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Abstract

In this thesis we have investigated some aspects of the protoplanetary theory of
planetary formation, namely, the structure of a protoplanet, sedimentation of
heavy elements in a protoplanet, and the effect of mass loss on the orbit of a

protoplanet.

The thesis contains five different chapters. The first chapter deals with a brief
outline of the current view of planetary formation while in the other chapters we

have investigated the problems under consideration.

In chapter 2, we have determined the structure of a protoplanet by numerical
method in which the protoplanet is assumed to be a sphere of solar composition,
which is in a steady state of quasi-static equilibrium. 1t is also assumed that the
only source of energy in a protoplanet is gravitational. Regarding the heat
transference of heat inside the protoplanet we have considered two cases of

interest i) the convective case and if) the conductive — radiative case.

In chapter 3, the distribution of thermodynamic variables in a protoplanet has been
determined by polytropic method assuming that the protoplanet is a polytrope of

index n=.5, 1, 3/2 and 3.

In the fourth chapter, we have investigated the segregation time of falling grains
inside a protoplanet. We have calculated the time for two possible cases of
interest, namely, i) the mass of the grain remains constant during falling, ii) the
grain mass increases due to its adherence with other grains, and have found that a
solid core having mass roughly equal to that of a terrestrial type planet can form at
the centre of a protoplanet in a reasonable short period of time on astronomical

scale.



In chapter 5, we have investigated the effect of mass loss on the orbital distance of
a protoplanet in a two body problem as well as in a three body problem, and have

shown that the planetary spacing observed today can satisfactorily be explained in

terms of mass loss from a set of identical protoplanets.
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Chapter-1

Planetary formation

1. Introduction

The formation of the planetary system has been a topic of interest to the mankind
ever since the dawn of civilization. However, scientific theories for the formation
of the system largely dates from Descartes (1644) when he proposed his vortex
theory of planetary formation. Since that time many theories have been advanced.
In most cases these theories were primarily speculative because of the lack of
observational characteristics of the system. Fortunately for the theorists of today

there are some convenient observational constrains of the system. For example,

1) There exists a central condensation, the Sun, which is many times (a factor

of 750) more massive than the sum of the remaining parts of the system.

1) The Sun rotates very slowly, both in relation to the angular momentum
present in interstellar gas clouds and in relation to the angular momentum
of the planets. Infact, the sum of the angular momenta of the planets about

the Sun is about 200 times larger than that of the Sun about its own axis.
iii)  There are nine known planets in orbit about the Sun.

iv) The orbits of the planets all lie close to a well-defined plane, so that the
planetary system is essentially two-dimensional. The rotation of the Sun

about its own axis is also essentially in the plane.



V) All the planets move in the same, prograde, sense round their orbits. There
is also a tendency for the planets to rotate about their own axis in the same

sense; while the majority of the satellites also have prograde orbits.

vi) There exists a clear division in the chemical composition of the planets,

which corresponds both to their different spatial position and to their

different masses.

vii)  The orbital distances of the planets roughly follow the Titius-Bode law.
This cannot be considered independently of the angular momentum of the
planets. Nevertheless, some explanation is needed for the consistent
increase in the distance between the planets (or in their angular momentum

per unit mass) as one moves away from the Sun.

viii)  There are also some minor objects to be found in the system. They are

meteorites, comets, asteroids, etc.

1X) The age of the solar system based on the meteoritic observation is about

4.5 billion years, etc.

In the theoretical modelling of the system these constraints serve as the boundary
conditions for the theorists. From time to time many theories have so far been
advanced for formation of the system. Some reviews are available in, for example,
Williams and Cremin (1969), Woolfson (1969), Mccrea (1972), Pickett and Lim
(2004). There are found two schools of thought for formation of the solar planets:

the planetesimal model and the protoplanetary model.

2. Planetesimal model

The planetesimal model is often referred to as the standard model of the formation
of the solar system. In this model, the solar system formed about five billion years
ago from a placental cloud of gas and dust that was cold, large and slowly

rotating. The cloud collapsed, perhaps triggered by the shock wave from a nearby



supernova. Most of the mass, which was already concentrated towards the
rotational axis of the cloud, fell straight to the center due to its low angular
momentum. The remaining, higher angular momentum material rained down
towards this central, growing protosun, but not directly, because the large spin
prevented direct accretion, and so instead the material fell into a circumstellar
disk. The disk is called the solar nebula .It is from the disk that the planets
somehow coalesced. Close to the forming Sun, where the temperatures were high
enough to vaporize most volatiles, the terrestrial planets formed by the
accumulation of silicon, iron, nickel and other planetary grains into progressively
larger bodies. Far from the Sun, where it stayed cool enough for various ices to
form, providing additional solid material for planet building, the gas giants were
born. Most of the remaining nebular material then dissipated, the thermonuclear
fusion of hydrogen into hillium started in the core of the Sun, and the remaining
solid debris was incorporated into larger bodies, thrown into highly eccentric
orbits, or incorporated, uncoalesced, in the asteroid and Kuiper belts. The result is
the planetary system more or less as we know it today. The growth of
planetesimals and formation of planets by accumulation of planetesimals have
been and is being under thorough investigation by many, some of these
investigations are those of Goldreich and Ward (1973), Greenburg, Hartman,
Chapman and Walker (1978), Harris (1978), etc.

3. Protoplanetary model

In the protoplanetary picture, the planets, as we know them today, have formed
from a set of identical gaseous giant protoplanets, identical in mass, radius and
chemical composition, which subsequently formed planets by contraction and
possibly mass loss. The most of the observed feature of the solar system is found
to be explainable in this scenario of protoplanetary formation (for example,
Meccrea and Williams 1965, Williams and Handbury 1974, Willams and Crampin
1971, Williams and Bhattacharjee 1979). The formation of protoplanets has thus

always been a topic of interest for the cosmogonists. Earlier attempts to produce



protoplanets by different mechanisms are those of McCrea (1960), Woolfson
(1964) and Cameron (1978).

McCrea (1960) put forward the protoplanet theory, which as a central feature,
explained both the slow rotation of the Sun and the formation of the planets. The
model begins with a dense interstellar cloud that is going to form a stellar cluster.
As it collapsed, it became turbulent and colliding streams of turbulent material
created dense regions, which moved haphazardly in the less dense background
material. These were termed floccules. When they collided they coalesced and
about 20 of them would have formed a stable aggregate according to Jeans’
criterion. Here and there in the cloud an aggregate would have formed of
sufficient mass to act as a substantial gravitational attracter and this would
eventually have become a star. Smaller aggregates would then have been captured

in orbit around the star to form a planetary system.

The most detailed version of Woolfson’s theory was published in 1964. In this
theory, he considers the encounter between the Sun and a protostar of mass
3x10* gm. The closest approach distance is taken to be 6.67x10" cm, comparable
to the dimensions of the planetary system. Woolfson takes the protostar to have a
mean radius of the order of 3x10"cm, so that its mean density and mean

temperature are both very low, namely 4x10™'"> gm cm™ and 30 K respectively. It
is assumed that the Sun moves past the star that is to be distorted. Woolfson
produced a computer model of such a distorted star, where its interior is
represented by a series of discrete point masses. The model considered is two
dimensional, and most of the mass is concentrated in one point at the centre. The
remainder of the star is represented by a network of points in the outer annular
region, and mutual gravitational attraction between these points is considered. In a
real star, pressure would keep such points apart. However, in the computer
simulation, he is able to follow the material after it has left the star. He finds that

this material can move in orbits with a perihelion distance ranging from 31



Astronomical Units to .05 Astronomical Units, depending on when ejection from
the distorted star occurs. He concludes that these limiting distances are in very
good agreement in the solar system. A study of the condensation of protoplanets
indicates that, while they all lose considerable quantities of material, stable core
should form which will not disrupt under solar tidal forces. However, the
collapsing planetary cores will lack an axis of symmetry and it is shown that as
they collapse a filament of mater should be left behind. Condensation in this
filament can give rise to satellite families and approximate calculations give
results consistent with the orbital characteristics of Jupiter’s satellites.

