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ABSTRACT 

The present thesis entitled , "A Study of Characterization of 

Some Regular Gamma Rings " is the outcome of researches carried out 

by me under the close supervision of Dr . Akhil Chandra Paul , 

Professor , Department of Mathematics , Rajshahi University . The thesis 

is of six chapters . In the first chapter we have tried to introduce all 

types of the conceptions of the complete thesis . 

In the second chapter we have given the definition of r - ring 

due to Barnes and of the relevant things . Various types of r- rings 

and their examples are also presented there . Some kinds of radical 

and corresponding theorems are also stated and important ones are 

proved. 

The definition of k - regular r -ring is given in the third chapter . 

Kyuno defined this regular r- ring . We have tried to prove that the 

class of all k - regular r - rings forms a radical . Some of · · the 

characterizations of this r - rings are developed . We have also shown 

that k - regular r - ring without zero divisors is a skew r - field . 

In the fourth chapter we have studied the von Neumann regu}arr -

rings . We have developed some properties of this r - rings . We have 

also shown that the class of all von Neumann-~ar r- rings is a 

radical. 



We have generalized Jacobson r - rings and Jacobson radical in the 

fifth chapter . The primitive r - rings and the special class of r - rings 

have also been placed there . We have proved that the Jacobson 

radical for r- rings is a special class of radicals . 

In the sixth chapter we have defined a radical determined by the 

maximal ideals of a gamma ring . We have studied some of the 

properties of this radical . 

We have included a complete bibliography of the works w_hich 

have been used as my very helpful references to finish my thesis . 

At the end of this thesis we have given a list of important symbols 

which are used in this thesis . 
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CHAPTER- ONE 

Introduction 

The concepts of a r- ring was first introduced by Nobusawa [ 29 ] in 

1964. His concept is more general than a ring . He obtained analogues of 

the Wedderburn Theorems for r - rings with minimum condition on left 

ideals. Now a day , his r- ring is called a r- ring in the sense of 

Nobusawa . 

W. E . Barnes [ 5 ] gave a definition of a r- ring which is more 

general. He introduced the notion of r- homomorphism , prime and primary 

ideals m - systems and the radical of an ideal for r- rings . He also gave 

the definition of residue class r -rings . 

Coppage and Luh [11] introduced the notion of Jacobson radical , 

Livitzki nil radical , nil radical and strongly nilpotent radical for r - rings , 

and obtained some basic radical properties for a r -ring . 

Shoji Kyuno , Nobusawa and B-smith [ 21 ] studied regular r- rings. 

They developed various properties of regular gamma rings . They also 

showed that the class of all regular r- rings is a radical . 

G . L . Booth , N . J . Groenewald and W. A . Oliver [ 9 ] defined a 

general regularity for r - rings and to explore ways of generating such 

regularities . They showed that regularities for r- rings can be generated by 
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means of polynomials . They also introduced a radical which lies between 

the Jacobson radical and the right Brown-McCoy radical. 

A Brown - McCoy radical for r- rings was introduced by G. L. Booth . 

[ 7 ] . He defined G - regularity for a r - ring and then Brown - McCoy 

radical is defined . He obtained some properties of this radical . 

A weak form of von Neumann regularity for r - rings was introduced 

by Tan in [ 32] . An element of a r- ring M is called F- regular by Tan if 

a E <a> Mr Mr< a> M. A r- ring M is called F- regular if each element 

of M is F- regular . He showed that the class of all F- regular r- rings is a 

radical. 

The concept of von Neumann regularity for r- rings was introduced 

by Chen in [ 10 ] . He showed that R(M) = { a E M : < a > M is von 

Neumann regular in M} is the greatest von Neumann regular ideal of M. 

He also obtained the result , " the class { M : R(M) = M , M a r- ring } 

forms a radical ". 

In the first chapter, an introduction of the previous works relevant to 

regularities and radicals of r -rings are given . 

In the second chapter we have defined r - ring due to Barnes . Some 

examples of r - rings are given . We have discussed the definition of some 

necessary topics such as ideal of a r - ring , right operator ring , nilpotent r -
ring , quasi - regular r - rings , r- homomorph.ism , radical , hereditary radical , 
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residue class r- rings , etc . Some corresponding theorems are also placed in 

this chapter and some of them are proved . 

In the third chapter we have defined k - regular r - rings . We have 

shown that residue class r- ring of a k - regular r- ring is also a k - regular 

r - ring . We studied some properties of this regular r- rings . We have also 

shown that the class of all k - regular r- rings is a radical . 

In the fourth chapter we have defined von Neumann regular r- rings. 

Various properties of this r -rings have been studied . We have shown that 

the class of all von Neumann regular r- rings is a radical. 

Jacobson r- rings and Jacobson radicals have been characterized in the 

fifth chapter . We have also defined primitive r- rings and special class of 

r- rings . We have proved in this chapter that the Jacobson radical is the 

largest radical for which primitive r- rings are semi simple . Also we have 

proved that the Jacobson radical is a special radical . 

In the sixth chapter we have studied the radical determined by the 

maximal ideals of a r- ring. We have characterized this type of radicals by 

means of the regularity properties of r -rings . 

A bibliography is given at the end of my thesis . 
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CHAPTER - TWO 

Gamma rings and its preliminaries 

In this chapter we have discussed the concepts of gamma rings , ideal of a 

r - ring , right and left operator ring , nilpotent r- ring , nil r - ring , quasi - regular 

r - ring etc. Here we have also given the definitions · of a radical , Jacobson 

radical etc. Some theorems relevant to these concepts are also given . 

2 Definition . 

2.1 Gamma ring : Let M and r be two abelian groups . Suppose that 

there is a mapping (composition) from M x r x M ➔ M (sending (x, a, y) 

into x a y) such that 

(i) (x + y) a z = x a z + y a z , 

x (a+ P) z = x a z + x P z, 

x a (y + z) = x a y + x a z , 

(ii) (x a y) P z = x a (y P z ), 

where x , y , z E M and a , p E r . Then M is called a r - ring . 

If the conditions of the above definition are strengthened to 

I. x a y is an element of M, ax P is an element of r, 

2. same as (i) 

3. (x a y) p z = x (a y P)z = x a (y P z) 

4. x a y = 0 for all x , y in M implies a = 0 , 

then M is called a r- ring in the sense of Nobusawa . 
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2.2 Examples : Let X and Y be abelian groups . Let M = Hom (X, Y) 

and r = Hom (Y, X ) and x a y the usual composite map for all x , y E M 

and a E r . Then clearly (i) and (ii) conditions are satisfied and M is a r­
nng. 

Every rmg M is a r- ring if we take r = M and interpret the above 

operation in the natural ways . 

2.3 Ideal of r - rings : A subset A of the r- ring M is a right ( left ) 

ideal of M , if A is an additive subgroup of M and A r M = { a a c : a E A, 

a E r, c E M } ( M r A ) is contained in A . 

If A is both a right and a left ideal , then we say that A IS an ideal , 

or two sided ideal of M . 

If A and B are both right ( respectively left or two sided ) ideals of 

M , then A + B = { a + b I a E A , b E B } is clearly a right ( respectively left 

or two sided ) ideal , called the sum of A and B . We can say every finite 

sum of right ( respectively left or two sided ) ideal of a r- ring is also a 

right ( respectively left or two sided ) ideal . 

It is clear that the intersection of any number of right ( respectively 

left or two sided ) ideals of M is again a right ( respectively left or two 

sided ) ideal of M . 

If A is a :left ideal of M , B 1s a right ideal of M and S IS any non 

,,.empty subset of M , then the set 
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Ar S = {Lai Yi Si I ai E A, Yi E r, si E S , n is any positive integer} is a 

left ideal of M and sr B is a right ideal of M . A IB is a two sided ideal 

of M. 

If a E M , then the principal ideal generated by a denoted by < a > 

1s the intersection of all ideals containing a and is the set of all finite 

sums of elements of the form n a + x a a + a ~ y + u y a o v , where n is an 

integer, x, y, u and v are elements of M and a,~, y, 8 are elements of r. 

This is the smallest ideal generated by a . 

Let a E M . The smallest right ( left ) ideal generated by a is called the 

principal right (left) ideal and is denoted by la> ( <al ) . 

2.4 Semiprime : An ideal P of a f-ring M is said to be semiprime 

if for any ideal Q , Q r Q c P implies Q c P .A r - ring M is semiprime if 

the zero ideal is semiprime . 

If A is a semiprime ideal and B is an ideal , B c A, then ( B r) 0 = ( B 

r Br Br... . . . . . . . . Br ) B c A for an arbitrary positive integer h . 

Now we state some theorems relevant to these definitions. 

ts Theorem : If Q 1s an ideal of r- ring M , then the following 

conditions are equivalent : 

(i) Q is semiprime 

(ii) if c:l!p- M such that <a>r< a> c Q , then a EQ. 



7 

Proof : Let Q be a sem1pnme ideal and for any a in M we have 

that < a > r < a > c Q , then by the definition of semiprime ideal , < a > c Q , 

therefore, a E Q. 

Again , suppose that U is an ideal of M and let U r U c Q . Then for any 

a in U , < a > r < a > c Q implies a E Q. Therefore , U c Q , thus Q is 

sem1pnme. 

2.6 Theorem : An ideal Q in a r - ring M is a sem1pnme ideal in M 

if and only if P (Q) = Q, where P(Q) represents the intersection of all prime 

ideals of M. 

2. 7 Corollary : If Q is an ideal in a r - ring M , then P(Q) 1s the 
.. 

smallest semiprime ideal in M which contains Q . 

2.8 Theorem : P(M) 1s the semipnme ideal which IS contained in every 

semi prime ideal in M . 

2.9 Theorem : If Q IS an ideal m a r- ring M, then the following 

conditions are equivalent . 

( i) Q is semi prime ideal 

(ii) if a EM such that af Mr ac Q, then a E Q 

(iii) If <a> is a principal ideal in M such that <a> r <a> c Q , then a E Q . 

(iv) if U is a right ideal in M such that Ur Uc Q, then Uc Q. 

( v) if V is a left ideal in M such that V r V c Q, then V c Q. 

2.10 Corollary: A r- ring M is semiprime if and only if a r a r a= O 

implies a = 0 . 
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2.11 Prime ideal : An ideal P of the f-ring M is said to be prime if 

for any ideals A and B of M, Ar B c P implies Ac P or B c P. 

2.12 Theorem: An ideal P of M is prime if and only if 

< a> r < b> C p ⇒ a E p or b E p . 

Proof ·: Let P be the prune ideal of M , then we have from the 

definition <a> c P or < b> c P. That is a EP or b E P. 

Conversely, suppose <a> r <b> c P implies a E P or b E P . Now let A 

and B be ideals such that Ar B c P. Now if A ct.. P, then there exists 

a1 E A such that a1 ~ p . Now for any b1 E B , < a1> f < b1> CA f BC p, 

implies b1 E P because a1 ~ P . Therefore, B c P. And so P is prime. 

2.13 Theorem : If A and P are ideals of M, Ac P and P is prune, 

then P I A is prime in M I A . Conversely , if P' is a prime ideal of M I A , f 

the canonical homomorphism of M onto M I A , then f-1 
( P') = P is a prime 

ideal of M. 

Proof: First suppose that A c P, where P is prime and ( B /A) f(C / A) 

c PI A. Then Br Cc A .So that Br Cc P. Since P is prime either B c P 

dr C c P . That is B / A c P / A or C / A c P / A , and therefore , P / A is 

prune. 

Conversely , suppose P' is a prime ideal of MI A, f is the canonical 

homomorphism of M onto MI A .Let Br Cc P = -f- 1(P'). Then (f (B)) f(f (C)) 
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cf( P) = P' and since P' is prime f (B) c P' or f( C) c p · . That is B c f-1(P') 
- I , 

or C c f (P ) . It means that B c P or C c P . So that P is prime . 

2.14 Prime r- ring : A r- ring M 1s said to be prime if the zero 

ideal is prime . 

2.15 Theorem : If M 1s a r- ring, then the following conditions are 

equivalent : 

(i) M is prime r- ring, 

(ii) a , b E M and a r M r b = ( 0) implies a= 0 or b = 0 , 

(iii) if< a > and < b > are principal ideals in M such that <a> r <h> =(0) , 

then a = 0 or b = 0 , 

(iv) if A and B are right ideals of M such that A r B = (0) , then A = (0) 

or B = (0) , 

(v) if A and B are left ideals in M such that A r B = (0) then A= (0) or 

B = (0) . 

2.16 Theorem : If P is an ideal in a r- ring M, then the residue class 

r - ring M / P is a prime r - ring if and only if P is a prime ideal in M . 

2.17 Lemma : If P is prime ideal of M then Pnl is a prime ideal of I . 

Proof : Let A , B be two ideals of I such that A r B c P n I . If <A> = 

A+ArM+MfA +Mr Af Mand< B>=B+B rM+MrB +Mf B rM, 

then I r <A> r I cA and <A> c I implies A d . Similarly we can show that 

BC I .Now (<A> r<A> f<A>) r (<B> f<B> f<B>) C A fB C Pn IC p . 

Since P is prime in M and <A> f <A> f <A> and < B> f <B> f < B> are 



ideals of M, We have either <A> f<A> f<A> c P or <B> f<B> f <B> c P. 

