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ABSTRACT

The goal of this thesis is to find out some new R, -concepts for fuzzy
topological spaces. Besides some concepts of fuzzy R,, R, T,,7,, T, and

regular topological spaces that are already existing in the literature are recalled.

In this work, twelve R, -axioms of fuzzy R,-topological spaces are introduced
and studied in detail. Interrelations among various R, concepts of fuzzy
topological spaces are discussed. In analogy with the well known topological
properties, a complete answer is given with regard to all possible
(R, AT, © T,) and (R, = R,)-type implications for fuzzy topological spaces. It
is also shown that, though a regular topological space is also a R,-topological

space, this is not true for fuzzy topological spaces.
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INTRODUCTION

The concept of fuzzy sets was first introduced, in 1965, by L. A. Zadeh in his new
classical paper [42] as an attempt to mathematically handle those phenomena which are
inherently vague, imprecise or fuzzy in nature. He interpreted a fuzzy set on a set X is as
a mapping from X into the closed unit interval I = [0, 1]. Various merits and applications
as well as some limitations of fuzzy set theory have since been demonstrated by Zadeh

and a large number of subsequent workers.

The advent of fuzzy set theory has also led to the development of some new areas of
study in mathematics. It has become a concern and a new tool for the mathematicians
working in many different areas of mathematics. These have been generally
accomplished by replacing subsets, in various existing mathematical structures, by fuzzy
sets. In 1968, Chang C. L. [10] did “fuzzification” of topology by replacing subsets in the
definition of fuzzy topology by fuzzy sets. Since then a large body of concepts and results
have been growing in this area which has come to be known as “fuzzy topology”. In
1971, Goguen [21] defined fuzzy set by replacing the unit interval I by a completely
distributive lattice L with an order reversing involution. A further development of L-
fuzzy topology was made by Sarkar Mira [33, 34] and Hutton B. [22, 23]. The present
state of ongoing research in fuzzy topology can be divided in two separate sections, one
of which is exclusively using the unit interval I to describe fuzziness (Chang’s fuzzy
topologies) and the other using L-fuzzy topologies. In our investigation, we have

preferred the concepts of fuzzy topology developed by Chang C. L. [10].

A major deviation in the definition of fuzzy topology was made, in 1976, by Lowen R.
[25, 26]. He gave a modified definition of fuzzy topology by including all constant fuzzy
sets in a fuzzy topology. Furthermore, in 1977, Lowen R. introduced the notions of initial
and final fuzzy topologies, which are two appropriate concepts to generalize the

topological ones from the categorical point of view.
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In 1980, Pu Pao-Ming and Liu Ying-Ming [31, 32] gave a new definition of fuzzy point.
They also introduced the notions of quasi-coincidence and quasi-neighborhoods of fuzzy
points. With these new concepts they established the Moore-Smith convergence of fuzzy
setting.

In 1974, Wong C. K. [39, 40] extended the notions of product and quotient topologies to
fuzzy setting and later many authors including Lowen R. [25, 26], Hotton B. [22, 23], Pu
Pao-Ming and Liu Ying-Ming [31, 32], Mashhour et al (27, 28], Christoph F. T. [12] and
Erceg M. A. [15] etc.

The concepts of Ro-type and R;-type axioms for fuzzy topological spaces was first
introduced by Hutton B. and Reilly I. [23] in 1980. In 1990, Ali D.M., P Wuyts, A.K.
Srivastava [6] introduced some other definitions of fuzzy Ro- axioms. Later Srivastava

[35] and Ali D. M. [3, 4] gave some new concepts of R,-property in fuzzy topology.

The present thesis entitled “On Ry and R; Properties in Fuzzy Topological Spaces” is
devoted to the study of some Ry and R;-propeties for fuzzy topological spaces. The
material of this thesis has been divided into five chapters and a brief discussion of this are

mentioned below:

The first chapter is incorporated with some basic concepts, definitions and known results
on fuzzy sets, fuzzy topological spaces and different. mapping on fuzzy topological
spaces which are necessary for the subsequent chapters. Results are provided without

proof and can be seen in papers referred to.

In chapter two we recall various concepts of fuzzy Ry properties, fuzzy To-properties and

fuzzy T)- properties. We have added some new results of these concepts.

In chapter three, we introduce some new concepts of Rj-axioms for fuzzy topological
spaces. We study their interrelations, goodness and initialities. Some other results are also

added regarding to this concepts.



In chapter four we recall some existing R;-properties for fuzzy topological spaces. We
study their interrelations and their relations with the R;-properties introduced in the

previous chapter.

In chapter five, the relations between a fuzzy Ri-space and a fuzzy Ry-space are
discussed. Besides this, we recall some fuzzy regularity concepts from [4, 5] and it is
shown that, though the regularity axiom implies R;-axiom in ‘general topological spaces’

this is not true, in general, in ‘fuzzy topological spaces’.



CHAPTER -1

Preliminaries

In this chapter we recall some definitions and basic results (which we label as facts)
on fuzzy sets and fuzzy topological spaces. This chapter is considered as the base and
background for the study of subsequent chapters and we shall keep on referring back

to it as and when needed.
1.1 Fuzzy sets:

1.1.1. Definition [42]: Let X be a non-empty set and I the unit closed interval [0, 1].
A fuzzy set is a function u: X -5 I, V x € X; u(x) denotes a degree or the grade of
membership of x. The set of all fuzzy sets in X is denoted by I*. Ordinary subsets of
X (crisp sets) are also considered as the members of I* which take the values 0 and 1
only. A crisp set which always takes the value 0 is deﬁoted by 0; similarly a crisp set

which always takes the value 1 is denoted by 1.

1.1.2. Definition [4]: Let u: X — L Then the set {x€ X: u(x) > 0} is called the support
of u and is denoted by ug or supp(u). If A ¢ X, Then by 1, we denote the
characteristics function A. The characteristics function of a singleton set {x} is

denoted by 1,.

1.1.3. Definition [4]: Let u be fuzzy sets in X. Then by u°, we denote the complement

of u which is defined as u°(x)=1-u(x) Vxe X.

1.1.4. Definition [42]: Let u and v be two fuzzy sets in X. We define
(i) u=vifandonlyif u(x) = v(x) ¥ x € X.

(iucvifand only if u(x) <v(x) Vx e X.

(i1i) (u v v) (x) = max {u(x), v(x)}, where x € X.

(iv) (u A v)(x) = min {u(x), v(x)}, where x € X.
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1.1.5. Definition [42]: For a family of fuzzy sets {u,:ie J} in X. We define
() [Ju; (x) =sup{u; (x)} ¥xe X.
i€l

ieJ

i) [, (x)=inf {u; (x)} Vxe X.

ie]J

1.1.6. Fact. Let u, v and w are fuzzy sets in X. Then
(Duvu=uanduAu=u.

(uvv=vvuanduAv=vau.
(iuvv)vw=uv((vvw)and WAVIAW=uA(vAwW).
(iviV(auvv)au=uand (uAv)vu=u.
Muv(ivaw)=@uuvv)aluvw)and un(vvw)=uaAv)vuaw).

(vi) (u° )c =)

(vii) (uvv) =uAv®and (uAav) =u’vve.

1.1.7. Fact. Complementary law of cantor set doesn’t hold for fuzzy set in general.

That is, if ue I*, then uvu® #1and u Au® =0, in general.

1.1.8. Definitions [31]: A fuzzy point x in X is a special type of fuzzy set in X with
the membership function x, (x)=0c and x,(y)=0if x#y, where 0 <t < 1and x, y
€ X. The fuzzy point x, is said to have support x and value . We also write this as

ol

X"

1.1.9. Definitions [31]: Let ol _be a fuzzy point in X and u be a fuzzy set in X. Then

ol e u if and only if a< u(x).

1.1.10. Fact.: For all fuzzy points al, and for all fuzzy sets u, v in X, we have
((ucvifandonlyif al, eu=al, €.

(iij)u=vifandonlyif al, eu e al € v.
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(i) al, €uvyv ifandonlyif ol euoral e v.
(iv) al, eu v if and only if al, € u and al, € v.

More generally,

(v) al, € v, if and only if ol € u, for some i.

(vi) ol, € AU if and only if o, € u, for all i€ J.

1.1.11. Fact. [31]: A fuzzy set u in X is the union of all its fuzzy points, i.e.
u= v al,.

al,eu

1.1.12. Definition [10]: Let f: X — Y be a mapping and u be a fuzzy set in X. Then

the image f(u) is a fuzzy set in Y which is defined as

(0)(y) ={sup{u(x):f(x)=y} if 7' (y)#@

0 if f'(y)=@

1.1.13. Definition [10]: Let f: X — Y be a mapping and u be a fuzzy set in X. Then

the inverse image f~'(u) is the fuzzy set in X which is defined by

f' () x)=u(f(x)) Vxe X

1.1.14. Fact. [10]: Let f: X — Y be a mapping. Then
(i) v, <u, =f(u,)<f(u,) Vu,u,el”

(i) v, Su, =7 (u,) < (u,) YV u,u,e IV

(iii) u, < (f (u)) V ue I*.

(iv) f(f’l (u))SuV uel”.

W) £ (u*)<(f (u)) V ue ",

(vi) (f(u))" <f(u°) Vue I*
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(vii) Let f:X—>Yandg:Y—Z be two functions and gof:X—7Z be the

composition of f and g. Then (gof)™ (u) =f"' (g‘1 (u)) Yuel?.

1.1.15. Fact [10): If f : X — Y is a function, {u, : i€ K} is a family of fuzzy sets in X

and {vj. 1 je J} is a family of fuzzy sets in Y, then
N p-l — -1

W f (j\E/ij)—j\Efjf (vj).

iy el _ -1

(i) f (QVJ)_Qf (vj).

Gif) (v u;) = v £(u;).

ieK
@) £ A u;)= Af ().

ieK

1.1.16. Fact [10]: If f: X — Y is a function, u € I* and v € I", then the following
hold:

(i) If x, is a fuzzy point in X, then f(x,)=[f(x)], is a fuzzy point in Y.

(i) If x is a fuzzy point in ue I*, then f (x,) is a fuzzy point in f(u)e .

(iii) If f(x,) is a fuzzy point in ue ", then x, is a fuzzy pointin £~ (u)e I*.

(iv) If x,is a fuzzy point in Y, then £7'(x,) need not to be a fuzzy point in X.
However, if f is injective and x, € f(X), then f™'(x,) is a fuzzy point in X and is

then defined as £~ (x, ) =[f~"' (x)],.

1.2. Fuzzy topological spaces:

Chang C. L. defined a fuzzy topological space as follows:

1.2.1. Definition [10]: Let X be a set. A class t of fuzzy sets in X is called a fuzzy
topology on X if t satisfies the following conditions:
@1)0,1et,

(i) ifu,ve tthenuavet
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and (iii) if {u; :i€ K} is a family of fuzzy sets in t, then v uEt.
ieK

The pair (X, t) is then called a fuzzy topological space, in short fts. The members of t
are called t-open sets (or open sets) and their complements are called t-closed set (or

closed sets).

1.2.2. Definition [26]:

Lowen R. modified the definition of a fuzzy topological space defined by Chang C.L.
[24] by adding another condition. In the sense of Lowen R. the definition of a fuzzy
topological space is as follows:

Let X be a set and t is a family of fuzzy sets in X. Then t is called a fuzzy topology on
X if the following conditions hold:

0, 1et,

(ii)ifu,ve tthenu A v Et,

(iii) if {u, :i€ K} is a family of fuzzy sets in t, then VALK
1€

and (iv) t contains all constant fuzzy sets in X.
The pair (X, t) is called a fuzzy topology.
We shall use the concept of fuzzy topological space due to Lowen R. unless otherwise

stated.

1.2.3. Definition: Let X be a set and d be the class of all fuzzy sets in X. Observe that
d satisfies all the axioms of a fuzzy topology. This fuzzy topology is called the
discrete fuzzy topology on X and the pair (X, d) is called the discrete fuzzy

topological space.

1.2.4. Definition: Let X be a set and i be a fuzzy topology on X consisting of fuzzy
sets 0 and 1 alone. Then i = {0, 1} is called the indiscrete fuzzy topology on X and the

pair (X, i) is called the indiscrete fuzzy topological space.

1.2.5. Definition [4]: Let u be a fuzzy set in an fts (X, t). Then the fuzzy closure u

and the fuzzy interior u® of u are defined as follows:
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E=inf{?»:us7\. and Ae tc}.

u® =sup{A:A<uand Aet}.

1.2.6. Fact. For a fuzzy topological space (X, t), the following hold:
Hu=1-u’

(ii) ue I* is fuzzy open if and only if u = u®.

(iii) u is fuzzy closed if and only if u = u.

(iv) For any fuzzy setuin X, u’ <u<u.

(v) If u <v, then u<v and u° <0,

(vi) u=u and (uc’)o =u",

1.2.7. Definition [20]: Let (X, t) be a fuzzy topological space and A ¢ X. We define
the relative fuzzy topology for A by t, ={A Au:ue t}. The pair (A, t) is called the

fuzzy subspace of (X, t). A fuzzy subspace is called fuzzy open (closed) subspace of

(X, t) if the set A is a fuzzy open (closed) set in X.

1.2.8. Fact [20]: Let (A,tA) be a fuzzy subspace of an fts (X, t) and u be any fuzzy
setin (A,t, ). Then
(i) uis t, -closed if and only if u = A A v for some t-closed fuzzy set v in X.

(i) the t, -closure cl, (u) and the t-closure u of u are related by cl, (u)=A Au.

1.2.9. Definition [4]: Let (X, t) be an fts. Then the a subfamily B of t is called a base
for t if and only if each member of t can be expressed as a supremum of members of
B; and a subfamily S of t is called a subbase for t if the family of all the finite

intersection of members of S is a base for t.

1.2.10. Fact [4]): In an fts (X, t), a subfamily B of t is a base for t if and only if for

each aely 1, uet and xe X with o < u(x), there exists v € B such that o < v(x) and

v
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1.2.11. Fact [4]: Let (X,t) be an fts and A be a fuzzy set in X. Then for aelp and
x€ X, al, £ A if and only if for each u et with o + u(x) > 1, there exists some yeX

such that u(y) + A(y) > 1.

1.2.12. Definition [10]: Let (X, t) and (Y, s) be two fuzzy topological spaces and
f:(X,t)—(Y,s) be any function. Then f is called

(i) fuzzy continuous if and only if f™' (u)et foreachu € s.
(ii) fuzzy open if and only if f (u)e s foreachu € t.

(iii) fuzzy closed if and only if (u)E s¢ foreachu e t°.

(iv) fuzzy homeomorphism if and only if f is fuzzy bijective, fuzzy continuous and
fuzzy open.

(v) fuzzy identification if and only if f is fuzzy continuous, surjective and for each

uel”, ' (u)et impliesu € s.

1.2.13. Fact [4): Let f:(X,t)—(Y,S)be a function. Then the following are

equivalent:
(i) f is continuous.

(it) £~ (M) is t-closed for each s-closed A.

(iii) f (X) <f(A) for each fuzzy set A in X.

Giv) £ (u) <f™! (E) for each fuzzy setuin Y.

1.2.14. Definition [4]: Let {(Xi, ti):ie K} be a collection of fuzzy topological

spaces. Let X =T] X, be their Cartesian product and p,:X — X, be the projection
ieK

map. Then the fuzzy topology t on X generated by {p;' (u;):ie K,u;e ti} is called the

product fuzzy topology on X and the pair (X, t) is called the product fuzzy topological
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space. It can be verified that p;' (u;),i€ K, as defined above, can be expressed as

[T A, where A, =u, if k=iand A, =X, ifk #1.

keK

The product fuzzy topology t is also called the coarsest fuzzy topology on X

1.2.15. Fact [4]: For a family {(X, t,):i€ K} of fuzzy topological spaces and a fuzzy

topology ton X = [] X, , the following are equivalent:
ieK

(1) tis the product of the fuzzy topologies t,’s.
(ii) t is the smallest fuzzy topology on X which makes each projection p,:X — X,

i€ K, continuous.

(iii) For each fuzzy topological space (Y, s) and function f:X—Y,

f:(X, t)—(Y,s) is continuous if and only if for all i€ K, p,°f is continuous.

1.2.15. Definition [4]: Let {fj X = (Xj, tj);je J} be a family of functions from a set
X to fuzzy topological spaces (Xj, tj), je . Then the initial fuzzy topology on X
induced by the family {fj 1jel } , say t, is the smallest fuzzy topology on X, making
each f;, j€ J, continuous. It can be verified that t is generated by the family of fuzzy

sets fj_l (u i ): u; € t; and je J. For example, the product fuzzy topology is the initial

fuzzy topology induced by the family of projections. Similarly, the subspace topology

is also the initial fuzzy topology induced by the inclusion map.

1.2.16. Definition [4]: A fuzzy topological property FP is said to be an initial
property if for each family of functions {fj X - (Xj, tj);je J}, whenever each fts
(Xj, tj);je J, has FP, then (X, t) also has FP, t being the initial fuzzy topology on X

induced by the family{f; : je T}

Rajshahi University Librasy
Documentation Section
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1.2.17. Definition [4]: A real-valued function f on a topological space X is called

lower semi-continuous (1.s.c.) if and only if for every ae R, the set £ (o, =) is open..

For a topological space (X, T), the Ls.c. fuzzy topology on X associated with T is

denoted by w(T) and is defined as o(T) = {ue I*:uis I.s.c.} ;

1.2.18. Fact [4]: Let (X, T) be a topological space. Then

(i) ue I* is o(T) closed if and only if for all o, € I, u™ [a,,1] is T-closed.

(i) A < X is T-open if and only if 14 is ®(T)-open.
(iii) A € X is T-closed if and only if 1, is 0(T)-closed.

@) w11 (u) o1,
v) al, = ol
(vi) {1, : Ue T} is a subbase for ax(T).

(vii) {al, :aee I; and Ue T} is a base for w(T).

1.2.19. Definition [4]: Let P be a property of topological space and FP be its fuzzy
topological analogue. Then FP is called a good extension of P if and only if the
statement “(X, T) has P if and only if (X, ®(T)) has FP” holds good for every
topological space (X, T).
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CHAPTER-2

Fuzzy R, topological spaces
1. Introduction: In this chapter we recall nine Ro-type axioms for fuzzy topological
spaces from [6]. We study their interrelations, goodness and initiality. Also a
complete answer is given with regard to all possible (T1=Ro)-type and (To A Ro=T))-
type properties.

2. Ro- properties

We recall from [6], nine definitions of theR§-axioms of a fuzzy topological space

used in the sequel:

2.1. Definitions [6]: We define, for fuzzy topological spaces (X, t), Ro-properties as

follows:

R, : For every pair x, ye X, x 2y, K(x) =0 = K(y) ={

Rg : For every pair x, ye X, X #, (VOLE I, :ax(y) =a e VBel, :B—ly(x) = B)
R} : VAet, VxeX and Yo<A(x), ol <A

R} : VAet, VxeX and Va<(x), ol <A

Rg : For every pair x, ye X, x # y,K(y) =l= ij(x) =1

R¢ : For every pair x, ye X, x # y,f:(y) = E(x)

R} : Forevery pairx, ye X, x £, 1 (y) = l_;(x) ef{o, 1}

R} : For every pairx, ye X, x # y and Ve 1, &i?(y) =0 = &ulj(x) =0l

R : For every pairx, ye X, x #y andVae I,,0l (y) = oc_ly(x)

2.1.1. Lemma [6]: For any fuzzy topological space (X, t), the following are

equivalent:

(a) Ry, i.€., for every pair x, ye X, X #, K(x) =0 = K(y) =0
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(b) For every pair x, ye X, x # y, I(y) =0& f;(x) =0

(c) For every pair x, ye X, x # y, if there exists Act, M(x) = 1, A(y) = 0, then there
exists Uet, such that p(x) =0 and w(y) = 1.

