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Abstract

Suppose we seek a solution of the nonlinear system

Fx) = {filx1,x2, ..., %)} =0 i=12,....n (N

where f1, f2, f3,- - -,/ are continuous functions on an open set D in R".

There are good many methods for iterative interval solutions of system (1) for
any such methods, R. E. Moore developed a technique for finding a safe starting
point from which iterates converge, with a particular iterative method in mind,

Krgwczyk’s operator.

Minoru Urabe established an existence and uniqueness theorem (1965) which
helps verify the existence and uniqueness of an exact solution and to know the
error bound to an approximate solution of a system like (1). His theorem assumes

that all the computations are to be carried out in real numbers exactly.

Our attempts will be made to combine M. Urabe’s theorem and R. E Moore’s
technique theoretically as well as numerically considering interval version of New-

ton’s method.
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Chapter 1

Intrqduction

In mathematics, there are real numbers, a real arithmetic for combining them,
and a real analysis for studying the properties of the numbers and the arithmetic.
Interval mathematics is a generalization in which interval numbers replace real
numbers, interval arithmetic replaces real arithmetic and interval analysis replaces
real analysis. Using a pair [a, b] of computer numbers to represent an interval of
real numbers a < x < b, we will define an arithmetic for intervals and interval
valued extensions of functions commonly used in computing. In this way, an in-
terval [a, b has a dual nature. It is a new kind of number pair and it represents a set
[a,b] = {x:a <x < b}. We combine set operations on intervals with interval func-
tion evaluations to get algorithms for computing enclosures of sets of solutions to

computational problems.

Numerical analysis is the study of computing with real (and other kinds of)
numbers. Theoretical numerical analysis might entail exact numbers and exact
arithmetic, while practical numerical analysis consider the cases in which round-

ing errors occur. We will be concerned with both theoretical and practical interval



analysis for computing with interval numbers.

There are several types of mathematical computing errors. Anyone using arith-
metic of finite precision on digital computers has come across the impact of round-
ing error and propagated error. These errors appear as a result of the uncertainty
of initial data, finite representation of numbers in arithmetic units of computing
machines, or uncertain values of parameters in mathematical models in physical
and engineering sciences. When solving computational problems in many similar
situations, we should compute intervals which contain the approximate result or
the solution of some equation, providing thus the upper error bound related to the

exact result or solution.

In solving some practical problems “exact” arithmetic cannot be carried out
because of the limite'_cl/"’precision of the used computer. The calculations in or-
dinary floating poiﬁt arithmetic do not norrﬁally produce any information about
the accuracy of the obtained result. In order to provide such information R.E.
Moore has proposed in 1966 a new structure which has come to be called In-
terval Analysis or, later, Interval Mathematics. Applying interval arithmetic,
we can compute the intervals containing the results of the arithmetic of “infinite”
precision. Most of the aforementioned problems can be solved using the meth-
ods of interval mathematics- a new expanding and applicable branch of applied
mathematics. At present, these methods have practical application in various sci-
entific areas including physical and engineering science, economics study of the
behavior of mathematical models as sensitivity analysis, effects of inaccurate mea-
surements, parameter studied, the mathematical programming, numerical analy-
sis, approximation and optimization theory, asteroid orbits, robotic, signal pro-
cessing, computer graphics, behavioral ecology and other disciplines. Generally

speaking, interval arithmetic methods can be effectively applied to any compu-



tation in the presence of roundoff error or propagation error in initial data or for
controlling computational errors in various numerical algorithms implemented on

digital computers.

In practice, the resulting intervals may be very large in size and, therefore,
of little value. The aim of interval methods is to modify the existing numerical
algorithms, or to develop new ones that produce intervals as small as possible.
Interval techniques are a useful tool in applied mathematics, which is especially
prominent, in controlling and analyzing computational error, constructing self-
validated algorithms with guaranteed safe bounds (upper and lower bounds on
sets of solution or computed result) and in providing natural stopping criteria for

interval methods.

In particular, error bound procedures for solving certain problems in the com-
plex realm require complex interval arithmetic. This type of arithmetic is a natural
extension of real interval arithmetic to the complex plane and used, beginning with
Boche(1966). A complex “interval” can be a rectangle, a circle; or a more com-
plicated set. Intervals of magnitude and phase can also be used. When complex
intervals are used, then the computed complex intervals ( circles or rectangles)
contain the exact results of some computation or the exact solution of an equa-
tion. The center of this interval is taken for the approximate result, and the radius
of circle(disk) represents the upper error bound. In this manner, an automatic con-

trol of accuracy of the obtained result is provided, which is the main advantage of

interval methods.

Interval analysis has been used in rigorous computer-assisted proofs, for exam-

ple, Hales’ proof of the Kepler conjecture. (4]



An interval Newton method has been developed for solving systems of nonlin-
ear equations. While inheriting the local quadratic convergence properties of the
ordinary Newton method, the interval Newton method can be used in an algorithm

that is mathematically guaranteed to find all roots within a given starting interval.

[nterval analysis permits us to compute interval enclosures for the exact values
of integrals. Interval methods can be bound the solutions of linear systems with
inexact data. There are rigorous interval branch-and bound methods for global
optimization, constraint satisfaction, and parameter estimation problems. We also
introduce INTLAB (INTerval LABoratory), a powerful and flexible MATLAB
toolbox capable of performing interval calculations 221,

In Chapter 2, introduces the interval number system, defines the basic terms
and concepts, set operations (intersection and union) and arithmetic operations
(addition, substraction, multiplication,and division), rectangular complex interval
arithmetics, algebraic properties of interval arithmetic and inclusion isotonicity of

interval arithmetic, needed to work within this system.

In Chapter 3, review of some basic definitions and Fundamental results, deals
with sequences of intervals and interval functions, material needed as preparation
for the iterative methods to be treated in Chapter 4 (convergence test), in Chapter
5 (on matrices) and in Chapter 6 (on root finding). Finally, in Chapter 7, we apply
M. Urabe’s theorem to R. Krawczyk’s algorithm for finding the interval (numer-
ical) solution of a polynomial equation and the system of nonlinear equations.
Finally we present an numerical approach for searching the safe starting regions
to solutions of nonlinear system of equations, based on interval computation by
applying S.T Jones and R.E. Moore method. Here, we are given an n-dimensional

interval bisection procedure, whose stopping criterion is the satisfaction of com-



putationally verifiable tests for existence of a solution in a test region and con-
vergence of a given iterative method from the test region. This is a new area and

research is still in progress, looking for improved method.

Research, development, and application of interval methods is now taking place
in many countries around the world, especially in Germany, but also in Austria,
Belgium, Brazil, Bulgaria, Canada, China, Denmark, Finland France India, Japan,

Norway, Spain Sweden, Russia, the U.K and USA.



Chapter 2

The Interval Number System

2.1 Basic Terms and Concepts

A fundamental notion in interval analysis is the notion of interval. Let R be the

set of all real numbers. A subset of R of the form
[a,b] = {x e R:a <x<b} 2.1)

where a,b € R and a < b is called a closed real interval. We can also regard an in-
terval as a number by the ordered pair of two real numbers, namely, its endpoints
a and b with a < b. Although various other types of intervals (open, half-open)
appear throughout the mathematics, our work will center primarily on closed in-

tervals. In this thesis paper the term interval will mean closed interval.

The set of all intervals over R is denoted by IR where
IR = {[a,b] : a,b € R,a < b} (2.2)

The elements of IR will also called interval numbers.



Degenerate Intervals
We say that X is degenerate if @ = b. Such when an interval of the form X =
[a,a] = a consists of one point is called a point interval, and is sometimes denoted
by a which is a real numbers. From this point of view the set of real numbers is
contained in the set of interval numbers i.e, R C IR.
Endpoint Notation, Equality
We will adopt the convention of denoting intervals by capital letters X, ¥, Z etc
and their endpoints by small letters a,b,c etc. We call two intervals X = [a,b] and
Y = [c,d] are equal if and only if their corresponding endpoints are equal, that is
X=Yiffa=candb=d.
Intersection, Union, and Interval Hull
The intersection of two intervals X and Y is empty, X NY = ¢, if either X < Y or

Y < X. Otherwise, we may define the intersection of X and Y is again an interval

XNY={z:ze€Xand zeY}

= [max(a,c), min(b,d)]
In this latter case, the union of X and Y is also an interval:

XUY={z:z€Xor zeY}

= [min(a, c),max(b,d)]

In general, the union of two intervals is not an interval. However, the interval hull

of two intervals, defined by
XUY = [min(a,c), max(b,d)]
is always an interval and can be used in interval computations. We have

XUY C XuY



for any two intervals X and Y.

Importance of Intersection

Intersection plays a key role in interval analysis. If we have two intervals contain-
ing a result of interest- regardless of how they were obtained- then the intersection,
which may be narrower, also contains the result.

Width, Absolute Value, Midpoint

1. The width of an interval X = [a,b] is the real number defined and denoted
by
WX)=b—a (2.3)

2. The absolute value of an interval X denoted by |X|, is the maximum of the

absolute values of its endpoints:

|X| = max(|al.|b]) 24)

X1

w(X)

0 a m(N) b ox

Figure 2.1: Width, absolute value and midpoint of an interval,

3. The midpoint(or center)of an interval X is the real number

m(X) = (a+b)/2 2.5)



2.2 Order Relations for Intervals

We know that the real numbers are ordered by the relation <. This relation is
said to be transitive: if a < b and b < ¢, then a < ¢ for any a,b and c € R. A
corresponding relation can be defined for intervals, and we continue to use the
same symbol for it: The elements of IR can be ordered in the following way:
X<Yiffb<cand X >Yiff b > c.

Another transitive order relation for intervals is set inclusion:

XCY ifandonlyif ¢<a and b<d (2.6)

2.3 Definitions of the Arithmetic Operations

We are about to define the basic arithmetic operations between intervals. The key
point in these definitions is that computing with intervals is computing with sets.
Interval arithmetic operations are defined on IR such that the interval result en-
closes all possible real results. In this subsection arithmetic operations with inter-
vals will be introduced. Let ¢ denote one of the four arithmetic operators,+, —, *, /

on the real numbers. For X,Y € IR we define an arithmetic operation on IR by
XoY =A{xoyla<x<bc<y<d} 2.7

with X /Y is undefined if 0 € Y

Let X,¥Y € IR. The sum of X and Y, denoted by X +Y, is defined by the set
X+Y={x+y:xeX,yeY} (2.8)

It is seen that X +Y is again an interval,ie, X +Y € IR. Indeed, from (2.7)

a+c < x+y < b+d. Thus we have the equivalent relation
X+Y =[a,b]+[c,d]=[a+c,b+d] (2.9)

9



Although (2.8) and (2.9) are equivalent, formula(2.9) is by far more useful for
practical applications since it permits to find the whole set X +Y by computing its

endpoints a + ¢ and b + d using only the corresponding endpoint of X and Y.

We define the negative of an interval by the set —X = {—x: x € X}. Similarly

to the previous case we have —X = —[a,b] = [-b, —d]

The difference of two intervals X and Y is the set
X-Y=X+[-Y]={x—y:xeX,yeY} (2.10)

or equivalently

X-Y=la—db—c (2.11)

Obviously, X — Y € IR
The product X .Y of two intervals X and Y is defined by the set
XY={xy:xeX,yeYt} (2,12
It is not hard to see that
X.Y = [min{ac,ad,bc,bd), max(ac,ad, bc,bd)] (2.13)

The end points of the product Z = X.Y = [Z},Z5] can be computed in a cheaper

way if the signs of the end points of X and Y are taken into account. We have the

following nine cases :
. Zy=ac, Zp=bd if a>0, c>0
2. Zy=ad, Zp=0bd if a<0<b, ¢c20

3. Zy=ad, Zy=bc if b<0, ¢c>0

10



4. Zy=ad, Zy=0bc if a>0, c<0<d

5. Zy=ad, Zy=ac if ¢<0, c<0<d

6. Zy=be, Zy=ad if a>0, <0

7. Zy=bc, Zp=ac if a<0<b, <0

8. Zi=bd, Zy=ac if a<0, ¢<0

9. Zy =min{ad,bc}, Z;=max{ac,bd}ifa<0<b,c<0<d.

It is seen that with the exception of the ninth case formula are twice more effective
than (18). If X is an interval not containing the number 0, then we can define its

reciprocal as follows:

1 ]
Z={-ixex) (2.14)

and hence
l 1 1

x~lpa
Finally, the quotient X /Y is defined as

(2.15)

X/Y={x/y:xeX,ye¥} (2.16)

provided that 0 ¢ Y.

A sophisticated extension of the interval arithmetic operations to unbounded

intervals is needed. It is required for the interval Newton method. Alefeld (1968)

(18]

was the first to use infinite intervals in Newton methods'™®! . The following for-

mulas are due to Hansen (1980):

Let 0 € [¢,d] and ¢ < d, then

Rajshahi University Libraap
Documentation Section
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[b/c,+oo) ifb<0andd =0,
(—o0,b/d]Ub/c,+o0), ifb<0,c<0andd >0,

(—o0,b/d] b<0andc=0,

(—o0,a/c] a>0andd =0,

[a,b]/[c,d] = {

(—eo,a/c]Uja/d,+o) a>0,c<0andd >0,

\ (—o0, +o0) ifa<0and b >0,
and furthermore [a,b]/0 = (—oo, +o0).

These formulas are not applicable to every problem, but they are appropriate for
solving linear equations in connection with the interval Newton method. There is
also no need to implementing the above formulas on the machine explicitly since
they are finally intersected with a bounded interval such that the result is always
a bounded intervals,a pair of bounded intervals, or the empty set. We also have to

shift unbounded intervals before intersecting them. This means that for x,a € R,

x+[a,o) = [x+a,o) (2.17)
x+ (—o0,a] = (—o0,x+d] (2.19)

2.4 Interval Vectors
By an n-dimensional interval vector, we mean an ordered n-tuple of intervals
(X11X2a Tt 7Xn)

Thus, if X is a two-dimensional interval vector then X = (X;,X>) for some inter-
vals X| = [a|,b)] and X» = [a2, b2].

A two-dimensional interval vector also represents a two-dimensional rectangle of

12



Xz

X, X

ay X‘ b\; Xy

Figure 2.2: Two dimensional interval vector X = (X|, Xa2).

points (x1,x7) such that a; < x; < by and ap < xp < by. With suitable modifi-

cations, many of the notions for ordinary intervals can be extended to interval

veclors.
1. If x = (x1,x2,+ ,X,) is a real vector and X = (X, X2, --,X,) is an interval
vector , we will writex e X if x; € X; fori=1,2,3,---,n.

2. The intersection of two interval vectors is empty if the intersection of any of
their corresponding components is empty, otherwise, for X = (X}, X2, , X))
and ¥ = (¥,Ya,---,Y,) we have XNY = (X;NYy,--- . X, NY,), which is
again an interval vector. If two intervals X and ¥ have nonempty intersec-
tion their union,

X UY = [min(a,c),max(b,d)] (2.20)
is again an interval. The union of two intersecting interval vectors is not in

general, an interval vector.

3. A useful relation for intervals is the set inclusion

XcyY (2.21)

13



ifandonlyifa<candb<d.IfX = (X|,X2,....Xy) and Y = (¥, V2, -+, ¥}))

are interval vectors, we have X CY if X; C Y; fori=1,2,3,--- ,n.

4. The width of an interval vector X = (X|,X»,---,X,,) is the largest of the

widths of any of its component intervals:

W(X) = maX(W(XI)a S aW(Xn)) (2.22)
X ]
X . w(X)
“ X)
|| ™
L =

Figure 2.3: Width, norm, and midpoint of an interval vector X = (X;, X»).

5. The midpoint of an interval vector X = (X1, Xp,--+,X,) s

m(X) = (m(X,), - ,m(X,)) (2.23)

6. The norm of an interval vector X = (X|,X3,--+,X,) is

[|X]| = max(|X;],---,|Xa]) (2.24)

14



2.5 Rectangular Complex Arithmetic

We consider and analysis of various problems in the complex plane which ei-
ther involve “inexact” data, or require some information on upper error bound of
the obtained result or solution, dictate the need for a structure which is referred
to as complex interval arithmetic. There are two reasonable choices for complex
intervals: circular regions(disks) and rectangles in the complex plane. No new

difficulties arise if we choose the Cartesian representation for complex numbers.

As is customary, we denote the complex numbers as an ordered pair of real

numbers, (ay,az).

Definition 2.5.1 The sum of two complex numbers,(a),a;) and (by,b;) is the

complex number (ay +by,az + ba).

Definition 2.5.2 The product of two complex numbers, (ay,a;) and (by,b3), is the

complex number (a1b) — axby,a1by + azby).

Under these definitions we note that the real number, a, corresponding to and may
be identified with the complex number, (a,0). Traditionally the complex num-
ber, (0, 1) is denoted by the letter i. Then since (0, 1).(0,1) = (~1,0), *=—1.
In summary the complex number (aj,a»), could be represented as (aj,az) =
(a1,0)+(0,a2) = a1 +az(0,1) = a; +azi.

We wish to develop complex interval numbers in a similar manner.

Definition 2.5.3 A complex interval number is an ordered pair of interval num-

bers (X,Y).

Upper case script letters are used to denote complex interval numbers. As in the
case with ordinary complex numbers, we shall have occasion to refer to the com-

i’l‘”

plex interval number, ([0, 1],[1,1] as

15



Let X,X; € IR. Then in set notation a complex interval number may be repre-

sented in the form
X=X+Xoi=[a,b|+[c,dli={x+iyjla<x<b, c<y<d} (2.25)

Geometrically a complex interval number may be conceived of as a closed rectan-
gular region in the complex plane. The set of this rectangles is denoted by R(C)
where C is the set of complex numbers. A complex number x 4 iy may be con-
sidered to be a complex point interval X = [x,x] + i[y,y] € R(C).Futhermore, ev-
ery real interval X] € R(C) may be considered to be an element X = X; +[0,0] €
R(C)which evidently implies IR C R(C). The midpoint(center) and the semidi-

agonal of a rectangle X will denoted by midX and sdX.[6]

Let o € {4+,—,%,/} be a binary operation on elements from IR and let X =

Xi1+iXo, Y=Y+ih, X, YeR(C).
The basic operations of rectangular arithmetic are defined by
X+Y=X 1Y +i(X, 1Y)
XxY=X1Y, ——XQYz-I—f(X]YQ —I—X2Y|)

_ X1Y1+XY | XNV X 2 2
X/Y = vl Ty O0EY+Y;

2.6 Algebraic Properties of Interval Arithmetic

If X and Y are degenerate intervals, then (2.7) reduce to the ordinary arithmetic
operations over real numbers. Thus, interval arithmetic can be regarded as a gen-
eralization of real arithmetic. Therefore, it is normal to expect that the properties

of interval arithmetic will be similar to those of real arithmetic, which is really

16



the case. However, there are several striking dissimilarities that will be stressed
below. It follows from the set-theoretic definitions (2.7) interval addition and mul-
tiplication is associative and commutative, that is , if X, Y,Z € IR.

Then X+ (Y+Z)=(X+Y)+Z

X+Y=Y+X

X(YZ) = (XY)Z,XY =YX zero and unity in [R are the degenerate intervals [0, 0]
and [1,1] which will be denoted by 0 and | respectively.

In other words: X +0=0+X, [X=X.]foranyX € IR.

