) 

Thus by Lemma 2.1 .3 and Corollary 2.2.3, 

[n, d]=<bo>n °v---------------v<bm>n ° 
. 0 0 0 

=<X1/\----------/\Xm>n V<X1 /\--------/\X 111 >n · 

0 0 v--------------v<x 1 /\X2/\ -------------- /\Xm >n 
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=[~, (X1/\---------/\Xm) 0]v[n, (x, 0 /\X2/\----------/\Xm) 0
] 

v----------------v[n, (x 1AX2/\------ /\Xm 0
)

0
]. 

0 0 )0 Thus, [n, d]=[n, (X1/\X 2/\--- ---/\Xm) v(x, /\X2/\-------/\Xm . 

v-----------v(x I AX2/\--------/\X111 °) 0
]. 

Th i s i mp 1 i e s d = ( x 1 /\ x 2 /\ - - - - - - - - - /\ x m ) 
0 
v ( x 1 ° /\.X 2 /\ - - - - - - - - - - - - - -

---/\Xm) 0 v -------------v(x 1 /\X 2/\------------ /\Xm 
0

)
0

, which is 

Lee's identity. 
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Therefore, [n) is sectionally in Bm. A dual proof of 

above shows that (n] is sectionally in dual B
111

• Therefore 

by Theorem 1.1 .2, Fn(L) is sectionally in Bm. I i 

For a pseudocomplemented lattice L, we ·write 

S(L)={a*: aEL}, which is known as the skeleton of L. We 

know that S(L) is a Boolean lattice, but it is not 

necessarily a sublattice of L. It is well known that S(L) is 

a subalgebra of L if and only if L is a Stone algebra. 

We have already mentioned that if 0, 1 EL, then 

L=[O, l] is the largest element of F 11 (L), and so F 11 (L) 1s a 

bounded lattice. Also we know that F 11 (L) is distributive 

if and only if L is distributive, so we have: 

Theorem 4.1.13. For a distributive lattice ·L with 0 

and I, if F 
11
(L) is pseudocomplemented then the following 

are equivalent: 

(i) F 11 (L) is in Bm ; 

(ii) For a 0 ,--------,a 111 , with m(ai, n, aj)=n (i:tj) 

+ + L implies <ao>n v--------v<am>n == ; 

(iii) m(ai, n, a.i)=n, (i=tj) i, j=O, 1,--------- , m such 

that <ao>
11
,-----------, <am>n E S(F 11 (L)) then 

<a > +v-----------v<am>n +=L. 
0 n 

Proof: (i)⇒ (ii) is trivial by above theorem. 



(ii)⇒ (iii) 1s obvious. 

(iii) ⇒ (i). 

<bm> =<a1> n---------------"<a > + n n 1 1 m n • 
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These intersections are principal n-ideals as we know that 

any finitely generated n-ideal contained in a principal 

n-ideal is principal. Hence we also have <bi> 11 n<bj>n={n}, 

for all i:;t:j. So, (<bi>nn<b.i>nt+=<bi>/+n<b.i>/+={n}, for 

all i:;t:j and <bo>/+ ,-----------, <bm>/+ E S(F n(L)). 

Thus by (iii), <bo>/v-------------v<bm>/=L. 

That is ( <a I> nr'l- -- -- - -- - - - - - -n<am> nt v-- -- -- - - - -v( <a I> nr'l-­

- - - - -- - -- -- -n<am> n +f = L, which is Lee's identity. That is, 



2 . Gen er a Ii z a ti o n s of so in e res u Its 

relatively Rm-lattices. 
on 
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Several characterizations on relative Bm-lattices 

have been given by Davey in [11]. Also Cornish have 

studied these lattices in [8] under the name of relatively 

n-normal lattices. 

Recall that a lattice L is relatively 1n Bm if its every 

interval [a, b] (a, bEL a<b) is in Bm, 

Following result gives some characterizations of 

Fn(L) which are relatively In Bm, which IS a 

generalization of [11, Theorem-3.4]. 

Theorem 4.2.1. Let L be a distributive lattice with 

n EL. Suppose F n(L) is relatively pseudocomplemented. 

Then the following conditions are equivalent: 

(i) F
0
(L) is relatively in Bm; 

(ii) For all x 0 , X1,-------------,X111EL 

<<XI> 
0
n<x2> 

11
(1- --- -- -------n<xm>11, <xo> n> 

< > <x > >=L << > n<x > n------n Xm-1 n, m n v--------v x 0 11 t 11 

(iii) For all Xo, x,,--------------------,Xm, zEL, 



Then 

<<xo>nn<x 
1
> ,,......______ < 

, , 1 -------------n x > < > > m 11 , Z 11 

=<<x1> n--------n ------------------n<x > <z> > m 11, 11 

(iv) For any m+l pairwise incomparable prime 

n-ideals P 0 , P 1,---------,Pm , Pov---------vPm=L. 