Cameron (1978) put forward the protoplanet theory, which involved a very
massive disk with mass equal to that of the Sun, with planets forming by direct
condensation as giant protoplanets with up to 30 times the mass of Jupiter. These
large bodies were then assumed to have been broken up by collisions and
subsequently the debris collected together again to form a few giant planets and a
large number of small bodies, the asteroids. This process would have required the
disposal of a considerable mass of material but Cameron did not deal with this
problem. One of the features of the model is that material falling onto the disk as
it is forming gives a great deal of turbulence and hence energy dissipation.
Cameron then called on a theoretical result from Lynden-Bell and Pringle (1974)
that if a rotating disk evolves in such a way that its energy of rotation decreases
while its angular momentum remains constant then this is achieved by material
close to the spin axis moving inwards while material further out moves outwards.
This is tantamount to an outward transmission of angular momentum. Another
feature of this model is that it does not give the meteoriticists what they want a hot
nebula. Cameron pointed out quite specifically that at no time, anywhere in the
solar nebula, anywhere outwards from the formation of Mercury, is the
temperature in the unperturbed solar nebula ever high enough to evaporate

completely the solid materials contained in interstellar grains.



With the discovery of extra solar planets the interest in the protoplanets has
rekindled. It is now widely accepted that many, perhaps most, young stars have
disks around them. Some of these stars are also found to have some gas giant in
orbit about the parent stars. About 10% of the stars surveyed have exoplanets, a
number that is certain to improve as observation improve. These gas giants have
mass comparable to Jupiter. Presumably these gas giants form from the
protostellar disks .The most widely accepted explanation for gas giant formation is
the core-accretion model (e.g., Mizuno 1980, Pollack 1984, Pollack et al. 1996).
In this scenario, solid material, including various ices, accumulates to form the
future core of a gas giant planet. The same process is responsible for the formation
of the terrestrial planets (e.g., Whetherill 1990). Once a trigger mass of about 10-
15 Earth masses is achieved, the core rapidly gathers nebular gas; Jupiter, for
example, contains at least 300 Earth masses of hydrogen and helium. The actual
accretion of the core may take anywhere from about 10 to 100 million years,
depending on model dependent parameters, particularly the local surface mass
density of the disk (e.g., Pollack et al. 1996). The core accretion scenario has the
great advantage of working. Other authors have pointed to some of the difficulties
with the model: gas giants like Jupiter may not even have appreciable cores (e.g.,
Guillot 1999); planetary migration, if it occurs, is a much faster phenomenon than
planet building by accretion, and so the core of a proto-Jupiter would fall into the
Sun before it could become massive enough to shut down migration, at least in a
non turbulent nebula (e.g., Nelson et al. 2000a); it is difficult to make objets more
massive than Jupiter (Boss 2002). However, the single greatest defect, and one
that is very difficult to fix, is that of timescale. Even as gas, dust and ice
accumulate to form the protoplanetary disk around the young protostar, the race
against the time has started. We know, based on observations of young stars (e.g.,
Briceno et al. 2001), that stars older than about 10 million years do not have
massive, optically thick circumpolar disks. Protoplanetary disk dissipate, and
although the timescale for the disappearance of the disks is not entirely certain, it

is on the order of or smaller than the timescale for core-accretion. Thus, by the



time a core reaches the trigger mass, the nebular gas may have disappeared. There
may be exposed cores of failed gas giants in the universe, but they are not among
the extrasolar planets so far detected and, at any rate, their small masses make
them invisible to detection by current spectroscopic methods. It is possible that
Uranus and Neptune are examples of such objects, although they might owe their
relatively small gaseous envelopes to photoevaporation from nearby, massive stars
(Boss 2002). In the gravitational instabilities model giants could form directly
from disk via gravitational instabilities. Formation of gas giants through instability
has recently been discussed by many authors (e.g., Boss 2000, 20001, 20002,
20003, Nelson et al. 2000, Rich et al. 2003). According to this model, the
protoplanetary disk becomes gravitationally unstable early in its development. The
manifestation of the gravitational instabilities is non-axisymmetric structure
having multiarmed spirals. As spiral features intensify, and perhaps interact with
each other, gaseous giant protoplanetas might form from the nebular material,
Since protoplanetary core formation would then occur by the sedimentation of
dust and ice into the growing gas spheres, the predicted core mass should
substantially lower than the needed in the core accretion model (Boss 2002). The
gravitational instability scenario is attractive, both aesthetically and scientifically.
But the question is, can the gravitational instability of the disk form stable
protoplanets? The answer to this question is not yet very clear. The formation of
protoplanets in gravitational instability mechanism is a twin problem. It is one
thing for a disk to break into spiral arms, another thing for the spirals to produce
Jupiter like planets. The disk evolution has been extensively investigated in recent
years by many authors (e.g., Tomley et al. 1994, Truelove et al. 1997, Nelson
2000, Pickett et al. 2003). 1t is found that the gravitational instability is very fast
and furious and the formation of stable protoplanet is model dependent (Pickett
and Lim 2004). Tidal, thermal or rotational stresses in the disk are often enough to
rip apart potential protoplanets before they are fully formed (Pickett et al. 2000a,
b). A recent smoothed particle hydrodynamics simulation of a protoplanetary disk

is found to produce long lasting protoplanetary clumps under highly idealized



conditions (Mayer et al. 2002). However, some of the latest simulations seem to
suggest that gravitational instabilities are a promising route to giant gaseous
protoplanets. Assuming that protoplanets do form via gravitational instability and
in course of evolution they reach a state of quasi-static equilibrium we attempt to

determine the structure of a protoplanet in the next section.



4. References

Boss, A. P., 2000. 4strophys. J., 545, L61.

Boss, A. P., 2001. Astrophys. J., 563, 367.

Boss, A. P., 2002. Astrophys. J., 576, 462,

Boss, A. P., 2003. 34th Annual Linear and Planetary Science conference abstract
10.1075.

Briceno, C.; Vivas, A. K.; Calvet, N. H. L.; Pacheco, R.; Herrera, D; Romero, L.:

Berlind, P.; Sanchez, G.; Snyder, J. A. and Andrew, P., 2001. Science, 291,

93.

Cameron, A. G. W., 1978. The origin of the solar system, P. 49, ed. Dermott, S. F.
Wiley, Chichester.

Descartes, R., 1644. Principia Philosphiae, Amsterdam.

Goldreich, P. and Ward, W. R, 1973. 4p. J,, 183, 1051,

Greenburg, R. G, Hartman, W. K., Chapman, C. R. and Walker, J. F., 1978.
Prtostars and planets, ed. Gehrels, T., University of Arizon Press.

Guillot, T.,1999. Pianet Space Sci., 47, 1183,

Harris, A. W., 1978, The Origin of the Solar System, ed. Dermott, S. F., Wiley, J.
& Sons Pub. Co..

Lynden-Bell, D. and Pringle, J. E., 1974. Mon. Not. R. Astr. Svc., 168, 603.

Mayer, L.; Quinn, T.; Wadsley, J. and Stadal, J., 2002, Science, 298, 1756.

Mccrea, W.H. and Williams, 1. P., 1965. Proc. Roy. Soc., A, 287, 143

McCrea, W. H., 1972. Proceedings Nice Symposium on the Origin of the Solar
System, p. 2.

McCrea, W. H., 1960. Proc. Roy. Soc., London, A, 256, 245.

Mizuno, H., 1980. Progr. Theor. Phy., 64, 544,

Nelson, A. F.; Benz, W. and Ruzmaikina, T. V., 2000. Astrophys. J., 529, 357.

Nelson, R. P.; Papaloizou, J. C. B.; Masset, F. and Kley, W., 2000a. MNRAS,
318, 18.

Pickett, B. K.; Cassen, P.; Durisen, R. H. and Link, R.,2000a. Astrophys. J., 529,
1034.



Pickett, B. K.; Durisen, R. H.; Cassen, P. and Mejia, A. C., 2000b. Astrophys. J.,
540, 1.95.

Pickett, B. K.; Mejia, A. C.; Durisen, R. H. Cassen, P.; Berry, D. K.and Link, R.
P., 20003. Astrophysical .J., 590, 1060,

Pickett, M. K. and Lim, 4. J., 2004. Astr. and Geophys., 45, 1.12.

Pollack, J. B., 1984. ARAA, 22, 389.

Pollack, J. B., 1996. ARAA, 22, 389.

Pollack, J. B.; Hubickyj, o.; Bodenheimer, p.; Lissauer, J. J.; Podolak, M. and
Greenzweig, Y., 1996. Icarus, 124, 62.

Rice, W. K. M.; Armitage, P. J.; Bate, M. R.and Bonnell, 1. A, 2003. MNRAS,
339, 1025.

Tomley, L.; Steiman-Cameron, T. Y. and Cassen, P., 1994, Ap. j., 422, 850.

