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Abstracts

This thesis centres on a class of certain pseudocomplemented partial lattices.
This partial lattice is said to be a JP-semilattice.

An algebraic structure S = (S, A, V), where (S, A) is a semilattice and V is a
partial binary operation on S, is said to be a JP-Semilattice if for all z,y,2 € S

the following axioms hold.

(i) z V z exists and z V z = g;
(ii) z V y exists implies y V z existsand zVy =y V z;
(iii) zVy, yVz and (zVy)Vz exists implies zV (y V 2) exists and (zVy)Vz =
zV(yV 2);
(iv) z V y exists implies z = 2 A (z V y);
(V) zV(rAy) existsand z =z V (2 A y);

(vi) y V z exists implies (z A y) V (z A 2) exists.

In Chapter 1 we give a background of JP-semilattices. We prove that the set of all
ideals of a JP-semilattice is a lattice. Unfortunately, the description of join of two
ideals of a JP-semilattice is not good enough like as ideals of a lattice. We close
this chapter by giving a relation between JP-homomorphism and order-preserving

map.
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In Chapter 2 we define modular and distributive JP-semilattices. We show
that every distributive JP-semilattice is modular but the converse is not neces-
sarily true. We prove that a JP-semilattice is non-modular if and only if it has
a sublattice isomorphic to the pentagonal lattice. Here we also study the ideals
lattice of a modular (distributive) JP-semilattice. We have given some character-
izations of modular and distributive JP-semilattice using the ideals lattice. We
also give the Stone’s Separation Theorem for distributive JP-semilattices. We
also prove that if I is an ideal and F' is a filter of a distributive JP-semilattice
disjoint from I, then there is a minimal prime ideal containing I and disjoint
from F'.

In Chapter 3 we study the congruences of a JP-semilattice. We describe the
smallest and largest JP-congruences containing an ideal as a class. Here we char-
acterize a distributive JP-semilattice by JP-homomorphism and JP-congruence.
We prove the Homomorphism Theorem for JP-semilattices. We have given a
description of the smallest JP-congruence containing a filter as a class. The quo-
tient of JP-congruence containing a filter as a class is not necessarily a lattice. We
impose a condition on the filter, which we call strong filter, to make the quotient
JP-semilattice a lattice. Then we study the quotient lattices. Here we give a
representation of the set of the prime ideals of the quotient lattice.

Cornish [9] studied congruence kernels and cokernels for pseudocomplemented
distributive lattices and Blyth [2] studied cong;uence kernels and cokernels of a

pseudocomplemented semilattice. In Chapter 4 we study the congruence kernels
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and cokernels for distributive pseudocomplemented JP-semilattices. A pseudo-
complemented JP-semilattice will be called a PJP-semilattice. We give a de-
scription of a PJP-congruence containing an ideal as a class. We give several
characterizations of kernel ideals of a distributive PJP-semilattice. Then we in-
troduce the *-ideals for PJP-semilattices. We give a characterization of *-ideal.
We describe the Glivenko congruence for PJP-semilattices. In this chapter we
also describe the cokernels, Boolean congruence, *-filter and D-filter. We prove
that every D-filter is a *-filter of a distributive PJP-semilattice if and only if the
smallest PJP-congruence containing D as a class is a boolean congruence.

In Chapter 5 we introduce the notion of Stone JP-semilattice like a Stone
lattice. First we give a very useful characterization of Stone JP-semilattices.
Then we give a nice characterization of kernel ideals of Stone JP-semilattices. We
describe the join of two kernel ideals of a Stone JP-semilattice which is very easier
than the description of the join of two ideals for a distributive JP-semilattice. This
description makes the world of kernel ideals of Stone JP-semilattices so easier.
We prove that the set of all kernel ideals of a Stone JP-semilattice is a complete
lattice and it is isomorphic to the set of all *-filters of the Stone JP-semilattice.
Kernel homomorphism is introduced for Stone JP-semilattices. We also introduce
a new notion of strong PJP-semilattice homomorphism. We give some results for
PJP-semilattice homomorphisms.

In Chapter 6 we study the JP-semilattices such that the underlying semilattice
is a distributive semilattice. We call these semilattices are JP distributive semilat-
tices. Every JP distributive semilattice is a distributive JP-semilattice. Although

we have the Stone’s Separation Theorem for a distributive JP-semilattice, we also
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- prove the Stone’s Separation Theorem for JP distributive semilattice. We show
a different technique to prove the theorem. Next we discuss the JP Stone semi-
lattices. A JP Stone semilattice is a Stone JP-semilattice described in Chapter 5
such that the underlying semilattice is a distributive semilattice. We have a great
advantage here that in a JP Stone semilattice S, for any z,y € S we have z V y*
always exists. This observation turns that we have a straightforward generaliza-
tion of a famous result of C.C. Chen and G.Gritzer [3, Theorem 14.5] on Stone
lattices. Then we characterize the minimal prime ideals of a JP Stone semilattice.

Finally we have some characterizations of kernel ideals of a JP Stone semilattices.



CHAPTER 1

JP-Semilattices

1.1. Introduction

Partial lattices have been studied by many authors. For examples Gritzer
and Lakser [18, 19|, Nieminen [24], Cornish and Hickman [12], Hickman [21],
Cornish and Noor [13], Noor and Cornish {25] etc. For the basic concepts and
the background materials in partial lattices and lattices, we refer the reader to
Grétzer [16, 17]. In this chapter we define a JP-semilattice and we give basic
algebraic concepts of the JP-semilattices.

A meet semilattice with a partial binary operation satisfying some axioms is
said to be a JP-semilattice. In Section 1.2, we discuss the background of partial
lattices. This section is on the basis of (l}.l.'e'i-tzer [16, 17].

In Section 1.3 we define JP-semilattice and we discuss down-sets and ideals
of a JP-semilattice. We give som;: properties of ideals of a JP-semilattice.

In Section 1.4, we discuss order breserving maps and JP-homomorphisms. We

show a relation between order-isomorphisms and JP-isomorphisms.
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1.2. Partial Lattices

Let (L; A, V) be a lattice, H C L, and A and V on L are restrictions to & as

follows:

For any z,y,z € H, if z Ay = z (dually, zVy = z), then we say that in H,
g Ay (dually, zVy) is defined and s Ay = 2 (dually x vV y = z); if for z,y € H,

Ay (dually, zVy) ¢ H, then we say that Ay (dually, zVy) is not defined in H.

Thus (H;A, V) is a set with two binary operations A and V. By [16, 17],
(H; A, V) is called a partial lattice or a relative sublattice of L. Clearly, every

subset of a lattice determines a partial lattice.

Examples of a partial lattice and a non-partial lattice. Let P; =
(P1; A, V) be a lattice given in the following Figure 1.1, and let H = {0,q,b,1} C

P,. Then H = (H;A,V) is a partial lattice and a relative sublattice of P;.

P,

FigUure 1.1. Partial and Non-partial lattices
Observe that sup{a, b} = 1 € H but a V b is not defined in H because a Vb ¢ H.
Now let H = {0,a,b,¢,d,¢,f, 9, h,1} and consider the lattice Py given in

Figure 1.1. Define A and V on H given by, for all z,y € H,
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(i) :1:/\y=z€Hifandonlyif:c/\y=z€P2, and

(ii) tVy=2z€ H if and only if

either z < y in P, and y =z,ory < zin P, and 7 = 2;
or if {z,y} = {a,c}, and z = f;
or if {z,y} = {b,d}, and 2 = g;

orif {z,y} = {f, ¢}, and 2 = 1;

We claim that H = (H;A,V) is not a partial lattice. If possible suppose that
there exists a lattice L with H C L such that H is a relative sublattice of L.
Then (aVe)V (bVd) =1 € L, and thus sup{a,b,c,d} = 1. Since a,b < e and
c,d < hand e,h <1 we have sup{e,h} =1€ L. But e,h,1 € H implies e V h is
defined in H (and evVh =11in H), which is a contradiction of the definition of v
on H. Hence H = (H; A, V) is not a partial lattice.

The following lemma on partial lattice is due to Grétzer [16, Lemma 13,

pp-48].
Lemma 1.2.1 Let (H;A,V) be a partial lattice. For z,y,z € H, we have

(i) z Az exists and T AT = Z;
(ii) if z Ay exists, then y AT exists and Ay =y A T
(iii) ifz Ay, yAz and (z Ay) Az exist, then zA(yAz) exists and (xAy) Az =
A (YA2);

(iv) if z Ay exists, then TV (z A y) exists, and T =TV (zAy);
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By the dual arguments of the above lemma, the following result is also due

to Grétzer [16, Lemma 13/, pp-49].

Lemma 1.2.2 Let (H;A,V) be a partial lattice. For z,y,z € H, we have

(i) zVzexistsand z V £ = z;
(ii) if z V y exists, then y V z exists and oV y = Wy
(ili) ifzVy, yVz and (zVy)V z exist, then zV (yVz2) exists and (zVy)Vz =
zV(yVz);

(iv) if z V y exists, then A (zV y) exists, and x = z A (z V y);

O

A structure S = (S, A, V) with two partial binary operations A and V on S
satisfying the conditions of Lemma 1.2.1 and Lemma 1.2.2 is said to be a weak

partial lattice.

Theorem 1.2.3 Every partial lattice is a weak partial lattice but the converse

Is not true.

Proof. By the definition, every partial lattice is a weak partial lattice. To prove
the converse, if we consider H which has been constructed in the example of a
partial and non-partial lattices above, then it is a routine work to show that H
satisfy all the conditions of Lemma 1.2.1 and Lemma 1.2.2. Thus H is a weak

partial lattice but we already have claimed that it is not a partial lattice. O

Now we have the following result for a weak partial lattice.
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Lemma 1.2.4 Let (L;V,A) be a weak partial lattice. Then z Ay exists and

g;/\y:mifandonlyimeyexistsand:z:Vy=y.

Proof.  Suppose z Ay exists and £ Ay = z. Then by Lemma 1.2.1 (ii), we have
YAz exists and yAz = Ay = 1. Hence by Lemma 1.2.1 (iv), we have yV (y A z)
exists and y V (y A z) = y. This implies y V z exists and y V z = y. Thus by
Lemma 1.2.2 (ii), we have z V y exists and z V ¥y =yVz =y. The converse is

true by the dual argument. U

The proof of the following lemma was omitted in [17] as it is a bit longer.

Here we give the proof of the lemma.

Lemma 1.2.5 Let (L;V,A) be a weak partial lattice. Define a binary relation

< on L by

x L yifand only ifz Ay exists and z Ay = x.

Then < is a partial ordering relation. Moreover if x A y exists, then z Ay =

inf{z,y} and if z V y exists, then z V y = sup{z, y}.

Proof. Since for all z € L, z A z exists and z A z = z, we have z < 7. Hence
< is reflexive.

Let z < y and y < z. Then z Ay exists, Ay = z and y Az exists, yAz =y.
Hence by the Lemma 1.2.1 (ii), we have z Ay = y Az. This implies £ = y. Thus
< is anti-symmetric.

Let z < y and y < 2. Then z Ay exists and z Ay = z. Hence by the
Lemma 1.2.1 (ii), y A = exists and y Az = 2 Ay. Now y < 2 implies y A z

exists and y A z = y. Hence y Az = (yAz) Az = (2 Ay) Az exists. Hence
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by the Lemma 1.2.1 (iii), 2 A (y A z) exists and z A (yAz) = (2 Ay) Az. Now,
NYAz)=zAz=zA02 Therefore, z = zAy=yAz=2Az=2zA 2 Hence

z < z. Thus < is transitive.

Hence < is a partial ordering relation.

Let z Ay exists. Since by the Lemma 1.2.1 (i), z Az exists and T Az = z, we
have (z Az) Ay exists and Ay = (zAZ) Ay =2z A (z Ay), by the Lemma 1.2.1
(ili). Hence z Ay < z. Similarly, z Ay < y. Thus z A y is a lower bound of
z and y. Let c be a lower bound of z and y. Then ¢ € z and ¢ < y. Hence
cCANIT, cCAY exists and ¢ = c Az = cAy. This implies ¢ = (¢ A z) A y. Since
cAz and z Ay exist, we have by the Lemma 1.2.1 (iii), ¢ A (x A y) exists and
c=(cAz)ANy=cA(zAy). Hence c < z Ay. Therefore z Ay = inf{z,y}. By |

the dual arguments we can show that if z V y exists, then z V y = sup{z,y}. O

Let (P; <) be an ordered set. Define two partial operations V and A on P as
follows: z V v is defined if sup{z,y} exists and z V y = sup{z, y}, similarly, z Ay

is defined if inf{z, y} exists and z A y = inf{z, y}.
Theorem 1.2.6 P = (P;V,A) is a weak partial lattice.

Proof. It is easy to show that P satisfies all the conditions of Lemma 1.2.1 and

Lemma 1.2.2. O

If 21,29, ,2Zn € N, then by z; VzoV -+ V 2, we mean that supremum
of T1,Za,- -+ , L, exists and z; V22 V - -+ V Ty is the supremum of z,,Te, *+ ,Zn.
Dually, if 21, %2, *+ ,%Zn € N, then by z1 Az A-++ A Z, We mean that infremum

of £1,%s,-++ ,Tn exists and £y AZa A+ AZp is the infremum of =1, 22, , Zn.
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1.3. Definition of JP-semilattices

It is very complicated to handle two binary partial operations. So we restrict
our attention to a meet semilattice with one binary partial operation. A meet
semilattice (S;A) is a non-empty set S with an idempotent, commutative and
associative binary operation A on S. Throughout the Thesis by a semilattice
we always mean a meet semilattice. Observe that if § = (S; A, V) is a meet
semilattice with a partial operation Vv satisfying the axioms of Lemma 1.2.2, then
the existence of y V z does not imply the existence of (z A y) V (z A z) for any

z,Y,2 € S. For example, consider the following Figure 1.2. Here bV ¢ exists, but

bVe

P

FIGURE 1.2. a non-JP-semilattice

(a AD)V (a Ac) does not. Also remark that the existence of 2V yV z in S does

not imply the existence of z V y for any z,y,z € S.

An algebraic structure S = (S, A, V) where (S, A) is a semilattice and V is a
partial binary operation on S is said to be a join partial semilattice (or simply
JP-Semilattice) if for all z,y,z € S,

(i) zVz exists and VT = T;

(ii) z V y exists implies y V & exists andzVy=yVz;
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(i) 2Vy, yVz and (zVy)Vz exists implies zV (yV z) exists and (zVy)Vz =

TV (yV2)
(iv) z Vy exists implies 7 = 7 A (z Vy);
(V) zV(zAy) exists and z = g v (z Ay);

(vi) y V z exists implies (z A y) v (z A 2) exists.

Every JP-Semilattice is clearly a weak partial lattice as it satisfies all the
conditions of Lemma 1.2.1 and Lemma 1.2.2. But the converse is not necessarily
true, for example, the semilattice P given in Figure 1.2 is a weak partial lattice
but not a JP-semilattice. This example also shows that every semilattice need not
be a JP-semilattice but by the definition of a JP-semilattice, every JP-semilattice
is a semilattice. Thus the class of all JP-semilattices is a subclass of semilattices

and also a subclass of the class of weak partial lattices.

1.3.1. Down-sets and ideals of JP-semilattices.

Down-sets. Let P be an ordered set. A subset A of P is said to be a down-set
if
z € A and y < z implies y € A.

The set of all down-sets of an ordered set P is denoted by O(P). Clearly, §, P €
O(P). It is evident that O(P) is a bounded complete distributive lattice for any
ordered set P, when partially ordered by set inclusion. The meet and join in

O(P) are given by set-theoretic intersection and union respectively.
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Lemma 1.3.1 Let S be a JP-semilattice and 0+ K CS. Define Ky = K and

forn > 1,

Kn——-{xeS|:1:<szfory,z€Kn_1}.

Then for each n > 1, K,, is a down-set and

KyCKiCKyC---.

Proof. Let z € K,, for some n > 1 and y €S withy<z. Thenz <pVqfor

some p,q € Kn_1. Hence y < pV g for some p,q € K,,_;. Therefore, y € K, and

hence K, is a down-set.

Let z € K, for some n > 0. Then z € 7V z implies z € K,;. Hence

KeCKiCK,C---. O

Ideals. A non-empty down-set I of a JP-semilattice .S is said to be an ideal

of S if

z,y € I and z V y exists, impliesz Vy € 1.

Let S = (S; A, V) be a JP-semilattice and A C S. A structure A = (4;A, V)
is said to be a subJP-semilattice of S if A itself is a JP-semilattice where A and

V in A are restrictions of A and V in S.
Theorem 1.3.2 Every ideal of a JP-semilattice is a subJP-semilattice.

Proof. Let I be an ideal of a JP-semilattice S. Let z,y € I. Since t Ay < z,

we have z Ay € I. If £V y exists, then by the definition of an ideal zVy € I.

Hence I is a subJP-semilattice. 0
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The set of all ideals of a JP-semilattice S will be denoted by Z(S). For any
non-empty subset K of a JP-semilattice S, the smallest ideal containing K is
denoted by (K7 and is called the ideal generated by K. If K = {a}, then we

write (a] instead of ({a}]. For a € S, the ideal (a] is called the princpal ideal

generated by a.

The following results give us the description of principal ideals and ideals

generated by a subset of a JP-semilattice.

Theorem 1.3.3 Let S be a JP-semilattice and § £ K C S. Then

(i) (K] ="UK, where Ky = K and forn > 1,

n=0

Kn={zeS|z<yVzfory,ze K,_1}

(i) Fora € S we have (o] = {z € S|z < a}.

o0 oo
Proof. (i) Trivially, .lJ K, is non-empty as it contains K. Let z € |J K, and

n=0 n=0

y € Swithy <z Ifz e K, for some n > 1, then y € K, as K, is a down-set

o0
(by Lemma 1.3.1). Hence y € |J K. If 2 € K = Ky, then z € K, as Ky C K,

n=0

(by Lemma 1.3.1). Hence y € K;. This implies y € [J Kn. Thus [J K, is a

n=0 n=0
down-set.
o0
Let 2,y € |J K, such that z V y exists. Then 2,y € K, for some n 2 0

n=0

as Ko C K, C K, C+--. SincezVy<zVy, wehavezVye€ K,,. Hence
o0 [o.¢] . .
zVy € |J K,. Therefore, |J Ky, is an ideal of 5.
n=0 n=0
Let I be an ideal containing K = K. We use the mathematical induction

to show that for each n > 0, K, C I. Let K, C I for some n > 1 and let

z € K,.;. Then z £ yV z for some y,z € K, and hence yVz € I as I is an
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ideal. Therefore, z € I. Hence for all 5, 20, K, CI. Thus G K, is the smallest
n=0
ideal containing K. Hence (K] = tj K,. O

n=0

The following result give us the description of the join of two ideals of a

JP-semilattice.

