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Abstract

Classification is a deep and fundamental problem in every branch
of Mathematics. Although an uphill task, this target has been achiev
-ed in a number of cases in different fields. In general, the strategy for
this grand program consists of identification of relatively simple types
of entities in a particular branch of Mathematics, getting a thorough
knowledge about these, and then describing other entities in terms
of these fundamental and basic objects tagged with one another in a
well known manner. We call these basic entities building blocks and
the method of tagging these together glues. For a given object in a
particular branch, the building blocks, the glues and the manner of
their application determine the structure of the object. The situation

is comparable to the architecture of a building.

Our objective in this thesis is to study the structures or the archi-
tectural designs of mathematical objects in a number of branches of

mathematics.

In the first chapter, known structures of important objects in alge-
bra, geometry, topology and some other areas related to physics have
been described briefly to provide a glimpse of the area of our interest
mentioned above.

The second chapter is a study of a particular type of commutative
semigroups which have been termed special. A number of structure



theorems have been proved in this context. 2

The third chapter deals with the determination of the structure of
the centraliser of an endomapping of a finite set X in the full trans-
formation semigroup F'(X). This has been done by representing the
endomapping by a directed graph and then determining the structure

of all endomorphisms of the relevant graph.

In the fourth chapter, some groups of morphisms in certain
categories have been considered and studied. Structures have been

established in certain cases.

In the fifth and the last chapter, a number of sums of topolog-
ical spaces have been considered and their fundamental gruops and
homologies have been determined using the Seifert Van Kampen the-
orem and the Mayer-Vietoris sequence for homology.



CHAPTER-1

SURVEY OF STRUCTURES IN ALGEBRA,
TOPOLOGY, GEOMETRY AND
RELEVANT BRACHES

1.1 Introduction

We shall describe how interesting mathematical objects in vari-
ous branches of mathematics have been built up with the use of well
known simple objects and well known methods of attaching these ob-
jects with one another. The objects and the methods of gluing these
together are different for different branches. In this chapter we shall
describe structures of mathematical objects mainly in algebra, topol-
ogy and geometry. Structures concerning objects such as sheaves,
Riemann surfaces and some entities related to string theory have also
been briefly described. The classifications of finite simple groups and

three dimensional geometries of manifolds have also been included.
1.2 Algebraic structures

1.2.1 Structure of Groups

In this section, we shall include our necessary objects and gluing

operations for obtaining the structures of groups. We have considered
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the following as the well-known objects for groups.

(i) Cyclic groups, i.e., groups with one generator. These may be
either infinite or finite. In the former case, the group is isomorphic
to the additive group of integers and is denoted by Z or Cw, and in
the latter the group is isomorphic to the additive group of the residue

classes of the integers modulo some positive integer, say n, and is

denoted by Z, or C,,.
(ii) Q, the additive group of rationals;
(iii) Z(p*), the quasi-cyclic group, given by generators:
T1, To, Ty, - -
and relations:
pr1 =0, pra =21, '+, PToy1 = T, ",

where p is a prime. Z(poo) is isomorphic to additive group %, where
A is the additive group of all rational numbers of the form 5“; (a €

Z, n € N).

(iv) S,, the symmetric group of degree n, being the group of all

permutations on n symbols under composition of mappings.

(v) Ap, the alternating group of degree n. This is the subgroup

of S, consisting of all even permutations on n symbols.

Comment: Sometimes Sylow subgroups of a finite group or a periodic

abelian group are considered as building blocks for the relevant group.
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The different methods of glueing groups with one another that

have been used here are as follows.

(i) Direct Product: If G; and Gy are two groups, the direct
product of G with Gy is

G1 x Gy = {(g1,92) | 91 € G1,92 € Ga}

with multiplication given by

(91,92) (91, 92) = (9191, 9295) -

If Gy, Go are additive abelian groups, direct product is replaced by

direct sum and in that case we write G; @ G3 for G; X Ga.

(ii) Semidirect Product: Given two groups H and K and for
every element h € H an automorphism of K, k = kM all k € K,
such that (kM) = kMM hy, hy € H. Then the symbols [k, k],
h € H, k € K form a group under the product rule [hy, k1].[ho, k2] =
[h1hg, k1™ k], called the semi-direct product of K by H.

Comments: (1) Sz =< z, y|z® = 3% = (zy)? = 1 >. Here < z >= {,
22, t® = 1} = K, say. Then, K = C3, KaS3. Also, <y >= {y, y?, =
1} = H, say. Then, H C S;. In this case, S3 is the semidirect product
of K with H.

(2) The dihedral group, Dy, =< =, y|2z" = = (zy)>=1> .
Here K =< z >= {z, 2%, 2%, .-+, 3 = 1} 9Dy, and H =< y >=
{y, y* = 1} C Dyy,. In this case, Dy, is the semidirect product of K
with .

(iii) Free Product: A group G is said to be the free product of
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its subgroups A, (o ranges over some index set) if the subgroups A,
generate G, that is, if every element g of G is the product of a finite
number of the elements of the A,,

g=a1a2 - * Qn, G €Ay, (i=1,2,--+,n) (1)

and if every element g of G, g # 1, has a unique representation in the
form (1) subject to the condition that all the elements a; are differ-
ent from the unit element and that in (1) no two adjacent elements
are in the same subgroup A, — although the product (1) may in gen-
eral, contain several factors from one and the same subgroup. The
free product is denoted by the symbol G = [], *A4,, and if G is the
free product of a finite number of subgroups A;, As, -- -, Ak, the free

product is denoted by the symbol G = A; % Ag % --- % Apg.

Comment: Every free group is a free product of groups each isomor-
phic to Cy . Also, no group can be decomposable both into a free

product and into a direct product.

Theorem 1.1

If

G=H*Aa

@

and if H is an arbitrary subgroup of G, then there exists a free decom-
position

H=F*]]+*Bs
g

of H, where F is a free group and every Bg is conjugate in G to

subgroup of one of the free factors Aq.
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(iv) Wreath Product: Let G and H be permutation groups on

sets A and B, respectively. The wreath product of G by H, written
Gl H, is defined in the following way:

G 1 H is the group of all permutations 8 on A x B such that
0(a,b) = (wwa,mb), a € A, be B,

where n € H and for each b € B, 1, is a permutation of G on A, but for
different b’s the choice of the permutations =y, are independent. The
permutations @ with n = 1 form a normal subgroup G* isomorphic to
the direct product of n copies of G, where n is the number of letters

in the set B.

We shall now describe the structures of a class of groups using the

objects and glues mentioned above.

Structure for finitely generated abelian groups and finite abelian

groups are given by the following theorems:
Theorem 1.2

If G is finitely generated abelian group then

G

11

2® - DLOL® L, ,

T terms k terms
when G has a basis i-th v elements of infinite order and k elements

with finite order of may, -+, my.

Theorem 1.3

A finite abelian group G of order n = pi' -+ pir is the direct product
of Sylow subgroups S(p1), - -+ S(pr) i-e., G = S(p1) x --- x S(pr).
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Here S(p;) is of order p§ and is the direct product of cyclic groups of

€i e;
orders p;* , -++ p;”, where e;; + -+ +e;, = e;.

An abelian group G is called free if there exists a subset X of
G such that each element ¢ € G can be written uniquely as g =
niz1 + -+ + n,z, for some r, where z; € X and n; € Z. The

structure of a free abelian group is as follows:

Theorem 1.4

If G s a free abelian group, then G = Z @ Z ® ---. The cardinality
of the set of copies of Z is known as the rank of G.

An abelian group A is called divisible if for each a € A and for
each 0 # n € Z, there exists a’ € A such that a = nd/.
For examples, the additive groups @Q, R, C are divisible.

The structure of divisible groups in terms of direct sum of copies

of Q and quasi-cyclic groups Z(p*®®) with generators and relations:

< Ty, Ty, --+ /o1 = 0, pr2 = T1, -*+ ,PTpyl = Tn, -+ > are given
as follows:
Theorem 1.5

If D is a divisible group then
D= (Qo- - ®Q® - )®(Z(EP)® - ®ZEF)® -+-).

Theorem 1.6

A periodic abelian group is the direct product of its Sylow subgroups
S(p) i.e., if A is a periodic abelian group, then A = [[,S(p) ,S(p)
Sylow p-group of A.
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Let A be an abelian group and n an integer such that n > 1. Let
D be a divisible hull of A. Define A = A, AP = ={z € D/nz =

y, for some y € Ar_l}, r=1,2,.--,and AE[;) = U°°A(D) Then each

A,(np) 1s a subgroup of D and Afr‘ﬁ ) is the smallest n-divisible subgroup
of D which contains A. Define A%’g) = A[(Tﬁ) JA. The structures for the

groups Af ]) and AE " for 2, Zr and J, are given through the following
theorems (see [44]).

Theorem 1.7

Let p be a prime, QP the additive group of rationals with denominators

powers of p and Z"(;) then the following results hold good:
() Zyy = @,

(i) Zip) = L),

(161) (Zy)p) = L), and

(iv) (Z:)P = Ty

Theorem 1.8

Let J, be the additive abelian group of p-adic integers where p is a

prime. Then

(i) (Jp)g = Jp and (Jp )4l = 0, for each prime q # p.

(ii) (Jp)pp) = KP, the additive abelian group of p-adic numbers.
> Pox,Q, and

(i4) ()P 2 Do, Z(p™).
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Suzuki [69] has studied structures of M-groups as well as UM-
groups. A group whose subgroups form a modular lattice is called
an M-group. A lattice is termed upper semi-modular if a V b covers
a whenever a A b is maximal in b. A group is called an UM -group if
its subgroup lattice is upper semi-modular. We shall now state a few

structures of M-groups and U M-groups.

Theorem 1.9 ([32], p.727)

Let G be an M-group and let E be the normal subgroup of G consist-
ing of all elements of finite order in G. If the abelian group G/E is of
rank 1. Then G has the following structure:

G = {E, 21,2, --- } where z is of finite order, 20"y = ze;, zi_12,;
= eiﬁ" (p; a prime number, e; € E), and for any element a of the

1

p-component E, of B, zaz - = a®® where a;(p) is a p-adic num-

ber, uniquely determined modulo the exponent p* of Ep and ou(p) =

1(modp) (ci(2) = 1mod4)), of(p) = ai(p) (modp").
The structure for the UM- groups due to Sato [63] is given by:

Theorem 1.10

A finite group G is an UM -group if and only if G is a direct product
of groups H; such that the orders of H; and H; (i # j) are relatively
prime and each group Hj is eiter a modular p-group or a group of the
following type:

H = (P x - xF)UQ where each P; is a p;-Sylow subgroup and Q
is a q-Sylow subgroup, and moreover

(1) each P; is elementary abelian,
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(2) Q is cyclic: Q@ = {b},
(8) ba;b™* = aff for every element a; € P, where r; % 1,r§ﬁi =

1 (modp), and

(4) if B; is chosen as small as possible in (3), then
Bi # B; (i # ).

Classification of Finite Simple Groups

For about a century the simple group problem captured the at-
tention of leading algebraists. The problem was the classification of

all finite simple groups.

There remained a gap concerning the existence and uniqueness
of some sporadic simple groups, notably the Monster. With the con-
structions of the Lyons group and the Baby Monster group as a per-
mutation group, Sims had developed the finite simple groups as per-
mutation groups. However, it appeared in 1980 that one could claim
the following theorem as the classification theorem of the finite simple

groups. The final completion came about in 2003.
Theorem 1.11 ([66], p.341)

Let G be a finite simple group. Then G s either

(a) a cyclic group of prime order; o
Rajshahi Unive;.-sity Librasy

- \ OCumentation Sectj
(b) an alternating group of degree n 23, Document No..._-ﬁ?fzugg
. Datu.j.(?".({.".o.z. ‘l.-l.nﬁ
(c) a finite simple group of Lie type; or *sesesicee cas

(d) one of 26 sporadic finite simple groups: the five Mathieu groups,
the four Janko groups, the three Conway groups, the three Fischer
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groups, HS, Mc, Suz, Ru, He, Ly, ON, HN,Th, BM and M.

It is actually the resultant of a number of research works. It is

an important and one of the most remarkable results of mathematical

research in the twentieth century.

1.2.2 Vector Spaces

If V is a vector space over a field F, then F, regarded as a vec-
tor space over itself, is the standard object yeilding the structure of
the space V. The glueing operations here are direct sum and tensor

product.

(i) Direct sum: If V and W are two vector spaces over F' then
the direct sum of V and W, written V @ W, is the vecor space over
F which consists of all ordered pairs(v,w) with v € V, w € W,
where addition and scalar multiplication are component-wise. If V
and W are finite dimensional then V @ W too is finite dimensional

and dim(V @ W) =dimV +dimW.

(ii) Tensor Product: Let V' and W be two vector spaces over a
field F. Then the tensor product V ® r W is the vector space over F

generated by all symbols of the form v @ w with relations
(v+v)@uw=110w+vQw,
v @ (wy +wz) =v@®wi+vQuy,
(W Quw=vQw,

for all v, vy, v2 € V, w, w1, w2 € W, AEF.
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Theorem 1.12

For finite dimensional vector spaces V, W withdimV =m, dimW =

n, we have

() VER® --- ®F,, WXF® --- ®F, where each F; and

each F; are 1somorphic to F' as vector spaces over F.
) VoW (Fd - @Fn®F & - &F), and

()VOW=(F& - @F,)®(Fi® --- & F.)
~ 1<i<
Zl<3<1: (Fi ® FJ,)
~ 1<z<m
El<]<n i
where Fij = F; @ F{ = F.
1.2.3 Semisimple Rings

In this case the fundamental objects are
(i) The ring of all n x n matrices over a skew-field.
(ii) Simple rings, i.e., rings R whose ideals are R and 0 only.

(iii) Prime rings, i.e., rings R such that for each pair of ideals I, J

of R, I J =0 implies I =0 or J = 0.

(iv) Primitive rings, i.e., rings of n X n matrices over a skew field

which are dense in M™*™.

(v) Subdirectly irreducible rings with idempotent hearts: aring R
is subdirectly irreducible if the intersection of all ideals of R is non-zero.

This intersection is a simple ring and is called the heart of R.
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The glues in case of rings will be the following:

(i) Direct Sum: If R and S are rings, the direct sum R&® S =
{(r,s)|r € R, s € S} together with component-wise addition and

multiplication. Direct sum of any finite number of rings is defined in

a similar way.