With the identification of degenerate intervals and real numbers, interval arith-
metic is an extension of real arithmetic and reduces to ordinary real arithmetic for
intervals of zero width. Note that X —X =0 and X /X = | only when X is of width

Zero,

It is important to underline that unlike real arithmetic X — X # 0
and X /X # 1 when W(X) > 0. Indeed, X — X =[a—b,b—a] = W(X)[—1,1] and
X/X =la/b,b/a)forX >00rX/X =[b/a,a/b] forX <O0.

Another interesting property of interval arithmetic is the fact that the distributive

law

X(Y+2Z)=XY +YZ (2.26)

does not always hold.
For example, we have [1,2](1,—1) = 0; Whereas [1,2].1 —[1,2].1 = [-1,1] #0.

We do, however, always have the following algebraic property
XY+X)CXY+XZ (2.27)

We call this property sub-distributivity. In certain special cases , distributivity

holds. Some particularly useful cases are : The interval number X is of zero
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width, X (Y + Z) = XY + XZ.

The cancellation law holds for interval addition : X +Y =X+ Z implies ¥ = Z.
If XY =XZ and 0 ¢ X, then the cancellation law for multiplication holds, and
Y=2.

2.7 Symmetric Intervals

By a symmetric interval, we mean an interval X = [a, b] such that @ = —b. Thus,

X is symmetric if and only if m(X) = 0.

For a symmetric interval X, we have |X| =W (X)/2 and X = |X|[—1,1].
If X and Y are symmetric intervals, then
X+Y=X-Y=(X[+Y])[-11]

XY = |X||Y|[-1,1].
If X Y and Z are symmetric intervals, then

X(Y+2Z) = XY +XZ = |X|(|Y|+|Z])[-1,1]

An arbitrary interval X can be written as the sum of a real number and a sym-
metric interval. Thus X = m+W where m = m(X) and W = W (X)[~1, 1] Put

another way, we can write
1 1
X=mX)+ |—zw(X),=w(X)
2 2
1
= m(x) + W) [-1,1]
_atb b-a

—2+2

If Y is a symmetric interval and X is any interval, then XY = |X|Y. It follows that

[_-171]

X(Y+Z)=XY +XZifY and Z are symmetric, for any interval X.
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2.8 Inclusion Isotonicity of Interval Arithmetic

Let ¢ denote one of the four arithmetic operators,+, —, *, / on the interval num-

bers. If I,J,K and L are intervals such that / C X and J C L. Then
I¢JC KoL (2.28)

These relations follow directly from the above definitions. However, these rela-
tions are not purely algebraic; they serve to connect the algebraic set properties of
interval arithmetic. Interval arithmetic is said to be inclusion isotonic.

Finally we note that the set of interval numbers forms an Abelian semi-group

under the operation of addition and and also under the operation of multiplication.

The following four lemmas will be needed later for established the Fundamental
theorem of Interval Analysis. If /,/, K and L be interval numbers such that / C K

and J C L, let us prove the following lemmas.
Lemma2.8.1 /+JCK+L

Proof. Let I = [a,b], ] = [¢,d], K = [e, f] and L = [g, h]. Then from the definition
of interval addition, I +J = [a+c,b+d|,and K+L=[e+g,f+h|. Sincel CK
and J C L,then the elements of /,J,K and L can be ordered in the following way:
e<a,g<c b< fandd <h Combining these relations ¢+ g < a+c and

b+d<f+h HenceI+J CK+L.
Lemma 282 /—-JCK-L

Proof. Let /,J,K and L be same as in Lemma 5.1. Then from the definition of
interval subtraction, I —J = [a—d,b—c], and k— L = [e — h, f — g]. Combining
the relations e < a and d < h, givese—h < a—d. Similarly, fromb < fand g <c,
wegetb—c< f—g.
Hence I —-J C K—L.
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Lemma 2.8.3 /.JCK.L.

Proof. Let /,J,K and L be same as in the above Lemma. Then from the definition
of interval multiplication with the set notation /.J = {w.xla < w < b,c <x<d
and K.L={yzle<y< f,g<z<h}. Thene<a<b< fandg<c<d<h, and
we note that every element,w.x of the set 1./ is also an element, y.z of the set K.L.

Therefore I.J C K.L.
Lemma 2.84 I/J CK/Lif0¢L.

Proof. Let /,/,K and L be same as in the above Lemma. Again, with the set
notation, //J = {w/xla<w<b,c<x<d},and K/L={y/zle<y< f,g <z <
h}.Then, usinge <a < b < fand g < ¢ <d < h, we find that every element,w/x,
of the set //J is also an element, y/z, of the set K/L.  Therefore, if 0 & L,
1/J CK/L.
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Chapter 3

Sequences of Intervals and Interval

Functions

3.1 Review of some basic definitions and Fundamen-

tal results

Definition 3.1.1 Convergent Sequence. In real analysis, we call a sequence {x;}
convergent if there exists a real number x* such that for every € > Q there is a

natural number N = N(€) such that
W to ]
b — x| < g (3.1)
whenever k > N. In this case, we write
x* = lim xg (3.2
k—eco

and refer to x* as the limit of {xy}. The quantity |xy —x*| in (3.1) is just the

distance between x; and x* as measured along the real line.

21
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The notion of sequence convergence appears throughout mathematics. One can
consider convergent sequences of complex numbers, real-valued functions of real
variable, etc. All that is needed is a suitable measure of ’distance’ between the

objects of interest.

Definition 3.1.2 Continuity. We say that f(x) is continuous at a point xq if for

every € > 0 there is a positive number 8§ = 8(€) such that

|f(x) = flxo)| < € (3.3)
whenever |x —xo| < 8. In this case,|f(x) — f(xo)| is the distance between the y-

axis points f(x) and f(xg), corresponding to the distance |x — xo| along the x-axis.

It is said that convergence and continuity are the two central concepts of anal-
ysis. We see, in turn, how they both hinge on having a suitable way to express
distance. The need to discuss convergence and continuity outside of ordinary real

analysis has led to a powerful generalization of the distance idea.

3.2 Norms of Vector and Matrix

Let us consider the linear space(or vector space) X over the field F, whose

elements(vectors) denoted by x,y,z,---

Definition 3.2.1 Inner Product. Let x,y,z be any three vectors in X.The inner
product of two vectors x and y in X defined by (x,y) is a scalar satisfying the

Jfollowing axioms :
e (x,x) > 0; (x,x) =0 if and only if x = 0 (positive definitions)

o (x,y)=(yx) (symmetric property)
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o (ax+byz)=a(x,z)+b(y,z) (linearity), where a,b € F

Let X =R", and x = (x1,x2,...,%,) € R", then the inner product (x,x) is given
by (x,x) = (|x1 2+ [x2* 4 -+ xa").
By the norm ||.|| of a vector x of X, we mean a function ||x|| : X — {t : 0 < oo}

such that
o |lx+y|| < {lxl[+ Iyl
o [jax|] = |af|x]
e ||x||=0ifanonlyifx=0

Definition 3.2.2 Uniform norm. In mathematical analysis, the uniform normassigns

to real or complex-valued bounded functions f the nonnegative number

| flle = sup{| f(x)| : x € domain of [}

This norm is also called the supremum norm or the Chebyshey norm.

If f is a continuous function on a closed interval then it is bounded and the
supremum in the above definition is attained by the Weierstrass extreme value
theorem, so we can replace the supremum by the maximum. In this case, the norm
is also called the maximum norm. For the case of a vector x = (xX1,X2,...,%,) in

finite dimensional coordinate space, it takes the form

xnl}

x||e = max{ixi],...,
The reason for the subscript “oo" is that

i 171l = [/l

1/p
i1 = (e

23
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where D is the domain of f The binary function

d(f,8) = lf - gllw

is then a metric on the space of all bounded functions on a particular domain. A

sequence {f, :n=1,2,3,.. .} converges uniformly to a function f if and only if
lim || — £l = 0.
n—yoo

Definition 3.2.3 Normed linear space. A linear space X with a norm||.|| defined

on it is called a normed linear space.

Matrix norm

In mathematics, a matrix norm is a natural extension of the notion of a vector
norm to matrices. Properties of matrix norm

Let us denote by K the field of real or complex nﬁmbers. We consider the space
K">" of all matrices with m rows and n columns with entries in XK. A matrix norm
on K™ satisfies all the properties of vector norms. That is if ||A[| is the norm of

the matrix A, then

e ||A]| > 0and ||A|| = 0if and only if A =0

e ||a@A|| = |a|||A]| for all & € K and all matrices A in K"
o [|A+B]| < J|A]|+]1B]]

o ||AB|| < ||A]|||B|| where B is another element in K"**"

o ||A|| = ||A*|| where A is the conjugate transpose of A.

Induced norm

If vector norms on K™ and K" are given, then one defines the corresponding in-

duced norm or operator norm on the space of m-by-n matrices as the following
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e A e e

maxima;

|A|| = max{||Ax|| : x € K"with|[X]|] < 1}

= max{||Ax|| : x € K"with||X|| = 1}

A
= max{”TxTI—[ :x € K"with||X|| # O}

There are numerous ways by which matrix norms can be formed. The follow-

ing are matrix norms on K*1

1 All, =
(1) IAllp iy
n

2) A= 1?%1; |aij]

(3) ]l = max Z|a11|

I<1<m

“Entrywise’” norms

() Al = (Z y \aul”)

i=1j=I

Frobenius norm

m 1

(5) ||A”F = Z E lau|2 = trace(A™A)
i=lj=
Trace norm
(6). ||A||;r=trace (\/A*A)
Max norm

(7). HA”nm_t = max{la,'j|}

Definition 3.2.4 Linear operator. Suppose we are given two linear spaces X and
Y over the same scalar field F. An operator is a mapping P which map X into Y

over the same field F such that for each x € X there is a uniquely defined P(x) € Y.
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The mapping P is said to be linear if it satisfy two conditions:

L xp = y1, xo = yp implies x1 +x2 = y1 +y2

2. x— yimplies ot.x = a.y where x1,x € X, y1,y2 € Y and oF.

Definition 3.2.5 Non-linear operator. An operator P from a linear space X into
a linear space Y is said to be non-linear if it is not a linear operator from X into
Y. A simple non-linear operator is one that gives, for allx € X. P(x) = yg where

Yo is a fixed, nonzero elements.

Definition 3.2.6 Inverse operator. Let P be an operator defined on a vector sub-
space of X. An operator A defined on the ranges of P, R(P) is called the inverse

of P if
PAx=x forall x&R(P)

and

APx=x forall xe& D(P),domainof P.
Theorem 3.2.1 If an operator has an inverse then it is unique.

Theorem 3.2.2 If A is a linear mapping from X into Y the A~ exists if and only

if Ax =0 implies x = 0.

Lemma 3.2.3 Banach Lemma Suppose L is a bounded linear operator in X, L™

exists if and only if there is a bounded linear operator M in X such that M -1
exists, and
1

W= < gy
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IF L=V exists then

It=Y (1-m'Lym!
n=0
and
-1 -
[ I |

1L~ < <
1—|[1-=M-IL|| = 1 —||M~Y|||M - L]

Definition 3.2.7 The real number field R is itself a one-dimensional vector space
over itself. Then any mapping of (X,Y) = (F,F) where X is a normed space, is

called a functional. If the mapping is linear, it is called linear functional.

Definition 3.2.8 Bounded operators. The concept of a bounded operator is closely
connected with that of a continuous operator. Let U and V be two normed spaces
andletT : U — V be a linear operator. We say that T is bounded if it is possible

to find a number K > 0 such that

| Tu|| < K||u|| forall ueU

For all bounded linear operator T,

we have ||Tul| < ||T|||ul|, where ||T|| = sup{||T||/||ul|,u # 0}.

We have the following theorem connecting the boundedness and continuity of

operators:

Theorem 3.2.4 A linear operator T from a normed space U to a normed space V

is continuous if and only if it is bounded.

An important class of normed linear space which is named after Stefen Banach
(1892-1945), plays an important rule in the existence of the limit x* of an infinite

sequence {x,,} of elements of normed linear space X. Consider the sequence {.x,, }
of rational numbers defined by

. 2
Xp = l,xrlrzi(x”'_l+—;—])’ ’n:"l)z)"'
“in—
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There is no rational number x* which can be the limit of this sequence.(with ||x|
lx|). However if the above sequence {xn} in R, it has a limit x* which is the

solution of the nonlinear equation x> = 2.

Consequently , the space of real numbers has a property with respect to limits
which the set of rational number does not. This property is defined precisely in
the more abstract setting in a normed linear space by the following fundamental

definition.

Definition 3.2.9 Cauchy or Fundamental sequence. A sequence {x,} of ele-
ments of a normed linear space is called a Cauchy sequence if for every € > 0

there exist a number A such that
l|X0 —xn|| < € forall mn>A.

Theorem 3.2.5 If {x,} is a Cauchy sequence in a normed linear space, then the

sequence of norms {||x,||} converges
Theorem 3.2.6 Let (E,||) be a normed space. The function d defined by
d(x,y) = |lx—yl|
is a distance on E satisfying the following conditions:
I. d(x+z,y+2z) =d(x,y) (invariance by translation,).
2. d(Ax,Ay) =|Ald(x,y)

According to theorem | every normed space is a metric space. The structure of a
normed space combining the structures of a vector space and of a metric space, has

a large role both in mathematical theory and in applications. Complete normed

space, in particular, play a very important role.
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Definition 3.2.10 Banach space. Banach spaces are defined as complete normed
linear spaces.This means that a Banach space is a linear space Vover the real
or complex number with a norm ||.|| such that every Cauchy sequence in'V has a

limitinV.

Theorem 3.2.7 A Euclidean space R becomes a normed linear space when equipped

with the norm

Kl =v/(x%), (x€R)

3.3 Balls in normed linear space.

Let X be a normed linear space. The open and closed balls in X with the center

X € X and radius r can be defined respectively by the subsets
B(xo,r) = {x:x€ Xand |jx—xol| < r}

and
B(xg,r) = {x:x € Xand||x —xo|| < r}.
Example. In the case of R”", consider the balls
B,(x,e) ={y€R" such that|[x—y|| < &}.

In the case where n =2, x =0, € = 1, the balls BP(O, 1) with center 0 and radius
| are defined by

B(0,1) ={y=(y,y2) suchthat [yi|+]|ys] <1}

By(0,1) = {y= (y1,2) suchthat |yi|*+]|y2f* < 1}

Bw(0,1)={y=(y1,y2) suchthat (|y|ly2]) <1}

A subset of a normed linear space X is said to be bounded if it is contained in the

same ball of finite radius.
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Definition 3.3.1 Gateaux derivatives. Suppose X and Y be two Banach spaces
over the field F, and consider the operator T : X — Y with domain Dr = X.
Suppose x is a fixed point of X. The operator T : X — Y is said to be Gateaux

differentiable at x if there exists a continuous linear operator L such that

lim [|T(x+th) —T(x)—L(h)||
(=0 e[l

=0

forevery he X, wheret — 0 in F. The operator L is called the Gateaux derivative

of T and x, and its value at h is denoted by
A(h) =dT(x,h)
The notation dT (x,h) or T'(x)h is also used.

Definition 3.3.2 Frechet derivatives. Let x be a fixed point in a Banach space
X. A continuous linear operator A : X — Y is called the Frechet derivative of the

operatorT : X =Y atx if
T(x+h)—T(x) =Ah+ @(x,h).

provided

h
likll—0  ||A]]

or equivalently
. T (x,h) =T (x)—An||

lim
||]|—0 |||

The Frechet derivative at x is usually denoted by T'(x) or dT (x).

0

We will now sate a theorem without proof that relates these two types of

derivatives.

Theorem 3.3.1 If a mapping has the Frechet derivative at a point x, then it has

Gateaux derivative at that point and both derivatives are equal.
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Corollary 3.3.2 [f the Frechet derivative exists, it is unique.

oy .
4= ifx#0andy#0
Example. If f: R? — R defined by f(x,y) = ey 7 y#
0 ifx=y=0
It is easy to check that f is Gateaux differentiable at 0,and the Gateaux derivative

at that point is 0. On the other hand ,since

IS T I SR
AN~ 042 i) 201 +2)

f is not Frechet differentiable at (0,0). The above example suggests the following

1
— —asx— 0
2
theorem.

Theorem 3.3.3 The existence of Frechet derivative implies the Gateaux deriva-

tive but the converse is generally false.

3.4 Metric space

A metric space is an ordered pair(M,d)where M is an non-empty set, and suppose
that a real-valued function d is defined such that for any two elements x,y € M the

following statements hold:
I. d(x,y) > 0 (non-negativity),
2. d(x,y)=0ifand only if x =y
3. d(x,y) = d(y,x) (symmetry),
4. d(x,z) <d(x,y) +d(y,x).2 € M (Triangle inequality),
The first condition follows from the other three, since
2d(x,y) = d(x,y) +d(y,x) 2 d(x,x)=0
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These can be regarded as the essential characteristics of distance between the ob-
jects x and y, and they certainly hold in the real number system when x,y € R and
d(x,y) = |x— y|. The function d is called a metric on M, and (M,d) is known as a

metric space.

Definition 3.4.1 Cauchy sequences in metric space. Let (M,d)be a metric space,
a sequence x|,x3,x3,- -+ Is Cauchy, if for every positive real number € > 0 there
is a positive integer N such that for all natural numbers m,n > N, the distance

d(xp,%,) < E.

Definition 3.4.2 Convergent sequence in a Metric space. Let (M,d) be a metric
space. A sequence {x,} of elements x,, € M converges to x if for all € > 0, there

exists an ng € N such that for n > ng, d(x,,x) < €.

Definition 3.4.3 Uniform Convergence. Suppose X is a set and f,, : X — R are
real-valued functions for every natural number n. We say that the sequence {f,}
is uniformly convergent with limit f : X — R if for every € > 0, there exists a
falx) = F0)] <&

Consider the sequence a, = sup|f,(x) — f(x)| where the supremum is taken

natural number N such that for allx € X and alln =N,

over all x € X. Clearly {fu} converges to f uniformly if and only if a,, goes to 0.
The sequence {f,} is said to be locally uniformly convergent with limit f if

for every x in some metric space X, there exists an r > 0 such that { f,} converges

uniformly on B(x,r)NS

Definition 3.4.4 Uniform Continuous function in metric space. Let (M.d) and
(N,d) be two matric spaces and f be a function such that f : (M,d) — (N,d). We
called f is uniformly continuous if for all € > 0, there exist 1 = 1(€) depending

on € and independent of x such that dy(f(x), f(¥)) < € when dy(x,y) < 1.

Proposition 3.4.1 1. Every uniformly continuous function is continuous.
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2. Every uniformly continuous function maps Cauchy sequences onto Cauchy

sequences.

Proposition 3.4.2 If M is a metric space and if A C M is nonempty, the function

X — d(x,A) is uniformly continuous from M to R.
Proof. The proposition is a consequence of the inequality:
|d(x,A) —d(y,A)| < d(x,y)

This suggests the introduction of the following definition.

Definition 3.4.5 We say that a function f from a metric space M to a metric space

N is Lipschitz if there exists a constant k > Q such that

dn(f(x), f(y)) < kdy(x,y)forall x,y € M.
We say that a function f is a contraction if in addition k < 1. For example, the
function x — d(x,A) is Lipschitz with k = 1

We remark from this definition that the following proposition holds.

Proposition 3.4.3 Every Lipschitz function is uniformly continuous.

Balls in general metric spaces In mathematics, a ball is the space inside a sphere.

It may be either a closed ball (including the boundary points) or an open ball

(excluding them).