Theorem 1.3.4 Let I and J be two ideals of a JP-semilattice S. Then

IvJ=(IuJ]= UA

n=0

where Ag =ITUJ and forn > 1,

:{meSI:Esszfory,zEAn—l}

Proof.  Suppose K = f—joAn' Let x € K and y € z. Then z € A, for some
n=20,1,2,.---. If n =0, then either x € I or z € J and hence either y € I or
y € JasIand J areideals. Thus,y € K. Ifn > 1, then z < pVgand p,q € An_1
and hence ¥y < pV g where p,q € A,_1. Thus y € A, and hence y € K. Now
let z,y € K and = V y exists. Since A9 C 4; C A, C---C A, C---, we have
z,y € A, for some n and hence zVy € Apy1. Thus zVy € K. Hence K is
an ideal. Clearly, K is containing I and J. Let H be any ideal containing I
and J. Clearly Ag C H. We use the mathematical induction to show K C H.
Let A, C H for some n and let £ € Ap41. Then z < y V z where y, 2 € Ap. This
implies v,z € H and hence yV 2z € H as H is an ideal. Thus z € H. Hence
Apiy € H. Thus for any n 2 0, we have A, C H. Hence K C H. Therefore

K=1IVJ. Rajshahi University Librat O

Pocumentation Section
Document No.. 3) ..3.....2 4
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A routine work shows that 7 (S), the set of all ideals of a JP-semilattice Sis

an algebraic lattice.

Remark. For any ideals I and J of a JP-semilattice S, the description of
I'v J is not so easy like the joins in semilattices or lattices. Even IV J can not be
written as {z < yVz | y € I, 2 € J whenever yVz exists }. For example, consider

the JP-semilattice B given in the Figure 1.3. Suppose I = (a] and J = (b]. Then

FiGUurE 1.3

ze€lIVvJ,butz£Livjforanyie€landje J. This observation shows that
there are difficulties in studying the lattice Z(S).

Now we turn our attention to principal ideals of a JP-semilattice. It is easy
to show that the join of two principal ideals need not be principal. For example,
consider the JP-semilattice M given in the Figure 1.3. Here (a] V (8] is not

principal. We have the following useful results.
Lemma 1.3.5 Let S be a JP-semilattice. If zV y exists, then (zVy] = (z]V (y].

Proof. We have z,y € (z]U(y]. Hence zVy € (z]V (y]. Thus (zVy] C (z]V (y].

The reverse inclusion is trivial. Hence (z V y] = (z] V (y]. O
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Theorem 1.3.6 Let S be a JP-semilattice. For any z,y € S, we have (z] V (y]

is a principal ideal if and only if z v Y exists.

Proof.  If 2V y exists, then by the above lemma (z] V (¥] = (z V y] and hence
(z] V (y] is a principal ideal of S.

Conversely, let (z] V (3] be a principal ideal. Suppose (z] V (y] = (¢]. Then
T,y < ¢. We show that ¢ is the least upper bound of z and y. Suppose z,y < d.

Then (¢] = (z] v (y] € (d]. Hence ¢ < d. Thus zV y exists and zVy =¢. [

Let S be a JP-semilattice. The set of all principal ideals of S is denoted
by P(S). Clearly, S € P(S) if and only if the largest element 1 € S. Define
Ps(S) = P(S) U {S}. Observe that P,(S) is not a sublattice of Z(S) (see the

Figure 1.4). Let & be a collection of principal ideals of S such that (z], (y] € X

2,0, 2
o
-~—0—0—0
TN
QUL 8,
N = O

N =

FIGURE 1.4. The ideals lattice

if z V y exists in S. Then X is a sublattice of Z(S ). For example, if we consider

the JP-semilattice My given in Figure 1.4, then A} = {(0], (al, (c], (di]} and

X, = {(0], (0], (d;]} for i = 0,1,2,-+-, are the collections of such class. Clearly,
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for each ¢ = 1,2, we have X; is a lattice. In Section 2.4 we characterize the

modular and distributive JP-semilattices in terms of the set X.

1.4. JP-homomorphisms

Let P := (P;<) and Q := (Q; <) be two ordered sets. A map ¢ : P = Q is

said to be

(i) an order-preserving (or monotone) if
a < b in P implies ¢(a) < ¢(b) in Q.
(ii) an order-embedding if
a < bin P if and only if p(a) < ¢(b) in Q.

(iii) an order-isomorphism if ¢ is an onto order-embedding.

Let S and P be two JP-semilattices. A mapping ¢ : S — P is said to be a

semilattice homomorphism if for all z,y € S
ez Ay) = p(z) A e(y).

A semilattice homomorphism ¢ . S — P is said to be a JP-homomorphism if for

all z,y € S with 2 V y exists in S implies @(z) V ¢(y) exists in P and
p(z Vy) = o) Vo).
An one-to-one JP-homomorphism ¢ : S — P is said to be a JP-embedding if

¢\ y exists if and only if o(z) V ¢(y) exists.
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A onto JP-homomorphism is called a JP-epimorphism. Also an onto J P-embedding

¢ is called a JP-isomorphism.

Theorem 1.4.1 Let A and B be two JP-semilattices and let f : A — B be a
map.
(a) If fisa JP-homomorphism, then f is an order-preserving map;

(b) f is a JP-isomorphism if and only if f is an order-isomorphism.

Proof.  (a) Let f be a JP-homomorphism and let ¢ < bin A. Then aV b exists
and b = a Vb. Hence f(a) V f(b) exists and f(b) = f(aV b) = f(a) V £(b). This
implies f(a) < f(b). Thus f is an order-preserving.

(b) Let f be a JP-isomorphism. Then

a<bin A<= aVbexistsandaVb=5
<= f(a) V f(b) exists and f(b) = f(aVbd) = f(a)V f(b)

> f(a) < f() in B.

Hence f is an order-embedding. Since f is onto, f is an order-isomorphism.
Conversely, let f be an order-isomorphism. If a V b exists, then a,b < a Vb if
and only if f(a), f(b) < f(aVb). Thus f(aV b) is an upper bound of f(a) and
f(b). Let c be an upper bound of f(a) and f(b). Since f is onto, there exists
z € A such that f(z) = ¢. Now f(a), f(b) < f(z) if and only if a,b < z. Thus
aVb < z. Hence f(aVb) < f(z) = c. Therefore, f(aV b) is the least upper
bound of f(a) and f(b). Hence f(a) V f(b) exists and fla) v f(b) = flaVb).
By a dual argument we can show that f(a) A f(b) = f(a A b). Hence f is a

JP-homomorphism.



1.4. JP-HOMOMORPHISMS 16

Moreover, f is one-one and onto. Now let f(a) vV f(b) exists. Suppose f(a)V
f(b) = c. Since f is onto, there is z € A such that f(z) = c¢. Then f(a), f(b) <
f(z). Since f is an order-isomorphism, so a,b < z. We shall show that a Vb
exists and a Vb = z. Let t € A such that a,b < t. Then f(a) Vv f(b) < f(¢).
This implies f(2) < f(t) and hence z < t as f is an order-isomorphism. Hence

£ = sup{a, b}. Thus a V b exists and a V b = . Therefore, f is a JP-embedding

and so is a JP-isomorphism. 0



CHAPTER 2

Modular and Distributive JP-Semilattices

2.1. Introduction

A JP-semilattice S is said to be modular if for all z,y,2z € S with z < z and

y V z exists implies
zA(yvz)=(zAy)Vz
A JP-semilattice S is said to be distributive if for all z,y, z € S with y V z exists
implies
zA(yVz)=(zAy)V(zAz).
Two examples. Consider the JP-semilattices N, and M, given by the

following diagrams. The JP-semilattice Ny is said to be the JP-pentagon and

the JP-semilattice My is said to be the JP-diamond.

Claim 2.1.1 The JP-pentagon Ny, and the JP-diamond M, are distributive

JP-semilattices.
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FIGURE 2.1. the JP-pentagon

Proof. In both cases, if yV z exists, then clearly, either ¥y < z or z < y. Without

loss of generality, let y < 2. Then z Ay < z A z. Hence
zAgVe)=zAz=(@Ay)V(zAz).
O

Clearly, the concept of modularity and the distributivity of a JP-semilattice
S coincides with the concept of modularity and distributivity when S is a lattice.
Thus the pentagonal lattice N5 (see Figure 2.2) is a non-modular and hence a
non-distributive JP-semilattice, and the diamond lattice Mj; (see Figure 2.2) is
a modular but non-distributive JP-semilattice. In Section 2.2 we discuss the
relations among the well known subclasses of distributive JP-semilattices. In
Section 2.3 we show that every distributive JP-semilattice is modular but the
converse is not necessarily true. Here we give a characterization of modular
JP-semilattices. In Section 2.4 we study the lattice of ideals of modular and
distributive JP-semilattices. Here we give some characterizations of modular and

distributive JP-semilattices. Stone’s Separation Theorem play an important role
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FIGURE 2.2

in Lattice Theory. In Section 2.5 we generalize the result of Stone’s Separation
‘Theorem for distributive JP-semilattices. We also extend the result of Stone’s

Separation Theorem for minimal prime ideals.

2.2. Subclasses of distributive JP-semilattices

A semilattice S = (S;A) is said to be a distributive semilattice if for each
z,y,z € S with £ > y A z implies the existance of s > y and ¢ > z such that
z = s At. Rhodes [27] has proved that a smilattice is distributive if and only if it
is directed above and it has no retract isomorphic to the pentagonal lattice A5 or
the diamond lattice M3. Thus the JP-pentagon Ny and the JP-diamond M,
are not distributive semilattices.

In Chapter 1, Section 1.3, we already have mentioned that every semilattice

need not be a JP-semilattice. But we have the following result for distributive

semilattices.
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Theorem 2.2.1 = J8 .
Let 8 = B4 V) be a semilattice with a partial binary oper-

ation V' which satisfies the axioms (i)-(v) of the definition of JP-semilattice. If

(8 A) Is a distributive semilattice, then S is a distributive JP-semilattice.

Proof.  Let 8 = (S;A,V) be a semilattice with a partial binary operation V

which satisfies the axioms (1)-(v) of the definition of JP-semilattice. Suppose
(S;A) is a distributive semilattice. Let YV z exists for y,z € S. We show
that (z A y) V (z A 2) exists for any z € S. Suppose p = z A (y V z). Then
trivially, z Ay < pand z A 2z < p. Let t € S be such that z Ay < t and
T Az <t Since (S;A) is a distributive semilattice, t = z; A 2, for some z; >
and 21 2 2. Now 2y 2 31 Az, =t > x Ay implies 2z = z3 A y; for some
Tozzand ¥y =2 y. Alsoy, 2 22 Ay = 21 > z. Hence y; > yV 2. Thus
L 2INT =T A21AT =2A2 = TATZ Ay =TAYy 2 zA(yVz) = p. This implies
that p is the least upper bound of 2 Ay and z A z. Hence (z Ay) V (z A 2) exists.
This tells us that S is a JP-semilattice. Moreover p = zA(yVz) = (zAy)V(zAz2)

which implies that S is a distributive JP-semilattice. a

The above result shows that every JP-semilattice such that the underlying
semilattice is distributive is a distributive JP-semilattice. The converse is not
necessarily true. For counterexamples, the JP-pentagon N and the JP-diamond
M, are distributive JP-semilattices but the underlying semilattices are not dis-
tributive. A JP-semilattice such that the underlying semilattice is distributive is

said to be a JP distributive semilattice. In Chapter 6 we study the JP distribu-

tive semilattices.
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Another class of semilattices with a partial binary operation has been inten-
sively studied by Cornish and Noor [1-3]. This partial lattice has been called by
Near lattice. A near lattice is a semilattice such that if any pair of elements has a
common upper bound then it has the suppremum. Clearly the JP-pentagon N,
and the JP-diamond M, are not near lattices because the pair a, b has a common
upper bound but aVb does not exist. A near lattice N is called a distributive near
lattice if for any z,y, 2 € N with yV z exists implies zA (yV2) = (zAy) V(zA2).
Observe that the existence of ¥V z implies the existence of (zAy) V (zAz) for near
lattice. Every distributive near lattice need not be a distributive semilattice. For
example, the near lattice N given in Fig 2.3 is a distributive near lattice but not
a distributive semilattice. On the other hand, every distributive semilattice need
not be a distributive near lattice (even need not be a near lattice). For example,

the distributive semilattice A given in Fig 2.3 is not a near lattice.

FIiGUurE 2.3

‘Thus we have the following classifications of distributive JP-semilattices (see
Figure 2.4).

Here

e DL is the class of all distributive lattices,
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FI1GUure 2.4. Classifications of distributive JP-semilattices

e DN is the class of all distributive near lattices,
e DS is the class of all distributive semilattices,

e DJS is the class of all distributive JP-semilattices.

2.3. Characterizations for modular and distributive JP-semilattices

Our first aim is to characterize the modular and distributive JP-semilattices
like the well known characterizations for modular and distributive lattices (see
Theorem 2.3.1). We refer the reader to [16, 17, 14, 15] for the proof of the

following result.

Theorem 2.3.1 Let L be a lattice. Then

(a) L is modular if and only if it has no sublattice isomorphic to the pen-
tagonal lattice N5 (see Figure 2.2);
(b) L is distributive if and only if it has no sublattice isomorphic to the

pentagonal lattice N5 or the diamond lattice M3 (see Figure 2.2);
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First we have the following results which we need to characterize the modular

and distributive JP-semilattices.

Theorem 2.3.2 Every distributive JP-semilattice is modular but the converse

is not necessarily true.

Proof. Let S be a distributive JP-semilattice and let a, b, c € S with ¢ € @ and
bV c exists. Then c=aAcand hence aA(bVc)=(aAb)V(aic)=(anb)Ve.
Therefore S is modular. The diamond lattice M3 given in Figure 2.2 is a modular

JP-semilattice but not distributive. O

Theorem 2.3.3 Every subJP-semilattice of a modular (distributive) JP-semi-

lattice is modular (distributive).

Proof. = Let M be a subJP-semilattice of a modular JP-semilattice L. Let
a,b,c € M with ¢ < a. If bV ¢ exists in M, then this holds in L. Hence (aAb)Ve
exists in L and a A (bV ) = (aAb) Ve Since aA(bVe) € M, we have (aAb) Ve
exists in M and a A (bV ¢) = (@A b) Vc. Hence M is a modular JP-semilattice.

By a similar argument we can easily show that every subJP-semilattice of a

distributive JP-semilattice is distributive. O
Now we have a characterization of modular JP-semilattices.

Theorem 2.3.4 Let S be a JP-semilattice. Then S is non-modular if and only

if it has a sublattice isomorphic to the pentagonal lattice

Proof. Let S be non-modular. Then there exists a,b,¢ € S with ¢ < a such

that bV c exists and u = (aAb) Ve <aA(bVc) = v. Now vAb = (aA(bVc))Ab =
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aNb Hence uAb < vAb=aAb< uand hence a Ab < uA b Therefore,
uAb=aANb=vAb.

Consequently, bVe= (bV (aAb)Vec= ((aAb)Ve)Vb=uVb First we
claim that v V b exists. If not, then since v,b < bV ¢, there is an infinite chain
bVe>c > cp > -+ such that v,b < ¢; for each i. Now ¢,b < ¢; for each 4
implies b V ¢ £ ¢; for each 4, which is a contradiction. Hence v V b exists. Now
vVbZ2uvb=>bVe > v,bimpliesbVe>vVbh ThusvVb=uVb=bvVe.
Therefore {aAb, u,v, b, bV c} form a lattice which is isomorphic to the pentagonal
lattice.

Conversely, suppose S is modular. Since every subJP-semilattice of a mod-
ular lattice is modular, it does not contain the pentagonal lattice as a subJP-

semilattice. O

Unfortunately we are unable to give a characterization of distributive JP-

semilattices like Theorem 2.3.1. But we have the following conjecture.

Conjecture 2.3.5 Let L be a lattice. Then L is distributive if and only if it has

no sublattice isomorphic to the pentagonal lattice Ns or the diamond lattice M;

2.4. Ideals of modular and distributive JP-semilattices

In this section we study the ideals of modular and distributive JP-semilattices.
We already mentioned that the description of join of two ideals of a JP-semilattice

is complicated. In this section we give some characterizations of modular and
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distributive JP-semilattices using the lattice of ideals of modular and distributive

JP-semilattices. We first have the following result.

Theorem 2.4.1 Let S be a JP-semilattice. If Z(S) is modular, then S is

modular, but the converse is not necessarily true.

Proof.  Let Z(S) be modular and let z,y,z € S with z < 2. Then (2] C (z]. If

y V z exists, then (z A y) V z exists and

(zA(yV2)]=(z]A(yV7]
= (z] A((y] V (2]), by Lemma 1.3.5
= (@] AWV (2], asZ(S) is modular
= (z Ay V(2]

=((zAy) V7]

Thus z A (yV z) = (z Ay) V 2. Hence S is modular.

To prove that the converse is not necessarily true, consider the following Fig-
ure 2.5 of a JP-semilattice. Clearly, B is modular as it has no sublattice iso-
morphic to the pentagonal lattice. Observe that the lattice Z(B) contains a
sublattice {(0], (d], (d,¢], (a,b], B} (see the bullet elements) which is isomorphic
to the pentagonal lattice and hence Z(S) is non-modular.

O

We have the following useful characterization of modular JP-semilattice. We

repeatedly use the Lemma 1.3.5.
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FIGURE 2.5. the butterfly and its lattice of ideals

Theorem 2.4.2 Let S be a JP-semilattice. Then S is modular if and only if for

any z,y,z € S with z < x and yV z exists implies (z] A ((y]V (2]) = ((z] A (y]) v (2].

Proof. Let S be modular and let z,y,2 € S with 2 < z and y V z exists. Then

(xAy)Vzexists and (zAy)Vz=2xzA (yVz). Hence

@ A (W] V (2]) = ] A yve] = (@A (y V)] =((zAy) V2]

= (@ Ayl V(2] = (2] A () v (2]

Conversely, let the condition holds. Let z,y,z € S with 2 < z and y V 2

exists. Then

(@A (yV2)]=(z]A(yVz]= (g A (Y] V() = (@] A @) V(]

Thus 2 A (y V 2) = (z Ay) V z. Hence S is modular. O

Now we turn our attention to characterize the distributive JP-semilattices.