Truelove, J. K.; Klein, R. I.; McKee, C. F. Holliman, J. H., 11; Howell, L H. and
Greenough, J. A., 1997. Astrophys. J., 489, L179,

Whetherill, G. W., 1990. Ann. Rev. Earth Planet Sci., 18, 205.

Williams, 1. P. and Bhattacharjee, S. K., 1979. Astrophys. Space Sci., 66, 319.

Williams, 1. P. and Cremin, A. W., 1969. MNRAS, 44, 359.

Williams, 1. P. and Handbury, M. 1., 1974. Astrophys. Space Sci., 30, 215.

Williams, 1. P. and Crampin, D. J., 1971. Mon. Not. R. Astr. Soc., 152, 261,

Woolfson, M. M., 1964, Proc. Roy. Soc., A, 282, 485.

Woolfson, M. M., 1969. Prog. Phys., 32, 135.



11

Chapter-2

Structure of a protoplanet: Numerical method

1. The Model of a protoplanet

By a protoplanet we mean a non-rotating nonmagnetic spherical gaseous object of
mass M =2x10% gm and radius R =3x10" cm, as suggested by several authors
(e.g., McCrea 1960, McCrea and Williams 1965). The object is assumed to be in a
steady state of quasi-static equilibrium in which ideal gas laws hold. We also
assume that there is no nuclear energy source in the protoplanet. The only source
of energy is gravitational. For heat transfer inside the protoplanet we consider two
possible cases of interest, namely, i) the convective case and ii) the conductive-
radiative case. The temperature gradient for convective heat flux is given by (e.g.,
Schwarzschild 1958)
(-5, -
where 7 is the temperature, P the pressure, y the ratio of specific heats, and r is
the usual radial distance.
For heat flux in the conductive-radiative case we follow Erika Bohm-Vitense
(1997) in which the formulation states that the total heat flux in which both

conduction and radiation play their role in transference of heat is given by

16 ar
Y= dm?| - —oT? — 2.2
Fr)=dm ( BKG dr) (22)
1 1 1
W1th K Kcm Kllc (

Rajshahi University Library
Documentation Section

Document No .. D~..2.4.45
Date... ”Q;‘”G‘)'ég“"" oo



12

_ 16

Here K_, is the radiative absorption coefficient and K, = 5 —oT* /77 is the

conductive absorption coefficient where o is the Stefan-Boltzmann constant and

7 is the thermal conductivity of the gas.

In a protoplanet, the source of energy being gravitational, some energy will be
released due to its slow contraction. Half of this released energy is used to raise
the internal temperature and the other half goes through radiation. However, the
system is in a steady state, so no heat will go into raising the temperature.
Therefore, all energy released will be available for energy flux. If we consider a
spherical surface of radius r inside a protoplanet of radius R, the amount of

energy available as the heat flux through the sphere of radius r is given by

_dE).

Fry=——

where E(r) is the total energy of the system of radius r.
Now,

E(r) = —AC—;A—/[;-(—Q, as is discussed in the next section,
where A is a constant of order unity whose value depends on the internal structure
of the system, G the universal gravitational constant and M (r) is the mass inside
radius 7.

Therefore,
GM* (1 ) dr

A——
ey = r dt

since M (#) remains constant during contraction.

GM? (r) dr dr dR
A— ; 24
o i r R di (2.4)
For uniform contraction,
i = 4, a constant (2.5)

dt
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dr
and ot

dR R’ 2.8}

Therefore, with the help of the equations (2.5) and (2.6), from equation (2.4), we

have

GM(r) r

F(ry=Au
(r)=A S

GM*(r)

r

C _
== , where Au=C. (2.7)

Here C is an unknown constant. We shall consider this constant as a free

parameter.

From equations (2.2) and (2.7), we get

16 _,dT C GM*(r)
3K dr 4zR r?

Substituting for % from equation (2.3), we get

16 .,dTr{ 1 1 C GM*(r)
o + = ;
K K 4zR

cm he

Substituting for X, we have

he s

. 2.8
3K dr 4Ry 2:8)

cm

[1 60T* (1) , 77] dr(r) __-GM*()

Now, K. =nK, (Erika 1997), where n is the number of particles per unit

cm
volume and K, is the absorption cross section of each particle. It is found that

K, is roughly equal to 2x107 cm” (Erika 1997). With this value K, becomes

2 107% p(r)
cm H

where H is the mass of a hydrogen atom.
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Substituting this value of K, in equation (2.8), we have the conductive-radiative

flux in the form

(2.9)

3107 p(r) B

8ol _T°(), \dI'r) __ C GM*()
dr 4z P

The structure of a protoplanet in its quasi-static equilibrium state is then given by

the following set of equations:

The equation of hydrostatic equilibrium,

dP(r) _ GM
dr r?

.
( )p(r). (2.10)
The equation of conservation of mass,

%:4717‘2[)(1')_ - (211)
dr

The equation of convective heat flux,

2 a-L|LEE (2.12)
d’..

The equation of conductive-radiative heat flux,

30 "y 20,
805:24 7 (:)HJdY(;):_ C GM-‘(f)‘ 2.13)
3x107% p(r) dr 4z
The gas law,
p:-k;‘.RT. (2.14)
uH

In the above equations 7'(r), P(r) and p(r) give the temperature, pressure and

the density respectively at distance » from the centre of the protoplanet.

Boundary conditions

Considering a sphere of infinitesimal radius r at the centre, we find that
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M(r) = %mﬂo,

since we may treat p sensibly constant in this sphere. Hence as r —0,

M(r)—0.
It is also clear that M (r) =M at the surface, i.e., at = R.

In addition, we may derive suitable conditions for pressure and temperature of a
protoplanet at its surface. The protoplanets having cold origin must have low
surface temperature. In the first approximation we assume that the surface

temperature is zero. So the approximate boundary conditions are

T=0,P=0atr=R,
M@i@)=M atr=R
with M@Ep)=M atr=0.

2. Integration of the equations

It is evident that the equations of structure can not be integrated analytically.
Therefore, we must rely on numerical method. However, integration can not be
started right from the surface. This complication arises from the fact that at the
boundary vanishing denominators occur in the basic differential equations (2.10),
(2.11), (2.12) and (2.13). Therefore, one has to develop the solution at the
boundary, use the development to compute the solution at point little distance

from the boundary, and start at this point step-by-step integration procedure.

Transformation

Let us replace the physical variables P(r), 7(r), M(r) and r by the non
dimensional variables p, f, ¢ and x respectively with the help of the following

transformations (Schwarzschild 1946):

GM*?

P(r)=
™) ArR*

P>



T =
®) kR
M@)=qgM
and F=xI.

JHOM y

)

Here the symbol u represents the mean molecular weight given by

lu:

SX T
4 2

bl
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where X, Yand Z denoting the abundances by weight of hydrogen, helium and

the heavy elements respectively. For standard solar composition u =~ .6.

Then from equation (2.10), we get

GM* ldp . gM M _ p
4nR* Rdx  x*R® 4R’
since from equation (2.14),
M p
r)=
P 47R* 1
GM?* dp _ GM* pq
o 47R° dx 4R’ 1x*
dp __ P4
o dx  x*
From equation (2.11), we get
Mdq _ 4 2R _MTE
R dx 4nR’ 1
dg _ px’
of dx {
Again from (2.12),
uHGM 1 dt _ - 1\ yHGM 4niR* GM'? 1dp
kR Rdx y kR GM? 4zR* R dx

(2.15)

(2.16)
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dt 1)1 4
or _=[1__J__p_ 2.17)
dx y ) pdx
e dp
Substituting for == from (2.15), we have
a_.[, 1|ie
dx y ) pix?
dt 1) g
or ==L 2.18
dx [ y]xz (2.18)
Also from (2.13), we get
8cH (,UHGMJ 5y ,uHGMﬂ:_C GM* pq*
3x107% IR z 47rR kR*  dx 167°R" 1x?
or 8cH [,UHGMJ & MH i M® pq’
3x107#\ AR t 47TR3 k dc 162k
or 80H ( uHGM f3 ar _ - Mk pq?
3107\ kR i 47rR3 dx 167 R uH  1x?
8cH ;LHGM dr _ M  pqg?
o Ix107# AR 47rR dx N6 R uH X
dt q°
or (a* + o) == -cy 2L (2.19)
dx X
] _ 8oH ;LHGM)S
where =310 R )
Mn
f= 4R’
J M
an = 1672 R uH

lnserting the parameters involved, namely, o =5.6686x 10~ erg cm 2 deg * sec,

H=167352x10gm, R=3x10%cm, u=

6, G=6675x10"dyne cm®gm 2,
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M =2x10"gm, 7=1.2684x10*erg cm™'s 'K~ and k =1.38062x 10" erg

molecule ' K™, we get
o = 3%5.6686x107 x1.67352x 107
3x107

6x1.67352x107% x6.675x10* x2x10® Y
1.38062x 107 x3x10"

X

=8.5759x10%,

5 2x10% x1.2684x 10

= =7.4768x107°
4x3.14159% (3x10")?

