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ABSTRACT

The present thesis entitled , “A Study of Characterization of
Some Regular Gamma Rings ” is the outcome of researches carried out
by me under the close supervision of Dr . Akhil Chandra Paul ,
Professor , Department of Mathematics , Rajshahi University . The thesis
is of six chapters. In the first chapter we have tried to introduce all

types of the conceptions of the complete thesis .

In the second chapter we have given the definition of T - ring
due to Bames and of the relevant things . Various types of I'-rings
and their examples are also presented there . Some kinds of radical
and corresponding theorems are also stated and important ones are

proved .

The definition of k -regular I'-ring is given in the third chapter .
Kyuno defined this regular I'- ring . We have tried to prove that the
class of all k - regular I'- rings forms a radical . Some of the
characterizations of this I'-rings are developed . We have also shown

that k - regular I'-ring without zero divisors is a skew I'-field .

In the fourth chapter we have studied the von Neumann regularl -
rings . We have developed some properties of this I'- rings . We have
also shown that the class of all von Neumann ~ségular I'- rings is a
radical .



We have generalized Jacobson I'-rings and Jacobson radical in the
fifth chapter . The primitive I'-rings and the special class of T - rings
have also been placed there . We have proved that the Jacobson

radical for I'-rings is a special class of radicals .

In the sixth chapter we have defined a radical determined by the
maximal ideals of a gamma ring . We have studied some of the

properties of this radical .

We have included a complete bibliography of the werks which

have been used as my very helpful references to finish my thesis.

At the end of this thesis we have given a list of important symbols

which are used in this thesis .
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CHAPTER - ONE

Introduction

The concepts of a I'-ring was first introduced by Nobusawa [29] in
1964. His concept is more general than a ring . He obtained analogues of
the Wedderburn. Theorems for I'- rings with minimum condition on left
ideals. Now a day, his I-ring is called a I'-ring in the sense of

Nobusawa .

W.E . Bames [5] gave a definition of a I'-ring which is more
general. He introduced the notion of I'- homomorphism , prime and primary
ideals m - systems and the radical of an ideal for I'-rings . He also gave

the definition of residue class I'-rings .

Coppage and Luh [11] introduced the notion of Jacobson radical ,
Livitzki nil radical , nil radical and strongly nilpotent radical for I'- rings,

and obtained some basic radical properties for a I'-ring.

Shoji Kyuno , Nobusawa and B-smith [ 21 ] studied regular I'- rings.
They developed various properties of regular gamma rings . They also

showed that the class of all regular I'-rings is a radical .

G.L .Booth,N.J. Groenewald and W. A . Oliver [ 9] defined a
general regularity for I'- rings and to explore ways of generating such

regularities . They showed that regularities for I'-rings can be generated by



means of polynomials .They also introduced a radical which lies between
the Jacobson radical and the right Brown —McCoy radical .

A Brown — McCoy radical for I'-rings was introduced by G. L. Booth .
[ 7]1.He defined G - regularity for a I'-ring and then Brown — McCoy

radical is defined . He obtained some properties of this radical .

A weak form of von Neumann regularity for I'-rings was introduced
by Tan in [32]. An element of a I'-ring M is called F-regular by Tan if
ae <a>yI'MI'<a>y.A I'-ring M is called F-regular if each element

of M is F-regular . He showed that the class of all F-regular I'-rings is a
radical .

The concept of von Neumann regularity for I'- rings was introduced
by Chen in [ 10]. He showed that RM)={ae M:<a>y is von
Neumann regular in M } is the greatest von Neumann regular ideal of M.

He also obtained the result, “the class { M: RM)=M ,M a I'-ring }

forms a radical ”.

In the first chapter, an introduction of the previous works relevant to

regularities and radicals of I'-rings are given.

In the second chapter we have defined I'-ring due to Barmes . Some
examples of I-rings are given . We have discussed the definition of some
necessary topics such as ideal of aI-ring, right operator ring, nilpotent I-

ring , quasi — regular I- rings , I'- homomorphism , radical , hereditary radical ,



residue class T'-rings, etc. Some corresponding theorems are also placed in

this chapter and some of them are proved.

In the third chapter we have defined k - regular TI'- rings . We have
shown that residue class I'-ring of a k -regular I'-ring is also a k - regular
I'- ring .We studied some properties of this vregular I'- rings . We have also
shown that the class of all k - regular I'-rings is a radical .

In the fourth chapter we have defined von Neumann regular T'- rings .
Various properties of this I- rings have been studied . We have shown that

the class of all von Neumann regular I'-rings is a radical .

Jacobson I'-rings and Jacobson radicals have been characterized in the
fifth chapter . We have also defined primitive I'-rings and special class of
I'- rings . We have proved in this chapter that the Jacobson radical is the
largest radical for which primitive I'-rings are semi simple . Also we have

proved that the Jacobson radical is a special radical .

In the sixth chapter we have studied the radical determined by the
maximal ideals of a I'-ring . We have characterized this type of radicals by

means of the regularity properties of I'-rings .

A bibliography is given at the end of my thesis .



CHAPTER - TWO

Gamma rings and its preliminaries

In this chapter we have discussed the concepts of gamma rings, ideal of a
I'- ring , right and left operator ring , nilpotent I'- ring , nil I'- ring , quasi - regular
I- ring etc. Here we have also given the definitions of a radical , Jacobson

radical etc. Some theorems relevant to these concepts are also given .

2 Definition .

2.1 Gamma ring : Let M and I' be two abelian groups. Suppose that
there is a mapping ( composition ) from M x I'x M - M (sending (x, a,y)
into x oy ) such that

1) x+y)az=xo0az+yaz,

x(a+pf)z =xaz+xPz,
xa(ytz) =xay+txoaz,
(i) xay)pz =xa(ypz)
where x,y,2z €M and o, eI'. Then M is called a I'-ring.

If the conditions of the above definition are strengthened to
1. xay is an element of M, ax B is an element of I,
2. same as (1)

3. (xay)Bz=x(aypz =xayp2)
4. xoy=0 for allx,y inM implies a=0 ,

then M is called a I'-ring in the sense of Nobusawa.



2.2 Examples : Let X and Y be abelian groups . Let M = Hom (X,Y)
and I'= Hom (Y, X) and xay the usual composite map for all x,ye M
and o € I'. Then clearly (i) and (i1) conditions are satisfied and M is a I'-
ring .

Every ring M is a I'-ring if we take I'= M and interpret the above

operation in the natural ways .

2.3 Ideal of I'-rings: A subset A of the I'-ring M is a right (left)
ideal of M, if A is an additive subgroup of M and ATM ={aac: ac A,
ael,ceM} (MTI' A)is contained in A .

If A is both a right and a leftideal , then we say that A is an ideal ,
or two sided ideal of M.

If A and B are both right (respectively left or two sided ) ideals of
M,then A+B={a+b|lac A,beB}is clearly a right ( respectively left
or two sided ) ideal , called the sum of A and B. We can say every finite
sum of right (respectively left or two sided ) ideal of a I'-ring is also a
right ( respectively left or two sided ) ideal .

It is clear that the intersection of any number of right ( respectively
left or two sided ) ideals of M is again a right ( respectively left or two
sided ) ideal of M.

If A is a left ideal of M, B is a right ideal of M and S is any non
~_empty subset of M, then the set



ATS ={Xavys |acA,y €l,s;€S,n is any positive integer} is a
left ideal of M and ST'B is a right ideal of M. ATB is a two sided ideal
of M.

If aeM , then the principal ideal generated by a denoted by <a>
1s the intersection of all ideals containing a and is the set of all finite

sums of elements of the form na+ xoa+aPpy+uyadv, where n is an
integer, x,y,uandv are elements of M and «,PB,, §are elements of T

This is the smallest ideal generated‘by a.

Let a € M . The smallest right (left)ideal generated by ais called the
principal right (left) ideal and is denoted by |a> ( <a]).

2.4 Semiprime : An ideal P of a I'-ring M is said to be semiprime
if for any ideal Q,Q I'Q <P implies QP .A I' -ring M is semiprime 1if

the zero ideal is semiprime .

If A is a semiprime ideal and B is an ideal , Bc A, then (BI)" =(B
I'BI'BI........... BT)Bc A for an arbitrary positive integer 1.

Now we state some theorems relevant to these definitions .

2.5 Theorem : If Q is an ideal of I'-ring M , then the following
conditions are equivalent :
(i) Q is semiprime

(i) if g M such that <a>['<a>c Q , then a €Q.



Proof : Let Q be a semiprime ideal and for any a in M we have
that<a>I' <a> < Q , then by the definition of semiprime ideal, <a>cQ,
therefore,a e Q.

Again , suppose that U is an ideal of M and let UT' Uc Q. Then for any

a In U,<a>T'<a> < Q implies a € Q. Therefore, U < Q, thus Q is

semiprime .

2.6 Theorem : An ideal Q in a I' -ring M is a semiprime ideal in M
if and only if P (Q)=Q, where P(Q) represents the intersection of all prime
ideals of M .

2.7 Corollary : If Q is an ideal in a T -ring M, then P(Q) is the

smallest semiprime ideal in M which contains Q.

2.8 Theorem : P(M) is the semiprime ideal which is contained in every

semi prime ideal in M.

2.9 Theorem : If Q is an ideal in a T'-ring M, then the following
conditions are equivalent .
(i) Q is semiprime ideal
(i) if ae€ M such that al'M[Cac Q,then ae Q .
(iii) If <a>is a principal ideal in M such that <a>T <a>c Q,then a€ Q.
(iv) if U is a right ideal in M such - that UT'Uc Q,then UcQ.
(v) if V is a left ideal in M such that VI VcQ,then V Q.

2.10 Corollary : A T'-ring M is semiprime if and only if aT'al'a=0

implies a=0.



2.11 Prime ideal : An ideal P of the [-ring M is said to be prime if
for any ideals A and B of M, ATBcP implies AcP or BcP.

2.12 Theorem : An ideal P of M is prime if and only if

<a>I<b>cP=acPorbe P.

Proof : Let P be the prime ideal of M, then we have from the

definition <a>cP or <b>cP. That is a<P or be P.

Conversely, suppose <a>I <b>c Pimplies ae€P or beP. Now let A
and B be ideals such that ATB —P.Now if AP, then there exists
a, € A such that a; ¢ P. Now for any bje B, <a>T<b> cAITBc P,
mmplies b; € P because a; ¢ P . Therefore, B P.And so P is prime.

2.13 Theorem : If A and P are ideals of M,AcP and P is prime,
then P/ A is prime in M/ A .Conversely , if P* i1s a prime ideal of M/A , f
the canonical homomorphism of M onto M/ A, then £~ (P)= Pis a prime
ideal of M.

Proof : First suppose that A — P, where P is prime and (B/A)IT(C/A)
c P/A.Then BT Cc A .So that BI Cc P . Since P is prime either B <P
o Cc P.That is B/A cP/A or C/A cP/A,and therefore, P/ A is

prime .

Conversely , suppose P’ is a prime ideal of M/ A, f is the canonical

homomorphism of M onto M/A Let BI' Cc P=f '(P"). Then (f(B)) I(f(C))



c f(P)=P" and since P’ is prime f(B)c P or f{C)c P .That is Bcf '(P)
or Cc f '(P") . It means that B cP or CcP.So that P is prime.