First we have the following useful lemma.



2.4. IDEALS OF MODULAR AND DISTRIBUTIVE JP-SEMILATTICES 27

Lemma 2.4.3 Let I and J be two ideals of a distributive JP-semilattice S.

Then

IvJ:DAn

n=0

where Ag =IUJ and forn > 1, and

An={zeS|z=yVzfory,ze A,_1}.
Proof. By Theorem 1.3.4, we have

IVJ=UAnwhereA(,:IUJandfornzl,

n=0

Apn={zeS|z<yVzforsomey,z€ A, 1}

Let z € A,, we have z < y V z for some y,2 € A,_1. Thenz =z A(yVz) =
(xAy)V (zAz)as S is distributive. Since zAy, T A2 € Ap_;, we have £ =1V j

for some 4,j € A,_1. So the result holds. O

The following results are the characterizations of distributive JP-semilattices

which also generalize the results of distributive lattices.

Theorem 2.4.4 Let I and J be two ideals of a JP-semilattice S. Then the
following are equivalent:

(a) S is distributive;

(b) IVi={a1VaaV--+Va,|a€lUJ foralli=1,2,---,n};

(¢) Z(S) is a distributive lattice;

(d) for any z,y,z € S with y V z exists implies

(@] A (] vV (2]) = (@] A WD V (2] A (2]).
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Proof. (a) = (b). By using mathematical induction of the Lemma 2.4.3.

(b) = (c). Let I,J,K € Z(S) and z € IN(JV K). Then z € I and
T =aVaV-Va, where aq; € JUK forall i = 1,2,---,n. Now for
each ¢ = 1,2,--- ,n, we have a; < = and hence ¢; € INJ or I N K. Hence
a; € (INJ)U(INK). Therefore, z € (INJ)V (INK). The reverse inclusion is
trivial and hence Z(S) is a distributive lattice.

(¢) = (d). Trivial.

(d) = (a). Let z,y,2z € § with y V z exists. Then

(@A (yV2)]=(z]n((y]V(z])
= ((zn @)V ((z]n(2])
=(xAy]V(zAZz]

=(@Ay)V (@A)

Hence z A (yV 2) = (z Ay) V (2 A z). Therefore, S is distributive. O

Let S be a JP-semilattice. An element x € S is said to be join-irreducible
if £ = aVvb for some a,b € S, then either z = a or x = b. The set of all
Join-irreducible elements of S is denoted by J(S). Recall that the set of all

down-subsets of S is denoted by O(S). For a € S, define

r(a) :={z € J(S) |z < a}.

We have the following result.
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Theorem 2.4.5 Let S be a finite distributive JP-semilattice. Then the map
w:S — O(J(S)) defined by
p(a) =r(a)

is a one-to-one JP-homomorphism.

Proof. First we show that every element of S is a join of join-irreducible
elements. Let a € S. If a is a join irreducible element, then there is nothing to
prove. If a is not join-irreducible element, then there are z,y € S witha =z Vy
such that a # x and o # y. If both z and y are join-irreducible then we have
the proof. If any of x and y is not join-irreducible, then we continue the process.
Since S is finite, we obtain a set of join-irreducible elements whose join is ¢ and

hence we have the proof. Therefore, for each a € S we have

g = \/ r(a).

Let z € r(a) N 7(b). Then z € J(S) and = < a,b and hence z < a A b. Thus
z € r(a Ab). This implies r(a) N7(b) C r(a A b). The reverse inclusion is trivial.

Hence 7(a) N r(b) = r(a A b). This shows that

wlanbd) =r(aAb) =r(a) Nrd) =pa) A p(b).

Let a,b € S with a V b exists. Let z € r(a Vb). Then z € J(S) and z < a V b.
Hence z = zA(aVb) = (xAa)V(zAb) as S is distributive. Hence either z = zAa
or z =z Ab. Thus either z < a or x < b. Hence either z € r(a) or z € r(b). This
implies z € r(a) Ur(b). Therefore r(aV b) C r(a) Ur(b). The reverse inclusion is

trivial. Hence r(a V b) = r(a) Ur(b). Thus

plaVvb)=r(aVd) =r(a)Ur(b) =pa) Vo).
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Therefore, ¢ is a JP-homomorphism. To prove ¢ is one-to-one, let (a) = ¢(b).
Then r(a) = 7(b). Hence a = b.

Therefore, ¢ is a one-to-one JP-homomorphism. O

Now we give a characterization of distributive JP-semilattices using down-

subsets. First we have the following Lemma.

Lemma 2.4.6 Let S be a distributive JP-semilattice and K € H(S). Then

(K]={z1V22 V- 2n |3 € K foreachi=1,2,--- ,n}.

Proof. Letz € (K]. If z € Ky = K, then by Theorem 1.3.3 the result is trivial.
Suppose z € K, for some n > 1. Then by Theorem 1.3.3, z < y V 2 for some
Y,2 € Kp1. Thisimpliesz =z A (yVz) =(zAy)V (zAz) as S is distributive.
Since K, is a down-set (see Lemma 1.3.1), we have x Ay,z Az € K,,_;. Hence
z = k1 V ko for some ki,ks € K,,_;. By using mathematical induction we can

show that z =x; Va9V ---V x, where z; € K foreachi=1,2,--- ,n. O

Now we have the following result. This idea has been taken from [10, Theo-

rem 2.3].

Theorem 2.4.7 Let S be a JP-semilattice. For any A, B,C € O(S) the follow-

ing conditions are equivalent:

(a) S is distributive;
(b) (A]={a1VaaV---Van|aaz,: - ,a, € A};
(c) AN (B] C (AN B;

(d) (AN B] = (41N (B);
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(e) (AN(BNC]l=((AnBInC;
(f) The map ¢ : O(S) — I(S) defined by p(A) = (A] is a onto lattice-

homomorphism.

Proof. (a) = (b). By the Lemma 2.4.6.

(b) = (c). Let z € AN(B]. Thenz € Aand by (b), z=b, Vb V---Vb,
where by,b,-++ ,b, € B. Since A € O(S) and b; < zforall i = 1,2,--- ,n we
have b; € A for all ¢ = 1,2,---,n. Hence b € ANB foralli =1,2,---,n.
Therefore, z € (AN B].

(c) = (d). By (c), we have (A]N(B] C ((AJNB] C (ANB] for any A, B € O(S).
Since (A N B] C (A] N (B], we have (AN B] = (A]N (B]. Thus (d) holds.

(d) = (e). Suppose (d) holds. Then

(AN(BNC] = (An(BNC] = (An((B]N(C])

= (41N (BN (C] = (AN BN (C] = (AN BINC].

Thus (e) holds.
(e) = (c). By taking C = S in (e).
(d) = (f). For any A,B € O(S), we have (AU B] = (A] v (B]. Hence for

A, B € O(S),

p(ANB) = (AN B| = (A]n (B] by (d)

= p(A) N p(B)
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and

P(AUB) = (AU B] = (4] V (B] = p(4) U p(B).

Hence ¢ is a lattice homomorphism. Let I € Z(S). Then w(I) = (I] = I. Thus

¢ is a onto lattice homomorphism. Therefore, (f) holds.
(f) = (a). Since O(S) is always a distributive lattice, by (f) we have I(S) is

a distributive lattice and hence by Theorem 2.4.4, S is distributive. g

2.5. The Separation Theorem

Let S be a JP-semilattice. A non-empty subset F' of S is said to be a filter
(or dual ideal) if
(i) for z € F and y € S with z < y implies y € F, and
(ii) for z,y € F impliessz Ay € F.
The set of all filters of S is denoted by F(S). A filter F of S is called prime if

T,y € S with z V y exists and z V y € F implies either z € F or y € F.

Lemma 2.5.1 Let S be a JP semilattice. An ideal (filter) P is prime if and

only if S\ P is a prime filter (ideal).

Proof. Let P be a prime ideal. If z,y € S\ P, then z,y ¢ P. Hence s Ay ¢ P
which implies z Ay € S\ P. Let z € S\ P and z < y. Then = ¢ P and hence
y & P. Therefore y € S\ P. This implies S\ P is a filter. Let 2,y € S with zVy
exists and z Vy € S\ P. Then zVy ¢ P. This implies either z ¢ Pory ¢ P

and consequently, either z € S\ P or y € S\ P. Hence S\ P is a prime filter.
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By a reverse argument we have the converse of the above statement. O

We use the following famous lemma.

Lemma 2.5.2 (Zorn’s Lemma) In a partially ordered set P, if every chain of

P bhas a largest element, then P has a maximal element.

O

An ideal P of a JP-semilattice S is called prime if a,b € S with a A b € P
implies either a € P or b € P. A prime ideal P containing an ideal J is called
a minimal prime ideal containing J if for any prime ideal Q containing J with
@ C P implies P = Q. A minimal prime ideal containing (0] is called a minimal

prime ideal.

Lemma 2.5.3 Let S be a JP-semilattice with 0. Then every prime ideal of S

contains a minimal prime ideal.

Proof. Let P be a prime ideal of S and let

X ={Q C P|Q is a prime ideal of S}.

Then X is nonempty since P € X. Let C be a chainin X andlet Q =N(X | X €
C). Then @ # 0 since 0 € Q and Q is an ideal. For clearly Q is a down-set since
X is a down-set for all X € C. If z,y € Q and z V y exists, then z,y € X for all
X €C. Hence zVy € X for all X € C as X is an ideal. Therefore z Vy € Q.
Thus @ is an ideal of S. In fact, @ is prime. Indeed, if z Ay € Q for some
z,y € S, then zAy € X for all X € C. Since X is prime, either z € X or y € X.

Thus either @ = N(X |z € X) or Q =N(X | y € X), providing that z € Q or
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y € Q. Therefore, by the dual form of Zorn’s Lemma we have a minimal prime

member of X. O

Now we have the following Separation Theorem for distributive JP-semilattice.

Theorem 2.5.4 (The JP-separation Theorem) Let S be a JP-semilattice. Then

the following are equivalent:

(a) S is distributive;
(b) For any ideal I and any filter F' of S such that INF = (), there exists a

prime ideal P containing I such that PN F = (.

Proof.  (a) = (b). Let T be the set of all ideals containing I, but disjoint from
F. ThenZ#®asI€Z. LetC beachaininZ and let M := U{X | X € C. We
claim that M is the maximum element in C.

Let z € M and y < z. Then z € X for some X € C. Hence y € X as X
is an ideal. Therefore y € M. Let z,y € M. Then z € X and y € Y for some
X,Y € C. Since C is a chain, either X C Y or Y C X. Suppose X CY. So
z,y €Y. If z Vy exists, then zVy € Y as Y is an ideal. Hence zVy € M.
Moreover, M contains I and F N M = (). Therefore, M is the maximum element
in C.

Thus by Zorn’s Lemma, 7 has a maximal element, say, P. We claim that P
is prime. If P is not prime, there exists a,b € S such that a,b ¢ P but aAb € P.
Then (PV(a])NF # @ and (PV (b])NF # { as P is maximal. Hence there exists
T,y € F such that zAy € (PV(a])N(PV(0]) = PV ((a]A (b)) = PV (aAb] as S is
distributive implies Z(S) is distributive. Thus zAy € F and zAy € PV(aAb] = P,

which is a contradiction to PN F = (). Hence P is a prime ideal.
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(b) = (a). Let a,b,c € S such that bV ¢ exists. If (anb)V(aAc) # an(bve),
then (aAb)V(aAc) < aA(bVe). Consider I = ((anb)Vv(anc)] and F = [an(bVc)).
Then I N F = 0 and hence by (b), there is a prime ideal P such that I C P and
PNF =0. Thus (a Ab)V (aAc) € P, this implies a Ab € P and a Ac € P.
So, either a € P or bV c € P. Hence a A (bV ¢) € P, which is a contradiction.

Therefore, (a Ab) V (aAc) =aA (bVec). Hence S is distributive. O

Corollary 2.5.5 Let S be a distributive JP-semilattice and let I be an ideal of

S. Ifa ¢ I, then there exists a prime ideal P containing I such thata ¢ P. O

Theorem 2.5.6 Let S be a distributive JP-semilattice. Then every ideal of S

is the intersection of all prime ideals containing it.

Proof. Let S be a JP-semilattice and let J be an ideal of S. We shall show

that

J=(){P | P is a prime ideal of S and J C P}.

Clearly, J C R.H.S. If J # R.H.S,, then there is z €R.H.S. such that z ¢ J.
Hence by the Separation Theorem, there is a prime ideal ¢} of S such that J C @

and z ¢ @, which is a contradiction. O

The following theorem is a characterization of a minimal prime ideal contain-

ing an ideal. This is also a generalization of [22, Lemma 3.1]

Theorem 2.5.7 Let S be a distributive JP-semilattice and let J be an ideal of
S. Then a prime ideal P containing J Is a minimal prime ideal containing J if

and only if for each x € P there isy € S\ P such that z Ay € J.
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Proof. Let P be a prime ideal of § containing J such that the given condition
holds. We shall show that P is a minimal prime ideal containing J. Let K be a
prime ideal containing J such that K C P. Let z € P. Then there is yeS\P
such that z Ay € J. Hence 2 Ay € K as K contains J. Since K is prime and
y ¢ K implies z € K. Hence P C K. Thus K = P. Therefore P is a minimal
prime ideal containing J.

Conversely, let P be a minimal prime ideal containing J. Let z € P. Suppose
forally € S\ P, zAy ¢ J. Set D= (S\P)V[z). We claim that 0 ¢ D. For
if 0 € D, then 0 = g Az for some ¢ € S\ P. Thus, zAg = 0 € J, which is
a contradiction. Therefore, 0 ¢ D. Then by the JP-separation Theorem 2.5.4,
there is a prime filter @ such that D C Q and 0 ¢ Q. Let M = S\ Q. Then by
Lemma 2.5.1, M is a prime ideal. We claim that M ND = 0. If a € M N D, then
a € M and hence a ¢ Q. Thus a ¢ D which is a contradiction. Hence MND = 0.
Therefore, M N (S\ P) = 0 and hence M C P. Also M # P, because z € D
implies z € @ and hence z ¢ M but z € P. This shows that P is not minimal,

which is a contradiction. Hence the given condition holds. O

Theorem 2.5.8 Let S be a JP-semilattice with 0 and let P be a prime ideal

of §. Let C be a chain of all prime ideals X of S such that X C P. Then

Q=({{XxcP|xec}
is a prime ideal and hence it is a minimal prime ideal.

Proof.  Clearly, C is non-empty as P € C and @ is non-empty as 0 € Q.

Obviously, Q is an ideal. To show that @ is prime, let Ay € Q. Suppose = ¢ Q.
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This implies z ¢ X for some X € C. Now z Ay € Q implies z Ay € X. Hence
y € X as X is prime. We claim that y € Q. If not, then y¢Y forsomeY € C
withY CX. ButzAyecQ implieszAy €Y. Thusz € Y and so £ € X as
Y C X which gives a contradiction. Therefore y € Q. Hence @ is prime and in

fact it 1s a minimal prime ideal. a
Thus we have the following extension of Stone’s Separation Theorem.

Theorem 2.5.9 Let J be an ideal and D be a filter of a distributive JP-
semilattice S such that J N D = 0. Then there exists a minimal prime ideal

@ containing J such that Q N D = {.

Proof. Let J be an ideal and D be a filter of a distributive JP-semilattice S
such that J N D = @. Then by the Stone’s JP-separation Theorem 2.5.4, there
exists a prime ideal P containing J such that PN D = (. Choose any chain C
of prime ideals X containing J such that X C P. Let @ = N{X € C}. Then by
above Theorem 2.5.8, @ is a minimal prime ideal containing J and Q N D = §.

O
Let S be a JP-semilattice with 0 and let ¢) be a prime ideal of S. Define
O@Q):={zeS|zAy=0forsomeyc S\Q}.
The following theorem is a generalization of [8, Proposition 2.2

Theorem 2.5.10 Let S be a distributive JP-semilattice with 0 and let Q be a

prime ideal of S. Then

0Q) = ﬂ{P | P is a minimal prime ideal of S such that P C Q}.
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Proof. Suppose X = (P | P is a minimal prime ideal of S such that P C
@} Let z € O(Q). Then £ Ay = 0 for some Yy ¢ Q. Let P be a minimal prime
ideal contained in Q). Clearly, y ¢ P. Since z A y =0 € P and P is prime, we
have z € P. Hence z € X.

Conversely let, z € X. If z ¢ O(Q). Then z Ay # 0 for all y€ S\ @ Let
D=[z)V(S\Q). Then 0 ¢ D. Forif 0 € D, then 2 A ¢ =0 for some g € S\ Q
which is a contradiction. Therefore, 0 ¢ D. Consequently, there is a minimal
prime ideal M such that M N D = (). Therefore, M N(S\ Q) = 0. Hence M C Q.
Also M # (@ because z € Q. But z € D implies z ¢ M. This shows that there is
a minimal prime ideal M C @ such that z ¢ M which is a contradiction to fact

that z € X. Hence z € O(Q). O



CHAPTER 3

Congruences on JP-Semilattices

3.1. Introduction

Let S be a JP-semilattice. An equivalence relation # on S is said to be
compatible with A if @ = b(f) and ¢ = d(f) implies a Ac = b A d(f). Let 8
be an equivalence relation on S. Then @ is said to be a meet congruence if it
is compatible with A. A meet congruence € is said to be a JP-congruence if
it is conditional compatible with V. That is, if a = b(f) and ¢ = d(6), then
aVec=bVd(f) whenever aV c and bV d exist.

Let 6 be a JP-congruence on S. If x = y(f), then zAy = y(0) and zAy = z(0).
So, z,y and z A y is in the same class. For this reason we can choose = y(6)
with z < y.

The set of all JP-congruences on S is denoted by Con(S). It is evident that
Con(S), when ordered by set inclusion, is an algebraic lattice. We denote the
algebraic lattice by Con(S).

In Section 3.2 we give some properties of JP-congruences which are useful
for the calculation to show a binary relation is a JP-congruence. Here we also

describe the largest and smallest JP-congruences containing an ideal as a class.
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In Section 3.3 we give some characterizations of a distributive JP-semilattice. In
Section 3.4 we prove the homomorphism theorem for JP-semilattices. In this

section we also introduce a new notion of a filter. We call it by strong filter.

3.2. Some properties of congruences

For the computation to show that a binary relation  is a JP-congruence the

following result will be helpful.