(ii) Subdirect Sum: Let {R,} be a non-empty class of rings. A
ring S will be called a subdirect sum of {R,} if, for each «, there is an

ideal I, of S such that N,I, = 0 and % = R, for each a.

We shall describe the structure of semisimple rings with descend-
ing chain condition or d.c.c. and also those without any chain condi-

tion.

We recall that a ring R is said to have descending chain condition

or d.c.c. on left ideals if every descending chain L; DO Lo 2 L3 D
. of left ideals of R terminates after a finite number of terms, i.e.,
L, = Lpir, foreachr =1, 2, --- . The radical of a ring A with d.c.c.,
written R(A), is the sum of all nilpotents ideals of A and is the same

as the sum of all nil ideals of A. A is semisimple if R(A) = 0.

Theorem 1.13 ([18], p.168)

Let R be a semi-simple ring with d.c.c., and let L be a minimal left
ideal of R. The sum By of all the minimal left ideals of R which are
isomorphic to L is a simple ring and a two-sided ideal of R. Fur-
thermore, R is the direct sum of all the ideals By, obtained by letting
L ranges over a full set of non-isomorphic minimal left ideals of R,

where B;Bj = 0 for i # j, so that R = B1® -+ ® By, where the {B;}
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are subrings of R which annihilate each other.

Theorem 1.14 (Wedderburn)

Let A be a simple semisimple ring with descending chain condition.
Then A 2 Homp(M ,M) for some finite-dimensional right vector
space M over a skewfield D. The dimension (M : D) and the skew-
field D are uniquely determined by A. Thus A = M™%, where n =

dim(M : D) and M™™ is the ring of all n x n matrices over D.

For our convenience, we recall some necessary definitions. An ideal
I of a ring is called a nil ideal for each z € I, 2™ = 0 for some positive
integer n. An element a of a ring A is called right quasi-regular if,
there exists an element b such that a + b+ ab = 0. And the set of all
right quasi-regular elements of a ring A form an ideal of A which is
called the Jacobson radical of A. An ideal P of a ring R is a prime
ideal if, for any two ideals I, J of A, I J C P implies / C P orJ C P.
Let R be a ring and let @ € R. Let G(a) = {ar +r + > (ziay; + z:%1),
where 7, z;, ¥; range over R, and the summation is finite. Then a is
called G-regular if a € G(a). The set of all G-regular elements of R is
an ideal of R. This ideal is called the G-radical of R. It is also called

Brown-McCoy radical. R is termed as G-semi-simple if the G-radical

of R is zero.

We see that in the case when the ring A is without d.c.c., the

radical of A can be described in a number of ways to obtain different

radicals:

(1) The sum of nil ideals of A is the nil radical V (A).
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(2) The sum of right quasi-regular ideals of A is the Jacobson radical
J(A).

(3) The intersection of prime ideals of A is the Baer-lower radical

B(A).

A is nil-semisimple, J-semisimple or S-semisimple if N(A) =0,

J(A) =0, or B(A) =0.
The structure of the above radicals can be expressed in terms of

the subdirect sum and the structure is given by the following theorem:

Theorem 1.15

The following three hold good:
(i) A is B-semisimple & A is a subdirect sum of prime rings.
() A is J-semisimple < A is a subdirect sum of primitive rings.

(i) Any G-semisimple ring is isomorphic to a subdirect sum of simple

rings with unity.

1.3 Topological Structures
1.3.1 Surfaces and Manifolds

Assume that n is a positive integer. An n-manifold is a Hausdorf
space (i.e., a space that satisfies the T, separation axiom) such that
each point has an open neighborhood homeomorphic to the open n-
dimensional disc U™ (= {z € R™:| z |< 1}). For examples, Euclidean

n-space R" is a n-manifold, ndimensional sphere S* = {z € Rr+L
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| # [= 1} is also an n-manifold, 2-sphere S? is a 2-manifold etc. A
connected 2-manifold is defined to be orientable if every closed path is
orientation preserving whereas a connected 2 manifold is nonorientable
if there is at least one orientation-reversing path. For examples, sphere
and torus are orientable surfaces wheras Mobius strip, real projective

plane,Klein Bottle are nonorientable surfaces.

We shall now describe a very special way to form a new surface
from given more by cut and paste method. Let S; and Sy be disjoint
surfaces. We form S1#S; by cutting a small circular hole in each
surface, and then gluing the two surfaces together along the boundaries
of the holes. To be, precise, we choose subsets D; C Sy and Dy C 52
such that D; and D, are closed discs (i.e., homeomorphic to E?). Let
Si’ denote the complement of the interior of D; in S; for ¢ =1 and 2.
Choose a homeomorphism A of the boundary circle of D; onto the
boundary of Ds. Then S;#5S, is the quotient space of ,S’Il US; obtained
by identifying the points z and h(z) for all points 2 in the boundary
of Dy. It is clear that S1#S52 is a surface known as connected sum of

surfaces 57 and Ss.

The classification of compact surfaces (orientable or nonorienta-

ble) can be given by the following structure theorem:

Theorem 1.16 ([53], p.29)

Any compact orientable surface 1s either homeomorphic to a sphere,
or to a connected sum of tori.Any compact nonorientable surface is
homeomorphic to the connected sum of either a projective plane or

Klein Bottle and a compact orientable surface.
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1.3.2 Triangulation of compact surfaces

A triangulation of a compact surface S consists of a finite family
of closed subsets {73, - -+, Tp,} that cover S, and a family of homeo-
morphisms ¢ : T; — T;, 4 = 1, ---,n, where each T} is a triangle
in the plane R2. The subsets T} are called triangles. The subsets of T}
that are the images of the vertices and edges of the triangle 7/ under
; are also called vertices and edges respectively. Finally, it is required
that any two distinct triangles, T; and Tj, either be disjoint, have a

single vertex in common, or have one entire edge in common.

The Fuler characteristic, of a triangulated compact surface M with
triangulation {11, - -+ ,T,.}, denoted by x(M), as x(M) = v—e+t
where
v = total number of vertices of M,

e = total number of edges of M and

t = total number of triangles (in this case, t = n).

The Euler characteristic give the uniqueness of the structure of

surfaces obtained by forming connected sums by the following :
Proposition 1.17

Let Sy and Sy be compact surfaces. The Euler characteristics of S

and S, and their connected sum, S17#S,, are related by the formula

x(S1#S82) = x(S1) + x(S2) — 2.

Using the above proposion we obtain the following values for the

Euler characteristics of the various possible compact surfaces :
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Surface Euler characteristic
Sphere - 2
Connected sum of n tori 2 —2n
Connected sum of n projective planes 2—n
Connected sum of projective plane and n tori 1—2n
Connected sum of Klein Bottle and n tori —2n.

We note that the characteristic of an orientable surface is always

even, whereas for a nonorientable surface it may either be odd or even.

The structure of a connected, simply connected and complete Rie-
mannian manifold is given in the following theorem (see Kobayashi and

Nomizu [39], p-192):
Theorem 1.18

A connected, simply connected and complete Riemannian manifold M
is isometric to the direct product My X My X -+ X My, where My is a
Eclidean space(possibly of dimension 0) and My, My, -+, My are all
simply connected, complete, irreducible Riemannian manifolds. Such

a decomposition is unique upto an order.

1.3.3 Fundamental group

Sometimes a group, called the fundamental group, is associated
with a topological space. It is topological invariant and serves to
classify spaces to some degree. Let X be a topological spaces and
zo € X. A loop at zp is a continuous map F: I — X such that
£(0) = f(1) = mo. Two loops f, g at 2o are said to be homotopic,



Survey of Structures 20

written f ~ g, if there exists a continuous map F': I xI — X
such that F'((0,t)) = f(t) and F((1,t)) = g(¢) for each ¢ € I. Then
> is an equivalence relation on the set of loops at z;. We denote
the equivalence class of f by [f]. A multiplication is defined on these
equivalence classes by [g][f] = [g * f], where (g * f)(t) = 2t when 0 <
t <1/2 and (g* f)(t) =1 —2¢t when 1/2 < ¢ < 1. This multiplication
is well defined and is associative. If 1 denotes the constant map 1 :
I — X with 1(t) = =z, for each ¢ € I, then [1][f] = [fI[1] = [f],
and if g : I — X is the loop given by g(t) = f(1 — ¢t), then [f][g] =
[9][f] = [1]. Thus the equivalence classes of the loops at zg form a
group. This group is called the fundamental group of X with base
point at zp and it is usually denoted by 7(X, zg).

X is called path connected if for each z,y € X, there is a path
from z to y i.e., there is a continuous map f : I — X such that
f(0) =z, f(1) = y. If X is path connected , then 7 (X, z¢) = n(X, ;)
for every pair of points zp and z; in X. In this situation, we write
7(X) to denote the fundamental group of X without mentioning the

base point.
Example: If X = S!, the unit circle, then 7(X) = Z.

The fundamental group of product space is given below:

Theorem 1.19

The fundamental group of the product of two path-connected spaces

is isomorphic to the direct product of their fundamental groups; in

symbols,
(X xY) ~n(X) x n(Y).
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As an application of this theorem, we see that the fundamental group

ofatorus T=S8'"xSlisn(TN=Z®Z.
For determination of the structure of the fundamental group of a
space the following theorem of Seifert and Van Kampen is very useful.

Theorem 1.20 ([53], p.114)

Let H be any group, and p1, p2, and ps any three homomorphisms such

that the following diagram is commutative:

/\
e

unv)

/

Then, there ezists a unique homomorphism o : w(X) — H such

that the following three diagrams are commutative:

(] % /
(U o (V o m(UNV)
. and
H H H

1.3.4 Homology Group H,(X)

One of the useful tools in classifying topological spaces is the con-
cept of homology. To a topological space X, an abelian group Hy(X),
called the homology group of X, is associated for each positive integer

n. These give us some informations about the topological nature of
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the space X. In particular, if H,(X) 2 H,(Y) for some n, then X and
Y are not homeomorphic. Hence the study of the homology groups

Hy,(X) for a topological space is useful for classifying spaces.

The homology groups are in general expressed as direct sums of
cyclic groups. If

Ho(X)= (28 - 80)®Zpn, & - &Ln,

W
n terms

then n is called the Betti number and mq, --- ,m, are called the

torsion coefficients of X. These are topological invariants.

There is a famous theorem in the homology theory of simplicial
complexes and also in general theories like Czech homology which ex-
presses the homology of a union of subspaces in terms of the homolo-
gies of the subspaces and their intersections. This result is expressed

in terms of a long exact sequence of abelian groups.

Theorem 1.21 (Mayer-Vietoris sequence)

Let Ky and Ky be two subcomplezes of a complex K. Then the follow-
ing sequence s exact :
--------- Sy H1 (KU Ks) = Hy(Ki N Kp) 22 Hy(Ky) @ Hy(Ko)
Sy Hy(K1U Ko) = Hp g (Ki N Kg) 255 oovvennns .
We do not describe the maps s., vs, j« here. For detail description

of the maps s, Vs, j« We refer the reader to Hilton and Wiley ([28],
p-290).

In particular, if K1 N K3 is a singleton, then H,(Ky N Kp) =

0, n > 0. In this case, the structure of Hy,(K; U Ky) becomes easier
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to describe. In fact, Hn(K1UK>) & H, (K1) @ H,(Ks). If X = T2, the
torus, then Hy(T) =2 Z @ Z. In fact, if X is a sphere with g handles,
then H(X)=Z® .- ®Z. From here we obtain:

oV
2g terms

Corollary 1.22

If K1 N Ky is a singleton, then H,(K; N Ky) & H, (K1) & Ha(K>) .

1.3.5 The De Rham Complex

In this context, 2* is the algebra over R, generated by dzj, ---

dz,, with the relations
(dz;)2 =0
dz; dz; = —dz; dz;, 1 4 5
As a vector space over R, Q0* has basis
1, dz;, dz;dz; (i < j), dzdzjdeg (1< j<k), --- ,dz1 -+ dog.
The C* differential forms on R” are elements of
Q*(R") = {C*functions on R"}@g Q2.

Thus, if w is such a form, then w can be uniquely written as

> fiy iy @i, - - dzi, where the coefficients f;,..;, are C* functions.
We also write w = 5. fidz1. The algebra Q*(R") = @7 QI(R") is
graded, where (R") consists of the C*® g-forms on R™. There is a
differential operator d : Q4(R") — QIt1(R™), defined as follows:

i) if f € Q°(R™), then df = S 8f/0z;dz;

i) if w =Y fidz, then dw = > dfi dz; .

The Mayer Vietoris sequence for De Rham cohomology will now

be considered. We first reformulate the Mayer-Vietoris sequence for
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two open sets as follows. Let U be the open cover {U, V} . Consider
the double complex C*(U,Q0*) = @ KP? = @CP(U, Q9) where,

K% = C%U,Q9) =09(U)aQ 1(v),

Kb =CYU,Q9) =Q1U N V),

KPr? =0, p>2.

This double complex is two differential operators, the exterior
derivative d and the difference operator §. Since the operators d and

0 are independent, they commute.

In general given a doubly graded complex K** with commuting
differentials d and &, one can form a singly graded complex K* by

summing along the antidiagonal lines

q

—

K™ = @pyqmnKP?

o

0 12 P

and defining the differential operator to be
D = D'+ D" with D' = 4, D" = (—1)Pd on
KP9,

Remark:
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If D were naively defined as D = d+4, it would not be a differential
operator since D? = 2d 6§ # 0. However, if we alternate the sign of d

from one column to the next, then as is apparent from the diagram

above,

D?=d’+86d—ds+6%2=0.
Theorem 1.23

The double complex C*(U,2*) computes the de Rham cohomology of
M:

Hp{C*(U,Q")} ~ Hpr(M).

The Mayer-Vietoris sequence will be generalized from two open
sets to countably many open sets. The result of this generalization

yields:
Theorem 1.24 (Generalized Mayer-Vietoris Principle)

The double complex C*(U,Q*) computes the de Rham cohomology of
M ; more precisely, the restriction map T (M) — C*(U, Q) in-

duces an isomorphism in cohomology:

r* 2 H5 (M) — Hp{C*(U, )} .

Thus using the conclusion of the above theorem the Kunneth for-
mula can be stated as below:
If M and N are two manifolds and F has finite-dimensional cohomol-
ogy, then the de Rham cohomology of the product M X F is
H*(M x F) = H* (M) ® H*(F).
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Let G be a topological group which acts effectively on a space F
on the left. A surjection 7 : E — B between topological spaces is
a fibre bundle with fibre F' and structure group G if B has an open
cover {U,} such that there are fibre-preserving homeomorphisms ¢q

E |Ua ~ [, X F' and the transition functions are continuous functions

with values in G:

9op(z) = patpp-1 {2} X F € G.
sometimes the total space E is refered to as the fibre bundle.