These concepts are defined not only in three-dimensional Euclidean space but
also for lower and higher dimensions, and for metric spaces in general. A ball in
the Euclidean plane, for example, is the same thing as a disk, the area bounded by
a circle.In mathematical contexts where ball is used, a sphere is usually assumed

to be the boundary points only.
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Now we consider a metric space (M,d).The open(metric) ball with center x

and radius € is the set

B(x,e)={yeM suchthat d(x,y)<e€},

and the closed ball with center x and radius € is the set
B(x,€)={y€eM suchthat d(x,y)<E&}.

Definition 3.4.6 Complete metric space. In mathematical analysis, a metric space
M is called complete if every Cauchy sequence of points in M has a limit that is
also in M or alternatively if every Cauchy sequence in M converges in M. How-
ever, we must discuss continuity and convergence in the context of interval analy-

sis., and for this we require a suitable metric.

3.5 A metric for the Set of Intervals

Definition 3.5.1 We have to organize metric topology for the set of real intervals
and the set of real interval vectors as metric spaces!!4!,
For X,Y € IR) we define the distance between the two intervals X = [a,b] and

Y = [c,d] as the nonnegative function
d(X,Y) = max(|la—c|,|b—d|) (3.4)

It is easy to prove that the defining properties of a metric are satisfied by d(X,Y) :

d(X,Y)=0 ifandonlyif X=Y
d(X,Y)=>0

d(X,Y) =d(¥,X)
d(X,Z)<d(X,Y)+d(Y,Z) foranyZ IR
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For degenerate interval [a,a) and [b,b] we have

d([a,a],[b,b]) = |a— b (33)

which is the usual topology on the real line.

For interval vectors X = (X|,Xa....X,) and Y = (Y, Y5.....Y;,), we define the
distance as
d(X,Y) = maxd(X;,Y;) (3.6)

Thus, also IR" is organized as a metric space.

Definition 3.5.2 Convergence and Continuity in Interval Mathematics

A sequence of intervals {X} in IR" is said to converge to X if d(X;,X) —
0 for k — oo. From the definition (3.6) it follows that this means component-
wise,convergence, i.e, d (X(,\.),-,X,-) — 0 and from the definition (3.4) of the scalar
distance this means that ay; — a; and by — bj i.e, the end points converge to

the end points of the limit interval.

An interval function F : IR" — IR™ is continuous for X C A € IR" if

lim F(Xy) = F(X) for lim X=X 3.7)

k—yeo
Definition 3.5.3 Lipschitz Continuity. Now we look at a presumption on interval
functions which is stronger than continuity,viz. Liplschitz continuity. An ordinary

function f : R" — R™ defined on an interval A is said to be Lipschitz continuous

if there exists a number K > 0 such that

d(f(x),f() < Kd(x,y) forx,y €A

This definition is transferred literally to interval functions: An interval function F

from X € IR"into I(R™) is said to be Lipschitz continuous if there exists a number
K > 0 such that

d(F(X),F(Y)) S Kd(X,Y) for X,Y CA.
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Definition 3.5.4 Isometric Embedding. We know that the interval number system
represents an extension of the real number system. In fact, the correspondence
[x,X] <> x can be regarded as a function or mapping between the two systems.

This mapping preserves distances between corresponding objects: we have

d([x, 2], [,3]) = max{|x—y|, [x—y[} =[x~

for any x and y. For this reason, it is called an isometry, and we say that the real

line is "isometrically embedded” in the metric space of intervals.

3.6 Width of an interval

The final basic metric concept to consider is the width of an interval(vector).This
b—a ifX elR

maxi{w(X;)} if X € IR"
For X C Y there is the following important relation between the width and distance

was defined in Chapter 2 w(X) =

(w(¥) —w(X)) <d(X,Y) <w(Y) —w(X) (3.8)

p ] —

Further,for X,Y,Z,W € IR, a € R we have the following relations for the width

w(X+Y)=wX)+w()
w(X —=Y) =w(X) —w(Y)
w(aX) = [|al[w(X)
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mas{[[¥] lw(X), [XIw(Y)} < w(X « ) < |[¥][wX) + X hw(r)
w(X/Y) < L,;(HYHW( ) +11X||w(Y)) and for the distance

d(X +2,Y +Z) = d(X,Y)
dX+Y,Z+W)<d(X+2Z)+d(Y,W)
d(X ~Y,Z—W) < d(X,Z) +d(Y,W)
d(X Y, Z+W) < ||X||d(Y,Z) + ||Z||d (X, W)
1 1 1
%9 = ™y

Lemma 3.6.1 Let X,Y € IR.Then

d(X,Y) —In(L\{ﬂ'i‘lX{l;)l’lI)I)ld b|}, max{m1n|a b]}}
€

3.7 Set Images and United extension

Let f be a real-valued function of a single real variable x. Ultimately, we would

like to know the precise range of values taken by f(x) as x varies through a given

interval X. In other words, we would like to be able to find the image of the set X

under the mapping f
fX)={fx):xeX}
More generally,, we are given a function
f=f(x1,x2,...,%)
of several variables, we will wish to find the image set
X0, Xy - X)) = {F (1,2, Xn) 1 X1 € X1yeee X0 € X}

whereX|,Xs,..., X, are specified intervals.
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Definition 3.7.1 Ler g : M) — M, be a mapping between sets M| and M, and
denote by S(M\) and S(My) the families of subsets of M| and M>, respectively.

The united exiension of g is the set- valued mapping g : S(My) — S(M>) such that
8(X) = {g(x) :x € X,X € S(M))} (.11

The mapping g is sometimes of interest as a single-valued mapping on S(M\) with

values in S(M>). For our purposes, however,it is merely necessary to note that

2(X) = J{gx)} (3.12)

xeXx

i.e., that (X ) contain precisely the same elements as the set image g(X).

3.8 Elementary Functions of Interval Arguments

Interval methods can also apply to functions which do not just use simple arith-
metic, and we must also use other basic functions for redefining intervals, using

already known monotonicity properties.

For monotonic function of one variable, the range of values is also easy, If
f:R — R is monotonically rising or falling in the interval X = [a,b] then for

all values in the interval ai,b; € [a,b] such that a; < by, one of the following

inequalities applies:
flar) < f(br), orf(ar) = f(b1)

The range corresponding to the interval [a1,b1] C [a,b] can be calculated by ap-

plying the function to the endpoints a; and bj.
F(lay,b1)) = [min{f(a1), f(b1)}, max{f(ar), f(b1)}]

From this the following basic features for interval functions can easily be defined:
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k 2

a b X

Figure 3.1: The image of an interval X under an increasing function f(x).

e Exponential function : el®? = [¢%, ¢’
e Logarithm: log([a,b])=[loga,logb]) for positive intervals [a,b]
e Odd powers: [a,b]" = [a",b"] foroddn € N
For even powers, the range of values being considered is important, and needs
to be dealt with before doing any multiplication. For example x" for x € [—1, 1]
should produce the interval [0,1] when n =2,4,6,---. But if [—1,1] is taken by

applying interval multiplication of the form [=1,1]-++[—1,1] then the result will

appear to be [—1, 1], wider than necessary.

Instead consider the function x" as a monotonically decreasing function for

x < 0 and a monotonically increasing function for x > 0. So forevenn € N:

o [a,b]" =[a",b"]\ifa 2 0
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o [a,b]"=[b",a",ifb<0

* [a,0]" = [0,max{a",b"}], otherwise

3.9 Interval-Valued Extensions of Real Functions

We were able to define a few interval-valued functions by selecting a real-valued
function f and computing the range of values f(x) taken as x varied through some
interval X. By definition, the result is equal to the set image f(X). Here we will
consider a different process: that of extending a given real-valued function f by

applying its formula directly to interval arguments.

3.10 Formulas and Interval Extensions
We will begin with an example. We consider the real-valued function f given by
fx)=1-x, xeR (3.13)

We have seen that a function is defined by two things:(1) a domain over which it
acts, and (2) a rule that specifies how elements of that domain are mapped under
the function. Both of these are specified in the above equation(8):the elements of

Dom f are real numbers x, and the mapping rule is x — 1 —x. Taken in isolation,

the entity

flx)=1-x (3.14)

is a formula-not a function.
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Now suppose we take the formula(9) that describes function (8) and apply it to

interval arguments. The resulting interval-valued function
FX)=1-X, X=]a,b), (3.15)

is an extension of the function (8): we have enlarged the domain to include non

degenerate interval X as well as the degenerate intervals x — [x,x].

Definition 3.10.1 We say that F is an interval extension of f,if for degenerate

interval arguments, F agrees with f:

F(bx,x]) = f(x), (3.16)

Let us compare F (X ) with the set image f(X). We have, according to the laws of

interval arithmetic,
F(X)=[1,1]—[a,b]=[1-b,1—4q].

On the other hand, x increases through the interval [a, b], the values f(x) given by

(*) clear] decrease from 1 —a to 1 — b; by definition then,
f(X) = [1 _b’ 1 _a]'

In this example we have, F(X) = f(X): this particular extension of f, obtained by
applying formula (9) directly to interval arguments, yields the desired set image

(8). In other words, we have found the united extension of f:

Fx)=1-X

3.11 A Numerical Example
Consider the two real-valued function
f(X):X(l—I), .YE[O,l]. (317)
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and
gx)=x-x2, xe[0,1]. (3.18)

These are mathematically equal, because in ordinary real arithmetic we have
x(1—x)=x— ¥

As x increases from O to 1, the values f(x) and g(x) both increases from 0 to

then decrease back to 0. Therefore,

#0.)=(0.1) = |05

Let us form interval-valued extensions of f and g:
FX)=X.(1-X), X=]ab] (3.19)
and
GX)=X-X? X=a,b] (3.20)

Remembering that X? # X.X in interval arithmetic, we work out the details of

each extension separately for an interval X = [a,b] C [0, 1] :

F(X)=[a,b].([1,1] +a,b])
= [a,b].([1,1] +[-b,—4])
= [a,b)([l —b,1 —d]

= [minS, max$],
Where S = {a(l —b),a(1—a),b(1 —b),b(1 —a)},while

G(X) = [a,b] - [a,b]?

[
= [a,b] — [a* b
= [a,b] +[-b%, @]
=[a—b*b— a?]
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Putting, say X = [0, 1], we see that G(X) = F(X); the two formulas involved (*)
and (*)-again, identical in ordinary arithmetic-give rise to different extensions,and

neither of these maps the interval[0, 1] into the interval[0, 3. We have F([0,1]) =
[0, 1] and G([0, 1]) = [~ 1, 1]

We stress that two expressions can be equivalent in real arithmetic but no equiv-
alent in interval arithmetic. This is due to the lack of distributivity and additive

and multiplicative inverses in interval arithmetic.

It turns out that the united extension of the original function f arises from use

of a third equivalent formula:

<[] (e 2]

: L
It is casily verified that this is f(X). We have H([0,1]) =0, 3]
Subset Property of United Extension

We see that the united extension g has the following subset property:

X,y € S(M) with X CY=3(X)Cg()
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3.12 Interval Extensions of Multivariable Functions

So far, we have limited ourselves to functions of a single interval variable X. In

principle, there is no reason we should avoid more general function

f‘ = _f(Xl,XZ, B ,X”)
depending on n interval variables X|,...,X,

Definition 3.12.1 By an interval extension of f, we mean an interval-valued finc-
tion F of n interval variables X\, ..., X, such that for real arguments x, ..., x, we

have
F(x|,...,x,,)=f(x1,x2,...,x,,) (3.21)
That is, if the arguments of F are degenerate intervals, then the left-hand side of

the above equation is a degenerate interval equal to the right-hand sidel 71,
Inclusion Isotonicity

Definition 3.12.2 Inclusion Isotonicity. We say that F = F(Xy,...,X,) is inclu-

sion isotonic if

Y, CX; fori=l..n=F(Y,...,%) CF(X|,...,X,)

3.13 The Fundamental Theorem

Theorem 3.13.1 Fundamental Theorem of Interval Analysis). If F is an inclusion

isotonic interval extension of f, then
f(XI)XZ) e ,Xn) g F(XI,- . ,X”).

Definition 3.13.1 Lipschitz Interval Extensions. An interval extension F is scid
to be Lipschitz in Xo if there a constant L such that w(F (X)) < Lw(X) for every

X C Xp.
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Hence, the width of F(X) approaches zero at least linearly with the width of X.

Here X may be an interval or an interval vector X = (X1, X2,...,Xx).

3.14 Linear Interval Extensions

If F is an interval extension of f on an interval A C IR" and there existsa K >0,

independent of X, so that
d(F(X)f(X)) < Kw(X)forallX CA

then we say that F is a linear interval extension. It is obvious that a linear interval

extension satisfies the convergence criterion for w(X) — 0.

3.15 Mean Value Forms

We have seen one general method for constructing interval extensions,viz. interval
extensions for rational functions. Now, we shall see how the mean value theorem
can be used to construct interval extensions for a much wider class of functions,

the differentiable functions.

We consider f : R” — R, which is differentiable in A C R’ For such a function

the mean value theorem says

’j+25x, _'E)a

with X, x € A and & is a point on the line segment between Xand x. Let F' be the

interval extension of the gradient
Pl &f of
64‘1 " Oxn
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and let X C A be an interval that contains both X and x.Then
f(x) € fFR)+F(X).(X - %)

where the multiplication in the last term is the inner product of two interval vec-
tors. In this reformulation we got rid of &, and the expression only involves in-
tervals and interval operations. In order for this to be an extension of f we must

accompany the interval X with a specification of the choice of X.

If we choose ¥ = m(X), the midpoint of X , we say that the resulting interval
function

Fy(X)= f(m(X))+F'(X).(X —m(X)) (3.22)

is a mean value form.

3.16 Quadratic Interval Extensions.

Theorem 3.16.1 If F is an interval extension of f on an interval A C IR" and

there exists a K > 0, independent of X, so that
d(F(X),F(X)) <KW(X)* forall X CA, (3.23)

then we say that F is a quadratic interval extension.

3.17 Finite Convergence and Stopping Criteria
Definition 3.17.1 An interval sequence {X;} is nested if X;.| C X; for all k.

we state the following important lemma without proof:
Lemma 3.17.1 Every nested sequence {X} converges and has the limit NTX;.
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Lemma 3.17.2 Suppose {X;} is such that there is a real number x € X for all k.
Define {Y;} by Y| =X, and Yy = X4 1 NYy for k= 1,2,.... Then Y is nested

with limit Y, and

xXE€YCY forall k (3.24)

Definition 3.17.2 Finite Convergence. By the finite convergence of a sequence
{X,}, we mean there is a positive integer K such that X = Xk for all k > K. Such

a sequence converges in K steps.

Example. It is not hard to see that Xo = [1,2], Xpp1 =1+X:/3 (k=0,1,2,...)
generates a nested sequence {X;}. The rational interval function F(X) = 14X /3

is inclusion isotonic. Therefore
4 5

- 1t follows that X, = F(X;) C X;. for all k by finite induction. By the above
lemma, the sequence has a limit X. If we compute {X, } using interval arithmetic,
we will obtain a sequence {X;'} with X; C {X{} for all k. More precisely , let X;f
be defined by Xg = Xo = [1,2] then we will obtain

X7 =1[1.33,1.67]
X3 =[1.44,1.56)
X§ =[1.48,1.52]
X} =[1.49,1.51]
XZ =[1.49,1.51]

and X} = X* for all k > 4. We have finite convergence in four steps.

Natural Stopping Criterion

For any fixed precision representation of machine numbers, there is a finite set of

machine numbers represented by strings of bits bp,by,...bs with s fixed. Hence
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there is only a finite set of intervals with machine number endpoints. Any nested

sequence of such intervals is necessarily finitely convergent.

For any iterative interval method that produces a nested sequence with end-
points represented by fixed precision machine numbers, we have a natural stop-
ping criterion. Since the sequence {X;} converges in a finite number of steps, we
can compute the Xj until

Ko | =X (3.25)
If the X}, are generated by a procedure of the form
Xiy1 = F(Xi) (3.20)

such that X, depends only on the previous X then it is clear that the equation

(1.25) is sufficient to guarantee convergence.

In particular, if F(X) is a rational expression in X and if X is an interval such

that £ (Xg) C Xo, which can be tested on the computer, it follows that { Xy} defined
by
Kiwi =F(%) (=0,1,2,3....) (3.27)

is nested with

X2X12X 2.
and hence converges to some X* with X* = F(X*) and X* C X;
forallk=0,1,2,.....
With interval arithmetic, it may happen that X| = F(Xp) C Xq but that X | Z X
for some k. If instead of (1.27), we may compute
X1 = F (X)) N Xp (3.28)
and stop when (1.25) is satisfied.
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Chapter 4

Convergence and error bound of
Newton’s, Kantorovich and

Horner’s algorithm

4.1 Newton’s Method in Real Euclidean Space.

Let A C R be an open set and let f : A — R be a Frechet differential function and
consider the equation f(x) = 0. If xo is a point of A near to a root of this equation,

then a first approximation be the linear equation
f(x0) + f'(x0)(x—x0) = 0
and this has the solution

x=x0— [ (x0)] ' f(x0) .0
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0 3 1
_’_____//x X2 Xy Xo X

Figure 4.1: A two dimensional example

l

provided that the inverse [f'(x)]~" exists. Continuing in this manner, starting

from the initial approximation xg, we obtain points xj,x2,X3,...,given by
Xpt] =Xg — [f’(xk)]ulf(xk), k=0,1,2,3,.... (4.2)

x4 being defined so long as xy,x2,X3,...,%; €A in effect that x,, are successive

approximations for the equation
x=x—[f' (7 ).

It is intuitive that if we start from a point xo for which f(xo) is sufficiently small,
and f’ does not vary too much near xo, then the recurrence relation will define a
sequence {x; } that converges to a root x* of the equation f(x) = 0.

This is particular transparent in the case of real-valued function f of real variable,

because the recurrence formula becomes

S
f)’
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so that xz1 is the abscissa of the point where the tangent to the graph of f at
meets the x-axis. This case was first considered by Newton and the sequence {x}

is given by the recurrence relation usually known as Newton sequence for the

equation f(x) = 0.

An alternative possibility is to consider the recurrence relation
X1 =% — [/ ()] flw), £=0,1,2,3... (4.3)
which defines successive approximations for the solution of the equation
x=x=[f @) f(x).

The successive approximations using the algorithm (4.3) is known as modified

Newton method.

4.2 Newton’s Method in Banach spaces

Let X and Y be (real or complex) Banach spaces, and F be an operator( linear

or nonlinear) from X into ¥ which is twice differentiable in a suitable domain,

Starting with an approximate solution xo of
Fx)=0 (4.4)
We consider the sequence defined by
X1 =Xe— [F/()]'Flx), k=0,1,2,3... (4.5)

Kantorovich first proposed to solve the functional equation(4.4) and was able to
give theorems concerning the existence, convergence and uniqueness of solution

of the equation (4.4). He also gave the error bound for the solution!, His two
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fundamental theorems the first one guarantees the existence and convergence and
the second one guarantees the uniqueness of the solution, is given in the open ball

M(xo,p) ={x€X :|lx—xoll < p

Theorem 4.2.1 (Kantorovich existence an convergence theorem) Suppose the fol-

lowing conditions are satisfied :

1. F'(xo) maps X ontoY and has an inverse [F'(xo)] ™! for which ||[F (xo] '] <

B

2. xq is an approximate solution of F(x) = 0 such that
IIF" (o)) F(x0) | <
3. F is twice differentiable in the open ball Uy(xo, po) and in this ball
IF" ()| <k
where k is a constant and |
po=(1- m%
and for constants 3.k, 1 satisfying

4. h=PBnk<i.