(2x10* ) x1.38062x 107

}/:
and 16x(3.14159) x (3x10?) x.6x1.67352x 10"
=1.4333x10",

To summarise, the non-dimensional equations of structure are given by

.04
de i’
dg _ px’
dx ¢’
at [ 1}(1
e I
dx ¥y ]x
4 dl »q
and (ct” + fp)—=-Cy—.
dx X

The boundary conditions being

1=0, p=0atx=1,

l at x=1

1l

i
with g=0 at x=0

(2.20)

(2.21)

(2.22)

(2.23)



i) Solution for the convective case

For this case we have to solve the equations (2.20), (2.21) and (2.22).

For mono atomic gas y = 5/3, then equation (2.22) reduces to

da _2gq

E— 5x%

If we introduce the variable & = d_ 1, then

X

d _dp df

dx d& dx

d, dp 1

dx dé x

dp 2 dp

—=—(&+1)"—.
or s (¢ )df

Hence from equation (2.15), we get
dp 2 Pq
—(E+D)Z=—(E+1
4Dt p =+ E

or — =

d___»p
e 1(i+&)
d “-%4
an g st

Integrating (2.28), we have

19

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)
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2
t=§§+d,
where d is an integrating constant,
When £ =0, then £ =0 and hence d =0.
Therefore, near the surface 7 ~ %f .
From (2.25) and (2.28), we get

d,

@ r
ap _ds _ t
a2
dé 5
dp 5p
or —_—=—, 2.29
d 2t (2.29)
Integrating (2.29), we get
5
p=el?,

where e is the constant for integration. We will consider this constant as a free

parameter.

We solve the equations (2.25), (2.26) and (2.27) with the help of the 4™ order

[XTRP

Runge-Kutta method using the boundary conditions given by p=ef*, g=1 and
¢ = 4& . In general it is found that these equations hold good accuracy from the

surface inwards for some values of £ near to zero.

If we put §=I—y—, we have
=¥

P _dp ds
dy d&dy
dp _dp 1

or — ==
dy dé(1-y)
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or @-z(]—)))zg[i

dé dy

Hence from equation (2.25), we have

-y p

dy ¢
dp _  pq
or —_——=—" 2.30
dy ((1-y)? 250
Similarly from (2.26) and (2.27), we get
dl 1-3)°
dq _ _pU=y) . (231)
dy !
and L : (2.32)
v (1-)
respectively.

Equations (2.30), (2.31) and (2.32) give the equations of structure in the

convective equilibrium in the new variable y . Itis evident thatas &£ -0, y - 0.

5
Therefore, the forms of the variables near the surface are p:[l-dry] e,
-

t='4—yand g=~1.
-y

If we start the integration inwards from a point very near to the surface, say,

y =.01, then at that point

. [_‘UL] = 4.0404 %107,
-y y=0l

:
p=|[21e|  =10377x10%¢ and g ~1.
=3
y=01

With these boundary conditions equations (2.30), (2.31) and (2.32) can be

integrated step by step inwards for given value of e. But ¢ is not known.
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Borrowing the idea from Osterbrock (1953) we have considered a number of trial
values of e, namely, e =45, 45.2, 45.4, 45.7 and 46. For these values of e we

have solved equations (2.30), (2.31) and (2.32) numerically by the 4th order
Runge-Kutta method.

1
Now, §=——1=L.Thisgives x=1-y.
X y-1

That means x can be calculated for given y. Therefore, solutions of equations

(2.30), (2.31) and (2.32) for different y can easily be converted to solutions for

different x. Some of these calculations for mass distribution are shown in the

figure 2.1.
9.00E-02
7.00E-02 -
225 Sores
5.00E-02 i
VR £=4%%geries3 ||
> e =45.7 Series4
i -e = 468~ Series5
@ & asliEeY
£ 3.00E-02 -
1.00E-02 - |
O -005 01 015 02 025 03
-1.00E-02
distance, x

Fig. 2.1: Mass distribution in a protoplanet for different values of e.
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The correct value of e will be for which the central boundary condition, ¢ =0 at
r=0 is satisfied. From the diagram the correct value of e is found to be 45.4.

The result of our calculation, 1.e., the distribution of thermodynamic variables for

different values of x for e = 45 4 s shown in table 2.1.

Table 2.1

The distribution of temperature, mass, density and pressure in a protoplanet for

e=454

Non Non Non Non
dimensional dimensional dimensional dimensional
distance pressure mass temperature

X P q {

.99 0 1 .0040

9 0188 3.86x107" .0443

8 0135 925%]10™" .0976

T 4625 8.09x107! 1597

.6 1.1384 6.47x%10™! 2289

5 2.2778 4.61x10™" 3021

4 3.8981 2.81x10™" 3746

3 5.8448 1.36%107" 4404

2 7.7147 451%x1072 4937

. 9.2576 6.58%x1073 .5294

.01 10.8939 6.57x107° 5650

.001 25.9424 6.50% 107 7998

it) Solution for the conductive-radiative case
For this case we have to solve the equations (2.15), (2.16) and (2.19).

| B :
Introducing the same variable £ = ——1 in equations (2.15) and (2.16), we have
x

@ _re (2.33)
dé 1’
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dq p
b P 2.34
dé ((1+&)°* (234)
respectively that we have already derived.
Similarly from (2.19), we get
dat _ . Pq
—=Cy——————(1+4¢). 2.35
e =Cr ) 235)

To obtain starting values for our variables for integrations from surface inwards,
we assume a series solution satisfying the boundary conditions, which are valid

for small values of & in the following form:

p=E"(a, +aé+a,tt +..), (2.36)
g=1 (2.37)
and t=E"(c, +e &+, 6P 1), (2.38)

Using (2.36), (2.37) and (2.38) in (2.33), we have

{aué"™" +a,(u+1)&" ta,+2)E" + o, }x
E¥(e, #GE 68" F oo Y=E"(a, +aé+aEl+.)

or

EE agu +a, (A 1)E+a, (W + 7)) }x

(c, +C,& +EET + Y= & (a, +aE +aEl + ) '

To exist a solution,

v=1 (2.39)
and then, uayc, = dyg
or uc, =1. (2.40)

Therefore, from (2.38) with the help of (2.39), we get
t=c, b+l +c,d +.. (2.41)

Again using (2.36), (2.37) and (2.41) in (2.35), we get
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{a(eed +c, & +¢,&% +. )" + BE" (a, + @, +a,E% +..)) x
(o +2¢, & +..)=Cy(1+&E)E" (a, +a,& +a,E +..)
a(c,d +¢,E +..) (¢, +2¢,& +..)
or =Cy(L+E)¢" (a, +a,é +a,E% + )
= P& (ay +aé +a, &t +..)(c, +2¢,E+..)
To exist a solution,
u=4, (2.42)
ac; = Cya, —ayc, 3, (2.43)
etc.