This implies that <A> c P or <B> c P . Therefore , either A c Pnl 

or B c Pn I . And so Pnl 1s pnme . 

2.18 Right operator ring : Let M be a r- ring and F be the free 

abelian group generated by r x M . Then A = { L ni ( Yi , x i ) E F I a E M ⇒ I:n i 

a Yi xi= O} is a subgroup of F . Let R = F /A, the . factor group , and denote 

the cos et ( y, x ) + A by [ y, x ] . Then [ a , x ] + [ a , y] = [ a , x + y ] 

and [ a , x ] + [ P, x] = [ a + ~. x ] for all a , ~ E r and x , y E M . 

We define a multiplication in R by ( I: [ Clj , X d ) ( I: wj ' y j ] ) = I: [ a i, 

Xi Pj Yj] . Then R forms a ring . Now we define a composition on M x R into 

M by a ( I: [ a i, xi] ) = I: a ai xi for a E M , I: [ a i, xi] E R, then M is a right R­

module , and we call R the right operator ring of the r- ring M . Similarly 

we can define L the left operator ring of the r - ring M . 

2.19 Nilpotent r - ring : An element a of a r- ring M is nilpotent 

if for any y E r, there exists a positive integer n = n( y) such that (a y) 0 a 

= (ay)(ay)(ay)(ay) .. .... .. (ay)a = O.A r-ring Mis said to be nil if 

every element of M is nilpotent . 

2.20 Quasi - regular r - ring : An element a of a r- rin& , M is said 

to be right quasi - regular (abbreviated rq r) if, for any y E r, there exist 

8i E r , xi E M , i = 1, 2 , 3 , ....... , n such that x y a + I: x 8i x i - I: x y a 8i x i = 0 

for all x E M . A r - ring M is called right - quasi regular if every elements 

of M are right - quasi regular. 
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2.21 Lemma : An element x of a r -ring M is rq r if and only if, 

for all Y E r, [y, x] is rqr in the right operator ring R of M. 

2.22 Theorem : Every nilpotent element in a r- ring M is rq r . 

Proof: Let a EM be nilpotent. Then for any y Er we have (a y) 0 a 

=O for some n . Let 81=82 =83 = 84 = ............... =80 =y and let x1 = -a, xi= 

( ) i -i D . - I 2 3 n - a Y or 1 - , , , ......... ,n. Then x ya+ I, x 8i xi - I, x ya 8i xi = x y(a y) a 

= 0 for each x E M . Hence a is rqr . Therefore, the proof is completed . 

2.23 r- homomorphism : Let M and N both be r- rings and f a 

map of M into N . Then f is a r- homomorphism if and only if f ( x + y ) = f 

( x) + f ( y) and f (x a y) = f (x) a f (y) , for all x , y E M and a E r . 
If f is one - to - one and onto , then f is a r -isomorphism . 

If f is a r- homomorphism of .M into N , then kernel of f i.e., 

f1( 0) = { x E M : f ( x) = 0 }, which is also an ideal of M . More 

generally, if B is a right ( left, two sided) ideal of N, then f -1
( B) = {x E 

M: f ( x )E B } is also a right (resp. left or two sided) ideal of M. Similarly, 

if f is a r - homomorphism of M onto N and A is any right ( left , two 

sided) ideal of M , then f (A) ={ f ( a) : a E A} is a right ( left , two sided) 

ideal of N. 

2.24 Theorem : Let I be an ideal of a r- ring M and f be the natural 

mapping x ➔ x + I of M into M / I . Then f is a r -homomorphism of M into 

M / I with kernel I . Conversely , f is a r - homomorphism of M into a r -
ring N and I is the kernel of f , then M I l is r -isomorphic to N. 

l.•jsbabi University Libralf 
Documentation Section 
•- N J) - 2.. .2. .2. i.; -.,ocument • .............. .... 
ft... •• 1g,lf,C>"1 
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The r - homomorphism defined in this theorem is called natural 

homomorphism which is also defined as the following way . 

Let A be an ideal of a r - ring M . Then the ordered pair ( f , I ) of 

mappings , where , f : M ➔ M / A is defined by f (x) = x +A , and I is the 

identity mapping of r, is a homomorphism called the natural homomorphism 

from M onto M /A . 

2.25 Theorem : Let f be a r- homomorphism of a r- ring M into a 

r- ring N with kernel I . Then J' is an ideal of N if and only if f ·1 
( J') = J 

is an ideal of M containing I. In this case we have M / J, N / J' and ( M /I) 

I ( J I I ) are all r - homomorphism . 

2.26 Theorem : Let I and J be ideals of the r - ring M and 

f: M ➔ M / J, the canonical homomorphism . Then I+ J = f-1( f (I)) and (I +J) 

/J is r - isomorphic to I / (I + J) . 

Now we define M - Module . 

Let M be a r - ring . The additive abelian group N is said to be an M 

- Module if there is a mapping ( composition N x rx M ➔ N ( or M x r x N 

➔ N) ( sending (n ,y, m) to n y m (or, (m ,Y ,n) to n y m ) such that 

(i) n y (m1 + m2 ) = n y m1 + n Y m 2 

n (Y1 + Y2) m = n Yim+ n Y2m 

(n1 + n2 ) y m = n1Y m + n2y m 

(ii) ( n y1m) y2m = n y1(m r2m) , for every ni EN, mi EM and Yi Er. 

A submodule of an M - Module N is an additive sµbgroup S of N such 

th,~t s r M c s . 
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N is said to be an irreducible M - Module if N r M * (0) and if the 

only submodules of N are (0) and N . 

2.27 Radical : A non - empty class 9l of r- rings 1s a radical if and 

only if 9l satisfies the following conditions : 

(i) 9l is homomorphically closed , i. e. , if A is in 9l and I is an ideal of 

A , then A / I is in 9l . 

(ii) 9l is closed under extensions , i. e., for a r- ring A and an ideal I of A, 

both I and A / I are in 9l , then A is in 9l 

(iii) If l1 c I 2 c h c . . . . . . . 1s an ascending chain of 9l - ideals of a 

r- ring A, then Ua Ia is in 9l. 

2.28 Hereditary radical : Let a be a radical . Let a r- ring M E a and 

I be an ideal of M . If I Ea , then a is said to be hereditary radical . 

2.29 Jacobson radical : The class of all right quasi - regular r- ring is 

a radical . The radical is called Jacobson radical and is denoted by J . 

2.30 Residue class r-ring: Let M be a r- ring and I be an ideal of 

M . Define M / I = { m + I I m E M } , the set of cosets of I forms a r -ring 

with respect to the operations 

( m + I ) + ( n +I ) = ( m + n ) + I 

and (m + I ) y ( n +I ) = m y n + I . 

We call M /I, the residue class r- ring of M with respect to I. 

2.31 Strongly nilpotent r -ring : A subset S of M is strongly nil if 

each of its · elements is strongly nilpotent . S is strongly nilpotent if there 
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exists a positive integer n such that ( S f) n S =(Sr Sr ... ...... .... S f)S = 0 . 

Clearly a strongly nilpotent set is also strongly nil . 

An one sided ideal I of a r -ring M is strongly nilpotent if I n - ( I fl 

r ...... If) I= 0, for some integer n . 

2.32 Theorem : Let M be a r- ring. If M has no non-zero strongly 

nilpotent left ideals , then M has no non-zero strongly nilpotent right ideals . 

Proof : Let I be a non-zero strongly right ideals of M . Then In = ( I r I 
r ...... .... .I f) I = 0 . Then J = I + M r I is a left ideal of M . By induction of 

k , it can be shown that J k c I k + M r I k , and hence J n c In + M r In = 0 , So 

J is a non -zero strongly nilpotent left ideal of M . Hence completed the 

proof. 

2.33 Theorem: If M is a f- ring in the sense of Nobusawa and 

a E M , then the following are equivalent : 

(i) a is strongly nilpotent 

(ii) <a> is strongly nil 

(iii)<a> is strongly nilpotent . 

We denote the strongly nilpotent radical by S(M). 

2.34 Theorem : If A and B are strongly nilpotent ideals of a f- ring M, 

then their sum is a strongly nilpotent ideal of M . 

Proof : Let A and B are strongly nilpotent ideals of a f- ring M , then 

if (A f)nA = O. Then ((A +B) f) n (A+ B) = (A f)nA + B1 = B1 , where B1 c B. 

If (Bf) m B = 0 then , ((A +B) f)mn+m+n (A+B) 



= (((A+B) f)n(A+B) f)m((A+B) f)n(A+B)=(B1 f)mB1 

=O. 

Hence A+B is strongly nilpotent . 
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2.35 Theorem : If A and B are strongly nil ideals of a r- ring M , then 

their sum is a strongly nil ideal of M . 

Proof : The proof of this theorem 1s similar to that of the previous 

theorem. 

2.36 Theorem : If M is a r- ring , then S(M) is a strongly nil ideal of 

M . 

Proof : Let x E S(M) then x is in a finite sum of strongly nilpotent 

ideals of M , which by the previous theorem is strongly nilpotent , whence 

S(M) is strongly nil . Hence completed the proof. 

2.37 Theorem : An ideal Q in a r- ring M is a semiprime ideal in M 

if and only if the residue class r - ring M / Q contains no nonzero strongly 

nilpotent ideals . 

2.38 Locally nilpotent : A subset S of a r - ring M is said to be 

locally nilpotent if for any finite set F c S and any finite set <I> c r, there 

exists a positive integer n such that (F<l>) n F = 0 . 

An ideal I of a r -ring M is said to be locally nilpQtent , if it is locally 

nilpotent as a r - ring . By taking F = { x} and { y} we see that a locally 

nilpotent set is nil . 

The Leivitzki nil radical of M i~ th~ sum of all locally nilpotent iq~ws 
. ' : Ii I · I I I 1 ·: 

of M is denoted by L(M) . 
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2.39 Lemma : Every sub ring and every homomorphic nnage of a 

locally nilpotent r- ring is locally nilpotent . 

2.40 Theorem : Let M be a r- ring and I be an ideal of M such that 

both I and M / I are locally nilpotent r -ring . Then M is locally nilpotent 

r-ring. 

Proof : Let S be a finite subset of M and suppose S 

={ s1,s2,S3, . ..... . . . ... ... ,Sr}. Also consider that Si + I , i = 1,2 , ...... .. , r are finite 

number of cosets of M / I . The subring generated by the cosets is S which is 

fmite and and also subset of M / I . Since M / A is locally nilpotent , then by 

the defmition for any fmite subset <I> c r , there exists a positive integer n 

such that (S<I>)n S = 0 EM/ I. Therefore, (S<I>) n Sc I . 

Now ( S <I>) n S is generated by a finite set of elements namely the set of 

all products of n of Si <I>i, \/ <I>i E <I> , with Si . Since I is locally nilpotent r­

ring , then there exists a positive integer m such that ((S<I>) n S <I>) m(S<I>) n S = 

0. 

i, e. ( S <I>) mn +m+n S= 0. 

Hence M is a locally nilpotent r - ring . 

2.41 Theorem: Let I1 c Ii c h c . .. . .. .... ....... is the ascending chain of 

locally nilpotent ideals of a r- ring M, then Ua Ia is locally nilpotent r- ring. 

Proof: Suppose S is a finite subset of M and let S c Ua Ia. Then S is 

contained in some Ia . Since I is locally nilpotent , then for any fmite subset 

<I> c r , there e~ists a positive integer n such that (S <I>) 
0 

S = 0 . Therefore , 

Ua Ia is a locally nilpotent ~~ rin9. Ther~fore, the lemma is ~roved. 
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2.42 Theorem : If I is an ideal of a r- ring M, then J (I) =In J(M). 

Proof: First we show that In J(M) c J(I). 

Let a E I n J (M) and y E r . Then a E J (M) . So that there exist x i E M , s i 
Er such that 

x Y a + I: x s i x i - I: x y a s i x i = 0 , for all x E M . 

Then x Y a y a + I: x s ix i y a - I: x y a s i xi y a = 0 

Since a EI and for each x iY a E I, we see that a is rqr in I . So that 

I n J ( M )is a rq r ideal of I . 

Now we have to show that J (I) c In J (M), for let a E J (I) and 

b E I a>. Then for any y E r, (by )2 b is in the principal right ideal m I 

generated by a . 

Hence ( b y )2 b is rqr in I . Therefore we have , 

yy(by) 2 b+I:y8iyj-I:yy(by) 2 b8iyj=O, for all yEl,where ◊jEr,yiEI. 

If x E M , then x y b E I , so ( x y b ) y (b )2 b + L x y b ◊j yj - L x y b y ( b y )2 b 8 

y j, or, x ( y b )4 + L x y b Oj y j - L x (y b) 4 Oj y j = 0. This may be written as 

X y b + ( L X ( y b ) 3 8 j y j + L X ( y b ) 2 ◊j y j + L X ( y b ) 0 j y j - X ( y b ) 3 
- X ( y 

b) 2 -xyb)-(x(yb) 4 8 jY j +Lx(yb)3ojyj+Lx(yb)2ojyj x(yb) 4
-

x ( y b) 3 
- x ( y b )2 ) = 0 , which is of the form 

x y b + I x 'A k z k - I x y b 'A k z k = 0 , Hence b is rqr in M , whence I a > is rqr 

in M , Therefore a E J ( M) . 