Proof:
(a)=>(b): Suppose (X, t) is R,. Supposeﬂ(y)=0. Then since (X, t) isR,, so
I;(x) =0. On the other hand if I:(x) =0, then by R!, 1,(y)=0. Thus we see that

L(=0e1,00=0.

(b)=(c): Suppose x, ye X, x # y and there exists A€t such that A(x) =1 and A(y) = 0.
Put k = 1- A. Then ke t®, k(x) = 0 and k(y) = 1.

We have for every x such that x # y, k(x) = 0. Therefore k = 1—; and so K (x)=0. By

(b) 17(y) =0. This implies that there exists a t-closed set m such that m(x) = 1 and

m(y) = 0. put & = 1 — m. Then clearly pet, w(x) = 0 and u(y) = 1.

(c)=(a): Suppose x, yeX, x # y and E(y) =0. This implies that there exists a t-

closed set k such that k(y) = 0 and k(x) = 1. Put A = 1 — k. Then A is a t-open set such
that  A(x) =0 and A(y) = 1. By (c) there exists a t-open set i such that u(x) = 1 and
wy)=0. Putm=1-p . Then m is a t-closed set such that m(y) = 1 and m(x) = 0.

Thus there exist a t-closed set m such that m(y) = 1 and m(x) = 0. Therefore,

1,(x)=0.

2.1.2. Lemma [6]: For any fuzzy topological space (X, t), the following are

equivalent:

(@) R i.e., for every pair x, yé X, x # y, (Vou‘—: I, - ol (y)=a& VBel, :ﬁy(x) = ﬁ)
(b) For every x, ye X, x #y, if there exists aclp such that(x_lx(y) < o, then there

exists feIp such that B_ly(x) <p
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(c) For every x, ye X, x # y, if there exists a t-open set A such that A(y) < A(x), then
there exists a t-open set [ such that pu(x) < p(y).

(d) Forevery x, ye X,x#y,0(x,y)=0 & o(y, x) =0.

Where, 0: X x X > L (X, y) = slli?()»(y) —AMx))= su;l)(oc ——OI(y))

Proof:

(a)=>(b): Suppose x, y €X, x # y and there exists oe€ly such that

Suppose for every pBel, E(y) =f. Then by (a) for every ae]y Ei:(y) = o which

contradicts (1). Therefore there exists fe I such that E(x) <B.

(b)=(c): Suppose for every x, ye X, x # y, there exists a t-open set A such that
A(y) < A(x). Let = A(y). Then E(x) <. Hence by (b), there exist cpe Iy such that

0ol (y)<a,. This implies that there exists a t-closed set, say mM such
thatn (y) < oty <M(x). And so N(y) <N(x). Put p =1 — 1. Then W is a t-open set and

w(x) < u(y)

(e)=>(d): Suppose, x, y €X, x # y and o(x ,y) = 0. If o(y ,x) > 0 then there exists A€t
such that, A(x) — A(y) > 0. By (c), there exists pe t such that p(y) —u(x) > 0.

Therefore, o(x, y) > 0, a contradiction. Therefore, o(x ,y) = 0 = o(y, x) = 0. Similarly

we can show that, o(y,x)=0=>o(x,y)=0

(d)=(a): Suppose for every pair x, ye X. x # y and for every o€ Iy, af:(y) = . Then

o(x ,y) = 0. By (d), o(y, x) = 0. Thus, sup(B—E(x)): 0. And so, El:(x) =, for
Bel

every Belp, for if there exists a €]y such that E(x) < B, thenf —E(x) >0 and so,

o(y, x) # 0, a contradiction.
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2.1.3. Lemma_[6]: For any fuzzy topological space (X, t), the following are
equivalent:

(@R, ie., VAet, VxeX and Va<h(x), al <A

(b) For every Aet, there exists M c t° such that A =Supu, ue M.

Proof:
(@a=>(b): Let Act. Put M = {Elj:xe X,0<Mx)}. ByR;, for every a<A(x),

al_ <A Clearly A =Supy, He M.

(b)=(a): Let xe X and A is a t-open set such that o, < A(x). By (b) there exists M C t°
such that A =Suppu, pe M. Thus there exists e Msuch that o< p(x). That is

ol <pandsool, <P <A. Thus (X, f)is Ry.

2.1.4. Lemma [6]: For any fuzzy topological space (X, t), the following are

equivalent:

(a) R i.e., VAet, Vxe X and Va<A(x), al, <A
(b) For every Aet and for every x € X, m <A.
(c) For every Aet, A =SupA(x)l_, x€ X.

(d) For every pair x, y € X, x # y and for every A€t, there exists uet® such that

u(x) = Ax) and p(y) = A>y).
(e) For every pair x, y € X, x # Y, the subspace ({X, y}, t|{x, y}) is self duel, i.e.

({x, ¥} tH{xyh ={xy} € [{xy)]).
(f) For every pair x, y € X, x # y and for every pair o, Bel, al (Y)<B =

1-pL,(x)<1-0.

Proof:

(a)=>(b): Let Act and x € X, Put ot = A(x). ByRS,bISK. Thus A(x)l, <A.
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(b)=(c): Suppose Aet. If (b) is satisﬁed; then for every xe X, m; <A . Therefore
SUpAGOL, SA, XE XKoo, (1)
Now if y €X, we also have A(y)= W)ly(y) A Supm(y), x€ X. Thus
A S SUPAGOL, eovvvereeeereeeeeress )

From (1) and (2) A =SupA(x)1,, xe X.

()=>(d): Let Aet and x, yeX such that x # y. Without loss of generality suppose
o=A(X)SA(y)=B. Then B_ly-(x) <Mx)=o.Put y = E Now L is a t-closed set such
that pi(y) = A(y) = B and p(x) <o = A(x). Put p = pyve. Now u(x) = o = A(x), and
u(y) = B = A(y). Thus we see that there exists a pet® such that pu(x) = A(x), and u(y) =
AY).

(d) & (e): Suppose (d) is satisfied. Therefore with the notations of (d) we have
Al{x, v} = W{x, y}. Thus ({x,y}, t|{x,y}) =({x,¥}, t° | {X,¥}). On the other hand,
suppose (e) is satisfied, i.e.({x,y}, t|{x,¥}) = ({x,y}, t° | {x,¥}), Then for every pair
X, y€ X , x#y and for every A€t, there exists pet® such that u(x)=A(x) and u(y) = A(y).

(d)=>(f): Suppose x, y €X, x #y, and o, B€I such that oc—lx(y) <B.If oo =B, then

there is nothing to prove. If f < o there is a pet’ such that u(x) = c and u(y)<p. Let
i = wvp. Then wi(x) = o and Wi(y)=P. If (d) is satisfied, there is a Aet such that A(x)

= o and A(y) = B. Let m=1 —A. Thenme t. Now n(x) = 1 —a, n(y) = 1 - B.
Therefore, (1-B)L,(x) = Inf{‘n(x) :me tfand(1-B)1, < n} <n(x) =1-o. Therefore

(1-P)L, (x) <1-a.

(f)=(a): Suppose (f) is satisfied, Act and o < A(x). We have to show that al, <A
Let ye X — {x} and A(y) = B. If > o, then it is clear that ol < A.

Suppose B<c. Let u=1—A.Then uet® such that p(y) =1 — B>1 — o 21 = A(x) = W(x).



CHAPTER-2 Fuzzy Ry topological spaces 18

Thus we have, pu(x) < u(y). Therefore, H(y)l, (x) < p(x).

Applying (f), {T-poO)L, (y)<1 —u(y).
= M1, () < My)
= al, (y) < My) [Since, 0 <AX)]

Therefore, ol < A. (Proved)

2.1.5. Lemma [6]: For any fuzzy topological space (X, t), the following are

equivalent:

(a) R} i.e., for every pair x, ye X, x #y,1_(y)=1= Z(x) =1
(b) For every pairx,y € X, x £y, :(y) =l& E(x) =1
(c) Forevery pairx,y € X, x#v, K(y) <l&e E(x) <l

(d) For every pair x, y € X, x #y, if there exists a t-closed set i such that w(y) < 1 =

U(x), then there exists a t-closed set v such that v(x) < 1 = v(y).

Proof:

(a)=>(b): Trivial.

(b)=>(c): Suppose, f:(y) <]. We have to show that,l_y(x)<l. If K(x) is not less
than 1, then K(x): 1. Then by (b) E(y): 1 which is a contradiction. Therefore,
f;(x)< 1. Thus we sece thatl_x(y)<1:>K(x) <1. Similarly we can show

thatg(x) <l= ﬂ(y) <1.

(c)=>(d): Suppose there exists a t-closed set w such that pu(y) < I = u(x). Then
i:(y) <1.By(c) E(x) <1.Putv =f;. Then clearly v(y) =1 and v(x) < 1. Thus we

see that there exists a t-closed set, say v such that v(x) <1=v(y).

(d)=(a): Suppose E(x): 1. We have to show that K(y): 1.
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Suppose :(y)< I and E= U. Thus W is a t-closed set such that u(y) < 1 = p(x). By
(d) there exists a t-closed set v such that V(x) < 1 = v(y). This implies that E(x)< 1,
which is a contradiction. Therefore, :(y) =1.

Thus we see that, for every pair x, yeX, x £y, :(y) == K(x) =1. Thus (a) is

satisfied.

2.1.6. Lemma [6]: For any fuzzy topological space (X, t), the following are

equivalent:

(a) Ry ie., for every pair x, ye X, x £y,1_(y) = E(x)
(b) For every pair x, y € X, x # y and for every ael,, f(y) 2 = E(x) <a

(c) For every pair x, y € X, x # y and for every aely, if there exists a t-open set A

such that A(y) = 0 < o = A(x), then 3 a t-open set W such that u(x) = 0 < & = u(y).

Proof:

a)=>(b):

Suppose, x, y € X, x # y and ael; such that:(y)Soc. By (a), E(X)-_—I(Y)-

Therefore, K(x) <da.

b)=>(c):
Suppose, x, y € X, x £y, 0€lp, and 3 a t-open set A such that A(y) = 0 < ot = A(x). Put

N =1 - A. Then n is a t-closed set such that, n(y) = .1 and n(x) = 1 — o Therefore
E(x) <1-o. Hence by (b) K(y) <1-oa. This implies that there exists a t-closed set
v such that v(x) = 1 and v(y) = 1 — o.. Put @ =1 —v. Then  is a t-open set such that

u(x) = 0 and p(y) = 0.
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Suppose, i:(x) < I:(y) o LETTH = Eand o, = N(x) # 1. Then m is t-closed set such that

N(y) =1, N(x) = a<1,(»). Let A = 1 — 7. Then A is a t-open set such that A(y) = 0 and

A(x) =1- o> 0. By (c), 3 uet such that, u(x) = 0 and uy)=1-o.Putv=1-u
Then v is a t-closed such that v(x) = 1 and v(y) = o This implies that

K(y) <= E(x) , a contradiction.

2.1.7. Lemma [6]: For any fuzzy topological space (X, t), the following are

equivalent:

(a) Ry i.e., for every pair x, ye X, x #y, 1_(y) = E(x) e {0, 1}

(b) {1, :xe X } defines a partition of 1, i.e. there is a partition 4 of X such that for

every Xe Ae 4 K=1A.
Proof:

We have, for every distinct pair x, y €X K(y) = E(x)e {0,1}.
Therefore, I(X) < {0,1}, and so there exists, for each x€X, an A(x) C X such that
1, =1, Nowif y &€ A(x), then 1, (y) =1. i.e. 1y< Lagy.

It follows that 15¢)<1 aw), 50 A(y) € A(x). Now I(y) = K(x) = 1. Therefore, xe A(y),

hence A(x) C A(y) . Therefore A(x) = A(y). Hence { A(x): x € X} is a partition of X.

(b)=(a): Given {i::xe X }is a partition of X. This implies that, either K:g
OI'-I_:/\I= 0. If§=g, then clearlyK(y) =I;(x) =1. On the other hand, if
K A E =0, then (f A Ekx) =0 and|{l, Al_y—ky) =0. Therefore, E(y) =0= K(x) :

Thus L (y) =1, € {0, 1}
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2.1.8. Lemma [6]: For any fuzzy topological space (X, t), the following are

equivalent:

(a) Rg i.e., for every pair x, ye X, x # yandVae I,, a_lx(y) =0 = al:(x) =

(b) For every pair, x, y € X, x # y and for every o Iy, oc_lx(y) <= ay—(x) <.

Proof:

a)=(b):

Suppose x, y € X, x # y and o € Ij such that &l—x(y) < oL, Suppose oc_ly(x) =t Then

by (a), oz—lx(y) = o., which is a contradiction. Therefore a;(x) <.

b)=(a):

Suppose x, y € X and o € Iy such that on_lx(y) = . Suppose oc_ly(x) # ol Therefore,

oz—ly(x)< o. Then by (b), Ot_lx(y)<0L, which is a contradiction. Therefore

Ot_ly(x)=oc.

2.1.9. Lemma [6]: For any fuzzy topological space (X, t), the following are

equivalent:
(a) Rg , 1.e., for every pair x, ye X, x #yandVa e Io,al—x(y) = oc_ly(x)
(b) For every pair, x, y € X, x # y and for every t-closed set, i there exists a t-closed

set, v such that v(x) = u(y), v(y) = (x).

Proof:

a)=>(b):
Let x, y €X, x # y and [ is a t-closed set. Let & = u(x) and B = u(y). This implies that

oc—lx(y) <B. Therefore, ai:(x) <B.
Hence there exists a t-closed set v such that v(y) = o and v(x) = B. Thus u(x) = v(y)

and pu(y) = v(x).
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(b)=(a):
Without loss of any generality suppose, ol (y) < OL_ly(x) ....................................... (1).
Letu=al, . Then o= u(x). Let B = u(y). Then by (1) B < 0L, (X).rorrsvvrrrrrrrreen )

By (b) there exists t-closed set v such that V(x) = u(y) = B and v(y) = u(x) = o
We have, V(Y1 (x) S v(x)

=35 &K(x) <.
Using (1), o, (y) < od, (x) < B.

Or ol (y) <

Or u(y) <P which is a contradiction.

Therefore, oc—lx(y) < oc_ly(x) is not true. Similarly we can show that oc—ly(x) < af:(y) is

also not true. Therefore &Z(x) = a.—lj(y) :

2.2. Remarks: (a) If x, y € X and Eﬁ;(y) < B, there exists for each ¥y>f a Aet

such that A(x)=1-a,A(y)=1-y. If then (X, ) is Ry, it follows that (1-¥)1,<A.
So, if (X, t)is Ry and al,(y)<f, then 81, (x)<1-e foreach §<1- 4.

(b) In particular, if (X, t) is R; and I (y)< /8, then &1 (x)=0 foreach §<1-f.

3. Relations between the Ry-properties
In this section we study the interrelations between the fuzzy Ro-properties.

3.1 Theorem [6]: Between the Ro-porperties, mentioned in the section 2.1, there exist

the following implications:
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RI=> R}

IZAIR

Rg  RG=> R}

1 /1N

Rp<=x R{=> R}

\1/

1. Suppose (X, t) is Ry. Let Aet, x €X and o < A(x). Then since (X, t)is R;, hence
o1, < A. Therefore (X, t) is R?.

Suppose, there exists o€ly such that a—lx(y) =f<a Take B < v < o
LetA=1-cl, . Then A(Xx) = 1 — o, M(y) = 1 — B > 1 . Since (X, t) is R,
(T—YTYS?L. Now m(x)sl(x)zl—oc<l—y. Thus we see that, if
oc_lx(y) < o.then there exists &Iy such that E(x) < 0. Therefore by lemma-2.2.2,

(X, t)isRy.

2. Suppose (X, t) is R§. Then by lemma-2..2.4, for every pair x, y € X, x # y and for
every pair o, Bel, o £ B, OL_lx(y)SBS(l—B)ly(X)Sl—OL. Take oo =1 and § =0,

L(»<0=1,(x)<0.0r 1, (y)=0 = 1,(x)=0.

3. Suppose (X, t) is RZ,. Then clearly, for every x, y €X, X # y K(y) =E(x).

Therefore (X, t) is R§.

Let, i:(y) =0.As (X, t)is RS, K(y) =i:(x). And soﬂ(x) = 0 .Therefore, (X, t) is

R..
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4. Suppose (X, t) is Rg.Then 1,(y)=1,(x). Therefore if 1_(y)=1, thenl, (x) =1.
Therefore (X, t) is R].

5. Suppose (X, t) is RJ. Therefore for every pair x, yeX, X # y
andvVoe I, ,Oc—lx(y) = El:(x) . Therefore, if Ot_lx(y) =0 then oc_ly(x) =0o. Hence
(X, t)is RS.

Again, suppose Yoe I, oc_lx(y) =0.. Then clearly Ef;(y) =B, VA€ L. Since, (X, t)
has Rg 5 ﬁ:(y) =f=s Bi;(x) =PB. Therefore, we see that, for every pair x, ye X, X # y,
(Voce I, : ol (Y)=a=VBel, :ﬁy(x) = [3). Similarly we can show that, for every
pair X, yeX, x#y, (vBe I, :BL, (x) =B = Vo€ I, : als (y) = ). Thus (X, 1) has

R2.

6. Suppose (X, t) is RE, x, y € X and 1,(y) =1. Since (X, t) is RS, E(x)=l.

Therefore (X, t) isR}.

7. Suppose (X, t) is R}, then for every pair x, y € X, x # y and for every o € I,

al, (y) =0l (x). In particular, if a.= 1, 1, (y) =1, (x).. Therefore, (X, t) is R§.

4. Goodness and permanency properties:

In this section we show that all R; (1 <k £9) properties are good extensions of their

topological counter parts; all of them are found hereditary, seven of them are initial

and therefore productive, and two of them are found not productive and therefore are

not initial.

4.1. Theorem [6]: All R,f (1 £ k £9) are good extensions of the topological Ry-

property. That is,
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(a) If (X, 7 is an Re-space, then (X, W (7)) satisfies Ry (1<k<9).

(b) If (X, WD) satisfies R(f (1 <k <9)then (X, 7)is an Rp-space.

Proof (a): Suppose (X, 7) is an Ro-space. Let ke WD) = {u € I*: u (0, 11 e T,
ael}, AMx) = ot < A(y) = B. Let F = A7(0, 1], then F is closed in (X, 7). We have

y &€ F. Therefore, me =@. Also {_xj CF.Putp= oclm % BI(-y-J. Then p is closed

in M7). Now, w(x) = o and p(y) = B. Thus u(x) = A(x) and u(y) = A(y). Therefore
(X, W(D)is Ry. Weknow Rj = R} = RZ and R} = R).

Again, oc‘_lx=a1m,oc_1y=oclm. We have ol (y)=ol (x)=c if and only if

{x}={y} and &Z(y) =0L_1y(x) =0 if and only if fx_}mmz J. So (X, W(D) is R} .

We know, Ry = R3. Thus, (X, W(D)is R¥ (1 <k<09).