From (2.40) and (2.42), we get

1
¢, =—=.25, (2.44)
4
From (2.43), we get
ac’
o P — O S 2.45
’ C}’ _coﬁ ( )

The series (2.36) and (2.38) are convergent for small values of &

Therefore considering only first term, we have

p=at", and 1 =25,

4 = 8.5759x10° x (.25)°

¢ 1.4333x10°C-.25x7.4768x107°
_8.5759x10° x(25)°
T 14333x10°C

where

_ 5.84309x107
= :

We will solve equations (2.33), (2.34) and (2.35) with the help of the 4" order
Runge-Kutta method using the boundary conditions given by p=a,&*, ¢=1 and
t =.25£ . In general it is found that these equations hold good accuracy from the

surface inwards for some values of £ near to zero.
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Putting & = 4 1 in (2.33) and (2.34), we get
a__»q
e AP 2.46
dy (=) S
dg _ _p(-y)’°
and S = L 2.47
0 p (2.47)
respectively that we have already shown in (2.30).
Similarly from (2.35), we get
2
L P4 (2.48)

dy  (A-yy(a*+pp)

We have solved equations (2.46), (2.47) and (2.48) by the 4™ order Runge-Kutta

method to obtain the distribution of p, ¢ and . Since the values of ¢ are very

close to zero, so the values of y will be very close to zero. If we take y = .01, then

at that point

(= B2] J25x0 ) osavao,
l_y y:_Ol 1_01

g=1and p=

5.84309x107 (.01 j" _ 6.084x107"
C 1-.01 C '

But C[s @—) is not known. The initial value of the radius is R =3x10" cm and
dt

the present age of the planetary system is about 4.5 billion years. If we assume
that a protoplanet takes about billion years to reach its present state, then C ~ 107,
We consider a number of trial values of C around 10, The correct value of C
will be for which the extra boundary condition, i.e., ¢ > 0 as » — 0 is satisfied.
The values we have adapted are C =3.6x107, 3.65x10™,3.9x10™. We have

solved equations (2.46), (2.47) and (2.48) for these values of C' numerically again

by the 4" order Runge-Kutta method from the same starting point y =.01 inwards



27

for the distribution of masses. Eliminating y in terms of x we have obtained the

solutions of the equations (2.46), (2.47) and (2.48) for those values of C. The

results are shown graphically in figure 2.2.

3.00E-01

2.50E-01 -

2.00E-01

Cﬁ=.6003j9' _
r Series1

1.50E-01

q

¢=.000365

Series2

mass

1.00E-01 -

=.00036 ]
----- Series3

c=.000365 '
_J

5.00E-02 -

OB - sy
-0.1 0.1 0.3

-5.00E-02 -

distance,x

Fig. 2.2: mass distribution in protoplanet when it is

in conductive-radiative equilibrium.
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It is found that the correct value of C is 3.65x107*. The result of our calculation,
i.e., the distribution of thermodynamic variables for different values of x for

C =3.65%107" is shown in table 2.2.

Table 2.2

The distribution of temperature, mass, density and pressure in a protoplanet for

C=3.65x10"

Non Non Non Non
dimensional dimensional dimensional dimensional
distance pressure mass temperature

X P q {

9 .0002 999810~ 0281

8 .0057 0927x107! .0639

T .0459 9 852x10™ 1104

.6 2418 9513%x107! 1719

) 1.0334 8.770x 107! 2537

4 3.9078 7.408% 107! 3607

3 13.4780 5296x107" .4938

2 41.5973 2.680% 107" .6382

A 103.7624 5492%x1072 7440

.01 167.9955 7678x10™ 7661

3. Summary and discussion .

Following stellar evolutionary code we have determined the structure of a
protoplanet of given mass and radius by numerical method under approximate
zero boundary conditions. The protoplanet has been assumed to be a sphere of
solar composition, which is in a steady state of quasi-static equilibrium. 1t is also
assumed that the only source of energy in a protoplanet is gravitational. Regarding
the heat transference of heat inside the protoplanet we have considered two cases

of interest, the convective case and the conductive-radiative case. For the
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convective case the structure is found to be dependent on a parameter e.

However, the best solution satisfying the boundary conditions at both the centre
and the surface is obtained for ¢ = 45.4 . This value of ¢ is similar to the value of
L obtained by Osterbrock (1953) in determining structure of a convective star.
For the conductive-radiative case the solution depends on the rate of contraction.

The correct solution satisfying the boundary conditions at both ends is obtained

for C =3.65x10"" which implies a contraction time of about three billion years.
This is much in excess of the Helmholtz-Kelvin contraction time (e.g.,
Schwarzschild, 1958) for the Sun. This is expected because the protoplanet has
been assumed in a quasi-static state. However, in both cases the system possesses

unique solution. The distribution of the thermodynamic variables in both cases is

quite reasonable.
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Chapter-3

Structure of a protoplanet : Polytropic method

1. Polytropes

A quasi-statical change in which the specific heat remains constant is called a
polytropic change. Thus a polytropic change with specific heat ¢ is characterized

by the relation (e.g., Menzel et al. 1963)

daQ _
ﬁ_c' : 3.1

When ¢=0, g% =0, we have adiabatic change and when ¢ =, %% =00, we

have isothermal change. Thus a polytropic change is intermediate between an
adiabatic change and an isothermal change.

From the 1™ law of thermodynamics, we have
dQ =dU + PdV (3.2)

where dUU and dV are the changes in internal energy and in volume of a gas

respectively, P is the pressure and dQ is the amount of heat added.

Equation (3.2) can be written as

dU
dQ = —dT +PdV . 3.3
Q= (33)

But for a perfect gas, we have
PV =T, (3.4)

where N is the molar gas constant.
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dU
Also ar = (3.5)

Hence from equation (3.3) with the help of equations (3.4) and (3.5), we have

a’chudT+g:~/-T—dV_

But N=c,—c,.
Therefore,
T
dQ =c,dT +(c, —cv);dV. (3.6)
For a polytropic change, we have
dQ = cdT . 3.7)

Substituting the value of dQ from equation (3.7) in equation (3.6), we have

cdl =c, dT +(c, —cv)TiVK
or (c,—c)dT +(c, - cv)]"% =0
dl ¢,—-¢, dV
—_—t = 0
o T ¢ -cV
ar 1dv
—+——=V, 38
o T nV (3.8)
c,—c .
where n=— is called the polytropic index.
c,—¢,

Taking logarithm on both sides of equation (3.4), we get

log P +logV =logT +log .
Taking differentials on both sides, we get

ap v _dr
PV T
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or d_P+ﬂ Ldv

Py T , using (3.8)
dpr
or — +(+ l)f!.K =0.

In terms of density the above equation can be written as

— 1+ l dp.

n

Integrating, we get

I
P=Kp ",
where K is called polytropic constant.

This gives the density distribution in a polytrope.

2. Lane-Emden equation

We assume that a star is in hydrostatic equilibrium under its own gravitation.
Consider the equilibrium of an infinitesimal cylinder of mass &m, of unit cross-
section and thickness &, placed with its base normal to the radius vector at

distance r from the centre. The difference of pressure §p, acting on either face of
the cylinder, is balanced by the inward gravitational attraction of the mass M (r)

interior to r, so that

i GM@)pdr

],2

GM (r
or 9';7=———E%MQ, (3.9)

where G is the universal gravitational constant.

This is the hydrostatic equation.

Furthermore, if p(r) is the density at any distance r from the centre, then



M@= j.4nr2p(r)dr

or dM () = 4mr? p(r)dr .
Equation (3.9) can be written as

rdp

=_—GM(r
p dr CM(r)

2 dpP T
or %; = —G_([4m~2pdr , using (3.10)

d r*dpP
_or d_r(%;’;)z_MGrZP , using (3.11)

1 d ,r*dP
or ——(——) =-4aGo(r).
e dr(p = o(r)

This is the fundamental equation of equilibrium.

Now for a complete polytrope,
p(r)=p0",
where p, is the central density.

From the polytropic law,

E=Kp *
: 1
or P= K(pc@”)H;, using (3.13)
|+l n+l
or P=Kp, ¢
dP Ll .o
o B A(1+me" — .
or 0 Kp, n(1+n) o
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(3.10)

G.11)

(3.12)

- (3.13)

(3.14)

(3.15)

(3.16)

Now from equation (3.12) with the help of equations (3.13) and (3.16), we get
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2“4 el n d .
e dr( od K,oc » (1+n)0 -—-—)..—471(} 0
Toengot]1 4
1A K0, n ] de
or c 2
I . T P B =4 n
(n+DK 1] 1 d,,do
Or T az - — n
L 4aG "¢ |rtadr ¢ a’r) 7" 3.17)

(DK L
= —Afﬁpc" :l ) (3.18)

then from equation (3.17), we have

2 1 2 1 d@

- _9"

a’s’a cf( s 6)

or Z dﬁ[é —EJ_— ; (3.19)

This is Lane-Emden equation of index n.
From (3.13), we have

g =1 at £ =0 (centre). (3.20)
We rewrite equation (3.19) in the following form:

d*¢ . df
2—+ " = 3.21

5

We find that

a6 _ bt £=0. (3.22)
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Thus under the boundary conditions (3.20) and (3.22), the differential equation
(3.19) will posses a unique solution. This solution is denoted by @, and is given

by (e.g., Chandrasekhar 1939)

g, =1-Ler Lgs

= s o 5 3,23
6 120 89)

which satisfies both the boundary conditions at £=0.