Proposition 3.2.1 Let S be a distributive JP-semilattice. For all z, Y,z €85 if

V2 and yV z exist, then (x A y) V z exists and
(zAy)Vz=(zV2)A(yV=2).

Proof. = By the axiom (vi) of JP-semilattice, z V 2z and y V z exists implies
(zv2)Ay)V((zV 2) Az) exists. Then by (v), ((zVz)Ay)V z exists. Now zV 2
exists implies (z Ay) V (z Ay) exists and (z Ay)V (2Ay) = (zV 2) Ay. Hence
((xAy)V(2Ay))V 2 exists. That is, (z Ay) V 2z exists. Now
(zV2)A(yVvz)=((zVv2)Ay)V((zVz)A=2)

=((zva)AyYVz=((zAy)V(zAY))Vz=(zAy)Vz
a
We often use the following result.

Lemma 3.2.2 Let S be a JP-semilattice, § be a JP-congruence on S and

T,Y,z € S. Then
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(a) fz =y(f), thenz Az =y A z(0) and zV z = y V 2(0) whenever z V z

and y V z exist.
(b) Ifz=y(0) and z < 2 < y, then z = 2(9).

(c) z =y(0) if and only if z A Yy =z V y(0) whenever z V y exists.

Proof.  Assume that 6 is a congruence on S.

(a) Let z = y(6). Since z = z(0) and @ is a congruence, we have zAz = yAz(0)
and £V z =y V z(f) whenever £V z and y V 2 exist.

(b) Let z=y(f) and let z <2< y. Thenz=zAz=yA 2(9) by (a). Thus
z = 2(9).

(c) Let z = y(0) and let zVy exists. Then by (a), zVy = y(0) and zAy = y(6).
Hence by symmetric and transitive property of 8, we have z Ay = z V y(6).
Conversely, let z V y exists and z Ay =z V y(f). Sincez Ay < z,y <z Vy, by
(b) we have z Ay = z(6) and z A y = y(#). Hence by symmetric and transitive

property of 8, we have z = y(). O
Theorem 3.2.3 Let S be a distributive JP-semilattice and I be an ideal of S.
Then the relation ©(I) on S defined by

z=y(O) e (@ VI=(y|VI

is a JP-congruence having I as a class. Moreover if each JP-congruence is com-
patible with any finite existing V, then ©(I) is the the smallest JP-congruence

having I as a class.
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Proof.  Clearly, ©(I) is an equivalence relation. Suppose £ = y(©(I)) and

s=t(©(1)). Then (z] VI = (y] v I and (s] VI = (] v I and hence

@As]VI=((z]A(s])VI= (=] VI) A ((s] v I) as Z(S) is distributive

=(@VOAEVD =A@ VI= AV

Thus z A s =y At(O(I)). Alsoif £V s and y V ¢ exists, then

(@Vs]VI=((z]V(s))VI=((z]vI)V((s]VI)

=(@v) V(v =(wv@E)vI=(yviVI

Thus £V s = y Vv t(O(I)). Therefore, ©(I) is a JP-congruence. Clearly, O(I)
contains I as a class. Finally, let I' be a JP-congruence containing I as a class.
Suppose z = y(©(/)) with z < y. Then (z]VI = (y]vVI. Thus y € (z]VI. Hence
y=z1VZaV---VZ, Vi V:--Viy, for some z1,29,- -z, <z and iy, -+, € I.

This implies

y=$Vi1V"'Vim
and trivialy

z=zV (@A) V-V (ZAip).

Since z = «(I') and for each j = 1,---,m, we have ¢; = & A 15(I'), so z = y(I).

Thus ©(I) C . .

Now, we have a description of ©(a, b).
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Theorem 3.2.4 Let S be a distributive JP-semilattice and a,b,z,y € S with

a < b. Then

£=y(0(a,b) < rAa=yAaq and (z] v (] = (y] v (8]
Proof. Let % denote the binary relation on S such that
z=y[) S zAa=yAaand (z]V (0] = (y]V ().

Then clearly 9 is an equivalence relation. Now let z = y() and s = t(4). Then
sha=yAa, (z] V(0] = (y]V (], sAa=tAaand (s] v (b] = (] v (b]. Hence

(zAs)Aa = (yAt)Aa and since S is distributive implies Z(S) is distributive, so
(z A sV (8] = ((=] A (s]) v (8] = ((=] V (B]) A ((s] v (8])
= (Wl v @) AV @) = (@AED VO] = ALV
Thus z As =y At(y). Alsoif Vs and y V¢ exists, then since S is distributive,
(zVs)Aa=(zAa)V(sha)=(yAa)V(EAa)=(yVE)Aa
and
(@ VsV (6] =((z]V(s]) V(@] = ((z] v (B]) v ((s] v (B])
= (v @) V(] v @)= (Vv el =y ViVl

Thus 2 V s = y v t(1). Therefore, 9 is a JP-congruence. Clearly a = b(3). Let
I' be a congruence on S such that a = b(T'). Let 2 = y(¢) with z < y. Then

TAa=yAaand (z] vV (b] = (y] V (b]. Since a = b(T') s0, z Aa =z Ab(T) and
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yAa=yAb(I). Thusm/\b*:‘:c/\a(f‘) =yAa=yAbT). Now we have
(vl = WA @V B = W] A (=] v (8)) = (3] A (&]) v (@] A (8]) = (2] V (g A B

This shows that (z] V (y A ] is a principal ideal and hence by Theorem 1.3.6 we

have y =2V (Y Ab) =z V (z Ab)(T) = . Hence 1 is the smallest congruence.

Therefore, ¥ = O(a, b). O
It is well known that the binary relation (I) on a semilattice S defined by
z=y(y(I))ifandonlyifzAa €T o yAac foranyacS.

is a largest semilattice congruence containing an ideal I as a class. Now we have

the following result for distributive JP-semilattices.

Theorem 3.2.5 Let S be a distributive JP-semilattice and let I be an ideal of

S. Then (1) is the largest JP-congruence containing I as a class.

Proof. It is enough to show that 14(I) has the substitution property for partial
operation V. Let z = y(¥(I)) and s = t(x(/)) and Vs and y V't exist. Since S is
a distributive JP-semilattice, for any a € S we have (zAa)V (sAa), (yAa)V(tAa)
exist and (zVs)Aa=(zAa)V(sAa), (yVt)Aa=(yAa)V (tAa). Thus
(xVs)Aa€l e (zNha)V(sAa) el
szrzAa€landsAac]
SyNa€landtAael
& (yNAa)V(tAa) el

& (yVt)Aael.
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Thus 2V 5 =y V ¢(4()). Hence %(I) is the largest JP-congruence. a

3.3. Kernel of a J P-homomorphism

Let ¢ : S — P be a JP-homomorphism. The kernel of @ is denoted by ker ¢

and defined by
ker o = {(z,y) € 5% | p(z) = o(y)}.

Lemma 3.3.1 Let ¢ : S = P be a JP-homomorphism. Then kery is a JP-

congruence on S.

Proof.  Clearly ker ¢ is an equivalence relation on S. Let z; = y;(ker ¢) and
7y = ya(kerp). Then o(z1) = ¢(y1) and ¢(22) = p(32). Now p(z1 A z3) =
@(21) A p(z2) = 0(11) A 0(y2) = @(y1 A y2). Therefore, z, A 2o = y1 A ya(ker @).
To prove ker ¢ is conditional compatible with V, suppose z; V2, and y; Vs exist.
Then by the definition of a JP-homomorphism, ¢(z1) V ¢(z2) and ¢(y;) V ¢(y2)
exist and @(z1 V z2) = @(z1) V @(z2) and o(y1 V ¥2) = ©(11) V @(y2). Hence
e(z1V 22) = p(x1) V o(22) = @(y1) V @(y2) = @11 V y2). Thus o, V oy =

y1 V ya(ker ).

Therefore ker ¢ is a JP-congruence. O

We have the following important result for distributive JP-semilattices.

Theorem 3.3.2 Let S be a JP-semilattice. The following conditions are equiv-

alent:

(a) S is distributive;
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(b) fora € S, themap ¢ : S — (a] given by

e(z)=aAzx

is a JP-homomorphism of S onto (a]

)

(c) for a € S, the binary relation ©, on S defined by
z=y(0,) <= zAa=yAa

is a congruence relation.

Proof.  (a) = (b). Let S be a distributive JP-semilattice. Then for any z,y € S

we have

ezAy)=aA(zAy)=(aAz)A(any)=p(@)Apy).

Also if z V y exists, then

plzVy)=aA(zVy)=(aAz)V(aAy)=p(z)Vey)

Thus ¢ is a JP-homomorphism. If z € (a], then z £ a and hence z = aAz = ¢(z).
Therefore, (b) holds.

(b) = (c). Define a relation ©, on S given by z = y(0,) <= aAz =aAy. If
@:z v+ aAxzisamap from S to (a], then we have z = y(0,) <> ¢(z) = ©(y).
Thus ©, = ker¢. Since by (b), ¢ is a JP-homomorphism, so by Lemma 3.3.1,
ker ¢ is a congruence. Hence O, is a congruence. Thus (c) holds.

(¢) = (a). Let z,y € S with x V y exists. Then for any a € S, we have

(@A z)V (aAy) exists. SinceaAz =aA(aAzx),s0z=aAz(O,) Similarly,
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y=aAyY(©n) ThuszVy=(anz)v (a Ay)(©,). Hence

aN(@Vy)=aA(aAz)V(eAy) =(aAz)V(aAy).

Thus (a) holds. 0

3.4. Quotient JP-semilattice

For any a € S and 6 € Con(S), the set
[ ={z €S |z=a(8)
is said to be a congruence class containing a.
Lemma 3.4.1 Every congruence class is a convex JP-subsemilattice.

Proof.  Let [a](f) is a congruence class of a JP-semilattice S. Let z,y € [a](6)

and z £ z < y. Then z = a(f) and y = a(f). This implies
z=zAy=zAa(@) =zAz(0) =z(0) = af).

Hence z € [a](6). It is easy to check that [a](f) is a JP-subsemilattice. Thus

[a](6) is a convex sublattice. O

For any 6 € Con(S), the set of all congruence class under 6 is denoted by 3.

That is,
> = {ld®) | e 5}.

Define A and conditional V on % given by

[a](9) A [0](6) = [a A ](6)
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and [a](8) V [6](0) exists if ¢ V d exists for some ¢ € [a](8) and d € [b](¢) and
[a](9) v [6)(6) = [c v d)(6).

Then this is a routine work to prove that (2;A,V) is a JP-semilattice. The
JP-semilattice (%; A, V) is called a quotient JP-semilattice of S. We have the

following result for distributive JP-semilattices.

Theorem 3.4.2 Let S be a distributive JP-semilattice. Then for any congru-

ence § on S, the quotient JP-semilattice % is a distributive JP-semilattice.

Proof.  Let S be a distributive JP-semilattice and let [a](8) V [b](f) exists in

5. Then there is ¢ € [a](f) and d € [b](d) such that ¢ V d exists in S and

[a](6) V [b](8) = [c V d}(). Hence for any s € S we have
[s](8) A ([a](8) v [8](8)) = [s](8) A [e v d](0)
= [sA (e v a)](9)
=[(sAc)V(sAd)](®) (as S is distributive)
=[sAcl(6) Vs Ad(®)
= ([s])(0) A [](6)) v ([s](6) A [d](6))
= ([s](6) A [a](8)) v ([s1(6) A [0](0))-
Hence £ is a distributive JP-semilattice. O

Now we shall prove the homomorphism theorem for JP-semilattices.

Lemma 3.4.83 If 0 is a congruence on a JP-semilattice S, then the canonical

map ¢ : S = % is a JP-epimorphism.
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Proof. ~ Obviously, ¢ is a onto A-homomorphism. Let x V y exists, then [z](f) V
[y](B) exists. This implies () v ©(y) exists. Now elxVy) =[zVy)l) =

[](0) V [¥](8) = w(z) V o(y). Hence ¢ is a JP-epimorphism. O

Theorem 3.4.4 (Homomorphism Theorem) Every JP-homomorphic image of

a JP-semilattice is JP-isomorphic to a suitable quotient JP-semilattice.

Proof. Let@:S — P be a onto JP-homomorphism. Then by the Lemma 3.3.1

S
kerg

ker ¢ is a congruence on S. Hence is a quotient JP-semilattice of S. We

prove that ke‘:'w e P,

Define a mapping 7 : kesw — P by

n([z](ker 9)) = ().

Clearly, the mapping 7 is a well defined and onto. To prove n is JP-homomorphism,

let [z](ker ), [y](ker ) € . Then

n([z](ker ) A [y](ker @) = n([z A y](ker ¢))

= p(z A y) = o(z) A p(y) = n([z](ker ) A n([y](ker p)).



3.4. QUOTIENT JP-SEMILATTICE 50

If [z](ker @) V [y](ker ) exists, then c v d exists for some ¢ € [z](kery) and

d € [y](ker ¢). Hence

n(lz](ker ) v [y) (ker 0)) = n({c](ker ) V [d] (ker o))
=n([cV d)(ker p)) since c Vv d exists
= p(cVd)
= ¢(c) V ¢(d)
= n([c)(ker ) v n([d] (ker )

= n([z](ker ¢)) V n([y](ker ©)).

Therefore, 7 is JP-homomorphism. To prove 7 is one to one, let p(z) = ©(y).
Then z,y € ker ¢ and hence [z](ker ¢) = [y](ker ). Hence 7 is one to one.

This complete the proof. O

Let S be a JP-semilattice and let F' be a filter of S. Define a binary relation

©(F) on S by

z =y(O(F)) if and only if z A f =y A f for some f € F.

Theorem 3.4.5 Let F be a filter of a distributive JP-semilattice S then the
relation ©(F) on S is a JP-congruence containing F' as a class. Moreover, if S
has the largest element 1, then ©(F') is the smallest JP-congruence containing F

as a class.

Proof.  Clearly ©(F) is an equivalence relation. Let z = y(©(F)) and s =

t(O(F)). Then z A fi =y A fi and s A fa =t A fo for some fy, fo € F. This
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implies

(zA)ALAF)=(@AFIA(SAf)=@AR)AWA f2) = (yAD) A (fLA fo).

Since fi A f2 € F, we have z A s = y A t(O(F)).

Also, if z V s and y V ¢ exist, then

EV)A(AAR)=(@A[AR)V(SAFLA f2)

=[WALANLR)VEA[AR) =G VIOA(LA ).

Thus ©(F) is a JP-congruence. Clearly, ©(F) contains F as a class.

Moreover, suppose S has the largest element 1. Let § be any congruence on
S containing F' as a class. If z = y(©(F)). Then z A f =y A f for some f € F.
This implies z =z A1 =z A f(#). Similarly, y = y A f(6). Hence z = y(6). Thus

O(F) is the smallest JP-congruence containing F' as a class. O

Observe that in general (even for distributive JP-semilattice), gy is not a
lattice. For example, consider the following (see Figure 3.1) distributive JP-

semilattice S. Let F be a filter which is a proper subset of the above chain. Then

FIGURE 3.1
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s - _
() Where ©(F') is the smallest congruence containing F as a class, is isomorphic

to the distributive JP-semilattice S and hence it is not a lattice. Now we turn

our attention to apply some condition on the filter F such that @—(SF) becomes a

lattice.

3.5. Strong filters

A filter F' of a JP-semilattice S is said to be strong filter if for any z,y € S
such that x V y does not exist implies either z € F or y € F. In the Figure 3.1,
the filters [a) and [b) are strong filters but the filters generated by any element of

the chain are not strong filters.

Theorem 3.5.1 Let S be a JP-semilattice with 1 and let F' be a strong filter.

Then @—(SI—?—) is a lattice.

Proof. Let [2](©(F)), [y](O(F)) € @—(Sﬂ. If £V y exists, then [z](O(F)) V

[y](©(F)) exists and

[z](&(F)) v Wl(6(F)) = [z V 9} (O(F)).

If z V y does not exist, then either z € F or y € F. Without loss of generality,

let z € F. Then [z](©(F)) = [1](©(F)) and hence
[z](©(F)) v [¥](©(F)) = [L)(O(F)) Vv [Wl(O(F)) = [1](O(F)).

Thus é—%;—) is a lattice. O
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The above theorem follows that if S is a JP-semilattice with 1 and if F' is a

strong filter, then for any [z](O(F)), [y](O(F)) € 50 We have

[1](©(F)) - if zVy does not exist
[z](O(F)) V [y](e(F)) =
[z Vyl(B(F)) ifxVy exists.
Theorem 3.5.2 Let S be a distributive JP-semilattice with 1 and let F be a

strong filter. Then @—(S-ﬁ 1s a distributive lattice.

Proof.  Let [z](O(F)), [y](©(F)), [2](O(F)) € G_E;I—"T' If y V z exists, then the

result is trivial. Suppose y V z does not exist. Then either y € F or z € F.

Without loss of generality, let y € F. Then
[](©(F)) A ([Wl(©(F)) V [2](O(F))) = [z](0(F))

and

([z)(@(F) A [l(©(F)) V ([](O(F)) A [2](6(F)))

= L(©(F)) v (2(©(F)) A [Z)(O(F))

Therefore, '65??) is a distributive lattice. O

In rest of this section, by S we mean distributive JP-semilattice with 1 and
by F we mean strong filter. Recall that the map ¢r : § — e_(SF—) given by

wp(z) = [z](©(F)) is the natural epimorphism.
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Lemma 3.5.3 For any ideals | and J of S, the following hold.

(i) ¢r(I) is an ideal of S~ e(F)’
(ii) @r (1) is a proper ideal of g(sﬁ ifand only if INF = (;
(il) er(IV J) = or(I) V op(J);

(iv) er(INJ) = op(I) Nep(J).

Proof. (i) Let pp (i), or(f) € wr(I). If iV j exists, then

or(1) V or(5) = [{l(O(F) v [[I(O(F) = [ v j)(8(F)) € ¢r(J).

Suppose ¢ V j does not exist. Without loss of generality let 7 € F. Then

er() vV or(f) = [1J(O(F) v [[](8(F) = [1](O(F)) = [i](8(F)) € ¢r(I).

Now let ¢r(z) € @r(I) and @r(y) C wr(z). Then

er(y) = or(y) Nor(z) = pr(y Ax) € @r(]).

Therefore, pr(I) is an ideal.

(ii) Suppose ¢r(I) is a proper ideal of S/O(F). Then there exists z € S such
that op(z) ¢ @r(I). Suppose INF # @ and let y € INF. Then y = 1(O(F)
and hence 1 € I. This implies z € I which is a contradiction. Hence I N F = (.