Proof (b):
(1) Suppose (X, W (7)) is a R:) space and x € {_3’_}-, then l_;(x) = 1m (x)=1#0, and so

1m (y)= l—x_(y) # 0. Therefore, y € m which proves that (X, 7) is an Re-space.

(2) Suppose (X, W(72)is a Rf) space and x € m, then oc_ly(x) = ocl(—yl (x) =a forall
o€ To. Therefore Bl (y)=BVPE I,. So in particular 1, (y) =1 (y) = 1. Hence ye {x}

which proves that (X, ) is an Rg-space.

(3) Suppose (X, W (7)) is a R} space and x € {y}, then E(x) =l (x)=1. By R,

I(y) = lﬁ(Y) =1. Therefore, y € m which proves that (X, 7) is an Ro-space.

Thus we see that, if (X, M{T)) satisfies R¢(k = 1, 2, 5) then (X, 7) is an Ro-space.

Also we know that, R =R} =R}, R >R > Ry,R; = R; > Rg.

Therefore, If (X, WD) satisfies R (1 <k <9) then (X, 7) is an Ro-space.
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4.2. Theorem [6]: The properties Ry, ke {2,3,5 6,7, 8,9} are initial, ie., if
(f;: X—(X;, t;)) is a source in fts where all (Xj, t;) are Ré‘, then the initial fuzzy

topology is also R .

Proof:

(a) Let {(X;. t;): jeJ} be a family of RO2 fuzzy topological spaces, {fj: X—(X;, t;); j€ T}
be a family of functions and t be the initial fuzzy topology on X induced by the family
{fi: jeT}. Let x, y €X, x # y and there exists A € t such that A(y) < A(x). We can find
basic t-open sets A;, jeJ such that A = sup {A;: jeJ}. Also this A; must be expressible

as Ay = inf{fj;l ().jk ): 1<k < n}where),jk €t; and j, €J. Now we can find
-1 -1
some k(I < k =n), say k; such that fj (}”J'kx ky) <f, (),jkl kx) =3

kjk; fjk; (y) < Kjklfjkl (x). Since (Xjkl’tjkl Jis Rg, there exists ijl € tjkl such that
-1 -1 el
Vi 0 <V, £ = 5V, o<t (v, Jor- Pue v =7 (v e

Thus, V(x) < V(y). Thus (X, t) is RZ.

(b) Let {(X;. t;): jeJ} be a family of Ro3 fuzzy topological spaces, {fj: X—(X;, t;); je T}
be a family of functions and t be the initial fuzzy topology on X induced by the family
{f; jeJ}. Let aelp1, x € X and u € t with alx < u. Since ue t, we can find basic
t-open sets u;, i€l such that u = sup {u;: jeJ}. Also this u; must be expressible as

U = inf{fj“(ujk):ISI(Sn}whereujik et and j, € L. Now we can find some

k (1 £ k <n), say k; such that aly < fi—kli (ujkl ) That is, o < f;l (ujkl) (x) or
. . 3 —a § y ‘

a<u (fjk (x)). Since (X, tjkl)lS Ry alfjkl(x)Sujkl. Since f is continuous,

_ .
f, @I)<al, . Thus £, @L)<u, =ol <) (0, ) But each

f—l

i (ujk ) <u. Therefore,ai: <u.Hence (X, t) is Rj..
K] Ji
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(c) Let {(X;. t;): jeT} be a family of R fuzzy topological spaces, {fi: X=X, t;); jeJ}
be a family of functions and t be the initial fuzzy topology on X induced by the family
{fi: jeJ}. Suppose x, y € X, x # y and there exists Aet® such that Aly) < 1 = A(x). Put
u=1-A. Then, u € t such that u(x) = 0 and u(y) > 0. Since uet, we can find basic

t-open sets u; such that u = sup {u: jeJ}. Also each u; must be expressible
as,u; =inf{fj;' (ujk):ISkSn}. Since u(x) = 0 and u(y) > 0, we can find some
k (1 <k <n), say k; such thatf;*{u; kx)=0 and £;(u; ky)> 0. This implies that,
ujklfjk] (x)=0 and Uj fjkl (y)>0. Since (Xjk,’ tjk,) is Rj, there exists

Vi, € i, such  that Vig fjkl (y)=0and Vi, fjkl (x)>0. This implies that

fj;'I Vi, (1) =0 and fj?l Vi, (X)>0. Now let v=1—fj;‘l Vi, - Then v € ¢’ such that

v(x) <1=v(y).This implies that (X, t) is R}.

(d) Let {(X;. t;): jeJ} be a family of RO6 fuzzy topological spaces, {fj: X—=(Xj, t;); jeJ}
be a family of functions and t be the initial fuzzy topology on X induced by the family
{f;: jeJ}. Suppose x, y €X, x # y, aclp and Aet such that A(y) =0 < o = A(x). Since
A€t, there exists basic t-open sets A; such that A = sup {A;: jeI}. Also each A; must be
expressible as A = inf{fj;'?»jk :1<k <n}. Since My) = 0 < o = A(x), we can find
some k (1 €k € n), say k; such thatfj;'l Ay, (N=0<a= fj;'] Aj,, (x). This implies that
Ay B, D =0<a=A £, (). Since (X, ,t; Jis RS, there exists

My, € tjkI such thatujkl fikl x)=0<ao= M, fjkl (y) orfj;'l i, (x)=0<a= fj;‘l My, (y).

Now, let f3!p, =pet. Then u(x) = 0 < o= w(y) . Hence (X, t) is R§.

(7) Let {(X;. t)): jeT} be a family of Ro6 fuzzy topological spaces, {fj: X—(X;, t;); jel}
be a family of functions and t be the initial fuzzy topology on X induced by the family

{f;: jeJ}. Suppose x, y €X, x Y,
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4.3. Corollary: Since initiality implies productivity and heredity, the properties R; ;

ke {2,3,5,6,7,8, 9}, are productive and hereditary.

4.4. Corollary [6]: All the properties R§ (1< k < 9) are hereditary.

Proof: It is enough to show that the properties R} and Ry are hereditary. Consider a

fts (X, t). Let AcX. Consider the subspace (A, ta).
We have, t-cl(1x) N1a= ta-cl(1y).

(1). Let x, y € A, x # y and (ta-cl(1,))(y) = 0. Therefore, (t-cl(1) N1a)(y) = O.
= (tcl(L))(Y) Ala(y) =0 = (t-cl(1,0)(y) =0, Since, y € A. Now, x,ye€ X, x #Y,
and (t-cl(1x))(y) = 0. So if (X, t) has R, then (t-cl(1y)(x) = 0. Now (ta-cl(1,))(x) =

(t-cl(1y) N1a)X) = (t-cl(1y)(x)A1a(x) = 0. This implies that, (A, ta) has Ré.

(2). Let x € A, AEta such that o < A(x). There exist A’et such that 1,0 A/ = A. Since
x€A, A(x) = N(x). Now ANet and o < N(x). So if So if (X, t) has R, then
t-cl(oclx)S]U. Now, ta-cl(aly) = 1an(t-cl(aly)) £ 1an A = A. Therefore, (A, tp)
has R; .

4.5. Theorem [6]. If X is a set, (X, t') a fuzzy topological space having the property

R'.f (1 £k £9), then the reciprocal topology t on X forf: X — (X’, t/) also has Rg .

Proof: Suppose (X, t) a fuzzy topological space having the property Ry (1£k £9).
Suppose, t = {f ' (U): Ue t'}. Now (X, t) is a fuzzy topological space. We have to

show that (X, t) has R} (1S k £9). We have,
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—

al, =17{{@1,))= £ "(al, ) e, VyeX, Tl (y) = alpy () v )

L. Suppose X, y € X, x # y,1,(y) =0, then 1., (f(y))=0 and since (X, t) has R!,
%(f(x)) = 0. Using (**), f~! (E)(x) =0, and so K = (. Therefore, (X, t) hasR;.

2. Suppose X, y € X, x # y, a€ly andal,(y)=0. Then aly, (f(y)) =0.and since
(X', t) hasR?, Bl—f(y)(f(x)) =0, for every Bely. Using (;“*), E(x) =0 for every Bel,.

This implies that (X, t') hasR 2.

3. Suppose x€X, Act and o < A(x). There is a A'et’ such that A = f '(A\).= Ao f.
Now, o < Ax) = A (f(x)). Since (X, t) hasR?,al,, < A’ Now, Using (**),

filx) —

ol =f" ((11 )S £ (") =A . Therefore (X, t) hasR}.

b f(x)

4. Suppose xeX, Aet and o < A(x). There is a M'et’ such that A = f 'Q)=A'o f.
Now, o € Mx) = M(fx). Since (X, t’)_ hasR;, alg, < AN. Now

E =f"! (alf(x) ) <f'(\')=A. Therefore (X, t) has R, .

5. Suppose %X, y € X, X # Y, K(y)zl. Then 1, (f(y)) =1and since (X', t’)

hasR}, 1, (f(x)) = Ll and so 1,(x) = 1. Therefore, (X, t) has R} .

6. Suppose X, y € X, x #y. If (X/, Lj) has Rg, thenﬁ(f(y)) =_l_f;(f(x)).Therefore,

1 (y) = i:(x). Therefore, (X, t) has RS .

7. Suppose x, y € X, x # y [If &, ) hasR],
then 1, (f(y)) = Ly, (f(x)) € {0,1}. Therefore, 1,(y) =1,(x)€ {0,1}. Therefore, (X, t)

hasR].
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8. Suppose X,y € X, x £y, aely. Suppose, a—lx(y) =o. Using (**),al,,, (f(y)) =a If

1o 8 TR . _
(X', t) hasR, then alg, (f(x)) = « . Using (**), al, (x) = o .Therefore, (X, t) has R.

9. Suppose X, y € X, x # y, aely. If (X, ¢) has R}, then al,, (f(y)) = o, (f(x)).

Using (**) , al,(y) = al, (x) . Therefore, (X, t) has R

5. Relations among Ty, Ry, T,

In this section we recall from [41] the definitions and some properties of the To- and

Ti-separation axioms used in the sequel:

5.1. Definitions: A fuzzy topological space (X, t) is called:

WTy: if forevery x,yeX, x#y, K(y) A E(x) <1.

T, : if for every x, y €X, x # y and for every o€y, al, (¥) A E(x) <dq.

Té’ . if for every x, y €X, x # y and for every o, By, E(y) <q or BT;(X) <pB.
Té . if for every x, y € X, x # y and for every o, By, cc_lx(y) A E(x) <OoAP.
T, : ifforeveryx, yeX, x #y: K(y) A E(x) =0.

WT,: if forevery X,y €X, X £ y: E(y) <l1.

T/ : if for every x, y €X, x # y and for every o€ Io: al () <a.

T, : if for every x € X: 1, =1.

5.1.2. Theorem [6, 41]: Between the To and T; properties, mentioned in the section

5.1, there exist the following implications:

Ty =S Tll> ————=WT,
U U U

T, = T, = T,'=T,"=>Wh
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Proof: Suppose, x,ye X, x #y, a, Bel,.

Let (X, 1) is T1. Now, 1(y) /\E(x)= Lx(y)ALy(x) =0 A 0 =0, . Thus we see that,
T1=Tp.

Again, let (X, t) is To. Now, ol (y) A BL, (x)<1.(y) Al,(x)=0< 0 AP. Thus we see
that, To=Ty .

Again, let (X, t) is To". If ol (y) =a,

Then E(y) A E(x) <anf=>an E(x) <ounB= E(x) <B. Thus we see that,
To =Ty

Again, let (X, t) is To’. Then al (y)<a or E(x) <P, for every o, Bel. In
particular, we have, E(y) <0 or oc—ly(x) < . Therefore E(y) A a_ly(x) <.
Hence (X, t) is To".

Again let, (X, t) is Tg’/" then for every pair o, eIy, (x_l,:(y) A a_ly(x) <o.Take a=1,
then 1_(y) A1, (x) <1. Thus we see that, To"=>WT,.

Again, let (X, 1) is Ti. Now al (y) <1 (y)=1,(y)=0<c. Thus we see that,
T=T/.

Again, let (X, t) is T,'. Then for every ae I, a—lx(y) <. Take oo = 1. Then K(y) <l.
Thus we see that, Tl/ =WT;.

Again, let (X, t) is WTi. Then 1,(y)Al,(x)<lal=1. Thus we see that,

WT1=>WT,.

5.1.3. Theorem: Between the Tgand T, properties, mentioned in the section 5.1, there

exist the following non-implications:

(1) WT; T/
@) T/ $T
(3) To> WT,
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(4) WT, 3> To"”
(5) To'#> To
(6) To" > Ty
(7) TOIII :b TOI/
(8) WTo3> Ty

Proof:
(HWT 3T/

Example-1: Consider a fuzzy topological space (X, t), where X = {x, y},

t = {0, u, v, 1} Ufconstants}; u(x) = 0, u(y) = 0.5, v(x) = 0.5 and v(y) = 0. Now,
u'(x) =1, u'(y) = 0.5, V(x) = 0.5, v/(y) = 1.

Thusl, =u’,1, =v/,1,(y)=05<land I, (x)=05<1. (X, t) is WT}.

Again, 0l C o and ol C m, a constant fuzzy set with value = o... al, =m.

Let o = 0.5, we see thata;(y) =0.5< 0.5. This implies that (X, t) is not T,

@) T/ T

Example — 2: Let X ={x, y} be a set and m and n be two fuzzy sets in X defined by
m(x) = ot = n(y), m(y) =r = n(x), where 0 <r< . < 1.

Let t be the fuzzy topology on X where t = {0, u, v, 1}U{constants}such that

u=1-m,v=1-n Now we see thaton—lx=m and_al:=n and &Tx(y)=r<a,

al (y)=r<o. .. X t)is T/. But we observe that1, #1 . (X, t) is not Ty.
; ;

(3) Toz WT,

Example-3: Consider a fuzzy topological space (X, t) where X = {x, y} and

t = {0, u, 1}ufconstants}; u(x) =0, u(y) = L. s/ =1, u(y)=0and 1, =u’. Also
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L, =1.Now L (y) AL, (x) =0 A1=0. This implies that (X, t) is To. ButL, (x) =1, this

implies that (X, t) is not WT;.

(4) WT; 3 Ty

Exmple-1 will serve the purpose. Hence we have WT; —+To", Td, To, T/ and T|.
(5) To'#> To

Example-4: Consider a fuzzy topological space (X, t) where X = {x, y} and
t={0,u, v, 1} U {constants}; u(x) = 0 = v(y), u(y) = 0.8 = v(x).
Let .= 0.6, B =0.7. Then, oL, (y) = 0.2 and Bl (x) =0.2.

ThUS,OL_lx(y)/\E(X)=O.2<(X/\B. ~(X, 1) is Tg. But (X, t) is not Ty; since

L(MAL(x)=02#0.

(6) To' 3 T¢'

Example-5: Consider a fuzzy topological space (X, t), where X = {x, y},

t = {0, u, 1}Ufconstants}; u is defined as u(x) = 0 and u(y) = 0.5. Let a = 0.6, then

ol (y)=0.5<0.6=(X, t) is T". Again, let B = 0.8. Then Bl, = constant fuzzy set
with value B. - o, (y) ABL (x)=0.6A0.8=0.64 0.6 A0.8 =0.6. This implies that

(X, t) is not Tg'.

() To" 4> To
Example-6: Consider a fuzzy topological space (X, t), where X = {x, y}, and
t={0,u,v, 1} {constants}; u(x) =0= v(y), u(y) = 0.5, v(x) = 0.6.

et o = 05. Thenal (y)=0.5 and al,(x)=04, soal, (y) Acl, (x)=04<0.5.

This implies that (X, t) is To"".
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Now, let B = 0.4. Then ody(x) =0.54¢ o and E(x) =044 B. This implies that
(X, t) is not Ty".
(8) WTo= To"

In Example-1, we take o = 0.5, then we have 1_,:(y) AI(X) =0.5A05=0.5<1, but

oL, (Y) A0d, (X) =0.5A0.5=0.54 0.5. (X, 1), is WT, but not T".

3.1.4. Theorem [6]: For fuzzy topological spaces, we have the following:

() WT; = R, forke {2, 5}

(b) WT; does not imply R¢* fork € (1,3, 4, 6,7, 8,9}
(€) T/ = R, forke {2,5,8)

(d) Ty’ does not imply R; forke {1,3,4,6,7,9}

() T, = R, forall1<k<09.

Proof:
(a) Suppose (X, t) is a fuzzy topological space; X, y € X, X # y and there exists
o€ Ip such thatai:(y) <o, If (X, t)is WTy, we‘havef:(y) <1.LetP = 1. Thus

we see that, there exists a €]y such that Bl_x(y) <B. Therefore, (X, t) is R;.

Again, let 1_(y) <1.If (X, tlis WTy, then I, (x) <1. Thus (X, 1) is R}

(b) On X = I we define t by

1 .
= {Ae Ik ! <AL 1}u{Ae I*: )\ is non- decreasing and 0 < A < > }. Then it

is easily seen,
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oy
lf5-<0c51,y:ﬁx

OL—lx(y):< if0<OLS%,y2x

o ify=x 0r0<OLS%,y<x

(X, t) has WTy, but not Rj. The rest will follow from (d).

(c) This is trivial.

(d) We only have to show that T¢' 4> R} or R].On X =1 we define t by

= {uel x < y = A(y) < 2A(x). Then it is easily seen,

—o ify<
ol (y)=qa ify=x
0 ify>x

\

So this space hasR%, but it has neither R (evident) norRj, as from 1.(y)=0

for y > x, it would follow from Remark 2.2(b) that 81, (x) = 0 for all § < 1.

However, it clearly has T and T, but not T;.

(¢) We only have to show thatT, implies Ry, Rg and Rg. Let (X, t) is Ti. Then

Z =1 for every xeX. Let Aet, xeX and oo £ A(x). Now al, SII: 1.
So,oc_lx(y) =0<My), for every yeX, y # X. Therefore, a: < A. Hence (X, t) is
R:. Again, Z(y):lx(y)=o=1y(x)=§(x). Hence (X, t) is R]. Again, let
acl, ol ()<L (y)=1,(y)=0andal, (x)S1,(x)=1,(x)=0.  Therefore,

ol (y) =ol, (x), for every aclo. Hence (X, 1)is Rg

5.1.5. Theorem [6]. For fuzzy topological spaces, we have the following:

(@ RyaTo=T
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() RJ A WTy= WT,

© RIATY =T/

d) RJAWTy= T,

(&) RIAT =1/

(f) R, AT, does not imply WT,
(2) R; AT does not imply WT,
(h) R; AT, does not imply T/
(i) RS ATy does not imply Ty
() RJ AT, does not imply T;
(k) RO9 AWTq does not imply T,

() R; ATq does not imply T;.
Proof:

(a) Let (X, t) be a fuzzy topological space which is both R} and T,. Let x, y € X
such that x # y. By To 1(y)Al(x)=0. Therefore, either
L (y)=0 org(x) =0. Supposel (y)=0. By R}, I_;(X) =0. On the other
hand, if E(x) =0 thenl (y)=0. Thus we have 1_(y) =0 for every ye X such

that x # y. Therefore, l—: =1_for every xe X. Hence (X, t) is T;.