3. Physical characteristic of a polytrope

1) Radius: The radius of a polytrope is given by

(DK 15 ‘2-_"
R—l: 47-[G j|pc "61’ (324)

where &, is the first zero of 8,. On the basis of numerical integration of (3.19)
we can say that when 0 <n <5, 8, monotonically decreases as & increases and
attains the zero value for a finite value & of £. In these cases the model has a
finite radius. When n>5, 6, attains zero value only when & — oo, so that these

polytropes have infinite radius. Evidently these polytropes, having infinite
extension, do not represent any stars. Therefore we shall consider the values of n

lying between 0 and 5.
i) Mass: The mass M(S) within the radius r=af is given by

aé ¢
M(E)= | 4w pdr = 4ma’p, [ £°67dE 2 p=p.0"
0 0

¢
or M(&)= ’47Tapcj.d%(§2 %g—)df, using (3.19)

, , dé
or M($)=4na Pc[—f EE} (3.25)
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or M :47{a3p [_ zgg_}
dg &=
» i % 3-n
or M =4z Q’—H)l o | - 248 i
_ l: ywe pn | —€& i , using (3.18).  (3.26)

1v) Central condensation: The mean density p(¢£) within & is given by

_p_(cf_):%. (3.27)

(@)
Substituting forM (¢) from (3.25), we get

5@?%&%- (3.28)

Therefore, the central condensation, which is the ratio of central density to mean

density
Pe | 8 1 _ (3.29)
" (@)
dé 6=
or P, =a”;,
_|_s 1
where a,= 3( 9
f §=6
M
g (3.30)
or P, =4, AR

v) The central pressure: From the polytropic law the central pressure is given

by
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1
P =Kp"n, (3.31)
Eliminating p_ between equations (3.24) and (3.26), we get the mass-radius
relation as
n-1

g g n-1
MR =(n+1)K nl

w5, (3.32)
G4m)
nl 46
where w, =& (d_(f)g"

Substituting K from (3.32) and p, from (3.30) in (3.31), we have

”——1 ﬂ y l-f-l
_GM”R"(47t)"[a 3M) n

£ = . -
- 4R
(n+Dw "
M?*G
or Pc :b"—R_“_’ (333)
1
where b, = I j (3.34)
dr(n+1)| — | e=4
z(n )(dﬁj £=4

vi) The central temperature: One of the equations governing the hydrostatic

equilibrium is
P= -ic—pT (no radiation pressure). (3.35)
u
From (3.35) and (3.14), we get
T=—‘—Jkif<py"- (3.36)

If u is constant throughout the model, the central temperature is given by



Substituting K from (3.31) in (3.37), we can write

Tc. —_ fﬂ_jji..
k p,
Using (3.30) and (3.33) in (3.38), we get

Tc :CH%;
R

_AmH b,
3k a,

where "

4, Application to protoplanets

Model equations

39

(3.37)

(3.38)

(3.39)

(3.40)

We consider a protoplanet whose mass and radius, as suggested by several authors

(e.g., McCrea 1960, McCrea and Williams 1965), are given by M =2x 10* gm

and R=3x10cm respectively. We assume that the protoplanet is in a state of

quasi-static equilibrium in which ideal gas laws hold. We also assume that the

polytropic law gives the density distribution in the protoplanet. The structure of

the protoplanet is then given by the following set of equations:

i) The equation of hydrostatic equilibrium,

dp,  GM,

dr r

re

i) The equation of conservation of mass,

17/%4 2
— L =4rrp,.
ar #

(3.41)

(3.42)
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iii) The equation of state,

9N
P="pT. (3.43)
. 1

iv) The equation of polytropic law,

1+1/n

P =Kp, . (3.44)

Here G is the universal gravitational constant, 9 the gas constant, x the mean
molecular weight, K the polytropié constant and » is the polytropic index while
P., T. and p, give the pressure, the temperature and the density at distance r
from the center. M, denotes the mass inside radius r. We now have four

equations in four unknowns. We can solve these equations by using the central

boundary conditions:

P=P,p=p,, T=T, and M, =0at r =0, where

3M

po=a, s | (3.45)
2
P, =b, %‘{4— (3.46)
and T =c, G—IAj—, (3.47)

the values of the constants a, and b, being available in the table (e.g.,

Chandrasekhar 1939). The values of ¢, are obtained by using equation (3.40).

Calculation and results

If we introduce the dimensionless variables

i/n
9 {i} (3.48)
pc



and X =—

then from equation (3.17), we get

n+DK 1,7 1 14 1 d6
{ 472G P | — ("R —=2) =
x"R° Rdx R odx
or Li xzd_'e_ 5 R2 9"
xde dx r+DK L,
~ G 7"
1 Ci 2d0 )
or — | x =-£°@Q"
x? x( dx) & 0%,

where £, is the Lane - Emden radius and is given by

R

-
(n+)K L_T
ek,

& =

Again for a complete polytrope

1

P, =Kp, .

From equations (3.14) and (3.52), we get

1
_]i ;l_ _ _p—)" .
of P, p.

From equations (3.36) and (3.37), we get

1
T_ ,P_)A
T. P

41

(3.49)

-g"

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)
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Therefore, from equations (3.13), (3.54) and (3.55), we have

n Py T

That means © straightway determines the distribution of p, P and 7'. So we have

x| —

to find @ by solving (3.50) for the distribution of p, P and T . Necessary

boundary conditions for solving (3.50) are

g1 22 et arp,
dx

Equation (3.50) as such cannot be integrated analytically for all values of ».
Resort has to be taken to numerical technique. But because of the singularity at
x =0 the integration cannot be started right form the center. However, near the

singular point, the equation has a series solution of the form (from equation
(3.23):

4
2512 +n§1 x*
6 120

g=1-=

S (3.57)

which converges for small x . With the help of this equation we can now start the

integration for a given value of #, from a point, very close to the center.
3
We take n= e Then &, =3.65375.

Therefore, using the equation (3.40), we get

4%3.14159%.6x1.67352x107™* 77014
% 3%1.38062x107' 5.99071
-3.9164x107.

Also with the prescribed values of M and R we find from equations (3.45),
(3.46) and (3.47),

c

3x2x10%
4%3.14159% (3x10"?)’

~1.05939x107,

p. =5.9907x
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6.675x10 x (2x10%)?2

P, =.77014x
(3x10™)*

=2538.6096

6.675x1078 x2x10%®
3x10"%

and T,=39164x10"° x

=174.2798
in c.g.s. units respectively. For some values of n, &, ¢,, p., P, and T, are

c

shown in table 3.1.

Table 3_.1

Some important quantities for the polytrope for some values of the polytropic

index n
o é ¢, P, P, T,
D 27528 | 3.1717x107° | 3.2469%107® 630.1249 | 141.1407
1 3.14159 | 3.6364x10” | 58178x10™® | 1294.4523 | 161.8198
1.5 | 3.65375 | 39164%10™° | 1.0594x1077 | 2538.6096 | 174.2798
3 | 6.89685 | 52133x10~° | 95816x10-" | 364262496 | 276.4919

Now, at some x =107 (say) the equation (3.57) gives

6, = 1-2.22498x107"* =.99999 and

o~ _ 107x(3.65375)"
('E)ou_ 3 -

-4.44996x 107, neglecting

x* and higher powers of x.

With these values as our initial conditions, we have solved equation (3.50)

, de
numerically by the fourth order Runge-Kutta method to determine @ and = for

different x . These are given in table 3.2.
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Table-3.2

Some important quantities for the polytrope for some values of x of the

polytropic index n=1.5

X A de ~x2d9
dx dx
1 9780 -.4362 0044
2 9144 ° -.8218 .0329
3 8166 -1.1166 .1005
4 .6449 -1.2988 2078
5 .5607 -1.3661 3415
6 4250 -1.3333 4800
i 2966 -1.2258 .6006
.8 1814 -1.0731 6868
9 .0825 -.9035 7318
1 0 -7421 7421

The corresponding values of p, P and T have also been calculated from

equation (3.56). There remains the problem of determining the mass distribution.