2.43 Direct summand : Let M be a r- ring . An ideal A of M is 

called a direct summand if there exists an ideal B of M such that every 

element x of M is uniquely expressible by x = a + b , a E A , b E B . We will 

write M = A Ee B . Also if a E A , b E B , then a y b = 0 , for all y E r . 
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2.44 m-system : A subset S of M is an m-system in M if S = <I> or 

if a , b E S implies < a> r <a> n S * <I> . The prime radical of M , which we 

denote by P (M) , is defined as the set of elements x in M such that every 

m-system containing x contains O . Barnes has characterized P (M) as the 

intersection of all prime ideals of M has shown that an ideal P is a prune if 

and only if its complement P ' is an m-system and that an ideal P of a r -
ring M in the sense of Nobusawa is prune if and only if a r b c P implies 

that a E P or b EP. 

A subset N of M is said to be an n - system in M if N = <I> or if a E N 

implies <a> nN =t:-<I>. 

2.45 Lemma : If N is an n-system in a r - ring M and a E N , then 

there exists an m - system L such that a E L and L c N . 

2.46 Theorem : If I is an ideal of the r- ring M then P (I) = I nP (M) , 

where P(I) denotes the prune radical of I considered as a r- ri11g . 

Proof : Let P(I) is the set of elements x in I such that every m - system 

of I which contains x contains O . Every m - system of I is certainly also an 

m - system of M . It follows that P (I) :=) I nP ( M ) . By the last lemma P (I) 

c I n P(M) . Thus P(I) = I nP(M) . Hence completed the proof. 
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CHAPTER - THREE 

k - regular gamma rings 

In this chapter we have defined a regular r - ring in the sense of 

Kyuno [16] . We have shown that the class of all regular r- rings in the 

sense of Kyuno is a radical . We have also developed some of the 

characterizations of these r- rings . For the simplicity of languages , we call k­

regular instead of 'regular in the sense of Kyuno'. 

3. Definition . 

3.1 k - regular r- ring : A r- ring M is called a k - regular if for 

every a EM , there exists y E r such that a y a = a 

3.2 lemma : In a k - regular r- ring M , a y b + b y a = 0 , a , b E M , 

y Er. 

Proof: We have ( a+ b) = (a+ b) y (a+ b) 

= aya +bya+ayb+byb 

= a+bya+ayb+b 

⇒ ayb+bya =O. 

3.3 Lemma : For any a E M , a+ a= 0 . 

Proof : Since M is k - r~~f1T , we have a y ~ = a for flllY a E M . 
.. .. ,: 

Hence ( a + a ) Y ( a + a ) = a + a 



That is , a + a = a y a + a y a + a y a + a y a 

= (a+a)+(a+a) 

⇒ a+a =O 

From the above lemma we can easily say that Mis commutative . For 

a Y b = - ( b y a) = (- b ). y a = b y a , for a , b E M , y E r. 
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3.4 Theorem : For a r .. ring M with a unity I , the following 

statements are given : 

(i) M is a k - regular r-ring . 

(ii) Every principal left ( right) ideal M r a ( a r M ) of M is generated 

by an idempotent of the right ( left ) operator ring R(L) . 

(iii) For every principal left ( right ) ideal M r a ( a r M ) of M there 

exists b E M such that M = M r a EB M r b . 

(iv) Every principal left (right) ideal Mr a ( a r M) of M 1s a direct 

summand of M . Then (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) . 

Proof : (i) ⇒ (ii) : Given a E M , there exists y E r such that a y a = a . 

Therefore y a y a = y a 

This implies that [y ,a] [ y, a] = [y, a] , and so that [ y, a] is an idempotent of 

R. It is clear that M r a :=) M y a 

Since M r a = M r a y a c M y a 

Therefore , M r a = M y a 

Thus the left ideal < a I = M Y a 

(ii) ⇒ (iii) : 

Let M r a = My e , where e y e = e 

Since 1 = e + ( 1 ~ e ) , then ¥ Y , ·~ 1-1· y ~ + MY ( , .,.. ~ ) impl~es 
. . ' . ' . ' 

I 

M-Mre+My(l-e). 



If a , b E M are such that a y e = b y (1 - e) 

then a y e = a y eye= by (1 - e) ye 

= b Y (1 ye - eye)= by ( e --e) =by O = 0 

Hence M = M y a EB M y (1-e) 

(iii) ⇒ (iv) is trivial . 
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3.5 Theorem : If M is a k - regular f'- ring , then every finitely 

generated left ( or right ) ideal is principal . 

Proof : If a , b E M then we have to show that M r a + M f' b is 

principal. 

Since M is a k - regular f'- ring , every principal left ideal of M is generated 

by an idempotent of the right operator ring R . So we have to prove that 

My e1 +My e2 ( with [y,ei] , [y,e2] idempotent) of R) is principal . 

Now, My e1 +My e2 =My e1 +My ( e2- e2y e1) for 

a y e 1 + b y e2 = ( a + b y e2 ) y e 1 + b y ( e2 - e2 y e 1) . 

If x E M such that 

( e2 - e2y e1) y x y (e2 - e2 y e1) = e2 - e2 Y e1 

then e2' = x y ( e2 - e2 y e1) implies 

e2'y e2' = x y (e2- e2y e1) y x y (er e2y e1) = x y (er e2y e1) = e2', 

so that e2' is an idempotent and then 

Mye1+Mye2 =Mye1+Mye2' with e;ye2=xy(e2-e2ye1)Ye1 

= x y (e2y e1 - e2y e1 y e1) = x y (e2y e1 - e2y e1) 

= 0. 

Finally , My e1 +My e~ = My (e1 + e~ - e1 Y e; ) 

becau$e , a y e 1 + b y e2 ' = ( a y e 1 + b y e; ) y ( e 1 + e; - e i'Y e2' ) . 
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Hence M fa+ Mr b 1s a principal left ideal. Similarly a r M + b r M 1s a 

principal right ideal . 

3.6 Theorem : If Mis a k - regular r- ring and if J 1s a two sided 

ideal , then M / J is a k - regular r -ring . 

Proof : Let a E M / J . Then a = a+ J, a E M 

Then there exists y E r such that a = a y a 

Hence aya = (a+J)y(a+J) 

= aya+J = a+J =a 

3. 7 Theorem : Let M be a k - regular r- ring without zero divisors. 

Then for any non zero a , b E M , a y b = 1 for some y E r. 

Proof : Let a , b E M , a -:t:- 0 , b -:t:- 0 . Then there exist y, 8 E r , such that 

a = a y a and b = b 8 b . 

Now a y ( a y b - b) = a y a y b - a y b 

= ayb-ayb 

= 0. 

Hence a y b - b = 0 . 

So b 8 ( a y b - b) = 0 implies b 8 a y b - b 8 b = 0 . Hence b 8 a y b - b = 0 

and so b 8 ( a y b -1 ) = 0 . Since b -:t:- 0, hence a y b -1 = 0 , that is a y b = 1. 

3.8 Corollary : Every k - regular r- ring without zero divisors is a 

skew r -field . 
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3.9 Semi-hereditary : A k - regular r- ring M is right semi - hereditary 

if every finitely generated right ideal of M is a projective R-module. 

A right ideal I in M is called essential if for every non - zero right ideal 

A inM,InA:t=O. 

Let Cl>(M) be the set of all essential right ideals in M , and Zr (M) = { x E 

M I x r I = 0, for some I E cI>(M) } . M is called a right non - singular r-ring 

if Z r (M) = 0 . Similarly a left semi-hereditary r-ring and a left non - singular 

r - ring are defined . 

3.10 Theorem: Let M be a k- regular r- ring . Then 

(i) all one sided ideals in M are idempotent , 

(ii) all two sided ideals are semiprime , 

(iii) the Jacobson radical of M is zero, 

(iv) M with the left and right unities is right and left semi - hereditary , 

(v) M is right and left non - singular. 

Proof : (i) : Let J be a right ideal of M . For each a E J there exists 

y E r such that a = a y a . 

Consequently, a = a ya E J rJ, 

that is J C J I' J . 

And so J = J r J . Thus we have (i). 

(ii) : Let I be two sided ideal of M . If J is a two sided ideal in M 

such that J r J c I , then J c I, because by (i) J = J r J. Hence we have 

(ii). 

(iii) : Suppose that e is a right quasi - regular and e = e 8 e . Then there 

exists r E R such that [8, e] or= r + [8, e] - [8, e] or= 0 . It follows that 
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[8, e] = [8, e] o O = [8, e] o ( [8, e] or) = ( [8, e] o [8, e]) or = [8, e] or= 0. 

Thus e = e 8 e = e [8, e] = e o = o . 
Recall that J (M) = { e E M I < e> is right quasi regular } . Since <e> = 0 , 

e = 0 and so J(M) = O . 

(iv) : We know every finitely generated right ideal in M may be written 

as h Y M , where h y h = h . Let . A = { x E M I h y x = O } . Clearly A is a 

right ideal in M . For any x E M , x = h y x + ( x - h y x ) , and M = h y M 

EB A , because if a E h y M n A , then a = h y a = 0 . Thus h y M is a direct 

summand of M and so every finitely generated right ideal in M is a 

projective R - module . It can be proved that M is left semi - hereditary . 

(v) Let J be an essential right ideal of M . Suppose that a y J = 0 , for 

some a E M , and that there exists y E r such that a = a y a . Then 

a y M n J = 0 for if x E a y M n J , then x = a y x = 0 . 

Since J is essential , a y M = 0 and so a = 0 . 

3.11 Theorem : If M is a k - regular r- ring, then every two sided 

ideal J of M is the intersection of maximal left ideals ( and also of 

maximal right ideals) . 

Proof : Here M is a k - regular r- ring . Hence M / J 1s a k -

regular r- ring by Theorem 3.6 .So JR( M / J) = 0, by Theorem 3.10 (iii). 

Therefore , J is equal to the intersection of the maximal left ideals of M . 

Toe proof for the maximal right ideals is similar . 

3.12 Theorem : My a = a y M, for all aE M .That 1s every left (or 

right ) ideal is a two sided ideal . 
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Proof : Let a E M . Then for every b E M there exists y E r such that 

a Y b = b Y a . So clearly we say that M y a = a y M . 

3.13 Theorem : If a r- ring M is k - regular, then 

(i) M is semi-prime . 

(ii) The union of any chain of semi - pnme ideal of M 1s semi - pnme . 

(iii) M / P are k - regular for all prime ideals P of M . 

Proof : Let M be k - regular . then all ideals of M are semi - prime, 

whence (i) and (ii) hold . (iii) obviously holds for 

(x_+ P) y (x + P) = x y x + P = x + P. 

3.14 Weakly nilpotent : An element a E M is said to be a weakly 

nilpotent element if there exists a non-zero element y E r and an integer n 

> 1 such that ( a y n -
1
) a = 0 . A r- ring M is weakly nilpotent if every 

element of M is weakly nilpotent . 

3.15 Theorem : In a r- ring M with no non - zero weakly nilpotent 

elements , every idempotent commutes with every element in M . 

Proof : Let e = e y e , y E r , and x E M . If e = 0 , 

then x ye = O = e y x . Suppose e * 0, then y * 0. Since 

(eyx-eyxye)y(eyx-eyxye) 

= ( e y x ye - e y x-y e y e ) ( [ y , x ] - [ Y, x y e ] ) 

= (e y x ye - e y x ye) ( [ y, x] - [ Y, x Ye]) 

= o ~ and M has no non - zero weakly nilpotent elements , so 

e y x -e y x y e = O , or e y x = e y x y e , 
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Similarly x y e = e d Y x Y e , an so e y x = x y e , 

3.t6 Sub - directly irreducible: A gamma ring M is said to be sub 

- directly irreducible if the intersection of all non zero ideals of M is not 

zero. 

3.17 Division gamma ring : A gamma nng M 1s said to be a 

division gamma ring if M has the strong left unity [ e, 8] and the 

strong right unity [ 8, e ] , and if for each non zero element a E M there 

exists b E M such that 

a8b =b8a=e. 

3.18 Theorem : A non zero sub - directly irreducible k - regular r- ring 

with no non - zero weakly nilpotent elements is a division r -ring . 

Proof : Let M be a non - zero sub-directly irreducible k - regular r­
ring with no non zero weakly nilpotent elements . For each non - zero 

element a E M there exists y E r such that a ya =a. For any x EM we 

have a y x = x y a . Let us consider two ideals a y M and A = { x - a y x I x 

E M } , whose intersection is zero . M is sub - directly irreducible , so a y M = 

O or A = O . But a y M -=t= 0 . Hence A = 0 , and thus a yx = x y a . This 

means that [ a, y ] and [ y, a ] are the strong left and right unities 

respectively . Let b be a non zero element of M . Then there exists 8 E r 
such that b 8 b = b. Then we can write b 8 x = x = x 8 b for any x E M , 

and so b 8 a = a = a 8 b , whence ( b y a ) 8 a = a = a 8 ( a y b ) , which 

implies that b y ( a 8 a) = a = ( a 8 a ) Y b. 

Therefore, M is a division r -ring . 
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3.19 Theorem : Let I be a two sided ideal of a r- ring M. If I and 

M / I are k - regular , then M is k - regular . 