2.14 Prime I'-ring : A T-ring M is said to be prime if the zero
ideal is prime .

2.15 Theorem : If M is a TI'-ring, then the following conditions are

equivalent :

(1) M is prime I'-ring

(i) a,beM and al’' MT'b =(0) implies a=0or b =0,

(i) if<a>and <b>are principal ideals in M such that <a>T <b>=(0),
then a=0 or E=0,

(iv) if A and B are right ideals of M such that AT B=(0), then A =(0)
or B=(0),

(v) if A and B are left ideals in M such that AT B=(0) then A=(0)or
B = (0).

2.16 Theorem : If P js an ideal in a TI'-ring M, then the residue class
I-ring M/P is a prime I'-ring if and only if P is a prime ideal in M.

2.17 Lemma : If P is prime ideal of M then Pl is a prime ideal of I.

Proof : et A,B be two ideals of I such that ATB < PN I.If <A>=
A+ATM+MTA+MTATM and <B>=B+BI'M+MI'B+MI'BI'M,
then IT <A>T 1 cA and <A>c 1 implies A <l . Similarly we can show that
BclNow (<A>T<A>T<A>) I (<B>T<B>I<B>) < AIB ¢ PnicP.
Since P is prime in M and <A>T<A>T<A> and <B>T <B>I<B> are
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ideals of M, We have either <A>T'<A>I'<A> c P or <B> '<B>I'<B>cCP.

This implies that <A> < P or <B> c P . Therefore , either A < Pnl
or BCPnl1.And so Pl is prime .

2.18 Right operator ring:Let M be a I-ring and F be the free
abelian group generated by T x M. Then A= {¥ n;(y;. x;)eFlae M = ¥n;
ay;xi=0}is a subgroupof F. Let R = F/A, the factor group, and denote
the coset (y,x)+A by [y,x]. Then [a,x]+[a,y]=[o,x+y]
and [a,x]+[B,x] = [e+B,x]for alla,Bel and x,ye M.

We define a multiplication m R by (Z[oi,Xx:i])(Z[Bi.yj]) = Z[ai,
X; Bjy;] . Then R forms a ring. Now we define a composition on M X R into
Mby a(Zfa,x]) =Zaox foraéM, Z[a;ix] € R, then M is a right R-
module , and we call R the right operator ring of the I'- ring M . Similarly
we can define L the left operator ring of the I'-ring M.

2.19 Nilpotent I'- ring : An element a of a I'-ring M is nilpotent
if for any y € I, there exists a positive integer n =n(y ) such that (ay)"a
= (ay)(ay)@y)@7Y)....... (ay)a=0.A T-ring M issaid to be nil if

every element of M is nilpotent .

2.20 Quasi - regular I'-ring : An element a of a I'-ring M is Said
to be right quasi - regular (abbreviated rqr)if, for any y € I', there exist
ST, xie.M, i=1,2,3, ... ,n such that xya+XZx§&x;-Xxyadx;=0
for all x € M. A -1ing M is called right - quasi regular if every elements
of M are right - quasi regular.
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2.21 Lemma : An element x of a I- ring M is rqr if and only if,
for all yeT, [y,x]is rqr in the right operator ring R of M.

2.22 Theorem : Every nilpotent element in a I'- ring M is rqr.

Proof : Leta e M be nilpotent . Then for any y € I' we have (ay)"a
=0 for some n.Let §,=8,=8; = §;=............ =0, =y and let x; = -a, x;=
-(a\()i'l for i=1,2,3, ........ . Then xvya+Zx§x;-Zxvadx=xy@y)a

=0 foreach x € M. Hence a is rqr . Therefore, the proof is completed .

2.23 I'- homomorphism : Let M and N both be I'-rings and f a
map of M into N . Then f is a I'- homomorphism if and only if f(x+y)=f
(x)+f(y) and f(xay) = fx)af(y), forall x,yeM and aeT. |

If fis one-to-one and onto ,then fis a I -isomorphism .

If f isa I'-homomorphism of M into N , then kemel of fi.e,

f1(0) ={xe M:f(x)=0}, which is also an ideal of M . More
generally, if B is a right ( left, two sided ) ideal of N, then f(B)= {x e
M:f(x)e B}is also a right (resp. left or two sided ) ideal of M. Similarly,
if fisa I - homomorphism of M onto N and A is any right ( left, two
sided ) ideal of M ,then f(A)={f(a):ae A} is a right ( left ,two sided)
ideal of N.

2.24 Theorem : Let I be an ideal ofa I'-ring M and f be the natural
mapping X = x + 1 of M into M/1.Then f is al- homomorphism of M into
M /1 with kemnel I . Conversely , f is a I'- homomorphism of M into a I-

ring N and I is the kernel of f, then M /I is I'-isomorphic to N.
Rajshahi University Librasy
Documentation Section
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The TI'- homomorphism defined in this theorem is called natural

homomorphism which is also defined as the following way .
Let A be an ideal of a I'-ring M. Then the ordered pair (f,1)of
mappings , where , f: M - M /A is defined by f(x)=x+A,and I is the

identity mapping of T, is a homomorphism called the natural homomorphism
from M onto M/A .

2.25 Theorem : let f bea I'- homomorphism of a I'-ring M into a
I-ring N with kernel I . Then J' is an ideal of N if and only if £7(J) =17
is an ideal of M containing I.In this case we have M/J N/JI and (M/I)
/(J/1) are all I'- homomorphism . |

2.26 Theorem : Let I and J be ideals of the I'-ring M and
f:M —> M/]J, the canonical homomorphism . Then I+1J = f(f M) and A+])
/I is T'-isomorphic to I/ (I +J).

Now we define M - Module .
Let M be a I' -ring. The additive abelian group N is said tobe an M
— Module if there is a mapping ( composition NxI'x M — N (or MxIT x N
— N)(sending (n,y,m) to nym (or, (m,y,n) to nym )such that
) ny(m+my)=nym +nym;
n(y;+7Y2)Mm =nym+nym
(m+n)ym=nym+nym
() (nym)y,m =ny@my;m), for every ;e N, m; € M and y;eT.
A submodule of an M - Module N is an additive sybgroup S of N such
that STMcCS. |
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N is said to be an irreducible M - Module if NT M = (0) and if the
only submodules of N are (0) and N .

2.27 Radical : A non-empty class R of I-rings is a radical if and

only if R satisfies the following conditions :

(1) R is homomorphically closed , i.e.,if A is in % and I is an ideal of
A ,then A/ is in R.
(i) N is closed under extensions,i. e, for a I-ring A and an ideal Tof A,

both I and A/I are in R, then A is in N .

) If [ clochco ....... is an ascending chain of R -ideals of a

I'-ring A ,then U, I, 1s in RN.

2.28 Hereditary radical : Let abe a radical . Let a I'-ring M € a and
I be an ideal of M . If I €a , then o is said to be hereditary radical .

2.29 Jacobson radical : The class of all right quasi - regular I'- ring is
a radical . The radical is called Jacobson radical and is denoted by J.

2.30 Residue class I'-ring : LetM be a I'-ring and I be an ideal of
M .DefineM/I={m+1| me M}, the set of cosets of I formsa I'-ring
with respect to the operations

(m+I)+{(n+H)=(m-+n)+I
and (m+I)y(n+l) = myn+I.

We call M /1, the residue class I'- ring of M with respect to1.

2.31 Strongly nilpotent I'-ring : A subset S of M is strongly nil if

each of its elements is strongly nilpotent.S is strongly nilpotent if there
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exists a positive integer n such that (ST)"S =(STST ............8)S=0.
Clearly a strongly nilpotent set is also strongly nil .
An one sided ideal I of a T- ring M is strongly nilpotent if I" = (IT1

r..... IT)I=0, for some integer n .

2.32 Theorem : Let M be a I-ring.If M has no non-zero strongly
nilpotent left ideals, then M has no non-zero strongly nilpotent right ideals .

Proof: Let I be a non-zero strongly right ideals of M. Then I°=(ITI
[ ... IJ)I=0.Then J=1+MT1I is a left ideal of M. By induction of
k, it can be shown that J*cI¥+MTI¥, and hence J"cI*+MTI"=0, So

2

J is a non -zero strongly nilpotent left ideal of M . Hence completed the

proof .

2.33 Theorem :If M is a I'-ring in the sense of Nobusawa and
a € M, then the following are equivalent :
(i) a is strongly nilpotent
(if) <a> is strongly nil
(iif)<a> is strongly nilpotent .

We denote the strongly nilpotent radical by S(M).

2.34 Theorem : If A and B are strongly nilpotent ideals of a I'-ringM,
then their sum is a strongly nilpotent ideal of M.

Proof: Let A and B are strongly nilpotent ideals of a I'-ring M, then
if (AT)"A=0.Then ((A+B)F)"(A+B)=(AF)“A+B1=B1,where B,¢B.
If (BT)™B=0then , ((A+B)I)™ ™" (A+B)
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= ((A+B) ) (A+B) I) ™((A+B) I') (A+B)=(B, I "B,
=0.

Hence A+B is strongly nilpotent .

2.35 Theorem : If A and B are strongly nil ideals of a I'-ring M, then

their sum is a strongly nil ideal of M.

Proof : The proof of this theorem is similar to that of the previous

theorem .

2.36 Theorem : If M is a I'-ring , then S(M) is a strongly nil ideal of
M.
Proof : Let x € S(M) then x is in a finite sum of strongly nilpotent

ideals of M ,which by the previous theorem is strongly mnilpotent , whence

S(M) 1s strongly nil . Hence completed the proof.

2.37 Theorem : An ideal Q in a I'-ring M is a semiprime ideal in M
if and only if the residue class I'-ring M/ Q contains no nonzero strongly

nilpotent ideals .

2.38 Locally nilpotent : A subset S of a I'-ring M is said to be
locally nilpotent if for any finite set F < S and any finite set @ T, there

exists a positive integer n such that (FO)"F=0.
An ideal I of a I'-ring M is said to be locally nilpotent, if it is locally

nilpotent as a I'-ring . By taking I = {x} and {y} we see that a locally

nilpotent set is nil .
The Leivitzki nil radical of M is the sum of all locally nilpotent ideals

AR L 1 1 e

of ¥ is denoted by L(M) .



16

2.39 Lemma : Every subring and every homomorphic image of a
locally nilpotent I'-ring is locally nilpotent .

2.40 Theorem : Let M be a I'-ting and I be an ideal of M such that

both I and M /I are locally nilpotent I'-ring. Then M is locally nilpotent
[-ring .

Proof : Tet S be a finite subset of M and suppose S
={81,82,83,... ... ... ... ,8;}. Also consider that s;+1,i=12,.......,1 are finite
number of cosets of M /1. The subring generated by the cosets is S which is
finite and and also subset of M /1. Since M /A is locally nilpotent , then by
the definition for any finite subset ® < I', there exists a positive integer n
such that (S®)"S =0 e M/I. Therefore, (S®)"Sc.

Now (S ®)"S is generated by a finite set of elements namely the set of
all products of n of S; @, V ®; € @, with S; .Since I is locally nilpotent I'-
ring , then there exists a positive integer m such that ((S®)"S @) ™(S®)" S =
0.

ie. (SO)™™™"S=0.

Hence M is a locally nilpotent I'-ring.

2.41 Theorem :Let [ chchc.................is the ascending chain of

logally nilpotent ideals of a I'-ring M, then U, I, is locally nilpotent I'-ring .