(b) Let (X, t) be a fuzzy topological space which is both R; and WTo. By WT,,
1, (y) A1, (x) <1. Therefore, eitherl (y) <lorl (x)<1. Suppose, 1 (y)<l1,
by R, E(x) < 1. On the other hand if, 17(x)<1then by R., 1, (y) <1. Thus

we have, K(x) <1, for every x, ye X such that x # y. hence (X, t) is WT,.
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() Let (X, ©) be a fuzzy topological space which is both Rand Ty'. Let x, y €X

/] T ——
such that x # y. By T/, al, (Y) ABL (X) <o AP for every pair, o, Be], such

that ¢ # B. Take f = 1, thenal, (y) AT, (x) < & ByR¢, T, (y) =1, (x).

Then al,(y) A L(y)<a Or-(m(y) < o. Thus we have, E(y) < a for every

o€ Ip and for every pair X , y € X such that x # y. Hence, (X, t) is TL’-

(d) Let (X, t) be a fuzzy topological space which is both R, and WTy. Let x, yeX

(e) Let (X, t) be a fuzzy topological space which is both Rg and Ty

®

such that x # y. By WT,, K(y) A K(x) <l.

Therefore, either K(y) <l or E(x) <.
By Rg, K(y) = E(x) € {0,1}. Therefore, i:(y) = E(x) =0.Thus we have,
K(y) =0 for every pair x, y €X such that x # y. This implies that,l_x_= L
Hence (X, t) is T}.

" Let x, yeX

such that x # y and a€l. TO”’, (x_lx(y)/\(x_ly(x)<0t.. Therefore, either

al_(y)<a or oly(x)<o. If ol (y)<a, then by RJ, aly(x)<aand
conversely. Therefore, oc—lx(y) < o for every pair x, y € X such that x # y and

for every a€ Ip. Hence (X, t) is T/.

We take, X = I and define t by t*={p€ ¥ if Ix, u(x) = 1, then p(y) = 1 forx <

y}. as alxet® for o<1, each vel®, and a fortiori each Aet, is a supremum of

closed functions, and so (X, t) has R). However

= 0 if x>y
=11 5 x<y

Hence (X, t) has not R;. Moreover it has T, but not WT;.

(g) On X =1 wedefinet=4u" t, U t3, where
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t,° = {Ael® OS)\.S_%and VxeX

0v (A(0) + (A(0) —%)x) <AX) £ M0) + MO)K) A1,
4

tzc = {7\,E IX:

’

<h<l3
4

Blw A=

t°= {AeI®: Z <A <land VxeX,

3
2 v (M0) + (A(0) - D)x) < A(x) < (A0) + (A (0) — %)x) Al}.

It is only a matter of standard calculations to prove that t is indeed a fuzzy

topology and that t = t°. This space has Rg and T¢' but not WT;.
(h) R A To does not imply Ty

(1) We take a set X with at least two points, elements a # b in X and define t by

€ = {nel™ lSpLSI}u{ueIx: OSp,Sland wa) = £:>u(b)= _1_}
2 2 2 2
Then,
= 'f—l—<a31
2 2
. 1
L 0 1f0_<_oc<5
al, (y) =5

0 if oc=%andx¢aorx=a,y¢b

L oc=’12‘a“d x=a,y=b

12

/
This space has T’ and RS, butnot Ty

(j) On X =1 we define t by

€ = {ue ¥ x <y = A(y) £ 2A(x). Then it is easily seen,
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|
| EOL if y<x
()!.lx(y):<a ify:x
0 ify>x
L

So this space has R§ and Ty but not T;
(k) R, A WT, doesn’t imply T,'.

(1) On the set X with at least two points we define t by
= {per*:0< usé yu{ueI*: %S n<1}

Then,

l if l<0c$1
al, (y)=
0if 0

N | =

(X, t) has Rjand Ty but not T;.

5.1.6. Theorem [6]. For fuzzy topological spaces, we have the following:

(a) WT1&WTorR]
(b) T/TdARE & To'ARS & To"ARg

(c) TioToaRY forke{1,4,6,7, 9}

Proof:

(a) It follows from the definition that, WT; = Rg. Also we know WT=>WTo.

5
Thus WT;=WToARj.In theorem. 6.2(b), we have proved that, WToaR;=

WT,. Thus WT,&WToARS.
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(b) In theorem, 6.1.(c), we have proved that T/=RE, for k €{2, 5, 8}. Also
T1/:>T0/. Thus T]’:>T()I/\ R: .
Conversely, let (X, t) be a fuzzy topological space which has T and Rg . Let
al,(x) =0, where x, y €X, x # y and acl,. By R, (—1—1:()’) = o.. Again, by

/ = r—
Ty, ol (Y) ABL, (X) <ot AP for every pair x, ye X, x # y and for every pair ,

Belp. Take B =1. Then, o AI;(X) <a
6. Topological Properties
6.1. Theorem: Every homeomorphic image R; - fts is also anR§ -fts, (1< k <9).

Proof:

1. Let f (X, t;) = (Y, tz) be a homeomorphism between fts, where (X, t;) hasR'O.
Then,lf(xl)(f(x2 Y= K(x2 ), for every pair, x;, X2 € X.
Let y), y2 €Y, y1 # y2 such that l—y_l—(y2 y=0. Let £~'(y,) = x,andf ' (y,) = X, . Then,

X1 # X2. Sincel—;(y2 )=0, l—xl_(xz)= 0. Again, since (X, t) hasR:), i;(xl)= 0, and

therefore, 1¢( )(f (x,)= T;(y, )= 0. This implies that (Y, t2) is an R, fts.

X2

2.1et £ (X, t;) > (Y, ) bea homeomorphism between fts, where (X, t) has R2.
Then, ol )(f(xz )) =al, (x,), forevery pair, Xi, X2 € X and for every a€ly.
* Xl xl

let y, y2 €Y, 1 # ¥ and oa€lp such thatozly](yz)=oc_ Let

£7(y,) = x,andf 7' (y,) =X, Then, x; # X Sinceocly‘(yz)-—-a,oclxi(xz):(x.

Again, since (X, t) hasRg, BIM(XZ):B for every Pe€lp. Therefore,

B—lf(—)(f()g )= BjﬁlT(yz )=B. This implies that (Y, tp) is an R} fts.
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3. Let £: (X, t)) = (Y, t) bea homeomorphism between fts, where (X, t;) hasRj.
Then,al;,, =f (Otlx ) , for everyx € X and fof every o €lp.

Let yeY, A€t and €]y such that o < A(y). Let £™'(y) = xandf ™' (A) = . Then,

x€X and pety; such that o < u(x). Since (X, t) is Ry, ?ﬂ;su. Now

al, =aly,, =f (Oc_lx) <f(u)=\ This implies that (Y, t;) is an R} fts.

4. Let f: (X, t;) = (Y, t2) be a homeomorphism between fts, where (X, t;) has Rg.
Then,af_(x—) = (al-:) , for every x € X and for every a€lp.

Let ye Y, Act; and aelp such that o < A(y). Let f'(y) =xandf ' (A) = . Then,
x€X and pety such that o < p(x). Since (X, t) is R?, ol <u. Now

I, =0, =f (L, )< () =X This implies that (Y, ;) is an Ry fts.

5. Letf (X, t) = (Y, p) bea homeomorphism between fts, where (X, tp) is Rf,. Let

y1, y2 €Y, y1 # Y2, MEtp such that -1:(3/2):1. Let f'(y,)=x, and £~ (y,)=x,.

1 1 5
Since f is a horneomomhism,1xl(xz,)=Ir(x1)(f(x2))=1yI (y,)=1. By the Rj

property of (X, t;) we have K:(xl)=l. Now, E(yl)=1f(x2)(f(xl))=1x2 (x,)=1.

This implies that (Y, t2) is R}

6. Let f: (X, t;) — (Y, t2) be a homeomorphism between fts, where (X, t1) ing. Let

v, y2 €Y, Y1 # Y2, £ (y,) =x, and £7'(y,) = X,. Then, x| # Xa. Bt the Rg property

of (X, t;) we have E‘(xz):i:(xi). Since f is a homeomorphism
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lr(xl)(f(xz))=lx[ (Xz) for every x,, X, € X which together with K(xz)zlxz (xl)

imply that 1, (y,)= 1, (y,) - Therefore, (Y, t,) is RS,

7. Let (X, t1) and (Y, t) be two fuzzy topological spaces, where (X, t;) isR,

Let f: (X, t;) = (Y, t2) be a homeomorphism. Let y,,y,€ Y such thaty, #y,. Let
1, (v,)€{0,1}. This implies that there exists A€t such that A(y;) = 1 but
0 < Myz) < 1. Since f is a homeomorphism we have f™'(y,).f™(y,)e X and
f'(A)et; such that (f7(1))(f(y,))=1 and O<(f™(A))(f™'(y,))<1. This
implies that m(f"(yz))e{o, 1} which is a contradiction since (X, t1) is Rg.

Again let l_(yz)ig(yl). Without any loss of generality we can assume that
0=1,(y,)<1, (y,)=1. This implies that there exist m,A€t; such that

n(y,)=Ln(y,)=0, A(y,)=0and n(y,) =1. Now, since f is a homeomorphism, we
have f7'(n),f™(A)et; such that( )( ) =1 (f (n))(f“(yz))=0,
(f" (k))(f“’(yl)) 0 and ( )(f (v, ) - This implies that

m(f‘l(yZ)) 0 and 1 (f"(y ))=1.

Therefore, lf_,(yl)(f'i(yz));aél_1(y (f“(yl)), which is also a contradiction.

Therefore, ]'—yl_(YZ) =1—y3-(3’x)e {0, 1}, and so, (Y, t2) is Rj.

8. Let f: (X, t1) = (Y, t2) be a homeomorphism between fts, where (X, t) is Rg. Let

y,,y,€ Y such thaty, # Y, and o € I such that al (y,)=a. Again let

x, =f(y,) and X, =t (y,)- alf(xl)(f(xz))=&t(x2) Vx,x,€X, since f is a

Now,a=—0LTyl_(y2)=0t1f(xl)(f(X2))=—0H,:(Xg)- By the R}

homeomorphism,.

property of (X, t1), al_x:(xl)=a- Now, a;(3’1)=0‘1f(x,,)(f(xn))=‘llxz("1)=‘3‘-

Therefore, (Y, t2) is Rg-
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9. Letf: (X, t)) > (Y,t) bea homeomorphism between fts, where (X, t;) isR} . Let

Y2 € Y such thaty, ¢y, and o € I, such that. Again let

x,=f7 (y,) and x, =7 (y,). By the R} property of (X, t;), o, (x,) =0l (x,)-

We have, ol , (f(x,))= ol, (x,) Vx,,x,€ X, since f is a homeomorphism. Now

al, (y,)= ol ) (f [#y )) =al, (x,). Similarly, ol (v,)=cl,, (x,). Therefore,

al, (v,)=0l,, (y,). Therefore, (Y,t)is R}.



CHAPTER-3

Fuzzy R, topological spaces

1. Introduction: In this chapter we introduce twelve Ri-type axioms for fuzzy

topological spaces. We study their interrelations, goodness and initiality. A complete
answer is given with regard to all possible (R, AT,=T,) and (T,=R,)-type

implications.

2. R;- properties

In this section we introduce twelve Rj-axioms for fuzzy topological spaces.

2.1. Definitions: We define, for fuzzy topological spaces (X, t), Ri-properties as

follows:

RIUGIFVX,ye X, x#y,3 we tsuch that either w(x) > oL € o, 1, and w(y) =0 or

w(y) > o€ Iy, 1, and w(x) =0, then Elu,vetsuchthatZSﬂ,ZSv and uav=0.

R2:IfVx ye X, x#y,3 we tsuch that either w(x) > 0. € I, ., and w(y) = 0 or

w(y) > a€ I, and w(x) =0, then 3, ve tsuch thatESﬂ, 1,<v and u<l-v.

R:IfVx,yeX x#y,3 WE t such that either w(x) > o € Iy ), and w(y) =0 or
] - ’ »

wly) > oe I, ;, and w(x) = 0, then 3 u, v € t such that

M(x)=1=v(y) and unv=0.

RI:IfVx ye X, x# y, 3 w € t such that either w(x) > o € I, 1, and w(y) = 0 or

w(y) > a€ Ip, 1, and w(x) =0, then 3 U, VE t such that #(x)=1=v(y) and u<1-v.
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5 .
R :IfVx,ye X, x# Y>3 W € t such that either w(x) > o € I |, and w(y) =0 or

w(y) > o€ L, 1, and w(x) = 0, then V B, 8 Ip, ;, 3 u, v € t such that
“(x)> B, v(y)>8 and uav=0.

6.
R/:fVX,ye X,x#y,3 we tsuch that either w(x) > 0. € I, 1, and w(y) = 0 or

w(y) > o€ L, i, and w(x) = 0, then 3 W, v € t such that x(x)>0, v(y)>0 and
unv=0.

R:IfVx, ye X, x#y,3 we tsuch that either w(x) = a. € I, ;, and w(y) =0 or

w(y) = € I, 1, and w(x) =0, then 3 p, v € t such that zs,u,ZSv and uanv=0.

RE:IfVx,ye X,x#Yy,3 we tsuch that either w(x) = & € Ip, 1, and w(y)=0or

w(y) = a€ Iy 1, and w(x) =0, then 3 u,vetsuchthatiﬁu,i:Sv and u<l-v.

RO:IfVx ye X, x#Yy,3 we tsuch that either w(x) = &t € o1, and w(y) = 0 or
w(y) = o€ Ip 1, and w(x) = 0, then 3 u, v € tsuch that pw(x)=1=v(y) and

unv=0.

RP.IfVX,yeE X X#Y, 3 w e t such that either w(x) = o € I, and w(y) =0 or
wly) = ae I, 1, and w(x) = 0, then 3 p, v € t such that

u(x)=1=v(y) and Usl-v.

RI:IfVxye X x#y,d WE ¢ such that either w(x) = & € Io, 1, and w(y) = 0 or
T ] ’ ?

wy) = o€ L 1, and w(x) = 0, then V B, 3& Low 3 1 v €t such that

u(x)> B, v(y)>d and uav=0.
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RPIfV x,
! ye€ X,x#y,3 we tsuch that either wx)=0o¢€ Iy, and w(y) =0 or

w(y) = ae I -
(¥) o1 and w(x) =0, then 3 p, v € t such that u(x)>0, v(y)>0 and
uav=0.

3. Relations between the R -properties

3.1. Theorem: The following implications hold among the R;-properties mentioned

in the section 2.1:

R eR=>R R <R =R

y 4 U b U

R12 Py Rf R16 RJS PN le Rll2
Proof:

R,’ = R : Let (X, 1) be an fts which has the property, R;. Suppose that, x, y € X,
x #y, and we 1 such that wix) > @ € Ip, ; and w(y) = 0. Then, by the R/ - property of
(X, ?), there existu, v € ¢ such that ]—‘ <u, E <y and uAav=_0. Clearly, u(x) = I = v(y)

and u A v =0. Hence, (X, £) has the property ;.

Thus R! = R;. Similarly we can show that R =R].

R! = R?: Let (X, 7) be an fts which has the property, R;. Suppose that, x, y € X,

x #y, and wet such that w(x) > @ € Ip, i and w(y) = 0. Then, by the R,' property of

(X, 1), there exist u, v € I such that ZSu, i;,<_v anduav=0. Clearly, u <1 —v.

Hence, (X, ) has the property R:.

Thus R/ => R} . Similarly we can show thatR] = R; .
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R} = R/ : Let (X, 1) be an fis which has the property, R?. Suppose that, x, y € X,
x #y, and we ¢ such that w(x) > a € I ; and w(y) = 0. Then, by the R’ property of
X 0, there exist #, v e t{ such that J_x Su,l <v and u<l-v. Clearly,
u(x)=1=v(y) and u<1-v.. Hence, (X, ¢) has the property R.

Thus R’ = R; . Similarly we can show that Rf = R/’

M: Consider a R/®-fts (X, 7). Let x,ye X, x#y, ael,, and wel such
that w(x)=a and w(y)=0. Then ble‘O,Ei u, vet such that u(x):l =v(y) and
u<l—v.Let ze X and fel,, such that S1, £u.This implies that 5> u(z). Now,
let u(z) =del,,. Then u(z) =6el,, and u(y)=0 together imply that 37, A€t
such that n(»)=1=A4(z) and A <I-n. Now 1—-A(y)=1. Therefore, E <I1-A
Now, J_y(z)£1~i(z)=0 and so fL ,tz. Therefore, ZSu, which is a
contradiction as u(y) #1. Therefore u(z)=0. Now, BAuct such that
Bau(z)=0,p au(x)=p. Therefore Ay, Aet such that n(x)=1= A(z) and
a<l—n. Now, (I-A)(x)=1. Therefore, T <l-4 But L(z)sI-4(2)=0.
Therefore, F1, :ﬁ:. Thus we see that, if BL $u then B, :ﬂ;. Hence, I, <u.
Similarly we can show that ?; < v. Therefore, (X, 1) is RS.Thus R® = R}.

4 2
Similarly we can show that R} = R, B> R and B = Ry

R} = R : Let (X, ) bean fts which has the property, R}.Suppose that, x,y € X, X

#y,and we ! such that w(x) > @ € Ip, 1 and w(y) = 0. Then, by the R} property of

(X, 1), there exist , v € ! such that u(x)=1 =v(y) and uAv=0. Clearly, u(x) >

w(y) > aand unv=0. Hence, (X, ) has the property R .

4 11
Thus R = R/ . Similarly we can show thatR) = R,
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5 6 . ¥
&iRL Let (X, 1) be an fts which has the property, R’.. Suppose that, x, yeXx

x #Y, and W€ ¢ such that w(x) > ¢ e fo, 1 and w(y) = 0. Then, by the R’ property of

(X, 1), there exist 1, v € ¢ such that u(x) > & v(y) > @zand u A v =0. Clearly, u(x)>0,

v(y)>0 and uAv=0. Hence, (X, ) has the property RY.

Thus R} = R/ . Similarly we can show that R' =R,

R’ = R}: Let (X, t) be an fts which has the property, R/ . Suppose that, x, y € X,

x #y, and we ¢ such that w(x) > & € Iy, ; and w(y) = 0. Then, by the R property of
(X, 1), there exist u, v € t such that u(x)=I=v(y) anduaAv=0. Clearly, u<1-v.
Hence, (X, ) has the property RY.

Thus R = R} . Similarly we can show thatR] = R,”.

Counter examples:

Example-1: X = {x, y} and ¢ = <{x, v}u{constants}>, where u(x) = 0.6, u(y) = 0,

v(x) = 0.4 and v(y) = 0.4. Then (X, 1) is an fts. For o = 0.6, (X, #) vacuously satisfies

the Rl1 -property. Now, u(x) = 0.6 = a and u(y) = 0. But there exist no u, v € ¢ such

that u(x) = 1 = v(y) and u AV = 0. Therefore, (X, 1) is not R,m. Thus we see that,
Rl = R

L R12
This example also shows that, R # R”.

Thus, R} # R}(p= 1,2,.,6andq=7,38, v l2)

Example-2: X = {x, y, z} and £ = <{, v}u(constants}>, where u(x) = 1, u() = 0,

@) = 04, v(x) = 0 vy) = 1, WD) = 0. For o = 0.5, we see that, (X, ) vacuously
ulz) = U.4, =Y ¥

satisfies the Rl7 -property. But (X, t) is not R as v(y) = 1 and v(z) = 0 and there exist

7 4
no A u € t such that Ay) =1= u(z) and A A u = 0. Thus we see that, R = By wit
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this example, taking u(z) = .
g u(z) = 0, we observe that (X, t) is not R;.Thus R} % RY.