Proof : Let x EM . Since M / I is k - regular , then x y x - x E I , since I is 

k - regular the ideal < x y x - x > ( generated by x y x - x) is equal to the 

intersection of maximal ideal of I. Since intersection of maximal ideals of I 

is equal to zero , then < x y x - x > is contained in zero . This implies that 

x y x = x . Hence x is k - regular . That is M is k - regular . 

Thus we have the following : 

3.20 Theorem : The class of all k - regular r- rings is a radical . 
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CHAPTER - FOUR 

von Neumann regular gamma rings 

The object of this chapter is to characterize the von Neumann regular gamma 

rings. Here we have shown that the class of all von Neumann regular gamma rings 

is a radical . Some of the characterizations of these r- rings are developed . 

4. Definition . 

4.1 von Neumann regular gamma ring : Let M be a r- ring . An 

element a E Mis called von Neumann regular in M if a E a y My a , for some y 

E r. This means that there exists an x E M such that a = a y x y a. 

A r- ring M is called a von Neumann regular r- ring if all its elements 

are von Neumann regular. 

4.2 Lemma : If a is von Neumann regular in M , then [a , y] is von 

Neumann regular in L , where L is the left operator ring in M . 

Proof: Since a is von Neumann regular in M, then a E a y My a. There 

exists an x E M such that a = a y x y a . This implies that 

ay=ayxyay , 

and hence [ a , y ] = [ a , y ] [x , Y ] [ a , Y ] 

Therefore [ a , y ] is von Neumann regular in L . 



4.3 Lemma• If a M . . .. 
• , c E , a - c IS von Neumann regular m Mand c IS m 

a y My a ' then a is von Neumann regular in M . 

Proof : There are elements x E M and y E r such that 

a-c=(a-c)yxy(a-c) 

=ayxya-cyxya-ayxyc+cyxyc. 

This implies that a = a y x y a - c y x y a - a y x y c + c y x y c + c . 

Since c E a y My a, put c = a y y y a . 

Then we have , 
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a=ayxya-ayyyayxya-ayxyayyya+ayyyayxyayyya+ayyya. 

=ay(x~yayx-xyayy+yyayxyayy+y)ya 

= a y x' y a, where x' = x-y y a y x - x y a y y + y y a y x y a y y + y E M . 

· Therefore , a is von Neumann regular in M . 

4.4 Definition : Let I be an ideal of a r - ring M . If every element of I is 

von Neumann regular , then I is von Neumann regular . 

4.5 Lemma : If M is von Neumann regular and J is a two sided ideal of M , 

then M / J is von Neumann regular. 

Proof : Let a E M / J . Then a= a + J , a E M . 

Then there exist. x E M and y E r such that a = a y x y a . 

No~ f y x y a = ( ' t r ) l X r ~ ~ + J ) 

: · · = ay ~'Y~t~ = ~4-:~ = a 
. . : .... , :; ,' / ' . .... . 

Therefore , M I J is· von·. Neumann regular . 
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4.6 Lemma : If M 11 
and I are von Neumann regular , then M 1s von 

Neumann regular. 

Proof: We have a+ I 
' E (a+ I) Y MY (a+ I), for some y Er. 

Then there exists an x E M such that 

a+I = (a+I) y x y (a+I) = ay x ya+I. 

This implies that a - a y x y a E 1 _ 

Since I is von Neumann regular d . an smce a y x y a . E a y M y a , then by 
Lemma 4.3, a is von Neumann regular. 

4. 7 Lemma : Let Ii c I2 c .. .. ... be the ascending chain ofvon Neumann 

regular ideals, Then Ua. Ia. is von Neumann regular . 

Proof : It is obvious . 

From the Lemmas 4.5, 4 .6 and 4 .7, we have the following: 

4.8 Theorem : The class of all von Neumann regular r -rings is a radical . 

The characterizations of von Neumann regular r -rings : 

4.9 (a) Theorem : Let M be a r - ring with unity . The following 

statements are equivalent . 

(i) M is a von Newnann regular r -ring · 

(ii) Every principal left ideal M r a is generated-by an-idempotent. 

( ... ) p nn· c1··pal left ideal Mr a of M, there-:exists b -EM such--fuat 
111 or every p -



(iv) Every Principal left ideal Mr a is a direct swnmand of M . 

Proof: (i) ⇒ (ii) : 

Given a E M . Let x E M , y E r be such that a = a y x y a . 

Then M r a is generated by x y a which is an idempotent element , for 

(x ya) y (x ya)= xy ( ay x ya)= x ya. 

(ii) ⇒ (iii) : 

Let M r a = My e , where e = e y e . 

smce 1 = e + ( 1 - e ) , then 

My 1 = M y e + My (I - e) implies 

M = M y e + M y (I- e). 

If a , b E M are such that a y e = b y (1- e ) , 

then a y e = aye y e = b y (1- e) y e = b Y (I Ye - e Ye) 

= by (e-e) =by O=O . 

Hence M = M Y e EB MY ( 1 - e ) · 

(iii) ⇒ (iv) is trivial . 

G . E M there exists a left ideal J of M such that (iv) ⇒ (i ) : 1ven a , 

M=Mya EB J 

H 1 _ x y a + b where x E M , b E J · ence - ' 

So that a = a Y 1 = a Y x Y a + a Y b 

. = -a xyaEMyanJ=O This implies that a Y b a Y 

So a - a y x Y a = O 

Hence a = a Y x Y a · 

M Hence M is von Neumann regular . Therefore a E a Y Y a · 
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4.9 (b) Theorem . Let M b . 
• e a r - nng with unity . The following 

statements are equivalent : 

( i) M is a von Neum 1 . ann regu ar r -rmg . 
(ii) E 

very principal right ideal a r M is generated by an idempotent . 

(iii) For every principal right ideal a r M of M , there exists b E M such 

that M = a r M E9 b r M . 

(iv) Every principal right ideal a r M is a direct summand of M. 

Proof: The proof is similar to the proof of Theorem 4.9 (a). 

4.10 Theorem : If M is von Neumann regular, then every finitely 

generated left ( right ) ideal is principal . 

Proof: Let a, b E M . Then we have to show that My a+ My b is 

principal . Since M is von Neumann regular, every principal left ideal is generated 

. by some idempotent of M . So it is sufficient to prove that M y e1 + M y e2 1s 

principal (withe 1 & e 2 idempotent) . 

Now M y e 1 + My e 2 = M y e 1 + My ( e 2 - e 2 Y e1 ) , for 

aye1 + bye 2 = (a+bye 2) ye1 +by (e2- e2 ye1). 

If x E M such that ( e2 - e 2 y e 1 ) Y x Y ( e2 - e2 Y e 1 ) = e 2 - e2 Y e 1 , 

then e' 
2 

= x y ( e 2- e 2 y e1 ) is an idempotent and then 
I 

Mye 1 + M ye 2 = M ye1 +M ye 2 

with e'2 'Ye i = x y ( e 2 - e 2 Y e i) ye i 

_ x y ( e 2 y e1 - e 2 y e 1 Y e 1 ) 

_ x y ( . e 2 y e 1 -- e 2 y e 1 ) 

- X y 0 

- 0 . 
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Similarly we can prove that every finitely generated right ideal 1s 
principal . 

4.11 Theorem : If M is von Neumann regular r- ring, then the 

intersection of any two principal left ideals ( or right ideals) of M is principal . 

Proof : It is enough to prove that if a , b E M then M y a n M 8 b is 

principal ideal . 

To prove this we choose e1 = x ya and e2 = y 8 b, where x, y EM and y, 

8 E rare such that a= a y x ya, b = b 8 y 8 b. Then e1 and e2 are idempotents and 

My a = M y e1 , M 8 b = M 8 e2. 

Hence M = M y e1 EB My ( 1 - e1 ) = M 8 e2 EB M 8 ( 1 - e2) 

and My e1 = AnnM [( 1 - e1 ) y M] = { x EM I x y ( 1 - e1 ) Y M = 0 }, 

M 8 e2 = AnnM [ ( 1 - e1 ) 8 M ] = { x E M I x 8 ( 1 - e2 ) 8 M = 0 } . 

Indeed obviously My e1 c AnnM [( 1 - e1) Y M J. 

Conversely, if x E M and x y ( 1 - e1 ) = 0 , writing 

x = a1 y e1 + bi y ( 1 - ei) we have 

a1 Y e1 Y ( 1 - e1) + b1 y ( 1 - e1) Y ( 1 - e1) = 0 

and bi y ( 1 _ ei) = o, hence x = a1 y e1 EM Y e1 • 
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M ~ e3 = AnnM [ ( I ) 
. . - e3 ~ M ] , we deduce that M y e1 n M 8 e2 = M ~ e3 . 

Similarly a y M n b O M · . 
Is a prmcipal right ideal . 

4.12 Theorem : Th 1 e acobson radical of a von Neumann regular r -ring 
M is equal to zero . 

Proof : Let a E J (M) Th M . . · 
· us ya c J (M). Smee My a· 1s generated by 

an idempotent element e , M y a = M y e , and thus from e E J (M) it follows 

that ( I - e ) is invertible . 

So there exists x E M such that 1 = x y ( I _ e ) = x y 1 - x y e 

= x-xye. 

Hence e = 1 Y e = ( x - x ye ) y e = x ye - x ye ye = x ye - x y e = 0. 

Therefore , a = 0 . 

4.13 Theorem : If Mis a von Ne:umann regular r -ring, then every 

two sided ideal I of M is the intersection of maximal left ideals ( and also of 

maximal right ideals ) . 

Proof : Since M is a von Neumann regular r - ring , hence M / I is a von 

Ne~ann regular r -ring. So we have J (M /I) = 0 . Therefore I is equal to the 

intersection of the maximal left ideals of M . 

4.14 Theorem : The center of a von Newnann regular r - rin_g M 1s 

vqp. Neumann regular . 

Proof: Let a E c (M) ( center of M ). Let x EM and y Er be such 

that a :;;= a y x y a . 



Now 

:. a= ay x Ya -
- ayayx =xyaya 

so ' a y x = a Y a y x y x ' 

or, a= a y x y a _ ( - ayayxyx)ya 

= ay (ayxyx)ya. 

a y x E C (M) ' because if y E M then 

( a y x ) y y = ( x y y) y a= (x y y) y ( a Y x y a) 

= (ayx)yyy(ayx) = ayxyayyyx 

= ayyyx=yy(ayx). 

Also a y x y x E C (M) , because 

(ayxyx)yy=(ayx)y(xyy)=(xyy)y(ayx) 

=xyyyayx=xyayyyx=(ayx)y(yyx) 

=yy(ayx)yx=yy(ayxyx). 

Hence the center ofM is ·a von Neumann regular r -ring. 
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4.15 Theorem : Every von Neumann regular r -ring M without zero -

divisors is a skew r- field . 

Proof : Let a E M , a =t= 0 . Let x E M and y E r be such that a= a y x y a . 

Then a y ( x y a - 1 ) = 0 , ( a y x - 1 ) y a = 0 , and hence x y a = I , 

a y x = 1 , and so a is invertible. Hence M is a skew f-field . 

4.16 Theorem : If Mis a von Neumann regular r - ring whose only 

nilpotent element is zero , then 

a) Every idempotent element of Mis in the center. 

p) If a E M, a* O, then there exist b E M, y E r suclf"ili~,,l;kl,h. = by a 

= f is idempotent and a Y f= fy a= a · 
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8) M y a = a Y M for all a E M . h 
· , ence every left ( or right ) ideal is a two 

sided ideal . 

Proof : a) : Let e E M b ·ct . . 
e 1 empotent . Let a E M be an arbitrary 

element and assume that · h . 
zero is t e only mlpotent element of M . 

Since ' [ ( 1 - e ) y a y e ] y [ ( 1 - e ) y a y e ] 

=(1-e)yayey(l-e)yaye 

~(lyaye-eyaye)y(lyaye-eyaye) 

=(aye-eyaye )y (aye-eyaye) 

=ayeyaye-~ayeyaye-ayeyeyaye+eyayeyeyaye 

=ayeyaye-eyayeyaye-ayeyaye+eyayeyaye 

= 0 

Again , [ e ya y (1-e) ] y [ e ya y (1-e)] 

= (eyayl-eyaye)y(eyayl-eyaye) 

=(eya - eyaye) y (eya-eyaye) 

- eyayeya-eyayeyeya-eyayeyaye+eyayeyeyaye 

- eyayeya-eyayeya- eyayeyaye + eyayeyaye 

= 0. 

We have , 0 = (1 - e ) y a y e = I y a y e - e y a y e 

= aye-eyaye, 

and O = e y a y ( 1 - e ) = e y a y 1 - e y a y e 

= eya-eyaye. 

Hence , a y e = e y a y e = e y a and so e is in the center of M . 

p) : Let M be a von Neum~ regular r - ring having O as the only 

nilpotent element . Given a E M, a * 0 . Let x E M be such that a y x y a = a , 

for some y E r . 
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Then e = a y x , _ 
, e - x y a are idempotent elements of M ; so e and e' 

belong to the center and f-, - eye' · ·ct is an 1 empotent . 

It follows that a y ( x 
yxya)=(ayx)y(xya)=ey~. 

Also ( x y x y a ) y a = [ x y ( x Y a ) ] Y a 

=[(xya)yx]ya =[xy(ayx)]ya 

=[(ayx)yx]ya =(ayx)y(xya) 

= eye'. 