Proof : Suppose S is a finite subset of M and let S cU, I, . Then S is
contained in some I,. Since I is locally nilpotent, then for any finite subset
o T, there exists a positive integer n such that (S ®)"S=0. Therefore ,

U, L, is a locally nilpotent I'-ring. Therefore, the lemma is proved .
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2.42 Theorem : If I is an ideal of a I- ring M, then J(I) =1nJM).

Proof : First we show that INIM) c I(D).

Let aeINJ (M) and y€I'.Then ae J(M) . Sothat thereexist x;€ M, {;
€ I' such that

Xyat+tZxCix;-Zxyal;x;=0, for al xeM.
Then XyayvyatIx{;x;ya-Zxvalixiya=0

Since a €1 and for each x;va eI, we see that a is rqr in I . So that
INJ(M)is a rqr ideal of I .

Now we have to show that J(I) cInJ(M), for let ae J(I) and
bela> Then for any ye I',(by)*b is in the principal right ideal in I
generated by a.

Hence (by)*b is rqr in I. Therefore we have,
yy(by)2b+2y6iyj-2yy(by)2b5iyj=0, for all y eI, where & €I, y;el.
If xeM,then xybel,so (xyb)y(b) b+Xxyb&y, -Zxyby(by)’bd
yi, o, x (yb)Y}+Xxybdy; -Zx(yb)*8§y;=0. This may be written as
xyb+(Zx(yb)’8;y;+Zx(vb)?§y;+Tx(yb)8;y;-x(vb) —x(y
b)? -xyb)—(x(vb)*8;y ; +Xx(¥b) 8;y;+Tx(yb) 8;y; x(vb)*-
x(yb)> —x(yb) )=0, which is of the form
x'yb+lekzk-nyblkzk=0,Hencebis rqr in M, whence |a> is rqr

in M, Therefore ae J(M).

2.43 Direct summand : Let M be a I'-ring. An ideal A of M is
called a direct summand if there exists an ideal B of M such that every
element x of M is uniquely expressible by x=a+b,ac A,be B. We wil

writte M =A®B.Also if ac A,beB,then ayb=0,for allyeI.
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2.44 m-system : A subset S of M is an m-system in M if S = ® or
if a,b €8 implies <a>T<a>~S# ® . The prime radical of M, which we
denote by P (M), is defined as the set of elements x in M such that every
m-systém containing x contains 0 . Barnes has characterized P (M) as the
mtersection of all prime ideals of M has shown that an ideal P is a prime if
and only if its complement P' is an m-system and that an ideal P of a TI'-
ring M in the sense of Nobusawa is prime if and only if al’bc P implies

that ae P or b eP.
A subset N of M is said to be an n-system in M if N =® or if ae N

implies <a> NN #®.

245 Lemma : If N is an n-system in a I'-ring M and a € N, then

there exists an m -system L such that acL and Lc N.

2.46 Theorem : If I is an ideal of the I'-ring M then P (I) =1 P (M),

where P(I) denotes the prime radical of I considered as a I'-ring .

Proof : Let P(I) is the set of elements x in I such that every m - system
of 1T which contains x contains 0 . Every m - system of I is certainly also an
m - system of M .1t follows that P(I)>I P (M) . By the last lemma P (I)
c InP(M) . Thus PI)=1~P(M) . Hence completed the proof. |
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CHAPTER - THREE

K — regular gamma rings

In this chapter we have defined a regular I'- ring in the sense of
Kyuno [16] . We have shown that the class of all regular T'- rings in the
sense of Kyuno is a radical . We have also developed some of the
characterizations of these I'-rings . For the simplicity of languages, we call k-

regular instead of ‘regular in the sense of Kyuno'.

3. Definition .
3.1 k-regular I'-ring : A T'-ring M is called a k- regular if for

every a €M, there existsy € I" suchthat aya=a

3.2 lemma :In a k-regular I'-ring M, ayb+bya =0, a,b eM,
vyel.

Proof : We have (atb)=(a+b)y(a+b)
= aya+byatayb+byb
= a+byatayb+b
= aybtbya=0.

3.3 Lemma: For any aeM,a+a=0.

Proof : Since M is k —regular, we have ayp=a for any ae M.

Hence (a+a)y (ata)=ata
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That is, a+ a = aya+ ayat+ayat+ava
= (ata)+(a+ta)
= ata =0
From the above lemma we can easily say that Mis commutative. For

ayb =-(bya)=(-b)ya=bya, fora,beM,yel.

3.4 Theorem : For a I- ring M with aunity 1, the following

statements are given :

(1) M is a k-regular I-ring .

(i) Every principal left ( right) ideal M I'a (aI' M) of Mis generated
by an idempotent of the right (left) operator ring R(L).

(1)) For every principal left ( right ) ideal M T a (al M) of M there
exists b € Msuch that M=MT a® MIb.

(iv) Every principal left (right )ideal MI'a (al’ M)of M is a direct

summand of M. Then (i) = (ii) = (iil)) = (1v).

Proof : (i) = (ii) : Given a € M, there exists v € I'such that aya=a.
Therefore yaya=ya
This implies that [y,a][vy,a]=[y,a},and so that[y, alis an idempotent of
R.Itis clear that MI'a o> Mya
Since MI'a = MI'aya c Mya
Therefore ,MI'a = Mya
Thus the left ideal <a| = Mya
(i) = (i) :
let MTa =Mye ,where eye=e |
Since 1 =¢+(1—-¢), then My 1=Myg+My(1-¢) implies
M=.‘1\4ye+My(1-e).
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If a,b € M are such that aye=by(l-e)

then avye=ayeye=by(l-e)ye
=by(lye-eye)=by(e—e)=by0 =0

Hence M=Mya @ My (1-¢)

(iii) = (iv) is trivial .

3.5 Theorem : If M is a k - regular I- ring , then every finitely
generated left (or right ) ideal is principal .

Proof : If a,be M then we haveto show that MT a+MTI b is
principal.
Since Mis a k —regular I'-ring, every principal left ideal of M is generated
by an idempotent Qf the right operator ring R . So we have to prove that
Mrye +Mye, (with [ye], [y,e2] idempotent ) of R) is principal .
Now, Mye;+tMye;=Mye+My(ex-eye;) for
ayeitbye, = (atbye)vei+by(ea-exver).
If x € M such that |
(ex—eye)YXy(e-e2ye)) =e€-ey¢
then e, =x7v (e2- €,y &) implies
ezlv e = xy(E-eye)yxy(E-evye)=xy(E-eaye))=e,
so that e,” is an idempotent and then
Mye, +Mye;=Mye +Mye;, with ey =Xy (e2-e2v€) 7€
=xvy(eyer-exyerye) =xy(e2yei-exyer)
= 0.
Finally, Mye, +Mye,= My(eite;-eve;)

because, ayertbye =@yeitbye ) y(eiter-eive ).
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Hence MTa+MTb js a principal left ideal . Similarly alC M+bT M is a
principal right ideal .

3.6 Theorem : If Mis a k- regular I'-ring and if J is a two sided
ideal , then M /J is a k - regular I'-ring .

Proof: Let 3eM/J . Thens

atJ aeM
Then there exists ¥ € I' such that a

aya
Hence aya = (a+J)y(a+1J)

= avyat+] =a+] =3

3.7 Theorem : Let M be a k -regular I'-ring without zero divisors.

Then for any nonzero a,be M, ayb=1 forsome ye .

Proof: Let a,beM,a# 0,b=0.Then there exist y, 6 € I', such that
= avyaand b=Dbdb.
Now ay(ayb—-b) = ayayb—-ayb
= ayb—-ayb
=0.
Hence ayb-b=0.
So b (ayb—b)=0 implies bdayb—-b3db =0.Hence bdayb-b=10
and so bS(ayb-1) = 0.Since b = 0, hence ayb-ll= 0, thatisayb=1.

3.8 Corollary : Every k -regular I'- ring without zero divisors is a
skew I -field.
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3.9 Semi-hereditary : A k - regular I'-ring M is right semi - hereditary
if every finitely generated right ideal of M is a projective R-module .

A right ideal T in M is called essential if for every non - zero right ideal
AmM,InA=z0.

Let ©(M) be the set of all essential right ideals in M, and Z,(M) = {x €
M | xIT'T =0, for some I € ®(M)}. M is called a right non - singular I'-ring
if Z;(M)=0. Similarly a left semi-hereditary T-ring and a left non - singular

I'-ring are defined .

3.10 Theorem: LetM be a k-regular I-ring . Then
(1) all one sided ideals in M are idempotent ,
(i1) all two sided ideals are semiprime ,
(i11) the Jacobson radical of M is zero,

(iv) M with the left and right unities is right and left semi - hereditary ,
(v) M is right and left non - singular .

Proof : (i):LetJ bea right ideal of M. For each a € J there exists
y€I'such that a = aya.
Consequently ,a = ayae JIJ,
that is JcJI'J.

And so J = JT'J. Thus we have (i).

(i) : Let 1 be two sided ideal of M . If J is a two sided ideal in M
such that JTJ < 1,then Jc I, because by (i) J = JI'J. Hence we have
(i1).

(i) : Suppose that e is a right quasi - regular and ¢ = e §e. Then there
exists T € R such that [8,e]or=r-+[5,¢] - [6,e]or=0 . It follows that
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8, €] =[5, el 00=[8,e]0([5,¢] or) = ([5,¢]0[5,¢])or =[5,e]or=0.

Thuse=e6e=e[8,e] =e(=0.
Recall that J(M) = {e e M| <e>is right quasi regular } . Since <e> = 0 ,

e=0 and so J(M) = 0.

(iv) : We know every finitely generated right ideal in M may be written
as hyM, where hyh=h.Let A = {xeM|hyx=0}.Clearly A is a
right ideal in M. For any x e M,x = hyx +(x-hyx),and M = hyM
® A, because if achyMm A ,then a=hya =0.Thus hyM is a direct
summand of M and so every finitely generated right ideal in M is a

projective R —module . It can be proved that M is left semi— hereditary .

(v) Let J be an essential right ideal of M . Suppose that ayJ = 0, for
some a € M, and that there exists y € I' such that a = aya. Then
ayMnJI=0 forif xeayMnJ,then x=ayx = 0.

Since J is essential , ayM = 0 and so a = 0.

3.11 Theorem : If M is a k-regular I'-ring, then every two sided
ideal J of M is the intersection of maximal left ideals ( and also of
maximal right ideals) .

Proof : Here M is a k- regular I'-ring . Hence M/J is a k-
regular I'- ring by Theorem 3.6 So JR(M/J)=0,by Theorem 3.10 (ii1).

Therefore , J is equal to the intersection of the maximal left ideals of M.

The proof for the maximal right ideals is similar .

3.12 Theorem : Mya =ayM, for all ac M That is every left (or
right ) ideal is a two sided ideal .
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Proof: Let a ¢ M. Then for every b € M there exists ¥ € I' such that
ayb=bya.So clearly we say that Mya=ayM.

3.13 Theorem: If a I'- ring M is k - regular, then
(1) M is semi-prime .
(i) The union of any chain of semi - prime ideal of M is semi - prime .

(i) M/P are k - regular for all prime ideals P of M.

Proof : Let M be k-regular. then all ideals of M are semi— prime,
whence (i) and (ii) hold . (iii) obviously holds for
xX+tP)yx+P) =xyx+P =x+P.