Now with the help of (3.48) and (3.49), equation (3.42) becomes

or

or

or

dA/[(x) ___4nx2R3p 0"
dx ‘

X

M (x) = 4R’ p, [ x*6"dx (3.58)

0

= sy (L4 2% ing (.59 3.59
M(x) = —4nR pc_([glz = 2 dx)civ,u5111g(.5) (3.59)

4R’ ,do
M (x) = élf‘f (x* D). (3.60)

Inserting the parameters involved, we get
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M (x) = x3:14159% (3x10%)° 105939 x 10”7
(3.65375)*

_,df
(="—2)

do
= 2.69247><103°(-.~c2Z . (3.61)

. do
Inserting ;—from the table (3.2) we have calculated M (x) for different x from

the relation (3.61). Table 3.3 gives the structure of a polytropic protoplanet for

n=—,
2

The distribution of temperature, mass, density and pressure of a protoplanet of

Table 3.3

polytropic index n=1.5

Non Temperature Mass Density Pressure
dimensional
distance
0.1 170.4456 1.18x10%* 1.025% 107" | 2401.0051
0.2 159.3614 8.85x10% | 9.264x107® | 2029.9593
0.3 142.3169 2.71x10% | 7.818x10°% 1529.9584
0.4 112.3930 560%x10%” | 6.137x10°%® 1021.8664
0.5 97.7187 920x10% | 4.448x107* 597.6960
0.6 74.0689 1.29%10% | 2.935%x10™™ 298.9647
0.7 51.6914 1.62x10%*° | 1.711x107® 121.5928
0.8 31.6144 1.85x10% | 8.183x107® 35,5658
0.9 14.3781 1.97x10* | 2.511x10™® 4.9648
1 0 2.00x10° | 4.98x107" 0

However, the appropriate value of » for a protoplanet is not known. We have

therefore, run the program for some different values of #, namely n=0.5, n=1,

n= ) and » =3 . These results are shown graphically in the diagrams 3.1-3.4.
2
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5. Discussion

We have determined the distribution of the thermodynamic variables in a

protoplanet by polytropic method assuming that the protoplanet is a polytrope of

. 3 .
index n=.5, 1, rl and 3. 1t is found that for all # the system possesses unique

solution. However for n=3 the protoplanet is found to be highly centrally
condensed as is expected. In this case the protoplanet has a large envelope, most
of the mass being concentrated in a small volume near the centre. This is a highly
unlikely situation. Because if the protoplanets formed out of the solar nebula
much before segregation of heavy elements on to the rotation plane might occur,
then the protoplanets could not become so much centrally condensed unless they
have contracted to planetary dimensions. But this is contrary to our hypothesis. On

the other hand if shock wave is the trigger for fragmentation of the nebula then the

. . . 3 .
initial protoplanets are likely be convective. For convection n = 5 It is seen from

the diagrams that, for n=%, the protoplanet has a small envelope, and the

distribution of the thermodynamic variables is quite reasonable. This is so for
n=1 also while for #=0.5, the distributions are flatter almost like a constant

density model .1t is therefore reasonable to conclude that the protoplanets having
3 .
density distribution given by n=1 and n= 5 are closer to reality. The structures

of such protoplanets have been shown in the diagrams.
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Chapter-4
Segregation of heavy elements in a protoplanet
1. Introduction

Any known raw material that could have featured in the formation of the planetary
system must have had a similar chemical composition to that of the Sun or to
normal interstellar material. The formation of the Earth and other terrestrial
planets therefore requires the removal of the greater part of the hydrogen and
helium from some body. There are two obvious alternatives, either the segregation
of the material can occur prior to the agglomeration into protoplanets (e.g.,
Mizuno 1980, Pollack 1984, Pollack et al.1996) or the agglomeration can occur
first followed by a segregation process which now occurs in a body that has
roughly the dimensions of a major planet (e.g., Boss 2000, 20001, 20002, 20003,
Nelson et al. 2000, Rich et al. 2003). According to this model, the protoplanetary
disk becomes gravitationally unstable. In the first instance segregation occurs
before agglomeration into protoplanets usually through the dust grains settling
onto the plane of the nebula, which then accumulate into protoplanets in this
plane. The obvious differences in composition between the planets occurs
primarily as the consequence of a temperature gradient away from the Sun
allowing only the non-volative material to aggregate near to the Sun, but allowing
the gases to aggregate further out. In the second type of theory these two
processes of segregation and accumulation occur in the reverse order. Large
protoplanets composed of both gas and dust and formed first, if necessary from an
accumulation of the captured discrete objects. Segregation followed by the
removal of the gaseous component is therefore necessary in order to produce an
object similar to the terrestrial plants. Advocates of this type of theory point out

that this leads to one very satisfactory point, it allows all the protoplanets to be
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identical to one another before segregation occurs, therefore requiring only one
type of mechanism for forming protoplanets. The obvious mechanism for
segregation is that the dust grains present in the protoplanets, being heavier than
the gas, will settle towards the centre of the protoplanet under the gravitational
field of the protoplanet. This segregation process was first investigated by McCrea
and Williams (1965) who concluded that normal interstellar dust grains could not
possibly settle to the centre in the time available for such a process. They showed
however that if grains adhered together on collision then the segregation timescale
became reasonably short. This process was also investigated, using numerical
techniques, by Williams and Crampin (1971) who concluded that the segregation
time found by McCrea and Williams were essentially correct. For simplicity, both
McCrea and Williams and Williams and Crampin assumed that the density
remained constant throughout the protoplanet. This is a considerable assumption
since virtually every known astronomical object is centrally condensed, this being
necessary in order to have hydrostatic support. Further, the three main effects
which influence the segregation rate, namely the gravitational field, the resistance
to the motion of the grain, and the rate of growth of the grain, are all functions of
the density. 1t is therefore far from clear that results obtained by either of the two
previous investigation give anything approximating to the correct answer for the
segregation time in a real globe. Williams and Handbury (1974) analyzed the
segregation problem for a centrally condensed protoplanet. They conclude that the
time fall of a grain differ only by a numerical factor of order unity from that of
McCrea and Williams (1965). It is, therefore, clear that in some way the increased
resistance is compensated by the increased gravitational field. Williams and
Handbury, however, considered an arbitrary chosen density model for central
condensation of the globe without any physics behind that. In this thesis we intend
to investigate the same problem without going into any density model. In chapter-
2 we have calculated the distribution of mass and density in the interior of a
protoplanet. Using these calculated values of mass and density we attempt to

determine the time of fall of a grain in a protoplanet.
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2. The model used

We consider a spherical globe of material of mass M and radius R. The globe in
reality is a protoplanet which either develops directly into a planet similar to
Jupiter or in which segregation takes place and in which only the core develops
into a terrestrial planet. The globe consists mainly of hydrogen and helium but
with a proportion 4 by weight of heavy elements, mostly in the form of grains.
Let a grain start moving from rest at the surface towards the centre through the
ambient gas. The gas offers resistance to the motion of the grains. Then the

equation of motion of the grain at depth x below the surface is given by the

simple form

d dx) _ GM(x)m,
Fdl

—|m =—"= -5 4.1
dt 8 (R—x)l res ( )

where m,, is the mass of the grain, G the gravitational constant, R the radius of

the protoplanet, F, . the resistive force and M (x) is the mass interior to a radius
R-x (ie., at depth x).

Different expressions for F,,, exist in the literateur for different cases. If the grain

is small, then the resistance is given by expression found in Baines and Williams
(1965) as

4 2 dx

F,.= —zrle 4.2)

where p is the density of the gas in the protoplanet, ' the mean thermal velocity
and 7, is the radius of the grain.

If the grain is larger, then the resistance is given by the usual Stokes’s formula

F

res

= 671, (4.3)

dx
S’
where 77 is the coefficient of kinematic viscosity.

In our calculation we assume two cases of interest:
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1) the grain mass is constant and
i) the grain mass is variable due to accretion.

Expressions (i) and (ii) will be considered for F._ in the respective cases. In

numerical work we shall adopt the values A =107, M =2x10* gm (total mass

of a protoplanet) and R =3x10" cm.

Calculation of segregation time

i) grain mass constant

For normal interstellar grains the radius is small, being of the order of ~ 107 cm.

Hence if the grain mass is constant, the equation (4.2) is applicable. The equation

of motion (4.1) then reduces to

d*x GM(X)I?Tg 4 2 dx
= ——mpWr, —. 4.4
s (R-x)* 3 PP 4)

Both experiment and solutions of simpler equations of motion tell us that in

general any body reaches a velocity close to its terminal velocity quickly and then

proceeds to travel at such a velocity. We shall assume that this is the case for the

falling grain under discussion. With this simplification, the equation of motion

(4.4) becomes

GM@Imy 4 e 2 =g
(R-x)* 3 d

dx 3GM (x)m,

dt AmpWr!(R-x)°

(4.5)

or

The mass of the grain m, is given by

4
n, =§ﬂ73,03, (4.6)
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where P 1s the mass density of the grain, which is assumed to be constant

throughout.