Moreover , a y e y e' = e y a y e' = a y x y a y e' = a y e' = a y x y a = a ; 

e Y e' Y a = e Y a Y e' = e y a y x y a = e y a = a y x y a = a ; 

8) : Given y E M , we have y y a = ( y y a ) y e y e' 

= e y ( y y a ) y e' 

= a y x y y y a y e' , 

and so there exists z E M such that y y a = a y z . This shows that M y a c a y M , 

and the converse is proved in a similar way . 

Hence , since every left ideal J is the sum of the principal left ideals 

generated by its elements , J is also a right ideal and vice versa . 

4.17 Corollary : Let M be a von Neumann regular r -ring. 

Then, 

(i) All one sided ideals in M are idempotent. 

(ii) All two sided ideals in M are semi - prime. 

(iii) The Jacobson radical of M is zero. 

(iv) M is right and left semi hereditary 

( v) M is right and left non- singular . 
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Proof : (i) Let J be a right ideal of M . Since M is von Neumamn regular, 

for each a E J , a = a y x y a for x E M r , y E . 

Consequently , a = a y x y a E J r M r J and also J r M r J c J r J . That is 

J c J r J . Also J r J c J . Hence J = J r J . 

(ii) Let I be a two sided ideal of M . If A is a two sided ideal in M such that 

A f A c I , then we have to show that A c I . Now by (i) A= A r A c I . 

(iii) Suppose that e is right quasi von Neumann regular. Then 

e = e 8 x 8 e for some x E M , 8 E r . Let R be a right operator ring of M. 

Then there exists r E R , such that [ 8 , e ] o r = r + [ 8 , e ] - [ 8 , e ] r = 0 

It follows that [8,e] = [8,e]oO 

- [8,e]o ([8,e]o_r) 

- ([8,e] o [8,e])o r 

- [8,e]or=O. 

Thus e = e 8 x 8 e = e 8 x [ 8 ' e ] = e 8 x O = 0 . 

Recall that J (M ) _:_ { e E M I < e > is right quasi von Neumann regular } . 

Since e = 0 , < e > = 0 and so J (M) = O · 
. 4 12 this was proved by another method . Note that m Theorem · , 

. d. to 4 10 every finitely generated one-sided ideal of M 
(iv) Accor mg · 

. . d f M and so is projective . 
1s a direct summan ° 

J = 0 for some x E M and some J c M . There is 
(v) Suppose that x Y 

th t M y e = M y x , and since M y e Y J = M Y x Y J 
an idempotent e E M such a · 
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== 0 . We see that J c ( 1 _ e ) 
= .- y M · Then J n e Y M = 0 , whence e y M = O , and 

so x O . Thus M is nonsin 1 • 
gu ar . 

4.18 Theorem . A fi . 
• ny mite subdirect sum of von Neumann regular r -

rings is von Neumann regular. 

Proof : It suffices to show that a subdrr· ect f 
sumo two von Neumann 

regular r -rings is von Neumann regular. 

Suppose that M has two ideals J and K such that J n K = o 
J+K . . M 

Now J 1s an ideal of - 1 -

Since 
J+K 

J 
K = Jn K 

is von Neumann regular. 

and since is von Neumann regular, then 
J + K 

J 

Since 

regular. 

J+K 
J and J are von Neumann regular, then J + K is von Neumann 

4.19 Theo rem : In a von Neumann regular r - ring M with no non-zero 

weakly nilpotent elements, every idempotent commutes with every elements in M . 

Proof : Let e 8 e = e , 8 E r . Let x E M . If e = 0 , then e 8 x = x 8 e. 

Suppose e :t O. Then 8 # 0. 

Now , ( e 8 x - e 8 x 8 e ) 8 ( e 8 x - e 8 x 8 e ) 

= (e8x~e-e8x8e)([8,x]-[8,x8e]) 

= 0. 

Therefore ( e 8 x - e ) 8 ( e 8 x - e ) = O ; and hence 

e8x8e8x-e8e8x-e8x8e+e8e = 0 



or ' e 8 x - e 8 x - e 8 x 8 e + e 8 e = O · 
' 

This implies e 8 ( e _ x 8 e ) = 0 . 

Since e -=I- O ' therefore , e - x 8 e = 0 and hence e = x 8 e . 

Again ' ( e 8 x 8 e - e 8 x ) 8 ( e 8 x 8 e - e 8 x ) 

= (e8x8e-e8x8e) 8([8,x8e]-[8,x])=O. 

Therefore , ( e - e 8 x ) 8 ( e - e 8 x ) = o 

or, e 8 e - e 8 x 8 e - e 8 e 8 x + e 8 x 8 e 8 x = 0 

or, e 8 e - e 8 x 8 e - e 8 x + e 8 x = O 

or, ( e - e 8 x ) 8 e = O . 

Since e -=I- 0, Therefore, e - e 8 x = 0 and hence e = e 8 x . 

Therefore , e 8 x = x 8 e . 
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4.20 Theorem : A non - zero subdirectly irreducible von Neumann regular 

gamma ring with no non - zero weakly nilpotent elements is a division gamma ring. 

Proof : Let M be a non zero subdirectly irreducible von Neumann regular 

r -ring with no non - zero weakly nilpotent elements . 

Theorem 4.19 shows that for any x E M , x 8 e = e 8 x , where e = e 8 e . 

Let a E M , a -=I- O . Let us consider two ideals a 8 M and A = { x - a 8 

M I x E M } , whose intersection is zero . M is subdirectly irreducible, so a 8 M = 0 

or A = o . But a 8 M -=f. 0 , hence A = 0 , and thus a 8 x = x . So that we can 

write x 8 e = e 8 x = x . This means that [ e , 8 ] and [ 8 , e ] are the strong left and 
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right unities respectiv I N · e Y • ow we have a y x = x = x y a for any a , x E M , and 
so a y e = e = e y a h , w ence ( a o e ) y e = e = e y ( e 8 a ) , so that 

a 8 ( e Y e ) = e = ( ey e ) 8 e . Therefore , M is a division gamma ring . 

4.21 Lemma : If x , y E M , y E r and x ' = x - x y y y x , and if x' = x' y a y 

x ' for some a E M , then x = x y b y x , for some b E M . 

Proof : x = x' + xy y y x 

= x ' y a y x' + x y y y x 

=(x-xyyyx)yay(x-xyyyx)+xyyyx 

=xy(a-ayxyy-yyxya+yyxyayxyy+y)yx 

=xybyx, 

where , b = a - a y x y y -y y x y a+ y y x y a y x y y + y . 

4.22 Lemma : Let J c K be two sided ideals in a r -ring M , then K is 

von Neumann regular if and only if J and K / J are both von Neumann 

regular. 

Proof : · If K is von Neumann regular then obviously K / J 1s von 

Neumann regular . Given x E J , we have , x y y y x = x for some y E K . 

Then z = y y x y y is an element of J and 

X y z y X = X y y y X y y y x= xy y y X = X . 

Hence J is von Neumann regular . 

Conversely, assume that J and K / J are both von Neumann regular .Given x 

E K it follows from the von Neumann regularity of K / J that x - x y y y x E , 

J for some y E K . 

Consequenpy, 



X - X y y y X = ( X - X y y y x) y z y ( X - X y y y X ) for some z E J 
so that, 
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x-xyyyx= xyzyx-xyzyxyyyx -xyyyxyzyx+xyyyxyzyxyyyx 

= X Y ( Z - Z Y X Y y-y y X y Z + y yx y z y X y y) y X 

= x Y w Y x , for some w E K . 

Therefore, K is von Neumann regular. 

In particular, we can say that every two sided ideal in a von Neumann 

regular r - ring 1s von Neumann regular . On the other hand , if J is a two 

sided ideal in a r- ring M such that J and M / J are both von Neumann 

regular, then Mis regular . This method of checking von Neumann regularity 

is quite useful when constructing examples . 

4.23 Proposition : Any finite sub - direct product of von Neumann 

regular r -rings is regular . 

Proof : It suffices to consider the case of a r- ring M which is a sub -

direct product of two von Neumann regular r- rings . Then M has two sided 

ideals J and K such that J n K = 0 and M / J and M / K are both von 

Neumann regular. Since J is isomorphic to the two sided ideal ( J + K )/ J in 

the regular r-ring M / K, then from 4.22, we have J is von Neumann regular. 

So that M / J is von Neumann regular and so M is von Neumann regular. 

Note that a sub-direct product of infinitely many von Neumann regular r­
rings, such as Z (set of integer ) , need not be von Neumann regular . 

4.24 Proposition : Let M be a r- ring, and 

set .R ={ x EM IM r x r M is a von Neumann regular ideal} . Then, 

( a) R is a von Neumann regular two sided ideal of M . 

( b) R contains all von Neumann regular two sided ideals of M . 
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( c) M I R has no non - zero von Neumann regular two sided ideal. 

Proof: (a) . Given x, y ER, we see that Mr yr M and (Mr x r M + 

Mr Yr M) I Mr Yr M are both von Neumann regular , whence from 4.22 

M f x r M + M r Y r M is von Neumann regular . Thus , M r x r M +Mr y r 

M c R, for all x , Y E R . Hence R is a two sided ideal. It is clear that R is 

von Neumann regular . 

( b) is obvious , and then ( c) follows from lemma 4.22. 

In order to show that the r- ring of all m x n matrices over a von 

Neumann regular r- ring is von Neumann regular , we proceed via the following 

lemma , which is useful in other cases as well . 

4.25 Lemma : Let e1, e2, e3, .. .. ....... , en be orthogonal idempotents in a r-
nng M such that e1 +e2 + e3 + ..... .. .... +en= 1 .Then M is regular if and only 

if for each x E ei y M y ej , there exists y E ej y M y ei such that x y y y x = x , 

y Er. 

Proof: First assume that M is von Neumann regular and let 

x E ei y My ej . Then x y y y x = x , for some y E M . 

Now x y ( ej y y y ei)y x = x y ej y y y ei y x = x y z y x = x , z E ej y My ei 

Conversely , assume that for any x E ~ r M ej , there exists y E ej y M y ei 

such that x y y y x = x . We proceed by induction on n . Since the case n = 1 

is trivial we begin with the .case n = 2 . First consider an element x E M 

such that e1 y x y e2 = O. There are elements y E e1 y My e1 and 

z E e2y My e2 such that 

( e1 y x y e1 ) y y y ( e1 y x y e1) = e1 y x y e2 and 

( e2 y x y e2 ) y z y ( e2 y x y e2 ) = e2 Y x Y e2 , then 
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x Y ( Y + 2 )y x = ( e1 Y x Y e1 + e2 y x y e1 + e2 y x y e2 ) y (y + z ) y ( e1 y x y e1 + 

e2 Y x Y e1 + e2 y x y e2 ) 

=e yxy 1 e1 Y Y Y e1 Y x Y e1 + e2 y x y e1 y y y e1 y x y e1+ e2 y x y e2 y z Y e2 

y x y e1 + e2 y x y e2 y z y e2 y x y e2 

= e1 Y x Y e1 + e2 y x y e2 + e2 y x y ( y + z ) y x y e1 · 

As a result, we see that the element x' = x- x y ( y + z) y x lies in e 2y My 

e1 • Then x' Y w Y x' = x', for some w E e 1 y My e2, whence x y v y x = x, for 

some v EM. 

Now consider a general element x E M , and choose an element y E e 2 y M 

Y e1 such that ( e1 y x y e2 )y y y ( e1 y x y e2) = e1 y x y e2 . Since y E e 2 y M ye1 , 

we see that e1 y x y y y x y e2 = e1 y x y e2, whence e1 y (x - x y y y x ) y e2 = 0 . 

By the case above ,there exists an element z EM such that (x - x y y y x )y z 

y ( X - X y y y X ) = X - X y y y X ' hence X y w y X = X ' for some w E M . 

Therefore , M is von Neumann regular. 

Finally, let n > 2 , and assume that the lemma holds for n - 1 orthogonal 

idempotents . Setting f = e2 + ................ + en and g = e1 + e2 + ................ + en , we 

thus know that f y My f and g y M y g are von Neumann regular. Consider any 

element x E e1 y M y f . There exists y E e2 y M y e1 such that (x y e2) y y y ( x y 

e2) = x y e2 , so that ( x - x y y y x ) y e2 = 0 . Then x - x y y y x E g y M y g , 

whence ( x - x y y y x) y z y ( x - x y y y x) = x - x y y y x for some z E g y My g . 

As a result , x y w y x = x for some w E M , hence we obtain f y w y e1 E f y M 

y e1 such that x y (fy w y e1) y x = x, Likewise , for any x E fyM y e1 there is 

some t E e 1 y M y f such that x y t Y x = x . Applying the case n = 2 to the 

orthogonal idempotents e1 and f, we conclude that M is von Neumann 

regular . Ther~f-0re _ the induction works . 
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4.26 Lemma . A 
• non - zero regular r- ring M is indecomposable ( as a 

r -ring ) if and only if its center is a r - field . 

Proof : Assume that M is indecomposable . Let S denote the center of 

M , and let x be any non - zero element of S . Then by 4 .14 x y y y x = x , for 

some y ES. 

Now, x Y Y Y x Y Y = x Y y . i .. e., x y y 1s a non-zero central idempotent in M . 

Since M is indecomposable , 

x y y = 1 . Therefore, S is a r- field 

In particular, this lemma shows that the center of any prime von Neumann 

regular r - ring is a r -field . 