(v) Any prime n-ideal contains at most m mutually 

incomparable prime n-ideals . 
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Proof: (i)⇒ (ii). Let zEL, consider the interval 

<xo> 11 n<x I> 1111---- --------n<xm> 11 n<z> 11 lS the 

smallest element of the interval I. For O:s;i < m, the set of 

n-------n<xm> 11 n<z> 11 are obviously pairwise disjoint in 

the interval I. Since I is in Bm, Then by Theorem 4.1 . 13, 

<to>n °v- --- ------v<tm>n °=<z> 11 • So by Theorem 1.1.12, 

zvn=P 0v----------- - ----------vPm where Pi~n. 

Th us, <Po> 1111 < to>n=<P 1 >nn <t I >n=------=<P m>nn<tm>n 

= The smallest element of I 

which implies <Po>nn<to>nc<xo>n. 

Again, <Po>nn<to>n=<Po>nn<x I >nn---------n<Xm>nn<Z>n 
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=<Po>nr'l<X1>nn------------------n<x > as <P > m n, O nC<Z>n, 

This implies <Po> n<x > n , n I n --------------n<Xm>nC<Xo>n 

and so, <Po>nE<<x1>nn<x2>nn---------,-.,.<x > <X > > 1 1 Ill 11 l Q 11 

By a dual proof of above we can easily show that 

Z/\ n C < <X J > nfl < X2> n- - - - - - - - - -- - - - -- -- --n <Xm> 11 , <Xo> n > 

Hence by convexity, 

This implies (ii) holds. 
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(ii)⇒ (iii). Suppose 

b E <<xo>nn<x I >nn-------n<x > < > Th b 
m 11, Z>n . en y 

(ii) and Theorem 1 1 12 b -
· · , vn-sovs1v---------vsm, for some 

- - - - - - - - - - - -- - - - - - - -
- - - - - - - - - - - - - - - - - - - -

SmE<<Xo>nn<X1>nn-------------"<X 1> <X > > 
' 

1 m- n, m n 

and si~n, i=O, 1,-------- - -------,m. 

------------------------------------------------------

------------------------------------------------------

C<Xo>nn<x I >11n----------n<xm>11n<bvn>nC<Z>11, 



Therefore, bvn E <<x > r--< I n• I X2>nn-------n<x > m n, 

v<<xu>11n<x2>11n-------------n<x > 
m n, 

v -----v<<x > ~< 0 n1 1 Xt>nn----n<x 1> m- n, 

The dual proof of above gives 

Thus by convexity, 

V-------V < <Xo>nn <XI >n11----- -n<Xm-1 >n, <Z>n >, 

Since the reverse inequality always holds, so (iii) holds. 

(iii)⇒ (i). Suppose, n~b~d. 
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Let xo, x
1
,---------,XmE[b, d] such that XiAxj=b, for all i:;tj. 



Let t 0=x I vx 2v----------- ------------vxm 

t I =xoVX1V----------- ------------VXm 

tm=XoVX I v-------------------vx m-1 

clerly, n::::;b::=:;ti::::;d and 

XO =t I /\ t2 /\ -- - - - -- -- -- - - - -- - - -- /\ t m 

X m =to/\ t I/\ - - - - - - - - - - - - - - - - - - /\ t m-1 · 

v-----v<<to>nn<t1>n>v- - -----v<<tm-l>11, <b>n>} 

=[b, d]n<<b> n, <b>n>=[b, d]nL=[b, d], that IS, 

[b , d] is in Bm· Hence, [n) is relatively in Bm· 
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A dual proof of above shows that (n] is relatively in dual 

Bm. Since F
11
(L)=(n]dx[n) so, Fn(L) is relatively in Bm. 
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(ii)⇒ (iv). Suppose (ii) holds. Let p
0 

p
1 

_________ p 
' ' ' Ill 

be m+l pairwise incomparable prime n-ideals. Then , there 

exist Xo, X1,~---------------,XmEL such that 

XjEPj-~1 Pi. Then by (ii), 
i:;cj 

<<XI> nn <X 2> nn-- - - - - - - - ------- - - --n <Xm> n, <Xo> n > 

No w x -Cl'P 0 for i=l 2 ------------ - ------ m implies that ' ,ic ' ' ' ' 
<Xi>nCZ:Po for i=l, 2,------------------------------,m. Thus 

<X1>nn<x2>nn------------------n<xm>nCZ:Po as Po is prime. 

This implies <to>ncP 0 , and so toEPo . 

< <Xo>nn<x I >nn---------n<Xm>n, <X2>n>cP2 

Hence P 0 vP1v----------vPm=L. 
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(iv)<=>(v) is trivial by Stone's representation theorem . 