Using spectral sequences one has the following:
Theorem 1.25 (Leray’s Theorem for De Rham Cohomology)

Given a fiber bundle w : E — M with fiber F' over a manifold M and
a good cover U of M , there is a spectral sequence {E,} converging to
the cohomology of the total space H*(E) with Ey term EY? = HP(U,
H9), where HY is the locally constant presheaf HI(U) = H Wn~1U) on
U. If M is simply connected and HY(F) is finite-dimensional, then
EY? = HP(M)® HU(F).

In the above theorem, a cover U, of an n-manifold M is a good
cover if every finite intersection Uy, N +++ N Uy, is diffeomorphic to
R™.

We shall state the Leray’s theorem for singular cohomology with

coefficients in a commutative ring and the Kunneth formula for singuar

cohomology respectively in the following:
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Theorem 1.26 (see Bott and Loring [6))

Let m: E — X be a fiber bundle with fiber F' over a topological space
X and U an open cover of X. Then there is a spectral sequence con-
verging to H*(E; A) with Ey term EY? = HP(U,HI(F; A)).

Each E, in the spectral sequence can be given a product structure rel-
ative to which the differential d, is an antiderivation. If X is simply
connected and has a good cover, then EY? = HP(X,HI(F; A)). If
in addition H*(F; A) is finitely generated free A-module, then Ey =
H*(X; A) @ H*(F; A) algebras over A.

Theorem 1.27

If X is a space having a good cover, e.g., a triangularizable space, and

Y is any topological space, prove using the spectral sequence of the fiber

bundle m: X x Y —> X that H*(X X Y) = @prg=nH?(X, HI(Y)).

We shall now state the universal coefficient theorem ([6], p.194) which

is as below:

Theorem 1.28 (Universal Coeflicient Theorems)

For any space X and abelian group G,

(a) the homology of X with coefficients in G has a splitting: Hy(X; G)
~ H(X)®@G® Tor(Hy-1(X), G);

(b) the cohomology of X with coefficients in G has also a splitling:
HY(X; G) ~ Hom(H,(X),G) ® Ext(H,-1(X), G).

Applying part (b) with G = Z yields the following formula for the

integer cohomology in terms of the integer homology.
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Corollary 1.29

For any space X for which Hy(X) and Hy—1(X) are finitely generated
Z-modules, H1(X) ~ F, & T,_1, where Fy is the free part of Hy(X)

and T, is the torsion part of Hy .

1.4 Geometrical Structures

1.4.1 Classifications of 2D and 3D Geometries

The geometry of 2-dimensions have been classified long ago. There

are three such geometries:

(i) Euclidean geometry,
(ii) Riemannian geometry, and

(iii) Hyperbolic geometry.

The classification of 3-dimensional geometries have been accomplished
by William Thurston (see [70], [71], [72], [73]). It is one of the most
remarkable mathematical discoveries of the twentieth century. The

classification is described in the following theorem:

Theorem 1.30 (Scott [65], p.474)

Any mazimal, simply connected, 3-dimensional geometry which admats

a compact quotient is equivalent to one of the geometries (X, Isom X))

T e

where X is one of E°, H®, 83, S?2x R, H*xR, SLyR, Nil or Sol.

In the above theorem, the 3-dimension Lie group of all 2 X 2

_—

real matrices with determinant 1 is SLsR and SLyR is its universal

—_—

covering. SLoR is called a special linear group and SLyR is just a

line bundle over H2.
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Nilis the 3-dimensional Lie group which consists of all 3 x 3 real upper
1l z 2z

triangular matrices of the form | o 1 y | under multiplication. It

001
is also called the Heigenberg group. Nil is just a line bundle over E2.

Sol is defined as the split extension of R? by R. One has an exact

sequence

) —3BE—3 Jol —RB—10,

If we identify Sol with R® so that the zy-plane corresponds to the
subgroup R?, we can write down the multiplication of Sol, and an
invariant metric.

The multiplication is given by
(z,y,2) (@, ¢, ) =(+e 2, y+ ey, 2+ 2)
A left invariant metric on R? is given by the formula
ds? = e¥dz? + e ¥dy? + d2* .

Sol has the isometry group consisting of the eight maps (z, y, 2) —
(xz, +y, 2), (3,9, z) — (&y, £z, —2). This is precisely the dihe-
dral group D(4).

1.4.2 Differential Geometry
We shall state here a few structural results in differential geometry
with a brief background.

Let M7*+?(c) be an (n + p)-dimensional connected semi-Riemann

:an manifold of index p and of constant curvature ¢, which is called as
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an indefinite space form of index p. The standard models of indefinite
space forms are given as follows. In an (n + p)-dimensional real vector

space R™? with the standard basis, the scalar product (, ) is given by

mn n—+p
<93, y) = Zfﬂi% - Z ZjYj,
i=1 j=n+1
where £ = (21, g, +++ , Tnyp) and Yy = (Y1, Y2, *** , Ynip)- Then (R*F?

, (, )) is an indefinite Euclidean space, which is denoted by Rg*p.

Let Sp*P(c) for ¢ > 0 be the hypersurface in R given as
(z,z) = + =: r§. Then Sp*?(c) inherits an indefinite Riemannian
metric induced through R;;‘”’H and has constant curvature ¢. This is
called a de Sitter space of constant curvature ¢ with index p. On the

n+p+1

other hand, let H}*?(c) for ¢ < 0 be the hypersurface in R[]~ given

as (z, z) = L = —rj.

T. Ishihara [31] prove the result which is as below:

Let M™ be an n-dimensional complete mazimal spacelike subman-

ifold in H™P(c), then 5 < —mpc and S = —npc if and only if
M = HP(2) x «-- X H;LH(;{’%), where S is the squared norm of
1 P+l

the second fundamental form of M™.

In the consequence of the above result Cheng proved in [13] that

the following result holds:

Theorem 1.31

Let M? be a complete mazimal spacelike surface of an anti-de Sitter

space H(c) with constant scalar curvature, then S =0, S = =%, S =
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—4 :
=forS = —2c, where S is the squared norm of the second fundamental

form of M?%. And

(a) S =0 if and only if M? is the totally geodesic surface H2(c);

(b) S = =< if and only if M? is the hyperbolic Veronese surface;

(c) S = —2c if and only if M? is the hyperbolic cylinder of the totally

geodesic surface H3 of Hj.

Remark: It is still open for the author whether there exists complete

maximal spacelike surfaces of the anti-de Sitter space Hi with S =

"1110‘3. In the above theorem, H"(c;) is an n;-dimensional hyperbolic

space of constant curvature ¢;, called the hyperbolic Veronese surface.

Hopf proved that compact surfaces with constant mean curvature
and with genus zero are the standard spheres. Hopf’s result was ex-
tended to complete surfaces in E® by Klotz and Osserman in [38] as

following;:

Theorem 1.32 (T. Klotz and Osserman)

Let M be a complete and connected surface with constant mean cur-
vature in E3. If the Gauss curvature of M s nonnegative, then M 1s

the plane E?, the sphere S%(c) or the cylinder S*(c) X E1L.

By using the above theorem Cheng and Nonaka ([15], p.353) proved
the following:

Theorem 1.33

Let M be an n-dimensional complete connected submanifold with par-
allel mean curvature vector H in E™ +p, n > 3. If the second fun-

damental form h of M satisfies (h)2 < %‘f{—lﬁ, then M 1is the totally
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geodesic Euclidean space E", the totally umbilical sphere S™(c) or the

generalized cylinder S™1(c) x E' in E™*L,

The metric structure on conformally flat Riemannian manifold
M™ will be specified under certain restrictions on the behavior of Ricci
curvature tensor of M™ for the classification of them. Throughout the
following two theorems, let M™ be a connected complete and confor-
mally flat Riemannian manifold of constant scalar curvature r without

boundary. Then one has the following:
Theorem 1.34 ([14], p.210)

Let M3 be a 3-dimensional complete conformally flat Riemannian man
-ifold with constant curvature and constant squared norm of the Ricct
curvature tensor. Then we have

(i) If the scalar curvature v is nonnegative, M° is either isometric to
a space form or else the Riemannian product M?(c) x N' (¢ > 0).
(i3)If the scalar curvature v is negative, either M°® is isometric to a
space form or else the squared norm of the Ricci curvature tensor of

M3 lies in (r2/3, r%/2].

In addition to the assumption in the above theorem, if 7 > 0, then
M3 is either isometric to a space form or the Riemannian product

M? x N', where M 2 and N?! are of constant curvature with dimension
2 and 1 respectively.
Let M be an n-dimensional closed minimal hypersurface in a unit

sphere S™+1(1) of dimension n + 1. Let S denote the squared norm

of the second fundamental form of M. When the scalar curvature of
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M is constant, Yang and cheng proved in [77] that if n < S < n+%,
then M is isometric to a Clifford torus S™(W/E) x Srm(, /B,

1.5 Structures of the 10D Manifold in String Theory

Before giving the structures , we need to recall the Kahler man-
ifold. A Riemannian manifold (M,, g) is said to be Kahler if there
exists a tensor f*; (the complex structure) on M which satisfies
frefFj=—6%
gi f'efli=gu
Vifig=0.

On a Kahler manifold, we can consider forms which are p-times holo-
morphic (contain p dz’s) and ¢ times antiholomorphic (¢ dz’s) so that
the space of r-forms \" splits naturally into A" = A" @ ATV @
e P /‘\(O'T) )

Similarly, the exterior derivative d and its adjoint § = d* can be
split asd = 8+0, 6 = &+ 0 (0" = —* 0%, 0" = %0, O* =
— % 0%), so that 8 : AP — NPT 5 0 APE . APEHL g
APD —s AP and 6+ : APD — APTD 1t also follows from
the covariant constancy of the complex structure that the Laplacian
on forms satisfies o = dé+6d = 2(00*+0*9) = 2(89*+8*0) , and that
0* + 9*8 = 88* + 070 = 0. Since the generators of the cohomology
groups are the harmonic forms,we have H" = H g Hr-Lg ... g
HOM  where H®9 is generated by harmonic forms of type (p, ).

On a Kahler manifold the standard formulae of Riemannian ge-

ometry simplify dramatically. The curvature tensor becomes
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R® ppy = O5I'G,, where I'G, = 9%0sg,;.

and the cyclic and Bianchi identites reduce to
Rapys = Bypas) Rapys = Ragyp

VaRapys = VaByg.5, ViRapys = VRasys

The Ricci tensor on a Kahler manifold turns out to take the sim-
ple form
Rop = 9" R3 05 = —0a03In det(g)
R,z is a Kahler tensor, and generates a non-trivial cohomology class
in general because in going from a coordinate patch z® to another 2’

logdet g — logdet g + h(z) + h(Z), where h(z) = logdet (22%). In

8z’ *

fact the Ricci form
S =iR,pdz" NdZF, |
can be shown to represent the first Chern class on any Kahler man-

ifold.

We shall give the structure here in the following manner:

The ten dimensional manifold on which string theories are de-
scribed has the structure M* x K, where M 4 is the four dimensional

Minkowski space and K is a three dimensional complex manifold - the

Ricci flat Kahler manifold (see [78], [79]).

The requirement that K be a three complex dimensional Ricci

flat Kahler manifold is quite a restrictive one. We describe this in the

following:
Recall that a six dimensional real manifold can be viewed as

patches of RS which are glued together at the edges by identifying
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points of one patch with those of another in a smooth (i.e., C*) man-
ner. Similarly, a three dimensional complex manifold can be viewed
as patches of C? glued together in a holomorphic i.e., complex ana-
lytic manner. Here glueing mathematically means considering suitable
identification spaces. Since holomorphic functions are always smooth,
it is clear that every complex three manifold can be viewed as a real
six manifold. However, the converse is not always the case.

For example, although it is not obvious, the familiar manifolds 5S¢ and
S2% x S* cannot be viewed as complex manifolds, although S% x S® and

St % S can.

To understand the Kahler condition we must discuss the metric.
The analog of a positive definite metric for a real manifold is a hermi-
tian metric for a complex manifold. Given a hermitian metric one can
define a unique (torsion free, metric compatible) covariant derivative.
Now consider a vector v such that for any function f depending only
on the complex coordinates z~% and not on z' we have v*'V;f = 0.
Such a vector is called holomorphic. In most cases, if one starts with
a holomorphic vector and parallel transports it along a curve, then

the vector will not remain holomorphic.

However, there are special metrics for which this difficulty doesn’t
occur, namely those with U(3) holonomy. These special metrics are
called Kahler. Not every complex manifold admits a Kahler metric.
For example, no metric on 93 x 53 or S* x S° can be Kahler, although
32 x 82 x S? does admit Kahler metrics. One can view a Kahler

manifold as the nicest type of complex manifold in that the metric
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structure and the complex structure are compatible in the above sense.

1.6 Lie Groups

1.6.1 Preliminaries

Consider spaces which behave locally like R™. Thus consider a
topological space T and let W be a non-empty open subspace of T'
which is homeomorphic to an open subspace X of R”. If o : W — X
denotes a homeomorphism of W onto X, we call o a chart in T, or,

more precisely, on W.

A topological space T is said to be locally Euclidean at a point p,
if there exists a chart o on a neighbourhood of p; we then say that o
is a chart at p. A Hausdorff space which is locally Euclidean at each
point is a manifold. Thus in a manifold M each point has a chart
defined on some neibourhood so that the family of all charts in M

covers M.

Let M be a Hausdorff space. Then an analytic structure on M is

a family F of charts defined in M such that
(i) at each point of M there is a chart which belong to F,
(ii) any two charts of F are analytically related,

(iii) any chart in M which is analytically related to every chart of F
itself belong to F.

We shall express (ii) and (iii) by saying that F is analytic and mazimal,

respectively. Thus an analytic structure on M is a maximal analytic

family of charts covering M. It is clear that a Hausdorff space with an
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analytic structure is necessarily a manifold, and the space, together

with this structure, is called an analytic manifold.

Let M and N be any manifolds, and consider the mapping ® :
p — ®(p) of M into N. For each function f defined in N we can
define a function f* in M by the rule f*(p) = f(®(p)) (p € M) and
this f* will be denoted by {®}f. Suppose now that M and N are
analytic manifolds. Then the mapping ® : M — N is said to be
analytic, if {®}f € A(M) whenever f € A(N), where A(M) and
A(N) denote the set of analytic functions in M and N respectively.