Hence we have RY 2% R}(p=7,8, ... 12 and a=1,2,..6)

Example-3 [4]: Let X be an infinite set and for any x, y € X, we define uyy, a fuzzy

set in X, as follows:

ty() = L, ug(y) = 0 and uy(z) = 0.5 V zeX, z #x, y. Now consider the fuzzy

topology, £ on X generated by {u,: x, y € X, x # y}U {constants}. It is clear that,

I, Su,, I,<u, andu <I-u,. Thus, (X, f)is R’. But (X, £) is not R®as U, Al
can never be zero. Thus, R} # R andso R} % R°.

Thus R? # R!(p=2,4andg=1,3,5,6)

Example-4: Let X = {x, y} and ¢ = < {fI,, al,}U {constants}>, where § >a,

@, e 1o, 1. Then it is clear that (X, £) is Rf. But (X, 1)-is not Rf, since there exist no

u, v € t such that u(x) = 1 = v(y) and u < 1 — v. Thus we see that, R; R!.

* Thus R/ Rj’(p=5,6andq=1,2,3,4)..

Example-5: Let X = {x, y} and t = <{-;—1J, —;—ly}u {constants }>. Then (X, ¢) is an fts

and it is RY. But (X, #) is not R}. For, if we take de I, | such that § > 0.5 and

& > 0.5 there exist no u, v € t such that u(x) > B, v(y) > & and u A v = 0. Thus we see

that, R® % R’. This example also shows that R*># R

Example-6: Let X = {x, y, 2} and ¢ = <{u, v, w}u {constants}>, where u(x) =

u) = 0, u(z) = 0.5, v(®) = 0,v0) = 1, @) = 0.5, w() = 0.6, w() = D and wlz) = 1

Let o = 0.6. Then (X, ) is Rf as 'IZSu,l—;Sv and u £1-v.However (X, ) is not

R%as u nv=0doesn’t hold. Thus we see that, R R’

Therefore, R’ # R/ (P = 8, 10and g=7,9, 11, 12).
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Example-7: Let X = {x, y}. We define fuzzy sets u, v on X as follows:
u(X) =Q, u(y) =0 and V(x) = 0, p(y) =Q,0e IO B
Then (X, £) is R'.But it is clear that, (X, f)is not R". ThusR" % R!°
E 1 T

Therefore, R” =& R (p =11, 12 and q=1,8,9, 10).
4. Goodness and permanency properties:

4.1. Theorem: All R’ (1 < k < 12) are good extensions of the topological

Ri-property. That is, (X, 7} is an R;-space, if and only if (X, W (7)) satisfies
RF(1<k<12).

Note: By theorem 3.1, we have only to prove the following:

(a) If (X, ) is an R-space, then (X, W (7)) satisfies R/ and R/ .

(b) If (X, MW7) satisfies R," (ke {4, 6, 10, 12}), then (X, 7) is an R-space.

Proof:
(a) Suppose (X, 7) is an R;- topological space. Let x, y € X, x #, and o € Iy 4,

and w € ¢ such that w(x) > o and w(y) = 0. Now w (&, 11€ WD) such that

xe w(a, 1] and y& w™' (e, 1]. This implies that xe{_y'} in 7. Hence there

exist U, Ve Tsuch that x € U, ye Vand UV v = @. Since an R,-topological

space is also an Ro- topological space, {x}cuand {y}c V. Also we know

7= T 1< 1, <ly. Moreover,
that, 1{_;=1x and 1, =1. Therefore, 1 <lu and 1 <1y Moreo

La Alw, = 0. Hence (X, W(7) satisfies R, .

——

Again, suppose (X, D) is an R,- topological space. Let x, y € X, x #y, and

and w € ¢ such that w(x) = Q and w(y) = 0. Take Bel,, , such that

oe I,
wx) > B. Now w' (B, 11e WM{Z) such that

oo > P. Then
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xewl(B, 1 -1 —_ _
(B.11and ye w (6,1]. This implies that x¢ y in 7. Hence there

exist U, V€ Tsuch that x € ¢, Y€ Vand YU ¥ = @. Since an R;-topological

space is also an Ro- topological space, {;} C U and {y—} C V. Also we know

that, 1{_7} =1, and | = 1{7}' Therefore, Z <ly and ﬂ <1y Moreover,

lu Aly. = 0. Hence (X, W(T) satisfies R17 .

(b) Suppose (X, W (D) satisfies R'. Let x, y € X such that x& {7} in 7. Then

1 we Tsuchthatx € wandy ¢ w. Now 1,, € W (7) such that 1,(y) = 0 and

lux) =1>0V ael,. Therefore 3 1, ve W (7) such that u(x)=1=v(y)
and u<1-v. Take U:,u'l(%, 1} and V=v'1(%, liI. Clearly, U,Ve T

such that xeU, yeV and UnV= @. Therefore, (X, W (7)) is an
R;-topological space.
Suppose (X, W (7)) satisfies R’.Letx, y € X such that x¢ {y_} in 7. Then 3

we Tsuch that x € w and y € w. Now 1,, € % (7) such that 1.(y) = 0 and
Ix) =1 >a V a €l . Therefore 3 @, v € W () such that
14(x)>0, v(»)>0 and pAv=0. Now, x€ #(0,11€ T yev'(0,1]1eT
such that ﬂ“ O, 11N v™(0,1]= @. Therefore, (X, W (2)) is an R;-topological

space.

Again, suppose (X, W (7)) satisfies R|". Letx, y € X such that x {y} in T

Then 3 we 7 such that x € W and y ¢ w. Let agly, ;. Now al,, € wW (D),

al,x) = o and alsd) = 0. Then 3 W, V € W) such that

a1 af 1
= =, 1| Y= —,1|. Th
w(x)=1=v(y) and u<1-v Take, U= H (2, } v (2 } en

7l Ve Tsuchthatx euandy€ %, Morcover UNY'=@.For,if z&€ UN ¥
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1
then — < £1- : icti
> M(z)<1-v(z) <—2—, a contradiction.  Therefore, (X, W (7)) is an

R;-topological space.

Again suppose (X, W (7)) satisfies R”. Let x, y € X such that x¢ {y}inT
Then 3 we Tsuch that x € w and y ¢ w. Let o€ly, . Now al,, € W (D),
aly(x) = o and aluw(y) = 0. Therefore 3 w, v € W (7) such that
“(x)>0, v(y)>0 and pAv=0. Now, xe 4 (0,11€ T, yev'(0,1]eT
such that 227 (0, 11N v (0, 1]= @. Therefore, (X, W (7)) is an R;-topological

space.

4.2. Theorem: The properties R, (1< k < 12) are initial, i.e., if (f: X—(X; #)) is a

source in fts where all (Xj, #;) are Rl"' , then the initial fuzzy topology ¢ on X is also Rf .

Proof:
(1) Let {(X;, t;): je J} be a family of R-fts, {fi: X—>(Xj, 1;); j€J} a family of functions
and ¢ the initial fuzzy topology on X induced by the family {f: je/}. Let x, y €X,

x #y, 0y, | and wet such that w(x) > o and w(y) = 0.

Since wet, there exist basic t-open sets, Wp such that w = sup {wp: p€ P}. Also each w,
must be expressible as w, = inf{ Flwy, 115k< n} . As w(x) > o and w(y) =0, we

-1 -1 =
can find some k (1 < k £ n), say K’ such that fpk/ wpk/ (x) >« and fpk/ o/ (y)=0.

=0. Since (X, .1, |is R,
This implies that w), /fpk/ (x)>a and Wy, fpk/ (y)=0. Since ( LY )15 |
Wh

< ol <v and
there  exists £, Y, Et,, such  that lf,, (%) ,upk/ fpk/(y) Py
k

k k

. . : ve (1_) <1 . Now put
By AV, = 0. Also since f"k’ is continuous, we ha f"k L fpk/ (x) |y
o v



CHAPTER-3
Fuzzy R, topological spaces 33

-1
= and v= "1 — =
o fpk/ ('U’Pk/) fpk/ (Vpk/)' Then 4 v € 1 such that I, <u, 1,<vand

UAV= 0. Hence (X, 1) is Rll.

(2) Let {(X;, )): jeJ} be a family of R} -fts, {f: X—(X;, £,); jeJ} a family of functions

and ¢ the initial fuzzy topology on X induced by the family {fi jeJ}. Let x, y €X,
x #y, 0€ Ip, 1 and we ¢ such that w(x) > o and w(y) = 0.

Since wet, there exist basic z-open sets, w, such that w = sup {w,: p€ P}. Also each w),

must be expressible as w), = inf{f;:wpk 1<k < n} .As w(x) > o and w(y) =0, we

d <k< / -1 -1 =
can find some k (1 £ k < n), say k' such that f"k’ ka’ (x) > and f"/.-/ wpk, ()’) =0.

This implies that ka’ fpk/ (x)>a and W f”k’ (y)=0. Since (ka/ 1 )is R?,

; < <
there  exists Hp ;o V”x-/ €t, such that 1 foy () SHp, 1 e _vpk/ and

k

-— 1 i 1 1, <
,upk/ <l-v, . Also since f”k’ is continuous, we have f"k’ (lx) < lf”k’ (x) Now put

k

| -1 1, 1,
/-lszk/ ('upk/) and szpk/ (Vpk/). THen & W& ¢ sl B S S 1y =y

4 < 1— v. Hence (X, 2) is R} .

(3) Lot (X, 1): jeJ} be a family of R}-fis, ff X—(X; 1); jeJ} a family of functions

and ¢ the initial fuzzy topology on X induced by the family {fi jeJ}. Let % ¥ =%

x #y, 0]y, and wet such that w(x) > c.and w() =0-

Since wet, there exist basic -open sets, wp such that w = Sup Lt Pl Hlsor it W

; -1 ' < > o and w(y) =0, we
must be expressible as W, =mf{f1’k Wy, - 1<k _n} . As wW(x) )]

-1 d _lw =0(.
o, Bl some ks L 5k 5 n), say K’ such that fpk/ ka, (X)>a an fpk/ Py (}’)

=0. Since | X, .t ) is R},
This implies that w, , fp, (x)>a and ka,fpk/ (y)=0. Since ( oo ) ST
W Fk
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» t ’
there  exis Hp o Vp, € t”k’ such  that L(f(x))=1=v, (f(y)),
p k

Av, =0.Put = {1 — -1 ; : ;
Pp, " py H f"k’ Hp,, | and v-fpk/ Vi ) Since f”k/ is continuous,

U, v tsuch that 4(x) = 1= Wy)and y A v=0. Hence (X, 1) is R?.,

(4) Let {(X}, )): jeJ} be a family of R{-fts, fi: X—(Xj, 1;); jeJ} a family of functions

and ¢ the initial fuzzy topology on X induced by the family {f: jeJ}. Let x, y €X,

x #y, 0€lp,; and we ¢ such that w(x) > o and w(y) = 0.

Since wet, there exist basic -open sets, w, such that w = sup {w),: pe P}. Also each w,,

must be expressible as w), = inf{f;klwpk JALk< n} . As w(x) > o and w(y) =0, we

can find some k (1 £k £ n), say K such that f-'w_ (x)>¢a and f"l w y)=0.
Pk/ Pk/ Pk/ Pk/

P,

. . % . 4
This implies that Wps f”k/ (x)>a and W, f"’;-/ () =0. Since (ka/ t, ) is R},

there  exist Mo /s Ve et, such  that Ky, (f(x))=1=Vpk, (f(y))

K/ k

-1 _ gl : i
J7I- 1 -V, . Put ﬂ:}fpk/ (ypk/) and v—fpk/ (Vpk/). Since fpk/ is

4 k

. 4
continuous, 4 V€ t such that ux)y=1=ny) and < 1— v. Hence (X, ) is Ry .

(5) Lot {(X,, 1): jeJ) be a family of R} -fis, fr X—>(X;, s jeJ} a family of functions

and ¢ the initial fuzzy topology on X induced by the family {f;: jeJ}. Let x, y €X,

x #y, a€l,, ; and wet such that w(x) > acand w(y) =0.

Since we 1, there exist basic f-open sets, Wp such that w = sup {w,: p€ P}. Also each w;,

. -1 <k <nt. As w(x) > a and w(y) =0, we
must be expressible as Wy :mf{fpk Wp, ,l,k,n} s W)

-1 d flw y)=0.
can find some k (1 £ k £ n), say k' such that fpk/ WPk/ (x) > A fP,\./ P ( )

=0. Sinc (X ! ) is Ry,
This implies that w, , fp,, (x)>a and ka,fpk,(}’) 0. Since | X, p, i
B

t flx)>p v (f(y))>d and
there exist W, ;> vpkletpk,SUCh tha ,“pk,( ) P/
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up//\vp/=0f0r every 8, e Iy,. P — -1
J- Fut = _ ol
* * H# fpk/ (‘upk/) and v = fpk/ (Vpk/ ) Now

1, VE t,since f,,k , 1s continuous and u(x) > 4 UY) > dand u A v=0. Hence (X, t) is

R’

(6) Let {(X}, #): jeJ} be a family of R16 -fts, f: X—(X;, 1); jeJ} a family of functions

and ¢ the initial fuzzy topology on X induced by the family {f: jeJ}. Let x, y €X,

x #y, a€Ip, 1 and we such that w(x) > o, and w(y) = 0.

Since wet, there exist basic t-open sets, w, such that w = sup {wp: pe P}. Also each w,

must be expressible as w, = iﬂf{f,,_klwpk (1<k < n} .As w(x) > o and w(y) =0, we

can find some k (1 £k < n), say K such that fp_llwp 4 (x)>a and fp'l/wp , (y)=0,
k k k k

.. . . i 56
This implies that wpk/ fpk/ (r) >a and W, fpk/ () =0. Since (ka/, t”k’) is R’,

there exist i, ,V, €,
k k k

,such  that upk/(f(x))>0, vpk/(f(y))>0 and

= = (1 = f . N Vet si
,Llpk/ AVPA»’ = 0. Put ,u—fpk/ (,upk/) and v f“’k’ (VP:/) ow 4, since

. b
%o ’ is continuous and, #(x)>0, y)>0and uA v= 0. Hence (X, 1) is Ry .
&

(7) Let {(X;, t;): jeJ} be a family of R -fts, {f: X—(X), );jeJ} a family of functions

and ¢ the initial fﬁzzy topology on X induced by the family {f: jeJ}. Letx, y eX,

x #y, ael,,, and wet such that w(x) = & and w(y) = 0.

Since wet, there exist basic f-open sets, Wp such that w = sup {w,: p€ P}. Also each w,

: . -1 ‘1< s}.Aswx=0Landw(y)=0,we
must be expressible as Wy =1nf{fpk L lsksn )

=1 —qand f; W ={.
can find some k (1 £k < n), say K’ such that fpk/ Wp.s (x)=aan fpk/ P/ (¥)

~0. Since (x t )is R,
This implies that w, /fPL/ (x)=2 and W f Py (v)=0. Sin P’ P !
7P
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there  exists u V., et N
P’ Vp, Stp, such  that
k K / < , 1 <
¢ Ty ) = Fpyo Uty () SYp, BN

My AVp = 0. Also since fpk

) . 18 continuous, we h —)
K k / ave f‘”k! (1" < 1ka/ (+) - Now put

= ] -1 = i Fa T
H=1p, (ﬂpk,) and v="_o, (V”k/)' Then 44 v € 1 such that 1, <, 1,<vand

puA v=0.Hence (X, is R/ .

(8) Let {(X;, £)): jeJ) be a family of RE-fts, (f: X—(X;, t;); je J} a family of functions

and ¢ the initial fuzzy topology on X induced by the family {fiijeJ}. Letx, y €X,

x #y, o€ Iy, and we ¢ such that w(x) = o and w(y) = 0.

Since we t, there exist basic t-open sets, w, such that w = sup {wj: p€ P}. Also each w,

must be expressible as w, = inf{f;:wpk 12k < n}. As w(x) = a and w(y) =0, we

can find some k (1 <k < n), say kK such that fp"kl/ o, (x)=c and fP_kl/ w, , (¥)=0.

k

: . 8
This implies that W, fpk/ (x)>a and W fpk/ (y)=0. Since (ka/ 'y, )15 R,

i <
there ex1stsypk/ , Vpk/ €1,  such that lfpk/ (x) S,upk/ 3 lf"k/(y) <V, and

/ k

_ : , 1.)< . Now put
Hp S1Vp, - Also since f, ,is continuous, we have f, , (1x) <1 fps () P

~ = g1 v € t such that l—s,u,l_SV and
u= fpk/ (rupk/ ) and V= fpk/ (VPK/ ) Thent /& * ¥

M < 1- v. Hence (X, 1) is Rls-

(9) Let (X, 1: jeJ) be a family of R-fs, f; X—(%; §); j&J} a family of functions
EId Ve

and ¢ the initial fuzzy topology on X induced by the family {f;: j€J}- Let x, y €X,

such that w(x) = & and w(y) =0.

x #y, 0el,  and we?
! y such that w = sup {wp: p€ P}. Also each w,

¢ t-open sets, Wp
A<ksn). Aswix) = aand wiy) =0, we

Since wet, there exist basi

-1
. 1 w
must be expressible as W, -—mf{fpk Py
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can find some k (1 <k <), say K such that f;) w,,  (x)=c and f;w, , (3)=0.
k k

k

This implies that = - : o po
p W”k’fpk’ (x)=c and ka/f”k/ (y)=0. Since (ka/, t”k/) is Rf,

there  exist ,upk/ , Vpk/ € tpk/ such  that ,upk/ (f(x)) =1=Vpk/ (f(y)),

v, =0.Put u=f"! = £
Hp, Mo, ut u fpk/ (ﬂpk/)and V—fpk/ (vp/

. Since f,  is continuous,
k 3 Pk/

M, ve tsuch that 4(x)=1= Wy) and uA v=0.Hence (X, ) is ng.

(10) Let {(X;, t)): jeJ) be a family of R]®-fts, f: X—(X;, 1;); je J} a family of functions

and ¢ the initial fuzzy topology on X induced by the family {f: jeJ}. Let x, y €X,
x #y, o€l ; and wet such that w(x) = oo and w(y) = 0.

Since we, there exist basic t-open sets, w, such that w = sup {w,: p€ P}. Also each w,

must be expressible as w, = inf{f;:wpk 1<k< n} .As wx) = o and w(y) =0, we

can find some k (1 < k < n), say k' such that fp—kl/ o, (x) = and fp_kl/ Wp., (y)=0.

This implies that w, f,  (x)=a and w,  f, (y)=0. Since (kaf,tpk/) is R°,
Tk Tk c

et, such that Hp ) (f(x))=1=Vpk, (f(y)),

there exist H"k’ , V"k’ .

= f1 =51 v ) Si i
,upk/S 1 —-Vpk/. Put ,u-fpk/ (,upk/) and Vv f"k’( P,/ ince fp;/ is

. pl0
continuous, 4 V€ t such that u(x) = 1 = ¥y) and u< 1 — v. Hence (X,0)is R

(11) Let {(X}, 1;): jeJ} be a family of Rlu-fts, fi: X—(X;, t)); je J} a family of functions
and ¢ the initial fuzzy topology on X induced by the family {f;: je/}. Let x, y €X,

x #y, 0y, and we such that w(x) = o and w(y) = 0.