Conversely, suppose @r(l) = S/O(F). Then there is + € I such that
[z]©(F) = [1]©(F). Hence = € F' which implies that I N F' # 0.

(iii) Suppose y € @p(I V J). Then there is z € IV J such that y = @g(z).
Since S is a distributive JP-semilattice, we have z = i; Vi3 V -+ V 4, where
11,92, ,in € T U J. If 4; Vi does not exist for any 1 < j,k < n, then either

i; € F or i, € F. Thus either INF # @ or JNF # 0. Hence by (ii) either wr(I)
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is a non proper ideal or pp(J) is a non-proper ideal. Hence y € g (I) V @p(J).
Now suppose i; V iy exists for all 1 S5k <n Thenz =14V for someie I
and j € J. This implies y = pp(i Vi) =er@E) Vp(j) € pp(I) v wr(J). Hence
er(IVJ)C pp(l)V ¢r(J). The reverse inclusion is trivial. Hence (iii) holds.

(iv) is obvious. O

Theorem 3.5.4 Let S be a distributive JP-semilattice with 1 and let F be a

strong filter. Then for any ideal J of S, we have

CPEl@F(J)={:UES[:E/\fEJf0rsomefEF}

=("Y{P| P is a minimal prime ideal of S with J C P and P F — 0}.

Proof. We have

or or(J) ={y € S| pr(y) € pr(J)}
={y € 5| ¢r(y) = pr(z) for some z € J}
={y € S| Y]O(F) = [z]O(F) for some z € J}
={yeS|yAf=zAfeJforsomezeJfecF)

={y€S|yAfeJforsome f € F}.

Now we consider two cases:
Case-1: JNF # (. Let P be any prime ideal containing to J such that PNF # 0.

Then

{P | P is a minimal prime ideal of S with J CPand PNF=0}=0
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and so,

ﬂ{P | P is a minimal prime ideal of S with J CPand PNF =)}
=S={y€Sly/\a:eJ,:v€JﬂF}.

Case-2: JNF = 0. Clearly,

{yES]y/\fleorsomefeF}

C(){P| P is a prime ideal with J C P and PN F — 0}.
'To prove the reverse inclusion, let z € S such that z A f ¢ Jforany f € F and
let G =[z)VF. f GNJ # 0, then there is t € G N J such that t = z; A f
for some z < z; and f € F. This implies z A f < z; A f =t and consequently,
zA f € J which is a contradiction. Therefore JNG = 0. Then by the Separation
Theorem there exists a prime ideal P of S such that J C P and GNP = 0. This
implies that z ¢ P and PNF =0 as F CG.

This completes the proof of the theorem. a

We close the Chapter with the following important result.

Theorem 3.5.5 Let S be a distributive JP-semilattice with 1 and let F be a

strong filter. Suppose

P ={P | P is a prime ideal of S with PN F = (}}
and

Q= {Q | Q is a prime ideal of S/O(F)}.
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Then P and Q are order isomorphic.

Proof. Define a mapping ¢ : P — Q given by
PY(P) = pp(P).

Let P € P. Then by Lemma 3.5.3 (ii), r(P) is a proper ideal of S/O(F). To
prove that wr(P) is a prime ideal, let ©r(z) Apr(y) € pr(P). Then [Z](O(F)) A
WIO(F)) = [z A y)(O(F)) € pp(P). This implies [z A y)(O(F)) = [p}(6(F)) for
some p € P. Hence Ay A f = pA f for some f€F. ThuszAyA f € P. Since
P is a prime ideal, f ¢ P, we have z A y € P and hence either z € P or y € P.
This implies either pr(z) € pr(P) or pr(y) € ¢r(P). Hence ©or(P) is a prime
ideal of S/O(F). That is, pr(P) € Q. Therefore 1) is well defined. Clearly, ¢ is
an isotone. Since ¢ is a natural epimorphism, v is an epimorphism. To prove
that 1 is one-one, let pp(P) = pr(R). We shall show that P = R. Let z € P.
Then ¢r(z) € @r(R). This implies there is y € R such that p(z) = or(y).
Consequently, [z](©(F)) = [y](€(F)). Thus t A f = y A f for some f € F. This
implies zA f =y A f € R. Since RN F =0, we have f ¢ R and hence z € R as
R is a prime ideal. Therefore, P C R. Similarly, we can show that R C P. Thus
P = R. Hence 1) is one-one.

This complete the proof of the theorem. 0O



CHAPTER 4

Kernel Ideals of PJP-Semilattices

4.1. Introduction

Let S be a JP-semilattice with the smallest element 0. Let ¢ € S. An element
d € S is called pseudocomplement of a € S if a Ad = 0 and for any = € S with
a Az =0 implies z < d. Clearly the pseudocomplement of an element is unique.
The pseudocomplement of an element a € S is denoted by a*. A JP-semilattice
is said to be Pseudocomplemented JP-semilattice or (simply PJP-semilattice) if
every element has a pseudocomplement. A JP-semilattice {(S; A, V,*,0,1) with *
(called pseudocomplementation) is said to be a JP-semilattice with pseudocom-
plementation. Like as a distributive lattice, the distributivity of a JP-semilattice
does not guarantee that it is pseudocomplemented. For example, consider the
distributive JP-semilattice given by the following Figure 4.1. This is not pseudo-

complemented as a has no pseudocomplement.
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a C b
00 M
FIGURE 4.1

4.2. Congruence kernels and cokernels

Congruence kernels and cokernels have been studied by Cornish [9] for pseu-
docomplemented distributive lattices and by Blyth [2] for pseudocomplemented
semilattices. In this Chapter we study the congruence kernels and cokernels for
distributive PJP-semilattices. First we prove some identities which we need in

this thesis.

Theorem 4.2.1 Let S be a PJP-semilattice. Then for any a,b € S we have

(i) a < a*,
(ii) a < b implies b* < a*,
(iii) a* = a**,
(iv) 0* =1, the largest element of S.

(V) aAb*=aA(aAb)*

Proof. (i) For all a € S we have a* A @ = 0. Hence by the definition, a < a**.

(ii) Let @ < b. Then a A b* < bAb* = 0. This implies a A b* = 0. Hence by

the definition, b* < a*.
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(iii) By (i) @ < @** and hence by (ii) a*** < a*. Also by (i) a* < a***. Hence

(iv) is by the definition.
(v) Using (ii), this is trivial that a A p* < aA(aAb)*. To prove the reverse
inequality, let = a A (@ Ab)*. Then z Saand zAb= (aAb)A(aAb)* = 0. This

implies < o and z < b*. Hence 1 < a Ab*. Therefore, a A b* = a A (aAb)*. O

The above theorem shows that every PJP-semilattice S has the greatest ele-
ment 1 and hence it is directed above, that is, every pair of elements of S has a
common upper bound. Thus every PJP-semilattice is directed above.

Let S be a pseudocomplemented JP-semilattice. The set

Sk(S) = {a* | a € §}

is called the skeleton of S. The elements of Sk(S) are called skeletal. It is evedient
that sup{a®, b*} in Sk(S) always exists and we denote it by a* ¥ b*. That is, for
any a,b € Sk(S), we have a ¥ b = sup{a, b} in Sk(S).

Now we have the following lemma.

Theorem 4.2.2 Let S be a PJP-semilattice. Then
(i) a € Sk(S) & a = a**;
(ii) a,b € Sk(S) = a A b= (a A b)™;
(i) a,b € Sk(S) = a ¥ b= (a* A b*)*.

Proof. (i) Let a € Sk(S), then a = b* for some b € S. Hence by Theorem 4.2.1

(ii), we have a = b*** = ¢**. The converse is by the definition of Sk(S).
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(i) Let a,b € Sk(S). We have g 2 ¢ Ab. This implies a = a*™ > (a A b)*.

Similarly, b > (a A 8)**. Thys (a A b)*™ is a lower bound of a and b. Hence

aAb2 (aAb)*™. But by Theorem 4.2.1 (i), we have a A b'< (a A b)**. Therefore
aAb=(aAb)*. Thisimplies a A b c Sk(S).

(iii) Let a,b Sk(S). Then a* A b* < @, b". This implies @ = a**,b = b** &
(a* Ab*)*. Then (a* A b*)* is an upper bound of a,b in Sk(S). Let z Sk(S)
such that a,b < z. Then 2* < a* A b* and hence (@* Ab*)* < 2** = 2. Thus

a¥b=(a*Ab*)*. 0

4.3. PJP-congruence kernels

A JP-congruence 8 of a PJP-semilattice S is said to be PJP-congruence on

S, if it is compatible with *, that is,

z=y(@) =z =y*(9).

Theorem 4.3.1 Let S be a PJP-semilattice. Then a JP-congruence § on S is

a PJP-congruence if and only if

z=000) = z* = 1(0).

Proof. Iffisa PJP-congruence, then clearly the condition holds. Conversely,

let 6 be a JP-congruence such that the condition holds. Let z = y(8). Then
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" ANy =2" Az =0(f) and so (z* A y)* = 1(f). This implies
& =3*A1
=z A (2" Ay)*(6)
=z"Ay* (by Theorem 4.2.1 (v)).

Similarly, we have y* = z* A y*(6). Hence z* = y*(9) and therefore ¢ is a PJP-

congruence. 0

Theorem 4.3.2 Let S be a distributive PJP-semilattice and let I be an ideal
of § such that for,j € I implies (i* A j*)* € I. Define a binary relation O(I) on
S by

z = y(O(I)) if and only if z A4* =y A4* for somei € I.

Then ©(I) is the smallest PJP-congruence containing I as a class.

Proof.  Clearly, ©(I) is both reflexive and symmetric. To prove that it is
transitive, let £ = y(O(I)) and y = 2(©(I)). Then zAi* = yAi* and yAj* = zAj*

for some ¢,j € I. Then by the condition k& = (3* A j*)* € I. We have
TAE =z A AJ)* =2 A(GE"AJT) (by Theorem 4.2.2 (ii))
=@AT)AT =(YAT)AT = (YA A
=EZAF)IAT =2A[@AT)=2AG A
=z Ak

Hence = = z(©(I). Thus ©(I) is transitive.
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Let z = y(©(/) and s = t(©(I). Then there are ,,j € Iwithk = (*Aj*)* €1

such that z A &* = y A 4* and SAJ* =1t A j* Hence
(@FAS)AE = (zAs5)A (3* A G*)™
= (z A 8) A (5* A §¥) (by Theorem 4.2.2 (ii))
=@AT)A(SAS?) = (AT A(EA57)
= (y At) A (@ A GO

=(yAt) Ak~
Also if z V s and y V ¢ exists, then

(FVS)AE = (z AK*)V (sAk*) as S is a distributive JP-semilattice
= (@A AF)V(sAi*Aj*) (by Theorem 4.2.2 (ii))
= (YA AF)V([EATAGY)
=(yAE)V(IEAKY
= (yVt) Ak* as S is a distributive JP-semilattice

=(yVi)Ak".

Hence ©(7) is a JP-congruence. To prove that ©(I) is a PJP-congruence, let z =

0(©()). Then zA#* = 0A¢* = 0. This implies i* < z*. Hence z*Ad* = i* = 1A,

This implies z* = 1(©(I). Hence by Theorem 4.3.1, ©([) is a PJP-congruence.
Finally, let § be a PJP-congruence containing I as a class and let z = y(O(I).

Then  A4* = y A4* for some i € I. Since 6 be a PJP-congruence containing I as
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a class. We have i = 0(6). This implies ¢* = 1(6). Hence

xzxAIEmAi*(H)=y/\z’*Ey/\1(9)=y.

Therefore ©(I) is the smallest congruence containing I as a class. ]

Kernel Ideals. Let @ be a PJP-congruence on S. Then

ker(9) = {z € S | 2 =0(8)}

is called the kernel of §. Clearly, ker(f) is an ideal. A subset J of S is said to be
congruence kernel if J = ker(f)) for some PJP-congruence 6 on S.

Observe that in the PJP-semilattice M given in Figure 4.2, the ideal I =
{0,a,b} is not a kernel of any PJP-congruence on M. For 0 = a(§) for any
PJP-congruence § on M, then 1 = a* = b(#), that is, 0 = 1(6). Thus I is not a
PJP-congruence kernel. An ideal I of a PJP-semilattice S is said to be a kernel
ideal if I = ker(6) for some PJP-congruence 6 on S. The set of all kernel ideals
will be denoted by KI(S).

For a distributive lattice, we have the following result.

Theorem 4.3.3 Let L be a distributive lattice. Then an ideal I of L is a kernel

ideal for some lattice congruence 6 if and only if

zel=z"el
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Now we are interested to characterize the kernel ideal for distributive PJP-
semilattices. Observe that the above result is not true for distributive PJP-
semilattices. For counterexample, consider the distributive PJP-semilattice given
in Figure 4.2, Let J = {0,a,b}. Then I is an idea] of M and for any z € I we

have z = z** € I. But I is not a kernel idea] of any PJP-congruence # on M, for

0 = a(f) implies 1 = b(4).

M

FIGURE 4.2

The following result is the generalization of Theorem 2.2 [2].

Theorem 4.3.4 An ideal I of a distributive PJP-semilattice S is a kernel ideal

of S if and only if
LWiET= ("N ) el

Proof. Let I be a kernel ideal of S. Then I = ker @ for some PJP-congruence

0. 1f 1,5 € I, then ¢ = 0(9) and j = 0(f). Hence by Theorem 4.3.1, i* = (8) and

>k

J* = 1(0). Hence i*Aj* = 1(). This implies (¢* Aj*)* = 0(8). Thus (:*Aj*)* € I.

il

Conversely, let  be an ideal of S and suppose the condition holds. Then by

Theorem 4.3.2, the binary relation ©(/) on S defined by

z = y(O(1)) if and only if z A 4* = y A 4* for some i € 1.
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is a PJP-congruence containing the ideal I as a class. So it is enough to show

that I is a kernel ideal of ©(). For all i € I, by taking 7 = j in the condition we

have ** € I. Hence

z=0(0(I)) ©zAi*=0forsomeic ]
S xr <1t forsomeie ]

S el

Thus I is a kernel ideal. O

Theorem 4.3.5 Let S be a distributive PJP-semilattice. An ideal I of S is a

kernel ideal if and only if

(i) € I implies i** € I;

(ii) for all 4,5 € I there is k € I such that i* A j* = k*.

Proof.  Let I be a kernel ideal. Then by taking i = j in Theorem 4.3.4 we
have ¢ € I = i*™ € I. Thus (i) holds. Let 4,5 € I. Put k = (5* A j*)*, then by
Theorem 4.3.4, k € I. Also k* = ¢* A j*. Thus (ii) holds.

Conversely, let I be an ideal and %,j € I. Then by (ii), there is k € I such
that k* = i* A j*. Thus by (i), k** = (i* A j*)* € I. Hence by Theorem 4.3.4, I is

a kernel ideal. ’D

Theorem 4.3.6 Let S be a distributive PJP-semilattice. A principal ideal

I = (z] of S is a kernel ideal if and only if z € Sk(S).
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Proof.  Suppose I = (z] is a kernel ideal, then z** € I. This implies z** < .

But z £ **. Hence z = z** ¢ Sk(S).

Conversely, let I = (z] be a principal ideal and z ¢ Sk(S). Then by The-
orem 4.2.2 (i), we have z = z**. Let ©,J € I. Then 4,5 < z. This implies
z* < 1" AJ*. Thus (¢* A j*)* < z** = z. This implies (:* A j*)* € I. Hence by

Theorem 4.3.4, I is a kernel ideal. O

*-ideals. An ideal I of a JP-semilattice is said to be *-ideal if € I implies

e L,

Theorem 4.3.7 Every kernel ideal of a distributive PJP-semilattice is *-ideal

but the converse is not true.

Proof. By Theorem 4.3.5 (i) it is immediate that every kernel ideal of a dis-
tributive PJP-semilattice is *-ideal. To prove the converse is not true consider the
distributive PJP-semilattice M given in Figure 4.2. Here the ideal I = {0, a, b}

is a *-ideal but not a kernel ideal. O

Theorem 4.3.8 Let S be a distributive PJP-semilattice. Every principal *-
ideal I of S can be written as (a**] for some a € I. Moreover, for any a € S the

principal ideal I = (a**] is a kernel ideal.

Proof.  Let I be a principal *-ideal of S. Then I = (a] for some a € S. Since I
is a *-ideal, @ € I we have a** € I. Thus a** < a. But @ < a**. Hence I = (a**]

for some a € S.
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For any a € S, since a** ¢ Sk(S), so by Theorem 4.3.6, I = (a**] is a kernel
ideal. O
Theorem 4.3.9 A *.ideal I of a distributive PJP-semilattice is a kernel ideal

if and only if i** VY j** € [ for all 1,5 € I.

Proof.  Since for any 4,7 € I we have

(2" A3*)* = (2*** A §***)* by Theorem 4.2.1 (iii)

= ¢ ¥ j**by Theorem 4.2.2 (iii).

By Theorem 4.3.4, I is a kernel ideal if and only if for any ¢,7 € I implies

Vel O

Glivenko Congruence. Let S be a JP-semilattice and let I be an ideal of S.

We have proved that the binary relation %(I) on S defined by

z=y(¥(I))ifandonlyifzAac I & yAacIforanyae S

is a largest JP-congruence containing I as a class (see Theorem 3.2.5).

Now we have the following result.

Theorem 4.3.10 Let S be a distributive PJP-semilattice. If I is a kernel ideal

of S, then v([) is the largest PJP-congruence containing I as a class.
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Proof. By Theorem 3.2.5, %(I) is a largest JP-congruence. Let z = 0(%([)).

Then z € I. Now for any a € 3,

T"ha€l= (z*A(z* Aa)*) €, by Theorem 4.3.4
= (z* Aa*)* € I, by Theorem 4.2.1 (v)
= a €, since a < a™ < (z* A a*)*

=1Aael.

Also

lhNa=aecl=z*ANac].
Thus z* = 1(3(I)). Hence by Theorem 4.3.1, 9(I) is a PJP-congruence. O
Theorem 4.3.11 If I is a kernel ideal of a distributive PJP-semilattice S and
ifz = y(y(I)), then [(z A y*)* A (z* Ay)*]* € I.

Proof. Letz =y(y(l)). ThenzAz* =0=yAz*(¥(I)). Therefore yAz* € I.