(iv)⇒ (i). Let any 111+ I pairwise incomparable prime 

n-ideals of L are comaximal. Consider the interval [b, d] 

in L with b, d2n, let P 0 ', P 1' ,- -------,Pm' be m+I distinct 

minimal prime ideals of [b, d]. Then by Lemma 3.2.9, 

there exist prime ideals P 0,--------,Pm of L such that 

Po'=Pon[b, d]-------Pm'=Pmn[b, d]. Since each Pi 1s an 

ideal, so bEPj. Moreover, n~b i1:11plies that nEPj . 

Therefore each Pi is a prime n-ideal by Lemma 1.2.5. 

i=O, 1,-------,m. Since P 0 ',---------,Pm' are incomparable, 

so Po,--------- , Pm are also incomparable. Now by (iv), 

Pov--------vPm=L . Hence Po'v--------vPm' 

=(P 0 v--------vP 01 )n[b, d] = Ln[b, d]=[b, d] . Therefore by 

Theorem 4.1.8, [b, d] is in Bm. Hence [n) is relatively in Bm, 

A dual proof of above shows that (n] is relatively in dual 

Bm. Since F 0 (L)=(n]dx[n), so F 11 (L) is relatively in Bm. □ 

We conclude this chapter with the following result 

which is also a generalization of [11, Theorem-3.4]. 

Theorem 4.2.2. Let L be a distributive lattice with 

nEL . Suppose f 11 (L) is relatively pseudocomplemented. 

Then the following conditions are equivalent: 

(i) f 0(L) is relatively in Bm; 
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(ii) lfb, ao, a1,----------,amEL with m(ai, n, ai)E<b>
11 

(i:t:j), then <<ao>n, <b> 11 >v-------v<<am>n, <b>n>=L. 

Proof: (i)⇒ (ii). 

By Theorem 4 .2. l (v), any prime n-ideal containing b 

contains at most m minimal prime n-ideals belonging to 

<b> 11 • Hence by Theorem 4.1.7 with J=<b> 11 , we have 

(ii)⇒ (i). Consider b, cE[n) with b::;c. Let a 0 ,-----,amE[b, c] 

with ai/\aj=b (i:;tj) then by m(ai, n, aj)=bE<b> 11 • Then by (ii), 

=<ao, b>[b. c]V----------v<am, b>[b , c]· 

Hence by Theorem 4.1.8, [b, c] is in Bm. 

Therefore [n) is relatively in Bm. 

A dual proof of above shows that (n] is relatively in 

dual Bm. Therefore, by Theorem 1 . 1.2, F 11 (L) is relatively 
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Chapter-5 

Distributive and modular n-ideals of a lattice. 

Introduction: 

The notion of standard n-ideals 9f a lattice was 

introduced by Noor and Latif in [49]. Then they studied 

those n-ideal's extensively and included several properties 

in [50] and [51]. Moreover, in [35] Latif has generalized 

isomorphism theorems for standard ideals in terms of 

n-ideals. In this section we give a notion of distributive 

and modular n-ideals of a lattice. 

An n-ideal S of a lattice L is called a standard n-ideal 

if it is a standard element of the lattice ln(L). That is, S is 

called standard if for a11 I, JEl 0 (L), ln(SvJ)=(lnS)v(lnJ). 

Distributive elements and ideals were studied 

extensively by Gdi.tzer and Schmidt in [18]; also see [14]. 

On the other hand, [ 5 6] have studied the distributive elements 

and ideals in join semilattices which are directed below. 

An element d of a lattice L is called distributive if 

for all x, yEL, dv(xAy)=(dvx)A(dvy). An ideal I is called 

distributive if it is a distributive element of the ideal 

lattice I(L). 
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In [59] and [60], Talukder and Noor have given the 

notion of a modular element and a modular ideal of a 

lattice. According to them, an element 111 of a lattice L is 

called modular if for all x, yEL ' th < Wl Y-X, 

XA(mvy)=(xAm)vy. An ideal of L is called modular if it is 

a modular element of I(L). In [59], [60] authors have · 

given several characterizations of modular elements and 

ideals of a lattice. On the other hand, Malliah and Bhatta 

in [38] have called an element m of a lattice modular, if 

for all x, yEL with x~y, XAm=yi\m and xvrn=yvm imply 

that x=y. It 1s very easy to see that both the definitions 

are equivalent. [59] have also shown that an element s is 

standard if and only if it is both distributive and modular. 

Recall from chapter 1 that an element sEL is standard 

if for all x, yEL, xA(svy)=(xAs)v(xAy). An element nEL is 

called neutral if it is standard and for all x, yEL, 

nA(xvy)=(nAx)v(nAy) that is, n is dual distributive. 

In this connection it should be mentioned that 

Gratzer in [14] posed an open problem "generalize the 

concept of standard, distributive and neutral ideals to 

convex sublattices". Fried and Schmidt in [12] have given 

a neat description of standard convex sublattices. 