4.27 Definition : P is a projective left A - module when the following 

property holds : if f : M ➔ N is any epimorphism , and g : P ➔ N a 

homomorphism , there exists a homomorphism h : P ➔ M such that g = f o h . 

4.28 Theorem : If A. is a finitely generated projective module over a 

von Neumann regular r-ring M , then End M (A) is a von Neumann regular r­

nng . 

Proof: According to 4 . 25, e y Mn (M) ye is von Neumann regular for 

any n and any idempotent e E Mn (M) . 

4.29 D.efinit;ion : Let M be an A - module . Then M is a free module 

whenever it has a basis . Thus every element x EM may be written m one 

and only one w,ay in the form x = Lses as s ( where as EA). 

Examples of f,r,ee modules : 
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i) The zero mod 1 · fr . u e 18 ee , with empty basis . 
ii) Every r- ring M · fr 

IS a ee left (right) M - module ; the set consisting 

only of the unit element is a basis . 

4.30Theorem : If A is a projective right module over a von Newnann 

regular r - ring M , then all finitely generated submodules of A are direct 

summand of A . 

Proof : Let A be a submodule of a free right M - module F . Given 

any finitely generated submodule B c A , we infer that F has a finitely 

generated free direct summand G which contains B . It suffices to prove that 

B is a direct summand of G , for then B is a direct summand of F and 

hence also of A . 

Choose a positive integer n such that B can be generated by n elements , 

and embed G in a finitely generated free right M-module H which has a 

basis with at least n elements . Then there exists f _E End M(H) such that f y H 

= B . According to 4.28 , End M (H) is von Newnann regular, hence there exists 

g E End M (H) such that f y g y f = f , consequently , f y g is an idempotent 

endomorphism of H such that f y g y H = f y H = B , whence B is a direct 

summand of H . Therefore , B is a direct summand of G . 

4.31 Theorem :· A r- ring M is von Neumann regular if and only if 

all right ( left ) M - modules are flat . 

Proof : First asswne that M is von Newnann regular . Let F be any 

free right M- module , and let K be any submodule of F . If A. is any 

finitely generated submodule of K , then A is a direct summand of F by 
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4.30 , whence F I A is projective . Now F / K is the direct limit of the 

modules F I A , where A ranges over all finitely generated submodules of K . 

Thus, FI K is a direct limit of projective modules, whence F / K is flat. 

Conversely , assume that all right M-modules are flat . Given x E M, the 

flatness of M I x y M implies that the natural map ( M /( x y M )) ®M MY x ➔ 

M I (x Y M ) must be injective , i. e. , the map My x I (x y My x ) ➔MI (x y M) 

is injective. Thus , My x n x y M = x y My x, and, consequently, x E x y My 

x. Thererfore, M is von Neumann regular . 

4.32 Lemma : For a commutative r- ring M , the following conditions 

are equivalent : 

( a) M is von Neumann regular . 

( b) M M' is a r -field for all maximal ideals M' of ~ . 

( c) M has no non-zero nilpotent elements and all prune ideals of M are 

maximal . 

( d ) All simple M - modules are injective . 

Proof : ( a) ⇒ ( d) : Let M' be a maximal ideal of M , let J be an 

ideal of M , and let f: J ➔ M / M' be a non - zero homomorphism. 

Then ( M' n J) r ( M' n J ) = M 'n J 

Now M' n J = ( M ' n J )r ( M' n J ) 

c J r M' c ker f c J 

. Hence J <;t. M' • 

Consequently ' x + y = 1 for some x E M' and y E J ' 

and we set w = f(y)E M/M' · 

Given any a E J we have x Y a + y Y a = ( x + y ) Y a = 1 y a = a . 

- x y a E M' r J c ker f, whence f ( a - y ya) = 0 
⇒ a - yya - -
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⇒ f (a)- f ( y ya)= o 
⇒ f (a) = f ( Y Ya)= f (y) y f (a) = w y f (a) 

Therefore , f extends to a map M ➔ M I M, . 

(d) ⇒ ( c) : We first claim that if M' is any maximal ideal of M , then x E 

xI'M' for all x E M' ·. If not , then x r M / x r M' * O for some x E M' 

Then MI M' = xrM / x r M' . Hence there exists an epimorphism 

r: x r M ➔ MI M' . 

Now f extends to a map g : M ➔ M / M' , and so f ( x y M ) c g( M' ) = 

0 , which is false . Thus the claim holds. 

Sup pose that x y x = 0 for some nonzero x E M . The annihilator J = { m 

EM Im Y x = O} is a proper ideal and so is contained in a maximal ideal M'. 

Since x E Jc M', we have x E x r M' by the claim above. Then x = x y y 

for some y E M' , and 0- y ) y x = l y x - y y x = x - x y y = 0 

⇒ 1- y E J c M ', which is impossible . Thus M cannot have any nonzero 

nilpotent elements . 

Now let P be a prime ideal of M , and let M' be a maximal ideal which 

contains P. Given any x EM', we have x Ex r M' and so 

x y ( 1- y ) = x y 1 -x y y = x - x y y = 0 for some y E M' . 

Since 1 -y ~ M', we also have 1-y ~ P, whence x E P .Thus M' = P. So that 

P is maximal . 

( c) ⇒ ( b) : Since there are no prime ideals of M properly contained in M' , 

we have see that M ' r M M' is the only prime ideal of M M' , whence 

M' r M M ' is nil . 

Given x / s EM' r MM' , we thus have (x /s) 
0 = 0 for some n, hence t y x 

0 

= o for some t E M-M' . Then ( t y x) 
0 = 0 and so t y x = 0 ,whence x /s = 0. 

Thus M' r M M' = O . So that M M' is a r- field . 
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( b) ⇒ ( a) : Let A be any M- module .For any maximal ideal M' of M , 

it follows from ( b) that A M' is a flat M M' -module , and consequently A is a 

flat M- module , According to 4.31 M is von Neumann regular . 

4.33 Theorem : A f'- ring M is von Neumann regular if and only if 

( a) M is semiprime . 

(b) The union of any chain of semiprime ideals of M is semiprime . 

( c) M I P is von Neumann regular for all prime ideals P of M . 

Proof : If M is von Neumann regular , then obviously ( c) holds . In view 

of 4.17 (iv) all two sided ideals of M are semiprime, whence (a) and (b) hold. 

Conversely, assume that (a), (b), (c) hold .If M is not von Neumann 

regular, then there is some x E M such that x ~ x y My x. Note that O is a 

semiprime ideal of M such that x ~ x y M y x + 0 . From (b) we see that there 

is a semiprime ideal J in M which is maximal with respect to the property 

x~xyMyx+J. 

Now M I J is not von Neumann regular , hence by ( c) , J is not prune . 

Thus there exist two sided ideals A and B which properly contain J , such that 

Ar B c J. Now set K = {mE MI m r B c J} and L = {m EM I Kr Mc J }. 

As J is semiprime, K and L are semiprime . Since (Kn L)T (Kn L) c Kr 

L c J , We have K n L c J . Clearly , A c K and B c L , hence K and L 

properly contain J . 

Because of the maximality of J , there exist elements y , z E M such that 

x - x y y y x E K and x - x y z y x E L . 

Now x _ x y ( y + z -y y x y z) y x = (x- x-y Y Y x) - (x - x y y y x) y z y x EK 

= ( X - X y z y X) - X y y y (X - X 'Y Z 'Y X ) E L . 

We see that x. E x y M y x + ( K n L ) c x y M y x + J which 1s a 

contradiction . ~Ol'e M must be von NeIBnann regular . 
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4.34 Corollary : A r- ring M is von Neumann regular if and only 

if all two sided ideals of M are idempotent and M / P is von Neumann 

regular for all prime ideals p of M . 

4.35 Definition : A completely prime ideal m a r - ring M is a 

proper two sided ideal P such that M / p is an intregral domain ( not 

necessarily commutative ) . 

4.36 Lemma : If M is a r- ring with no non zero nilpotent elements , 

then every minimal prime ideal of M is completely prime . 

Proof: We first claim that if a 1, a2, a3 . . ... .. an EM and a 1 a2 a3 ... .... . 

an= 0 , then the product of the a i in any order is zero . To prove this , it 

suffices to show that if x y a y b y y = 0 in M , then x y b y a y y = 0 . This is 

clear if x = y = 1 , then x y a y b y y = 0 

⇒ lyaybyl=O 

⇒ ayb =O. 

and so ( b y a ) y ( b y a ) = b y ( a y b ) y a = 0 . 

whence b y a = 0 ⇒ x y b y a Y Y = 0 

In case x = 1 , then ( a y b ) y y = 0 ⇒ Y Y ( a 'Y b) = 0 

⇒ yy(aybya)=O 

⇒ aybyayy =O 

⇒ byaybyayy =O 

⇒ (bya)y(bya)yy =O 

⇒ (bya)yyy:~lr(a) ·=~ 

⇒ (bya)yy)y(bya)yy =O 

⇒ by ayy = 0. 



51 

For the general case 
' 

x y (a y by y) = o 

⇒ aybyyyx = o 
⇒ (b y a y y) y x = o 

⇒ x y ( b y a y y) = o . 

This establishes the claim . 

Now let P be any minimal pnme ideal of M . Recall that on m -

system in M is a nonempty subset X such that O ~ X and whenever x ,Y E X 

there exists n E M such that x y n y y E X . Then M - P is an m - system and 

we may choose a maximal m - system X ::) M - p . If Q is a two sided ideal 

of M , maximal among all two sided ideals disjoints from X , then Q is prime. 

Since Q is disjoint from M - P, we have Q c P and thus Q = P , by 

minimality of P. As a result, P is disjoint from X, whence X = M - P. Thus 

M - P is a maximal m- system . 

Set y = {x 1X2 X3 ·················· .. · X n I X1, X2, X3, ..................... , X n,E M - P}. If O EY, 

then x 1 x2 x3 ..................... x n = 0 , for some x i E M - P . There exist m1, m2 , m3 

....................... ,m n-1 E M, such that X 1Y m 1 "( X 2 "( m2y .... ... .... .. ... . y X n-IY m n-1 Y X n E X 

= M - P . This implies X1 "( mi y X2 Y m2 y ........... .. ... . y X n-l "( ID n-1 Y X n ~ P. Since 

(x.1 y x2 y x3 .. . y x n) y (m1 y m2 y ID3 y ... ... ... y m n-1) = 0, we see from the claim 

above that X 1Y m 1 y X 2 y m2y ........ .. ....... y X n-l y m n-1 y X n = 0 which is 

impossible . Thus O ~ Y, whence Y is an m - system . clearly M - P c Y . Hence 

by maximality of M - P , we obtain M - P = Y. Therefore M - P is 

multiplicatively closed . So that M / P is a domain . 

4.37 Theorem : Let M be a r-ring with no non-zero nilpotent 

elements . Then M is von Neumann regul~ if and only if M / P is von 

Neumann regular for all completely prime i~~P o~ M . 
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Proof : Assume that M / p is von Neumann regular for all completely 

prime ideals · If P is any minimal prime ideal of M , then 1s completely 

prime by 4.36 . Hence M /Pis an integral domain and so is a division r- ring• 

"C-onsequently , we see that M / Q is a division r -ring for every prime ideal Q 
' \ ,\ \ of M. 

Since every sem1pnme ideal of M is an intersection of prime ideals , 

we infer that the set of semiprime ideals of M coincides with the set of 

those two sided ideals J such that M / J has no nonzero nilpotent element . 

As a result , we see that the union of any chain of semiprime ideals 

of M must be semiprime . Therefore, M is von Neumann regular. 
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CHAPTER - FIVE 

Jacobson r- rings and special Jacobson radicals 

In this chapter we have defined Jacobson gamma ring and showed that it is 

hereditary. We have also studied Jacobson radical for gamma ring.s. It is shown 

that the Jacobson radical for gamma rings is a special class of radicals . 

5 Definition . 

5.1 Jacobson r- ring : Ar- ring Mis said to be a Jacobson r- ring if 

J(M/ A)= cf.J(M/ A), for every ideal A ofM, where J and cf.J represent Jacobson 

radical and prime radical respectively . 

5.2 Theorem : The class of Jacobson r- ring is hereditary . 

Let M be a Jacobson r -ring and let I be an ideal of M . Then we have to prove that 

I is a Jacobson r-ring. 

Let A be an ideal of M , 

if A c I , then we have 

J ( I/ A ) = ( I/ A) n J (MI A ) 

and cf.J ( I / A ) = (I / A) n cf.J ( M I A ) 

Since Mis a Jacobson r- ring. 

Then , J ( M / A ) = cf.J ( M I A ) 

so , J ( I ; A ) = cf.J ( I / A ) . Hence I is a Jacobson r -ring . 

If A • t · d m· I then ( A + I ) / A is a nonzero ideal of M . Since 1s not con ame , 

(A + I) I A = I / ( I n A). hence J (( A + I) I A) =( (A+ I) / A) n J (MI A) 

and p(( A+ I)/ A)=( A+ I) I An KJ (M /A) . 



Since J ( I / ( I n A)) = I / ( I n A) n J ( M /A) and 

fJ ( 1 / ( 1 n A ) ) = I / ( I n A)) n f.J ( M / A ) , therefore 

I I (In A) n J (MI A)= I I (In A) np( M /A). 