Similarly, z Ay* € I. Hence [(z Ay*)* A (z* Ay)*]* € I as I is a kernel ideal. O
Let S be a distributive PJP-semilattice. A binary relation G on S defined by
T = y(G) <___> m** e y**

is a semilattice congruence called Glivenko congruence. It is evident that G is
compatible with *. 'We shall show that G is a PJP-congruence.

Let I be an ideal. Define

I°={x€,5'i:c/\z'=0forallief}.
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Theorem 4.3.12 I° is a kernel idea].
Proof. Let 2,y € I°. Then z Aj = YyAi=0forall ¢ € I. Hence i < z*,y*

and consequently, (z* A ¥*)* < i*. This implies (z*Ay*)* Ai < i* Ai=0. Hence

(z* Ay*)* € I°. Thus by Theorem 4.3.4, I° is a kernel ideal. O

Theorem 4.3.13 Let I be a kernel ideal of a distributive PJP-semilattice S.

Then (1) A p(I°) = G.

Proof.  Let z = y(¢/(I) A¢(I°). Then by Theorem 4.3.11, we have (zAy")*A
(z* Ay)*]* € I and [(z Ay*)* A (z* Ay)*]* € I° whence [(zAY*)* A(z* Ay)*]* = 0.

This implies

wAY < @AY <@ AY) A AT =0,

Thus z A y* = 0. Hence y* < z*. Similarly, z* < y*. This implies z* = y* and
consequently, ** = y**. Hence z = y(G)

Conversely, let z = y(G). Since a = a**(G) for any a € S, we have £ A a =
zAa™(G), yAa = yAa*(G) and zAa = yAa*(G). Hence (zAa)™ = (zAa**)*,

(yAa)* = (yAa**)* and (z Aa)*™* = (y A a™*)**. Now for any a € S,

tAa€l & (zAa)”™ €1 as [ is akernel ideal of S
N (y/\at*)** GI
& (yAa)™ el

SyAael
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Also, for all i € I,

:v/\aEI‘Nr)(:z:/\a)/\z’:O
STA(aA) =0
Sz < (and)?
&z < (and)*
Sy < (aAd)
Sy<(and)
S yAlani)=0

SyAacll

Hence z = y(y(I) A ¢(I°)). Therefore G = (1) A %(I°). a

Corollary 4.3.14 G is a PJP-congruence.

Proof.  This is obvious since %)(I) A 4(I°) is a PJP-congruence. O

4.4. Congruence Cokernels

We already have proved that if F is a filter of a distributive JP-semilattice S,

then the congruence ©(F) defined by

t=y(O(F)) <= zAf=yAf forsome f € F
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is the smallest congruence containing F as a class (see Theorem 3.4.5). Now we

have the following result for PJ P-semilattices.

Theorem 4.4.1 Let S be a PJP-semilattice and let F be a filter of S. Then

©(F) is the smallest PJP-congruence containing F as a class.

Proof. By Theorem 3.4.5, ©(F) is a JP-congruence containing F' as a class.
Let = 0(©(F)). Then z A f = 0 for some f € F. This implies f < z*. Thus
z* € F'. Hence z* = 1(©(F). Hence by Theorem 4.3.1, we have ©(F) is a PJP-

congruence. O

Let 8 be a PJP-congruence on S. Then
Coker(f) = {z € S |z =1(6)}

is called the cokernel of 6. A subset J of S is said to be congruence cokernel if

J = Coker(#) for some PJP-congruence 6 on S.
Lemma 4.4.2 FEvery cokernel is a filter.

Proof.  Let F' = Coker(f) for some PJP-congruence §. If z,y € F, then z = 1(f)
and y = 1(6). Hence z Ay =1(f). ThuszAy € F. Now let z € F and = < .
Thenz =zAy=1Ay(#) =y. Thus y = 1(f). Hence y € F. Therefore F is a

filter.

Corollary 4.4.3 Every filter of a PJP-semilattice is a cokernel.
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Proof. It is clear from the fact that for any filter F of S we have

TEF &= L{e(F)).

Let S be a PJP-semilattice. A filter F' of S is said to be a *-filter if

f"eF=>feF

Lemma 4.4.4 Let S be a distributive PJP-semilattice. If a \V/ b exists, then

(@aVb)* =a* Ab*.

Proof. ~ We have (aVb) A (a*Ab*) = (aAa"Ab*)V (bAa* Ab*) =0V 0 =0.
Let (aVb) Az =0. Then (aAz)V (bAz) =0. HenceaAz =0and bA z = 0.

This implies z < a*,b*. Hence z < a* A b*. Therefore (a V b)* = a* A b*. O

For every filter F' of S define

F.={zeS|z*cF}.

Lemma 4.4.5 Let S be a distributive PJP-semilattice and F be a filter of S.

Then F, is a kernel ideal of S.

Proof. Let z,y € F,. Then z*,y4* € F. If z V y exists, then by Lemma 4.4.4,
we have (z Vy)* = 2* Ay* € F as F is a filter. Hence zVy € F,. Let z € F,
and y < z. Then y* > z* € F. This implies y* € F. Thus y € F,. Hence F, is

an ideal.
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To prove that F, is a kerne] ideal, let 2,y € F,. Then z*,y* € F so that (z* A

y)*=3*Ay* € F and consequently (z* A y*)* € F,. Hence by Theorem 4.3.4,

F, is a kernel ideal. 0

For every I € KI(S) define

I*={$ESISC*EI}.

Lemma 4.4.6 Let S be a distributive PJP-semilattice and I be a kernel ideal

of S. Then I, is a *-filter of S.

Proof. Let z,y € I,. Then z*,y* € I. So that by Theorem 4.3.4, we have
(zAyY)* = (zAy)™ = (z** Ay**)* € I. Hence z A y € I,. Now let z € I, and
y 2 z. Then y* < z* € I so that y* € I and consequently, y € I,. Hence I, is
a filter. Let z** € I,. Then z* = z** € I and hence z € I,. Therefore I,isa

*_filter. O

Theorem 4.4.7 For any filter F' of a distributive PJP-semilattice, (F)e=F

if and only if F' is a *-filter.

Proof.  Let (Fi)« = F and let z** € F. Since F is a filter, F, is a kernel ideal.
Hence z* € F, and so z € (F.)., = F. Thus F is a *filter.

Conversely, let F be a *-filter. Then

€ (F). &z €F,
Szt eF

&z €F (= as Fisa*filter and <= as F is a filter ).
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a

Boolean Congruences. Let S be g PJP-semilattice. A congruence @ on S

is said to be boolean congruence if % is a Boolean lattice.

Theorem 4.4.8 A PJP-congruence 9 is a boolean congruence if and only if for

alz € X, z = z*(4).

Proof.  This is immediate from the fact that ([z](6))* = [z*](#). ]

A filter F' of a PJP-semilattice S is called D-filter if it contains the dense filter

D={zeS|z* =0}
Theorem 4.4.9 Every *filter is a D-filter but the converse is not true.

Proof. Let F be a *filter and let d € D. Then d** = 1 € F which implies that

d € F. Hence F contains D. Thus F is a D-filter.
To prove the converse is not true, consider the distributive PJP-semilattice

N given in Figure 4.3. If F = [c), then F is a D-filter but not *-filter. O
1

d

FIGURE 4.3

Theorem 4.4.10 Let S be a distributive PJP-semilattice. Then the following

are equivalent:
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(i) every D-filter is g *_filter;

(ii) ©(D) is a boolean congruence.

Proof.  (i)= (ii). For each z € S we haye F — [z**) V D is a D-filter and hence

F is a *filter. Since z** € F, we have z € F. Thus z = z** A d for some d € D.

This implies £ A d = z** A d. Hence ¢ = z**O(D). Therefore, by Theorem 4.4.8,

O(D) is a boolean congruence.

(ii)=> (i). Let F be a D-filter. By (ii), ©(D) is a boolean congruence. Hence
by Theorem 4.4.8 z = £**(©(D)). Thus zAd = z** Ad for some d € D. If
z* € F,then z*™*ANd € Fas DCF. Hence z Ad € F and consequently, z € F.

Thus F is a *filter. .




CHAPTER 5

Stone JP-semilattices

5.1. Introduction

Stone lattices is a well known subclass of pseudocomplemented lattices. In
this chapter we intend to explore the Stone’s property in PJP-semilattices. In
fact, we generalize some results of Stone lattices for Stone JP-semilattices. For
Stone lattices we refer the reader to [16, 17]. A distributive PJP-semilattice

S = (S;A,V,*,0,1) is said to be a Stone JP-semilattice if for any a € S,
a*Va*™ exists and ¢* Va** = 1.

In Section 5.2 we give an example of a Stone JP-semilattice. This is a dis-
tributive JP-semilattice but the underlying semilattice is not distributive in the
sense of distributivity in semilattices. We give a characterization of Stone JP-
semilattices. In Section 5.3 we study the kernel ideals of Stone JP-semilattices.
In section 5.4 we study the kernel preserving JP-homomorphism of Stone JP-

semilattices.
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9.2. A characterization of Stone JP-semilattices

Consider the JP-semilattice M given in the Figure 5.1. The Figure represents

that for any n > 1, g, is an upper bound of a,b and there is b, = b such that

an A bn = bn. Observe that M is not g distributive semilattice, for b > a A by but

there are 10 @, 2 a and b, > by such that b = g, A b,.

FIGURE 5.1. a distributive JP-semilattice

Theorem 5.2.1 M is a distributive JP-semilattice.

Proof. Let z,y,2 € M with yV 2z exists. Without loss of generality if we assume
that y < z, thenzA(yVz)=zAz=(zAy)V(zAz). Thus M is a distributive
JP-semilattice. Now suppose y||2.

Case 1. Without loss of generality assume y = a and z = b, for some n.

Subcase 1. Suppose a, < z £ 1. Then b, < = and hence
zAyVz)=zA(aVh)=2Aa, =ay

and

(zAY)V(zA)=(xAa)V(zAb)=aVb, =a,.
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Subcase 2. Suppose a < z < @n. Then z = a, for some r > n and hence

m/\(sz)=a:/\(avbn)=aT/\an=ar
and
(:I:Ay)v(:c/\z)=(a,/\a)v(ar/\bn)zavbr:ar.
Subcase 3. Suppose z = a. Then
zA(yVa)=aA(aVb)=aAa,=a
and
ZAY)V(EAZ)=(aha)V(aAb) =aV0=a.
Subcase 4. Suppose b, < = < by. Then
sAyVz)=zA(aVb)=zAa,=b,
and
(zAyY)V(zAz)=(zAa)V(zAb)=0Vb, =b,.

Subcase 5. Suppose z < b,. Then z < a, and hence
zA(yVz)=zA(aVh)=xzAa, =z

and
(zAY)V(EAZ)=(xAd)V(zAb)=0Vz=uz.

Case II. Without loss of generality assume y = a, for some n and z = b, for

some 0 < r < n.

Subcase 1. Suppose a, < z < 1. Then b, < z and hence

zA(yVz)=zA(a,Vb) =z Aa, =aq,
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and
(ZAY)V(zAz2) = (TAaG)V (zAb) =a, Vb =a,.
Subcase 2. Suppose a, < z = 0 < @r. Then
TA(yVz)=anAa =a,
and
@AY V(EA2) = (amAan)V (@m Ab) =ay V by = ap.
Subcase 3. For z < a, or b,. We have
TA(yVz)=z=(zAy)V(zA2)
Subcase 4. Suppose b, < z < by. Then
zA(yvVz)=zAa,=b,
and
(zAyY)V(eA2)=(zAa,)V(TAb)=0b, Vb =b,.

Thus M is a distributive JP-semilattice. O

Theorem 5.2.2 M is a stone JP-semilattice.

Proof.  Observe that for any = > a,b, we have z* = 0 and for any z € [b, by} we
have z* = @ and a* = by. Hence, z* V z** = 1 for each £ € M. Therefore M is a

Stone JP-semilattice. O

Now we give a characterization of a Stone JP-semilattice which is a general-

ization of an important result for Stone lattices in Lattice Theory.
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Theorem 5.2.3 For a distributive PJP-semilattice S, the following conditions

are equivalent:

(a) S is a Stone JP-semilattice.

(b) a* v b* exists and (a A b)* = a* V b* for any a,b € S.

Proof.  (a) => (b). Let S be a Stone JP-semilattice. We shall show that (aAb)*

is the least upper bound of ¢* and b*..

By Theorem 4.2.1 (i), a*,b* < (a Ab)*. Let a*,b* < 2. We have to show that
(anb)* < z. It is enough to show that z A (aAb)* = (aAb)*, that is, T A (a A D)*
is the pseudocomplement of a A b.

Clearly, (a Ab) A (zA(aAb)*) =z A(aAb)A(aAb)* =0. Let (a Ab) Ay = 0.
We shall show that y < z A (a Ab)*. Now y AaAb =0 implies y < (a A b)* and
yAb < a*. Hence yAa*™*Ab< a*Aa** =0. Thus y A a*™* Ab = 0 and hence

yAa*™ <b* <z Also y A a* < a* < z. Therefore,
y=yAl=yA(@"Va™)=(yAa)V(yAra**) <z

Hence y < z A (a A b)*. This implies z A (a A b)* = (a A b)*.
(b) = (a). By (b), a* V a** exists and a* V a** = (e Aa*)* = 0* = 1. Hence

(a) holds. O

5.3. Kernel Ideals of Stone JP-semilattices

We have seen that in a distributive PJP-semilattice the condition z € I

implies z** € I for an ideal I is necessary for the ideal to be a kernel ideal but not
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sufficient. We now prove that the condition is sufficient for a Stone JP-semilattice.

Of course, the following result is also a generalization of [9, Theorem 1.5].

Theorem 5.3.1 Let S be a Stone JP-semilattice. If I is an ideal of S, then the

following are equivalent:

(a) I is a kernel ideal;

(b) z € I implies z** € I.

Proof.  (a) = (b). Since S is a distributive PJP-semilattice, by Theorem 4.3.5

we have (b) holds.
(b) = (a). Let i, € I. Then i**,5** € I. Since S is a Stone JP-semilattice,
by Theorem 5.2.3, i** v j** exists and i**Vj** = (i*Aj*)*. This implies (:* AT*YF =

**V j** € I. Therefore, by Theorem 4.3.4, I is a kernel ideal. Thus (a) holds. O

We have seen that the description of join of two ideals of a distributive JP-
semilattice is not so handy. The life is easier as expected for the join of two kernel

ideals of a Stone JP-semilattice.

Theorem 5.3.2 Let S be a Stone JP-semilattice. If I and J are two kernel

ideals of S, then IV J is a kernel ideal and
Ivi={zeS|z< (*Aj*) forsomeie€ I,j€ J}.

Indeed,

IVi={zeS|z=ivjforsomei€l,je J}.
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Proof. Let

K={:c€S]:c<(z'*/\j*)*forsomeiGIandjEJ}.

We show that K is the smallest kernel ideal containing I and J. Clearly X is a
down set. Let z,y € K with 2 V y exists. Then z < (B3A7)* and y < (5 A 53"
for some 41,4, € I and j; € j5 € J. Since S is Stone, (77 A j71)* V (43 A 53)* exists
and (SJ AJ1)*V (5 A 53)* = (i A5 A§T A" Since I and J are kernel ideals, by
Theorem 4.3.5, there is k) € I and ko € J such that &} = i1 Aiy and k3 = jf A j3.

Hence z Vy < (k} A k3)*. Thus z Vy € K. Moreover

@A) < (@AG)"AAG)™) = (@ AG AT AG) = (K AR

Hence (z* A y*)* € K. Therefore, K is a kernel ideal. For each i € I we have
i < < (i*Ag*)* for any j € J. Hence i € K which implies that K contains I.
Similarly, K contains J.

Indeed, since S is a Stone JP-semilattice, by Theorem 5.2.3, ** V j** exists

and ¢ V 7** = (¢* A §*)*. Thus z € I v J implies z < (i* A j*)*. So,

t=2A(E"Aj*)* forsomeiel,jeJ
=z A (™ V5*)

= (zA™)V (x Aj**) as S is a distributive JP-semilattice.
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Now 2 € I implies i** € I as I is a kernel ideal. Hence z A i** € I. Similarly,

T AG* e J. Hence:cziijorsomeiGIandjEJ. Thus

IVJQKz{xES]'ﬂé(z'*/\j*)* for somei e I,j € J}
C{reS|z=ivj for some i € 1,5 € J}

CIvJ.

Hence
IVIi={zeS|z<(*Aj*)* forsomeicl,jeJ}
={z€S|z=ivj forsomeiel,jc J}
=K.
Therefore IV J is a kernel ideal. O

The set of all kernel ideals of a Stone JP-semilattice S is denoted by KI(S).
Corollary 5.3.3 KI(S) is a sublattice of I(S). a

Theorem 5.3.4 Let S be Stone JP-semilattice. Then KI(S) is a distributive

sublattice of 1(S).

Proof. LetI,J,K € KI(S). Letz€ IA(JVK). Thenz € landz e JV K.
This implies z = 7 V k for some j € J and k € K. Hence j € I and k € I. Thus
JEIANJand k€ I AK consequently z =jVke (IAJ)V(IAK).

The reverse inclusion is trivial. a
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Theorem 5.3.5 Let S be a Stone JP-semilattice. Then KI(S) is a complete

lattice.

Proof.  Let {I;} be a family of kernel ideals of S. Let 4,5 € () Iz. Then by
k=1

Theorem 4.3.4, (3* A j*)* € () Iz. Thus M Ik is a kernel ideal. Hence AL =
k=1 k=1 k=1
) Ix. We show that

k=1
\/I;c ={z< (s AZZA - A z,)" for some z; € I;,,1 < i n}.
Clearly, R.H.S is a down-set. Let z,y € R.H.S. with z V y exists. Since S is a
Stone JP-semilattice, we clearly have
TVYS(@IAZZA- ATV (y Ay A Ays)?

= (S} AT A AT AYTAYSA - AYS)*

where z; € I;,1 <i<nandy; € It;;1 < j < m. Thus zVvVy €R.H.S. and hence

R.H.S. is an ideal. Moreover,

(@AY < (@A A AT AGTAY A Ayn)™)”

<@ ATIA- AT AY AT A AL

Hence (z* A y*)* € R.H.S. Therefore, R.H.S. is a kernel ideal. For each a € I; we
clearly have o €R.H.S. which implies that R.H.S. contains each I;. Let M be any
kernel ideal containing each I;. Let € R.H.S. Then z < (z} AziA---Axy)* for
some z; € Ii,,1 < ¢ < n. This implies z; € M for each 1 € 4 €< n. Since M is a

kernel ideal, for each 1 < 4 < n we have z; = 0(6) for congruence 6 on S. Hence
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zf = 1(0). Thus z{ Az A-- "Azy, = 1(0). This implies (FIAZZA- - Azh)* = 0(6).