Then F(x) = 0 ha a solution x* in the closed ball Uy(xg,Po) and the successive

approximations defined by (1.5) converges to x*. Further

l n-1
[l — ™| < 5,,—_7(2’70)2 n (4.6)

Here we can make remark that 4o > 0 hold always, since g = Oif and only 8 =0
or 7 =0. We also see that the restriction on & viz.0 < h < %,gives 1 < (1-
V1 =2h)7 < 2. Thus the condition (3) of the above theorem holds if ||F"(x)|| <k
in Up(x0,2M).
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4.3 Numerical example of Kantorovich theorem.

Here we consider the third degree polynomial equation
F(x)=x>-3x+3=0.

This equation has only one root x* = @ = —2.103803402....... Let xop = —2.11

be the approximate solution. Then we have F(xy) = —0.06, F'(xy) = 10.35 and
F"(xg) = —12.66 We calculate,

FI (i = [|——|]| = —
[|F” (x0)| 1635 || = 0096618357 < 0.099662 = j,
- —0.06
F'(x0)] "' F (x0)|| = |——==| = 0.005771 < 0.00580 = 7
10.35
and
|F"(x0)|| =] —12.66| < 12.66 = k

Now we choose h = Bk = 0.09662 x 0.00580 x 12.67 = 0071002732 < % Thus
the solution x* = —2.103803402... is the only real root of the above equation. By
the Newton’s algorithm,

F(xo)

= —2.104202899.
F'(x0)

x| =X0—

So, |lx1 —x*|| = 0.000399497, and from the inequality , 2,,%1(2/7.0)2" 117 becomes

.001160. Then ||x| —x*|| £0.01160 is an improvement of the approximation.

The local uniqueness of the solution x* depends on the bound holding in a larger

sphere(ball).

Theorem 4.3.1 (Kantorovich,Unigueness) Let the condition (1) to (4) of the above

theorem hold with |[F" (x)|| < k in the ball Up(xo,0) where

34



Then the x™ of the above theorem is the unique solution of F(x) =0 in the same
ball. Kantorovich in his theorem used the boundness of the second derivative of
the operator. Fenyo 1.(1954) first make the assumption of the condition of Lips-

. . s / .
chitzian of F* and gave the modified Kantorovich theorem as:

Theorem 4.3.2 (Kantorovich; modified) Let F : X — Y, X,Y Banach spaces, be
Frechet differentiable function for x € U, an open convex set in X 1511151, Suppose

that [F'(x0)] ™! € [Y — X] at some xq € U, and
1 || o < 8,
2 [[IF o))~ F o) | <,
3. ||F'(x) = F'(0)|| < K||x=yll, x,y € U for constants B, k.1 satisfying h =
Bkn < % and

4, Uy C U, where

Up = {x: llr=xoll < (1= VI=2R) 1}

{3

then the successive approximations of Newton’s algorithm are defined for all n,

x, €Uy k=0,1,2....and converge to x* € Uy, which satisfies F{x*) = 0.

Further,

—VT=2h
“x*_x,\_||glﬂ[1 = = k=0125.. 4.7)
1

An example of f is now shown which demonstrates that no stronger claim than

the Kantorovich theorem can be made for existence and convergence. In this

generality, then, no better theorem can be given.

Let f(x) = 4x? —x+h and xo. We have f'(x0) = —1and f“(xy) = 1. Here, we

let B =k = 1, n = h(given),the conditions of the theorem are satisfied. The roots
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of fare 1 & v/1-2kif h < 1. The smaller root

# 1
¥ =(1-vVI-2h= E(l —V1—-2hn
The other root is
1
E(l +v1-2hn

and just excluded from the region. Presumably, Kantorovich obtained his theorem

by comparison with the Newton series for x% — a.

Under the same conditions as for theorem (Kantorovich modified), it can be
shown that if [y = [F/(xg)]~! and & < % the successive approximation given by

the following theorem converge and is known as modified Newton’s method.

Theorem 4.3.3 (Modified Newton’s method) Under the same conditions as in
the previous theorem if h < % the iterations xpy| = xp — DoF'(x¢) where Ty =
[F'(x)]~" are defined for all n and for any xy € U, converge to a root x* € Up.

Further, F(x) = 0 has a unique root in Uy. Also
e —x*| < 2(13)[1 —VI=2H, k=1,2,3..
1

Theorem 4.3.4 (Newton-like or Quasi-Newton method) For a real function f of
a real variable x, if we try to find an approximate root of function f(x) = 0 by the

sequence of approximations
Xk = Xk — [ak]PIf(xk),k =0,1,2,.....

where {a;.} is a sequence of real numbers, then the algorithm above is the simplest

form of the Newton-like or Quasi-Newton method.

ustration of the applicability of Newton’s method to nonlinear operator

equation.

let us consider the Hammersteian equationn
I
X(0)+ fo K(5,0)f(s,%(s))ds = 0 4.8)
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on the space C[0, 1].We suppose that f ¢ C%([0,1] x R) and k € C([0,1] x [0,1]).
If we consider F : C[0, 1] — CJ[0, 1] by

F(x)(r) =)c(1‘)-+—]0I K(s,t)f(s,x(s))ds,

then our problem is to find a root of F. If xg € C[0,1] is an initial'approximation,

then for any y € C[0, 1],
[F'(x0)y)(r) = —i—f (5,0) f2(s,%0(s))ds,
= (1+ko)y(r),
where ko is the linear integral operator on C[0, 1] defined by
(hor) ()= [ Ko, 20(0))s
We suppose that 1+ kg is invertible and ||(1 +kg)~!|| < & .For a given & > 0,let
ks = sup{|k(s,t) /5 (s,u)|: 5,6 €[0,1],|u—x0(s)| < 8}
Then K serves as a Lipschitz constant for £ on the set
Ss = {x € C[0,1]]: [lx —xol < 6}
If | F(xo)[| < p, then
[F'(x0)] ' F (x0)| = (1+ko) ™' F(x0) | < bp.
Therefore ,if h = b2ksp < % and 6 > (bks)~!, then
{xeco,1]: x—xol <77} € Ss

and the following theorem guarantees that the functions x, given by x,41 = x, +

., where the functions y, are solutions of the linear integral equation

1
1
(1) +j0 k(s,) f5(s,xn(8))y —n(s)ds = —xn (1) _fo k(s,t) f(s,x,(s))ds,
converge to a solution of the first equation (1.8). Cherles W. Groetsch (1980) has

discussed the additional applications of Newton’s method.
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Theorem 4.3.5 Suppose that C is an open convex subset of a Banach space X and

that Y is a Banach space. Let F : C — Y be differentiable on C and satisfy
IF'(x) = F' ()] < kl|x— y|

for x,y € C. Assuming that for some xy € C, Gy = [F'(x0)]~" exists and that

|Goll £ b and ||GoF (xo)|| < 1, where h = bnk < % We set

. N(1—vT—2A)

1" =
h

and suppose that

S={xeX:||lx—x| <t*}CC
Then the Newton's sequence lies in S and converges to a root x* of F.
Movreover,

ol <L
[|x XAH_h 5

1 —vT=2h%
| lk A k0123

Let X and Y be Banach spaces and DY is an open convex subset of X. Also let
F : D — Y be Frechet differentiable on D® with ||[F’(x) — F'(x')|| < A|lx—x/|| for
x,x € Dy.

Let S(x, r) denotes the open ball {x’: ||’ —x|| < r} and S(x, r) denote it closure.
Let xo € D° be such that [F’(xp)] ™' : ¥ — X exists and
, 2
1F (o)) || < x| [F (x0)) ™ Folxo)ll < 8,k =2xA8 < land forS(x,1*) C D" = Z(1=V1-h)8.
Then

|. The Newton sequence {x} exists and xx € S(x,) C DO forn >0

2. x* = limx; exists, x* € S(x,1*) C D and F(x*) = 0.

=D
—
+

3. x* is the only solution of F(x) =0 in the set S(x, YN DO, ¢! =
VI=R)S it h < 1,and in S(xo,/") if  h=1
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With the above assumptions and Kantorovich hypotheses,Gragg W.B and Tapia

R.A.(1974) were able to give the following best possible lower and upper bounds

for error:

4/1-h 6%
I —xll < — gzl —xol
and
2||xk+| _ka . * -1
— = < |IX" = ]| < 6% [l — x|
V (1+6272
where
1 —+/1—=
I1++V1—h

In particular, the bounds for 4 = | are
" = xoll < 2" ey —xo|

and

2(vV2 — )|y — 3 < 6% = x| < [lo — x|

holds forall A < 1
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4.4 Horner’s Method

Evaluation of a Polynomial,

Let the polynomial P(x) of degree n have the form
Px)=apx"+ap_ (X' ... a4 . 4 ap® +ax+ ag (4.9)

where ag,ay,...a, are real numbers. Horner’s method or synthetic division is

a technique for evaluating polynomials. It can be thought of as nested multiplica-

tion. For example, a fifth-degree polynomial
P5(x) = asx® 4+ awx* + a3 + apx® + ayx+ag

can be written in the "nested multiplication” form

Ps(x) = ((((asx + aa)x + a3)x+ az)x+ a1 )x +ag

Theorem 4.4.1 (Horner’s method for polynomial evaluation) Assume that P(x)
is the polynomial given in equation (4.9) and x = z is a number for which P(z) is
to be evaluated.

We set b, = a, and Compute
bkzaﬁ_i_zbk-l"l for k=l’l—l,l’l—2,...,2,l,0 (410)

then by = P(z). Moreover, if we define

00(x) = byd™ '+ bye X 2+ A b3+ bax by @.11)
then
P(x) = (x—2)Qo(x) +Ro 4.12)

Where Qo(x) is the quotient polynomial of degree n—1 and Ro = b = P (z)is the
remaindetr.
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Proof. Substituting the right side of equation (4.11) for Qg(x) and by for Rp in
equation (4.12) yields

P(x) = (x—2) (b "+ bp_ X" 24 ... +byx® + bax+ b)) + by (4.13)
The right side of (5) can be rewritten in decreasing powers of x

P(x) = bux" +(byy —26,)X" ™ o (b — 2 )X o (By — 23 )62 (B — 2b2 ) x + (bo — 2D
(4.14)

The numbers by are determined by comparing the coefficients of x* in equation

(4.9) and (4.14) as shown in Table 1.1. The value of P(z) = by is easily obtained

by substituting x = z in equation (4) and using the fact that Ry = bg
P(z) = (z—2)Q0(2) + Ro = bo (4.15)

The recursive formula for b, given in (4.10) is easy to implement with a com-
puter. A simple algorithm is

&y = by
fork=n—1:-1:0
by = ar + zbr+1

end.

Table 1.1 Coefficients b; for Horner’s Method
x* || Comparing (1) and (3) Solving for by
K ay = by by = ay

-1 an—| = bn—1—2bn bp—1 = ay—1 +2by

P ar = byt — 2B+ by = a + 2by41

% ag = bo —zb) bo = ap+zb)
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Table 1.2 Horner’s table for Synthetic Division Process

Input | a, a,—1 a,_5 --. a - ap a ao
X=2 by zbyy by - zb3 by zh)
bn buoy bya o by o by by | b= P(z)

Example 1. Use the "Horner’s table” to find P(3) for the polynomial

P(x) =x° —6x* +8x> + 8x2 + 4x— 40 = 0.

Solution I: In our example n=5 as=1,a4=—-6,a3 =8, a; =8, a; =4 and
ap = —40

Input|1 -6 8 8 4 -40

xr=3 3 -9 -3 15 57

1 -3 -1 5 19| 17=P(3) Output
Lemma 4.4.2 (Horner’s Method for Derivatives) Assume that
P(x) = apX +ap_ X" 4 +ap 4+ a3 +apx® +ax+ag

and x=z is a number for which P(z) and P'(z) are to be evaluated. We have already
seen that P(z) = b can be computed recursively as follows.

We set b, = a, and compute

br=ap+zbpy for k=n—1,n-2,.,2,1,0.

The quotient polynomial
00(x) = bux" ™' + b1+ oooe b3 +box+ by
and remainder Rg = bg = P(z) form the relation

P(x) = (x—2z)Qo(x) +Ro
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We can be computed P'(z) = c, recursively as follows:

We set

¢y = by and compute

cr = by + zcpy for

The quotient polynomial

and remainder Ry = c| = P'(z) form the relation

¢

k=n—-1,n-2,.21

Q1(x) =X 2y X3 4oy cax® +c3x+ ¢o

Qo(x)(x) = (x=2)Qu(x) + Ry

The Horner table was used for computing the coefficients is given bellow.

Input | a, ‘a,-| a2 | ay as aj ap
x=z | |l +zby +zby— +2bj 4 +2zb3 +zbo +zby
P Pa / s e
by  bp—1 by by by by by = P(z)Output
by  by—1  bp2 by by b
l 4zen  Hzep—1 +2Ck+1 +zc3 +zc2
A PP P
Ch  Cn—l Cn—2 Ci 2 ¢y =P(2) Oupur

A

Using vector coefficients: As mentioned above, it is efficient to store the coeffi-

cients {ay }f:{ of a polynomial P(x) of degree n in the vector a = {ayy), a3}, a3}, - ) ) }.

Notice that this is a shift of the index for ajy and the polynomial P(x) is written in

the form

" to r Given the value x = z, the recursive formulas for computing the coefﬁcients{b[k] e

and {c[k] }+) of Qp(x) and Q1 (x), we have the new form

P(x) = i agp X"
k=0

b[H-H] = a[11+l]
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b[k]za[k]"'“zb[k—kl] fOI‘ k:I’l,i’I'—l,"',?’azal-

Cn+1) = b[n-H]
) = by +ezcpqy for k=nn-1,---,3,2,1.

Then P(z) = byjj and P'(z) = cp

4.5 Newton-Horner method

Assume that P(x) is a polynomial of degree n > 2 and there exists a number
r € [a,b],where P(r) =0. If P'(r) # 0 ,then there exists a 6 > 0 such that

the sequence {r¢}r_, defined by the Newton-Raphson iteration formula

Fept = re— f(re)/f'(re)  for k=0,1,2.--

will converge to rofor any initial approximation rq € [r — 8, r+ 6]. The recursive

formulas in the Lemma can be adapted to compute P(rx) = by o = by and P'(r;) =

k1 = C] and the resulting Newton-Horner iteration formula looks like

b
Fk+1=l‘k—ﬂ for k=0,1,2....
2

Algorithm (Newton-Horner Iteration). To fine a root of f(x) = 0 given an initial

approximation ry using iteration

by for k=0,1,2...,max.
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4.6 Horner’s Method for Higher Derivatives

Assume that the coefficients {a|; 44}i*| of a polynomial P[x] of degree n are stored
in the first row of the matrix [4; ;],+2x441. Then the polynomial P(x) can be

written in the form
n

Pix)=Y" a[l,k-{-l]-’ﬁk

Given the value x = z, the subroutine for computing all the derivatives (Pl Y g
is
For[i=2,i<n+2,i++,

Alin+1) = Afi-1,n+1]
For [k =n,i—1 <k,k——,

aix) = afi—1 4 + 29[ k+1);] Jand

p(’) [Z] — i!a[f+2,f+|] for = 07 15 YL
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Chapter 5

Interval Matrices

Definition 5.0.1 By an interval matrix, we mean a matrix whose elements are
interval components and the space of all m x n matrices is denoted by IR™ ". For

example, we might have

A A 1,2] [~1,1
A= I 12 _ [ ] [ ] (5.1)

A2l Ap [0,4] [6,8]

If A is an interval matrix with elements A;; and B is a matrix with real elements

Bij such that B;; € Aij for all i and j, then we write B € A.

In this section we define two types of matrices. An interval matrix A is called an
M-matrix if and only if A;; <0 for all i # j and Au > 0 for some positive vector

u € R". If the comparison matrix (A), where
(A),‘,' = min{|a[ coE Ay}
(A)i = —max{|a| : & € Aie},

is an M-matrix then A is said to be an H-matrix.
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5.1 Matrix Norm, Width and Midpoint

We use the matrix norm
n
Al = max Y |Aif] (5.2)
J=1

for an interval matrix A. This is an interval extension of the maximum row sum
norm for real matrices. If B is any real matrix contained in an interval matrix A,

then ||B|| < [|A]|. We define the width w(A) of an interval matrix A by

W(A) = m_axw(Afj), (53)
i

The midpoint of A is the real matrix m(A) whose elements are the midpoints of

the corresponding elements of A:

m.(Afj) = m(A,'j.

Lemma 5.1.1 The product of two interval matrices using interval arithmetic is
again an interval matrix consisting of interval elements each of which is exactly
the range of values of the corresponding element of the product of a pair of real
matrices whose elements are chosen independently from the corresponding ele-

ments of the interval matrices.

Interval Matrices and Dependency

Even though, as indicated in the above lemma, the ij-th elements C;; of the product

C = AB of an m by p interval matrix A and a p by n interval matrix B gives sharp

bounds on the ranges

!

P
C'j — Mij = ZP'LQI‘-’ : Pik EAik and ij € Bkj for 1 <k < p}
k=1
for each i, 1 < i < m, and each j, 1 < j < n, the resulting interval matrix C may
contain point matrices D that are not the result of the multiplication of point ma-

trices P€ A and Q € B.
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5.2 Systems of Linear Interval Equations

We know that the Linear systems of equations are a fundamental part of scientific

calculations. In this section we consider bounding the solution set of interval

linear systems.

The solution to linear systems of equations is prone to errors due to the finite
precision of machine arithmetic and the propagation of error in the initial data.
If the initial data is known to lie in specified ranges then the interval arithmetic
enables computation of intervals containing the elements of the exact solution.
Error bounds are provided in the calculation of the interval solution rather than
estimating the error from an analysis of the error propagation after an approximate

solution 1s obtained.

An interval linear system is of the form AX = b where A € IR"*" and b € IR"*".

The solution set
Y'(A,0)={x:Ax=b forsome A€A beb}
is typically star-shaped. An example of such a solution set, we consider the system

A [2,4] [-2,1] b= [-2,2] 5.4
[-1,2] [2,4] [—2,2]

Exact solution set and hull of a linear system. The solution set is shown by the

star-shaped area of Figure 1. The hull of the solution set is the interval vector with

smallest radius containing ¥,(A,b) and is denoted Y.(A, ).
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(4.3)

G, -4

Figure 5.1: Exact solution set to Ax=b, A, and b in equation (5.4)
5.3 Interval Gaussian Elimination Method

An obvious approach is to use a generalization of Gaussian elimination adapted to
deal with interval coefficients. A triangular system can be formed in the usual way
but with interval arithmetic. By the Fundamental theorem of Interval analysis

the solution of this triangular system will give an inclusion of the solution set.

The usual care has to be taken with division by zero. Column mignitude piv-

oting can be used to choose a pivot as the contender with the largest mignitude,
where we recall that the mignitude of X is defined as

min(|al,|6]), ifO¢&X ;

mig(X) =
mig( 0 otherwise.

When interval Gaussian elimination is applied to a general A € IR™*" and b €

IR™"_ problems are soon encountered as n is increased. As interval calcula-
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tions are carried out in the Gaussian elimination process the widths of the interval
components are grow larger due to the nature of interval arithmetic. If a solu-
tion is obtained then it is likely that the width of the components are very large.
Alternatively, at some stage in the Gaussian elimination process all contenders
for pivot,or the bottom right element in the upper triangular system, contain zero
which causes the algorithm to break down due to division by zero. For example,
if the coefficient matrix is
[0.95,1.05] [1.95,2.05] [2.95,3.05]

A= [1.95,2.05] [3.95,4.05] [6.95,7.05]
[1.95,2.05] [—0.05,0.05] [0.95,1.05]

then the upper triangular system is given by

[1.95,1.05] [3.95,4.05]  [6.95,7.05]
U= [0,0] [-4.31,=3.71] [—6.46,—5.56]
[0,0] 0,0] [~1.23,0.23]

This causes division by zero when using back-substitution. All the elements began

a radius of 0.05, but the radius of Us3 is 0.7301.