Hence J ( I / ( I n A)) = f.J ( I/ ( I n A )) 

Therefore , I is a Jacobson r -ring . 
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5.3 Theorem : The extension M' is a Jacobson r- ring if and only ifM is 

a Jacobson r -ring . 

Proof : Let M' be a Jacobson r - ring. The r- ring M is isomorphic to an 

ideal of M' and so, by Theorem 5.2 Mis a Jacobson r- ring. 

Conversely , if M is a Jacobson r - ring , and M' is an extension of a Jacobson 

r-ring M by the Jacobson r- ring Z . Since radical classes are closed under such 

extensions , we have that M' is a Jacobson r- ring . 

5.4 Corollary: In a r-ring M', J (M') = J(M)'. 

Proof: By theorem 5.2 J (M)' is a Jacobson r- ring and an ideal of M '. 

So J(M)' c J(M') . However M' / J(M)' = M / J(M) . So J(M) ':) J( M') 

J( M') = J(M)' . 

5.5 Matrix r- ring : Let M be a division r- ring and Mn (M) denote the 

additive group of all n ~ ~ m~tric~~ ~p~se entries. are : fr01t.] h1 · Th-~~ ~n .0.1J 
· r · . ·th r = ~,r' ~,n under -the usual matrix multiplication . This is 
IS a - r.mg WI J.Yf.11 :\[J.YJ.J ' 

·; . 
~ailed the matrix r -nng . 
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5.6 Proposition • A r · M · · · ·f · - nng Is a Jacobson r -nng If and only I , 

for any n , the matrix r _ ring M ( M ) . J b r . 
n 1s a aco son - nng . 

Proof· s · · • uppose that M 1s a Jacobson f- ring . By theorem 5.3 M' is a 

Jacobson r - ring . Any homomorphic image of Mn (M) is of the form Mn (M') , 

where M ' is an image of (M') . The r- ring M' is Jacobson and so f,J (M') = 
J(M'). 

Since Mn (M') is the homomorphic image of Mn (M), 

then f,J(Mn (M')) = J (Mn (M')) . Thus Mn (M') is a Jacobson r- ring . 

Conversely , suppose that Mn (M') is a Jacobson r- ring . By the preceding 

case Mn (Z) is a Jacobson r- ring. So that Mn (M') being an extension of Mn 

(M) by Mn (Z) is a Jacobson r- ring . If I is a prime ideal of M' , then Mn (M' 

I I) is prime and so semi primitive . Thus M' / I is semiprimitive and M' is a 

Jacobson r- ring . Finally by theorem 5.2 Mis a Jacobson r- ring. 

5.7 Definition. (M: R)= {r c R: Rrr c M} 

(M : R) is a two sided ideal of R 

A r -ring M is a right primitive r- ring if M contains a maximal right ideal M', 

such that ( M' : M) = 0 = { m c M : M fm c M' } . 

5.8 Right primitive ideal : An ideal P of M is right primitive 

ideal if M / P is right primitive . 

5.9 Special class of r- rings : A class M of r- rings is a special class 

of r -rings if it satisfies the following three conditions : 

(i) Every r -ring in the class M is prime r- ring . 

(ii) Every non zero ideal of a r-ring in M is itself a r- ring in M . 
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(iii) If A is a r- ring in M d . 
, an A 1s an ideal of a r- ring K, then KIA* is in M, 

where A* is the anh'l t f . 
. 1 a or o A, 1,e. A* = { x e K : x r A = A r x = O } . 

S.l O Prime r- ring : A gamma ring M is said to be completely prime if 

a r b = 0 implies a = O or b = o . 

We recall Barnes definition : Let M be a r- ring . An ideal P of Mis prime if for 

all pair of ideals S and T of M , SrT c P implies S c P or T c P .A r- ring M 

is prime if the zero ideal is prime . 

5.11 Theorem : Every primitive r- ring is prime. 

Proof : Suppose that M is primitive r - ring and that I is a maximal right 

ideal such that ( I : M ) = 0 . Then O is the only two sided ideal of M contained in 

I , for if A is an ideal of M , A c I , then Mr A c I, A c (I :M) = 0 . Thus if 

BrC = 0 for ideals B ,C of Mand ifB * 0, then B ct. I. Therefore M =I+ B, 

for I is maximal right ideal . 

Now MrC = (I+B) re 
= rrc + Brc c r . 

Thus Cc (I : M) = O, therefore, C = 0, and Mis primer- ring . 

5.12 Theorem : Every non zero ideal of a primitive r- ring is primitive . 

Proof : Suppose that M is a primitive r- ring and that I is a maximal 

right ideal such that ( I : M ) = 0 . We shall show that M contains a regular 

maximal right ideal I1 such that ( I1: M) = 0. 

Let a not in I and let 11 = {x e M: a rx e I} , Then 11 is of course a right ideal 

9f M . Also 1
1 

-:j:. M for if a 'Y M c I, then we represent M = l +(a)r , where (a)r is 
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the right ideal generated b S. . 
Y a • mce I IS maximal and a is not in I , M can be so 

represented . Then M 1 M = I M ( ) Y + a r y M c I . Then M c ( I : M ) = 0 , a 
contradiction . Thus Ir -:f. M . 

Take any b not in 11, i .e. , a y b ~ I Then so above , a y by M ct. l for if 

a Y b Y M c I , we get M Y M c I and M c ( I : M ) = O . Since l is maximal 

and a y b y M . · h · 
IS a ng t Ideal not contained in l , we have , .M = a y b y M + l . 

Thus for any Y in M , there exist elements c in M , i in l , such that 

a Y Y = a Yb Y c + i . Thus a y (y - b y c) is in l . Thus y - by c is in 11 . 

Therefore every Y is in 11 + by M or M = 11+ by M. This proves that 11 is a 

maximal right ideal of M . 

5.13 Lemma : The Jacobson radical of any r- ring Mis equal to (a) , 

the intersection of all the regular maximal right ideals of M , 

to (13), the intersection of all the regular maximal left ideals of M , 

to (y), {x: x y M is right quasi-regular for every min M }, 

to (o), { x : M y x is left quasi regular for every m in M } . 

Proof : If x is in J. then xym is in J for every m in M , and x y m is right 

quasi regular . Thus J c { x : x y m is right quasi regular } . 

Now take any element x in (a) . This means that x is in every regular 

maximal right ideal of M . Either x is right quasi regular , or if it is not , then 

{m+xym}fM . 

Let M' be a maximal right ideal containing { m + x y m } , but not containing x . 

Then M' is regular , for - x y m - m = x y (- m) + (- m ) is in M' for every m in M . 

In this case x E M' and therefore M' = M . This is a contradiction and , 

consequently every x in ( a) is right quasi regular . Since ( a) is also a right ideal , it is 

a right quasi- regular right ideal · Thus ( a) c J · 
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Now take x to be any element f 
o (y) . Thus x y mis right quasi - regular for every 

m in M . Now either x ( ) . 
E a or , 1f not there exists a regular maximal right ideal 

M' · Since M' is maximal , the right ideal generated by M' and x is all of M . Thus 

M = {m' + x Y ( m + i )} , where i is an integer. Let e be the left unit ofM', i .e., 

e Y m - m is in M', for every m of M. Then there exists an m' in M', min .M, i 
an integer , such that 

- e = m' + x ( m + i) 

Then - eye = m' ye+ x y (m + i) ye. 

Now x Y ( m + i) Ye is right quasi regular and thus there exists an element z 

such that x Y ( m + i ) y e + z + x y ( m + i ) y e y z = O . Now 

m' y e y z + x y ( m + i ) y e y z = - e y e y z . 

Thus m' y e y z - x y (m + i) y e - z + e y e y z = O . 

Now e y t - t is in M ' for every t . Thus e y e - e is in M' , 

eye y z - e y z is in M', e y z - z is in M' and therefore , eye y z - z is in M' ~ 

Also m' ye y z is in M' , since M' is a right ideal . Therefore, x y ( m + i) ye 

is in M' . Therefore - e y e = m' y e + x y ( m + i ) y e is in M'. Since e y e - e 

is in M' , e is in M' Then e y m and e y m - m are both in M ' , - m and 

m are in M ' for every m , and M ' = M . This is impossible . Therefore , x is 

in (a) 

Thus ( y) c (a) c J c ( y) and J= (a)= (y) . Similarly J = (~) =(o), and 

the lemma is established . 

5.14 Theorem : The radical J = the intersection of all the right 

primitive (two sided) ideals ofM. 

Proof : Every regular maximal right ideal R of M contains a right 

namely ( R : M ) . Therefore J, which is the intersection of the 
primitive ideal , 
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regular maximal right ideals t · th · · f th ·gh · · · , con ams e mtersect10n o e n t pnm1t1ve 
ideals ofR. 

Conversely , we shall show that J is contained in every right primitive ideal 

of M · Let P be a right primitive ideal of M . Then M / P contains a maximal 

right ideal R / P such that ( R / p, M ; p ) = O 

or(R:M) c P 

Now if R is regular, then, J c R. Also Jc ( R: M), for ( R: M) 1s 

the largest ideal of M contained in R . Then J c ( R : M ) c P . 

When R is not regular , since P c R , ( R : M ) c R , and we can at least 

conclude that ( R : M ) is the largest ideal of M contained in R . For if Q is an 

ideal of M and Q c R then M rQ c Q c M . Therefore Q c ( R : M ) . In 

particular , then P = ( R : M ) . Now if the radical J is not contained in P , 

then it cannot be contained in ( R : M ) and so it cannot be contained in R , a 

contradiction. We can write J c P. Now if R = { x: x y M c R} . The right 

hand side of this equation is a right ideal which contains R . Since R is 

maximal , it is either R or M . If { x : x y M c R} = M , then M r M c R . Then 

( R : M ) and thus R = M , a contradiction . 

Now assume that J er. M and take x in J , x ~ R . Then M y x is not in R , 

for otherwise x would be in ( R : M ) c R . Take an element z in M such that 

z y x ~ R . Then z y x y M er. R , since { w : w y M c R} = R . Since R is 

m~imal , R + z y x y M = M , and thus there exists an r E R and m in M 

such that r + z y x y m = - z . Then z + z y x y m is in R . 

Since x is in J , x y m is right quasi - regular and therefore there exists 

an element w such that x y m + w + x Y m Y w = 0 . 

Then , z = z + z y (x y m + w + x Y m Y w ) 

=(-z +zyxym)+(z+zyxym)yw . 
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Thus z itself is in R , but this contradicts the fact that zyx !lR. 
Therefore J c R d 

- , an thus J c P and the theorem is proved . 

S.lS Theorem : Every Jacobson semisimple r- ring 1s isomorphic to 

a subdirect sum of right primitive r _ rings . 

Proof : If J = 0 , then the intersection of the right pnm1ttve ideals is Pi 

1s O • Then by theorem 19 of [ 12 ] , M is isomorphic to a subdirect sum of 

r- rings , where each Mi = M / Pi . But each of these is by definition a right 

primitive r- rings . 

5.16 Lemma : If A -t O is a primitive r -ring and A is an ideal of K ·, 

then K / A* is a primitive r - ring , where A* = { x E K : x y A = A y x = 0}. 

Proof : Let I be a maximal right ideal of A such that it contains no 

non - zero ideals of A , or ( I : A ) = 0 . We can select I so that I is regular and 

let e be the element of A such that x - e y x is in I for every x of A . 

Now I is a right ideal of K, for Ir Kc Ar Kc A. Thus 

(IrK)r(IrK) c (II'K)rA cirA cl. If If'K er. I , 

then , I + I r K = A , since I is maximal . Thus e = i + a , where a is in I r K. 

Then for any p in Ir K, e y p = i y ~+a y ~ . Now e y P = ~ + i1 for some 

i1 in I and a y p is in ( Ir K ) r (If K) c I . 

Therefore , p = - i1 + i y P + a y P is in I , I r K c I , a contradiction . 

Thus I r K c I and I is a right ideal of K . 
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Define l 1 = l + { 
x - e Y x }, where x ranges over K. Then 11 is a 

right ideal of K and it is 1 .i:: • 
regu ar, 1or x - e y x IS in 11 for every x in K . 

Furthermore l -J. K - I • . 1 r · n particular e 1s not in 11 , for if e is in 11 , then 

e y Ac 11 y A = (I+ { x - e y x }) y A = I y A+ ( x - e y x) YA c I. 

Since a - e y a is in I fo · . r every a m A , we would then have a m I for every 

a, A= I , a contradiction . Therefore , I1 is a regular right ideal of K, and 

I1 i- K · By zorns lemma we may select a right ideal of K which is maximal 

with respect to excluding e and including I1 . Let h be this right ideal . 

Then 12 is a maximal right ideal of K , for any right ideal of K which 

properly contains 12 must contain e . It also contains 11 , and thus must be 

all of K . This maximal right ideal 12 is regular , for x - e y x is in 11 ch 

for every x of K . 

Now Ii n A => I , for I c 11 c Ii and I c A . On the other hand, the 

element e is not in Ii and therefore not in Ii n A . However e is in A . Then 

A => I2 nA => I . Since I is a maximal right ideal of A , we must have 

hnA=I. 

Now let us bring A* into the picture . If A* er. Ii . Then K - A*+ Ii , 

since Ii is maximal . Now Kr A = A* r A + Ii r A = Ii r A . 