3.14 Weakly nilpotent : An element ae M is said to be a weakly
nilpotent element if there exists a non-zero element y € I’ and an integer n
> 1 such that (ay""a = 0.A I-ring M is weakly nilpotent if every
element of M 1s weakly nilpotent .

3.15 Theorem : In a I'-ring M with no non - zero weakly nilpotent

elements , every idempotent commutes with every element in M.

Proof: let e=eye,yel,and xeM .If e =0,
then x&e =0 =eyx .Suppose e# 0,then y=0. Since
(eyx—eyxye)y(eyx—eyxye)

= (eyxye—eyxyeye) ([v,x]-[v,xyel)
=(yxye—eyxye)([y,x]-[v.xye])

=0, and M has no non-—zero weakly nilpotent elements , so

eyx—eyxye=0 ,or eyx=eyxye.
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Similarly XYe=¢yxye,and so eYxX=xye .,

3.16 Sub - directly irreducible : A gamma ring M is said to be sub

- directly irreducible if the intersection of all non zero ideals of M is not
ZET0 .

3.17 Division gamma ring: A gamma ring M is said to be a
division gamma ring if M has the strong left unity [e, 8] and the

strong right unity [ §, e ], and if for each non zero element a € M there

exists b € M such that

adb =bda=e.

3.18 Theorem : A non zero sub - directly irreducible k - regular I- ring

with no non - zero weakly nilpotent elements is a division I'-ring .

Proof : 1et M be a non - zero sub-directly irreducible k - regular I'-
ring with no non zero weakly nilpotent elements . For each non - zero
element a € M there exists Y € I' such that aya =a.For any x e M we
have ayx=xvya. Let us consider two ideals ayM and A = {x-ayx |[x

€ M }, whose intersection is zero. M is sub - directly irreducible,so ayM =

Oor A=0.ButayM =0. Hence A = 0, and thus ayx = xya. This
means that [a y]and [, a] are the strong Ileft and nght unities
respectively . Let b be a non zero element of M. Then there exists 8 € I’
such that bS8b=b. Then we can write bédx = x = x8b for any xe M,
and so b6a = a = adb,whence (bya)da =a =ad(ayb), which
implies that by(ada) = a =(ada)yb.

Therefore, M is a division I'-ring.
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3.19 Theorem : Iet ] be 4 two sided ideal of a I'-ring M. If 1 and
M/1 are k -rtegular , then M is k - regular .

Proof: Let x eM . Since M/Iis k -regular , then xyx-x eI, since I is
k - regular the ideal <XYX-X>(generated by xyx-x) is equal to the
intersection of maximal ideal of I. Since intersection of maximal ideals of I
is equal to zero, then <XYX-x>i1s contained in zero . This implies that

xyx=xX.Hence x is k-regular. That is M is k - regular .

Thus we have the following :

3.20 Theorem : The class of all k - regular I'-rings is a radical .
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CHAPTER - FOUR

von Neumann regular gamma rings

The object of this chapter is to characterize the von Neumann regular gamma
rings. Here we have shown that the class of all von Neumann regular gamma rings

is a radical . Some of the characterizations of these I'- rings are developed .

4. Definition .

4.1 von Neumann regular gamma ring : Let M be a - ring . An
element a € M is called von Neumann regularin M if ac ayMya, for some v

€ I'. This means that there exists an x € M such that a=ayxya

A T-ring M is called a von Neumann regular I'-ring if all its elements

are von Neumann regular .

4.2 Lemma : If a is von Neumann regular in M , then [a , y] is von

Neumann regular in L , where L is the left operator ring in M.

Proof : Since ais von Neumann regular in M, thena € ay My a. There
exists an x € M such that a=ayxy a. This implies that
ay=ayxyay,
and hence [a,y1=[a,v1[x,vila,¥]

Therefore [a,y ]is von Neumann regularin L .
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43 L . :
mma : Ifa,ce M, a-cis von Neuman regular in M and ¢ is in

aYyMya, then ais von Neumann regular in M .

Proof : There are elements x € M and vy € I such that
a—c=(a-c)yxy(a-c)
TayxXxya—-cyxya—ayxyctcyxyc.
This implies that ad =ayxya-cyxya—ayxyctcyxyc+c.
Since ceayMya,putc=ayyya.
Thehwehave,
aTayXxya-ayyyayxya—ayxyayyyatayyyayxyayyyatayyya.
=ay(x-yyayx-xyayy+yyayxyayy+y)ya
=ayx'ya,whereX'=x-yyayx—xyayy+yyayxyayy+y e M.

Therefore , a is von Neumann regular in M .

4.4 Definition : Let I be an ideal of a I' - ring M . If every element of I is

von Neumann regular, then I is von Neumann regular .

" 4.5 Lemma : If M is von Neumann regular and J is a two sided ideal of M ,

then M/ J is von Neumann regular .

" Proof:Ilet a eM/J.Then a=a+J, a e M.
Then there exist x € M and y € I' suchthat a = ayxya.
Now m'xya-(aJr[I)Y }'W"'J)
' =ayxva+J a+J = a

Theréf(')fe , M/Jis on Neumann regular .
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atl=(a+l)yxy (a+1) =ay x ya+1.

This implies that a—-ayxya e [,

Since I is von Neumann regular and since a YXya €ayMya, then by
Lemma 4.3, ais von Neumann regular .

4.7 Lemma : Let Lch ¢ ... be the ascending chain of von Neumann

regular ideals | Then Ug L is von Neumann regular .
Proof : It is obvious .

From the Lemmas 4.5,4 .6 and 4.7, we have the following :

4.8 Theorem : The class of all von Neumann regular I' - rings is a radical .

The characterizations of von Neumann regular I - rings :

4.9 (a) Theorem : Let M be a I -ring with unity . The following

statements are equivalent .
(i) M is avon Neumann regular I" - Ting .
cipal left ideal M I'a is generated by an-idempotent .

(i) Every prin
al left ideal M T aof M, there-exists be M suchthat

(iii) For every princip

M=MTgq @M[ b.



Let MTI'a = Mye, where e =eye.
since l=e+ (1-¢),then
Myl =Mye+My(l——e) mmplies
M=Mye+My(1-e).
If a,b €M are such that aye =by (l-e),
then aye = ayevye =by(l-e)ye =by (lye-eye)
= by (e—e) =by 0=0.

Hence M= M ye @ My (1-¢).

(1) = (iv) 1s trivial .

(iv) = (1) : Givena € M , there exists a left ideal Jof M such that
M=Mya® T

Hence 1=xya+b,wherexeM,bel.

Sothat a=ayl=ayxyatayhb

This impliesthat a y b = a- ay x ya € Myan J =0

So a—ayxya=0

Hence a=ayxvya.
Therefore a € ayMya.Hence M isvon Neumann regular .

31
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4.9 (b) Theorem :

Let M be a - ring with unity . The following
statements are equivalent -

(1) M is a von Neumann regular I - ring

ii) E inci ioht i
(i) Every principal Tight ideal al' M is generated by an idempotent .

(iii) For every principal right ideal aI' M of M , there exists b € M such
that M= alC'M @b’ M.

(iv) Every principal right ideal al’' M is a direct summand of M .

Proof : The proof is similar to the proof of Theorem 4.9 (a) .

4.10 Theorem :If M is von Neumann regular, then every finitely
generated left (right) ideal is principal .

Proof : Let a,b € M. Then we have to show that Mya+ My b is
principal . Smce M is von Neumann regular, every principal left ideal is generated
. by some idempotent of M . So it is sufficient to prove that My e; + M y e, is

principal (withe; & e, idempotent ).

Now Mye; +Mye, = Myei+ My (ez2-e2y € ), for
aye + bye,= (atbyez) yei+by (e2-ez2ver).
If xeM suchthat (e;—e2ye1) YXY(@2—eve1) = €e2—€v¢€1,
then ¢/ ,= xy (e,—e2y¢€ ) is an idempotent and then
/
Mye,+ M ye, = Myer tMye:
with e’zyel =xy(ez—ezvel)“/€1
= xy(e2Y € - eY€1Y€e1)

xy (€2 yei—¢e2ver)

i

= x'YO
= 0.
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Finally, Mvye, + Myé, =M Y (e+¢, -e17€2).
| /
Because , aye; + byel, = (aye, + bye’z) Yy (e1+€s-e1v€; ).

imuilar \
S ly we can prove that every finitely generated right ideal is
principal .

4.11 Theorem :

If M is von Neumann regular I'- ring, then the

intersection of any two principal left ideals (or right ideals) of M is principal .

Proof : It is enough to prove that if a,b e M then Myan M8 b is
principal ideal .

To prove this we choose ey, =xya and e, = y8b, where x,ye M and v,
el aresuchthata=ayxya, b =b&y8b. Thene, and e, are idempotents and
Mya = Mye, Mdb =M 8 ¢,.

Hence M =My e;® My (1-¢,)=MS8 e, ®MS(1-¢)

and Mve1=AnnM [(lhe])yM]={xeM|x~/(l—e1)7M=0},

M&e, = Anny [(1-e )8 M]={xeM | x5 (1l-e)sM=0}

Indeed obviously Mye < Anmy [(1-¢) vy M ]

Conversely, if x e M and Xy (1—e;) = 0, writing
X=aye+biy (1-e;) we have
ayery (1—e)+biy (1-e)y(1-e)=0
and by (1—¢;)=0,hence X = ayyereMvye;.

Thus My e AMB3e, = A [(1-e)yM+(1-e)8MI,

Now there exists €3 € M such that

(1—31)’YMTQI'?2)§M\:(]'”?3?E.»M, E_.Er,ﬂ.pﬁfrom
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ME&e; = Ann -
€ es M [(1 €3) ﬁM],Wededucerhat Mye, " M8e; = MEes.

Similarlly ayM ~AbsM isq Principal right ideal .

412 Th .
€orem : The Jacobson radical of a von Neumann regular T - ring
M is equal to zero .

Proof : Let acy M) . Thus Myac J (M). Since My a is generated by

an idempotent elemente, Mya = M Y e, and thus from ¢ € J (M) it follows
that ( 1 —e ) is invertible .

So there exists x € M such that | = Xy(l-e)=xyl-xvye
= X—-Xye.

Hence e=1ye =(x-xye )ye = xye—xyeye=xve—xy e = 0.

Therefore; a=290.

4.13 'Theorem : If Misa von Neumann regular I - ring , then every
two sided ideal I of M 1is the intersection of maximal left ideals ( and also of
maximal right ideals ) .

Proof : Since M isa von Neumann regular I - ring , hence M /I is a von
Neumann regular T -ting . So we have J (M /1) =0. Therefore Iis equal to the

intersection of the maximal left ideals of M.

4.14 Theorem : The center of a von Neumann regular T -ting M is

von Neumann regular .

Proof : Let a€ C (M) ( center of M). Let xeM and y eI besuch

thata =ayxya.
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AT AYXYa = ayayx =xyaya
SO, a'YX = aYaYXYX

AT arxya=(ayayxyx)ya

= ay (ayxyx)ya.
Now ayxe C(M), because if y € M then

(ayx)yy= (x¥y)va=(xyy)y(ayxya)
= (ayx)yyy(ayx) = ayxyayyyx
Tayyrx=yy(ayx).
Also ayxyxe C(M), because
(ayxyx)vy=(ayx)y(xyy)=(xyy)y(ayx)
TXYyvayx=xyayyyx=(ayx)y(yyx)
=yr(ayx)yx=yy(ayxyx).