Despite interval Gaussian elimination not being effective in general, it is suit-
able for certain classes of matrices. In particular, realistic bounds for the solution
set are obtained for M-matrices, H-matrices, diagonally dominant matrices, tridi-
agonal matrices and 2 x 2 matrices. In the case where A is an M-matrix the exact

hull Y(A,b). is obtained for many b;113) shows that if » > 0, b < 0 or 0 € b then

the interval hull of the solution set is obtained.
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An implementation written in INTLAB of interval Gaussian elimination with
mignitude pivoting is given by the function intgauss.m below.
function x = intgauss (A, b)
$INTGAUSS Interval Gaussian Elimination with mignitude pivoting.

5 x = INTGAUSS (A,Db)

o\°

Solves Ax = b for linear systems of equations

oL

INPUT A coefficient matrix

o©

b right hand side vector

oe

OUTPUT : X interval solution
n = length (A);
for i = 1: n-1;
[maxmig, index] = max(mig(A(i:n,1i)));
if maxmig <=0

error ("All possible pivots contain zero.’)

end
k = index + 1i-1;
if k =1 % Swap the rows if necessary.

A([l,k],l'l’l) = A([kli]li:n);

b([i,k]) = b(lk,1]);
end
for j = i+l:n;

mult = A(j,1)/A(1,1);
A(j,i+l:n) = A(j,i+l:n)-mult«A(i,i+1l:n);

b(j) = b(j) - multxb (i) ;
end

end
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x(n) = b(n)/A(n,n);
for 1 = n-1:-1:1;

x(1) = (B(L)-A(i,i+1:n)*x(i+1:n,1))/A(i,1)

.
4

5.4 Krawczyk’s Method

The linear interval system AX = b can be preconditioned by multiplying by a
matrix ¥ € R"*". Here we choose Y to be the inverse of the mid point matrix of
A, which often leads to the matrix YA being an H-matrix. If this is the case then
Gaussian elimination can be used, but it is quicker to compute an enclosure of the

solution by Krawczyk’s method.

Assuming an interval vector X; is known such that m C X; then
AT G =Yh+ (I —YA)A~!b € Yb+ (I-YA)X;
holds for all A € A and b € b, so that
Y (4,b) C Xi = Y (A,b) C (Yb+ (I -YA)XiNX; (5.5)
This gives the Krawczyk’s iteration
Xpp1 = Yo+ (I =YA)XiNX; (5.6)

To start the iteration we require an initial vector Xp such that the solution ¥ €

Xo and m C Xo. A possible Xp can be found with the aid of the following
theorem.
Theorem 5.4.1 If Y satisfies [/ - YA|=B <L KX = A~"b and |.|| is any subor-

dinate norm , then =
gl

I = ="

71



mmmmejj:EWCMWX:YB+U—K®ﬁmd%me

1% < 1Y &) + 17— YAl |12
< |\YBI| + B\

which gives the result. Since ||Yb||. < ||¥b||.. and B < 1 is very likely for ¥ being
the inverse of the midpoint of A, we define the initial interval vector to be

(gl

1-8

The iterations can be terminated if the radii of the components of X; are no longer

Xo=([-a,a],...,[-a, o)’ with a=

rapidly decreasing.

This routine solves an interval linear system of equations
by Krawczyk’smethod.

function x = Kraw (A, Db)

FKRAW Solves Ax = b for interval linear systems.

% x = Kraw (A,Db)

% Solves linear systems of equations using Krawczyk’s method.

o\

If A and b have all real components then x is a verified boul

o\®

on the solution. If A or b are of interval type then an oute:

estimate of the interval hull of the system is given.

o

INPUT : A coefficient matrix

o

b right hand side vector

o\

o\®

OQUTPUT : X interval solution
n = length (A);

midA = mid(A);

Y inv (mid (A)); ¢ preconditions system.

b = Yxb;
YA = Ysxintval (A);

A = eye(n)-YA;
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btea = norm(A, inf);
if beta >= 1;
error ("Algorithm not suitable for this A’)
end;
alpha = norm (b, inf)/(l-beta);
x(1:n,1) = infsup(-alpha, alpha);
s_old = inf;
s = sum(rad(x));
mult = (l+beta)/2;
while s < multxs_old
x = intersect (b+Axx,Xx); $Krawczyk’s iteration.
s old = s ;
s = sum(rad(x));

end

5.5 The Hansen-Bliek-Rohn-Ning-Kearfott-Neumaier'

Method

A bound for the interval hull of the solution set of linear interval equations is given
by Hansen[! for the case where the midpoint matrix of A is the identity. This re-
sult was also found by Bliek 2!, but it was Rohn!?!! who first gave a rigorous
proof.Ning and Kearfott!23), generalised the result for the case when A is an H-
matrix. This is of particular interest since the coefficient matrix can be precondi-

tioned in an attempt to produce an H-matrix.

The method is based on the following theorem which uses the comparison

matrix,(A).
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Theorem 5.5.1 Let A € IR"™" be an H-matrix, b € IR" right hand side,

w=(A)"p|, di = ((A)™")i,
and

o= (A,‘j) - l/d,', ﬁ,‘ = u,'/d,' — Ib,‘|.

Then Y.(A,b) is contained in the vector x with components

_ bi+[-Bi, Bl
YA+ o, 0
A simplified proof is given by Neumaier[!3] .
In order to give a rigorous enclosure of the interval hull using floating point arith-
metic, rigorous upper bounds are required for &; and f;. These are obtained if
a rigorous bound B for (A)~! is used. The following explanation of how this is

achieved is based on that given in!1*],

A property of the H-matrix A is that (A)~! is nonnegative. This suggests that
an upper bound B for (A)~! can be expressed in terms of B an approximation to

(A)~" and vectors v € R", u € R" satisfying [ — (A)B < (A)vwT by
B=B+w'.

By the definition of an H-matrix, there exists a vector v > 0 such that u = (A)v >0

This vector v can be used to satisfy the above relation by taking the vector w with

components
max —Rik
Wy = e
& i U; ’

where R = (A)B—1.1t is now left to find the vector v. Assuming there is a positive

vector ii such that v = Bii = (A)" ii> 0 then A is an H-matrix, and if u = (A)v =
R . __l . .

is positive then the approximation B1sa good enough. Since (A)~' is nonnegative,

the vector i = (1,...,1) s sufficient to produce (a)~'a>0.
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The values u and R must be calculated with downward rounding,w and B calcu-

lated with upward rounding while  and v can be calculated with nearest rounding.
Now we will be implemented the above method in INTLAB described below.

This routine solves an interval linear system of equations by a

method based on work by Hansen Bliek, Rohn, Ning, Kearfott and

Neumaier.
function x = hsolve (A, b)

$HSOLVE Solves Ax = b for interval linear systems.

0@

X = HSOLVE (A, b)

o

Solves linear systems of equations using a method motivated

o\®

by Hansen, Bliek, Rohn, Ning, Kearfott and Neumaier

o\

If A and b have all real components then x is a verified bour

o\®

on the solution. If A or b are of interval type then an outer

o\

estimate of the interval hull of the system is given.

% INPUT : A coefficient matrix
% b right hand side wvector
5 OUTPUT : x interval solution
n = dim(A);
Y = inv(mid(A));
A = Y*xA ;
b = Yxb;
dA = diag(A); % Diagonal gntries of A.
A = compmat (A); % Comparison matrix.
B = inv (A);
Vv = abss (Bxones(n,1));

setround (-1)
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u=A+*v ;

if ™ all

error (‘A is not an

else
dAc
A =
setr
w =

for

end;
dlow

B =

u

d

alph
beta
X:

end

(min (u)>0)

= diag(A);
AxB-eye (n);
ound (1)
zeros(l, n);

i = 1:n,

W max (w, (-A(1i,

= v.*xw' - diag(B);

B+v+xw;

Bxabss (b);
diag(B);

a = dAc+(-1)./d;

H-

2))

o

0

= 1u./dlow-abss(b);

o

s Check positivity of u.

matrix’)

2]

% A contains the residual matrix.

L))

Rigorous upper bound for exact B.

(b+midrad(0,beta)) ./ (dA+midrad (0, alpha));
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Chapter 6

Interval Newton Methods

6.1 Interval Version of Newton’s Method in One Di-

mension

We consider an interval X that contains a root x* of f, where f is continuously

differentiable. Then the mean value theorem tells us that there exists a & € X such

that
0= f(x*) = f(x)+ (" =x)f(E)
Assuming that f'(€) # 0, this leads to

v _ o )
X =X WE—)

. ; / 3 ! : s
Now,let F’ be an interval extension of " and assume that F'(X) does not contain

0. Th
en ) o
x* e N(x,X) Ex_———F’(X)’ .

Where we have introduced the Newton operator N(x,X ). The root 1s also con-

tained in X. and therefore it must lie in the intersection between X and N(x,X),

77



X" € XNN(x,X).
Thus, we can formulate the interval version of Newton’s method 20! We will start

with Xp containing x* and computing a nested sequence of intervals Xy, X(z), ...

by the formula
Xt =XkﬂN(xk,Xk) with x, € Xp,k=0,1... (6.2)

The term "nested” is used because each new interval is contained in the previous,Xp 2
X1 Do This implies that the widths decrease, W (Xo) > W(X,) >
since all the X are contained in Xy, they are bounded. Therefore, there exists a

limit X containing x*.

6.1.1 Numerical Example

Consider the function f(x) = x> —2 with f/(x) = 2x and Xo = [1,2]. We choose

xx = m(Xy) and F'(X) = 2X, so that the Newton operator is
N (i, Xg) = mxe) = (m(Xe) = (m(X))* = 2)/(2X4)-

The first step with (2.2) is
3 1 22 23
5= 7/24=1 7

X, =[1,2]n [[?z 12—3-] — [1.3749999999998, 1.43750000000001]

We observe that XjsubsetXy . Continuing, we compute from (2.2) the results

obtained by the MATLAB Toolbox INTLAB, and displayed with format long.

N(Xo,Xo)

X,=]1 41406249999998, 1.41441761363637]
X3= [1.41421355929452, 1.41421356594719]
X4 = [1.41421356237309, 1.41421356237310]
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For this example, we have seen that the interval version of Newton’s method gives

a very rapidly contracting sequence of intervals containing v/2

The condition that F'(X) does not contain 0 is necessary for the application of

the Newton operator, and it has an interesting implication.

Lemma6.1.1 If f:R >R is continuously differentiable on the interval X and

0 ¢ F'(X), then X either contains a simple root x* or no roots.
Now we will state the following theorems without Proof.

Theorem 6.1.2 If x* is a root of f in Xy and F'(Xg) does not contain 0, then the

sequence X|,X2,X3,.... defined by (2.2) converges to x*.

Theorem 6.1.3 If X is an interval with 0 ¢ F'(X) and there exists an x € X such

that X NN (x,X) = ¢ then f has no root in X.

Theorem 6.1.4 If f is continuously differentiable, X is an interval with O ¢ F'(X),

then there exists an x € X such that N(x,X) C X, then f has a root in X.

Theorem 6.1.5 [f there is a root in X C Xo, F' is a linear interval extension of f,

and O & F'(X),then there exists a constant K > 0 such that

w((N(x,X)) < Kw(X)*forallx € X

6.2 Interval Version of Multidimensional Newton’s

Method

We will consider continuously differentiable function f: R" — R" , and seek a

solution x* € R" such that f(x*),i =0,1,2...,n. This is the system of n nonlinear
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equations in n un - . .
qua knowns, the components x7,...,x; of x*. Again, we start with

mean value theorem, but this time in its multidimensional version. Let x* € R” be

a root for x. There exist vectors ]y -nn &x] € X such that
0= f(r") = () +J(x,2") (" ~ ),
where J € R"*" is the Jacobian with the elements
()i = 3E(&y)

Assume that the Jacobian is nonsingular for all x € X. Then the inverse of this

matrix exists, and
X =x—(Jnx") " fx) ex=V(X) f(x)
Where V is an interval matrix containing all possible /™!,
{(J(x,x*) LxeX} CV(X)

Thus from Xp containing the root x* we can construct a nested sequence of inter-

vals, that all contains x*,

Xpr1 =X NN(x, Xg), £=0,1,2,3.... (6.3)
with

NQo, X)) =x =V (X)f(xk),  x € Xk

If there is a zero of f in Xo then the zero is also in N(Xo) and therefore in X for

k=0,1,2,3..
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6.2.1 Numerical Example-1
Let us consider the following system

hilxnx)=xi+x32-1=0

(6.4)
Hlx0)=x1-x=0
. Xt+x3-1
For an interval vector X = (X1, X;), we can take F(X) = and
X, —X;
, 2X, 2X, _
F'(X)= | 1 as the respective interval extensions of the vector func-
: J1(x1,x2) x5 —1
tion f(x) = = LR and the Jacobian matrix
Salxr,x) x| — X3
2x1 2x7 . 28 2,
flx)= =J(x,x") = ) 5[1] = (&11:612)
1 =1 1 —1
We considered the given function defined on the interval X = [%, 1], [%, 1]
5 &
RN 2 612
Now (J(x,x))™" = gz - , and we can use
3 —GlI
|
1 5 X2
V(X)= 5
X1 +X % —X;

If we choose the midpoint x; = m(X;) in () we get the following results.

k Xi, 1 =X, 2 w(Xe)
I | [0.68749999999998,0.71875000000001] | 3.12¢ — 02
2 | [0.70703124999999,0.70720880681819] | 1.78¢ — 04
3| [0.70710677964726,0.70710678297359] | 3.33¢ — 09
4
5

[0.707106781 18654,0.70710678118655] | 1.11e — 16
[0.707106781 18654,0.70710678118655] | 1.11e —16

We see that a fast (quadratic) convergence to the solution, x] = x5 = V0.5. The

width of Xy is half of the machine accuracy, and we cannot get closer to x* because
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of rounding errors.

6.2.2 Numerical Example-2

Let us consider the following system

fitx, ) =xt+x3-5=0

(6.5)
Hlx,x)=xxn-2=0
o Xt+X3-5
For an interval vector X = (X),X,), we can take F(X) = and
XX =2
, 2X1 2X> o
Fi(X)= as the respective interval extensions of the vector func-
X, X
. Si(xn,x X +x5—5
tion f(x) = ( ) = LV and the Jacobian matrix
fa2(x1,x2) X)X —2
2x; 2x 2 2
P = P ) s = [ 2200
X2 X & &

We considered the given function defined on the interval Xo = [1.6,2],[1, 1.4] and
it has the root x* = (2, 1). It is nonsingular in X and we can use

| X %

V) =am% %% \ _x, ox,

If we choose the midpoint x; = m(Xy) in () we get the following sequence.

k X, 1 Xi,2 w(Xy)

1| [1.938666666,2] [1,1.06133334] | 6.13¢e—02
[1.998451819,2] [1,1.001548181] | 1.55¢ — 04
[1.999999001, 2] [1,1000000998] | 9.98¢—07

1 .9999999999,2] | [1,1000000001] | 4.15¢— 13

[1.9999999999, 2]] | [1,1.0000000001] | 2.22¢ — 16

2,2] [1,1] 0

N L b~ WM
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The only new feature is that now the components of the root can be represented in

floating point without error.

If, instead we take Xo = [2,1.4] we get

[0.666666666,3.61 0666667]
[—1.10666667, 2.093333334]

N(.XO,X()) =

Therefore , the sequence defined by (6.3) get stuck at Xo and it shows that the

choice of xg € Xp can have great importance.

6.3 Fixed Point Theorems.

If T is an operator that maps the Banach space X into itself, then any x € X such
that
x=Tx (6.6)

is called a fixed point of the operator T. For example, the operator 7x = x* in the

space R of real numbers has the fixed points x = 0 and x = 1.The linear operator
1
Tx=x(0) -+-/0 x(t)dt
in C[0, 1] has any function x = x(s) of the form

x(s)=cef, 0<s<|,
as a fixed point, where c is a real constant.

The method for finding a fixed point of an equation f(x) = 0 is an iterative
method. This method is based on the principle of finding a sequence {x;} each
element of which successively approximates a root x* of the equation f(x) = 0 in

some interval [a,b]. Therefore, there is a deep connection between the study of

fixed point theorems and Newton’s method of iteration.
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The iteration process x| = f(x;) leads to a solution of the equation x = f(x),

where f maps the real line into itself if the mapping f(x) is contractive. The

Newton’s algorithm

A CY)
Xl = X f'f—-,(xk)

for finding the real roots of the al gebraic and transcending equations f(x) =0 is

also an iterative process. Let us consider the mapping

J )
)
'(xk)
of the real line into itself, where }r—,((% is continuous on a closed interval [a, b] and

differentiable on the open interval (a,b). If x| and x; are any two points of [a, b]
which maps into y| and y», thus
flx)  f(x)
fE) (&)
BTG

where & lies between x; and x,. Hence if

fx)f"(x)

(f'(x))?

on [a,b], the mapping is a contraction mapping of [a, b] onto a closed interval of

<k<l1

the real line. Hence we can conclude state in below theorem that if there is a

point xy € (a,b) such that J{,((:‘(’))) < 8|1 — k| the mapping has a unique fixed point

@ € (xop— 8,x0+ 8) N[a,b] and that Newton’s sequence {x;} converges to c.

Here we will present an important theorem relating to the fixed point iteration

method.

Definition 6.3.1 Contraction mapping principle. Amap T : (X,d,) — (Y.da) of
metric spaces that satisfies da(Tx,Tz) < L'd\(x,z) for some fixed constant L' and

I . . . (oW
x,z € X, is called Lipschitzian ; the smallest such L' is called Lipschitz constant
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L(T) of T- If L(T) < 1, the map

L(T); if L(T) = 1, the map T is said to non-expansive.

T is called contractive with contraction constant

Banach fixed point theorem

The Banach fixed point theorem (also known as the contraction mapping the-
orem or contraction mapping principle) is an important tool in the theory of
metric spaces ; it guarantees the existence and uniqueness of fixed points of cer-
tain self maps of metric spaces, and provides a constructive method to find those

fixed points. This theorem is named after Stefan Banach (1892-1945), and was
first stated by Banach in 1992.

Theorem 6.3.1 Let (X,d) be a non-empty complete metric space. Let T : X — X
be a contraction mapping on X, i.e,: there is a nonnegative real number g < |
such that

d(Tx,Ty) < q.d(x,y)

Jorall x,y € X. Then the map T admits one and only one fixed point x* in X( this
means Tx* = x*)

Furthermore, this fixed point can be found as follows: Start with an arbitrary

element xo in X and define an iterative sequence by
X = Txk_l for k= 1,2,3,....

This sequence converges, and its limits is x".The following inequality describes

the speed of convergence:
k

d(x*,x;) < lq d(x1,%0)-

Equivalently,
q

d(Xk+,xk)-
l—¢

d(x*xk+1 ) S

and
d(x* xer1) < qd (i, x7).
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The smallest such value of q is called the Lipschitz Constant.

Definition 6.3.2 Cluster point. Let E be a metric space with matric d. let {x;} be
a sequence in E. We say that “ x is a cluster point” of the sequence{x;} if one of

the following three equivalent conditions is satisfied.
1. x is the limit point of a subsequence {x¢,}p of the sequence {x; }y
2. forall € > 0 and n, there exists m > n such that d (x,xp) <€,

3. for all n.x belongs to the closure of the set say, A, = {xn}, m>n

Definition 6.3.3 Compact set. We say that a subset K of E is “compact” if every
infinite sequence {x} of elements x; of K has at least one cluster point belonging

to K.