[40] h t · d to g1·ve some descriptions on Neiminen in ave rie 

distributive and neutral convex sublattices. But some of 
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his results are completely wrong which we do not wish 

to mention here, as it is beyond the scope of this thesis. 

On the other hand, Malliah and Bhatta [38] have given 

the concept of D-sublattices which 1s a nice 

generalization of distributive ideals to convex 

sublattices. They have also introduced the notion of 

M-sublattices which generalize the notion of modular 

ideals. Recently Noor and Rahman in [46], [47], have 

given new definitions of distributive and modular convex 

sublattices. Since the n-ideals are also convex sublattices, 

the notion of distributive and modular n-ideals easily 

follow from above notion as a particular case. 

In section 1 of this chapter we introduced the concept 

of distributive n-ideals of a lattice. Then we have given 

several characterizations of it. For a distributive n-ideal I 

of a lattice L we have also given a definition of 0(1), the 

congruence generated by I. We have shown that for a 

neutral element n of a lattice L, the principal n-ideal <a>n 

is distributive if and only if a/\n is dual distributive and 

avn is distributive. 

Section 2 discusses the modular n-ideals with its 

H · I <led several several properties. ere we inc u 

f d 1 n-ideals. We have proved characterizations o mo u ar 

some results similar to the results on standard n-ideals in 
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[49] and [50]. We have also proved that for a neutral 

element n, if for a modular n-ideai M and arbitrary n-ideal 

I, both InM and lvM are principal, then I itself is 

principal. 

Finally we have discussed some of the properties of 

standard and neutral n-ideals in section 3. We conclude 

the section by showing that for a neutral element n, the 

lattice of standard n-ideals is isomorphic to the lattice of 

standard n-congruences. 
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1· DiS tributive n-ideals of a lattice. 

Recall that an n-ideal I of a lattice L is a dis t ributive 

n-ideal if it is a distributive element of the lattice In(L). 

That is, I is called distributive if for all J, KEin(L), 

I v(J nK)=(I v J)n( I vK). 

We start this section with the following 

characterization of distributive n-ideal. 

Theorem 5.1.l. An n-ideal I of a latt ice L is 

distributive if and only if 

Iv(<a>nn<b> 0 )=(1v<a>n)n(lv<b> 11 ) for all a, bEL . 

Proof: If I is distributive, then the condition clearly 

holds from the definition. To prove the converse, suppose 

given equation holds for all a, bEL. Let J and K be any 

two n-ideals of L . Obviously Iv(JnK)c(IvJ)n(IvK). To 

prove the reverse inclusion, let xE(IvJ)n(I v K). Then 

xElvJ and xElvK. Then i 1Aj 1.:s;x.:s;i 2vh and i3Ak3.:s;x.:s;i4vk4 

for some i 1, i2, i3, i4El, j1, j2EJ and k 3 , k 4EK. Now 

n s;; xv n s;; i 2 v j 2 v n imp Ii es that xv n E Iv <j 2 v n > n. Similarly 

ns;;xvns;;i 4vk4vn implies that xvnElv<k4 vn> 11 • 

Thus, xvn E (Iv<jivn>n)n(Iv<k4vn> 0 ) 

=Iv( <j 2vn>nn < k 4 vn> 0 ) c l v(Jnk). 
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By a dual proof of above, we can show that 

XAnElv(JnK.). Thus by convexity, XElv(JnK). Therefore, 

Iv ( J n K) =(Iv J) n (Iv K), and so I is distributive. □ 

Now we give another characterization of distributive 

n-ideal. To prove this we need the following lemma which 

is well known and is due to [14, Theorem-2, Page-139]. 

Lemma 5.1.2. An element a of a lattice L is 

distributive if and only if the relation 8 a defined by X=Y8a 

if and only if xva=yva is a congruence. □ 

Theorem 5.1.3. An n-ideal I of a lattice L is 

distributive if and only if the relation 0 (I) defined by 

X=y0(I) (x, y EL) if and only if xvi 1 =yvi I and XAi 2=y Ai 2 

for some i 1, i 2 EI is the congruence generated by I . 

Proof: At first we shall show that X=y0(I) if and only if 

<x> 0 =<y> 0 0 1 in I 0 (L) . Let X=y0(I). Then xvi ,=yvi I and 

xAi 2=yAii for some i 1, i2EI. Now xAi2=yAi2:$y:$yvi,=xvi, 

implies that yE<x> 0 vl. Similarly xE<y>nvl. Therefore, 

<x> 0 vI=<y> 0 vI, which implies that, <x>n=<y>n01 in ln(L). 

Conversely, if <x> 0 =<y>1101 in In(L), then <x>nvl=<y>nvl. 

Then xE<y>
0
vI, and so yAnAi1:$x:$yvnvi2. Similarly 

Thus which 
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Similarly, 
IS, XV i ==yv i and 

X=y0(I). 