Hence the center of M is a von Neumann regular I - ring .

4.15 Theorem : Every von Neumann regular I - ring M without zero —

divisors 1s a skew I'- field .

Proof: LetacM, a=0.Llet xeM and ye I besuchthat a=ayxya.
Then ay(xya—1)=0, (ayx—1)ya=0,andhencexya=1,

ayx=1, andso a is invertible . Hence M is a skew I'-field .

4.16 Theorem : If Misa von Neumann regular I'-ring whose only

nilpotent element is zero , then

o) BEvery idempotent element of Mis in the center .

B) If aeM,a=0, then there exist be M, y e I' suckthat,axh=bya

= f is idempotentand ayf= fya=a.
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) Mva=ayM foralia e M ; hence ev

ded ideal ery left (or right ) ideal is a two
s1 :

Proof : ' :
®): Let e ¢ M be idempotent . Let a € M be an arbitrary

element and assume that zero g the only nilpotent element of M .

Since , [(l_e)YaYe]Y[(l—e)yaye]
=(1-e)vayey(l-e)yaye
%(1VaVe‘eYaYe)y(lyaye—eyaye)
=(aYe—eYaYe)Y(aye—eyaye)
—ayeyaye-eyayeyaye—ayeyeyayet+eyayeyeyaye
—ayeyaye—eyayeyaye—ayeyaye+eyayeyaye
=0

Again , [eyay(l-e) Jy[eyay(l-e)]

= (evayl-eyaye)y(eyayl-evaye)

=(eya— eyaye )y (eya—eyaye)

= eyayeya—eyayeyeya—eyayeyayet+ eyayeyeyaye
= egyayeya—eyayeya—eyayeyaye + eyayeyaye
=0.

Wehave, 0=(l-e)yaye=lyaye—evaye

= aye—eyaye,
and 0 =eyay (1-e)=eyayl-eyaye
= eya—eyaye.

Hence, aye = eyaye = eya andso e is in the center of M .

B): Let M bea von Neumann regular I - ring having 0 as the only

nilpotent element . Given 2 € M, a #0.Let xeM besuchthat ayxya = a,

forsome yeI .
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Then e =4
'Y x , ! - .
€ =X7vaare idempotent elements of M ;s0€ and ¢
belong to the center | apnq f= €Ye' isan idempotent
nt .

It follows that ay(xyxya)=(ayx)y(xya)=eye’.
Abo(xvxva)va=[xv(xva)]va

=[(XYa)YX]Ya=[XY(aYX)]Ya

“larx)yxlya =(ayx)y(xya)
=eye .

Moreover, ayeye' “eyaye' =ayxyaye'=aye'=ayxya=a;

eye’ya=eyaye’=eyayxya=eya=ayxya=a;

6): Given ye M, wehave yya =(yya)yeye

=ey(yya)ye
= ayxyyvyaye,

and so there exists z € M such that yya =ay z. This shows that MyacayM,

and the converse is proved in a similar way .

Hence , since every left ideal J is the sum of the principal left ideals

generated by its elements , J is also a right ideal and vice versa .

4.17 Corollary : Let Mbe avon Neumann regular I'-ring.
Then

2

(i)  All one sided ideals in M are idempotent.
(i)  All two sided ideals in M are semi - prime.
(ili) The Jacobson radical of M is zero.
(iv) M is right and left semi hereditary
(v) M is right and left non- singular .
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Proof : (i) L ight i
h (i) Let J be anght ideal of M . Since Mis von Neumamn regular,
foreach a€J, a = ayxyafory eM, yerl

Consequentl =
quently,a = ayxyae ITMI Jandalso JTMT J < JT' T, Thatis
JcITJ . Also JTT<T . Hence T =T ]

11) Let i '
(1)) Let1be a two sided ideal of M.If Aisatwo sided ideal in M such that
AT AclI, then we have to show that A 1. Nowby (i) A=ATAcI.

(i) Suppose that e is right quasi von Neumann regular . Then

e =edxdeforsome xe M,§ eI .Let R be aright operator ring of M.
Then there exists r € R ,suchthat[§,e]or=r+[8,e]-[5,e]}r=0

It follows that [6,e] =1[8,¢e]o00
= [8,e]o ([d,e]or)
= ([8,e] 0 [8,e])or
= [d,e]Jor=0.

Thus ¢ = eSx6e = edx[d,e] =edx0=0.
Recallthat T(M) = {eeM | <e> isright quasi von Neumann regular }.

Since e = 0, <e>=0andso TM) = 0.
Note that in Theorem 4.12, this was proved by another method .

(iv) According to 4.10 every finitely generated one-sided ideal of M

is a direct summand of M and so is projective .

(v) Suppose that xyJ =0 for some X € M and some J <M. Thereis

an idempotent € € M such that Mye=Myx, and since Myeyl=Mryxyl
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Jﬁ¢7M=0,whence eyM=0, and

4.18 Theo : -
o rem : Any finjte subdirect sum of von Neumann regular T -
rings 18 von Neumann regylar .

Proof : It suffices to show that a subdirect sum of two von Neumann

regular I' - rings is von Neumann regular .

Suppose that M has two ideals J and K suchthatJ "K =0

T+K . : M
Now 77 1S an 1deal of 57—

Since 1 — = =X dsince o | R S
T =7Ink andsince Jpg is von Neumann regular, then —

1s von Neumann regular.

: J+K
Since — 7 and J are von Neumann regular, then J+K is von Neumann

regular.

4.19 Theorem : In a von Neumann regular I" - ring M with no non-zero

weakly nilpotent elements, every idempotent commutes with every elements in M .

Proof: Let ede=e ,8ecI . Let xeM.If e=0,then edx=x3de.

Suppose ¢ #0.Then 8 #0.

Now,(edx—e8xde ) d (edx—edxde)
= (eSxée—eSxSe)([S,x]-[8,x6e])
= 0.

Therefore (eSx—e)S(eSx—e) = () ; and hence

eSxSeSx—eSeSx~eSx8e+eSe = ()
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or, eSx—eSx—eSx8e+eSe=0;

This implies eS(e—xSe)=0.

Since € # 0, therefore ,e —x e = 0 and hence e=xde.

Again,(eSxSe—eSx)S(eSxSe—eSx)
=(GSXSG—CSXSC)5([5,){66]-[5,7(]):0‘

Therefore , (e—e8x)6(e—e8x)=0

or, ede—edxde-ededx+edx5edx =0

or, ede—edxde-edx+edx =0
or, (e—edx)de =0.

Since €#0, Therefore,e—e8x =0 andhence e = edx .

Therefore, edx = x&e.

4.20 Theorem : A non - zero subdirectly irreducible von Neumann regular

gamma ring with no non - zero weakly nilpotent elements is a division gamma ring.

Proof : Let M be a non zero subdirectly irreducible von Neumann regular

I - ring with no non - zero weakly nilpotent elements .

Theorem 4.19 shows that forany x € M, xde=edx, where e=ede.

Let ae M, a# 0.Letus consider two ideals adM and A= { x-ad
M|x e M}, whose intersection 18 Z€ro . M is subdirectly irreducible, soad M =0
or A= 0 But adM # 0, hence A =0, andthus adx=x. So that we can

write x § e = e & x = x . This means that [e, ] and [ 8, e ] are the strong left and
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right unities respectively . Now we have ayx =x=xyaforany a,xe M, and
S0 aye=c=eva, whence (ade) ye=e=ey (eba),so that

a8(eye)=e=(eye)5e_ Therefore , M is a division gamma ring .

4.21 Lemma : If X,YeEM ,yel and x’ =x-xyyyx,andif x' =x"yay

x" for some a e M , then X=xybyx, for some be M.

Proof : x=x+ xyyyx
=X vayx +xyyyx
=(X=X7yyx)yay(X—xyyyx)+xyyyx
=XY(a—aY.XYY’*YYXYa+YYXYa'YX'YY+Y)YX
=Xvbyx,
where, b=a—ayxyy-yyxya+tyyxyayxyy+y.

4.22 Llemma : Let Jc K be two sided ideals in a I'-ring M, then K is

von Neumann regular if and only. if Jand K/J are both von Neumann

regular .

Proof : 'If K is von Neumann regular then obviously K/J is von
Neumann regular . Given x € J, we have, xyyyx=xfor some y € K.
Then z=yyxyy is an element of J and
XYZYX=XYYYXYYYXTXYYYXTX.

Hence J is von Neumann regular .

Conversely, assume that J and K /Jare both von Neumann regular .Given X
e K, it follows from the von Neumann regularity of K/J that x—-xyyyxe

J for some y € K.

ConsequenFIy,



42

X‘XYYYX=(x—nyyx)yzy(x—xyyyx) for some z e J
so that,
XTXYYYX= XYzZyX—xyzyxyyyx “XYYYXYZYX+XYYYXYZYXYYYX
TXYV(Z-ZYXYy-yyxyz+yyxyZYXYY)YX
= XYwyx, for some we K.
Therefore , K is von Neumann regular .

In particular , we can say that every two sided ideal in a von Neumann
regular I'-ring is von Neumann regular . On the other hand ,if J is a two
sided ideal in a T-ring Msuch that J and M/J are both von Neumann
regular , then M is regular . This method of checking von Neumann regularity

is quite useful when constructing examples .

4.23 Proposition : Any finite sub - direct product of von Neumann

regular I'-rings is regular .

Proof : It suffices to consider the case of aI-ring M which is a sub -
direct product of two von Neumann regular I'- rings . Then M has two sided
ideals J and K such that Jn K=0and M/Jand M /K are both von
Neumann regular. Since J is isomorphic to the two sided ideal (J+K )/ Jin
the regular I'-ring M /K, then from 4.22, we have] is von Neumann regular.
So that M /Jis von Neumann regular and so M is von Neumann regular.

Note that a sub-direct product of infinitely many von Neumann regular I'-

rings, such as Z (set of integer ), need not be von Neumann regular .

4.24 Proposition : Let M be a I'-ring, and
set R={xe M|MTI'xI'M isavon Neumann regular ideal } . Then,
(a) Ris a von Neumann regular two sided ideal of M.
(b) R contains all von Neumann regular two sided ideals of M .



43

()M /R has no non - zero von Neumann regular two sided ideal.

Proof: (a).Given x,y e R, we see that MI'y['M and (MT xT M+

MTyI'M)/ MI'yI'M are both von Neumnann regular , whence from 4.22
MIXIM+MTIyT'M is von Neumann regular. Thus , MTx TM+MT yT

MCR, for allx,y e R.Hence R is a two sided ideal It is clear that R is
von Neumann regular .

3

(b)is obvious , and then ( ¢ ) follows from lemma 4.22 .
In order to show that the I'-ring of all m x n matrices over a von

Neumann regular I'-ring is von Neumann regular , we proceed via the following

lemma, which is useful in other cases as well .

4.25 Lemma : Let e, ey €;........... , &, be orthogonal idempotents in a I'-
ring M such that e;+e;+es+.......... +e, = 1 .Then M is regular if and only
if for each x € e;yMye;, there exists y € ¢y My e such that xyyyx=x,
yel.