We now state, without proof, the Brouwer!!®) and Schauder’s fixed point the-

orems which is the origin of most of the theorems of nonlinear analysis.

Theorem 6.3.2 (Brouwer) Let T : E — E be a continuous mapping from a non-

empty, compact convex set E C R" into itself, then there is a x* € E such that

x* =Tx*( i.e., x* is a fixed point of the mapping T.)

Theorem 6.3.3 (Schauder) Let T be a continuous and compact mapping of a

Banach space X into itself, such that the set

{(xeX:x=ATx forsome 0<A<I

is bounded. Then T has a fixed point.
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6.4 R. Krawczk’s Version of Newton’s Method

R. Krawczyk’s (1969) presented a version of Newton’s method that avoids the

inversion of interval matrices(®!. Thjs method shares the nice properties of New-
ton’s method, but may have slightly slower convergence. We start by seeking at

an interval X containing a root x* of f. Let y € X and let ¥ be an arbitrary matrix
in R"*". Then we have

K X)=y=Y ) +{I-YF'(X)}(X ) (6.7)

Here, I =diag(l,...,1) is the unit matrix and we introduced the so-called Krawczyk
operator K (y,X). Suppose a region (interval vector) X that contains a solution of

nonlinear syste:msil 11 then the Krawczyk operator is given as for k =0, 1,2,3, ...
Xt =XkﬂK(Xk) (6.8)
where
K (X)) = m(Xy) — VieF (m(X;)) + Re (X — m(X))

with Ry = {I — Vi F'(X;)}, for k =0,1,2,3,.... generates a nested sequence of

intervals all of which contain the root x*.

Theorem 6.4.1 If there exists an x in the interval X and a matrix Y € R"™" such

that X N K (x,X) = &, then there is no root in X.

Lemma 6.4.2 [f P(x) =x—Y f(x) maps X into itself, then f (x) = 0 has a solution
inX.

Proof: The continuity of P follows from that of f. Since P maps the convex,
compact set X into itself, P has a fixed point in X by the Brouwer’s fixed point

theorem. From the non-singularity of Y, a fixed point of P is a solution of f(x) =0

and the lemma is proved.
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Lemma 6.4.3 If A is an interval matrix and X is an interval vector, then

WAX —m(X))) < [|A]jw(X).
Proof: Let X and Z be intervals.

From w(Z(X ~m(X))) = |Z[w(X) and w(X + +Z) = W(X) + w(Z) it follows that

W(AX =m(X))) =maxw ( Y ii(x —m(x») — max (f: WAy (X —m(xm)
J= o=l

and
w(X) = maxW(X;) > w(X;),
J
We have

WA —m(X))) < max . JAyh(X) = |A]|(6).
j=

Theorem 6.4.4 (R.E.Moore’s Theorem) Suppose that a region(interval vector)
Xo, a point yo in Xo ,and a real matrix Yy have been found such that (i.) K(Xp) C

Xo. Then, there is a solution x € Xy to the system f(x) = 0. Consider the algorithm
X1 =X NK(Xy), k=0,1,2,3,...

K(Xi) = ye = Yef (k) + {I = Y F”' (X3) } (X — i)

where y; and Y, k= 1,2,3,..., are chosen as follows:
Yoy = m(Xy)

Y,  anapproximationto [mF : (X(k))]‘l fork=0and fork >0

and ¥y = if [1=YF'Xw)ll < R,
Yik-1) otherwise.
with ri, = ||l — YF'(Xo) s k=0,1,2,3 0

Ifthe condition (ii). ro < 1 is satisfied, then there is a unique solution x to f(x)=0
in Xo and the following hold:
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I x€Xp C Xy fork=1,23. ..
2. w(Xi) < réw(Xo).

Thus,{Xi} is a nested sequence of interval containing and converging at least

linearly to the unique solution x in X,
Proof: From the definition of P in the above lemma, we have
P(x) =x-Yf(x)
=Y=YfO)+x—y—Y(f(x) - ()

Now using the mean value theorem,

We have
fE)—fO) eF'(X)(x—y) forall x,ycX

Hence we have
x—y—Y(f(x)— fO) Ex—y-YF (X)(x—y) € [ -YF'(X)(X -Y)

Thus we have P(x) € y—Yf(y) +1—-YF'(X)(X —y) = K(x,X) That is P(x) €
K(X) for all x € X. If K(Xo) C Xo.P maps X into itself; and by the above lemma
f(x) = 0 has a solution in Xp. If f(x) =0 for x € X ,then x = P(x) is also in
K(X). Since Xy = Xp_1 N K(Xj—1, the solution x in Xp is also in X for all k =
0,1,2,3,... which proves (i). It remains to show that the inequality 2. holds.

From the definition of the algorithm, we have w(X+1) < w(K(Xy)). But we have
w(K(X) = w (k= Yef ) + {1 = YeF () } (X = )

where l
ye=m(Xp) and Y= [m(F(X))]”
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we have
WK (X)) = w{l = YiF'(X)} (X — i) < rew(X)
from lemma 2. Hence we have
w(K(Xy)) < new(Xy)
Thus we obtain
w (Xi) < w(K(Xe1))

< = 1w( X 1)

< 11 w(K (Kp—2)

< Fe—17—2w(Xp-2)

< re—irg—2 -+ row(Xo)

Since {ry} is non-increasing by constructive, we have w(X;) < rgw(Xo) which

proves (i1)

6.4.1 Numerical Example

Let us consider the following system

(6.9)
falr, ) =xf—x2 =0
XP+X3—1
For an interval veotor X = (X1,X2), we can take F(X) = X2 - X e
| — A2
FI(X) = 2X, 2% as the respective interval extensions of the vector func-
2X; -1

tion
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o) = Nilxx) | Bl

S2(x1 1 X2) - xglg — % and the Jacobian matrix
le 2):2
fl(x) = :J(x) (Say),
2x; -1

Here, x* = (0.7861513377,0.61 8033988) is an exact solution of the above system

correct to nine decimal places.
Let xo = (0.80,0.62) be an approximate solution obtained by some non-interval
method. We can use Krawczyk’s method both to test whether there is a root close

to xg, say in Xo = ([0.7,0.9],[0.5,0.7)) containing the exact root and to get better

approximation if this is satisfied.

To apply Krawczyk algorithm with Xy we need the following results :

Foo) = | 00244
Yo) =
0.02
fog—| M0 1
16 -1

and also

Feke) [1.53,1.67] [1.17,1.31]
0 =
[1.53,1.67 [—1,—1]

For Y, we may take the approximation of [ f’()’o)]_1 :

: 7857 0.345982142 . _ )
Yo = [f’(yo)]_l - feidil . With this results using

0.446428571 —0.446428571
rounded interval arithmetic, we compute that for Krawczyk transformation

K (Xo) = yo— Yof (yo) +{I — YoF'(X0) }(Xo — y0)
0.7657,0.8064
K(XO)=([ ])QX()
[0.5872,0.6481]

and on the other hand
[—0.1250,0.1250] [—0.0446,0.670]

! —_
IRo |l = I} — YoF" (Xo)ll = [~0.1784,0.1784] [~0.704,0.1080]
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We get [|Rol| = 0.2864 < 1, and Now for X;, we have

Xl = K(XO) DXO =

[0.784,0.788]
[0.615,0.621]

and the stopping criterion w(X,) < 10,

k

Bl

X2

)gx

In the table below we will find the results from this algorithm with y; = m(X})

w(Xk)

—

O o0 3 N U R~ W

The true Krawczyk method ()with the choices() converges considerably faster ;

[0.7657323,0.8063645]
0.7815712,0.7907271]
[0.7851161,0.7871866]
[0.7859172,0.7863856]
[0.7860984,0.7862044]
[0.7861394,0.7861634]
[0.7861486,0.7861541]
[0.7861507,0.7861520]
[0.7861512,0.7861516]

quadratically.

k

Xi, 1

[0.5872375,0.6480857]
[0.6111227,0.6249431]
[0.6164709,0.6195970]
[0.6176805,0.6183875]
[0.6179540,0.6181140]
[0.6180159,0.6180521]
[0.6180298,0.6180381]
[0.6180330,0.6180350)
[0.6180337,0.6180342]

Xi,2

6.083¢ — 02
1.38¢ — 02
3.13e—03
7.07e — 04
1.60e — 04
3.62¢—05
8.18—-06
1.85-06
4.18¢ —07

w(X)

1

2
3
4

We have seen seen that w(X(k+1)) < ”R(k)”W(X(k)) and {W(X(k)} — 0 are sat-

isfied

In 1965 Minoru Urabe established a

helps us verify the existence and uniqueness of an exact solution and to know

[0.7657323,0.8063645]
[0.7850995,0.7872034]
[0.7861485,0.7861542)
0.7861513,0.7861514]

[0.5872375,0.6480857]
[0.6164672, 0.6196009]
[0.6180298,0.6180382]
[0.61803379,0.61 80340]
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6.083¢ — 02
3.13¢ - 03
8.35-06
5.93e—11
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the error bound to approximate solution of the nonlinear system. His existence

theorem assumes that all the Computations are to be carried out in real number

system exactly. We now state the following theorem of Minoru Urabe 24!

Theorem 6.4.5 Let f(x) be continuously differentiable function on the domain

D C R". Let xo € D and suppose J (x0) be regular. Also suppose that the fol-

lowing three conditions are satisfied for a positive number § and a non-negative

k=< 1)
1 Qs={xcR":|x—x| <8} CD,
k
2 00~ (ol < X (xe 0),

3. — <8, where If(xoll < r, and |7~ (xo)|| < M.

1—k
Suppose x* € Qg be the unique solution of the equation f(x) =0 and J(x*) be

regular.

Mr . _
Then the error estimation ||xg — x*|| < L s satisfied.

1 —

6.5 Safe Starting Regions For Iterative Methods

R.E Moore and S.T. Jones discussed a search procedure based on interval com-
putation for finding safe starting regions in n-dimensions for iterative methods

for solving systems of nonlinear equations. The procedure can search an arbitrary

n-dimensional rectangle for a safe starting region for quadratically convergent iter-

ative method. We have seen that the procedure is more powerful than continuation

methods 12! .

There are many good methods for iterative solution of systems of nonlinear
o

equations(m,“(’]). For any such method, however, the problem remains of find-

ing a safe starting point: an initial approximation from which the iterates will
¥ o

93



converge to a solution. R.E. Moore developed a technique of finding such a safe

starting region with a particular iterative method in mind, an interval version of

Newton’s method due to R.Kl-aczyk[Sl which possesses computationally verifiable

sufficient conditions for existence and convergence.It will become clear how the

procedure could be used, mutatis mutandis, with other iterative methods.

By recasting the problem of solving a system in the form of a fixed point prob-
lem, we can make use of sufficient conditions for the existence of a solution based
on fixed point theorems such as those of Brouwer!*! or Schauder. The interval
binary search procedure to be described in this section can start with an arbitrary
n-dimensional rectangle and an arbitrary algorithm for finding zeros of a system.
As a stopping criterion for the search procedure we can use: satisfaction of the
criteria for existence and convergence appropriate to the algorithm to which the
search procedure is to be applied. When supplied with a suitable algorithm and
a specific system of equations, the-search procedure will be ready to search an
arbitrary rectangle B. It will terminate in a finite number of steps with one of the
following three results: a subregion of B which is a safe starting region for the
algorithm and we will discover that there are no solutions in B or a list of small

sub-regions of B which would require higher precision machine arithmetic to yield

a result of one of the first two types.

In addition to finding safe starting regions for iterative methods, the search pro-

cedure could be used to find safe starting regions for algorithms based on simlicial

subdivisions such as those of Scarf , Stenger , and Todd providing they can begin

with a safe starting region in the form of an n-dimensional rectangle. The con-

ditions to be tested on a region for such algorithms may be based on Miranda’s

theorem!3) or on the Brouwer fixed point theorem directly.
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Now we seek a solution of the nonlinear system of equations in n unknowns

ﬁ(xiaxza"-,xn):o i=l,2,3,-",n (6'0)

wheref}, f2, ..., fu are real-valued functions and continuously differentiable in the

open domain D € R" — R". Equation (6.10) also can be written in the vector form

as
f(x)=0 6.11)

withx = (x1,%2,...,%,) and f = (fi, o, f3,..., fu)7 .
Suppose we could compute the exact range of values,
FX) = [HX),F)], - ) = min fi(X),F(X) = max £(X)

of each f; when x lies in an n-dimensional rectangle
X ={o:n <5 Fi=12,+ 0} CD.

Then we could use the following simple cyclic n-dimensional bisection procedure.
Suppose Xp is any n-dimensional rectangle in D for which fi(Xo) includes the
number zero for all i = 1,2,3---.Then Xp may contain a solution to the above
system . However if there is some i for which fi(Xo) does not contain zero, then
there is no solution in Xp. Either f (Xo) > O or fi(Xo) < 0. This is a nonexistence

theorem. We can make it into an exclusion principle.

We can perform a cyclic sequence of bisections of Xp as follows.

We will bisect X in co-ordinate x;. Exclude half of Xg for which o ¢ f;(Xp) for

some i. We will construct list (1) from the half or halves of Xg) for which 0 is in

the range of value of f; for alli=1,2,--,n Now we will bisect, in coordinate

direction x,, each region in list (1); and construct list (2) from all resulting regions
47

X for which 0 € fi(X),i= 1,2, Continue in this way with list (kn + j) re-
i ) ) !
sulting from bisection in coordinate direction x; of the regions in list (kn+ j — 1).
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ti i :
Any solutions which the system (6.10) may have will lie in regions contained in

list(m) for any m. If the list (m) becomes empty for some , then there are no

solutions of (4.10) in Xj.

ne di Sl i .
In one dimension this procedure, applied to a function which crosses the axis

Figure 6.1: Figure: Bisection in two dimensions.

once in [a, b], will produce the same sequence of subintervals of [a, b],as the usual

bisection method. One the other hand, unlike the usual bisection procedure, this

bisection procedure can also find multiple zeros.
A two dimensional example may help to make the general procedure clear.

In the above figure. twenty-three bisections carried out just as described pro-

duces a smaller rectangle —I%th the diameter of the initial rectangle containing the

solution. The solid curves represent loci of zeros of fi or fo separately. The

regions in between are marked ++,+-,-+ O = according to the signs of f| and

f» in those regions. At the stage shown, only the small rectangle containing

the intersection of fi = 0 with f» = 0 need be further bisected. Thus a rectan-

gle need be further bisected only when it contains a zero of f and a zero of

/>. Even when we cannot compute the exact ranges of values of the functions
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fiof2, o5 fu 1t is still possible to use bisection procedures in dimnensions.TE -

terval extensions Fi, £y, F,, (12011U1y of the functions Ji:f2,-+ -, fo are avail-

able, then we can compute intervals £ (x),.. ,Fu(X) containing the ranges of

values of fi,f2,-++, fy for x in an n-dimensional rectangle X .If any one of the

intervals F;(X),i=1,2,--- n does not contain the number 0,then there is no solu-

tion of (6.10)in X.Since Fi(X),i =1,2,---,n may be wider than the actual range
of values of f; for x in X,this may require more bisections than if we were able
to compute the exact range of values of f},-- -, f,. Nevertheless.such an approach
can be used effectively,as will be shown in this paper, to find safe starting regions

for iterative methods.

As a stopping criterion for the bisection procedure we can make use of com-
putationally verifiable sufficient conditions for convergence of a chosen iterative
method to a solution of (6.10).Thus, the bisection procedure will terminate when

a safe starting region is found for a more efficient iterative method.

An interval search procedure for R. Krawczyk’s method.
We assume that £ : D C R" — R" is continuously differentiable in the open set D.
We assume that the interval extensions F,-,F,-’j of the functions f;,i =1,---,nin (1)
and of the coefficients f}; of the Jacobian matrix of the system. Denote by /"[D]

the set of n-dimensional rectangles contained in D. An element of["[D] can be

represented by an interval vector X = (X1, ,X) where X; is a closed bounded

interval of real numbers.

The interval valued functions F;, F;'J are assumed to have the following properties.

. F,Fi(i,j=1,2,-+ n) are interval valued functions defined on 1"[D].
R R R FANS y &y )
2. filx) = F(x), fi;{x) = F/;(x) for all x inD

U
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3. (inclusion monotonicity 201y For 411 ¥ Bin

D],X CB implies F;(X) C
/
F;(B) and F,(X) C Fi(X) forall i, j =

We know the following notations. For an interval [a,b] = {x:a < x < b}, the

magnitude of an interval is defined by |[a,b]| = max(|al,|b|). The width of an
interval is given by w([a, b])

= b —a. The midpoint of an interval [a,b] is given by
a+b
. We define

| X1 = max([Xi]), w(X) = maxw(X;).

For an interval matrix A , we define the norm for an interval matrix
n
4]l = max ) 4
=1

and m(A)=the real matrix with components m(A;;).
R.Krawczyk introduced another form of interval version of Newton’s method
which does not require the inversion of an interval matrix is given by ®lwith the

Krawczyk operator
K(X)=y=-Yf(y)+{I-YF'(X)}(X =) (6.12)

where y is a point chosen from X and Y is an arbitrary non-singular real matrix.

Suppose a region (interval vector) Xp that contains a solution of (6.10) then the
Krawczyk algorithm is given as for k = 0,1,2,3, ...
Xi+1 = X NK(Xy) (6.13)
where
K(Xp) = m(Xp) — Yo F (m(Xy)) +Ri(Xp —m (Xt))

with R = {{ — YF'(Xg)}, for k=0,1,2,3,... (Lis the identity matrix)

Where Yy and Yy, k=1,2,3..., are chosen as follows :
yi = m(Xe)
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and Yk =

Y, anapproximation to [mF” (X&) ™! for k = 0 and for k > 0

17 =YF' (X)) < Ry |,

Yi1, otherwise.

The algorithm(6.13) satisfies the following properties:

1

Xi+1 C X forallk=0,1,2,3, .

b s |

If Xo contains a solution of (6.10), then so does K (X0).Thus,if K(XpN Xy is
empty ,then there is no solution in Xo. This is another computationally veri-
fiable sufficient condition for nonexistence of a solution in an n-dimensional

rectangle X (in addition to 0 ¢ F(X,.

. The sequence {||Ri]|} is non-increasing andw(Xy1) < ||Rx|| w(Xg).

If K(Xp) C Xy, then there is a solution of (6.10) in Xp. This is a computa-
tionally verifiable sufficient condition for existence of a solution of (6.10)

in an n-dimensional rectangle Xg.

If K(Xo) C Xo and |[Rg|| < 1, then there is a unique solution of (6.10) in Xo.

Furthermore, the solution is in X; for all k=0,1,2,3,-- and

{W(Xk} — 0.

This is a computationally verifiable sufficient condition for convergence of the

iterative algorithm (6.13)to a solution of (6.10). The convergence is at least linear

; in fact

Under certain conditions,

{HHR,M} w(Xo) < [IRol*w(Xo)-

the convergence is quadratic. Assuming the conditions

of property 5) above, we have the following:

Theorem 6.5.1 If the Jac

hood of the solution (for instan

obian of the system (6.10) is nonsingular in a neighbor-

ce, if | [FI(XO)]"l | <b); ifthe elements of F satisfy
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a Lipschitz condition: for some I, > 0. w(F(X)ij < Lw(X) for all X C Xq and all

if Yy is sufficiently good approximation to [m(F(X;))]~"' so
that Yy = [’”(F(Xk))]ﬂl + Ey with IE|| < Cw(Xx),

Krawczyk’s algorithm is quadratic; that w(

i,j = 1,2,...,11. and

then the convergence of the

Xi+1) < qlw(X;))? for some g inde-
pendent of k.