Since wet, there exist basic -open sets, w, such that w = sup {wp: pe P}. Also each w,

; -1 ) _ _
must be expressible as w, = mf{fpk Wp, - 1Sks n} . As w(x) = and w(y) =0, we
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can find some k (1 < k < n), say K’ such that fp‘:/wp/ (x)=a and f;'w, (¥)=0.
k k k k

3t

This implies that = = i
is impli o, fpk/ (x)=a and o, fpk/ (y)=0. Since (ka/ P

) is Rl“,
there exist Moo Vo, €ty such that p, (f(x))>B. v, (f(y))>5 and
k k

p,pk/ /\Vpkl = 0 for every 3, d€ ;. Put /1=f;k1/ (,upk/) and V=f;kl/ (Vpk’)' Now
M, VE t, since fpk/ is continuous and 4(x) > 5, Ky) > Sand u A v=0. Hence (X, t) is

Rt

(12) Let {(X], #)): je J} be a family of Rllz—fts,ﬁ: X—(X;, t;); je J} a family of functions
and ¢ the initial fuzzy topology on X induced by the family {f: jeJ}. Let x, y €X,

x #y, 0€ Iy, and wet such that w(x) = o and w(y) = 0.

Since wet, there exist basic t-open sets, w, such that w = sup {w,: p€ P}. Also each w,

must be expressible as w, = inf{fp":wpk Lk < n}. As w(x) = o0 and w(y) =0, we

can find some k (1 £k < n), say k' such that fp":/ Wp,/ (x)=a and fl;‘:/ Wp, (¥)=0.

o . _ ; . o2
This implies that o, fpk/ (x)=c and W fpk/ (y)=0. Since (ka/ , t”k’) is R”,

there exist Hp v, €t,  such that ,upk/ (f(x))>0, vpk/(f(y))>0 and

4 k

-1 _ el .
Hp AV = 0. Put 'u=fpkf (ﬂ”k/) and v—fpk/ (vpk/). Now 4, Vv € 1, since

I3 4

. pl2
¥ , is continuous and, (x)>0, {y)>0 and i A v=0. Hence (X, 1) is Rf .
k

4.3. Corollary: Since initiality implies productivity and heredity all the properties

Rf (1< k <12 )are productive and hereditary.
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5. Relationships of the R} -concepts with some fuzzy separation concepts
Recall:
5.1. Definition [4]: A fuzzy topological space (X, t) is called

FTo(i): iff for every x, y € X, x # y, there exists uet such that either u(x) = 1 and

u(y) =0 or u(x) =0 and u(y) = 1.

FTo(ii): iff for every x, y € X, X # y, there exists ue t such that either u(x) > 0 and
u(y) =0 oru(x)=0and u(y) >0.

FTo(iii): iff for every x, y €X, x # y, there exists uet such that either u(x) > u(y) or

u(y) > u(x).

The following relations hold between the FTo-properties:

FTo(i) = FTo(ii) = FTo(iii)

5.2. Definition [4]: A fuzzy topological space (X, t) is called

FT,(i): iff for every X, ¥ eX, x #Y, there exist u, v € t such that u(x) = 1 = v(y) and

uanv=0.

FT,(ii): iff for every X, ¥ € X, x #y, and for every &, B € Io, there exist u, v € t such

that u(x) > o, v(y) >PanduAv= 0.

FT,(iii): iff for every X, ¥ eX, x #Y, there exist u, v € t such that u(x) > 0, v(y) >0

and uav=0.
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FT,(iv): iff for every X, y €X, x # y, there exist u, v € t such that either u(x) = 1 =

v(y) andus<1-v.

FT,(v): iff for every x, y € X, x # y, and for every o, B € I, there exist u € t such that

a<u(x) and B¢ u(y)
*#%k By oi<u(x), we mean u(x) =1 when o= 1 and o. < u(x) if ot # 1.

The following relations hold between the FT;-properties:

FT,(i) = FTa(ii) = FTyiii)
U
FTa(iv) = FTa(v)

5.1. Theorem: For the fuzzy topological spaces, the following are true:

(a) R + FTy(iii ) & FTy(iii), FTy(v), R + FTo(iii) > FLy(iii), FTy(v)
(b) RS + FTy(ii )= FTy(iii ), Ri% + FTy(ii )= FTy(iii)

(©) RS + FTy(ii ) FTy(ii), R' + FTy(ii ) 3> FTp(ii)

(d) R+ FTy(ii )= FTy(i), R + FTy(ii)= FIo(1)

(€) RE + FTy(ii )=> FTy(iv), R} + FTo(ii)= FIp(iv)

(®) R? + FTy(i) = FTy(iii), R + FIo(i) = FI(ii)

(&) RS+ FTy(i)3 FTy(ii ) FTo(iv), RIZ+FTy(i)=p FT(ii), FTy(iv)

(h) RS + FTy(i) 2 FTy(v), RI' + FTo(i)% FTo(V)
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Proof (a):

Example-1: Consider a fuzzy topological space, (X, t) where X = {x, y}, w(x) = 0.5,
w(y) = 0.4 and t = < {w} U{constants}>. Clearly (X; £) is FTo(iii) and R and R/ .
But (x, t) is neither FT,(iii) nor FTy(v).

Proof (b): Let (X, t) be a fuzzy topological space which is both Rf and FTy(ii). Let x,
y € X, x #y. By FT(ii), there exists wet such that either w(x) > 0, w(y) = 0 or w(x) =
0, w(y) > 0. Definitely either w(x) > o, w(y) = 0 or w(x) = 0, w(y) > o for some ¢
€ Ip1. Now by Rf, there exist u, v € t such that u(x) > 0, u(y) >0 and u A v = 0. Thus

(X, t) is FT,(ii1).

Again, let (X, t) be a fuzzy topological space which is both Rllz and FTo(ii). Let x, y

eX, x # y. By FTo(ii), there exists wet such that either w(x) > 0, w(y) = 0 or w(x) =
0 w(y) > 0. Definitely either w(x) = @, w(y) = 0 or w(x) = 0, w(y) = o for some 0.

€ Ip,;. Now by Rllz, there exist u, v € t such thatu(x) >0, u(y) >0 andu A v = 0. Thus

(X, t) is FTa(ii1).

Proof (c): Let (X, t) be a fuzzy topological space which is both R? and FTo(ii). Let x,
y € X and x # y. Since (X, t)is FT(ii), there exists w € t such that either w(x) > 0

and w(y) = 0 or w(y) > 0 and w(x) = 0. It is possible to find o € I, ; such that either
w(x) > o and w(y) = 0 or w(y) > & and w(x) = 0. Since (X, t) is also R}, there exist u,

v € t such that u(x) > B, v(y) > SV B, 8¢€ o Therefore,(X, t) is FTa(i1).

Again, let (X, t) be a fuzzy topological space which is both Rlu and FTo(ii). Let x, y

€ X and x # y. Since (X, 1) is FTo(ii), there exists w € t such that either w(x) >0 and

w(y) =0or w(y) >0 and w(x) = 0.1t is possible to find o € Ip,  such that either w(x)

= o and w(y) = 0 or w(y) > ¢ and w(x) = 0. Since (X, t) is also Ri!, there exist u, v €

t such that u(x) > B, v(y) > 8 V B,d € I Therefore,(X; 8) is FT2(11).
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Proof (d): Let (X, t) be a fuzzy topological space which is both R! and FTo(ii). Let x,
y € X, x #y. By FTo(ii), there exists w € t such that either w(x)>0, w(y) = 0. Clearly
either  w(x) > 0, w(y) = 0 or w(x) = 0 and w(y) >0, for some aclp;. By R?, there

exist u, v € tsuch that u(x) =1 =v(y) and u A v = 0. Thus (X, t) is FT5(i).

Again, let (X, t) be a fuzzy topological space which is both R and FTo(ii). Let x, y
eX, x #y. By FT(ii), there exists w € t such that either w(x)>0, w(y) = 0. Clearly
either  w(x) = &, w(y) =0 or w(x) = 0 and w(y) = 0, for some a:€lp;. By R/ , there

exist u, v € t such that u(x) = 1 = v(y) and u A v = 0. Thus (X, t) is FTa(1).

Proof (e): Let (X, t) be a fuzzy topological space which is both Rl2 and FTo(ii). Let x,
y €X, x # y. By FT(ii), there exists wet such that either w(x) > 0, w(y) = 0 or
w(x) = 0, w(y) > 0. Definitely, for some o€ lo,1, either w(x) > o, w(y) =0 or w(x) =0,
w(y) > a. By Rlz, there exist u, v € t such that u(x) = 1 = v(y) and u < 1 -wv.

Therefore, (X, t) is FT2(iv).

Again, let (X, t) be a fuzzy topological space which is both Rls and FTy(i1). Let x, y
e€X, x # y. By FTq(ii), there exists wet such that either w(x) > 0, w(y) = 0 or
w(x) = 0, w(y) > 0. Definitely, for some c€lo, either w(x) = o, w(y) =0 or w(x) =0,

w(y) = a. By ng, there exist u, v € t such that u(x) =1 = viy)and u £ 1 - v.

Therefore, (X, t) is FT2(iv).

Proof (f):

Example-2 [4]: Let X be an infinite set.. For any X, y € X, X # Y, let uy, be a fuzzy set

in X such that ey () = 1, txy (¥) = 0 and ty (z) = 0.5 where ze X such that x # z, z #

y. Now consider the fuzzy topology t on X

{constants}. Then the fts, (X, 1) is FTo(i). However, it is clear

generated by {uxy: X, y €X, X #y }u

that, I, €u_, 1, Su,
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and u,, £1-u, . Thus (X, ) is RZ and RE. But (X, 1) is not FTq(iii) as the

intersection of two non-trivial fuzzy sets cannot be zero

Proof (g):

Example-3: Let, X = {x, y}, u and v are two fuzzy sets on X defined as follows:

ux)=1, u(y) =0, v(x) =0, v(y) =0.5. Let t be the fuzzy topology on X generated by
the sets {u, v} U {constants}. Then it is clear that, (X, t) is FTo(i), RS and R*.

However, (X, t) is not FT(ii) for, if we take o = B = 0.7, we see that, there exist no u,
v € t such that u(x) >a, v(y)>p andu A v =0. Again (X, t) is not FT,(iv) as there

exist no u, v € t such that u(x) =1 = v(y).

Proof (h):
Example-4: Let X = I and t be the fuzzy topology on X generated by B = BjU Bau

B3U B.. Where, B = {1XI Xe 10,1 },
B; = {uy: meN},
Where u,, is a fuzzy set in X defined by um= 1[0 e ],

m+l

By={vp,pmneNandFisa finite crisp subset of X },

Where v, ris a fuzzy set in X defined by v ¢ = (-n—+_J 1[ 0 1]-1:

And B, = {constants}.

Now, (X, t) is R}, Rl“ and FTo(i) but not FTa(v). (c.f. [On certain separation and

connectedness concepts in fuzzy topology-By D.M. Ali])

5.2, Theorem: For the fuzzy topological spaces the following are true.

(a) FT, (iii) = R

(b) FT, (iii) > R}
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() FT, (i) = R}

(i

(d) FT, (ii) % R}

() FL, (i)= R}
(

(0 FT; (iv) $ R

(8) FTy (v) = R}

Proof (a): Trivial.

Proof (b):

Example-5: Consider a fuzzy topological space (X, t) where X ={x , y}, u(x) = 0.5,
u(y) = 0, v(x) = 0, v(y) = 0.5, w(x) = 0.6, w(y) = 0 and t = <{u, v, w}U{constants }>.
It can be checked that (X, t) is FTy(iii) but not Ry .

Proof (c): Trivial.

Proof (d); In example-4, (X ,t) is FTy(ii ) but it is not Rlz.

Proof (e): Trivial.

; . 5. 8 6
Proof (f): In example-2, (X ,t) is FT,(iv) butitis not R’.
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CHAPTER-4

Some remarks on fuzzy R, topological spaces.

1. Introduction: In this chapter we recall eighteen axioms of fuzzy R;-type axioms
from [3]. We study their interrelations, goodness and initiality. The relations between
these axioms with the axioms studied in chapter three are also discussed. It is shown
that, the reciprocal pre-image and homeomorphic image of a fuzzy R;-topological

space is also a fuzzy R;-topological space.

1.1 FR; Properties [3]:

In this section we recall some definitions of fuzzy R;-topological spaces from [3].

Definitions:

FR, (i): An fts (X, t) is called FR, (i) iff for all distinct x, y € X, if there exists wet

with w(x) # w(y), then there existu, vV € t with 1, <u,1, £vanduav=0.

FR, (ii): An fts (X, t) is called ER,(ii) iff for all distinct x, y € X, if there exists wet

with w(x) # w(y), then there exist u, v € twith 1 <u, 1, <vandu<l-wv.

FR, (iii) : An fts (X, t) is called FR(iii) iff for all distinct X, y € X, if there exists wet

with w(x) # w(y), then there existu, v € t with u(x) =1=v(y)and uav=0

FR, (iv): An fts (X, t) is called FR(iv) iff for all distinct X, y € X, if there exists wet
1 ; ’

with w(x) # w(y), then there existu, v € t with u(x)= l=v(y)and usl-v
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FR, (v): An fts (X, 1) is called FR,(v) iff for all distinct X, y € X, if there exists wet

with w(x) # w(y), then for all q, Bely,, there exist n, ve & with wic) s, vy > b

and UAV= 0.
ER—L(X_I)_ An fts (X, t) is called FR,(vi) iff for all distinct x, y € X, if there exists wet

with w(x) # w(y), then there exist u, v e t with u(x)>0,v(y)>0 and uav=0,

FR, (vii): An fts (X, t) is called FR(vii) iff for all distinct x, y € X, if there exists

wet with w(x) > 0, w(y) = 0 or w(x) = 0, w(y) > 0, then there exist u, v € t with

I_Su,i:Svandux\v=0.

X

FR, (viil): An fts (X, t) is called FR;(viii) iff for all distinct x, y € X, if there exists

wet with w(x) > 0, w(y) = 0 or w(x) = 0, w(y) > 0, then there exist u, v € t with

I, <u,l <vandus<l-v.

FR, (ix): An fts (X, t) is called FR,(ix) iff for all distinct x, y € X, if there exists wet

with w(x) > 0, w(y) = 0 or w(x) = 0, w(y) > 0, then there exist u, v € t with

u(x)=1=v(y)and uanv=0

FR, (x): An fts (X, t) is called FR,(x) iff for all distinct x, y € X, if there exists wet

with w(x) > 0, w(y) = 0 or w(x) = 0, w(y) > 0, then there exist u, v € t with

u(x)=1=v(y)and u<l-v
FR, (xi): An fts (X, t) is called FR (xi) iff for all distinct X, y € X, if there exists wet
1 : ?

with w(x) > 0, w(y) =0 or w(x) = 0, w(y) > 0, then for all o, Belo,i, there existu, v €

t with u(x) > o, v(y) > and uav=0.
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FR, (xii) : An fts (X, 1) is called FR(xii) iff for all distinct x, y € X, if there exists

wet with w(x) > 0, w(y) = 0 or w(x) = 0, w(y) > 0, then there exist u, v € t with
u(x)>0,v(y)>0 and uav=0,

FR, (xiii) : An fts (X, t) is called FR(xiii) iff for all distinct x, y € X, if there exists

wet with w(x) = 1, w(y) = 0 or w(x) = 0, w(y) = 1, then there exist u, v € t with

1, €u,l, Svanduav=0.

FR, (xiv): An fts (X, t) is called FR(xiv) iff for all distinct x, y € X, if there exists

wet with wx) = 1, w(y) = 0 or w(x) = 0, w(y) = 1, then there exist u, v € t with

1, Su,ly <vandu<l-v.

FR, (xv): An fts (X, t) is called FR(xv) iff for all distinct x, y € X, if there exists

wet with w(x) = 1, w(y) = 0 or w(x) =0, w(y) = 1, then there exist u, v € t with

u(x)=1=v(y)and uanv=0

FR, (xvi): An fts (X, t) is called FR(xvi) iff for all distinct x, y € X, if there exists

wet with w(x) = 1, w(y) = 0 or w(x) = 0, w(y) = 1, then there exist u, v € t with
u(x)=1=v(y)and usl-v
FR, (xvii): An fts (X, t) is called FR,(xvii) iff for all distinct X, y € X, if there exists

wet with W(X) = 1, w(y) =0or W(X) = O, W(y) = 1, then for all QL BE onl, there exist u,

v e t with u(x) > o, v(y) > B and uav=0.

FR, (xviii): An fts (X t) is called FR,(xviii) iff for all distinct X, y € X, if there
1 . ]

exists wet with w(x) = 1, w(y) =00r = G wiy) = L then EhereRXISELY € §

with u(x) > 0, v(y) >0 and uav=0.
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1.1. Theorem [3]: The following implications hold between the FR,-propertits of an
fts.

FR,(v) < FR,(i) & FR,() « FRGi) = FR,(v) = FR,(v)
v Y b v !
FR (vill) <7T————— FR(vii) = FR,(ix) = FR,(xi) = FR,(xii)

U U U
R, (x) FR,(xiii) = FR,(xv) = FR,(xvii) = FR,(xviii)

1.2. Theorem [3]:

All FR;-properties mentioned in the section 1.1 are good extension of their

topological counter parts, i.e. A topological space (X, T)is R, if and only if (X, #(T))
is FR1(p) (p =1, ii, ..., Xviii).

1.3. Theorem [3]: FRi(p) (p =1, i, ey xii) are initial, and therefore productive and

hereditary.

2. Relations between FR;(p) fuzzy topological space and R1k -fuzzy

topological space:

In this section we study the relations between the FR(p) fuzzy topological space

mentioned in the section 1.1 and the Rf - fuzzy topological space discussed in the

chapter three.
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2.1. Theorem: The following implications hold between FR;(p) and R} properties
(p=1,ii, ..., xviiland q=1, 2, ..., 12):

(1).  FR,(vii) = R| = FR, (xiii)
). FR,(viii) = R? = FR, (xiv)
3). FR,(ix)=R]=FR, (xv)
4). FR,(x)=>R]=>FR,(xvi)
(5). FR(xi)= R} = FR, (xvii)
(6). FR,(xii)= R} = FR, (xviii)
(7). FR,(vii)= R] = FR, (xiii)
(8). FR,(viii) = R} = FR (xiv)
9). FR,(ix)=> R} = FR,(v)
(10). FR,(x)=> R}’ = FR, (xvi)
(11). FR,(xi)=R}' = FR, (xvii)

(12). FR,(xii) = R}* = FR, (xviii)

Proof:

FR,(vii) > R, :

Let (X, t) be an fts which has the property FR,(vii). Suppose that, X, y € X, a€lo, and

wet such that w(x) > o and w(y) =0. Then clearly w(x) > 0 and w(y) = 0. Therefore,

by FRy(vii) property of (X, t), there exist u, v € 't such that

1 1 1
1, Sul SuandunAv= 0. Therefore, (x, t) has the property R;.

X

R} = FR, (xiii):

Again let (X, t) has the property R!. Letx,y € X, and wet such that w(x) = 1 and

w(y) = 0. Then clearly w(x) > o and w(y) =0, a€lo.. Therefore, by the R|-property
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of (X, ©), there exist u, v € t such that K = U,E SuanduAv=0 and therefore (X, t)

is FR(xiii).

FR,(vi) = R/ :

Let (X, t) be an fts which has the property FR,(vii). Suppose that, x, y € X, a.€ o and
wet such that w(x) = o and w(y) = 0. Then clearly w(x) > 0 and w(y) = 0. Therefore,
by FRy(vii) property of (X, t), there exist u, v € t such that

1 < u,g <uand u A v =0. Therefore, (x, t) has the property R].