Proof : First assume that M is von Neumann regular and let
XxeeyMye. Then xyyyx=x,for some ye M.
Now xy(gyYyYe)YX = XY&YYY&YX = XyzYX = X,z€¢yMye,
Conversely , assume that for any x € &' M ¢; , there exists y € ¢y My ¢;
such that xyyyx=x. We proceed by induction on n.Since the case n =1
is trivial we begin with the case n =2 . First consider an element x € M
such that e,y xy e, =0. There are elements y e eiYMye, and
Z € e;yMye; such fnat
(elyxyel)yyy(eleYel) =eyxye; and
(ezyxyez)yzy(eﬂxyez) = g¥YXYe¢&, then
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xy(y+z)yx = (er1yxye

QRYX Y Tervxvye,; )

taryxye teyxye)yy+tz)y@yxye t

=eleYel“{yyemrxyel+ezyxye1 YyyeyxyeteyXxyevyzye
VXY@t yxyeyzyeyxye,

T AYXYeiterxye teyxy(y+z)yxye

As a result, we see that the element x’ = X=Xy (y+z)yx lies in e, yMy

er. Then X"y wyx" =x’, for some wee,yMye,, whence xyvyx=x, for
some ve M.

Now consider a general element x € M, and choose an element ye e yM
ver such that (e1yxye)yyy (e1yxye)=e yXxye,. Since yee,yMye ,
we see that e yxyyyxye, = e;YyXyey,whence egy(X—Xxyyyx)ye=0.
By the case above ,there exists an element z € M such that (x—xyyyx)yz
Y(X=XYyyYyx) = X-Xyyyx,hence xywyx=x, for some we M.

Therefore , M is von Neumann regular.

Finally, let n> 2, and assume that the lemma holds for n—1 orthogonal
idempotents . Setting £ =ex+................ +e, and g =e;tet ... +e, , we
thus know that fyMyf and gyMyg are von Neumann regular. Consider any
element x € ¢; y My . There existsy € ey Myejsuch that (xye) vy v(xvy
€)= Xyey,so that (x-xyyyx)ye =0.Then x—xyyyxegyMyg,
whence (X—xyyYX)YZY(X—XYyyX)= Xx—xyyyx for some ze gyMvyg.
As a result, xywyx=x for some we M, hence we obtain fywye, e fyM
ve, such that xy (fywye)yx=x, Likewise , for any x € fyMye, there is
some t € e,y My f such that xytyx=Xx.Applying the case n=2 to the

orthogonal idempotents € and f, we conclude that M is von Neumann

regular . Thergfore _the induction works .
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4.26 .
Lemma : A nop - zero regular I'-ring M is indecomposable (as a

I'-nng ) if and only if its center is g I'- field .

Proof : Assume that M js indecomposable . Let S denote the center of

M, and let x be any non - zero element of S. Then by 4.14 xyyyx=x, for
some v € S .

Now, XYYyYXyYy=xyy. i.e,xvyy is a non-zero central idempotent in M .
Since M is indecomposable
xYy=1.Therefore,S is a I'- field .

In particular, this lemma shows that the center of any prime von Neumann

regular I'-ring is a I'- field .

4.27 Definition : P is a projective left A - module when the following
property holds : if f : M > N is any epimorphism ,and g: P> N a

homomorphism , there exists a homomorphism h: P — M such that g =foh.

4.28 Theorem : If A is a finitely generated projective module over a
von Neumann regular I'-ring M, then Endy (A) is a von Neumann regular I'-

ring .

. Proof : According to 4.25, eyM,(M)ye is von Neumann regular for

any n and any idempotent € € M., (M).

4.29 Definition : Let M be an A—module. Then M is a free module
whenever it has a basis . Thus every element x €éM may be written in one
and only one wgy in the formx = Y s as S(where age A).

Examples of fype modules :
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i)  The zero module is free , With empty basis .

i E . .
i) very I'-ring M is a free left (right ) M — module ; the set consisting

only of the unit element is a basis .

4.30Theorem :

If Ais a projective right module over a von Neumann

regular T'- ring M | then all finitely generated submodules of A are direct
summand of A .

Proof :Let A be a submodule of a free right M —module F . Given
any finitely generated submodule B < A, we infer that F has a finitely
generated free direct summand G which contains B . It suffices to prove that

B is a direct summand of G, for then B is a direct summand of F and
hence also of A .

Choose a positive integer n. such that B can be generated by n elements,
and embed G in a finitely generated free right M-module H which has a
basis with at least n elements . Then there exists f e End m(H) such that fyH
=B . According to 4.28 , End y;(H) is von Neumann regular , hence there exists
g € End p (H) such that fygyf=1f, consequently ,fyg is an idempotent
endomorphism of H such that fygyH =fyH=B, whence B 1s a direct

summand of H . Therefore ,B is a direct summand of G.

4.31 Theorem : A I'-ring M is von Neumann regular if and only if
all right (left) M - modules are flat.

Proof : First assume that M is von Neumann regular . Let F be any
free right M- module , and let K be any submodule of F.If A is any
finitely generated submodule of K, then A is a direct summand of F by
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430, whence F/ A is projective . Now F /K is the direct limit of the

dul
modules F /A | where A fanges over all finitely generated submodules of K.

Thus , F /K is a direct limit of projective modules , whence F/K is flat .

Conversely , assume that all right M-modules are flat . Given x € M, the
flatness of M/xyM implies that the natural map (M/AxyM))®uMyx—>
M/ (xyM) must be injective, i e. , the map Myx/(xyMyx) ->M/(xyM)

is injective . Thus ,MyxnxyM =xyMyx, and, consequently, x € xyMy
x . Thererfore , M is von Neumann regular .

4.32 Lemma : For a commutative I'-ring M , the following conditions

are equivalent :

(a)M is von Neumann regular .

(b) My i1s a I'-field for all maximal ideals M’ of M.

(¢) M has no non-zero nilpotent elements and all prime ideals of M are
maximal .

(d) All simple M —modules are injective .

Proof : (a) = (d): Let M’ be a maximal ideal of M, let] be an

ideali of M, and let f: J—>M/M’ be a non - zero homomorphism.
Then (MNDT(MnI)=M'NIJ
Now M'nJ =(M NI (MNT)

cJI'M ¢ kerfcl

" Hence ] ¢ M.
Consequently , x+y =1 for some X € M andy el,

and we set w=Ff(y)e M/M".

Given any a € J we have xyat+tyya=(xty)ya=lya=a.

—a-yya=xyae MTJc ker f, whence f(a—yya)=0
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=f@)-f(yya)=0

=L@=1(yva)=f()yf@a) =wyf(a)
Therefore , f extends to a map M— M/M’ .
(d)=(c): We first claim that if M’ is any maximal ideal of M , then x €
xI'M’ for all x e M"".If not ,then xTM/xTM = 0 for some x e M’ .
Then M/M’" = xTM /x T M’ . Hence there exists an epimorphism |
f: xI'M> M/M’".

Now f extends to a map g:M - M/M’ , andso f (xyM)c g(M")=
0 , which is false . Thus the claim holds.

Suppose that xyx =0 for some nonzero x € M .The annihilatbr J={m
€M |myx=0}is a proper ideal and sois contained in a maximal ideal M".
Since x € JcM’, we have x € xI' M’ by the claim above . Then x = Xyy
for some ye'M',and(l'-y)yx=]yx—yyx =x—-xvy =0
= 1-y € J € M’, which is impossible . Thus M cannot have any nonzero
nilpotent elements .

Now let P be a prime ideal of M, and let M" be a maximal ideal which
contains P. Given any x € M", we have x e xI' M  and so
Xy(l-y)=xy1-=xyy = x—xyy=0 for some ye M’ .

Since 1 —y ¢ M’, we also have 1-y ¢ P, whence x € P .Thus M" =P . So that
P is maximal .

(¢)=> (b): Since ﬁere are no prime ideals of M properly contained in M,
we have see that M’ I My is the only prime ideal of M, whence
M'IT'My is nil.

Given x/s € M'T My, we thus have (x/s)"= 0 for some n, hence tyx"
=0 for some t € M—M’".Then (tyx)"=0 and so tyx =0 ,whence x/s =0.
Thus M'T My =0.So that My is 2 - field .
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(b)=(a): Let A be any M- module .For any maximal ideal M~ of M,
it follows from (b) that Ay is a flat M y -module , and consequently A is a

flat M- module . According to 4.31 M is von Neumann regular .

4.33 Theorem : A T- ring Mis von Neumann regular if and only if
(@) M is semiprime .

(b) The union of any chain of semiprime ideals of M is semiprime .

(¢) M/Pis von Neumann regular for all prime ideals P of M.

Proof : If M is von Neumann regular , then obviously (¢) holds . In view
of 417 (iv) all two sided ideals of M are semiprime , whence (a) and (b) hold.
Conversely , assume that (a), (b), (c) hold .If M is not von Neumann
regular , then there is some x € M such that x ¢ xyMy x. Note that 0 is a
semiprime ideal of M such that x ¢ xyMyx+ 0. From (b) we see that there
is a semiprime 1deal J in M which is maximal with respect to the property
xegxyMyx+17J.

Now M /J is not von Neumann regular, hence by (¢),J is not prime .
Thus there exist two sided ideals A and B which properly contain J, such that
ATBc J.Now set K={meM|mI'Bc J} and L={meM| KI'McJ}
As ] is semiprime, K and L are semiprime . Since (KNL)T (KNnL)c KT
Lc J,We have KnL < J.Clearly, AcK and B L, hence K and L
properly contain J.

Because of the maximality of J,there exist elements y,z € M such that
x-xyyyx €K and x—xyzyx €L.
Now x—xy(y+z -yyxyz)yx = x-xyyyx)-(x—-xyyyx)yzyx €K
=(x—xyzyx)-XYYY(X—XYZYX)EL-
We see that x.e xyMyx +(KNL) cxyMyx+] which is a

contradiction . Therefore M must be von Neumann regular .
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4.34 Corollary T AT
if all two sided

ring M is von Neumann regular if and only

ideals of M are idempotent and M /P is von Neumann
regular for all prime ideals P of M.

4.35 Definition : A completely prime ideal in a I'-ring M is a

proper two sided ideal P such that M /P is an intregral domain ( not
necessarily commutative ) .

4.36 Lemma : If M is a I'-ring with no non zero nilpotent elements ,

then every minimal prime ideal of M is completely prime .

Proof : We first claim that if aj, a,a3....... a,eM and ajaa;........
a,=0, then the product of the a; in any order is zero. To prove this, it
suffices to show that if xyaybyy =0 in M, then xybyayy =0. This is
clear if x=y =1,then xyaybyy =0

=1lyaybyl1=0

= ayb =0 .

and so (bya)y(bya) =by(ayb)ya =0.
whence bya =0 = xybyayy =0

In case x=1,then (ayb)yy =0 = yy(ayb) =0
= yy(aybya)=0

= aybyayy =0

= byaybyayy =0

— (bya)y(bya)yy =0

= (bya)yyytbya) =0

= (bya)yy)y(byayyy =0

= byayy = 0.
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For the general case ,
XY(@ybyy) =0
= aybyyyx =90
= (rayyyx=0
=  xy(byayy)=0.

This establishes the claim .