Thus every analytic mapping ® of M into A/ induces a mapping {®}
of A(M) into AN).

Topological groups and Lie groups are such objects which carry a
two-fold structure such as algebraic and topological or algebraic and
differential. A set G whose members can be subjected to a group
operation as well as can be considered as points of a topological space
is called a topological group provided the group and the topological

structures can be combined together by asking that:
(a) The map ¢ : G X G — G defined as (0,T') — oI'"! be contin-
uous.

If we replace the topological space by a topological manifold with dif-
ferential structure and condition of continuity in (a) by C*-differenti
ability, then then what we obtain is Lie group. Thus, a Lie group G
is a group which is also 2 differentiable manifold and for which the
mapping ¢ of G X G — G given by :

(] (e, L) — oT-! is differentiable for all pairs (0,T’) € G x G.
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1.6.2 Classification of Lie Groups

In addition to the Lie groups of translations in n-dimensional

space, there are four series of lie groups:

(A) Unitary transformations in n-dimensional complex space;

(B) Rotations in odd-dimensional real space;
(C) Transformations in n-dimensional quaternion space; and

(D) Rotations in even-dimensional real space.

The (B) and (D) are real rotations, denoted spin(2n+1) and spin(2n),
and are called spin groups, the double covers of special orthogonal
groups; the (A) are complex generalized rotations, denoted SU(n+1),
and are called special unitary groups; and the (C) are quaternionic

generalized rotations, denoted Sp(n), and are called symplectic groups.
The only other Lie groups that exist are 5 exceptional ones:
G2, F4, E6, E7, and ES.

One should not be surprised about the two facts:
the exeptional Lie groups are all related to the octonions; and they

do not form an infinite series because the non-associativity of the

octonions terminates the series.

G2 is the automorphism group of the octonions, that is, the group
of operations on the octonions that preserve the octonion product.

G2 is 14-dimensional and its smallest non-trivial representation is 7-

dimensional.
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F'4 is the automorphism group of 3 x 3 matrices of octonions

oll 012 013
021 022 023
031 032 033

such that ol1, 022, and 033 are real (have no imazinary part), and
012, 013, 023 are the octonion conjugates of 021, 031, 032 respec-
tively (such matrices are called Hermitian matrices). F4 is 52-dimen

sional and its smallest non-trivial representation is 26-dimensional.

E6 is in some sense F'4 expanded by the complex numbers. E6
is 78-dimensional and its smallest non-trivial representation is 27-

dimensional.

E7 is in some sense F'4 expanded by the quaternions. E7 is 133-
dimensional and its smallest non-trivial representation is 56-dimensi

onal.

ES8 is in some sense F4 expanded by the octonions. E8 is 248-

dimensional and its smallest non-trivial representation is also 248-
dimensional.

These mentioned above are all the Lie groups that exist.

The octonions referred to the above are described below:

1.6.3 Quaternions and Octonions

A division algebra is a vector space with multiplication of vectors
such that the system is a skew field. There are four division algebras

over R (kervaire [37], Bott-Milnor [5]). These are R, C, H and O,
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where H is the algebra of quaternions with a basis {3, 1, j, k} satisfying

multiplicative relations 72 = 2=k =1,i = —ji = k (Cayley

[12], Hamilton [26]), and O is the algebra, of octonions with a basis

{1, e1, -+, e} with multiplication table (Baej [4])

€1 €9 €3 €4 és €6 €r
e1l —11| es er | —ea| eg | —es | —es
€9 | —€4 -1 €5 €1 —e3 4 —Eq
€3 | —€7 | —€5 —1 €g €9 —€4 €1
€4 €9 —€1 | —€p —1 (4 €3 —€5
es| —es| es | —ex|—er| —1| e €4
e es —er | eq —Eg | —&i -1 €9
er| es es | —e1| es | —es|—ea| —1

The octonions are very much used in modern physics specially in

string theory (see [11],[64]).

1.7 Sheaves and Schemes in Algebraic Geometry

The idea of schemes in connection with algebraic geometry was
developed by Grothendieck. The concept of a sheaf provides a sys-
tematic way of keeping track of local algebraic data on a topological

space. Sheaves are essential in the study of schemes. In fact, we can

not even define a scheme without sheaves.
1.6.1 Presheaf
Let X be a topological space. A presheaf F of abelian groups on X

consists of the data
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(a) for every open subset U C X, an abelian group F (U), and

(b) for every inclusion V' C U of open subsets of X, a morphism of
abelian groups py, : F(U) — F(V), subject to the conditions

(i) F(¢) =1, where ¢ is the empty set,

(ii) puy is the identity map F(U) — F(U), and

(iii) if W C U C V are three open subsets, then puy = Pow © Pus-

We define a presheaf of rings, a presheaf of sets, or a presheaf with
values in any fixed catagory C, by replacing the words abelian group
in the definition by ring, sets, or object of C respectively. We will stick
to the case of abelian groups in this section, and let the reader make

the necessary modification for the case of rings, sets, etc.

1.6.2 Sheaf

A presheaf F on a topological space X is a sheaf if it satisfies the
following supplementary conditions:

(a) if U is an open set, if {V;} is an open covering of U, and if s € F(U)
is an eiement such that s |y;= 0 for all ¢, then s = 0;

(b) if U is an open set, if {V;} is an open covering of U, and if we
have elements s; € F(V;) for each 1, with the property that for each
i, j, 8i |vinv;= 8j lviny;, then there is an element s € F(U) such that
s |o;= i for each i. Note that (a)implies that s is unique.

Direct Sum of Sheaves: Let F and G be two sheaves on X. Then the
presheaf U — FUU) & GU) is a sheaf. It is called the direct sum of
F and G, and is denoted by F @ G. In fact, it plays the role of direct

sum and of direct product in the category of sheaves of abelian groups
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on X.

Gluing Sheaves: Let X be a topological space, let U= {U;} be an
open cover of X, and suppose we are given for each i a sheaf F; on U;,
and for each 4, j an isomorphish ;; :F|y,ny,—F; |unu; such that
(1) for each 4, @; = id, and (2) for each i, j, k, @i = @ik © @i On
U; NU; N Ug. Then there exists a unique sheaf F on X, together with
isomorphisms v; :F|y,—F; such that for each i, 7, ¢;;0%; on U;NU;.
We say loosely that F is obtained by glueing the sheaves F; via the

isomorphisms ¢;;.

1.6.3 Scheme

An affine scheme is a locally ringed space (X, Oy) which is isomorphic
(as a locally ringed space) to the spectrum of some ring (for the ringed
space and spectrum of a ring, we refer the reader to R. Hartshorne
[80]. A scheme is a locally ringed space (X, O) in which every point
has an open neighborhood U such that the topological space U, to-
gether with the restricted sheaf Ox |, is an affine scheme. We call X
the underlying topological space of the scheme (X, Oy), and Oy its
structure sheaf. We will open write simply X for the scheme (X, Oy).
A morphism of schemes is a morphism as locally ringed space.

Example: If K is a field, Speck is an affine scheme whose topological

space consists of one point, and whose structure sheaf consists of the
field k.

Fibred Product: Let S be a scheme, and let X, Y be schemes over
S ie.. schemes with morphisms to S. We define the fibred product



Survey of Structures

43

of X and Y over S, denoted by X x5V, to be a scheme, together
with morphisms p; : X xsY — X and py : X xgY —» Y, which
make a commutative diagram with the given morphisms X — S and
Y — S, such that given any scheme Z over S, and given morphisms
f:Z — X and g : Z — Y which make commutative diagram with
the given morphisms X — S and Y — S, then there exists a unique
morphism 6 : 7 —» X XgY such that f = p; 06, and g = py 0 0.
The morphisms p; and py are called the projection morphisms of the
fibred product onto its factors.

XX5Y

Theorem 1.35

For any two schemes X and Y over a scheme S, the fibred froduct

X xsY emists, and is unique up to unique isomorphism.

1.8 Riemannian Surface

Let X be a two dimensional manifold. A complez chart on X is a
homeomorphism ¢ : U — V of an open subset U C X onto an open

subset V c C. Two complex charts ¢; : Ui — V;, i =1, 2 are said
to be holomorphically compatible if the map

g © (pfl o (U1 N Upy) — e(U1 N U,)

s biholomorphic (see Fig.1 in the next page).
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A complex atlas on X is a system U = {yp; : Uz- — Vi, 1 €I} of
charts which are holomorphically compatible and which cover X.
Two complex atlases U and U’ are called analytically equivalent if every
chart of U is holomorphically compatible with every chart of U'. By
a complez structure on a two dimensional manifold X we mean an

equivalence class of analytically equivalent atlases on X.

A Riemann surface X is a connected two dimensional manifold
together with a complex structure on X. If X is a Riemann surface,
then by a chart on X we always mean a complex chart belonging to

the maximal atlas of the complex structure on X.
Examples:

(a) The complez plane C is a Riemann surface. Its complex

structure is defined by the atlas whose only chart is the idntity map

Cc —C.

(b) The Riemann sphere P! is a Riemann surface. Let P =CU
{oo} , where oo is a sybbol not contained in C. Introduce the following
topology on Pl. the open sets are the usual open sets U C C together
with sets of the form V U {oo}, where V c C is the complement of

a, compact set K C C. With this topology P is a compact hausdorff
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topological space, homeomorphic to the 2-sphere S2. Set U; = P! —
{00} = C and U = P! — {0} = C* U {o0}. Define maps ¢; : Ui —»
C, i =1, 2, as follows. ¢; is the identity map and

L forzecC

pa(2) = °
0 for z = 0.

Clearly these maps are homeomorphisms and thus P* is a two dimen-
sional manifold. Since U; and Us are connected and have non-empty
intersection, P! is also connected. The complex structure on P! is now

defined by the atlas consisting of the charts ; : U; — C, i =1, 2.

Theorem 1.36

Suppose X 1is a topolgical space and
0 i F oy Gy 7 — 50

is a short exact sequence of sheaves on X. Then the induced sequence

of cohomology groups

0 — H(X,F) Ay H°(X,G) Zm HY(X, H) >
B

1

HY(X,F) = HY(X,0) 5 H'(X,H)

15 ezact.
For the details of the induced homomorphisms o, at, 8% B! and

the connecting homomorphisms 9* in the above theorem, we refer

to Forster [20 ].
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Dolbeault’s Theorem 1.37

Let X be a Riemann surface. Then there are isomorphisms
(a) H'(X,0) = £%1(x)/d" £ (X),
(b)HY(X,Q) = £@(X)/d€W(X).

On every Riemannian surface X , every exact 1-form is closed but
every closed form is not necessarily exact. Consequently one is inter-

ested in the quotient group

_ Ker(€W(X) % £3(X))
IM(E(X) % £M(X))

Rh!

of closed 1-forms modulo exact 1-forms. T'wo closed differential forms
which determine the same element in Rh(X) is called the 1st deRham

group of X.

DeRham Theorem 1.38

Let X be a Riemann surface. Then H'(X,C) 2 Rh'(X).

If X is a compact Riemann surface, then dim H'(X, O) is finite

and it is called the genus of X, and hence one has the following:

Theorem 1.39

Every Riemann surface of genus zero is isomorphic to the Riemann

sphere.
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SPECIAL SEMIGROUPS

2.1 Introduction

S. Majumdar and A. K. Mallick [49] studied a class of abelian
groups which they termed special abelian groups. These groups have
a set of generators such that each non-zero element of the group can
be expressed uniquely in terms of the generators using each generator
or its inverse, but not both, at most once. The structures of these
abelian groups were determined in certain cases also. Following them
and using Majumdar ideas, we have introduced in this chapter a class
of commutative semigroups termed special semigroups and studied
their properties. These semigroups have a set of generators similar to
those for special abelian groups. These generators have been termed
special generators. Some characterization theorems have been derived
and the structures of these semigroups have been determined in certain
cases. The automorphism groups and the endomorphism semigroups

for these semigroups have been also discussed in this chapter.

2.2 Special Semiroups

Consider a type of semigroups which have a set of generators such
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that each non-zero element of the group can be expressed uniquely

in terms of the generators using each generator at most once. These
semigroups will be called the special semigroups and the generators
will be known as the special generators. These kind of semigroups
occur in abundance. Z*, Q*, N(2) are a few examples of such special
semigroups. Here Z7 is the additive semigroup of all positive integers,
Q* is the additive semigroup of all positive rational numbers, and
N(2) is the additive semigroup of all positive rational numbers which

have denominators of the form 2%, z being a non-negative integer.

We shall prove below that the above three semigroups Z*, Qt and
N(2) are indeed special.

Theorem 2.1
Every infinite cyclic semigroup is special.
Proof:

Suppose S is an infinite cyclic semigroup with generator z, and
let A={2"z /r =0, 1,2,3}. We shall prove that A is a special set
of generators of S. Suppose that s is any element in S. Then s = nz,
for some positive integer n. Since n has a unique expression in the
binary system , i.e., n = 5% o mk2, with ny = 0 or 1 with only a
finite number of ng # 0 (or equivalently, as n = {nyx} with ny’s as

before), A is a special set of generators of S. Therefore S is special.

Clearly Z* is an infinite cyclic semigroup with generator 1.
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2.3 Binary Representation for the Elements of QF

A "
Let Q% denote the additive group of all positive rational numbers.

We shall represent each element z of Q™ as
T=a1---a.by by G,

where each a;, b; and ¢ is either 0 or 1. This is the usual representation
of a positive rational number relative to the base 2. Here a;---q; is
the integral part of z and b;---b,,¢1 - ¢, is the fractional part, the
bar denoting recurrence of the finite sequence ¢y, -+ ,c,. Here we are
writting

ai --al.bl---me---O
for the usual expression of the rational number
al---al.bl---bm.

Since 0 # Q% we see that at least one of the a;’s, bj’s and c¢;’s is
non-zero. To have a unique such expression we may assume that at

least one of the ci’s is zero; for, otherwise, we can always replace the
expression by the sum

a1 by by T 0+0.0-:010:-0

n places mplaces nplaces

which after addition is of the required form again.

We recall that to add two such expressions

w:al---al.bl"‘bmcl"'cn

and
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Wherem’zmwithmzm’+r,r20 :

we write

T =

a’l..-al'bl--.bmEI...cncl:..Cn".cl."cn
nn' terms

and

! ! /
y=al"'al:.bl"'b;nrcll"'C;.