Proof. We have

| 1
RN < N2 Kl + S T (F (X))~ InLw(Xe) < {CIIF (Xo) |+ %b"L}W(Xk)-

Therefore,
w(Xem1) SWIK(X0)) < IRIW0G) < {CIF(R0) -+ 3bnL} (X

We can take ¢ = C||F (Xo)|| + %an and the theorem is proved.

We will present a search procedure for finding safe starting regions for the Krawczyk’s
algorithm . Let Bbe an arbitrary n-dimensional rectangle contained in the domain

D of the functions in the system (6.10). We do not require the non-singularity of

the Jacobian matrix f'in B.

We begin by noting that for any region X € B exactly one of the following

conditions will hold:
1. X satisfies the existence and convergence criteria of Krawczyk’s algorithm.

2. X satisfies one of the nonexistence criteria of Krawczyk’s algorithm

3. X satisfies neither 1 nor 2.

Determination of which of the above conditions holds is called analysis of the

region X.
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The search procedure consists of 5 recursive application of this analysis, begin-
ning with the region X = B, At each level, we analyze the region X. If X satisfies
condition 1, we designate it a safe starting region for the solution of the system
(6.10). If X satisfies condition 2 , then no solution of (6.10) is contained in X and
this region is excluded from further consideration. If condition 3 holds, we bisect
X, if possible, in some appropriately chosen coordinate direction and select one
of the two resulting half-regions for analysis at the next level. If condition 3 holds
and it is not possible to bisect X, there may still be a solution of (6.10) in X. In
this case we add X to a list of regions too small for further analysis and continue
the search as if this region had been excluded.Since B is of finite dimension and its
components are of finite width, there can be only a finite number of such regions

obtained by bisection.

Thus, the search procedure, described in detail below, will in a finite number of

steps, do one of the following three things:

I. find a safe starting region X within B for convergence of thekrawczyk’s

algorithm to a solution of (6.10);
2. discover that there are no solutions of (6.10) in B;

3. terminate with a list of small regions within B which might contain solutions

of (6.10).

Search procedure for algorithm (6.13):

List T is the list of subregions of B yet to be tested.
List P is the list of subregions of B which may contain a solution to (6.10) but

which are too small for further analysis.

Unless otherwise indicated, Step m+ 1 follows step m.

Step 1. (Initialization). Set list T to empty; set list P to empty; set X to 5.
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Step 2. Compute F(X).
Step 3. (Exclusion). If 0 ¢ F(X) goto step 11

Step 4. Compute ¥ = [m(F'(x))]~!; if not possible, go to step 9.

)
Step 5.  Compute ||R]| and K(X)
Step 6. (Exclusion). If X N K(X) is empty, go to step 11.
Step 7. (Existence). If K(X) C X then X(and alsoK(X)) contains a solu-

tion,continue; if not, go to step 9.

Step 8. (Test||R|

, If ||R|| < 1,then X is a safe starting region X for the algo-
rithm (6.13)-terminate search-; otherwise set B to K(X) and go to step 1.

Step 9. (Bisection). Bisect X according to rules described next section; if no
further bisection is possible, add X to list P and go to step 11.

Step 10.  Set X to half-region selected according to bisection rules; add remain-
ing half-region to head of list T'; go to step 2.

Step 11.  (Test list T). If list T is empty goto step 12; otherwise set X to region
at head of list 7, delete this region from list 7 and go to step 2.

Step 12 (Test list P). If list P is empty, terminate with no solution in B; other-

wise print list P and terminate.

We now discuss bisection rules for step 9 of the search procedure. When bisec-

tion of a region X is to be carried out, there are two decisions to be made:
1. In which coordinate direction we should be bisected X ?

2. Which bisected half of X we should be searched first ?

Note that the procedure always saves the untested half of bisected region for pos-

sible examination later.

If X cannot be further bisected within the limited machine number precision

being used, then we can indicate “possible solution in X and go to step 11.
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We only bisect a region X after it has beep determined that: 0 € F (X); and

either

I. we can not find an approximation y — [m(F" (x))]-1,

2. XNK(X) is not empty, but K(X) is not contained in X . Thus we only bisect
aregion X when it still might contain a solution. The number of bisections

required to find a safe starting region will depend on the rules used to choose

coordinate directions and bisected halves.

In order to guarantee that X(0) s a safe starting region for algorithm (6.13), we

need

[[Roll = [|T = YoF"(Xo)|| < land  K(Xp) C Xo

We will assume that ¥y has been found as an approximation to [m(F'(x))]~". We
can write

F'(Xo) = m(Fy) +W

where

%[—1’ 1w(F'(Xo)if)-

Then ||Ry|| is approximately ||YoW||. This motivates our choice of a rule for se-

W=

lecting a coordinate direction, in which to bisect X (), We attempt to decrease

||R|| by decreasing
wlF'(X)] = maxw(F'(X)i))
ij
To choose a coordinate direction for the bisection of X:

. we find a pair i, j for which w(F'(X)ij = w(F'(X)).

2. we bisect X in each of the coordinate directions in turn, which occur in

F'(X);; and choose the first one for which
w{F'(X1)ij UF (X2)ij}
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1S minimum,where X — X UX> and X1, X5, are the halves of X
Having chosen, in this way, a bisection direction, we select one of the re-

sulting halves X, h=1,2, for which
n
Z Im(Fj(Xh))] is minimum,
i=1

This choice is motivated by an attempt to select a bisected half of X which is most

likely to contain a solution of (6.10).It is symmetry test-selecting a half of X on

which the values of the functions f;, ... ,.fu seem to be closest to zero* on the

average”.
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Chapter 7

Computation of Interval Solutions to

Nonlinear Systems

7.1 Computation of Interval solution to a polyno-

mial equation

In this section we apply M. Urabe’s theorem to R. Krawczyk’s algorithm to find
an interval solution enclosing a real root of a polynomial(nonlinear) equation. Let

us consider the third degree polynomial equation
flx)=x"-3x+3=0 (7.1)

This equation has only one real root x* = o¢ = —2.103803402, - - .
Let xp = z = —2.11 be the approximate real solution.

URABE’S THEOREM:
_ 1 _ —
r=||F(z)||=0.06 |77 (2)|| = F’l(_z) = 1535 = 0.096618--- < 0.0967 = M
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1. in the closed domain Qs ={xeR;|lx—x|| < 6}

X+z = (x—z) +2zleads to |x+2z] < 2|z] + & and
V() =T ()] = 3Jx+2lx— 2| < (6]z| +38)8
2. 1 (6]2] +38)8 < £ (x € O is satisfied.
S0k > (6+|2] +38)6M = (12.66 + 36) x 0.0967 = 1.2242228 +0.29052

3. But {2 < § is satisfied if
8> 8(1—k) > Mr= 005802
As the closed domain Q5 = {xc R : [|x —xo|| < 8} is the 8-neighborhood
of xp = —2.11. If we choose § = 0.10, then
Qs={xeR:|x—(-2.11)| <0.10} = [-2.11, —2.01] € D[-3,-2]

Therefore k > 1.224222(0.10) 4 0.2901(0.10)2 = 0.1253232

So, if we choose k = 0. 13, the all the conditions of Urabe’s theorem are
satisfied. In the closed domain Qs, the x* = @ = —2.103803402- - - is the
unique solution of f(x) =0,

The error estimation gives
llz— x| < li”ik — 0.0066- - < .007
That is —2.11 —0.007 < x* < =2.11 4 0.007.

we assume that Xp = [—2.117,~2.103] be the interval solution of (7.1). Here yo =

m(Xo) = —2.110. Now we are using Horner’s algorithm to Krawczyk’s method in

this interval .

Horner’s Alogorithm

b~ k] = ag,k=0,1,2,..n(n=3) (7.2)
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for

b0] = ag, HI[K] = BUD I+ 69 [k — 1)y, (k= 1

J=0.1.2,...

bO) = £(5), bV — = f(y)

12,1 — )

Using the Horner’s algorithm, we have the following tables.

Table 1: Computation of £ (y0) and £'(yo by Horner’s method

k=0| k=1 | k=2 | k=3
B[] 1 0 3 3
bO [k — 1)y -2.110 | 4.452 | -3.064
b [k] I [ -2.110 | 1.452 | -0.064
bW [k — 1]y -2.110 | 8.904
b(D[k] 1 |-4.220] 10356
Table 2 : Computation of F’(Xg) by Horner’s method
k=0 k=1 k=2 k=3
Dkl [1,1] 0 [-3,3] (3.3]
bO [k — 1]y [-2.117,-2.103] | [4.422,4.482] | [-3.138,-2.990]
bO)[k] [1,1] | [-2.117,-2.103] | [1.422,1482] | [-0.138,0.010]
bk — 1]y [-2.117,-2.103] | [8.845,8.964]
bV [k] [1,1] | [-4.234,-4.206] | [10.267,10.446]

Table 3: Computation of f(y;) and f’(y; by Horner’s method
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k=0| k=1 | k=2 | k=3
b{=1[k] 1 -3 3
6Ok — 1]y -2.1035 | 4.4247 | -2.9968
bO[k] 1 1-2.1035 | 1.4247 | -0.0032
bWk — 1]y -2.1035 | 8.849
bV [k] 1 |-4.2070 | 10.2741
Table 4 : Computation of F'(X, by Horner’s method
k=0 k=1 k=2 k=3
D] || 11,17 0 [-3,3] [3,3]
b0 [k —1]y [-2.117,-2.103] | [4.4226,4.4269] | [-3.0022,-2.9917]
bO[x] (L1 | [-2.117,-2.103] | [1.4226,1.4269] | [-0.0022.0.0083]
b [k -1y [-2.117,-2.103] | [8.8452,8.8537]
b(D[k] [1,1] | [-4.204,-4.206] | [10.2678,10.2806]

From table-1,we get

and also

From table-2,we get,

As

Yo =[f(»)]™"

f(y0) =—0.064, f'(y9) = 10.356

= 0.09656

F'(Xo) = [10.267,10.446]

K(Xo) = yo— Yo f(yo) + {I — YoF'(Xo0) }(Xo — yo)

= [~2.104,—2.103] C Xg = [~2.117, —2.103],

and on the other hand

ro = ||l — YoF'(Xo)|| = ||[~0.0087,0.0087)|| = 0.0087 < 1,
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We have

X = K(X())ﬂX() = K(X()) = [—2.104,——2.103].

Again,
yi=m(X;) = —2.1035

and

F'(X)) = [10.2678,10.2806].

From table-3 we get

Fn)=0.0031, f(y)=10.2741

and also

Yi=[f'(y)]~ =0.09733

From table-4 we have
F'(Xl) = [10.2678, 10.2806.

As

KX) =y =Yifly1) +{I-YiF (X))}(X1 —y)

= [~2.104,~2.103) C X; = [~2.104, —2.103]

then
X =K(X))NX; CX,

It can be noted here that for calculations rounded to three decimal places gives

X1 C€Xo

and



On the other hand

ri=|I-YF'(X)| = [1[=0.00062,0.0007]| = 0.0007 < ry < 1.

The initial interval converges to the interval [—2.104, —2.103] rounded to five sig-
nificant figures that contains the root. Higher precisions may increase the number

of iterations.

7.2 Computation of Interval Solutions to Nonlinear

Systems.

We have seen that R. Krawczyk introduced an interval version of Newton’s method
that does not require the inversion of an interval matrix. Minoru Urabe estab-
lished a non interval theorem that deals with existence, uniqueness and conver-
gence of solution to nonlinear system of equations. In this example we will ver-
ify computationally the convergence of interval solutions of nonlinear system of

equations by applying* M. Urabe’s " theorem (4to R. Krawezyk’s algorithm 8],

We are given a system of n nonlinear equations in n unknowns
Silxr,x2,0 %) =0 i=1,2,3,---,n (7.5)

where fi, f5,...,fx are real-valued functions and continuously differentiable in

the open domain D C R" — R". Equation (7.5) also can be written in the vector

form as
f(x)=0 (7.6)

withx = (x1,%2,...,%) and £ = (fi, 0, 3, fu) T
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we assume that both of f and f’ have continuous inclusion monotonic interval
extensions F and F’ defined on an interval contained in D. Therefore the interval

extension of the system (7.5) is given as
F(X)=0. (7.7)
where X = (X|,X,...,X,) is an interval vector contained in D and X1, ..., X, are
closed bounded real intervals.
The following are the essential algorithms for nonlinear systems

1. Newton’s Algorithm.

An interval version of Newton’s method to solve (7.5) is introduced in[zm,fl !

which is given in the following form
Xew1 = X NN(X,) (7.8)
with the Newton interval operator N, defined for instance, by
N(X) =m(X) =V f(m(X)) (7.9)

where m(X) is the midpoint of the interval vector X and V is an interval matrix
containing [f'(x)]™! for all x in X. If there is a zero of f in Xy then the zero is also
in N(Xp) and therefore in X;, fork=0,1,2,3,...

1. R. Krawczyk Algorithm.

R.Krawczyk introduced another form of interval version of Newton’s method

which does not require the inversion of an interval matrix is given by ®! with the

Krawczyk operator
K(X)=y=YfO)+{I-YF(X)}(X-y) (7.10)
where y is a point chosen from X and Y is an arbitrary non-singular real matrix.
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Suppose a region (interval vector) X(O) that contains a solution of (7.5) then the

Kraweczyk algorithm is givenas fork=0,1,2,3,...
Xt =Xy NK(X;) (7.11)
where
K(Xk) = m(X) = YieF (m(Xe)) + Re(Xe — m(X)
with Ry = {1 = Y, F'(X)}, for k =0, 1,2,3,... (s the identity matrix)
where y; and ¥, k = 1,2,3.. . are chosen as follows :
Yi = m(Xy)

Y. an approximation to [mF’ (X)]~! for k = 0 and for k > 0
and ¥, = if [l7=YF' X)) < [|Re |,

Yi-1, otherwise.
The algorithm(7.11) satisfies the following conditions.
l. Xpp1 C X forallk=0,1,2,3, .
2. If Xy contains a solution of (7.5), then so does K(Xp)
3. The sequence {||Ry|} is non-increasing and w(X;; ) < ||Rk|| w(Xg).
4. If K(Xo) C Xo, then there is a solution of (7.5) in X.

5. If K(Xp) € Xo and ||Rpl| < 1, then there is a unique solution of (7.5) in Xj.
Furthermore, the solution is in X for all k =0, 1,2,3,--- and {w(X;} — 0
(Test for convergence)
Theorem 7.2.1 :(M.Urabe) Let f{x) be continuously differentiable function on the
domain D C R". Let xo € D and suppose J(xo) be regular. Also suppose that the
following three conditions are satisfied for a positive number & and a non-negative
k(0<k<1).
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I Qs={xeR": |x—x < o} CD,
k
2 465) ~ (ol < % (x e ),

Mr
3. 17 < 8, where || f(xo|l < r, and I'J"(xo)H <M

Suppose x* € Qg be the unique solution of the equation f(x) = 0 and J(x*) be

regular.

. . 14
Then the error estimation ||xg — x*|| < -

is satisfied

Now we will apply this theorem to a two dimensional system of nonlinear equa-

tions. Let us consider the following system

filx,x) =X+ -1=0

(7.12)
flxn,x)=xt—x =0
, Xt +X3 -1
For an interval vector X = (X, X,), we can take FiX)= - and
X7~ X,
2% 2X, : .
Fl(X)= as the respective interval extensions of the vector func-
2X, -1
tion
. 2 2
- 2t —1
f(x) = il 3] _ [t and the Jacobian matrix
falxr,x2) X} —x
2x ZXQ
fl(x) = ! = J(x) (say).
2x; —1

Here, x* = (0.7861513377,0.618033988) is an exact solution of the above system

correct to nine decimal places.

Let z = yg = (0.80,0.62) be an approximate solution obtained by some non-

interval method.
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' 1.6 1.24
Then J(z) = e - Now, we have r = || f(z)|| = 0.0244 and
. -1

17(2)]7"(| = 0.892857142 < 0.90 = M say).

In the closed domain Q5 = {x ¢ R? llx—z|| < 8},
Xy —2 —U.
I I <5 x1—0.80 )

let |x—z|l,. < 6= <é

X2 —-0.62

X2 =22 -
That is , max (|x; —0.80],|x, — 0.62]) < §.

Again, ||7(x) = J(z)||..

20 26\ [ 16 1.4 I 2(x1-0.80) 2(x; —0.62)
2 —I 16 -1 Il 2(x; — 0.80) 0

where ||.||. = maximum norm.

(=]

L

Therefore, ||J/(x) —J(2)|..

= max (2|x; —0.80| +2|x, — 0.62|,2 |x; — 0.80])

=(2|x) —0.80| +2 |x; — 0.62]) < 43.

But Iﬁfrk < & is satisfied if 6 > (1 — k) > Mr = 0.90 x 0.0244 = 0.02196

and k£ > 4 x 0.906 = 3.66.

As the closed domain Qg5 = {x € R?: |lx—z|| < &} is the S-neighborhood of
z=yp = (0.80,0.62). We may choose § = 0.10,

then Q5 = {x € R2: ||lx— ]| < 0.10} = [0.70,0.90] x [0.52,0.72] = D

and k > 4 x 0.906 = 0.36. So if we choose k = 0.36 then all the conditions of

M.Urabe’s theorem are satisfied.

In the closed domain Qg, x* = (0.7861513377,0.618033988) is the unique solu-
tion of f(x) =0.

The error estimation gives ”x(o) —x*
i.e.,0.80—0.035 <x* <0.80+.035
= x] = [0.765,0.835] and x, = [0.585,0.655]. i.e., (x1,x2) € ([0.765,0.835], [0.585,0.655]).

< _lM_rk = 0.0343125 < 0.035 (say.)
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Thus we have the following rectangle Xo = ([0.765,0.835],(0.585,0.655]) con-

taining the exact root.

To apply Krawczyk algorithm with Xo we need the following results :

0.0244 , 1.6 1.24
f(y(o)) = » f(vo) = , and also
0.02 1.6 -1

[1.53,1.67) [1.17,1.31]
[1.53,1.67  [—1,-1]
For Y, we may take the approximation of (o))"

, -1 0.279017857  0.345982142 ] ] .
Yo=I[f()"'= . With this results using
0.446428571 —0.446428571

rounded interval arithmetic, we compute that for Krawczyk transformation

F'(Xo) =

K(X0) = yo—Yof(y0) + {I — YoF" (X0) } (Xo — yo)
[0.784,0.788]

K(Xo) = C Xp and on the other hand
[0.615,0.621]

| Ro|l = |[1 — YoF' (Xp)|| = 0.09462 < 1.

Now for X,
[0.784,0.788]

we have X| = K(X)NXg =
[0.615,0.621]

0.786 —0.00024
Again we find y; = m(X;) = 0618 ) = — 000204
1572 1236 \ [1.568,1.576  [1.23,1.242]
o= 1572 —I FITE [1.568,1.576]  [=1,—1]
0.284 0.352

— [ -1 _ . Using rounded interval arithmetic
and Y= () 0.447 —0.447

for K(X|), we compute that for Krawczyk transformation

K(X)) =y =Y fon)+{I-nF'X)HXi =)
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[0.786,0.786]

K(X)) = C X, CXo
[0.618,0.618]
0.786,0.786
ThUSXZZK(Xl)ﬁX|= [ ] CX
[0.618,0.618]

Therefore, we have the nested intervals X, CX| CXp.
Also we have, ||R||| = ||/ -Y, F'(X))|| = 0.006766.