Now let P be any minimal prime ideal of M . Recall that on m -
system in M is a nonempty subset X such that 0 ¢ X and whenever x,y e X
there exists ne M such that xynyy € X.Then M-P is an m - system and
we may choose a maximal m-systetm X> M-P.If Q is a two sided ideal
of M, maximal among all two sided ideals disjoints from X, then Qis prime.
Since Q is disjoint from M - P, we have Q c P and thus Q = P, by
minimality of P. As a result, P is disjoint from X, whence X = M- P . Thus
M-P is a maximal m- system .

Set Y = {X X2 X3 Xo|XLX, Xs . Xn€M-P}. If 0€Y,

then x; X3 X3 Xy, =0, for some x;e€ M-P . There exist m; m; m;

i m g€ M, such that X ym gy Xy Myy........ e Y XYM Y Xp € X
= M-P. This imphies X; ympy Xz ¥ M2 Yoroooerrrunnnne YXn1YMyYX, & P. Since
(X1 9 Xp¥ X3 .Y X o) ¥ (M7 Mgy M3 Y.y Mpg) =0, we see from the claim
above that X ;ym |y X277 MY ¥ X 1Y M p1 Y Xp=0 which is
impossible . Thus 0 ¢Y, whence Y is an m - system . clearly M -P Y . Hence
by maximality of M - P, we obtain M -P =Y. Therefore M - P is

multiplicatively closed . So that M/Pis a domaini

4.37 Theorem : Let M be a I-ring with no non-zero nilpotent

elements . Then M is von Neumann regular if and only if M /P is von

Neumann regular for all completely prime idegls. P of M.
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Proof : Assume that M / Pis von Neumann regular for all completely

IfPis any minimal prime ideal of M, then is completely
prime by 4.36 . Hence M /P ig an integral domain and so is a division I'-ring .

‘Consequently , we see that M/Q is a division I-
Ao
of M.

prime ideals .

ring for every prime ideal Q

Since every semiprime ideal of M is an intersection of prime ideals,
we Infer that the set of semiprime ideals of M coincides with the set of

those two sided ideals J such that M/J has no nonzero nilpotent element .

As a result , we see that the union of any chain of semiprime ideals

of M must be semiprime . Therefore, M is von Neumann regular .
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CHAPTER - FIVE

Jacobson I'- rings and special Jacobson radicals

In this chapter we have defined Jacobson gamma ring and showed that it is
hereditary. We have also studied Jacobson radical for gamma rmgs It is shown

that the Jacobson radical for gamma rings is a special class of radicals .

5 Definition .

3.1 Jacobson I'- ring : A I'- ring M is said to be a Jacobson I'- ring if
JIM/A)= @M/ A), for every ideal A of M, where J and @ represent Jacobson

radical and prime radical respectively .

5.2 Theorem : The class of Jacobson I'- ring is hereditary .
Let M be a Jacobson I'-ring and let I be an ideal of M. Then we have to prove that
I1s a Jacobson ['-ring .
Let A be an ideal of M,
if A 1, then we have
J(I/A) =(1/A) NI (M/A)
and @ (I/A)=1/A)n p (M/A)
Since M is a Jacobson I'-ring.
Then,J (M/A)= g (M/A)
J(I/A)= go(I/A).Hencelisa.TacobsonF—ring.

S0

2

If A is not contained in I, then (A+1)/Ais a nonzero ideal of M. Since
(A+T)/A =1/(InA). hence JAA+D/A)=((A+D)/A)NIM/A)
and ,g)((A+I)/A)=(A+I)/Ango(M/A).
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Siqce I/ (InAy = /(InAYNT(M/A) and
50(I/(ImA))=I/(1mA))mgo(M/A),therefore
I/(ImA)ﬁJ(M/A)=I/(ImA)mp(M/A)-

Hence J(I/(ImA))=ga(1/(InA))

Therefore , I is a Jacobson I'- ring .

5.3 Theorem :

a Jacobson I'- ring .

The extension M” is a Jacobson I'- ring if and only if M is

Proof : Let M’ be a Jacobson I ring. The I'- ring M is isomorphic to an
ideal of M" and so , by Theorem 5.2 M is a Jacobson I'- ring .
Conversely , if M is a Jacobson I'- ring , and M’ is an extension of a Jacobson
I'-ring M by the Jacobson I'- ring Z . Since radical classes are closed under such

extensions , we have that M” is a Jacobson I'- ring .
5.4 Corollary: Inal-ring M',J (M) =IJM)".

Proof : By theorem 5.2 J (M) is a Jacobson I'- ring and an ideal of M".
So JM) cIM’) .However M/ JM) = M/I(M) . So IM) 2 (M)
L (M) =I(M)

8.5 Matrix - ring : Let M be a division I'-ring and M, (M) denote the

additive group of all nx }] mgtnce§ yy}lose entries are g‘oq] M. Th?r} M (M}
is a I'- r1ng with I' = Mn (M) under -the usual matrix multiplication . This is

called the matrix I'-ring.
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3.6 ition - :
PrOpOSlthﬂ PAT- rmg M is a Jacobson TI'- ring if and only if

for any n, the matrix - ring M, (M) is a Jacobson I-ring.

Proof : Suppose that M is 4 Jacobson T-ring . By theorem 53 M'isa

Jacobson I'-ring. Any homomorphic image of M, (M) is of the form M, (M),
where M"is an image of (M) . The I~ ring M’ is Jacobson and so g (M’) =
o).

Since My (M') is the homomorphic image of M, (M),

then oM, (M))=TM,M")).Thus M, (M) is a Jacobson I'-ring .

Conversely , suppose that M, (M") is a Jacobson I'- ring . By the preceding
case M, (Z) is a Jacobson I'-ring . Sothat M, (M") being an extension of M,
M) by M, (Z) isaJacobsonT-ring.If I isa primeideal of M’ , then M, (M’
/D) is prime and so semi primitive . Thus M’ /1 is semiprimitive and M’ is a

Jacobson I'- ring . Finally by theorem 5.2 M is a Jacobson I'- ring .

5.7 Definition. M :R)={reR: RItrcM}
(M : R) is a two sided ideal of R
A T-ring Mis a right primitive I-ring if M contains a maximal right ideal M’,
suchthat (M':M) =0 ={meM:MIm cM}.

5.8 Right primitive ideal : An ideal P of M is right primitive
ideal if M / P is right primitive .

5.9 Special class of I'- rings : A class M of I'-rings is a special class

of T-rings if it satisfies the following three conditions -

(i) Every I'- ring in the class M is prime I'- ring .

(ii) Every non zero ideal of al- ringin M is itselfa [-ringin M.
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YU
(i) If Aisal I'mglnM,andAisanidealofal“-rimgK,thenK/A"‘ is in M,

where A* is the anhilator of A,ie. A*={xeK:xT'A = ATx =0 }.

3.10 Prime I'- ring : A gamma ring M is said to be completely prime if

al’'b=0impliesa=0orb=0
We recall Barnes definition : Let M be aT- ring . An ideal P of M is prime if for

all pair of ideals S and T of M, SI'T Pimplies S ¢ P or T PAT-tingM
18 prime if the zero ideal is prime .

5.11 Theorem : Every primitive I- ring is prime .

Proof : Suppose that M is primitive I'- ring and that I is a maximal right
ideal suchthat (1:M)=0. Then 0 is the only two sided ideal of M contained in
I, forif A isanidealof M, AclI,then MEAcCI A c (IM)=0. Thusif
BI'C=0 forideals B,C of MandifB= 0,then B & I. Therefore M =1+ B,
for I is maximal right ideal .

Now MI'C= (I+B) I'C
=IIC+BICc 1.
Thus Cc (I1: M) =0, therefore, C =0, and M is prime I'- ring .

5.12 Theorem ;: Every nonzero ideal of a primitive ['- ring 1s primitive .

Proof : Suppose that M is a primitive I-ring and that Iis a maximal

right ideal such that (1:M)= 0 . We shall show that M contains a rtegular

maximal right ideal I; such that (I;:M)=0.

Let anot in Land let I; = {xeM:aTxel}, Then I,is of course aright ideal

of M. Also I, # M for ifay M c 1, then we represent M =13(a), , where (a); is



57

the right ideal generated by a. Since I is maximal and a is not in1, M can be so
represented . Then MTM=1yM+ (a) ,y M I.ThenMc (I:M)=0,a
contradiction . Thus 1, £ M |

Take any b notinIl,i.e.,ayb ¢ I Then soabove,aybyM « I forif
aybyM c T, weget MyM c I and M < (1:M) =0. Since Iis maximal
and aybyM is arightideal not contained in I, we have, M = aybyM+1.
Thus for any yin M , there exist elements ¢ in M, 1in I, such that
ayy =aybyc+i.Thus ay(y—byc) is inI.Thus y—byc isinT; .
Therefore every y isin I;+ byM or M=I1+by M. This proves that [; is a
maximal right ideal of M |

5.13 Lemma : The Jacobson radical of any I-ring M is equal to (),
the itersection of all the regular maximal right ideals of M,
to (f), the intersection of all the regular maximal left ideals of M,
to (y), {x:xyM is right quasi-regular forevery min M },
to (0), {x:Myx isleft quasiregular forevery minM }.

Proof : IfxisinJ. then xymisinJ forevery m inM, and x y m is right
quasi regular . Thus J < {x: xym isright quasi regular }.

Now take any element x in (w) . This means that x is in every regular
maximal right ideal of M . Either x is right quasi regular , or if it is not , then
{m+xym}#M.

Let M’ be a maximal right ideal containing { m + xy m }, but not containing X .
Then M- is regular , for -xym—m=xy (-m)+(-m ) is in M" for every m in M.
In this case x € M’ and therefore M’ =M . This is a contradiction and ,

consequently every X in (o) is right quasi regular . Since (o) is also a right ideal , it is

a right quasi- regular right ideal . Thus (o) < T .
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Now take x t :
© be any element of (y) , Thus x vy m is right quasi - regular for every

min M. Now ¢j i - ight
ither X € () or, if not there exists a regular maximal right ideal

M’ . Sin "1 ' ioht i
nce M is maximal , the right ideal generated by M’ and x is all of M . Thus

M={m"+xy(m+i)}, where i 1s an integer . Let e be the left unit of M", i .e.,
eYm-m isin M’ for every m of M . Then there exists anm’ in M", min M, i
an integer , such that
-e = m' +x(m+i)
Then -eve =m’'ye+xy(m+i)ye.
Now xy(m+1i)ye is right quasi regular and thus there exists an element z
suchthat xy(m+i)ye+z+xy(m+i)yeyz =0 . Now
myeyz txy(m+i)yeyz =-eyevyz.
Thus myeyz-xy(m+i)ye—-z +eyeyz =0.
Now eyt—t isin M" forevery t. Thus eye-e isinM",
eyeyz—eyz isinM’, eyz—z isin M’ and therefore ,eyeyz—z isinM".
Also m"yeyz isin M', since M" is a right ideal . Therefore, xy(m+1i)ye
isin M’ . Therefore -eye = m'ye +xy(m+i)ye isin M. Since eye-¢e
isin M',e isin M" Then eym and eym —m are both in M", -m and
m are in M’ for every m, and M" = M. This is impossible . Therefore , x is
m (a) |
Thus (y) < (o) € J < (y) and J=(0)=(y). Similarly J=(B) =(3), and

the lemma is established .

5.14 Theorem : The radical J = the intersection of all the right

primitive (two sided ) ideals of M .