P ogrmnt il o @ el B it se g sn s B e
Cral” "Crpr €1 " CpCryg " Cru € e Gy =" CpCyo oo C

—

nn' terms
and then add in the usual manner.

Theorem 2.2
Q™ is a special semigroup.
Proof:
It is clear that the set S of all expressions

ey *+* B J1 = fmgl “+* GOn
in which only one of the €’s, f’s and g’s taken together is 1 and the
others are 0 is a special generators for QF. Therefore Q7 is a special

semigroup.

For the following result, we use the following notation. We denote

by N(2) the set of all positive rational numbers of the form
ap ' a,.bl bm

H * ll. V
au

subsemigroup of Q.



Special Semigroups 51

Theorem 2.3

N(2) is a Special Semigroup.

Proof:
We see as before that the set of all elements
T =a1--a.by - by

of N(2) in which only one of the a’s and b’s taken together is 1 and

the others are O is a special set of generators. Thus N(2) is special.

2.4 Closure Properties of Speciality

We shall now study the closure properties of the class of special

semigroups under various operations. The result will show the abun-

dance of special semigroups.

Theorem 2.4

(i) Let Ay, +-- , Ay be a family of additive commutative semigroups
?

and let A be the direct product of the family, i.e.,
A= {(al, ,an)/ai € Az}

with componentwise addition. If A is special then each A; is spe-
cial.

(ii) Let A denote the monoid obtained by adjoining an identity ele-
1 o

e to Ay and let A denote the direct product of Ay, oo A,
(6% x

is special, where 0 is the identity

ment
Then A—{0} is special if each Aq

of A .
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Proof:

(i) Let A be special, and let S be a special set of generators of
A. Let m, the projection maps Ta(81, -+ ,Sn) = sq. Then, Sy =
{ra(s)/ s € S} is a special set of generators of A,. To see this
, let aq € Ay Then a, = m4(a), for some a € A. Since S is
a special set of generators of A, there exist a unique finite set of
elements s, ... | s() € S such that a = s + ... + s@. Then,

o = To(a) = wa(sW) + -+ 4+ mo(s7)) — a unique expression.

(ii) Let each A, be special and for each a, let S, denote a set of
special generators of A,. Let i5 denote the injection ig : Ay — A.
Then , S = U2_;{ia(Sa/ S« € Sa} is a special set of generators
of A — {0}, where 0 is the identity element of A. Thus, if Sy =
{801, *** 1 Saye ), then

{(51’170, v it 7(])’ cee (31,7'1:0: s ,0)7
(0, 521,05+, 0,7+ 5 (0, 82,00, 0 ,0),

(0’... 103511,1)7 e ,(0, .. ,07311,Tn)}

is a special set of generators of A — {0}. Hence A — {0} is special.

Theorem 2.5

Let {A,} be a non empty famaly of special semigroups such that the
(8}

direct product [] A, where Aq is the monoid obtained by adjoining
o ’

an identity element oo 10 A,, is special. Then each A, is special.
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Proof:
Let S be a special set of generators of A, and let
Sa = {ma(s)/ se€ S},

where m, : A — A, is the projection homomorphism. Let a, € A,
and let a be the element of A such that To(a) = aq and mg(a) =
0 € As, B # o. But we have g — 81+ -+ + s, for some unique
1, '+, € S. Then, a, = To(s1) + -+ + To(sr). Hence S, is a

special set generators of A,. Hence the theorem.

2.5 Sum and Direct Sum

We shall now define the sum and the direct sum of a family of
subsemigroups of a semigroup and examine the closure of speciality
for sums and direct sums. Let {A,} be a family of subsemigroups of
an additive commutative semigroup A. The sum >y Ao of {A.} is
the subsemigroup of A consisting of all finite sums a,, + - + Qa,

Qo € Aq,. Clearly, >, Aq is a subsemigroup of A.

Let /fﬁ denote the sum Ea#ﬁ Ag. If for each, AaﬂAﬁ = @, when
B # a, then Y, A, will called the direct sum of the family {A.}

and is written >, ®Aq.

If A and B are two semigroups with ANB = @, and if A, B denote
the the monoids obtained from A, B by adjoining identity elements to
Aand B, then the subsemigroup ¢4(A) + ¢5(B) of the direct product

A x B is a direct sum where ¢g, t5 are the injection homomorphisms.
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Theorem 2.6

Let {As} be a family of subsemigroups of an additive commutative
semigroup A such that A = > 0 ®Ay. Then A is special if and only

if each Ay is special.
Proof:

First suppose that éach A, is special, and let S, be a special set of
generators of A,. Let S = U,S,. Then S is a special set of generators
of A. For, let a € A. Then,
a4 = @, + *** + Qq,, forsome g, €Ay;r =1, - n.

Now ae, = sp1+ -+ + srt, for some unique s 1, - ' Srt. €S-
Hencea = 3, Zf;:l Srk, and this expression is unique. Thus A is

special.

Conversely, suppose that A is special. Let S be a special set of
generators of A. It is then clear from the definition of direct sum that
Se = SN A, is a special set of generators of A, so that each A, is

special. The proof is therefore complete.

2.6 Free Commutative Semigroups

An additive commutative semigroup S is said to be free on a non
empty subset X of S, if each element of S can be expressed uniquely

as a finite sum

nix sl o Ny Tp,

where n; € Nand z; € X. Sis called free if S is free on some X C 8.
It is obvious from the definition of direct sum that § = > wex DSz,
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where .S; is the infinite cyclic semigroup grnerated by z, i.e.,
Sz ={=,2z,3z, -+ ,nz, ---}.

Clearly, each S, = N, the additive semigroup of all positive integers.

It thus follows from the theorem 2.6 that

Theorem 2.7

A free semigroup is special.

Theorem 2.8
Let S be a commutative semigroup. Then S = S — {0} is special if
§=Z@AQ®Z@B_,6®Z®C’7:
a B ¥
where each Aq = Q%, each Bg = N(2) and each C, = N*,
Proof:

This again is a consequence of the theorem 2.2, theorem 2.3, the-

orem 2.4 and theorem 2.6.

2.7 Divisibility
An additive commutative semigroup S will be called divisible if,
for each s € S and for each positive integers n, there exists an element

s’ € § such that s =ns'.

Obviously, Q" is a divisible semigroup. Also, if {S,} is a family

of divisible semigroups, then

> o,

4
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is divisible. Clearly N* and N(2) are not divisible. It therefore follows
from the theorem 2.8 that

Theorem 2.9

A commutative semigroup S is divisible and special if

S':Z @AOH

a4

where Ay = QF, for each a.

Proof:

The proof of this theorem is analogous to theorem 10 of Majumdar

and Mallick [49].

We may note from the above theorems that special semigroups
occur in abundance, and that in many situations, their structures are
expressible in terms of direct sums and direct products of N*, Q* and

N(2).

2.8 Automorphism Groups and Endomorphism Semigroups

The structures of the automorphism groups and the endomor-
phism semigroups of the special semigroups N+, Q* and N(2) can be

determined through solution of the following problems:

(1) determination of the automorphism group / the endomorphism

semigroup of

Z E;BSa:

a

when Aut S, / End S, are known for each o ;
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(2) determination of Aut S, / End S, , where S, is N*, Qt or N(2).

We have solved the second problem:

Theorem 2.10
The followings are hold good:
(i) AutN* =2 {1}, the group with one element;
(i) End N+ = N+,
(111) Aut Qt = EndQt = QF,

(iv) EndN(2) = N(2); Aut N(2) = {1}, the group with one element.

Proof:

(i) Let ¢ € AutN*, and let (1) = z. If z # 1 1 € I'mep, and so
is not onto — a contradiction. Hence = 1, and so Aut Nt = {1y} =

{1}, the group with one element.

(ii) clearly ¢ : N+ — N7 given by ¢(1) = n is an endomorphism
of N* for each n. Here ¢(r) = rn, for each r € N*. So, ¢(r + 5) =
(r+s)n=rn+sn+e(r)+ ©(s) i-e., ¢ is an endomorphism.

Also, if ¢ is an endomorphim of N*, let (1) = n. Then ¢(r) = rn,
for all r € N*. Thus, ¢ Ay ©(1) is an isomorphism of EndN* onto

N*.

(iii) Let 2 = Aut @+1 then for each % = Q+) m, n € N+, (’0(%)
— m, where z = @(1). Also, for each y € QF, and a fixed yo € Q*,
= Dy,

0, Yy — Yoy is an automorphism of QF. Clearly, y — ¢, is an
Yo °
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isomorphism of Q% onto Aut Q*. Its inverse is the automorphism f
of Aut Q" onto Q% given by ¢ A, ©(1).
As in (ii) it can be proved that every endomorphism of Q* too is given

by the maps £ — rz, for a fixed r € Q. Thus, End Q" = Aut Q1 =
Q*.

(iv) Since each element of N(2) is a rational number of the form
5 (r > 0), it follows from (iii) that a map ¢ : N(2) — N(2) is
an endomorphism if and only if p(z) = z.¢(1), for each z € N(2).
Also (1) may be any element of N(2). Hence ¢ Y (1) gives an
isomorphism of EndN(2) onto N(2).

However, the only automorphism of N(2) is the identity map. For,
otherwise, if ¢ € AutN(2) (¢ # lyg)), and ¢(1) = &%, m may be
assumed to be odd without loss of generality. Also, m may be assumed
to be 3; for, otherwise ¢ may be replaced by ¢+1n¢). So, e 1) = %,
m > 3. This is of the form ay - - ap.by -+ bscy - ¢, with non-trivial
recurring part ¢; -+ - ¢, relative to the base 2.

Thus, Aut N(2) = {1}, the group with one element.
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THE ENDOMORPHISM SEMIGROUP OF AN
ENDOMAPPING OF A FINITE SET

3.1 Introduction

Let X be a finite set and let F(X) denote the full transformation
semigroup on X, i.e., the semigroup of all mappings of X into itself.
Let f € F(X) and End (f) ={g9 € F(X)| gf = fg}. Then End (f) is
a subsemigroup of F(X) and is the centralizer of f in F(X). We call
End (f) the endomorphism semigroup of f and an element of End ( f)
an endomorphism of f. The name is justified since each endomorphism
of f is precisely a map X — X which maps the directed graph
representation of f into itself in such a way that a vertex is mapped

onto a vertex and a directed edge (u,v) is mapped onto the directed
edge (f(u), f(v))-

We shall determine the structure of End (f) for certain maps f.
The subgroup of End (f) consisting of all permutations 7 on X with
nf = fr is called the automorphism group of f and is denoted by
Aut (f). For arbitrary f, the structure of Aut (f) has been determined

by Majumdar [52].
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3.2 Representation of an endomapping by a directed graph

3.2.1 Let X be a nonempty finite set. Let f:X — X bea
mapping. Then

X2 f(X)2 fA(X)2 -+ 2 f1(X)2D -

is a decreasing sequence of subsets of X which terminates at some

stage, i.e., for some 7,

fr(X) = fHX).

Then, f

fr(x) is a permutation, and hence, a product of cycles.

We obtain a directed graph (X, f) with X as the set of vertices
and {(z, f(z))| € X} as the set of directed edges. The above dis-
cussion shows that the subgraph of (X, f) with the vertex-set f7(X)
is a union of disjoint directed cycles. And (X, f) consists of these
directed cycles at each vertex of which there is a directed tree with

root at the vertex, the edges of the trees being directed towards the

corresponding vertices.

This is illustrated through the following example:
Example: Let X = {1,2,3,4,5,6,7,8,9, 10} and let f: X — X be

7, f(7) = 6, f(8) = 6, f(9) = 10, f(10) = 10. Then the directed

graph representation of f,ie., (X,f)1is
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KoL

3.2.2 It follows from the deﬁmtlon of the directed graph (X, f) that
g € End(f) if and only if the induced map on (X, f) maps the edge
(z, f(z)) onto the corresponding edge (g(z), f(g(z))). Such maps are

called endomorphisms of the directed graph. Hence the name endo-

morphism semigroup of f.

For determination of the structure of End (f) we shall actually

study the structure of End (X, f), the endomorphism semigroup of
(X, f).

Throughout our discussion in this chapter X will denote a non-
empty finite set and f a mapping of X into itself. (X, f) will denote
the directed graph determined by f.

3.2.3 For study of the structure of End (X, f) we need two kinds

of products of transformation semigroups: the direct product and the

wreath product. We shall give the definitions here. A more detailed

study of these products appear in [61]

3.3 Transformation semigroups and Their Products

3.3.1 Transformation Semigroup

Let Y be a non-empty set. A semigroup S is called a transfor-

mation semigroup on Y and written (5,Y) if each s in S is a map
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§ 1Y — Y such that(sy, s5)(y) = 51(s2(y)) for each y € Y. If S has

an identity element 1, then Wy) =y, for each y € Y.

The F(Y)

, the full transformation semigroup on Y, is obviously

a transformation semigroup. In fact, every transformation semigroup

(8,Y) is a subsemigroup of F(Y).

3.3.2 Direct Product

Let (51, Y1) and (S, ¥3) be two transformation semigroups where
Yy and Y; are disjoint. Then the direct product (S; x S3, Y1 UYs) is

defined as the semigroup of all ordered pairs
(s1, 82) 81 € S1, S2 € So,
with component-wise multiplication and with
(51, 82)(y1) = s1(1),
and
(s1, 52)(%2) = s2(¥2),

for each y1 € Y, y2 € Ya.

3.3.3 Wreath Product
Let (S1, Y1) and (Sz, Y2) be two transformation semigroups. The

wreath product

(S1 18, Y1 X 1)

is the set of all mappings

:VixYs— Y1 XY,
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such that

0 (1, ¥2) = (514,(31), 52(v2))

where s; € Sz and s, is an element of S1 which depends on y; and

in general is different for different ys.

If

(SI’ Yi): Tty (Sn; Yn)

are n transformation semigroups where S; & S;, for each 4, j and
each Y; has the same number of elements and Y¥; N Y; # ®, then the

semisubgroup of those elements of
(S1X - XS, Y1U - UY)
which map an S; into S; may be regarded as identical with
(S F, Y x{1,2,- -, n}) and denote it by (1)

where S 22 S;, for each ¢, Y is in 1-1 correspondence with each Y;, and

F, is the semigroup of all endomappings of
{1,2,---,n}
i.e., the full transformation semigroup on

{1a 2,---,1’?,}-

The generalisation of direct products and wreath products to semi-

groups and their applications have been made using Majumdar’s ideas.