Above proof shows that 0(1) is a congruence 1n L if 

and only if 01 is a congruence in In(L) . But by Lemma 

5 .1.2, 01 is a congruence if and only if I is distributive in 

In(L), and this completes the proof. IJ 

We know from [14] that an ideal generated by a set 

of distributive (standard) elements 1s distributive 

(standard). Now we generalize this result: 

Theorem 5.1.4. Let n be a neutral element of a lattice 

L . Then a Jin it el y generated n - ideal < a 1 , ........... , am> n is 

distributive if a 1An, .... .. . ,am/\n are dual distr ibutive and 

a 1vn, ........... ,amvn are d istributive in L. 

Proof: Suppose a1/\n, .. . .... .. .. ,am/\Il are dual 

distributive and a 1vn, ......... ,amvn are distributive in L. Let 

J, KEI
11
(L). Suppose XE(<a1, ..... ,am>nvJ)n(<a, , ... .. ,am>nvK). 

Then using distributivity of a1vn, ........... ,amvn, we have 

x~(a 1 v . .. .. ... va 01 vnvj)A(a 1 v ....... . vam vn vk) 

=( a 
I 
vn)v [ ( a2 v .. . . .. . ... vam vn vj)A(a2v ....... . .. vam vn vk)] 

for some j EJ , kEK. 
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................................... ................. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
=( a 1 vn) v( a2 v n )v ..... . ... v( am vn)v(j Ak) 

=( a 1 va2 v ......... vam vn)v( (j vn)A(k vn)). 

But (j vn)A(kvn)=m(j vn, n, k v n) E J nK. Dual Iy using the 

dual distributivity of a 1An, ...... ,am/\n, it is easy to see that 

a 1 /\ a 2 /\ ............. /\ a rn /\ n /\ ( (j 1 /\ n ) v ( k 1 /\ n ) ) ~ x for s o m e j I E J , 

k 1 EK. Moreover, (j 1 /\ n) v ( k 1 /\ n) = rn (j 1 /\ n, n, k 1 /\ n) E J n K. 

Thus by convexity XE<a 1, ........... ,am>nv(JnK). Since the 

reverse inclusion is trivial, so <a 1, ........... ,am>n is 

distributive. □ 

It should be mentioned that the converse of above 

result is not necessarily true. For example consider the 

following lattice. 

1 

d/ f 

a c(~( 
C 

~' 

Figure 5 .1 

Here <a, f>n=L which is of course distributive in In(L). 

But neither avn nor fvn is distributive in L. 

But the converse holds for principal n-ideals. 
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Theorem 5.1.5. Let n be a neutral element of a 

lattice L. Then <a>n is distribuNve if and only if aAn is 

dual distributive and avn is distributive. 

Proof: If a An lS dual distributive and avn IS 

distributive. Then by Theorem 5.1.4, <a>n is distributive. 

To prove the converse, suppose <a>n is distributive . Let 

b, CEL. Then <a>nv(<b>nn<c>n)=(<a>nv<b>n)n(<a>nv<c>n), 

Thus, (aAn, avn]v([bAn, bvn]n[cAn, cvn]) 

=[aAbAn, avbvn]n[aAcAn, avcvn]. This implies 

aAnA( ( bAn)v( CA n) )=( al\ bAn)v( al\ cAn) and 

avnv((bvn)A(cvn))=(avbvn)A(avcvn). That is , 

( a An )A ( b vc )=( al\ bAn)v( aA cAn) and 

(avn)v(bAc)=(avbvn)A(avcvn), as n is neutral. Therefore, 

aAn is dual distributive and avn is distributive in L. iJ 

For a distributive n-ideal I of a lattice L, consider 

the lattice ~- Suppose In(~) represents the lattice of 
0(I) 0(1) . 

all convex sublattices of__!:'._ containing I as a class. We 
0(I) 

conclude the ~ection by generalizing a result [ 14, Theorem-7, 

Page-148] by the following theorem. 

Theorem 5.1.6. Let I be a distributive n-ideal of a 
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lattice L. Then In(~) is isomorphic with the lattice of 
0(1) 

all n-ideals of L containing I, that is, with [I, L] in I
0
(L). 

Proof: Let <.p be the homomorphism x➔ [x]0(I) of L 

onto ~- Then it is easy to see that the map \v:K➔Kcp · 1 
0(1) 

maps In(~) into [I, L] . To show that \V is onto, it is 
0(1) 

sufficient to see that [J]0(l)=J for all }:=)I. Indeed, if jEJ 

and a EL with j=a0(I) , then jvi=av i and jAi 1=aAi 1 for some 

i, i 1 El. Thus jAi 1~a~jvi. Since jAi 1, jviEJ, so by convexity 

aEJ. Moreover , \V is ob v iously an isotone and one-one. 

Therefore , it is an isomorphism . 0 
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2. Modular n-ideals of a lattice. 