But I2 r A C I2 n A = l . Thus K r A C l and in particular , A r A C l 

Thus A c ( I : A ) = 0 , a contradiction . Therefore, A* c Ii . 

We wish to show that K / A* IS primitive , and to do this we shall 

show that I2 /A* is a maximal right ideal of K / A* such that I2 /A* does 

not contain any non -zero two sided ideals of K /A*. It is clear that 12 /A* 

is a maximal right ideal of K /A* because , h is a maximal right ideal of K. 

To show that Q is the largest two sided ideal of K /A* contained in lz /A*, 
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it is sufficient to show that there are no two sided ideals of K between Ii 

and A* · Thus let B be any ideal of K which is contained in I
2 

. 

Then B r A C Ii r A C I . 

Now B r A is an ideal of A and it is in I . Since I does not contain any 

non - zero ideals of A , B r A = 0 . 

Then (A r B ) r ( A r B) = o = A r ( B r A ) r :s = o . 
Since A is primitive , it is prime , and thus A r B = O . Therefore 

B fA = A f B = 0, and B c A*. Thus there are no ideals of K that are 

contained m Ii and that properly contains A* and therefore Kl A* is 

primitive. 

Theorem 5 .11 , 5 .12 and 5 .16 give the following result . 

5.17 Theorem : The class of all priq:titive r- rings 1s a special class 

of r-rings. 

5.18 Special radical : A radical is said to be special if it 1s the 

upper radical determined by the special class of r -rings . 

5.19 Lemma : The special radical S of any r - ring K is equal to 

the intersection of all ideals T of K such that K / T is a rring in the special 

class M . Thus every S - semisimple r - ring is a subdirect sum of r -rings 

from M. 

The proof is in [ 30 ] . 

The special radical determined by the class M of all primitive r - rings is 

the intersection of all ideals T such that K / T is a primitive r- ring by 
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Lemma 5-19 .Theorem 5.14 shows that this 1s specisely the Jacobson radical . 

Thus we have : 

5.20 Theorem : The Jacobson radical 1s the largest radical for which 

primitive r -rings are semisimple . 

5.21 Corollary : The Jacobson radical is a special radical . 

Proof: Since Jacobson radical is the upper radical determined by the 

primitive r - rings and the class of all primitive r-rings is a special class of 

r- rings . So that the Jacobson radical is a special radical . 
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CHAPTER - SIX 

The radical determined by the maximal ideals of a 

r- ring 

In this chapter we have studied a radical which is determined by the 

maximal ideals of a gamma ring. We characterized this radical by means of 

the set of regular elements . 

6.1 Definition : Let M be a r- ring with unity I . Then an element 

x EM is called left (or right) regular in M if there exist elements y EM and 

8 E r such that y 8 x = I ( x 8 y = I ) . 

M is regular if for every element x E M there exist y E M and 8 E r 
such that x 8 y = y 8 x = I . If x is not regular then it is singular . 

6.2 Maximal ideal : A proper ideal I of a r -ring M is said to be maximal 

if there exists an ideal J of M contains I then , either I = J or J = M . 

Zorns lemma shows that any proper left ideal can be imbedded in a maximal 

left ideal ; and since the zero ideal { 0} is a proper left ideal , maximal left ideal 

certainly exists . We now defin~ the radical iR of M to be the interse~ti~ of all its 

maximal left ideals . We can write iR = n L . iR is clearly a proper left ideal . 
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These ideas can be formulated just as easily for right ideals as for left ideals . 

This means that m is also the intersection of all the maximal right ideals R in M , 

that is m = n R . 

6.3 Lemma : If r is an element of m , then I - r is left regular . 

Proof : Let (1 - r ) be left singular . 

So that L = M 8 (1 - r) = { x - x 8 r I x E M } is a proper left ideal which 

contains 1 - r. We next imbed Lin a maximal left ideal M', which contains 

1 - r . Since r is in m , it is also in M' . Therefore 1 = (1 - r ) + r is in M' . This 

implies that M' = M , which is a contradiction . 

6.4 Lemma : If r is an element of 9l , then I - r is regular . 

Proof : By the previous lemma , there exist s E M , 8 E r such that 

s 8 (1 - r ) = I . So s is right regular and s = I - (- s) 8 r . Since 9l is left ideal , 

( -s) 8 r is in m . Hence 1- (-s) 8 r is left regular . Since s is both left regular and 

right regular , it is regular with inverse 1 - r . So I - r is also regular . 

6.5 Lemma : If r is an element of m , then I - x 8 r is regular for every x 

in M. 

Proof: Since 9l is left ideal, so x 8 r E 9l . Therefore, I - x 8 r is regular 

bykmma 6.4 . 

6.6 Lemm.a : If rE M with the property that 1 - x 8 r 1s regular for 
I 

every x , then R E m . 
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Proof : Suppose that r is not in m . So that r is not in some maximal 

left ideal M'. It is easy to see that the set M'+ M 8 m = { m + x 8 r Im E M' 

and x EM} is a left ideal which contains both M' and r. 

So M' + M 8 r = M and rn + x 8 r = I for some m and x . 

Now m = I - x 8 r . Since 1- x 8 r is regular , m is regular in M' . But this 

is impossible , for no proper ideal can contain any regular element . 

The effect of these Lemmas is to establish the equality of two sets : 

n L = { r : I - x 8 r is regular for every x } ..... ... (I) 

where L is the maximal left ideals. 

For the maximal right ideals, we have 

n R = { r : I - r 8 x is regular for every x } ......... (2) 

We now prove that all four of these sets are the same by showing that 

the two sets on the right of (1) and (2) are equal to one another . By 

symmetry, it evidently suffices to prove the 

6. 7 Lemma : If I - x 8 r is regular , then I - r 8 x is also regular . 

Proof : We assume that I -x 8 r is regular with inverse 

s = (I - x 8 r) . This means that (I - x 8 r) 8 s = s 8 (I - x 8 r) = 1 

⇒ 

⇒ 

⇒ 

⇒ 

⇒ 

⇒ 

18 s - x 8 r 8 s = s 8 1 - s 8 x 8 r = 1 

s-x8r8s =s-s8x8r =l 

-x8r8s=-s8x8r=l-s 

- r 8 x 8 r 8 s 8 x = - r 8 s 8 x 8 r 8 x = r 8 ( I - s) 8 x 

1- r 8 x 8 r 8 s 8 x = 1 - r 8 s 8 x 8 r 8 x = r 8 x - r 8 s 8 x + I . 

I -r8x +r8s8x -r8x8r8s8x 



=l-r8x+r8s8x-r8s8x8r8x 

=I 

⇒ (1 - r 8 x) 8 ( 1 + r 8 s 8 x ) = ( 1 + r 8 s 8 x) 8 (1 - r 8 x) = 1 . 

So that 1 - r 8 x is regular with inverse 1 + r 8 s 8 x . 

We summarize our results in 
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6.8 Theorem : The radical ITT of M equals to each of the four sets in 

(1) and (2) and is therefore a pr,oper two sided ideal . 



68 

BIBLIOGRAPHY 

[ 1 ] S.A. Amitsur "A general theory of radicals I ," Amer . J Math . 74 

(1952) 774- 776. 

[ 2 ] S.A. Amitsur : "A general theory of radicals II ," Amer . J Math . 76 

(1954) 100- 125. 

[ 3 ] S.A. Amitsur : "Jacobson rings and Hilbert algebras with polynomial 

and C.Procesi identities," Ann. Math. pura Appl. 71 (1966), 61 - 72 . 

[ 4 ] V. A. Andrunakievie : "Radicals of associative rings I ," Math . Sbor , 44 

[ 5] W. E. Barnes 

[6] G. L. Booth 

[7] G. L. Booth 

[8] G. L. Booth 

[9] G. L. Booth , 

N. J. Groenew.ald 

And W. A. Oliver 

I 10] W. X. Chen 

(86) 1958, 179 - 212 

: " On the r-rings of Nobusawa ," Pacific J. Math 18 

(1966) 411 - 422. 

: "Suppernilpotent radicals of -rings," Acta Math. 

Hung .54 (3-4)(1989),201 - 208 . 

: "A note on Brown - McCoy radicals of r -rings," 

Periodica Mathematica Hungarica Vol.18( 1 ), (1987),pp. 

73-76. 

: "Brown- McCoy radicals for r -rings ," Quaestions 

Mathematicae 7 , 251 - 261 . 

: "A .general type of regularity for r -rings," 

Quaestiones Mathematicae, 1991 (14), 453 - 459 . 

: "The largest von - Neumann regular ideal of a r 

-ring, Zhejiang Daxue Xuebao 18 (1984), 133 - 138 . 

(Chinese) 



69 

[11 ] W. E. Coppage and Luh : "Radicals of gamma- rings," J. Math. Soc. 

[ 12 ] N. J. Divinsky 

Japan Vol. 23 , No. 1 (1971 ) , 40 - 52. 

: '" Rings and radicals ," George Allen · and 

Unwin, London , 1965 . 

[13] K. R. Goodearl : "Regular rings," Pitmann, London, 1979, Krieger M. 

[ 14] N. Jacobson : "Structure of Rings," revised Amer. Math. Soc. 

[ 15] A. Kurosh 

[ 16 ] S. Kyuno 

· [ 17 ] S. Kyuno 

[18] S. Kyuno 

[19] S. Kyuno 

[20] S. Kyuno 

[21] S. Kyuno, 

N. Nobusawa and 

Mi- Soo B. Smith 

Colloquim oubl . 3 7 , providence , 1964 . 

: "Radicals of rings and algebras," Math. Sb. 33, 

13 - 26 (1953) 

: "On the radicals of r-rings ," Osaka J. Math. 12 

(1975), 639 -645 . 

: "Coincidence of the right Jacobson radical and 

the left Jacobson radical of a gamma ring," 

: "On the semisimple Gamma rings," Tohoku 

Math. Journ 29 (1977), 217 -225 . 

: "On prime r-rings ," Pacific J. Math Vol. 75, 

No. 1 , 1978. 

: "Subdirect sums of Nobusawa r -rings," Math. 

Japanica 28, No. 1(1983), 31-36. 

: "Regular Gamma rings ," Tsukuba J. Math . Vol. 

11 No.2 (1987), 371- 382. 

[22] s. Kyino, N. Nobusawa : On the radical of -rings , Osaka J. Math, 

and Mi-Soo B. Smith 12 (1975), 639 - 645 . 



[ 23] J. Luh 

[ 24] J. Luh 

[25] N.H. McCoy 

[ 26 ] N. H. McCoy 

[ 27 ] S. Majumdar 

[ 28] S. Majumdar 

and Akhil ch. Paul 

[ 29 ] N. Nobusawa 

[30] A. C . Paul 

[31] Paulo Ribenboin 

[32] G.H.Tan 

[ 33 ] J.F. Watters 

[34 ] J. F . Watters 

70 

:"On primitive r -rings with minimal one sided 

ideals," Osaka J. Math . 5 (1968), 165 - 173 . 

: "On the theory of simple r- rings ," Michigan 

Math . J. 16 ( 1969 ) 65 - 75 . 

: "Prime ideals in general rings ," Amer . J. Math. 

71 (1948 ), 823-833 . 

: "The thory of rings ," Macmillan Co. N. Y. 

(1964). 

: "The idempotent radical class ," Raj. Univ. 

Studies. Vol . VIII, 1977, 54 - 56 . 

: "Radical pair and similar radicals," Bull . cal . 

Math. Soc., 82, 79- 92 (1990). 

: " On a generalization of the ring theory , " 

Osaka J. Math. 1, (1964), 81-89. 

: "Special gamma rings and special radical 

classes of gamma rings," Rajshahi University 

Studies Part - B Vol. 22 1994. 

: "Rings and modules , " Jhon wiley & sons , 

Newyork. 

:On F-regularity of -rings , J. Xinjiang Univ. 

Natur. Sci. 4, 53 - 57. (Chinese) 

: "Polynomial extension of Jacobson rings ," J. 

of Algebra, 36 , (1975 )302 - 308 . 

: "The Brown Mc Coy radical and Jacobson 
rings," Bull . A cad pol on . Soi . 24 (197 6 ) 91 - 100 . 



M 

J(M) 

P(M) 

S(M) 
z 
R 

J( R) 

rqr 

:E 

C 

E 

n 

u 

⇒ 

V 

<I> 

E9 

71 

LIST OF SPECIAL SYMBOLS 

- Gamma ring 

- Jacobson radical for gamma ring 

-Prime radical of M 

-Strongly nilpotent radical 
-Set of integers 

- Operator ring of the gamma ring 

- Jacobson radical of the right operator ring 

- Right quasi regular gamma ring 

-Sammation of 

- Subset of 

- Superset of 

-Belong to 

- Not subset of 

- Intersection of 

- Union of 

-Not belong to 

- Prime radical 

- Radical class 

-Implies that 

-For all 

-Empty set 

-Direct sum 

- Isomorphic to 



& -And 

<> -Ideal generated 

etc -Etcetera 

J,e -That is 

A ,nnM -anhilator of M . 

by 

llajsbab, University Libralf 
Decum.eth..ili,,n Section 

o- 2."2.~1, Bctcument No .............. _ 
.. U4 .. L~:.~;.~.'!. ......... -

72 