Hence (27 A 23 A -+ Az%)* € M which implies that = € M. Thus

\/Ikz{g;g(:c;/\xg/\---/\x;)* forsomexielk,.,lsién}-
k=1

Let S be a Stone JP-semilattice and let I € KI(S). Define
I"={zeS|z2™nI=(0)

Then clearly, (0]" =S and S" = (0].

Theorem 5.3.6 For any I € KI(S) we have

(a) I" € KI(S);

(b) I" is the pseudocomplement of I in KI(S).

Proof.  (a) Clearly, I" is a down-set. Let z,y € I" with z V y exists. Then

T*ANi=y* Ai=0for all i € I. For any ¢ € I, we have

(VYY) Ai=(z" Ay A
= (£ Vy™) At (as S is a Stone JP-semilattice)

= (2™ Ai)V (¥ A1)



9.3. KERNEL IDEALS OF STONE JP-SEMILATTICES 87

Hence z Vy € I". Moreover, for all i € I we have

[(x* A y*)*]** /\ Z‘ — ($* /\y*)* Ai
= (" Vy*™) Ai (as S is a Stone J P-semilattice)
= (z™ AQ) V (y™ Ad)

=0.

Hence (z* A y*)* € I".

Therefore, I" is a kernel ideal.

(b) Clearly INI" = (0]. Let J € KI(S) with TN J = (0]. Suppose z € J.
Then z** € J as J € KI(S). Thus z** A¢ =0 for all ¢ € I. This implies z € I".

Therefore, I" is the pseudocomplement of I in KI(S). O

For @Q C S, define

Q' ={z €S|z <y for some y € Q}.

For z € S, we write z* in stead of {z}*. Thus zt = (z].
Theorem 5.3.7 I € KI(S) has a complement if and only if I is principal.

Proof.  Suppose I has a complement. Then S = IV I" and since S is Stone, by
Theorem 5.3.2, we have 1 = (z* A y*)* for some z € I and y € I". This implies

y*+ N T = (0]. Thus y** A% =0 and hence i < y* for all i € I. Therefore, for all
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i € I we have

Z.** — Z-** A 1 — i** A (x* A y*)* s [Z A (.'L'* A y*)*]**

S [Z /\ (1:* A i)*]** — (Z /\.T**)** — in: A x**'

Thus we obtain ** = ** A ** and so 3 S 7 <z €7 (as I is a kernel ideal).

Hence I = z**+.

Conversely, let I be principal. Then I = z* for some z € S and hence I = z**+

as ¢ < z** € I. This implies
I"=s{yeS|y"Ae” =0} ={yeS|yrz=0}={yeS|y<a*} =z
Thus, by Theorem 5.3.2,
IVI"={yeS|y< (@*Az"™)*}=G.

Hence I is the complement of I. O

Recall that a filter F' of a PJP-semilattice S is said to be a *-filter if
f*eF= fePF.

The set of all *-filters of a PJP-semilattice S will be denoted by F*(S).

First we give a description of the join of two *-filters.

Theorem 5.3.8 Let S be a Stone JP-semilattice. If Fy and Fy are two *-filters

of S, then F, V F, is a *-filter and

FiVFER={zeS|z"<(iAj)" for somei € F},j € Fy}.
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Proof. Let

K={:UES|$*<(z'/\j)*forsomeieFl and j € F3}.

We show that K is the smallest *-filter containing F; and F;. Since z < y implies
¥ < 2" we have K is an up-set. Let z,y € K. Then z* < (41 A j1)* and
¥* < (i2 A j2)* for some 41,4 € F, and j; € J2 € Fy. Since S is Stone, z* V y*
exists and (z Ay)* =a* Vy* < (i1 A jy)* vV (2 A J2)* = (i1 A g A 1 A j2)* where
iyNiy € F1 and j1 Ajs € Fy. Hence z Ay € K. Moreover, if z** € K, since
z* = z*** we have z € K. Therefore, K is a *-filter. Let i € F}. Since for any
J € Fy, we have i* V j* exists and ¢* < ¢* V j* = (i A j)*. Hence i € K which
implies that K contains Fj. Similarly, K contains F3. Let M be any *-filter
containing F; and F,. Let £ € K. Then z* < (i A j)* for some ¢ € F1,j € F5.

This implies 4,5 € M. Since M is a filter, i A j € M and hence (i A j)** € M.

Thus z** € M. This implies z € M as M is a *-filter. Thus IV J = K. |

Corollary 5.3.9 Let S be a Stone JP-semilattice. For any Fy, Fy € F*(S) we

have

FivE={zeS|z*<i"Vj forsomeic Fi,j € Fz}.

Proof. This is immediate from the fact that in Stone JP-semilattice (i A j)* =

iV g O
Now we have the following result.

Theorem 5.3.10 Let S be a Stone JP-semilattice. Then KI(S) & F*(S).
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Proof. Define a map f : KI(S) —» F*(S) by
f)={zeS |z e}

By Lemma 4.4.6, f(I) € F*(S). Clearly, f is well defined, one to one and

preserves the N on KI(S). Let I, J € KI(S). Then

fAv ={ze8|z eIV}
={z € S|z"=ivjforsomeicIand;jeJ}
={z € §|z™ =" A j* for some i** € I and j** € J}
={z € §|z* =4 Vv j* for some i** € I and j** € J}
={zr €S |z*=i"Vj* for some i* € f(I) and j* € f(J)}
= f()v f(J).
Let F' € F*(S). Define
I={zeS|a"eF}
Then by Lemma 4.4.5, [ is a kernel ideal. Hence
1) ={zeS|a eI}
={zeS|z" e F}
= JE,

Hence f is onto.

Therefore f is an isomorphism. t
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5.4. Kernel homomorphisms

Let S; and Sy be two JP-semilattices. Recall that a semilattice homomor-

phism ¢ : S; — S, is called JP-homomorphism if for all z,y € S withzVvy
exists in 5; implies ¢(z) V (y) exists in S, and o(z V y) = o(z) Vly). A

JP-homomorphism ¢ : §; — S is said to be a strong JP-homomorphism if
z Vy exists in S} if and only if ¢(z) V p(y) exists in Ss.

The other definitions are analogous. Remark that every one-to-one strong JP-
homomorphism is a JP-embedding. A JP-homomorphism ¢ is said to be a PJP-

homomorphism if

Let ¢ : S; — S, be a PJP-homomorphism. Define
o = {z € 51 | p(z) = 0}.
Lemma 5.4.1 (g is a kernel ideal.
Proof.  Clearly, g is an ideal. To prove (g is a kernel ideal let =,y € . Then
o((z* AY)) = (e(" AY))" = (p(2)" Ap(y))" = 0.
Hence (z* A y*)* € @o. Thus by Theorem 4.3.4 we have ¢ is a kernel ideal. U

Let S; and S, be semilattices and let f : S; — S» be a mapping. For each

X C S; and for each Y C S, define

fX)={f(=) |zeX} and f7(Y)={zeX|flz)eY}.
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Theorem 5.4.2 Let S; and S, be two PJP-semilattices and Jet f:51—= S, be

a mapping. Then

(a) iffisa PJP-epimorphism, then f “(Y) is a kernel ideal of S, for each
kernel ideal Y of Sy;
(b) if f is a strong PJP-epimorphism, then f(X) is a kernel ideal of S, for

each kernel ideal X of S;.

Proof.  (a) Let ¥ be a kernel ideal of S;. Since 0 € ¥ and f is an PJP-
epimorphism, we have f<(Y) is non-empty. Let z ¢ fE(Y) and ¢t < z. Then
f(t)=f(tAz) = f(t) A f(z) < f(z) € Y. Thus f(t) €Y as Y is an ideal. Hence
te fe(Y).

Let z1,22 € f<(Y) with 2, V x, exists. Then f(z1), f(z;) € Y. Since f is a
JP-homomorphism we have f(z1) V f(z,) exists and f(z; V 22) = f(z1) V f(2).
Since Y is an ideal, we have f.(z:1Vm2) = f(z1)Vf(z2) € Y. Thus z;Vze € F(Y).
Therefore f*(Y) is an ideal.

Finally, let z1,22 € f<(Y). Then f(z), f(z2) € Y and hence [f(z;)* A
f(z2)*]* € Y as Y is a kernel ideal. Since f is a PJP-homomorphism, we have
[f(z7) A f(z3)]* € Y. Thus [f(z} A z3)]* € Y. Consequently, [f(z* Az3)*] € Y.
Hence (z} A z3)* € f<(Y). Therefore, f<(Y) is a kernel ideal of S;.

(b) Let X be a kernel ideal of S;. Since 0 € X, we have f(X) is non-empty.
Let y € f(X) and ¢t € S, with ¢ € y. Then there is £ € X such that f(z) =y

and since f is a PJP-epimorphism, there is z; € S; such that f(z;) = t. Now
t=tAy=f@) A f(z) = flor A ).

Since z; Az € X, we have t € F(X).
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Let y1,92 € £(X) with y; V g, exists. Then Y1 = f(z1) and yp = f(z,) for
some T1, T2 € X. Since f is a strong JP-homomorphism, we have T1 V 5 exists

and f(z;Vzy) = F(@)V f(22) = 31 V. Since X is an ideal, we have 7, Vz, € X.

Thus y; Vy2 € f(X). Therefore f(X) is an ideal.

Finally, let 41,5, € f(X). Then Y1 = f(21),42 = f(z) for some z;,z, € X.

Since f is a PJ P-homomorphism, we have
WA B)" = [f(20)" A f(22)") = [£(&5) A F@3)]* = [ (& A" = F((a7 A z3)")-

Since X is a kernel ideal, we have (z} A'zf)* € X. Thus (i A3t € F(X).

Therefore, f(X) is a kernel ideal of S,. a

Let S; and S, be two PJP-semilattices. Then every strong PJ P-epimorphism

f 81— S, induces mappings fx : KI(S;) — KI(S,) defined by

and fi : KI(S3) = KI(S;) defined by
fre (7) = F(J).
Now we have the following result.

Theorem 5.4.3 Let S; and Sy be two Stone JP-semilattices. If f : S; — So is

a Strong PJP-epimorphism, then fy is a lattice epimorphism.

Proof.  Let I,J € KI(S;) and let © € fx(I) N fx(J). Then for some ¢ € I
and j € J we have z = f(i) = f(j) = f(i) A f(4) = f(iA]) € fr(INJ). Thus
Je(I)N fx(J) C fx(I N J). The reverse inclusion is trivial. Hence fx preserves

the N.
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Now let £ € fx(I'V J). Then z = f(y) for some y € Tv J. Since S; is a

Stone JP-semilattice, by Theorem 9.3.2,y =iV for some i € I and J € J. Thus

z=fIVi)=fE)Vviye fr(D)V fx(J). Hence fx(I'V.J) C fe(I)V fr(J).
The reverse inclusion is trivial. Hence fx preserves the V. d
Corollary 5.4.4 Iff:S; »S,isa PJP-isomorphism, then KI(S;) 2 KI(S,).

Now we have the following result.

Theorem 5.4.5 Let S; and S, be two Stone JP-semilattices. Iff:8,—8S,is

a strong PJP-epimorphism, then for every I € KI(S,),

f (fe(D)) =1V fo.

Proof.  First suppose z € IV fy. Then £ =iV j for some i € I and f(j) =
0. Therefore, f(z) = f(¢Vj) = fE)V f(§) = f(@). Hence f(z) € fx(I).
Consequently, z € f& (fx(1)).

Conversely, let z € fi (fx(I)). Then for some i € I we have
flz) = f(i) < FE™) = [fE)]"
So that f(z Ad*) = f(z) A f(s*) = 0. This implies z A i* € fy. Consequently,
z<e < E ALY =[P A AL

It follows by Theorem 5.3.2 that z € I V f;. O

Now the following result gives a characterization of a pseudocomplemented

lattice isomorphism.
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Theorem 5.4.6 Let S; and So be two Stone JP-semilattices. If f:8128,is

a Strong PJP-epimorphism, then the following statements are equivalent:
(a) fx is a pseudocomplemented lattice epimorphism;

(b) fo is a principal ideal,
Proof.  (a) = (b). By (a) we have

Te(foV 1) = fx(f) = fx(fo)" = Ss.

Hence fo V fg' = S1. Thus f; is a complemented element of KI(S;). Hence by
Theorem 5.3.7, f is a principal ideal.

(b) = (a). For every I € KI(S;), let z € fx(I"). Then z = f(y) for some
y € I". So that ™ Ai =0 for all i € I. This implies f(y)™* A f(2) = 0 for all
i€ 1. Thus z = f(y) € fx(I)". Hence fxr(I") C fr ().

Conversely, let z € fr(I)". Then z A f(i) =0 for all s € I. Since z € Sp and
f is an epimorphism, there is z € S; such that z = f(z). Thus f(z) A f (1) = 0.
Hence z Ai € fy. Since f; is a principal kernel ideal, by Theorem 4.3.6 there is
t € Sk(S1) such that f, = ¢***. This implies z A7 < t** and hence z A1 At* =0
and

FzA8) = F(2) A F@)" = F(2) A1 = £(2).

Putting 2At* = a we thus have z = f(a) such that for all € I we have aAi = 0.

Hence z € fx(I"). ; =



CHAPTER 6

JP Distributive Semilattices

6.1. Introduction

In this Chapter we study the JP-semilattice such that the underlying semi-
lattice is a distributive semilattice.

Recall that a JP-semilattice is said to be a JP distributive semilattice if its
underlying semilattice is a distributive semilattice. We already have shown in
Chapter 2 that the class of distributive JP-semilattices properly contain the class
of JP distributive semilattices.

It is well known that in a semilattice S a non-empty subset I of S is an
ideal of S if it is a down-set and every pair of elements of I has a common
upper bound in [. First we like to mention that an ideal of a distributive JP-
semilattice need not be an ideal of a distributive semilattice. For a counter
example consider the semilattice S as given by the following Figure 6.1. If we
choose I = {0, a, b, c}, then I is an ideal of S as a distributive JP-semilattice but
not an ideal of S as a distributive semilattice. In Chapter 2 we proved the Stone’s

Separation Theorem for a distributive JP-semilattice. As every JP distributive
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FIGURE 6.1. a JP Stone semilattice which is not a lattice

semilattice is a distributive J P-semilattice, so the Stone’s Separation Theorem for
JP distributive semilattice is obvious. Still in Section 6.2 we give another proof

of the theorem by using a different technique. Here we use maximal prime filter

instead of minimal prime ideal.

A pseudocomplemented distributive semilattice S with 1 is called a Stone
semilattice if for any ¢,z € S with ¢ > z*, ** implies ¢ = 1. In this chapter we
study the Stone JP-semilattice such that the underlying semilattice is distributive.
We call this semilattice by JP Stone semilattice. By definition, in a Stone JP-
semilattice S we have z* V z** exists for each + € S. So, a PJP distributive
semilattice S is a JP Stone semilattice if z* V z** =1 for all z € S§. The example
given in Figure 6.1 shows that every JP Stone semilattice need not be a lattice
even not a near lattice.

In Section 6.3, it is shown that in a JP Stone semilattice S we have zVy* always
exists for any z,y € S. This observation turns that we have a straightforward
generalization of the famous result of C.C. Chen and G. Grétzer for lattices. In
Section 6.4 we give some characterizations of minimal prime ideals for a JP Stone

semilattice. Here we also give a characterization of a JP Stone semilattice in
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terms of minimal prime ideals. In Section 6.5 we study the kernel ideals of JP

Stone semilattices with some characterizations.

6.2. The Separation Theorem for JP distributive semilattices

Let H be a non-empty subset of S. The smallest filter containing H is called
filter generated by H. It is denoted by [H). If H = {a}, then we write [a) for

[{a}). The filter [a) is said to be principal filter. The following results are similar

to meet semilattices.

Lemma 6.2.1 Let S be a JP-semilattice. Then

(a) F' = [H) if and only if for all f € F there exists hy, ho,- - h, € H such
that

FohiAhg A A by
(b) For any F,G € F(S), we have
FVG={z€S|z>fAgforsomefe€F and g€ G}.
(c) For any a € S, we have
@)={z €S|z >a}

O

For a distributive JP-semilattice S every element z € F'VG where F, G € F(S)
can not be written as x = f A g for some f € F' and g € G. For example consider
the JP-pentagon Ny. It is a distributive JP-semilattice. If F' = [b) and G = [¢),

then a € F vV G but a can not be written as a = f A g for some f € F and g € G.
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‘The following theorem is immediate from the definition of distributive semi-

lattice.

Theorem 6.2.2 Let S be 4 JP distributive semilattice. Then for any F\,F, €
F(S) we have

BVE={finf|fi € F1, f € By}

O

A prime filter F is called maximal if there is a prime filter T such that F C T,

then F = T. We have the following separation theorem for JP distributive

semilattice.

Theorem 6.2.3 (The JP-Separation Theorem) LetS be a JP distributive semi-
lattice. Then for any ideal I and any filter F' of S such that INF = (0, there

exists a prime filter P containing F such that PN I = {.

Proof.  Let F be the set of all filters containing F, but disjoint from 7. Then
F#0as FeF. Let C be a chain in F and let M := U{X | X € C. We claim
that M is a maximal element in C.

Let z € M and z € y. Then z € X for some X € C. Hence y € X as X
is a filter. Therefore y € M. Let z,y € M. Then z € X and y € Y for some
X,Y € C. Since C is a chain, either X C Y or ¥ C X. Suppose X C Y. So
T,y €Y and hence z Ay € Y as Y is a filter. Hence TAy € M. Thus M is a
filter. Clearly, M is the maximum filter containing F' and /N M = . Thus by

Zorn’s Lemma, F has a maximal element, say, P. We claim that P is a prime

filter.
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If P is not prime, there exists a,b € S such that g \/ b exists and a,b ¢ P but
aVbe P. Then (PV[a))NI+#®Band (PV[b))NI+#0as P is maximal. Hence
there exist p, ¢ € P such that pAa,gAb e I and hence PAgAa,pAgAbET as
I is an ideal. Since p,g€ P and Pis a filter, we have r = pA g € P. Since a Vb
exists and S is JP distributive semilattice and hence distributive JP-semilattice.
We have (r A a) V (r A b) exists and r A (a V b) = (raa)v(rAb) e PN, a

contradiction. Hence P is a prime filter. O
Corollary 6.2.4 In a JP distributive semilattice S, if F' is a filter of S and
a € S with a ¢ F then there is a prime filter P D F such that a ¢ P. O

Corollary 6.2.5 In a JP distributive semilattice S, if F is a filter of S and
a,b € S with a # b then there is a prime filter P containing exactly one of a

and b. O

Corollary 6.2.6 In a JP distributive semilattice S with 1, ifa,b € S withaVb

does not exist then there is a prime filter F such that a,b ¢ F.