An n-ideal M of a lattice L is called a modular n-ideal 

i f i t i s a m o du I a r e l e m e n t o f th e l a tt i c e 1i
1 

( L ) . r n O t h er 

words M is called modular if for all I, JEln(L) with Jcl, 

ln(Mv J)=(InM)v J . 

We know from [59] that a lattice L is modular if and 

only if its every element is modular. Also from [31], we 

know that for a neutral element n of a lattice L, L is 

modular if and only if In(L) is so. Thus, for a neutral 

element n, the lattice L is modular if and only if its every 

n-ideal is modular. 

Following result gives a characterization of modular 

n-ideals of a lattice. 

Theorem 5.2.1. MEl 11 (L) is modular if and only ~f for 

any J, KEP 11 (L) ·with KcJ, Jn(.MvK)=--=(JnM)vK. 

Proof: Suppose M is modular. Then above relation 

obviously holds from the definition. Conversely, suppose 

Jn(MvK)=(JnM)vK for all J, KEPn(L) with KcJ . Let 

S , TEln(L) with TcS. We need to show that 

Sn(MvT)=(SnM) v T. Clearly (SnM)vTcSn(MvT). To 

prove the reverse inclusion let xESn(MvT). Then xES and 



XEMvT. Then m/\t:$x::5m1vt1 for some m m EM t t T 
, I , , I E . 

Thus, xvn::5m1vt1vn which implies xvnE<m 1vn>nv<t
1
vn>n 

cMv<t1vn>n, Moreover, xvnE<xvt 1vn>n and 

<xvt1vn>n:)<t1vn>n. Hence by the given condition, 
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xvn E <xvt1 vn>nn(Mv<t 1 vn> 11 )=( <xvt 1 vn>nnM)v:$t
1 
vn>nc 

(SnM)vT. By a dual proof of above we can easily see that 

X/\nE(SnM)vT. Thus by convexity xE(SnM)vT. Therefore, 

Sn(MvT)=(SnM)vT, and so Mis modular. D 

Now we give another characterization of modular 

n-ideals when n is a neutral element in the lattice. 

Theorem 5.2.2. Suppose n is a neutral element of a 

lattice L. An n-ideal M is modular if and only if for any 

x E Mv<y>n with <y> 0 c<x>n, x=(xAm 1 )v(xAy)=(xvm2)A(xvy) 

Proof: Suppose M is modular and xeMv<y>n. Then 

XE<x>nn(Mv<y>n)=(<x>nnM)v<y>n. This implies 

pAyAn::5x::5qvyvn for some p, qE<x>nnM. By Proposition 

1.1.1, q E <x> 11 nM implies that q=(xAq)v(xAn)v(qAn) 

=(xA(qvn))v(qAn). Thus, xvn::5(xA(qvn))vyvn::5xvn, which 

imp 1 ies xvn=(xA( q vn) )vyvn=(xA( q vn))v(y A(xvn))vn 

=(xA(qvn))v(xAy)vn, as n is neutral. Hence by the 

neutrality of n again, x=xA(xvn)=xA[(xA(qvn))v(xAy)vn] 
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=(xA [ (xA( q vn) )v( X/\Y)] )v(xAn)=(xA ( q vn) )v(xAy )v( X/\n) 

=(xA(qvn))v(xAy), which is the first relation where 

m,=qvn EM. A dual proof of above establishes the second 

relation. 

Conversely, let <y>nc<x>n, By Theorem 5.2.1, we 

need to show that <x>nn(Mv<y>n)=(<x>nnM)v<y>n, 

Clearly R.H.ScL .H.S. To prove the reverse inclusion let 

tE<x>nn(Mv<y>n)- Then tE<X>n and tEMv<y>n. Then 

mAyAnstsm 1vyvn for some m, m 1 EM. Thus, 

tvyvnsm 1 vyvn, and so tvyvn E Mv<yvn>n and 

<yvn> 11 c<tvyvn>n. So by the given condition tvyvn= 

( ( t v y v n) /\ m ' ) v ( y v n) for some m' E_ M . S inc e t, y E < x > 11 , so 

tvyvnE<x>n. Moreover, by the neutrality of n, 

( (tvyvn )Am' )v( yvn )= [ ( tvyvn)A (m' v n)] vy 

=m(tvyvn, n~ m')vyE(<x>nnM)v<y>n . Therefore, 

tvyvn E ( <x> 11 nM)v<y>n. By a dual proof we can show that 

tAyAnE(<x>nnM)v<y>n. Thus by the convexity, 

tE ( <x>nnM)v<y>n, Therefore, <x>nn0\1v<y>n)=(<x>nnM)v<y>n 

and so by Theorem 5 .2.1, M is modular. □ 

In [38], it has been proved that for a modular ideal M 

and an arbitrary ideal I if IvM and InM are principal, then 

I is itself principal. Now will generalize this result for 

modular n-ideals. It should be mentioned that similar 
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result on standard n-ideals has been proved by Noor and 

Latif in [50] . 