We shall use these products for description of structures of End (X, D
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for a few situations. Application of direct products and wreath prod-
ucts of transformation groups for determination of the structures of
the automorphism groups of directed graphs and lattices are to be

found in [51] and [52] respectively. An account of our findings here
appear in [47]. |
3.4 The Structure of End (X, f)

3.4.1 Structure of End (X, F) for Case I

We first consider the case when f"(X) = {z¢} a singleton subset
of X. A typical such case is given by the directed graph in the fig.2,
ie., (X, F) is given by the fig.2.

F(acl

(i) To study such cases, we begin with the simplest situations ar-

ranged in the order of increasing complexity:
. -
First we consider (X, F) = Q

Here End (X, f) = {1}, the group with one element.

(ii) In this step, we consider (X, F) is given by fig.3.
Here End (X, f) = {UO; 01}1 where gxu

T ro T1
To T1 To 0

The multiplication is given by the table
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® |0y 01

go |00 01

01|01 01

This is the semigroup {1,0}, being the group {1} adjoined with
0, with 0p = 1, o1 = 0. It is also the 0 semigroup with 1. We denote
this semigroup by E(1).

(iii) Here we have (X, F') =fig.4. In this

X
2
case End (X, f) = {00, 01,02}, where
|
_ (%0 Z1 X2 _ (%o T1 T2 -
gy — 01 = ). o
Tp T1 X2 g Xp T1 _
F:TZ}
o T1 T2
and Oy = .
o Tog Lo

The multiplication is given by the table

® |0og 01 02

oo | 0o O1 O2

oy|o1 02 02

o9 | 09 O3 02

It is clear from the table that End (X, f) is the 2-element semi-

group {01, 09} with zero multiplication (o2 being the zero element)
adjoined with 1 = go. ; x,
(iv) Let (X, f) = fig-5. In this case, X,

End (X, f) = {00: 01,02, 03}: and xl

the multiplication is given by the table 7 x,
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. 0o 01 (o)), g3

go |00 01 02 O3

O3 |03 03 03 O3

It is clear from the table that End (X, f) is the 3-element semi-
group {071, 09, 03} with zero multiplication (o3 being the zero element)

adjoined with 1 = oy.

(v) We can conclude that in general if (X, F') =fig.6
then, End (X, f) = {00,01,09, - -+ ,0n} and the

multiplication is given by the table

[ ] UO J1 Og ==+ Opn—1 On xn
Jo op O1 02 =--"""° Opn-1 On
x'lL—l
o1 o1 o9 03 r*-~-"*° On On
]
02 o9 03 04 "+ Onp On On \7'/
& ™
On—-1|0On-1 On On **°°7° On On F’laﬂ5
o‘n o'n O'n o'n ------ O'n an

We write this semigroup as E(n) and denote it by (2).

(vi) We now consider graphs with more than

trees of height 1 with root zo: |
' A
Thus, let (X, f) = fig.7. Here we enco- O—> N o

unter a situation where the concept of

wreath product can be applied. There
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are n rooted trees they are to mapped onto themselves such that each
rooted tree is mapped into some rooted tree. Since all the tree have
the same root, the endomorphisms of a tree with vertices, say i, To,
are precisely the maps oy = (:g z) and o; = (zs f_o) Thus , for
each such tree the endomorphism semigroup is isomorphic to E(1).
The trees may be designated as 7y, --- , T}, each T; being isomorphic
to the graph T' =, so that T} U --- U T}, may be regarded as T' X

{1,2, --- ,n}.

Hence by the discussion following the definition of the wreath

product we have
where F,, and E(1) are given by (1) and (2) respectively.

(vii) We now consider the directed graph in the fig.8 consisting of r

chains (rooted trees with a trivial cycle at the root) each of length m

with root at zp.
Arguing as before we obtain

End (X, f) = BE(m) U F; (4)
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(viii) We now consider (X, f ) given by fig.9 with two chains of length
m and n rooted at zg, with m > n. We denote the subgraph (given

by fig: 9.1) by T and the subgraph (given by fig: 9.2) by T.

Then End (X, f) will consist of maps of the following kind:

(a) N—T, Th—T,

(b) h—T, Th—T,

Py ’
- n
(c) h—1, Th—1T, . ({3}
LA
Ly
(d) T — Ty, 1T —1T5. %o 7L'\
Hence Fig-9

End (X, f) = (End 1) % Ende) U (EndTl X Hom(T2,T1))U
(Hom(Ty, Ty) x Hom(Ty,T1)) U (Hom(Th, T3) X EndT3) (A)

with
[ (EndTy) (Hom(Tg,Tl)) C Hom(Ty, T1) ,

(Hom(Tl,Tg)) (BEndT1) C Hom(Ty,T3) ,
(Ende) (Hom(Tl,Tz)) . Hom(Tl,Tz) :
(B) 4

(Hom(Ty, Th)) (EndTh) Hd_m(Tz,Tl) ,

(Hom(T1, T2)) (Hom(T3,T1)) € EndTy

\ (Hom(T%Tl)) (Hom(T1,T3)) C EndTy .
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We note that

Hom(Ty,Ty) = (EndTy) f, where
f = Lo *** Tm—pn Tmenyl *° T
— xh ... ! ! ']
0 Zo Ty Ty

and

Hom(Ty,T1) = (EndTy) g, where

We may then have definite expressions:

[ (EndT) (Hom(T3, T1)) = (EndT1)2g ,
(Hom(Tl,Tg)) (EndTl) = (E’nde) f(EBndTy) ,
(EndT3) (Hom(Ty,T3)) = (BndTy)% f
(C) 4

(Hom(T3, T1)) (Bnd Tz) = (EndTh) g (EndT3)

(Hom(T1, T2)) (Hom(T2, Th)) = (EndTh) f (EndTh) g ,

| (Hom(T, T1)) (Hom(T1,Tz)) = (EndTi) g (EndTy) f .

(A) and (C) together completely express the semigroup structure
of (X, f) in terms of EndTi and EndTs.
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(ix) We next let (X, f) be given by a general form of (C): fig.10

Fia,,1o Fig-n FT%'A
with r; chains 77, --- , T, of length ny, - .-, 7 and chains

TE, -, T,fi of length ny all being trees rooted. at zo.

Let T denote the tree combining T}, ,--- T;. Then, as before,

- .
End(X, f) =
. : v#v' ; ;
U[EndT’l X e X En’dTlu X (Xu<v,v'<k : HO?’)’I,(T",TW))],

(D) { the union being taken over all permutations

where

( End T = EndT 0 F, (@ €{L,2, - i}),

1<aZgri, 3 byl
| Hom(T*T¥) = X 1zper,, Hom(Te T5"))
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and the products of EndT%® with themselves and with
H om(T;,Té) as well as the products of H om(T(i,Tg); among them-
selves are given by (C). Here EndT%*’s are isomorphic to one an-

other, since T%%’s are chains of the same length. Thus the structure

of End(X, f) has been determined.

(x) Now let (X, f) be given by the directed graph in fig.11.Then
amap g : X — X is in End (X, f) if and only if g induces an
endomorphism of chain C [fig.A] as well as the graph in (ix) and two
such endomorphisms combine to yeild an element of End (X, f). Thus,
if we denote End (X, f) in (ix) by E, then End (X , f) in (x) is given
by

End (X, f) = Ex E(l) (direct product)

by (v).

Comment: We note that the endomorphism semigroup of the graph
of (X, f) in (x) and that of the directed rooted tree with root at yo

obtained by removing the loop at yo are isomorphic to each other.

(xi) Let (X, f) be now given by a more general form fig. 1

ix}

Fl‘?l c
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where 71, - .. » T are graphs of the form in (x) which are isomor-

phic to directed trees each with root at Yo-
An endomorphism of (X,f) maps every tree T; into a tree Tj (3, j
not necessarily distinct) in such a way that

(a) yo is mapped onto Yo,

(b) z} is mapped onto a point in C, where C is shown in the fig.C.

(c) the subtree Ty’ of T; into the subtree T}, where zl,. = f(z}) so that
the directed edges are mapped onto the corresponding directed

edges.
Thus,

,
End(X, f) =
UIBRdT" x -+ x End T x (X o Hom(T™, T,

(D) { the union being taken over all permutations

Here, it is easily verified that
(@) if the length I; of C, is greater than or equal to the length I
of Cy (C; and Cs as in the fig.), then
Hom(T;, T;) = {(042,031)(fig: 0in) }

; i . ot
xh e T v T yO)
] bl

where Jij = | ; ' J
fz] (mJ & :E'S « v 8 mlj yo
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$1 + e :1:1' PRSI i
where f;: = ( ;’ .2 Ly,.s yo)
] b

J
T e ah e wl g,

oi1 € End(T}), 05, € End(C), g2 € End(T]) (C as in the fig.C).

(B) if I; < I;, then

Hom(ﬂ:ﬂ) = {(0-.72’0-.% )( ij» 1._7)}

In the above, f/. : T; — T; maps every subgraph of 7}, which is
a chain or tree of length < I; with root z§ onto the subgraph C (as in

the fig.C) of T} isomorphically.

Also, 0;; € End T; , where T} is the directed rooted tree obtained
from T, by (a) deleting the maximal chain-subtrees in T} with root h
and length< I; and (b) collapsing the chain-subtrees of T; with root
b and length > [; by identifying all of zf, i, - -- ,a:fj so that they
represent the same point while the directed edges zo412¢ (0 < a <
l;,) vanish.

Multiplication of the elements of Hom(T;, T;) with those of
Home(T;,Ty) is the composition of the maps representing the ele-

ments.

Multiplication of the elements of EndTi X «++ X EndT, with the

elements of Hom(T;, Tj) is defined similarly.
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3.4.2 Structure of End (X, F) for Case II

We next consider the case when, for some positive integer r,

f, restricted to f7(X), is the identity map, i.e., f | f1(X) = 1p0x)-

A typical such case is shown in the following figure:

Here f3(X) = {x1, 2, x3} and f(z1) = @1, f(w2) = %2, f(23) =

3.

In general, (X, f) will now be given by

G] G2

where each @; is a directed graph of the type shown in (xi) of

Case 1.

The endomorphism semigroup for X, End(X, f), will be deter-

mined by the endomorphism semigroups End(Gi), where Gy, --- , Gy

the components of X. Under f, the whole of G; will mapped into
are the ¢

i that =} is mapped
itself or into another component G; in such a way that | PP

onto ) .
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Thus,

0 End(X, f) =

(BEndG; x -+ x EndGy,) x (XZﬁZ,v,<k Hom(G;,, Gj,))

is a permutation on {1, 2, --- ,k}.

Also, each Hom(G;, G;) may be written as
Hom(G;,G;) = X4, Hom(]}a",Tjﬁj) , (Cartesian product)

where T} and Tjﬂ 7 are the directed trees constituting the graphs G;
and G; respectively as in (xi), since each element of X, f maps Gj
into G; in such a manner that b is mapped onto z) and each T(* is

mapped into some Tj'-@ f

Considerations similar to those given in (xi) about multiplicaion
of the e]ements Of Hom(ﬂ, CZ}) Wlth those Of Hom(qjj, Tk) as We].]. as
multiplication the elements of EndT; with Hom(T;, T;) hold here also.

This shows that End (X, f) has been determined.

3.4.3 Structure of End (X, F) for Case I11

We now consider the situation when , for some positive integer r,
e

f is a cyclic permutation on f’ (X).
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A typical example is given by the following figure:

In this example, f*(X) = {21, 9, 23, 24, 5} = X' ,say, and f

induces a cyclic permutation on X and

f(z1) =mg, -+  f(24) = 5, f(25) = 21

We note that under the action of any element of End(X, f) the

cycle C = (z1, 23, 3, T4, T5) is mapped onto itself. Thus EndC =

Cs, the cyclic group of order 5.

In general, let (X, f) be given by

, Tp, are directed rooted trees with roots at zy, «---...

where Ty, + -+
(xi) of Case

x,, respectively, the trees being of the form described in

I

Then. under the action of an element o in End(X, f), the cy-

Tp} on the set of the roots of the directed trees
yn
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, Ay, 1is endomorphically mapped onto itself and the tree
T} is mapped endomorphically into the tree Ta(ﬁ with the root of T3
being mapped onto the root of T a(l. Thus,

End(X, f) = | ) (X Hom(T}, T,q)) ,
| 7€C, :

Cn being the cyclic group of permutation on the set H om(T;, Tr(y)
and {z1, *++-++ ,z,} of the roots of T}, «---.. , Tn. The products of
the elements of Hom(T;, Tr(;)) and Hom(Typ) 1, «) are defined as in

(ix) of Case I and Case II.

3.4.4 Structure of End (X, F') for Case IV

Finally, let us have the most general situation of an arbitrary

endomapping f of X.

Atypical example is given by the ﬁgure:

3

In general, (

(X,f) will be given by a finite number of cycles at each

vertex of which there is a directed tree with root at the vertex. Thus,
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where each G; is a directed graph of the form given in Case IIL.

In this case, we can see easily that

(End Gil A o2em X Giu) X (X Ziz,v%n Home(GiniL)) )

where | ' is a permutation on {1, 2, --- ,n}.

The multiplication of the elements of EndG;_ with the elements
of Hom (G;,,Gi,) and the multiplication of the elements of
Hom(G;,, G;;) with the elements of Hom(G,, G;,) are defined in the

manner as in (ix) Case I, Case II and Case III.

The determination of the structure of End (X, f) for an endomap-

ping f of X is thus complete.



CHAPTER-4

GROUPS OF MORPHISMS

4.1 Introduction

In this chapter we have introduced and characterized a class of
groups named groups of morphisms. In some categories, for some
groups of morphisms A — A, certain subgroups of Hom(A, A) are
interesting. We have studied some such groups for the category of
vector spaces, groups and topological spaces. The structures of the
automorphism groups, i.e., the set of all morphisms which form a

subgroup of Hom(A, A), have been determined in certain cases.

4.2 Group of Morphisms and Automorphism group

We start with a category C, and let A be an object of C. If a subset

G(A) of Hom(A, A) is a group under the composition of morphisms

of C with 14 as the identity element, G(A) will be called a group of

morphisms of A. Clearly, G(A) is a group if and only if, for each
f € G(A), there exists ' € G(A) such that ff' =14 = f'f. Clearly

-1
such f is unique and may be denoted by f™-

The subset of Hom(A,A) consisting of all f € Hom(A, A) for

which the inverse exists is the largest group of morphisms of A and
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contains all groups of morphisms of 4. This group will be called
the automorphism group of A and denoted by Aut A.