In this example, we find that ||Ry|| < 1 and IRl < 1. As we have w(X,) =
0.006. And w(Xg) = 0.07. It is seen that W(Xip1) < ||R]|w(X,) and {w(X;} =0

are satisfied.

The initial interval X(0) obtained by M.Urabe’s theorem, thus guarantees rapid

convergence for R. Krawczyk algorithm.

7.3 Search for Safe Starting Regions to Computate

Interval Solutions

Here we are apply safe starting regions to a two dimensional system of nonlinear

equations!'%!. Let us consider the following system

f'(xth):x%-l—x%—I:O

(7.13)
flx10) =22 -x=0
XE+X3 -1
For an interval vector X = (X|,X2), we can take F(X) = ;
Xi —Xp
and
F'{X) = A1 2y as the respective interval extensions of the vector func-
2X, -1

tion

116



Figure 7.1: A two dimensional example

fiterx) ) [ e
f(x) = = 172 and the Jacobian matrix
fa(x1,x) X} —x
2x1 2x
flx)= bR respectively.
2x ] — 1

Note that the Jacobian matrix is singular at the point x; = 0,x2 € [0,1] in B. This
causes no difficulty for the search procedure.
The search proceeds as follows.(follow fig-1).
Initially, X =B=([-1,1],[0,1])
Let X = X(DUx® | where X = ([~1,0],[0,1]) and X = ([0,1],[0,1])

Symmeltry test: We check

2
min( )" Im(F(x®)|
1 _]—_—l

)i m(Fi(X )] = [m(F (X )]+ Im(Fa(X )| = Im([~1,012+ [0, 112~ 1) [+ m([~ 1, 0] [0, 1]

= |m([~2,0)| + |m([-2,0])| = 2.

Again

~

m(Fy(X®@))| = |m(F (X @)+ m(Fa(XP))| = m([0, 1]7+[0,1* = 1)| +|m([0, 1]2~ [0, 1])|

Il

Jj=1
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= frn([—l,1)|+[m([~1, 1]|=1.

As 1 < 2, so we choose the region X = x(2) — (0, 1], [0, 1]). and test step 7 and

step 8 from search procedure.

ere, m(X) = (0.5)) Py = [ CPHCP=1) _ [ 05
0.5 (525 ~0.25
% et} = ( 0.1} (o5 _[[0s0s
[0,1] 0.5 [~0.5,0.5]
v {”1(2[0,1] 2(0, 1] ]—1: 11 —l_ 0.5 05
200,1] [~1,~1] 1 -t/ \os —o0s

Rel-yP(X)=7—y| ©F 02 ) _ (05 05 0,2] [0,2]
[0.2] [-1-1] 0.5 =05 / \ [0,2] [-1—1]
- ( -1,1] [—0.5,0.5})'

[—1,1] [-0.5,0.5]

0.5 0.5 -0.5 —0.375

0.5 -0.5 —-0.25 —0.125

[~1,1] [_0_5,0.5]) ( [0.5,0.5]) ( [—0.7501,0.7501])
Now, R(X-m(X))= =

[~1,1] [-0.5,0.5] [—0.5,0.5] [—0.7501,0.7501]
Therefore,

0.5 0.375 [~0.7501,0.7501]
. + +
KO=1 45 125 (~0.7501,0.7501]
( 0.875 \ ( [~0.7501,0.7501] ( (0.1249, 1.6251] )
. N _ ‘x

625 [—0.7501,0.7501] [0.1251,1.3751]

So bisect; coordinate direction | chosen.

Bisection gives X(1) = ([0,0.5),[0,1]), X® = ([5, 1[0, 1])

K(X) =

118



Symmetry test: We check

2
min( X Im(F;(x )
f=

);:'"” Fi(X )| = 1m(F (X D))+ |m(Fy(x (! DI =1m((0,0.5+(0, 1]~ 1)[+m([0,0.52~ [0, 1])|
= |m([-1,0.25])| + Im([—1,0.25))| =

Again

E Im(E5X D)) = m(FOXO)) |+ (R (X @) = (.5, 1124 [0, 1 = )]+ m([0.5, 12— [0, 1]

= |m([-0.75, 1])| 4 |m(][~0.75, 1[)}== 25

As .25 < .75, we choose the region X = X(?) = ([0.5,1],]0,1]).

Here, m(X)= ( (3)67255 ) , F(m(X)) = ( :;);):; )

% ] ( (~0.125,0.125] )
[~0.25,0.25]

Yz[m 2[0.5,1]  2[0,1] }"z 1.5 1 —': 0.3333 0.3333
2[0.5,1] [-1,-1] 1.5 —1 05 —05

( 0.3333 0.3333) ([1,2] 0,2] )
R=I-YF'(X)=1I— R=1-YF(X)=
0.5 —05 (1,2] [~1,1]
[-0.3332,0.3334] [-0.3333.333]
(~0.5,0.5] ~0.5,0.5]

[~0.2501,0.2501] )

Now, R(X-—m(X))= ( [-0.3501,0.3501]
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0.0417
YF(m(X)) =
—0.0625
Therefore,

0.75 0.0417 [—0.2501,0.2501]
K(X)= - +
0.5 —0.0625 [—0.3751,0.3751]
0.5416,1.0417
K(X)= | ] ZX
[.2499, 1.0000]
We have seen that K(X) does not contained in X. So bisect; coordinate direction
2 chosen; bisection gives

xW=(15,1],[0,05)), x®=(05,1],[0.5,1])

Symmetry Test.

2
Z |m(F;

N = m(F XN+ [m(F(xX D)) = m([0.5, 1]2+[0,0.5)* = 1)+ |m([0.5, 1]~ 0,0

= |m([—.75,0.251])| +|m([0.25, 1])| = .625
Again

Zlm W) = m(FU (X D))+ m(Fa(X )| = |m([.5, 112 +[0.5, 1> = 1) +|m([0.5, 1]*~ [0.5, |

= |m([-0.5,1])| + |m([—0.75,0.5])| = .375

As 0.375 < 0.625, we choose the half X = x®@ = ([0.5,1],[0.5,1])

0.75 ~ (.75)2+(0.75)* - 1 _ [ 0125
Here,m(X) = ( 075 ) , F(m(X))= ( (757075 ) ( 01875 )
0.5, 1] 075 \ [ [-025,0.25]
X —miX)= 0.1 | \ 073 “ | [~0.5,0.25]
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Yzm[ 2005,1] 2[0.5,1] ]—lz 1.5 1.5 _'_ 0.267 0.4
2[0.5,1] [~1,~1] 1.5 =1 B 04 =04

R,_YF,(X)_I_Y([IJ] [1,2] )21_(0.267 0.4 )([1,2] (1,2] )
[1,2] [-1-1] 04 —04 [1,2] [-1,1]

[—0.334,0.4] [-0.134.133)

So R=1YF’(X)=(
[-0.4,0.4]  [-0.2,0.2]

Now, R(X—m(X))= ( [~0.334,0.4] [-0.134,.133] ) ( [—0.25,0.25] )
[~04,04]  [-02,0.2] [~0.25,0.25)

_ [—0.1335,0.1335]
[—0.6,0.6]
0.267 0.4 0.125 0.072
YF(m(X))= =
04 -04 —0.1875 0.125
Therefore,
0.75 0.072 [—0.1335,0.1335]
K(X)= = +
0.75 0.125 [—0.6,0.6]
0.675 [—0. 1335,0.1335] [0.6749,0.9084]
K(X)= + = ;(_ X
0.625 [—0.6,0.6] [0.4749,.7751]

[0.5,1] [0.5,1]2+[0.5,1]—1 [-0.5,1]
F(X)=F = i =
0.5,1] [0.5,1]2—[0.5,1] [-0.75,0.75]
We have 0 € F(X). As K(X) € X and 0 € F(X), so bisect; coordinate direction 1

chosen,
xW = (1.75,1),[0.5,1]), x® =([0.5,0.75],[0.5,1])
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Symmetry Test.

™

m(Fr XU = Im(F (XM))| + [m(Fa(x )|

i

j=1

= |m([0.75,11* 4 (0.5, 11> = 1)| + |m([0.75, 1] = [0.5, 1])| = .4375
Again

):Im Fi(XEN)| = Im{Fy (X@)| + |m(Fy (X ®))|

= |m([.5,.75]*+ (0.5, 1]* = 1)| + |m([0.5,.75]* — [0.5, 1])| = .375

As 0.375 < 0.4375, we choose the half X = X = (0.5,0.75],[0.5, 1])

Here, m(X)= ( 0.625 ) (X)) = ( —~0.047 )
75 0.359
X () — ( [~0.125,0.125] )
[~0.25,0.25)
Y= [n 2[0.5,0.75] 2[0.5,1] }—l= 125 15 _l: 032 0.48
U\ 2(05,075) [=1,-1] 125 —1 04 —0.4
(0.32 0.48 ) ([1,1.5] [1,2] )
R=I1-YF(X)=1I-
04 —04 |\ [1,1.5] [-1-1]

(-0.2,02] [ 016016])

So R=I-YF'(X)= (
[-0.2,0.2] [-02,0.2]

[—0.065,0.065]
[—0.075,0.075]

—0.1874
YF(m(X))= ( 0.1248 )
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Therefore,
0.625 —0.1874 —0.065,0.065 0.7474.0.8776

K(X) = _ e Y _ [ ) ¢ x
0.75 0.1248 [—0.075,0.075] [0.5499,0.7001]

0.5,.75 0.5,.75]>4[0.5,1]2—1 —0.750,0.0625

F(X)=F [ Py _ (1 [*+10.5,1] (| )
[0.5,1] [0.5,.75]2~10.5,1] [—0.75,0.75]

We have 0 € F(X). As K(X) € X and 0 € F(X), so bisect; coordinate direction 2

chosen.Bisected halves are
= ([0.5,0.75],[0.75,1]), X® =([0.5,0.75],[0.5,0.75])
Symmetry Test.
):|m X)) = Im(E X))+ Im(Ex D))

= |m([0.5,.075)*4[0.75,1]% = 1)| + |m([0.5,.75)* = [0.75,1])| = .65625

Again

im(F;(XP))| = [m(Fy(X®))| + [m(Fa(X @)

e

1

J
= m([.5,.75)%+[0.5,.75)2 = 1)| + [m([0.5,.75]* — [0.5,.75])| = .40625

As 0.40625 < 0.65625, we choose X = X?) = ([0.5,0.75],[0.5,0.75))
0.625 —0.21875
X)= F(m(X))=
lace, ity ( 0.625 ) i ( —0.234375 )

( (~0.125,0.125] )
X—m(X)=
(~0.125,0.125]

2[0.5,0.75] 2[0.5,0.75] < 0.356 0.444
Y:[m ] =

2[0.5,0.75] [-1,—-1] 0.444 —0.444
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R=I-YFI(X) =1 0.356 0.444 [1,1.5] [1,1.5]

0.444 —0.444 [1,1.5] [=1—=1]
[-0.19985,0.2001] [—0.0885,0.889)
[~0.2222,0.2222]  [-0.111,0.1112]

So R=I-YF'(X)=

—0.19985,0. 0, , 195D,
Now, R(X—m(X)):([ ,0.2001] [—0.0885,0.889)] ([ 0125,0125])

[-0.2222,0.2222] [-0.111,0.1112] [—0.25,0.25]
[ [-0.036,0.036]
[—0.0416,0.0416)

rom= 222

0.625 0.0262 [—0.036,0.036]
X) = - +
0.625 —0.2012 [~0.0416,0.0416]

( 0.5988 ) ( [=0.036,0.036] ) ( [0.7708, .8431] )
K(X) = + =

8262 (~0.0416,0.0416] [0.5763,.6598]
K(X)NX = ¢ for X = ([0.5,0.75],[0.5,0.75]) and X = ([0.5,0.75), [0.75, 1]).
So exclude X = ([0.5,0.75],[0.5,0.75]) and X = ([0.5,0.75],[0.75, 1]).

Also K(X)N([0.5,0.75],[0.5,1]) = ¢, so exclude X = ([0.5,0.75],[0.5,1]) ,
We choose X = ([0.75,1],(0.5,1])

Thus,

K(X) =m(X) =YF(m(X))+R(X —m(X)).

0.875 0.328
Here, m(X)= ( 075 )F(m(x))_ ( 0.016 )
0.75,1] 0875 | _ [ [0.125,0.125)
X-m(X)= 051 |\ 075 [-0.25,0.25]
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Y:[m 2[0.75,1] 2[0.5,1] ]—1: 0.229 0.343
2[0.75,1] [=1,~1] o
So Rz,_YF,(X)Z([—0-143,0.143] [—0.114,0.114])_

[-0.2,02]  [-02,02]
Now, R(X - m(X)) = ( ~0.047,0.047) )
(~0.075,0.075]

0.875 0.081 —0.047,0.047 0.7482,0.8411
K(X) = B ! Py _ (! ] ¢x
0.75 0.125 [—0.075,0.075] [0.5499,0.7001]

So bisect; coordinate direction 2 chosen. X(1) = (.75, 1],[.75,1]),X® = ([0.75, 1],[0.5.0.75))

Fx () = [0.125,1] 0 ),
[-0.4375,0.251]

Therefore, the exclusion principle select the lower half X = ([0.75, 1],[0.5,0.75])

( 0.875 ) ( 0.156 )
Here, m(X)= F(m(X))=
0.625 0.141
( [~0.125,0.125] )

X—-mX)=

(~0.25,0.125]

( 2[0.75,1] 2[0.5,.75] ) - ( 0254 0317 )

Y= [m ] =
200.75,1] [~1,~1] 0.444 —0.444

—0.142,0.144] [~0.064,0.063
YF(m(X)):(O.OS‘l).SO R:I—YF’(X)-——'([ I ])

0.007 [—0.222,0.222] [~0.111,0.112)
[~0.026,0.026)
Now, R(X—-m(X))=
[~0.042,0.042]
[0.7648,0.8163]
Thus,K(X) = cX
® ([0.5763,0.6598]
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Let

[~0.142,0.144] [—0.064,0.063]
R=(Rij=
[-0.222,0.222] [—0.111,0.112]

Then, ||R|| = max;¥; |Ri;| = max;(|R;;| + |R;;|) = max(|Rit| + |Ri2]

= max(|Ry1] +|Ri2|, (|R21| +[Rz2])

= max(|[—0.142,0.144)| +[—0.064,0.063]|, |[-0.222,0.222]| + [0.111,0.112]|)
= max(.144 +0.064,0.2224-0.112)

=max(.208,.334) = 334 < .34 < I.

Therefore solution exists in X and a safe starting region has been found.

X = x = ({0.75,1.0],[0.5,0.75])
K(x) = [0.7648,0.8165] C XO
[.5763,0.6598)

and [|[RQ|| =< .335< .36 < I.
[0.7647,0.8166) )

XM = K(x@)nx© =
[.5763,0.6599]

ICRE m(x{) —Y(I)F(m(X(l)) +RXWD —m(x©))

0.7915 0.0090144
Here, m(X“)) = ) F(m(x(l))) v
0.6185 0.0079722

(~0.0345,0.0345] )

X —p(xD) =
[—0.0415,0.0415125]

2[0.757,.826] 2[0.577,.660] -1 1 1.23
Y(])z[m ] =

2(0.757,.826]  [~1,—1] 1.583 —1.583
o " 0.0053303
X - )
i e 0.0004659
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R =y /3 (0) [~0.0435878,.0435885]  [—0.0234385,0.0234380]
[~0.06166898,.0616898]  [—.0371031,.0371035]

[—0.0024765,0.0024765]
[—0.0036679,0.0036679)

a 0.7915 0.0053303 [0.0024765,0.0024765]
K(X'") = - +
0.6185 0.0004659 [-0.0036679,0.0036679]

[0.7843,0.7881]
[.6152,0.6209]

RD(XM — m(x() = (

[|IRM]| < .09 < 1
0.7842,0.7882) )

x(2) :K(X(')) nx = [
[.6151,0.6210]

KXY =m(X®) =Y OF(m(x®) + R(X® — m(x?))

0.786 —.00028
Here, m(X (2) = , F(m(X (2))) =
0.618 —.000204

—-0. 0
X@ _p(x® = [-0.003,0.003]
[—0.004,0.004]
. 2[0.783,.789] 2[0.614,.622] -1 1 1.236
Y® = [m ] =
2[0.783,.789) [—1,—1] 1.572 -1.572
—0.000153
YO F(m(X®)) = ,
—0.000034

@) ey | 100088163 D287 [~0.002276,0.002276]
D=]- =
S [~0.0053668,.0053668]  [—.0035773,.035783]
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RO _ gy — [ [£0-0000205,0.00205 )

[0.0000304,0.0000304]

KX = 0.786 | [ ~0.000153 ) [—0.0000205,0.00205]
0.618 —0.000034 [—0.0000304,0.0000304]
_ [ o7seisi3 ) (1 [-0.0000205,0.00205]
0.618034 [—0.0000304,0.0000304]
o 0.7861308,0.7861718] | _ ( [0.7861,0.7862] -

[0.6180036,0.6180644] /  \ [0.6180,0.6181]

and ||[R?|]| < .08 < 1

X®) = g(x@)nx®@ = ([.7861,.7862],[.6180,.6181])

Therefore we have the nested intervals X (3) cX @ cx (1) - ¢ 0,

In this example ,we have [|[RO|| < 1, R1) < 1, and also [[RP)]| < 1. As we

have w(X(©) = 0.25 , W(X(1) = 0.008 and W (X?) = 0.006. L is seen that

w(X D) < ||RW||w(X ®)) and w(X®)) — 0 are satisfied.

An INTLAB implementation of the algorithm is given by the function nlinkraw.m.

This routine finds bounds on the solution of a nonlinear system of

equations using the Krawczyk operator.

function Y = nlinkraw (£, X)

SNLINKRAW Bounds roots of nonlinear systems of equations.

o\

o

X = NLINKRAW (f,X)

o\®

Uses the Krawczyk operator to produce bounds on a root

o\°®

in a given interval of a nonlinear equation f.

o

o\°
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o

INPUT : f A MATLAB function

% X Initial interval
% QUTPUT : Y interval solution
f = inline(’ [x(1)*x(l) + x(2)*x(2) - 1 ; x(1)*x(1l) - x(2)]1")

X = infsup(.75,1);infsup(.5,.75)1;

n length (X) ;
ready = 0; k = 0;

N = intval (zeros (n,1));

while "ready

k = k+1;

F = feval (f, gradientinit (X));
C = inv(mid(F.dx));

x = mid(X);

fx = feval (f, intval (x));

K = x-Cxfx+(eye(n)-Cx(F.dx}))* (X-x); % Krawczyk operator.

Xnew = intersect (K, X);

if isempty (Xnew)
error ('No root in box’)
elseif X == Xnew;
ready = 1;
else
X = Xnew;
end

end
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disp (" Number of iterations’)
disp (k)

format long

intvalinit (‘displayinfsup’)

Y = X;

From the above INTLAB implementation, we have seen that the initial interval
Xo obtained by using the safe starting regions iterative process and for three it-
erations converges to the intervals ([0.786,0.786],[0.618,0.618]) rounded to five
significant figures that guarantees rapid convergence for R. Krawézyk algorithm.
For six iterations also converges to the intervals
([0.78615137775774,0..78615137775774], [0.6180339887498, 0.6180339887498|).
Here we conclude that the above degenerate intervals indicate that the approxi-

mate values of x| and x; are correct to fourteen decimal places. Higher precisions

may increase the number of iterations.
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