Theorem 5.2.3. Let n be a neutral element- of a lattice 

L. Suppose M is a modular n-ideal and I is any n-ideal of 

L. If Mvl=<a>n and MnI=<b>n, then I is principal. 

Proof: Here MvJ=<a>n=laAn, avnJ, then avn$rnvi for 

some mEM, iEl. Since m, i$avn, so avn=mvi. Similarly 

aAn=m1Ai1 for some m 1 EM and i 1 El. Again, Mnl=<b>n 

implies a An$b$avn . Thus, 

<a>n=MvI::)Mv[bAi 1An, bvivn]::)[m 1An, mvn] 

v[bAi 1An, bvivn]=[aAn, avn]=<a> 11 • This implies 

MvI=Mv[bAi 1An, bvivn]. On the other hand, 

<b>n=M n l::)Mn [bA i 1 An, bvi vn] ::)Mn<b>n=<b>n imp 1 ies 

that MnI=M·n[bAi 1An , bvivn]. Since [bAi 1An, bviv n]cl, 

so by the modularity of M we have I = [bAi 1An, bvivn]. 

Now by Theorem 1.1 . 13, we know that for a neutral 

element n, any finitely generated n-ideal contained in a 

principal n-ideal is principal. Since [b Ai 1An, b v ivn]c<a> n, 

so I is principal. [ J 

We conclude this section with the fo llowing result: 

Theorem 5.2.4. If Mis a modular n-ideal and n is 

any n-ideal of a lattice L, th en InM is also modular in the 

sublaltice I. 
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Proof: Let J, K be any two n-ideals contained in I 

with KcJ. Then Jn[(InM)vK]=Jn[In(MvK)], as M is 

modular and Kcl. Thus, Jn[(InM)vK]=Jnln(MvK) 

=Jn(MvK)=(JnM)vK (using the modularity of M again) 

=(Jn(lnM))vK. This implies ln:tvl is a modular n-ideal 

in I. D 
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3. Some properties of standard and neutral 

n-ideals of a lattice. 

Recall that an n-ideal S of a lattice Lis standard if 

for any I, JEln(L), ln(SvJ)=(InS)v(InJ). Sis called 

neutral if 

(i) it is standard and 

(ii) for all I, JEln(L), Sn(IvJ)=(Snl)v(SnJ), that is, 

it is a dual distributive element of In(L). 

By [60], we know that any element of a lattice is 

standard if and only if it 1s distributive and modular. 

Thus, in a modular lattice every distributive element is 

standard. Not only that, 1n a modular lattice every 

stan <lard element is a Is o neutral. The ref ore, an n-i deal is 

standard if and only if it is both distributive and modular. 

Since for a neutral element n of L, L is modular if and only 

if In(L) is modular, so every distributive n-ideal of L is 

standard (also neutral) when L is modular and n is neutral. 

Like Theorem 5 . 2.1, we can easily prove that the 

following result: 

Theorem 5.3.1. An n-ideal S is standard if and only if 

<a>nn(Sv<b>n)==( <a>nnS)v( <a>nn<b>n) for all a, b EL. D 
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Our next result is also very easy to prove as it is dual 

to the proof of Theorem 5.1.1. Thus we omit the proof. 

Theorem 5.3.2. An n-ideal S is dual distributive zf and 

only if Sn( <a>nv<b>n)=(Sn<a> 0 )v(Sn<b>
0

) for all a, bEL.O 

In [ 15] Gr~itzer have shown that an element n is neutral 

if and only if m(x, n, y)=(xAy)v(xAn)v(yAn)= 

(xvy)A(xvn)A(yvn)=md(x, n, y) for all x, yEL. Combining 

this result with above theorems we obtain the following result 

which is also a generalization of [14, Theorem-6 Page-148]. 

Theorem 5.3.3. Ann-ideal S of a lattice L is neutral 

if and only if (Sn<a> 0 )v(Sn<b>n)v( <a> 0 n<b> 0 ) 

=(Sv<a> 0 )n(Sv<b> 0 )n(<a> 0 v<b> 0 ) for all a, bEL. iJ 

In [50,.Lemma-l .5], Noor and Latif have proved that 

for a neutral element n of a lattice L, <a> 0 is standard if 

and only if aAn is dual standard and avn is standard. 

Moreover, for a finitely generated n-ideal we have the 

following result similar to Theorem 5.1.4. 

Theorem 5.3.4. Let n be a neutral element of a 

lattice L. Then <a 1,----------------,am>n is standard if 

a,An,----------------------,am/\11 are dual standard and 

a 1vn,----------------------,amvn are standard. 
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Proof: Let I, JEin(L). Suppose XEln(<a,,--- , am>nvJ). 