Now we shall describe and study Aut A and some of its subgroups

for certain categories. An account of this discussion appears in Ma-

jumdar, Hossain and Akhter [48].

4.3 Vector spaces

Let F' be a field and V a finite dimensional vector space over F. Let
dimV = n. Then AutV = The group of all invertible linear operators
of V. Thus, AutV = M™"(F), the group of all n x n non-singular
matrices with entries in F. For R and C, these are called the general

linear groups and are denoted by GL(n,R) and GL(n, C) respectively.

Several subgroups of GL(n,R) and GL(n,C) are important and

widely used. These are

(i) O(n) = the group of all n x n orthogonal matrices, i.e., n x n real

matrices O such that O’ = O7%;
(ii) SO(n) = the group of all orthogonal matrices M with |[M| = 1;
(iii) U(n) = the group of all » X m unitary matrices, i.e., all n x n
complex matrices U with [ =05

(iv) SU(n) = the group of all n X m special unitary matrices, i.e., all

n x n unitary matrices M with [M | =1

These are groups of symmetry and are very useful in theoretical physi

-cs. These groups are topological groups too. In fact these are Lie
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groups and that aspect is Important for application in physics. Unified
field theories in theoretical Physics use these groups and their Lie
algebras, and sometimes tensor products of these groups, regarded as

Lie algebras (see for example, Michio Kaku [35]). For example,

e O(4) 2 S0(2) ® SU(2) (p-552)
Also,

¢ 0O(4) 2 SU(2) ® SU(2) (p-568)

e O(3) = SU(2) (p-552)

e 0(2) = U(1) (p-551)
4.4 Groups

For a group G, Aut G is the group of all automorphisms of G, i.e.,
the group of all 1-1 homomorphisms of G onto itself.

It is easy to see that if G is infinite cyclic with generator z, then
the only automorphisms of G are given by the maps z — z and

- __ﬁ_> 1 Hence Aut G is the cyclic group of order 2 generated by
B, ie., Aut G = Ca(B).

For a finite cyclic group G, the situation is more complex, if z
is a generator of G, then the automorphisms of G are precisely the
sms of G given by the maps fi 1 & — o, where i is any

prime to 7. Thus, the order of Aut G is ¢(n), where

homomorphi

integer relatively

n is the order of G and ¢ 1s the Euler function.
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To complete our programme we now determine the structure of

Aut Cy. The structure is wel] known (

Zassenhaus [27])

see, for example, Scott [81],

. However, we shall determine the structure of Aut Gy,

in a different manner after Majumdar 82]:

Consider the ring Z, of the residue classes of the integers modulo
n (n > 2). Then the set of elements 7 ¢ Zn, with (r,n) = 1is a
group under multiplication. For, since there are integers a, b such
that ar + bn = 1 and so, we have @7 = 1, @ is the multiplicative
inverse of 7, the bar denoting the residue class modulo n. We denote
this group by [n]. Clearly the order of [n] is ¢(n), where ¢ is the Euler

function.

Theorem 4.1
Aut C, = [n].
Proof:

The map ¢ : Aut C, — [n] given by ¥(f) =7, where f(z) = 2",
is an isomorphism. If f, g €Aut Cy with f(z) = 2", g(z) = z°, then

(o)) = Fale)) = @) = o So, then (fg) = v = 75 =
V(f)b(g). Thus ¢ is a homomorphism. Clearly 9 is both 1-1 and

onto.

Therefore, if it will suffice to determine the structure of the group
H

[n], we do so using Majumdar’s method [82]. The result will be estab-

lished through the following three theorems:
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Theorem 4.2
If a and b are two relatively prime integers, then

[ab] = [a] x [0] (direct product).

Proof:

The elements of [a 8] are {agj¢,) + 74}, where {ry} is the set of all
positive integers less than a and relatively prime to a, and for a fixed
Ti, 18 j(ry) + 73} is the set of integers in

{a+m 2a+71;, -+, (b—Da+r}
which are relatively prime to b.

Define v : [ab] — [a] by ¥(agj¢y) + i) = Ti € [a]- Then, ¢ is an
onto homomorphism and Kert = {agj(,) +1}. Now, % : Ker¢p — [b]
given by

J’(a’ qi(r) T ri) = agir) t 7 € [0]
is an isomorphism.

Hence the sequence of abelian multiplicative groups and group

homomorphisms

(A) 1——>[b]ﬂ[ab]i>[a]—>l

is exact.

Now, ¢* : [ab] — [b] given by

(@ T i) = 04ie) T E ]
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is a well defined homomorphism and ih*1

, = 1. Thus the sequence
(A) splits. Hence [a b] = [a] x 8],

Theorem 4.3

(i) If p is an odd prime, then [p"] = Cony for for each positive integers
n.

(4)[2"] = Cy X Con-z, for each n > 2.
Proof:

(i) The order of [p"] = ¢(p")
= p"(p — 1). The element 2 of [p"] must have

S

order exactly p®~*(p — 1). Hence 2 is a generator of [p*]. Thus, [p"] &
O¢(pn).

(ii) For n = 2 and 3, the result is easily verified; for [22] =< 3 >

and [2%] =< 3 > x <5>.

We first note that for each @ € [27], @*"" =1, the identity element
of [2"]. For n = 2, 3, 4, 5, this is true. Let it be true for n > 2, let a

be any integer then o2 = k2" + 1, for some integer k, squaring both

sides, a2* = k222" + k2t +1=12"+1, where [ = k?2" + 2k. Hence

32" = T, where 1 is the identity element of [2"*1].

We shall now prove that the order of 3 in [27] is exactly 272,

All we shall have to do is t0 show that for alln >4, 33 £ 7 in
[27], ie., 327 # k2" +1 for any integer k.

By the above paragraph, there exists an integer [ such that g _
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n—1
[2"7* 4 1. Hence we have to show that [ is odd.

We prove this by induction on n. This is seen to be true for n = 4.

n—3
Assume that for n > 4, 37" = jon-1 + 1, where [ is odd. Squaring

. n—2
both sides, 3* = 12922 4 190 1 1 — (gegn2 | 2" +1=12"+1,
where I’ is odd.

Hence 3 has order 22 in [2] ie., < 3 >, the cyclic subgroup
generated by 3 in [2"] has order 272

Let y € [27], but y ¢< 3 > . Then, y? €< 3 >, since order of [27] is
2"~1, 4% cannot be equal to an odd power of 3, for then y will be of order
271 which is impossible by the second paragraph of our proof. Hence
y* = 3% for some non-negative integer . Then 3"y~! has order 2 and
it does not belong to < 3 >. Therefore [2"] =< 3 > x < 3"y~ ! >, the
internal direct product. Thus, [2"] = Cyn-2 x Cy .

The structure of Aut C, for an arbitrary positive integer n > 2

follows from the above three theorems :

Theorem 4.4

Let n be a positive integer n = pet - pt where py, -+ ,pr are prime
numbers with p1 < p2 < +++ <Pr and €1, *- , € ar€ positive integers.
Then
AutC,, = [n]
Cier—2 X Ca X Gy X =00 X Copery if P11 =2,
} Copr) X+ % Coiptr) if p1 # 2.
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Proof:

See theorem 4.1

, p.145-146)

(Majumdar([82], Scott[81),p.120, Zassenhaus [27]

For a positive integer n > 2, Ayt Ch, the group of automorphisms of

a cyclic groups of order n, has the following structure:

(i) AutCp, = qu(pl)---gb(p,), ifn=pf-.. pir, where each p; is an odd

prime, 1 =1, --- | r;

(1) AutC, =2 Cy X Cora X Cyipy) . gpr)y if 1 = 275 oo g%, 1 > 2,

where p1, -+ ,ps are odd primes.

3.5 The Automorphism Groups of Q and R

The following propositions describe the structure of AutQ and
Aut R, where Q is the additive group of rational numbers and R is the

additive group of real numbers:

Proposition 4.5
Aut Q = QF, where Q* is the multiplicative group of all non-zero

rationals.

Proof:

Let f € AutQ and let F(1) ==z. Then,z #0. Let m, n € Z, n #
m) =y, then f(m) = f(n ) =nf(F) =

Conversely, let z 7 0 be any element of Q. Define f: Q — Q as
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follows:

for each 2, m, n € 7, p #0, f(2) = Ty, Then, f(1) = z, and so,
f(%) = T f(1). Clearly f is an automorphism of Q. Here f‘l(%) =

S[3
H.lr—ﬂ

Consider the map ¢ : AutQ — Q* given by ¢(f) = f(1). Clearly
f(1) # 0, so that f(1) € Q*. We see that, if f, g € AutQ, then
¢(f9) = (f9)(1) = F(9(1)) = g(1)F(1) = f(1)g(1) = ¢(f)$(g). Thus

¢ is a homomorphism.

Next consider the map % : Q* — Aut@Q given by Y(z) = f,
where, for each y € Q, f(y) = yz. For 21, z3 € Q*, let ¢(z;) =
f1, ¥(z2) = fo, then ¢(z129) = f, wrere, for each y € Q, f(y) =
y(2122) = y(@231) = (yz2)71 = fi(yz2) = f1(f2(¥)) = (f1£2)(y). Thus
f = fife, ie., ¥(z1z2) = ¥(z1)¥(22). Hence ¢ is also a homomor-
phism.

Now, for each z € Q*, (¢¢)(z) = ¢(¥(z)) = (¥(2))(1) = z, by

the definitions of ¢ and . Hence ¢ = 1q-.

Also, for each f € AutQ, (Wd)(f) = v(6(f)) =4(f(1)) =g €
Aut Q, where, for each y € @, 9(y) = yf(1) = f(y) so that g = f.
Thus, (1¢)(f) = f. Therefore Yo =1 4utQ-

Therefore ¢ and 1 are isomorphism so that Aut Q & Q*.

We note from the above proposition that Hom(Q, Q), the additive

group of all additive endomorphisms of Q, is given by

Hom(Q,Q) = {f:@— Q/ f(x) =az, € Q} = Q.
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Here the isomorphism is given by f +— f(1) .

AutR, the group of automorphisms of R where R is the additive

group of real numbers, will now be determined.
Proposition 4.6

AutR = R* , where R* is the multiplicative group of all non-zero real

numbers.

Proof:

The map ¢ : Aut Q — R* given by ¢(f) = f(1) gives the required
isomorphism of the proposition. The arguments similar to those in the

proof of proposition 3.5 proves the statement.

If R is the additive group of all real numbers and R* is the multi-
plicative group of all positive real numbers, then the map ¢ : R — Rt
given by ¢(z) = € is an isomorphism of R onto R*. So, (R,+) &
(R*, x). Since (R*, x) is a subgroup of index 2 in the group (R*, x),
Aut (R,+) contains an isomorphic copy of (R,+) as a subgroup of

index 2.

3.6 Topological Spaces

We shall now determine the structure of the automorphism group

of the topological space R with the usual metric topology. It is the

group of all homeomorphisms of the real line, i.e., R with the topology

induced by the metric d where d(z,y) =| z—y |. We denote this group

by AutR .
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We note th i '
at the functions ¢ — ¢ (magnification), z — z" ,

1
and £ — z= '
™, Where c ig ally non-zero real number and n is any odd

positive integer, are homeomorphisms of R onto itself, i.e., automor-

phisms of the real line. Also, z —s z + a (translation) is an automor-

phism of this space for each real number a. The maps £ — z2" is

not a homeomorphism since it is not 1—1.

The trigonometric functions are not 1-1, the exponential functions

are not onto and the logarithmic function is not defined on the whole

of R.

The map £ — cz includes as a particular case the reflexion
r — —z at the point 0. It is clear that the reflexion about any point

1s a homeomorphism.

Therefore, the homeomorphisms of the real line consist of all re-
flections, all magnifications, all translations and all maps z — z° (a

an odd integer or its reciprocal), and their compositions.

Now, every translation is a composition of two reflections. For,

if we consider the translation 7, : € — = + a , we can verify that

T, = papy , where ps and po are reflections at the points § and 0
2

respectively. The verification is clear from the following:

(i) ifz>0,a>0andz < 2 then we have the figure:

L ]

8
e @
=)
(N1
o
8
g
Q2
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and so,

o
o
e
—_
8
N
e @
8
=

and so,
a a
p%(m)—'z'—(a:——i)—a i

(ili) if @ > 0 and z > a, then we have the figure:

L2

ve @

and so,

e @
e
=

(S8

and so,

(v)ifz >0 and a < 0, then we have the figure:
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o */3\* °
& re(z) 3 T
and so,
a a
p;($)=§—(m—§):a_m_

®
%
*

e @

and so,

a a . _
p%($)=§+('2——$)~a z .

(viii) if z < 0, a < 0 and = < a, then we have the figure:

91
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8
o
e @

and so,

R~
wle
—
8
~
Il
]
[
8

Thus in all possible cases, pe(z) = a—=z . Also for all z € R,

po(z) = —z . Hence always we have
(500)(z) = pa(—2) = a4z =7,(z) .
Therefore, we have 7, = Pspo -

In fact, AutR is generated by
(i) all maps p.: £ — cx , where c is any non-zero real number ,

T
- ’ a p————“cd
(ii) all maps Tom41 : ¢ — 22"+ and mh,.q 1 T — 2T, where m,

n are any positive integers, and

(iii) all maps p,:z — z+a, a €R.

Now, it can be easily verified that
M = {Mc}ceﬂ&" =) )
R* being the multiplicative group og all nonzero real numbers, and

o~
P = {mamsts Thusim, men = Quat

where Q,qq is the multiplicative group of all rational numbers of the
]

2m+1
form S 5
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Hence R = {p,},cp = R, the additive group of all real numbers and

we have thus the following Proposition:
Proposition 4.7

Aut R 2 R* % Qpgq xR , where the % denote the free product.



CHAPTER-5

FUNDAMENTAL GROUPS AND HOMOLOGY
OF CERTAIN SUMS

5.1 Introduction

S. Majumdar and Asaduzzaman studied sums of topological spaces
in [45] and they derived there some characterization theorems for their
defined sum. In this chapter, we shall study the fundamental group
and the homology groups of Majumdar’s sum, connected sum and
external sum of topological spaces. To do this we shall use the two

famous mathematical tools: (i) Seifert-Van Campen theorem and, (ii)

Mayer-Vietoris sequence.