X

R] = FR, (xiii):

Again let (X, t) has the property R7. Let x, y € X and wet such that w(x) = 1 and
w(y) = 0. Let aely,. Define w' =waa. Clearly w'et such that w/(x) = o and
wl(y) = 0. Therefore, by the RZ -property of (X, t), there exist u, v € t such that

K < u,l_y_ <u and u A v =0 and therefore (X, t) is FR(xiii).

All other proofs are similar.

Counter examples:

Example-1: X = {x, y} and t =<{u, v}u{constants)>, where u(x) = 0.6, u(y) = 0. For

o = 0.6, (X, t) vacuously satisfies the R} -property. Now, u(x) >0 and u(y) = 0. But

there exist no u, v € t such that u(x) >0, v(y) >0 and u A v = 0. Therefore, (X, t) is not
FR,(xii).

. , . Rl FRi(x).
Therefore, R} FR, (xii). This example also shows that { > FR1(x)
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Example-2:  Consider a fuzzy topological space, (X, t) where X = (x, y}
t =< {w} U {constants}>; w is defined as w(x) = 0.5 and w(y) = 0. For o. = 0.4, (X, )

vacuously satisfies the property R{. But, (X, t) is neither FR, (x) nor FR;(xii).

Example-3: Consider a fuzzy topological space, (X, t) where X = {x, y}.
t=< {w} U {constants}>; w is defined as w(x) = 0.5 and w(y) = 0. Vacuously, (X, t)

satisfies the property, FR (xiii) . We see that:

e (X, t) doesn’t satisfy the property, Rf. For, take o = 0.4. Then w(x) > o and

w(y) = 0, but there don’t exist u, v € t such thatu(x) =1 =v(y) andu A v=0.

o (X, t) doesn’t satisfy the property, R} . For, take o = 0.4. Then w(x) > o and

w(y) = 0, but there don’t exist u, v € t such that u(x) > 0, v(y) > 0 and

uav=0.

e (X, t) doesn’t satisfy the property, R)". For, take o = 0.5. Then w(x) = o and

w(y) = 0, but there don’t exist u, v € t such that u(x) = 1 = v(y) and

uanv=0.

e (X, t) doesn’t satisfy the property, R} For, take & = 0.5. Then w(x) = o and

w(y) = 0, but there don’t exist u, v € t such that u(x) > 0, v(y) > 0 and

uav=_0.

3. Reciprocal pre-image and homeomorphic image of fuzzy R, topological

spaces

3.1 Definition: Suppose X be 2 set and (X, ¢) be an fts. Consider a function,

f: X - (X, ). Lett = {£(u): ue ). Then t is a fuzzy topology on X. We call t, the

reciprocal topology on X.
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. Th m. If X i /
3.2, Theore X is a set, (X, lj) a fuzzy topological space having the property
k A
RF (1 £k <12), then the reciprocal topology t on X for f: X — (X/, ¢) also hasR*
3 1"

Proof:

/ _
(1) Let (X, t') be an R fts, t be the reciprocal topology on X for f: X — (X', ¢). Let
X,y € X, wet, a€lo,y such that w(x) > o.and w(y) = 0. Let f(x) = x' and f(y) = ¥/ As

there  exi
wEt, xists  wet such that w = (wh. Now,

w'x)=w (f(x))=(f_l(W’))(X) = w(x)>ca. Similarly, w/(y') = 0. Therefore,

there exists u, v € t such that lx, <u, ly, <v anduav=0.We have,f(z) <1y, for

every ze X since { is continuous.

Thus, £(1,) €1y =1, Su and £(1,) ST, =1, <v. Thus 1, ££7(u), 1, <£7(v)
X y X

Moreover, f~(u)af™(v)=0. Clearly, f'(u), f'(v)et. Hence (X, t) is anR | fts.

(2) Let (X’ T ) be an Rf fts, t be the reciprocal topology on X for f: X - (X/, t). Let

x,y € X, wet, a1 such that w(x) > o and w(y) = 0. Let f(x) = ¥ and f(y) = y. As

wet, there  exists wlet such  that W = lw)).  Now,

w’(x’)=w’(f(x))=(f"(w’))(x) = w(x)>c. Similarly, W) = 0. Therefore,

there exists u, v € t' such that 1,< U,l—; <v andu<1-v.We have,f(1,) <1, for

every ze X since f is continuous.

S —_ 1 -1 'l -1
Thus, £(1,) <1 =1 <u and £(1,) £lgy) =1y, <v.Thus,l, <f (u), 1, <f (v).

. 2
Moreover, £(u)< 1—£71(v). Clearly, Fl(w), F'(v)et. Hence (X, D1s anR? fts.

: /
(3) Let (X’, t/) be an Rf fts, t be the reciprocal topology on X for f: X = (X, t ). Let

such that w(x) > & and w(y) = 0. Let f(x) = x' and f(y) = y’ As

X,y X, wet, a€lp 1 Lpeof
that W = £ (w). Haw,

. /
WEt, there exists wet  such

w'x'y=w' (f(x)):(f"(w’))(X) = w(x)

—1 anduav=0.Now, fhux) = uf(x) =

> o . Similarly, w(y) = 0. Therefore,

s — !
there exists u, v € ' such that u(x )=v(y)
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fy = 1. Similarly, f'v(y) =
u(x) Y> 1°v(y) = 1. Moreover, £ (u)Af"(v)=0. Clearly, f'(u),

f'(v)et. Hence (X, t) isanR? fis.

[ 4
(4)Let (X', t) be an R} fis, t be the reciprocal topology on X for f: X — (X, t)). Let x,

y € X, wet, 0€lo, 1 such that w(x) > & and w(y) = 0. Let f(x) = ¥ and fly) =Y. As

: !
wet, there exists we tl such that W — 1l (w’). Now,

w'(x)=w' (£ (x))=(f"(w'))(x) = w(x)>a. Similardly, W(y) = 0. Therefore,
there exists u, v € t’ such that u(x’)= v(y')=1 andu<1-v.Now, flu(x) = uf(x) =
u(x) = 1. Similarly, f'v(y) = 1. Moreover, £ (u)<1-f7'(v). Clearly, f'(u),
f'(v)et. Hence (X, t) is anR | fts.

(5) Let X', ¥) be an R; fts, t be the reciprocal topology on X for f: X — X/, t). Let

X, y € X, wet, agly, ; such that w(x) > o and w(y) = 0. Choose B, 8 € Ip 1. Let

f(x) = x' and f(y) = y’ As wet, there exists wlet such that w = £ '(w). Now,
w’(x’)=w’(f(x))=(f"'(w’))(x) = w(x)>a. Similarly, w(y) = 0. Therefore,

there exists u, v € t such that u(x')>0, v(y')>p anduav=0. Now, f'u(x) =

uf(x) = u(x/) > o. Similarly, we can show that f'v(y) > B. Moreover,

£ (u)Af ' (v) = 0. Clearly, ' (w), " (v)et. Hence (X, 1) isanR’ fts.

' /
(6) Let (X', ¢') be an RS fts, t be the reciprocal topology on X for f: X = (X/, t). Let

X,y € X, wet, o€ly, 1 such that w(x) > & and w(y) = 0. Choose B, 8 € . Let

; / = flew!
f(x) = x and f(y) = y. As wet, there exists wet’ such that w = f(w). Now,

W'(x'):w’(f(x))=(f’1(w'))(x) == w(x)>0t. Similarly, W'(y') = 0. Therefore,

ch that u(x’)>0, v(y")>0 andu Av=0. Now, flu(x) =

there exists u, v € t' su
an show that f lv(y) > 0. Moreover,

uf(x) = u(x) > 0. Similarly, W€ €

- 6
£ (u)af ™ (v) = 0. Cleatly, (), £ (v)et. Hence (X, t)isanRy fts.
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7y Let (X', ¥) be an R7 ft .
& 1 1ts, t be the reciprocal topology on X for f: X — (X/, t). Let

x,y € X, wet, 0&lo,  such that w(x) = o and w(y) = 0. Let f(x) = x’ and f(y) = . As

wet, there exists w'e ' such that w = (W),

Now, w0 =w!(8(x))=(" (W))(x) =w(x)=a. simitaty, Wes) = 0.

Therefore, there exists u, v e ¢ — _
’ ’ such that 1 ,<u,1,<v —
< e andu A v=0.We

have, f(1,) <1y, for every zeX since f is continuous. Thus, f(1, )< 1 =1, <u
] x/ = (x) — xl =

1 < o 1 - .
and f(ly) - lf(y) 1y/ S V. Thusglx S f l(ll), 1)‘ S f_1 (V). Moreover’

£ (u)Aaf ™ (v)=0. Clearly, f'(u), f'(v)et. Hence (X, t)isanR fts.

(8) Let (X', ) be an R} fts, t be the reciprocal topology on X for f: X — X, ). Let
X,y € X, wet, a€lp, 1 such that w(x) = o and w(y) = 0. Let f(x) = x' and f(y) = )/ . As

WETL, there exists wet such that w = f 1(w’). Now,

w'x')=w (f(x))=(f—l(wl))(x) = w(x)=0. Similarly, w/(y) = 0. Therefore,

there exists u, v € t such that i_, < u,f <y andu<l-v.We have,f(E) <l for
x y

every ze X since f is continuous.

Thus, f(f)sf(x;:i:g and f(f;)si;;=ly, <v.Thus,I, <f7'(u), 1, <f7(v).

Moreover, £! (u) <1 _f—l(v)' Clearly, ), i(v)et. Hence (X, t)isanR? fis.

_ ,
(9) Let (X, ') be an R} fts, t be the reciprocal topology on X for f: X = (X', ). Let

o, and w(y) =0. Let f(x) = x' and f(y) = y/ As

X,y € X, wet, o€y, | such that w(x) =
hat w = ') Now,

such

wet, there  exists wet
w(x)=0. Similarly, w'(y) = 0. Therefore,

w(x") = w’(f(x))=(f”l(wl))(x) =

- .
there exists u, v € t such that ax) = vy =1

y = 1. Moreover,

andu A v =0.Now, flu(x) = uf(x) =

g (0)Af ' (v)=0. Clearly, (),
u() = 1. Similady, £V (w)Af™(v)

f(v)et. Hence (X, t) is an R} fis.



T I EE————

CHAPTER-4 Some remarks on fuzzy R, topological spaces. 75

Conside 10 1
(10) Consider an R fts, (X!, ¢) and let t be the reciprocal topology on X for

_ /
f:X = (X, 0). Letx, y € X, wet, ae Ip, | such that w(x) = o and w(y) = 0. Let

fix) = X' and f(y) = y. As we t, there exists w'et such that w
W/(X/)zw’(f(x)):(f-l(wf))(x) =W(X)=0!.. Simj]arly, w/(y’)

- /
there exists u, v € ' such that u(x’) = v(y') =1 andu <1-v. Now, f'u(x) = uf(x) =

1l

f1(w'). Now,

0. Therefore,

ux) = 1. Similarly, f'v(y) = 1. Moreover, f(u)<1-f(v). Clearly, f'(u),
f'(v)et. Hence (X, t) is anR|° fts.

(11) Consider an R|' fts, (X, t) and let t be the reciprocal topology on X for
f: X = (X, t). Let x, y € X, wet, aely, | such that w(x) = & and w(y) = 0. Choose
B,d€ Iy Let f(x) = x' and f(y) = Y. As wet, there exists wet such that w = 1 w).
Now, w'(x')=w'(£(x))=(f"(w'))(x) =w(x)=0. Similarly, W(y) = 0.
Therefore, there exists u, v € t such that u(x’)>a, v(y')>B anduAv=0. Now,
flux) = uf(x) = u(x’) > . Similarly, we can show that 1v(y) > . Moreover,

£~ (u)Af ™ (v)=0. Clearly, f'(u), f'(v)et. Hence (X, t) is anR,' fis.

(12) Let (X', t') be anR [ fts, t be the reciprocal topology on X for f: X — X/, t). Let

X,y € X, wet, o], ; such that w(x) = oand w(y) = 0. Choose f3, 6 € Iy, 1. Let f(x) =
X' and f(y) = y’ . As. wet, there exists wet such that w = f'(w). Now,

Wy =w () =1 (o)) (x) = wlx) = Similaly, W) = 0. Thereore,

1 —
there exists u, v € t' such that u(x')>0, v(y')>0 andunav=0. Now, fukx) =

uf(x) = u(¥) > 0. Similady, we can show that f'v(y) > 0. Moreover,

: 12
f'(u)Af(v)=0. Clearly, (), £(v)et. Hence (X, t)isanR,’ fts.

ological space having the property

3.3. Theorem. If X is a set, (X t) a fuzzy toP the
t on X for f: X — (X, t') also has

FR,(k) (i < k < xviii), then the reciprocal tOpoIogY
FR, (k).
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Proof:

{ “
1. Let (X, ) be an ERi(0)-fis, t be the reciprocat wpoiogy on % for £ X — (X, )

et X,y € X, wet such th; wi o el s ! .
L y uch that wiyj # w5 Lt x5 = o and f{y)=)/, As wet,

there exists wet such that w = f (~;/, iesat, »“{Zf;___,_wf(f (_x})=(f“(w’))(x)

= w(x). Similarly, W(y) = wly). Therefore w 17y £ w'(/), and so, there exists

/ .
. < o - 03 7 .
u, ¥ € ¢ such ihat 1,5 Iy =v andus v=0.%e have,f(1,)<1,,, , for every

ze X, since f is continuous. Now, f(f;éﬁf, I <u and f(i )<1f()') ,! <v.

Thus,1, <f7'(u), I, <f~'(v). Moreover, £7(a}af™(v)=0. Clearly, {"'(u), f'(V)et.
Hence (X, t) is an FR;(i)-fts.

2. Let (Xl, t) be an FR,(ii)-fts, t be the reciprocal topology on X for f: X — X 7).
Let X, y € X, wet such that w(x) # w(y). Let f(x) = X and f(y) = y' . As wet,

there exists wet’ such that w = £'(w). Now, W/(X!)=Wl(f(x))z(f—l(wl))(x)
— (x) Similarly, w’(y/) = w(y). Therefore w (x’) #w ()/ ), and so, there exists u, v €

¢ such that 1 , <u, 1 <v andu<1-v.We have, £(1,) S Iy, for every ze X since f

is continuous.

Thus, f(1) Si:; = ]'"7 <u and f(l—;) < f;; =1, <v.Thus, I, <£7(u), I, <F7*(v)
Moreover, f'(u)s [~f"(v). Clearly, (), £ (vet. Hence (X, 1) is an FRy(ii)-fis.

3. Let (X/, t') be an FRy(iii)-fs, ¢ be the reciprocal topology on X for f2 X — (X. t).

Let x, y € X, wet such that w(x) # w(y). Le |
. Now, w/()=w'(f () =(F7(w))(x) = w(x)-

tf(x) = x' and f(y) = y’ As wet, there

exists wet such that w =1

Similarly, w/(y) = w(¥)- Therefore W ') # wi( (), and so, there exists u, v € t' such

that u(x’')=v(y’)=1 and uAv=0.Now, [ ly(x) = uf(x) = u(x) = 1. Similarly,
ux ) =vly')=
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1 — - -
fv(y) = 1. Moreover, f l(u)/\f ](V)= 0. Clearly, £ (u), £'(v)et. Hence (X, t) is an
FR,(iii)- fts.

/ .
4. Let (X, tj) be an FR(iv)-fts, t be the reciprocal topology on X for f: X — (X’ ] ¢ ).
Let X, y € X, wet such that w(x) # w(y). Let f(x) = x’ and f(y) = ¥. As wet,

there exists wet such that w = f(w/). Now, w’(x’)=w’(f(x))=(f'l(w’))(x)
= w(x). Similarly, w(y) = w(y). Therefore w'(x') # w/(¥), and so, there exists u, v €
t' such that u(x’)=v(y’)=1 andu <1-v. Now, flu(x) = uf(x) = u(x’) = 1.

Similarly, £'v(y) = 1. Moreover, f'(u)<1-f"(v). Clearly, f ), £ '(v)et. Hence
(X, t) is an FR,(iv)- fts.

5. Let (X, t') be an FRy(v)-fts, t be the reciprocal topology on X for f: X — X, ).
Let x, y € X, wet such that w(x) £ w(y). Let f(x) = x' and f(y) = y’ As wet, there

exists wet such that w = £ (w'). Now, w/(x")= w' (f(x)) =(f‘l (w’))(x) = w(x).
Similarly, w’(y’) = w(y). Therefore w (x’ ) # w’(y’ ), and so, there exists u, v € t such
that u(x’)>a, v(y')>B anduv=0. Now, flu(x) = uf(x) = u(x’) > o Similarly,
we can show that f'v(y) > B. Moreover, £ (u)Af"(Q) =0. Clearly, (), f(v)et.
Hence (X, t)is an FR(v)-fts.

6. Let (X, t') be an FR;(vi)-fts, t be the reciprocal topology on X for f: X — (X, t).
Let x, y € X, wet such that w(x) # w(y). Let {(x) = ¥ and f(y) = )/ . As wet, there

exists wet such that w = f'(w). Now, w x)=w (f(x)) = (f‘l (w’))(x) = w(x).
Similarly, w’(y’) = w(y). Therefore w (x’ ) # w (y/ ), and so, there exists u, v € t such
that u(x’) >0, v(y')>0 anduav=0. Now, ) = uf(x) = u(x) > 0. Similarly,
we can show that £ v(y) > 0. Moreover, f T u)af™(v)=0. Clearly, ), Fv)et.

Hence (X, t) is an FR(vi)-fts.
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/ .
7. Let (X', V) be an FRy(vii)-fts, t be the reciprocal topology on X for f: X — (X', ).
Let X,y € X, wet such that w(x) > 0 and w(y) = 0. Let f(x) = ' and f(y) = y. As

wet, there exists wet! such that w = f'(w). Now,
w'x)=w (f(x))=(f“'(W'))(x) = w(x). Similarly, W(y) = w(y). Therefore
w/(x/) > 0 and w’()/) = 0, and so, there exists u, v € ¢ such that
T 1— <v anduAv=0We have, f(l )<l , for every zeX, since f is

K

continuous. Now, f(ﬂ) < ]‘f(x) =1— <u and f(l )< - =1 ; <v. Thus,l_; < f—l(U),
Y

1, <f™'(v) Moreover, £ (u)Af ™ (v)=0. Clearly, ™' (w), £!(v)et. Hence (X, t) is an

FR(vii)-fts.

8. Let (X', t) be an FRy(viii)-fts, t be the reciprocal topology on X for f: X = (¢, ).
Let x, y € X, wet such that w(x) > 0 and w(y) = 0. Let fx) = x' and f(y) = )/ As wet,

there exists wet such that w = £(w). Now, w/ (x)=w (f(x))=(f-l(wl))(x)

= w(x). Similarly, W (y’) = w(y). Therefore w (x’) > 0 and w/(y’ ) = 0, and so, there

exists u, v € t' such that 1_,_ 1 <vy andu<1-v.We have, f (1 )< l—_for every

zeX since f is continuous. Thus, f(lx)51fm l <u and f(, )<1f(y) 1 <v.

Thus,1_ <f~'(u), 1, <~ (v). Moreover, £ (w)<1-£7'(v). Clearly, (), Fi(vet.

Hence (X, t) is an FR ;(viii)-fts.