Then XEI and XE<a 1 -----a> vJ Then a · 
' , m n · 1/\-------/\am/\O/\j 

:s;x:s;a,v-------------vamvnvj, for some j, j
1
EJ. Thus, 

xvn:s;a,v------------vamvnvj I which implies 

xvn=(xvn)/\(a,v--------------------vamvnvj 
1
). Then using 

the standardness of a 1vn ,--- - ------,amvn, we have 

x vn=( (x vn)/\ ( a I vn) )v------v( (xvn)/\( am vn) )v( (x vn)/\(j vn)). 

But (xvn)/\(aivn)=m(xvn, n, aivn)Eln<aivn>n 

cln<a1,-------------,am>n. Similarly, (xvn)/\(j_vn)ElnJ. 

Therefore, xvnE(In<a 1,------,am>n)v (InJ). Dually, using 

the dual standardness of a 1/\n,----------,am/\n we can show 

that X/\nE(ln<a1 ,-------- ,am>n)v(InJ), and so by convexity 

x E (ln<a, ,---------- ,am>n)v(InJ). Therefore, 

In(<a,,-------,am> 11 vJ)c(ln<a,,---------,am> 11 )v(InJ). Since 

the reverse inclusion is trivial, so 

In ( <a I'-------·, am> n V J)=(In <a I,- -- - - -- -- 'am> n)v(I nJ), and 

hence <a 1, --------,am>n is standard. [-i 

Recall that by [ 15] an element n EL is neutral if and only 

if for all a, bEL, (a/\b)v(a/\n)v(b/\n)=(avb)/\(avn)/\(bvn). 

Since this relation is selfdual, so the dual condition of 

neutrality also implies the neutrality. Thus proceeding as 

above we can show that for a neutral element n of a lattice 

L, <a>n is neutral if and only if both a/\n and avn are 

neutral. 



Figure 5 • 1 again shows that the converse of above 

t h e o r e m i s n o t t r u e . Th e re < a , f > n = L i s st an d a rd i n I n ( L ) 

but neither avn nor fvn is standard in L. 
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In [50, Theorem-I. I OJ, Noor and Latif have shown 

that in a relatively complemented lattice with O and 1, the 

congruence lattice C(L) is Boolean if and only if every 

standard n-ideal is a principal n-ideal, where n is a neutral 

element. Since in a modular lattice, every standard 

n-ideal is neutral, so we have the following result: 

Theorem 5.3.5. For a neutral element n of a 

complemented modular lattice L, .the lattice of all 

congruence relations of L is a Boolean algebra if and only 

if every neutral n-ideal is principal. □ 

By [49] we know that an n-ideal S of a lattice L is 

standard if and only if the relation 0(S) defined by 

x=y0(S) if and only if xAy=((xAy)vt)A(xvy) and 

xvy=((xvy)As)v(xAy) for some s, tES is the smallest 

congruence containing S as a class. We also know by (50] 

that for two standard n-ideals S and T, both SnT and SvT 

are standard . Moreover, 

0(SnT)=0(S)n0(T) and 

0(SvT)=0(S )v0(T). 
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By [31], the congruence of the form 0(S) where S is 

a standard n-ideal, are known as standard n-congruences. 

Above relations show that the standard n-congruences 

form a distributive lattice. We conclude the section with 

the following result which is a generalization of [14, 

Example-15, Page-150]. 

Theorem 5.3.6. For a neutral element n of a lattice 

L, the lattice of all standard n-ideals is isomorphic to the 

Lattice of all standard n-congruences. 

Proof: Between these two lattices consider the map 

S➔ 0(S) . By above relations clearly this 1s a 

homomorphism and onto. So we need only to show that 

this is one-one. Suppose 0(S)=0(T) for two standard 

n-ideals Sand T. Let SES. Then for any tET, m(s, n, t)ES. 

Then s=m(s, n, t)0(S)=0(T). Since n is neutral, so 

m(s, n, t)=(sAt)v(sAn)v(tAn)=(svt)A ( s v n)A ( tvn). Thus , 

sAm(s, n, t)=sA(tvn)=(sAt)v(sAn), and svm(s, n, t)=sv(tAn). 

Since S=m(s, n, t)0(T), so sAm(s, n, t) 

=((sAm(s, n, t))va)A(svm(s, n, t)), and 

svm(s, n, t)=((svm(s, n, t))Ab) v (s Am(s , n, t)) for some 

a, bET. Thus, sA(tvn)= ((sA(tvn))va)A(sv(tAn)) and 

s v ( tA n)=( ( s v( tAn)) /\ b )v ( sA( tvn)). Hence, 

aAtAn~sA(tvn)~tvn which implies sA(tvn)ET. Then 
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sA(tvn)~s~sv(tAn)~bv(sA(tvn)) implies by convexity that 

sET. This implies ScT. Similarly TcS, and so S=T. 

Therefore, above mapping is one-one and hence it ts an 

isomorphism. 0 
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