We have already come across the concept of fundamental group,
the Siefert-Van Campen theorem, homology group and the Mayer-
Vietoris sequence in the first chapter. In this chapter, We need also
the concept of free product of groups of the following kind and the

concept of free products with an amalgamated subgroup and that of

simplicial complex.
Let {G; 1t €1 } be a collection of groups, and assume there is
i

given for each index ; a homomorphism ¢; of G; into a fixed group G.
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We say that G is the free product of the groups (; with respect

to the homomorphisms ¢; if and only if the following condition holds:

For any group H and any homomorphisms ¢; : G; — H, i€ I, the

following diagram is commutative:

Let A, be groups, where o ranges over a set of indices, and let
a proper subgroup B, be chosen in every A, such that all these sub-
groups are isomorphic to a fixed group B. By ¢, we denote a specific
isomorphic mapping of B, onto B; then 1ss = gpacpgl is an isomorphic

mapping of B, onto Bg.

The free product of the groups Aq with the amalgamated subgroup
B is defined as the factor group G of the free product of the groups
A, with respect to the normal subgroup generated by all elements of
the form babgl, where bg = bathap, Where by ranges over the whole
subgroup B,, and where o and 3 are all possible index paires. In
other words, if every group A, is given by a system of generators M,
and a system of defining relations ®, between these generators, then

G has as a system of generators the union of all sets M,,, as a system

of defining relations the union of the sets ®q, and in addition, all

relations obtained by identifying those elements of differentsubgroups
B, and Bg which are mapped by the isomorphisms ¢, and g onto
[0 4

one and same element of B. The subgroups B, are amalgamated, as
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it were, in accordance with the isomorphisms 1/,
a .

We need the concept of simplicial complex which is used very

widely in algebraic topology. Let a?, --- | aP be p+ 1 points in R™.

These are called independent if for real numbers A0y 0y Apy Db Aii

=0, and >>2 ;X\ = 0 together imply Ay = --- = X\, = 0. A point

b € R* is said to be dependent on a°, --- ,a?, if b = 3% \a; and
ToXi =1, for some Ay, -+ , ), €R.

The set of points dependent on a°, --- ,aP is a subspace of R”,
and if, a®, --- ,aP are independent, then each such dependent point
is uniquely determined by the co-ordinates (Ao, --- ,Ap) where the
points is > _, A;a; . The co-ordinates (Ao, - , Ap) are called the bary
centric co-ordinates. The rectilinear p-simplez s, with vertices a®, - --
,aP is the set of points dependent on a®, -+, a? whose barycentric co-

ordinates satisfy A; > 0, ¢ =0, 1, ---,p. A O-simplex is a point a°,

a l-simplex is part of the line segment 5 -, obtained by

. . 1
removing the points a’, a* and so on.

A finite geometric simplicial complez in R" is a finite collection K

of simplexes s‘f, of R" subject to the conditions:
(a) if s, € K and sq < Sp, then ¢ € K and

(b) distinct simplexes are disjoint.

Here s, < s, means that sq 15 & face of sp i.e., 8¢ is a simplex spanned
q

by a subset of the set of vertices of sp. sometime the empty set is
called a simplex and is denoted by s1.

i implicial complex K = {p, q, a}, p,
Thus, T’___m is a simplicia p {p, q, a}, p, q
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being the vertices and a the open segment

5.2 Majumdar’s Sum in [45]

Given two topological spaces (X, Ty) and Y, Ty such that X NY
is open in both X and Y, X UY is a topological space with topology
T={UUV|U€e€T, VeT}. XUY is called the sum of X and Y
- and is denoted by X + Y. In this situation X and Y are said to be
compatible with each other. The definition is due to Majumdar and

Assaduzzaman [45]. An almost similar definition occurs in Bourbaki

8].

fXNY =& X +Y is called a direct sum and is denoted by
X @Y. For a detailed study of sum and direct sum, we refer to [46]
and [50]. Clearly, the topologies T1, T2 on X and Y are the same as
the topologies as subspaces of X + Y.

5.2.1 Fundamental group of X +Y

The fundamental groups are very important in classification of
spaces as much as two spaces with non-isomorphic fundamental groups
are non-homeomorphic. We shall now study with the application of
Seifert and Van Kampen theorem to express the fundamental groups
of a sum of two compatible spaces in terms of those of the summands.
We shall verify that the following results on the fundamental groups
of the sum X + Y of two compatible spaces X and Y hold good:

Theorem 5.1

Let X and Y be path connected compatible spaces such that XOY # ¢
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and path connected. If H be q group and p;
phisms such that the diagram

P2, p3 are any homomor-

m(X)

P1 K
(XNY}—Ps N H
m(Y)

18 commutative, where the homomorphisms ¢1 and ¢ are induced
by the inclusion maps. Then there exists a unique homomorphism

o:w(X+Y) — H such that the following diagrams are commutative:

(X +Y) (X +Y) T(X +Y)

raraNa
N N N

where 1, e, P3 are also homomorphisms induced by inclusion

maps.

Proof:
Since X and Y are open subsets of X + 7Y, the results follows imme-

diately from the famous theorem of Seifert and Van Kampen.

For the above results, we thus get the following corollary:
Corollary 5.2

Er(XNY)=1ie, :f X NY is simply connected, then (X +Y)is

the free product of 7(X) and m(Y) under the homomorphisms 1, 1,
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ie, 7n(X+Y) = T(X) * (V)

, where % denotes the free product.
5.2.2 Homology Group Ho(X 4+Y)

To the topological space X + Y, we have always an abelian group
H,(X +7Y), the homology group of X + Y, is associated for each posi-
tive integer n. Using Mayer-vietoris sequence of complexes in chapter-
1, the homology of X + Y of subspaces in terms of the homologies of
the subspaces X and Y and that of their intersections is given by the

following:

Theorem 5.3

Let X and Y be two subspaces of the sum X +Y. Then the following

sequence 18 exact :

......... Sy By (X +Y) 25 Hy(XNY) 25 Hy(X) @ Hy(Y) =2
Hy(X +Y) 2 Hy (X NY) T eeeeenn .

We do not describe the maps s«, s, jx here. For detail description of

the maps Ss, Vs, Jx We refer the reader again to Hilton and Wiley ([28],
p-290).

We see from the theorem that the homology groups Hp(X +Y)
of the sum is determined by the homology groups Hp(X), Hn(Y) and
H,(XNY). In particular, if X N Y is a singleton, then H,(X NY) =

0. n>0,ie, XNY hasa trivial homology in each dimension. In
, , 1.e.,

this case, we have Hn(X + Y) = Hp(X) & Ho(Y).

If X and Y are simplicial complexes with X NY a singleton set,
then we may consider X' and Yy’ for X and Y where X' are Y’ are

obtained from X and Y by adding to X and Y open subsets A and B
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of XUY so that X'ny’ = (XﬂY)(AUB)

assume that X’

and this is open. We further
and ¥” are contractible of X and Y respectively. Then
Ho(X') = Hu(X), Hy(Y") = Ho(Y) and H,(X' NY') = Hu(X N

Y) = 0. Hence using the Mayer-Vietoris sequence for X ', Y, we again

obtain Hn(X'+Y") = H, (X") ® H,(Y"). But this means that H,(X +
Y) S Hy(X) @ Hy(Y).

This situation can be described by the following diagrams:

B

D E

Here, X = {AB,BC,CA,A,B,C}, Y = {AD,AE,DE,A,D, E},
X' = ABCRS — {R,S}, Y' = DEAQP — {P,Q}, {A) = XNY
and X'NY' = (PSURQ)-{P,Q,R,S}.

5.3 Connected Sum

Let(X,T) and (Y, T") be two topological spaces such that X NY =
®. Suppose that there exists non-empty closed sets /" and F” of X
and Y respectively such that b(F) is homeomorphic to b(F”). Let
f i b(F) — b(F') be a homeomorphism. and let b(F) = B) and
b(F') = B'), ie, B=F - Int(F) and B' = F' — Int(F'). Suppose
Z=(X—-Int(F))ul - Int(F")) and define a relation ~ on Z as

follows :
ifze Z2— (b(F)Ub(F")), then z ~ 2 and z o z, for any 2’ € Z,
(ii) if z € b(F), then z ~ 2 and z ~ f(z), and (iii) if z € b(F”), then

z~ zand z ~ f(z) .Then ~ is an equivalence relation on Z. Under

identification topology, Z (=2 ) is a topological space and is termed
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the connected sum of X and Y with reference to F and F’'. We can

regard Z as (X UY) — (Int(F ) U Int(F")) under the identification
of z on B with f(z) on B’ and so B = B’ — (X —Int(F))Nn (Y —
Int(F")). It is convenient to denote the connected sum (in this case)

of two topological spaces X and Y by X# Y or X#pY. But for our

convenience, sometimes we denote this sum simply by X#Y.

Comment: It is clear that the connected sum of compact surfaces that

has been defined in chapter-1 is a particular case of this sum.

5.3.1 Fundemental group of X#Y
Theorem 5.4

Let X andY be two topological spaces. Then the following results hold
good:

(i) The connected sum XrY 1s connected if and only if X — Int(F)
and Y — Int(F') are connected.
(ii) If X and Y are path connecled, then X #rY is path connected,
and
(iii) If X#rY is path connected, then X — Int(F) and Y — Int(F")

are path connected.

Proof:
(i) From S. Majumdar and Asaduzzaman [45] we know a lemma which

states that:

X UY is connected if and only if both X and Y are connected

and X NY #&.
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Since X#rY is (X — IntF)u (Y - IntF') and (X — IntF)N (Y —

N :
IntF') = bd(F) = bd(F") is a non-empty subspace of X#rY, thus (i)

follows from the lemma, stated above.

(ii) Let X and Y be path connected. Let 21, 29 € X#rY. Since
X#rY = (X —IntF)U(Y —IntF"), if z;, 2 both belong to X — IntF
or Y —IntF” then there exists a path from z;, 29.So, let 21 € X—Int F
and zg € Y — Int F'. Since b(F) # ®, we can take a point z € b(f).
Then z € X NY. So there are paths f from 2z; to z and g from 2
to 29. Then g * f is a path from 2z; to 29, where g x f : [0,1] —
(X —Int F)U (Y — Int F') is given by (g * f)(t) = f(2t), whenever
0<t<ziandg*f(t)=g(2t-1), whenever 3 <t < 1. Hence X#rY

is path connected.
(ifi) It is obvious since X#rY = (X — IntF)U (Y — IntF").

We now express the fundamental group n(z#rY) of X#FrY in
terms of 7w(X), m(Y) and 7(b(F)) by the following way:
Let X and Y be path connecled spaces and let F' be homeomorphic
to F' such that both are closed (but not open) subsets of X and Y

respectively. Let H be any group and let p1, pe; p3 be homomorphisms

such that the diagram:
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18 commutative, where ¢, ¢o are induced by inclusion maps. Then

there exists a unique homomorphism o - T(X#rY) — H such that
the following diagrams:

m(X#rY) T(X#5pY) m(X#rY)
Py () (3
rXZI(F) |° r¥ ZmiFy  |° 7 (5(F)) ’
9 and
x X X
H H o

are commutative, where 1, 19, Y3 are also induced by inclusion

maps.

5.4 External sum

Let X; and X, be two disjoint topological spaces and let there be
two non-empty closed sets Fy and F% in X7 and X respectively such
that Fy and F3 are homeomorphic. Letf : F; — F, be a homeomor-

phism. We now define a relation & on the direct sum X7 @ X» (direct

sums studied in [50] and also occur in Dugundji [83]) as follows:
in such a way that
(i) for each z1 € X1 — I1, 21 Rz and z Rz if and only if 2 = 1,
(ii) for each z3 € X, — Fy, zo Rz and 2z Rz if and only if 2 = z9,

(iii) for each z1 € Fy, 71 Rz and z Ry if and only if z = z; or

z= f(ml)’

(iv) for each z2 € Fy,
@ = f—l(mg).

1o Rz and z Rz if and only if z = z9 or
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Then R is an equi - :
quivalence relation. The quotient space X‘—?fi will be
called an ezternal sum and will be denoted by X; Wr X, or simply

by X WY where F = F 1 = Iy (after identification). A study of such

products has been made in [50].

If X and Y are subspaces of a topological space Z, then we may
choose the subspace topology on X UY and obtain a space which we
will call the usual sum and write X +;Y. If X and YV are disjoint, we
may define the external sum X w; Y as before and call it the usual

external sum.

Simplicial complexes are given as examples of external sums of
subcomplexes, and ultimately, of 1-simplexes shown in the following

diagrams:

Ay
Il

-
S
-

&
=
5

-

o

The above examples show how structures of simplicial complexes

are expressed using &.
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5.4.1 Fundamental group of X WY

As in the case of sum X + Y and connected sum X#Y, fundamental
groups of X and Y (when they are path connected) and the homology
groups of these spaces together with the fundamental group and the

homology group of F give information about the corresponding groups
of XwY.

We regard X WY as XUY with X NY = F. Then X and Y are
open subsets of XWY. If X and Y are are path-connected, then for any

base point z € F, we have the following consequence of Seifert-Van

Kampen theorem:

Theorem 5.5

Let H be a group, and p1, pa, p3 any three homomorphisms such that

the following diagram:

is commutative where 1, @2 are induced by the inclusion map F —
X and F — Y. Then, there exists a unique homomorphism o :

(X1 W Xp) — H such that the following diagrams are commutative:
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Here again 11, 19, 13 are homomorphisms induced by inclusion

maps.

The statement of the above theorem is equivalent to saying:

(X1 W Xs) is the free product of m(X;) and w(X2) with Ay (F)
amalgamated to om(F) where A1, Ag are induced by inclusions F' —
X1 and F — Xs.

Hence as a particular case we have the following:
Corollary 5.6

If Fy and Fy, and hence F, are simply connected, then (X)W X,) &
m(X1) x7(X2) (% denotes the free product).

we consider two disjint connected simplicial complexes K; and
K, such that K; has a subcomplex K| and K3 has a subcomplex Kj
so that K| and K3 are homeomorphic. Then K; Wr K, where K’
stands for K! , or equivalently, K, is the free product of 7(K7) and
n(K1) with Ar(K') amalgamated to Ao (K') with A1, Ag induced by

inclusion.

5.4.2 Homology group Hy(X1¥ X,)

The Mayer-Vietoris sequence for homology can be applied to spa

—ces X1, Xo, X16 Xo and F to obtain the exact sequence:
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......... — Hn(F) — Hn(Xl) D Hn(X2) —
Hn(Xl ) X2) — Hn—l(F) — v s ny vw .

In particular, if H,(F) = 0, for each n, then H,(X; ¥ X;) =
H,(X1) @ Hp(X3), for each n.
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