9. Let (X, ) be an FRy(ix)-fts, t be the reciprocal topology on X for f: X — X, ¥).
Let x, y € X, wet such that w(x) > 0 and w(y) = 0.Letf(x)=x "and f(y) = y. As Wet,

there exists wet' such that w = Fiw). Now, w'(x')=w (f(x)) ( ( ))(x)
= w(x). Similarly, w/(y/) = w(y). Therefore w/(x') > 0 and w/(y) = 0, and so, there
exists u, vV € t such that u(x’) = v(y') =1 andu A v=0.Now, f’lu(x) = uf(x) = u(x’)
_ 1. Similarly, f'v(y) = 1. Moreover, £~ (u)af™"(v)=0. Clearly, (), f(v)Et.

Hence (X, t) is an FR(xi)- fts.
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10. Let (X, t') be an FR(x)-fts, t be the reciprocal topology on X for f: X — (X, t).
Let X, y € X, wet such that w(x) > 0 and w(y) = 0. Let f(x) = x’ and f(y) = y. As
wet, there exists wet such that W = f l(w/ ). Now,
w' x)=w (f(x))=(f"' (w’))(x) = w(x). Similarly, W(y) = w(y). Therefore
w’(x/) > 0 and w/(y’) = 0, and so, there exists u, v € t such that u(x’)=v(y') =1
andu <1-v. Now, flux) = uf(x) = u(x') = 1. Similarly, £ lv(y) = 1. Moreover,

7 (u)<1-f(v). Clearly, f'(u), f'(v)et. Hence (X, t) is an FR(x)- fts.

11. Let (X’, t/) be an FR,(xi)-fts, t be the reciprocal topology on X for f: X = (X, t).
Let x, y € X, wet such that w(x) > 0 and w(y) =0. Let f(x) = x' and f(y) = y’ As
wet, there  exists wet such that w = lwh.  Now,
w' (x)=w’ (f(x)) =(f‘1 (w’))(x) = w(x). Similarly, w(y) = w(y). Therefore
w(x") > 0 and w/()/) = 0, and so, there exists u, v € ¢ such that u(x’) > o, v(y") > B

andu Av =0. Now, flu(x) = uf(x) = u(x) > o Similarly, we can show that ™ 'v(y) >
B. Moreover, f7'(u)Af “(v)=0. Clearly, ¥ Iw), £'(v)et. Hence (X, 1) is an

FR(xi)-fts.

12. Let (X, t) be an FRy(xii)-fts, t be the reciprocal topology on X for f: X = (X, t).
Let x,ye X, wetsuch that w(x) > 0 and w(y) = 0. Let f(x) = x' and f(y) = y. As
WEL, there exists wet such that w = f 1(w’). Now,
w/(x')=w! (f(x))= (f" (wf))(x) = w(x). Similarly, w(y) = w(y). Therefore
w/(x") > 0 and W/(y) = 0, and so, there exists u, v € t such that u(x’)>0, v(y')>0
andu A v =0. Now, flu(x) = uf(x) = u(x’ ) > 0. Similarly, we can show that
f'v(y) > 0. Moreover, ™ (u)/\f’1 (v)=0. Clearly, 1), f(v)et. Hence (X, t) is an

FR, (xii)-fts.

13. Let (X, ¢) be an FRy(xiii)-fts, t be the reciprocal topology on X for f: X = (X,
t). Let x, y € X, WEL such that w(x) > 0 and w(y) = 0. Let f(x) = « and f(y) = Y. As
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- /
wEet, there exists w'et such that w = flw). Now,

w'(x')=w (f(x)) =(f_l (W’))(X) = w(x) = L. Similarly, w/(y) = 0, and so, there

- / —_ — _
exists u, v € t such that 1, Su,ly, <v anduav=0.We have,f(l,) <1, , for

ery Z€ ' i i 1. 1,
every X, since f is continuous. Now, f(l,)<1g,,=1,=su and

£(1,) <1y, =1, <v. Thus,1, <7 (u), 1, <f™'(v). Moreover, f™'(u)af™(v)=0.

Clearly, f'(w), f(v)et. Hence (X, t} is an FR,(xiii)-fts.

14. Let (X, t) be an FR(xiv)-fts, t be the reciprocal topology on X for f: X — X,
). Let x, y € X, wet such that w(x) > 0 and w(y) = 0. Let f(x) = %' and f(y) = y. As

wEt, there exists wet such that w = e (w’ ). Now,

w/ (x)=w' (f(x)) =(f‘l (w’))(x) = w(x) = 1. Similarly, w/(y) = 0, and so, there

existsu, v € t such that IT < u,Iy_, <y andu<l-v.We have,f(E) <li for every

zeX since f is continuous. Thus, £1,) <l =1—;5 u and f(1,) =<1y, =1y, <v.

Thus,1, <f™(u), K < £7'(v). Moreover, £ (u)<1-f" (v). Clearly, £ (u), fl(v)et.

Hence (X, t) is an FR,(xiv)-fts.

15. Let (X, t') be an FRy(xv)-fts, t be the reciprocal topology on X for f: X = (X, ).
Let x, y € X, wet such that w(x) > 0 and w(y) = 0. Let f(x) = x' and f(y) =Y. As wet,

there exists w'et’ such that w = £(w)). Now, w/ (&)= w' (f (X))-—-(f_‘ (Wl))(x)
= W(X) = 1. Similarly, w’(y’) = 0, and so, there exists u, v € t such that
u(x)=v(y’)=1 anduAv=0.Now, Flu(x) = uf(x) = u(x) = 1. Similarly, lvy) =
1. Moreover, f"(u)/\f" (v).-:O. Clearly, fl(u), f"(v)et. Hence (X, t) is an FR(xV)-

fts.

16. Let (X, ¢) be an FR(xvi)-fts, t be the reciprocal topology on X for f: X — X, O).
Letx,y€ X, WEL such that w(x) > 0 and w(y) = 0. Let f(x) = x' and f(y) = Y. As Wet,
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there exists w'et’ such that w = f(w'). Now, W'(Xl)=W/(f(X))=(f_l(Wl))(x)

=w(x) = 1. Similarly, w/(y/) = 0, and so, there exists u, v € t such that
u(x)=v(y') =1 andu<1-v.Now, fu(x) = uf(x) = u(x) = 1. Similarly, f'v(y) =

1. Moreover, ™' (u)S 1-f7'(v). Clearly, f'(u), £'(v)et. Hence (X, t) is an FR;(xvi)-
fts.

17. Let (X, ') be an FR(xvii)-fts, t be the reciprocal topology on X for f: X — (X', t).
Let x, y € X, wet such that w(x) > 0 and w(y) = 0. Let f(x) = x’ and f(y) = y/ As wet,

there exists w'et’ such that w = f'(w)). Now, w’(x’)zw’(f(x))z(f"(w’))(x)
=w(x) = 1. Similarly, w/(y) = 0, and so, there exists u, v € t such that
ux’)>o, v(y')>B anduAv=0. Now, fu(x) = uf(x) = u(x’) > o. Similarly, we

can show that f'v(y) > B. Moreover, f'(u)af™'(v)=0. Clearly, f'(u), f'(v)et.
Hence (X, t)is an FR(xvii)-fts.

18. Let (X’ , t/) be an FR,(xviii)-fts, t be the reciprocal topology on X for f: X — (X’ R
t’). Let x, y € X, wet such that w(x) > 0 and w(y) = 0. Let f(x) = x' and f(y) = )/ As

wet, there exists wet such that w = f(w). Now,
w/ (x) = w’(f(x))= (f" (w’))(x) = w(x) = L. Similarly, w/(y/) = 0, and so, there
exists u, v € t such that u(x’)>0, v(y') >0 andu Av=0. Now, f'u(x) = uf(x) =
u(x’) > 0. Similarly, we can show that flv(y) > 0. Moreover, f~'(u)af™'(v)=0.

Clearly, £ (u), "' (v)et. Hence (X, t) is an FR(xviii)-fts.

3.4. Theorem: Every homeomorphic image of R} -fts is also anR| - fts (1 <k < 12).

Proof:
1. Let (X, t)bean R} -fts and let f: (X, ) = (¥, s) be a homeomorphism between

fts. Suppose y1, y2€ Y, 0€Io, 1 and w€S such that wa(y;) = o and wa(y2) = 0.
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Now f7'(y,),f™(y,)e X and f~'(w,)e t such that (f"(wz))(f"(y,))=oc

and (f" (wz))(f"' (v, )) =0. Since (X, t) is R}, there exist u, v € t such that

lf_,(yl)Su, lf_,(yz)Sv and u A v = 0. Since f is a homeomorphism,

1f-1(y) =f! (E) V ye Y. Now f(u), f(v) € S such that ITle(u), E:Sf(v)

and f(u)Af(v)=0. Therefore, (Y, s) is R|.

All other proofs are similar.

3.5. Theorem: Every homeomorphic image of FR(k)-fts is also an FR(k)-fts

(i< k<xviii).

The proofs are similar.
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CHAPTER-5

Relations between fuzzy Ry, R 1 and regularity concepts

Introduction: In this chapter, a complete answer is given with regard to all possible
(R, = R)-type implications for fuzzy topological spaces, where the Ry and R;-

axioms, considered in the previous chapters are taken into account. Besides, we recall
five definitions of fuzzy regular axioms from [1, 4], and it is shown that, though the
regularity axiom implies R; axiom in ‘general topological spaces’, this in not true in

‘fuzzy topological spaces’, in general.
1. Relations between fuzzy R, and R;-axioms

1.1. Theorem: The following relations hold between the fuzzy R;-axioms and fuzzy

Rg-axioms
(a) FR, (xvi) = R}, and so FR, (k)= Ry, where k& {i —iv,vii — x, xiii — xvi} .

Proof: Let (X, t) be an FR; (xvi)-fts. Letx, y € X, x # yand A € t such that A(x) = 1,

A(y) = 0. Since (X, t) is an FR, (xvi)-fts, there exist u, v € t such that u(x) = 1 = v(y)

and u < 1 —v. Clearly, v(x) = 0. Hence (X, t) is R(l).

(b) FR, (xiii) # R}, and so FR (k) 4> Ry, where ke {xiii,xiv,...,xviii} and

me {5,6,..,9}.

Proof:
Example-1: Consider a fuzzy topological space (X, t), where X ={x, y}, u(x) = 0.5,
u(y) = 0 and t = < {u} U {constants} >. Clearly, (X, t) is FR, (xiii) but it is not Ry.

For E(y)=1 but Iy(x)<1.
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() FR (v)= R}, and so FR (k)= R} where ke {i,z:ii, v} and me {2,8}.

Proof: Let (X, t) be an 'FRl (v) -fts. Let X, y€ X, x#y, o € I, such that C_Zi:(y) <.
This implies that there exists m € ¢ such that mx)=oand m(y) <o. Letw=1-m
€ t. Then w(x) # w(y). Since (X, t) is an FR, (v) fts, there exist u, v € t such that
u(x)>oq, v(y)> oy and uav=0 for every a,a, € Iy, . Choose ¢, &, such that
ax=a, and ¢4 >1—oa. Now a'ly <v<1-u. Therefore, a_l;sm_=1—u and so

al, (x)<1-u(x)<1-0; <. Therefore, (X, t) is Ry.

(d) FR, (vi) = R, and so FR, (k)= R§ where k€ {i,iii,v,vi}.
Proof: Let (X, t) be an FR, (vi)-fts. Letx,y € X, x # y and w € t such that w(x) >

w(y). Then, by FR, (vi), there existu, v € t such that u(x) >0, v(y) >0and u A v=0.

Clearly, v(y) > v(x). Therefore, (X, t) is Rg .

(e) FR (vi) 3> Ry, and so FR, (vi) #> R}, where me {8,9} .

Proof:
Example-2: Consider an fts (X, t) where X = ({x, y}, t = <
{u), 1y, u3,u4 } U {constants } >, u (x)=u (y)=uy (x)=0.6,

uy (¥)=0.7, uy (x)=uy (y) =0, uz(y)=0.8 and u,y(y)=0.4. It can be checked
that (X, t) is FR (vi). Let my =1-w, k=1,234 Now m(x)=04=m,(x),
my (x) =1,my (x)=0.6, m(y)=0.4,m,(y)=0.3, m(y)=0.2 and my (y)=1. Take

o= 0.4. Then a—lx(y) =0.2 <. But E;(x) = 0.4 = &. Therefore, (X, t) is not R .

(f) FR, (vi) #> Ry, and so FR; (vi) #> Ry', where me {3,4}.

Proof:
Example-3: Consider a fuzzy topological space (X, t) where X = {X, v}, ux) = 0.6,

u(y) = 0 = v(x) and v(y) = 0.4. Clearly, (X, ) is FR, (vi).Let o= 0.5. Now ¢ < u(x).
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It can be checked that ol (y) =@>u(y). Therefore, al, ¢ u. Therefore, (X, t) is

not Rg.
(8) FRy (iv) = Ry, and so FR, (k) => R where ke {i-iv} and me {2,3,4}.
Proof: Let (X, t) be an FR; (iv)-fts. Let xe X, A€t and o€, such that oie A(x).

Suppose a_lx § A. This implies that there exist ye X, x # y such that a'_lx(y) > A(y).

Thus A(x) # A(y). Hence there exist p, q € t such that p(x) = 1 = q(y) and p< 1 — q.
Putm=1-pandn=1-q.Nowm,ne t°such that m(x) =0 =n(y)and m(y) =1 =

n(x). Therefore, &l—x( y)<n(y)=0, which is a contradiction. Therefore, al, <.

Hence (X, t) is Ry.

()Rl #> R, and so Rf > R}, where ke {1,2,3,4,5,6) and me {2,3,4,8,9}.

Proof:
Example-4: Consider a fuzzy topological space (X, t) where X = {x, y}, u(x) = 0.1,

u(y) = 0.2 and t = < {u} U {constants} >. Vacuously, (X, t) is Rll, but (X, t) is not

Rg . For, we have u(x) < u(y), but there exists no A € t such that A(y) < A(x).

()R} = Ry, and so R} = Ry, where k€ {1,2,3,4}.

Proof (i): Let (X, t) be an Rl4 -fts. Let Aet, X, y € X, X # y such that A(x) = 1 and
A(y) = 0. Consider, a, B € I,1 such that < B. Let w =3 A A € t. Now, w(x) > o and

w(y) = 0. Since (X, t) is an R14 -fts, there exists u, v € t such that u(x) = 1 = v(y) and

u< 1 - v. Clearly v(x) = 0. Thus (X, t) is Ry.

() RS = R3, and so Rf = Ry, where k& {13,5,6}.
Proof (j): Let (X, t) be an Rf’ ~fts. Let ue t°such thatu (y) < 1 = u(x). Take w=1-u

€ t. Then w(x) = 0 and w(y) = 1. Therefore, w(y) > a. for every oL € Ip,1. Since (X, t) is
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6 ;
an Ry -fts, there exists p, q € t such that p(x) >0, q(y) >0 and p A q = 0. Now p(y) =

0=q(x). Take A = 1 —p. Then A(x) < 1 = A(y). Therefore, (X, t) is an R3-fts.

5
()R’ F> Ry, and so Rf 3> Ry, where ke {5,6}and me {1,4,6,7,9}.

Proof:

Example-5 [2]: Let X = I and t be the fuzzy topology on X generated by B = B;uU
BoU BsU Bs. Where, By = {14 x€ly; },

B; = {un: meN},
Where up, 1s a fuzzy set in X defined by up, = 1[O i ] .

' m+l

B3 = {v,, . n€N and F is a finite crisp subset of X },

Where vy, g is a fuzzy set in X defined by v, = (L) 1,
' n+l [ ]—F

— 1

n+l’

And B4 = {constants}.

It can be checked that (X, t) is R} but notR(l,. (c.f. [On certain separation and

connectedness concepts in fuzzy topology-By D.M. Ali])

MR} = R}, and so R = RY', where ke {1,2,3,4} and me {1,5,6,7}.
Proof (I): Suppose (X, t) is an R} -fts. Let x, y € X, x # y such that 1_):(x)6£ {0,1}.

This implies that there exists m et suchthat m(y) =l and 0 < m(x) < 1. Putw=1-

m € t. Now w(x) > 0 and w(y) = 0. Then, w(x) > & for some o € I, 1. Since (X, t) is
an R14 -fts, there exist u, v € t such that u(x) = 1 = v(y) anduAav=0.Putn=1-ue
. Now n(x) = 0 and n(y) = 1. Therefore, l; <n and so g(r) =0, which is a
contradiction. Again let I;(x) # 1:( y). Without any loss of generality, let
0= I:( y) < i;(x) —1. This implies that there exist A1, A2 € t° such that hi(x) = Az(x) =

Aa(y) = 1 and Ai(y) = 0. Take w = 1 —A;. Now w € t such that w(x) =0 and w(y) =
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1. Clearly, w(y) > o for every o € Io, 1. Since (X, t) is an Rf -fts, there exist p, q € t
such that p(x) = 1 = q(y) and p A q=0.Putnj=1-pandn,=1- q- Now, n, npe t¢
such that ni(x) = 0 = ny(y) and n(y) = 1 = ny(x). Clearly, E < n and so I;(x) =0

3

which is also a contradiction. Therefore, I:( y)= E(x)e {0,1}. Therefore (X, t) is an

Rg -fts.

(m) Ry > FR; (k), where ke {i— xviii} and me {1-9}.
Proof:

Example-6: Let X be an infinite set. For x, y € X, we define Ugye€ 1% as follows:

Un(z):{o if ze {x,y}

Let t be the fuzzy topology generated by {Ul},: x,ye X }u{constants}. It can be

Lif ze {x,y}

checked that if x # y, then E(y) =0. Therefore, (X, t) is Rg 5 Rg and Rg .But (X, t) is

neither FR (xvi) nor FR, (xviii) as there exists no u, v € t such thatu<1-v.

2. Fuzzy regular axioms.
4.1 Definition: A fuzzy topological space (X, t) is called

(2) FR() if and only if o € Ip, Aet’, xe X and A< 1 — A(x) imply that there exist
u,ve tsuchthata<ux),A<vandu<l-v.

(b) FR(ii) if and only if oIy, Aet’, x € X and a<1—A(x) imply that there exist

u,v € t suchthat c<u(x),A<vandu<l-v.

(c) FR(iii) if and only if each u €t is a supremum of u;,je J, where V¥ j» uyEL

and ujSu.
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(d) FR(iv) if and only if X € ¢, xe X and A(x) = 0 imply that there exist u, Vet

such thatu(x)=1,A<vandu<1 —V.

(e) FR(v) if and only if A € t°, xe X and | — A(x) > 0 imply that there exist u, v € t

such that u(x) >0, A<vandu< [ —v,

1. Note: Let x €X and A be a fuzzy set in X. Then for o € Ip, “0t<A(x)” means
a<A(x)ifo#l and AMx)=1ifa=1.

2. Note: The following implications exist among FR(i), FR(ii), ...., FR(v).

FR (i) = FR (ii) = FR (jii) = FR (v)
U
FR (iv)

Example-4: Let X = {Xx,y, z}. Forx, y € X, x # y, we define ny as follows:

U, (x)=1,0U,,(y)=0 and U, (z)=05.

Let t be the fuzzy topology of X generated by {ny X, ye X, X # y}. Then (X, t) is
12 .

easily seen to be FR(i). But (X, t) does not satisfy any of R}, R®, R}®, R}?, FR,(xvi)

and FR;(xviii). Therefore, FR(]):F> R and FR (j) = _FRI (m) 2 =kl i k=1,

2,....,]12and m=1,1ii, ...... , XViil.
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