Proof : Every regular maximal right ideal R of M contains a right

primitive ideal, namely (R: M) . Therefore J, which is the intersection of the
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regular maximal right ideals
ideals of R .

» contains the intersection of the right primitive

Conversely , we shall show that J is contained in every right primitive ideal

of M.LetP be a right primitive ideal of M. Then M/P contains a maximal
right ideal R /P such that (R/P,M/P) =0
or(R:M) c P
Now if R isregular, then,] < R.Also Jc (R:M),for (R:M) is

the largest ideal of M contained inR . Then J c(R:M)cP.

When R is not regular , since P c R,(R:M)c R, and we can at least
conclude that (R : M) is the largest ideal of M contained in R . For if Qis an
ideal of M and Q c R then MITQ ¢ Q c M . Therefore Q < (R:M).In
particular , then P = (R :M).Now ifthe radical J is not contained in P,
then it cannot be contained in (R:M) and soit cannot be contained inR, a
contradiction . We can writeJ < P. Nowif R={x:xyM cR} . Theright
hand side of this equation is a rmight ideal which contains R . Since R is
maximal , itis either RorM. If {x:xyM < R}= M, then MI'M < R. Then
(R:M)and thus R =M, a contradiction .

Now assume that J¢ M andtake x inJ,x ¢ R . ThenMyxisnotin R,
for otherwise x would bein (R:M) < R.Take anelement z in M such that
zyx¢R.Then zyxyMae R,since {w:wyM ¢ R} =R.SinceRis
méximal,R+zyxyM =M , and thus thereexists an 1 ¢ R and m inM

suchthat r+zyxym = -z . Then z+zyxym iIsinR .

Since xisinJ,xym is right quasi—regular and therefore there exists
an element w such that xym+w +xymyw=0.
Then, z =z+zy(xym *w +Xymyw)

=(-z +zyxym)+(ztzyxym)yw.
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Thus ' is i -
Z ttself isin R » but this contradicts the fact that z Yx €R.
Therefore J< R | ang thus J <P and the theorem is proved .

515 . . .
Theorem : Every Jacobson semisimple I'-ring is isomorphic to

a subdirect sum of right primitive - rings

Proof : If =0, then the intersection of the right primitive ideals is P;
is 0.Then by theorem 19 of [12],M is isomorphic to a subdirect sum of

I- rings , where each M; = M /P, But each of these is by definition a right
primitive I'-rings .

5.16 Lemma : IfA#0is a primitive I-ring and Ais anideal of K,
then K/A* isa primitive I'-ring , where A*={xe K:xyA=Avyx =0)}.

Proof : Let I be a maximal right ideal of A such that it contains no
non - zero ideals of A, or (1:A) =0. We can select Isothatl isregular and

let € be the element of A such that x-eyx isin [ for every x of A.

Now I is a right ideal of K, for I'Kc AT Kc A . Thus
(ITK)IT'(ITK) c (ITK)TAcITAcI . If ITK ¢ 1,
then, I+ITK = A ,since lis maximal . Thus e=i+a, where a is in IT K.
Then for any § in ITK, eyBp =iyp+tayp.Now ey = f+1i; for some
i, in] and ayp isin (ITK)T(ITK)cT.

Therefore, p= -iitiyp+ ayp isinl, ITK < 1, acontradiction .

Thus ITKc I and I is a right ideal of K.
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Define [, =
| | 1 I"‘{X*CYX}, where X ranges over K. Then I;is a
right ideal of K and it i regular, for x—eyx

Furthermore I, 2K -In particular ¢ is not in L,
eYAC LyA =

is in I, for every xinK .
forif e is in I; , then

(I+{x-eyx})yA = IyA+(x-eyx)vyA cl.

Since a—eya isinl for ¢very ain A, we would then havea in1 for every
a, A=I1, a contradiction Therefore , 1; is a regular right ideal of K, and
i # K. By zoms lemma we may select aright ideal of K which is maximal
with respect to excluding e and including I;.Let I, be this right ideal .
Then I, is a maximal right ideal of K , for any right ideal of K which
properly contains I, must contain e . It also contains I, ,and thus must be
all of K. This maximal right ideal I, is regular, for x—eyx is in I; cl,
for every x of K.

Now ILLbnn A 21, forIclicl, and Ic A . Onthe other hand, the
element e 1snot in I, and therefore not in I, " A . However e 1sin A . Then
A> LA o 1 .Since I is a maximal right ideal of A , we must have
L nA=1.

Now let us bring A* into the picture . IfA* ¢ l,. Then K = A*+ I,
since I, is maximal. Now KT A = A*TA+LTA=LTA.
But LTA c L nA = 1.Thus KI'A < I and in particular , AT A I .
Thus A < (1:A)=0, a contradiction . Therefore, A*cC I,.

We wish to show that K /A* is primitive , and to do this we shall
show that I,/A* is a maximal right ideal of K/A* such that I;/A* does

not contain any non -zero two sided ideals of K /A*. It is clear that I,/A*

is a maximal right ideal of K/A* because, I is a maximal right ideal of K.

To show that O is the largest two sided ideal of K/A* contained inl; /A%,
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is sufi
it ufficient to show that there are no two sided ideals of K between I

*
and A*. Thus let B be any ideal of K which is contained in I, .
Then BI'A ¢ LT AT,
Now BT A is anideal of A and it is in T . Since I does not contain any
non - zero ideals of A , BTA=0.

Then (ATB)T(ATB)= 0=AT(BTA)TB=0.
Since A is primitive , it is prime ,and thus AT B=0. Therefore

BTA=ATB=0, and B c A* Thus there are no ideals of K that arc

contained in I and that properly contains A* and therefore K/A* is
primitive .

Theorem 5.11, 5.12 and 5.16 give the following result .

5.17 Theorem : The class of all primitive I'- rings is a special class

of I'-rings .

5.18 Special radical : A radical is said to be special if it is the

upper radical determined by the special class of I'-rmgs.

5.19 Lemma : The special radical S of any I'-ring K is equal to
the intersection of all ideals T of K such that K/T 1s afrnng in the special

class M . Thus every S -semisimple I'-rting i1s a subdirect sum of I'- rings

from M.

The proof is in [30].

The special radical determined by the class M of all primitive I'-rings is
the intersection of all ideals T such that K/ T is a primitive I'-ring by
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Lemma 5.19 .Theorem 5.14 shows that this is specisely the Jacobson radical .
Thus we have :

5.20 Theorem : The Jacobson radical is the largest radical for which
primitive I'-rings are semisimple .

5.21 Corollary : The Jacobson radical is a special radical .
Proof : Since Jacobson radical is the upper radical determined by the

primitive T'-rings and the class of all primitive I'-rings is a special class of

[-rings . So that the Jacobson radical is a special radical .
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CHAPTER - SIX

The radical determined by the maximal ideals of a

I'- ring

In this chapter we have studied a radical which is determined by the
maximal ideals of a gamma ring . We characterized this radical by means of

the set of regular elements .

6.1 Definition : Let M be a I'- ring with unity 1. Then an element
x € M 18 called left (or right) regular in M if there exist elements y € M and
del suchthat ydx=1(xdy =1).

M is regular if for every element x € M thereexist ye M and d e T

suchthat xdy =ydx = 1.If x isnot regular then it is smgular.

6.2 Maximal ideal : A proper ideal I of a I'- ring M is said to be maximal
if there exists an ideal J of M contains [ then, either I=J or J=M.

Zoms lemma shows that any proper left ideal can be imbedded in a maximal
left ideal ; and since the zero ideal {0} is a proper left ideal , maximal left ideal
certainly exists . We now define the radical R of M to be the intersection of all its

maximal left ideals . We can write 8 = NL . R is clearly a proper left ideal .
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These ideas can be formulated just as easily for right ideals as for left ideals .

This means that R is also the intersection of all the maximal right ideals R in M
thatis ] = "R,

2

6.3 Lemma : If ris an element of R ,then 1—r is left regular .

Proof: Let (1 1) be left singular .
So that L =M& (I1-r)={x-x8r|x e M} is a proper left ideal which
contains 1 —r. We next imbed L in a maximal left ideal M’ , which contains
1 —r.Since r isin R, it is also in M'l‘ Therefore 1 =(l—-r)+r is in M". This

implies that M’ =M, which is a contradiction .

6.4 Lemma : If r isan element of N ,then 1—r is regular.

Proof : By the previous lemma, there exist s € ‘M , © € " such that
sd(l—-r)=1.So0 s isrightregularand s =1-(-s)dr. Since R is left ideal ,
(-s) or isin R . Hence 1- (-s) &1 is left regular . Since s 1s both left regular and

right regular , it is regular with inverse 1—r.So 1 —r is also regular .

6.5 Lemma : If risanelementof R, then 1 —x3r is regular for every x
in M.

Proof : Since R isleftideal,sox8r € R . Therefore, 1 -x 31 is regular
by lemma 6.4 .

6.6 Lemuma : If re M with the property that 1- x38r is regular for

every x,then R e R.
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Proof : Suppose that r is not in R . So that r is not in some maximal
left ideal M. Ttis easy to see that the set M+MSR={m+x8r1|me M
and x e M} is a left ideal which contains both M’ and 1.
So M'+ M&8r=M and m+x8r= 1 for some mand x .
Now m = 1-x8r.Since 1-x 81 is regular, m is regular in M’ . But this

is impossible , for no proper ideal can contain any regular element .

The effect of these Lemmas is to establish the equality of two sets:
NL={r:1-x8r is regular for every x} ........(1)
where L is the maximal left ideals.

For the maximal right ideals , we have

NR={r:1-rdxis regular for every x} ......... (2)

We now prove that all four of these sets are the same by showing that
the two sets on the right of (1) and (2) are equal to one another . By

symmetry, it evidently suffices to prove the
6.7 Lemma : If 1 —x&r is regular, then 1-r&x is also regular .

Proof : We assume that 1—xdr is regular with inverse
s = (1-x81). This means that (1-x8r)8s=58(1-x8r) = 1
= 18s—x8rds=s81-s586xdr =1
s-x8rds =s-s8xdr =1
-x8rds=-s0x06r=1-s
-r&dx8rdsdx =-r8sd8x0rdx=rd(1-s)dx
1-T8x8r8sdx =1-1r8s0X01r8Xx=rdx-rdsdx+1.

U U ou Uy

1-r&x +rdsdx -rdx8rdsdx
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=]1-1r8x+rdsdx-rds8xdrdx
=1
= (1-18x)8(1+r8s8x) = (1+18s8x)8(1-rdx) = 1.

So that 1-18x is regular with inverse 1+r8sdx.

We summarize our results in

6.8 Theorem : The radical R of M equals to each of the four sets in
(1) and (2) and is therefore a proper two sided ideal .
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LIST OF SPECIAL SYMBOLS

M - Gamma ring

J(M) —Jacobson radical for gamma ring
P(M) —Prime radical of M

S(M) —Strongly nilpotent radical
Z —Set of integers

R — Operator ring of the gamma ring
J(R) —Jacobson radical of the right operator ring
rqr —Right quasi regular gamma ring
h2 —Sammation of
— Subset of

c
) — Superset of

m

—Belong to
—Not subset of
— Intersection of
— Union of
—Not belong to
— Prime radical
— Radical class
—Implies that
—For all
—Empty set

© & <« g ® C O R

— Direct sum

— Isomorphic to
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