Proof. If a V b does not exist, then there is d > a,b such that d < 1. Then
there is a prime filter F* such that d ¢ F and hence a,b ¢ F. O
Corollary 6.2.7 In a JP distributive semilattice S, every filter F is a intersec-

tion of all prime filters P containing F.

Proof. Let S be JP distributive semilattice and let I be a filter of S. Let

M= ﬂ{X | X is a prime filter of S and F' C X}.



6.3. JP STONE SEMILATTICES 101

Clearly, F' C M. We shall prove that F = M. If F # M, then there isa € M
such that a ¢ F. Then by Corollary 6.2.4, there is a prime filter P such that

F C Panda¢ P. This implies a ¢ M, a contradiction, Hence F = M. O

6.3. JP Stone semilattices

Ramana and Rama Rao [26] proved that in a Stone semilattice S = (S;A),

the least upper bound of {z,y*} exists for any z,y € S. Here we modify the

following crucial result for JP Stone semilattices.

Lemma 6.3.1 Let (S;A,V,*,0,1) be a JP Stone semilattice. Then z*Vy exists

for any z,y € S.

Proof. ~ Since y > 0 = z* A z**, we have y = z; A 2, for some z; > z* and
T3 2 ™. Hence z; > y,z*. We show that z; is the least upper bound of y and
z*. Let z > y,z*. Then z 2 z; A z; and hence z = a; A a, for some a; > z; and
az 2 3. Thusap 2 2o > 2" anday 2 2 > 2*. Hence gy 2 z*Vz* =1las Sisa
Stone JP-semilattice. This implies a3 = 1. Thus z2=a; Aaz = a1 Al =a; > z;.

This implies £, = z* V y. O

Remark. In the above Lemma the distributivity of the underlying semilattice
can not be relaxed. For example consider the distributive JP-semilattice M given
in the Figure 6.2. Then M is a Stone JP-semilattice, that is, distributive JP-
semilattice such that z* V z** = 1 for each € M. It is shown in the Section 5.2

that M is not a distributive semilattice. Observe that bV b = a V b does not
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exist. On the other hand Stone is necessary, for example, consider the distributive

semilattice My given in the Figure 6.2. Here a V a* does not exist.

by

FIGURE 6.2. a distributive JP-semilattice

Define D(S) = {z € S| * = 0}. The set D(S) is called the dense set. The

element of D(S) is called the dense element.

Lemma 6.3.2 Let S be a PJP-semilattice. Then D(S) is a filter. Moreover if

aV a* exists then a V a* € D(S).

Proof. Let z,y € D(S). Then we have (x Ay)*™ = z** Ay*™ =1A1=1. This
implies (z A y)* = 0. Hence z Ay € D(S).

Let £ € D(S) and y € S with y > z. Then y* < * = 0. This implies y* =0
and hence y € D(S). Therefore D(S) is a filter of S.

Moreover, if a V a* exists, then

Thus, a V a* € D(S). O
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Corollary 6.3.3 Let S be a JP Stone semilattice. Then for all x € S we have

zVz* e D(S).

Proof.  Since the underlying semilattice is distributive then then by Lemma 6.3.1,

z V z” exists and hence z v z* € D(9). O

Let S be a JP Stone Semilattice. Then a V a* exists, for each a € S and

aVa* € D(S). Hence like as a lattice we can interpret the identity
a=a"A(aVa).

This shows that every a € S can be written as a = b A ¢ where b € Sk(S) and
¢ € D(S). This observation turns our attention to straightforward generalization

of the following result due to C.C. Chen and G.Grétzer [3, Theorem 14.5]. Define
o(S):a— {zeD(S) |z >a}.

Theorem 6.3.4 Let S be a JP Stone semilattice. Then Sk(S) is a Boolean
algebra, D(S) is a distributive JP-semilattice with 1, and ¢(S) is a {0,1}-
homomorphism of Sk(S) into D(D(S)). The triple (Sk(S), D(S),¢(S)) char-

acterizes S up to isomorphism. ]

6.4. Minimal prime ideals for JP Stone semilattices

In this section we discuss the minimal prime ideals of a JP Stone semilattice.
First we have the following useful characterization of minimal prime ideals for a

JP Stone semilattice.
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Theorem 6.4.1 Let S be a JP Stone semilattice and let P be a prime ideal of

S. Then the following are equivalent:

(a) P is minimal.
(b) z € P implies z* ¢ P.
(¢) z € P implies z** € P.

(d) PND(S) =0.

Proof.  (a) = (b). Let P be minimal and z € P. Suppose z* € P. Set
D = (S\ P)V[z). We claim that 0 ¢ D. For if 0 € D, then 0 = g A z for
some g € S\ P. This implies ¢ < z* and hence ¢ € P which is a contradiction.
Therefore, 0 ¢ D. By JP-separation Theorem, there is a prime filter Q such that
DCQand0¢ Q. Let M = S\ Q. Then by Lemma 2.5.1, M is a prime ideal.
We claim that M N D = 0. Ifa € M N D. Then a ¢ Q and consequently a ¢ D
which is a contradiction. Hence M N D = (Z) Therefore M N (S\ P) = 0 and
hence M C P. Also M # P because z € D implies z € Q and hence = ¢ M.
This shows that P is not minimal. Hence z* ¢ P.

(b) = (c). Let z € P. We have 0 =z* Az** € P. By (b), since z* ¢ P and
P is prime, we have z** € P.

(¢c) = (d). Let z € PND(S). Then z € P and z* = 0. Thus z € P and
z** =1 ¢ P which contradict (c).

(d) = (a). If P is not minimal, then there is a prime ideal @ C P (that is, Q
is a proper subset of P). Let 1 € P\ Q. SincezAz*=0€ Q and z ¢ Q, we

have z* € Q C P. Since S is a JP Stone semilattice we have by Lemma 6.3.1,
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TV z” exists and hence z V z* € P. By Lemma 6.3.2, we have z V z* € D(S).

This contradicts (d). 0

Observe that (a) = (b) = (c) = (d) hold if S is PJP distributive semilattice.

But for (d) = (a) we need the Stone property.

The following theorem is a generalization of Gritzer and Schmidt [20].

Theorem 6.4.2 Let S be a PJP distributive semilattice. Then S is a JP Stone

semilattice if and only if PV Q = § for any two distinct minimal prime ideals P

and Q.

Proof. Let S be a JP Stone semilattice and let P and @ be two distinct
minimal prime ideals of S. Choose a € P\ Q. Then a ¢ @ and hence a* € Q as
aAa* =0 ¢c Q. Since P is minimal, by Lemma 6.4.1 we have a** € P. Hence
a*Va*=1e€ PVQ. Thus PVvQ@Q=S.

Conversely, suppose S is not Stone. If a* V a** # 1, then there is a prime
ideal R such that a* vV a** € R. We claim that (S \ R) V [a*) # S. Suppose
(S\R)V [a*) = S. Then there is z € S\ R such that z A a* = 0. Hence = < a**
which implies a** € S\ R. Thus a** ¢ R which is a contradiction. Similarly, we
can show that (S\ F)V[a**) # S. By the dual of Lemma 2.5.1 there are maximal
prime filters F' and G such that (S\ R) V [a*) € F and (S\ R) V [¢**) C G. Set
P=S\F and @ =S\ G. Then P and @ are minimal prime ideals of 5. We
claim that P # Q. Indeed, a € P, otherwise a € F. Hence aAa* =0 € F (as
a* € F), a contradiction. Thus by Theorem 6.4.1, we have a** € P while a** ¢ Q

(as a** € G). We now show that PVQ # S. Letz € P. If 2 ¢ R, thenz € S\ R
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and hence z € F, a contradiction. Hence z € R. Thus P C R. Similarly, @ C R.

This implies PV Q C R. Hence PV Q # 5. O

6.5. Kernel ideals for JP Stone semilattices

Theorem 6.5.1 Let S be a JP Stone semilattice and let J be an ideal of S.
Then the following are equivalent:

(a) J is a kernel ideal,

(b) z € J implies z** € J;

(c) each minimal prime ideal containing J is a minimal prime ideal;

(d) J is an intersection of minimal prime ideals of §.

Proof.  (a) is equivalent to (b) by Theorem 5.3.1.

(b) = (c). Suppose P is a minimal prime ideal containing J and z € P. Then
by Theorem 2.5.7 we have z Ay € J for some y € S\ P. Thus by (b) we have
T*AYy™ = (xAy)* € J C P. Since P is a prime ideal, z** € P. Hence by
Theorem 6.4.1, we have P is a minimal prime ideal of S. Thus (c) holds.

(c) = (d). Clearly, (d) follows from (c) by Lemma 2.5.3 and Theorem 2.5.6.

(d) = (b). Let z € J. Then by (d), z € P for all minimal prime ideal P
and hence by Theorem 6.4.1, we have £** € P for all minimal prime ideal P.

Therefore z** € J. O

Recall that for any kernel ideal J of a PJP semilattice S, the equivalence

relation 1 (I) defined by

r=y((J)) ifandonlyifzAae J S yAae Jforanya€ S
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is the largest PJP congruence containing J as a class. Now we have the following

result.

Theorem 6.5.2 Let S be a distributive PJP-semilattice and let J be a kernel

ideal of S. Then

P(J) = ﬂ{w(P) | P is a minimal prime ideal of S and J C P}.

Proof.  Suppose z,y € S with z = y(4/(J)) and let z € P. Then by The-
orem 2.5.7 z Az € J for some z € S\ P. Hence yAz € J and so y € P.
By symmetry we can prove that y € P implies £ € P. Thus z € P if and
only if y € P. Hence z = y()(P)). Therefore, ¢(J) C RHS. But we have
J = ({P | P is a minimal prime ideal of S and J C P} and so J is a congru-
ence class of S modulo ({#(P) | P is a minimal prime ideal of S and J C P}.
Hence ({(P) | P is a minimal prime ideal of S and J C P} C #(J). This

completes the proof. O

Theorem 6.5.3 Let S be a JP Stone semilattice and let J be a prime kernel

ideal of S. Then the following are equivalent:

(a) z=y(¥(J));
(b) z** Aa* = y** A a* for some a € J;

() zABVE)Aa*=yA(DVDI)Aa* forsomebe S anda € J.

Proof. (a) = (b). z = y(¥(J)). Then either z,y € J or z,y ¢ J. Suppose

z,y € J. Since J is a kernel ideal of S, we have (z* A y*)* € J. Now

:E** /\ [(x* /\y*)*]* — mt* /\ (m* /\ y*)** — :L,** /\ $* /\ y* — 0.
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Similarly, y"/\[(:l,'*/\y*)*]* = (0. Hence z**Aq* = y** Aa* where g = (:c*/\y*)* e .

Now suppose z,y ¢ J. Since J is prime ideal, z Ay ¢ J. Hence (z A y)* € J.

Now

ST A@AY)) =2 A AN =2 Ay =y A ((E A))

Thus (b) holds.

(b) = (c). Since S is a JP Stone semilattice, we have z V z* and y V y*
exist for any z,y € S. Also z V z*,y V y* € D(S), the dense set of S. Hence
(zVz*)A(yVy*) € D(S) as D(S) is a filter. Hence (zVz*) A (yVy*) = bV b*

for some b € S. Now for some a € J we have

gABVE)Aa =@ AzVZ)ABVDI)AG
=z A((zVz)ADBVDI))Aa
=z"AMBVI)AQ®
=y"*A(VDI)AQ

=yA(bVd)Aa".

Thus (c) holds.
(c) = (b). Suppose z A (bVbd*) Aa* =y A (bVb*) Aa* for some b € S and
a € J. Then (z A (bVb*)Aa*)™ = (yA(DVD*) Aa*)*™ so that ** Aa* = y** Aa*.

Hence (b) holds.
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(b) = (a). Let zAa € Jfor any a € S. Ifae J, thenyAacJ. Ifad¢J,

then ¢* € J as J is a prime ideal. Since J is a kernel ideal, (z A a)** € J. Now

(zAa)* =z Na™eJ
=z A(a)* € J
=Sy A(@)ed
= (yrha)* e J

= yAac€l

Similarly, if y A a € J, then £ Aa € J. Hence (a) holds. O

Let J be an ideal of a PJP semilattice S. Define
Jo={z €S|z > a" for some a € J}.

If S is a pseudocomplemented lattice, then by Cornish [9], J. is a filter of S. But
if S'is a PJP-semilattice, then we do not know whether J, is a filter or not. Now

we have the following result.

Lemma 6.5.4 Let S be a JP Stone semilattice and J be a kernel ideal of S,

then J, is a filter.

Proof. By the definition, J, is an up-set. Let z,y € J,. Then = > a* and
y 2 b* for some a,b € J. Since J is a kernel ideal we have b** € J and since S is
a JP Stone semilattice we have z Ay 2 a* Ab* = (a V b™)*. Now a V b** € J as

J is an ideal and a V b** exists. Hence z A y € J,. Therefore J, is a filter. O
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Recall that if F' is a filter, then

¢ =y(O(F)) if and only if z A f = y A f for some f€F.

Lemma 6.5.5 Let S be a JP Stone semilattice and J is a kernel ideal of S.

Then ker(©(J,)) = J.

Proof. Let z € ker(©(J,)). Then z = 0(@(J,)). Thus zA f = 0A f = 0 for
some f € J,. This implies ¢ < f* for some f > a* where a € J. Hence z < a**
for some a € J. Since J is a kernel ideal we have a** € J and hence z € J.
Therefore ker(©(J,)) C J.

Conversely, let € J. Then z** € J. Since 2* > z***, we have z* € J,. Now

£ Az* =0=0Az" implies z € ker(©(J,)). Therefore J C ker(©(J,)). O

For any ideal J of a JP-semilattice S and a € S, define
Jo={zeS|anz e J}.

Clearly, J C J, and a € J implies J, = S. For any JP-semilattice S and a € S
the set J, may not be an ideal of S. For, if we consider the pentagonal lattice N
(see Figure 6.3) as a JP-semilattice and J = (a], then J, = {0, a, b} which is not
an ideal.

Now we have the following result.

Lemma 6.5.6 Let S be a distributive JP-semilattice and J be an ideal of S.

Then for any a € S we have J, is an ideal of S.

Proof.  Since J is an ideal, J, is down-set. Let z,y € J, with zV y exists. Then

(zVy)Aa= (zAa)V(yAa) € J. Hence zVy € J,. Thus J, is an ideal of S. O
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0 N

FIGURE 6.3

By the definition it is clear that if @ > b, then J, C J,. Define
D(J)={a€ S| J,=J}.

Clearly, D((0]) = D(S), the dense set. Recall that the congruence v(J) is defined

by

z=y@p(J)) ifandonlyifzAie J o ynie
We have the following result.

Lemma 6.5.7 Let S be a JP Stone semilattice and J be a kernel ideal of S.
Then
(a) D(J) is a filter;

(b) Cokeryp(J) = D(J).

Proof. (a) Let z € D(J) and z € y. Then J, = J and J, C J; = J. But
J C J, is trivial. Thus J, = J and hence y € D(J). Now let 2,y € D(J). Then
Jo=J, =J. Let a € Jypy. Then s AyAa € J and hence yAa € g = oL,
Consequently, a € J, = J. Hence Jopy € J. But J C Jzay is trivial. Thus

Joay = J and hence z Ay € D(J). This implies D(J) is a filter.



6.5. KERNEL IDEALS FOR JP STONE SEMILATTICES 112

(b) Let z = 1(4(J)) and let @ € J,. Then aAz € J and g A g = a(y(J)).
Thus @ € J. Hence x € D(J). This implies that Coker(1(J)) C D(J). Now let
z € D(J). Then J, = J. This implies z A a € J if and onlyifa=1Aa € J for

any a € 5. Hence z = 1(4(J)). Thus z € Coker(s(J)). O

Theorem 6.5.8 Let S be a JP Stone semilattice and J be a prime ideal of §.

Then the following are equivalent.

(a) J is a kernel ideal;
(b) ¥(J) = ©(D(J));
(c) D(J) =D(S)V Jy;

(d) D(S) € D(J).

Proof. (a) = (b). Let z = y(¢/(J)). Since J is a prime ideal, by Theorem 6.5.3,
we have z A (bVb*)Aa* =y A (bV D) Aa*, for some b € S and a € J. Now
a € J implies a* = 1(24(J)), and since (bV *)** Aa* = 1" Aa* for any a € J, by
Theorem 6.5.3 we have, bV b* = 1(¢(J)). This implies (b V b*) Aot = 1((J)).
Thus (b Vv b*) A a* € Coker(¢(J)). Hence z = yO(Coker(¢)(J))). Hence by
Lemma 6.5.7, z = y(©(D(J))). Conversely, suppose z = y(©(D(J))). That is,

z = yO(Coker(x(J))). Then z A f =y A f for some f € Coker(¢(J)). Now
z=zAl=zsAf=yAf=yAnl=y(J])).

Thus (b) holds.
(b) = (c). Let z € D(S) V J,. Then z = aAb for some a € D(S) and b € J,.
This implies z** = (a A b)** = o™ A b** where a** =1 and b > c*for some ¢ € J.

Thus z** = b** > ¢* and hence z** Ac¢* = 1 Ac*. Consequently, by Theorem 6.5.3
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we have z = 1(y(J)). Hence z = 1(9(D(J))). This implies z € D(J), that is
D(S) Vv J. C D(J).

Conversely, let z € D(J) = Coker(y(J)) (by Lemma 6.5.7). Then z =
1(4(J)). Hence by Theorem 6.5.3, zA (bVb*) Aa* = IA(BVH)Aa* = (bVD*)Aa*
for some b € S and a € J. This implies z > (bV b*) Aa* where bV b* € D(S) and
a* € Ji. So, z € D(S) V J, and hence D(J) C D(S) V J,.

(c) = (d) is trivial.

(d) = (a). Let z € J. Since z Vz* € D(S) C D(J) (by (d)), we have
Jovge = J. Since ** A (z V 2*) =z € J, we have z** € Jyy,- = J. Hence J is a

kernel ideal of S. O
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