Again, the mean thermal velocity W is given by

8kT
W= ,’——
t 4.7

where H is the mass of a hydrogen atom, T the temperature and k& the

Boltzmann constant.

Substituting m, from (4.6) and W from (4.7) in equation (4.5), we get

4
e 3GM (x) x Emgpg

i SkT
dror (R—x) x| oL
m?( U

dx _(H)GM ()r,p,
d KT p(R-x)*

We introduce the dimensionless variables defined by

or

(4.8)

LHGM
kR

GM*?
47R*
M(x) = qM ’

T(x)= g,

P(x)= P

x=¢R
and t:IO'iT,
where the symbol s represents mean molecular weight of the standard

composition.
From the equation of state of an ideal gas, we have

_ M
Peqr
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In terms of dimensionless variables this becomes

GM?
VR o
% 4HGH

KR

p:

M p
or = Z as k=04 .
5 47R* @

Then from equation (4.8), we get

R d& _ VEH)G xgM xr, p,
10" dr LHGM M p .
+/(8k @ x “x(R-R
(84) % kR 4z’ 6 ( ¢)
dé 20°GR g6
or —==10"rp, 2
dr. wM - p(1-¢)
or .d_{ = a_q\/—Lz’ (49)
drpU-%)
2GR
where a=10"r,p, Y (4.10)
From (4.6), we get
b 3m,
*  Amp,
g (4.11)
or r, =13 i, ; _

With m, =2x10™"gmand p, =1 gm cm™ from (4.11), we get

-13
o 322X 5 6978 %107 om.
o Amp,

With the prescribed values of M and R with G = 6.675x107 dyne cm”gm™

i 4.10
and r, =3.6278x10 5 cm, we get from (4.10)
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a=10" x3.6278x107% x1x

sz(3141an’x6675x10*x3x10”
6x2x10%

=1.167x1077.

With these values the equation (4.9) becomes

gé:ll&th”—ﬂié—
dr p(l-¢&)?

or diy = L pA-4) dé&.
1.167x107°  ¢4/8

The time of fall of a grain of constant mass from the surface to the centre is given

by

v=[F(&, p,9,01¢, (4.12)

1 p(1=¢)’
0) = , 4.13)
where F(,p,q,0) 167 x10° (1«/? (

p, q and @ being functions of &.

The integral, as such, can not be evaluated analytically. Resort has to be taken to
numerical techniques. Again, because of the singularity the integration can not be
started right from the surface. However, from a point very near to the surface the
integration can easily be started. This is possible because p and € admit series
solutions near the point £=0, as mentioned before. To integrate (4.12)
numerically we had to know F(&,p,q,0) at each step. In chapter 2 we have
calculated the values of p, ¢ and @ for different values of & for two different

cases of interest, namely, (1) the protoplanet is in convective equilibrium and (ii)
the protoplanet is in conductive- radiative equilibrium. For the convective case

with the calculated values of p, q and @ at different & we have calculated

F(&, p,q,0) atthese &’s. All these data are shown in table 4.1.



Table 4.1: The values of p, ¢, § and F(&) for different values of &

in the convective model

s p q 6 F(¢,p,9,0)
0.01 0 1.00E+00 0.004 0.00E+00
0.02 0 1.00E+00 0.008 0.00E+00
0.03 0.001 9.99E-01 0.012 7.37E+06
0.039 0.002 9.99E-01 0.016 1.25E+07
0.049 0.003 9.98E-01 0.021 1.61E+07
0.059 0.004 9.96E-01 0.025 1.93E+07
0.069 0.007 9.95E-01 0.03 3.02E+07
0.079 0.009 9.93E-01 0.034 3.57E+07
0.088 0.013 9.90E-01 0.039 4. 74E+07
0.088 0.017 9.87E-01 0.043 5. 79E+07
0.108 0.022 9.84E-01 0.048 6.96E+07
0.118 0.028 9.80E-01 0.053 8.27E+07
0.128 0.035 = 9.76E-01 0.058 9.70E+07
0.137 0.044 9.71E-01 0.063 1.15E+08
0.147 0.053 9 .66E-01 0.068 1.31E+08
0.157 0.064 9.60E-01 0.074 1.49E+08
0.167 0.076 9 53E-01 0.079 1.69E+08
0.177 0.09 9. 47E-01 0.084 1.90E+08
0.186 0.106 9.39E-01 0.09 2.14E+08
0.196 0.123 9.31E-01 0.095 2.37E+08
0206 0.142 9 23E-01 0.101 2.62E+08
0.216 0.163 9.14E-01 0.107 2.87E+08
0.226 0.187 9.05E-01 0.113 3.16E+08
0.235 0.212 8.95E-01 0.119 3.44E+08
0245 0.24 8.84E-01 0.125 3.75E+08
0.255 0.271 8.73E-01 0.131 4. 08E+08
0.265 0.304 8.62E-01 0.137 4.41E+08
0275 034 8.50E-01 0.143 4.76E+08
0.284 0379  8.37E-01 0.15 5.14E+08
0294 0421  8.24E-01 0.156 5.52E+08
0.304 0.466  8.11E-01 0.163 5.91E+08
0314 0515  7.97E-01 0.169 6.34E+08
0324 0567  7.83E-01 0.176 6.76E+08
0.333 0623  7.68E-01 0.183 7.23E+08
0.343 0.683 7.53E-01 0.19 7.70E+08
0.353 0.747  7.38E-01 0.196 8.20E+08
0.363 0814  7.22E-01 0.203 8.70E+08
0.373 0.886  7.06E-01 0.21 9.23E+08
0382 0962  6.89E-01 0.217 9.81E+08

0.392 1.043 6.73E-01 0.225 1.03E+09



0.402
0.412
0.422
0.431
0.441
0.451
0.461
0.471
0.48
0.49
0.5
0.51
0.52
0.529
0.539
0.549
0.559
0.568
0.578
0.588
0.598
0.608
0.618
0.627
0.637
0.647
0.657
0.667
0.676
0.686
0.696
0.706
0.716
0.725
0.735
0.745
0.755
0.765
0.774
0.784
0.794
0.804
0.814
0.823
0.833
0.843

1.128
1.218
1.313
1.412
1.517
1.626
1.741
1.86
1.985
2.115
2.251
2.392
2.537
2.689
2.845
3.007
3.173
3.345
3.522
3.704
3.89
4.081
4.277
4.477
4.681
4.889
5.101
5.317
5.536
5.758
5.984
6.213
6.444
6.678
6.915
7.154
7.395
7.639
7.885
8.134
8.386
8.642
8.902
9.167
9.438
9.717

q

6.56E-01
6.39E-01
6.21E-01
6.04E-01
5.86E-01
5.68E-01
5.50E-01
5.32E-01
5.14E-01
4.96E-01
4.78E-01
4.60E-01
4.42E-01
4.24E-01
4.06E-01
3.89E-01
3.71E-01
3.54E-01
3.37E-01
3.21E-01
3.04E-01
2.88E-01
2.72E-01
2.57E-01
2.42E-01
2.28E-01
2.14E-01
2.00E-01
1.87E-01
1.74E-01
1.62E-01
1.50E-01
1.39E-01
1.28E-01
1.18E-01
1.08E-01
9.89E-02
9.03E-02
8.23E-02
7.47E-02
6.77E-02
6.12E-02
5.563E-02
4,98E-02
4.48E-02
4.03E-02

0

0.232
0.239
0.246
0.253
0.261
0.268
0.276
0.283
0.29
0.298
0.305
0.313
0.32
0.328
0.335
0.343
0.35
0.358
0.365
0.373
0.38
0.388
0.395
0.402
0.409
0.417
0.424
0.431
0.438
0.445
0.452
0.458
0.465
0.472
0.478
0.485
0.492
0.498
0.504
0.511
0.517
0.523
0.529
0.536
0.542
0.548

F(&,p,q,0)

1.09E+09
1.16E+09
1.22E+09
1.29E+09
1.36E+09
1.43E+09
1.50E+09
1.58E+09
1.66E+09
1.74E+09
1.83E+09
1.91E+09
2.00E+09
2.11E+09
2.20E+09
2.30E+09
2.41E+09
2.51E+09
2.64E+09
2.75E+09
2.87E+09
3.00E+09
3.13E+09
3.28E+09
3.42E+09
3.55E+09
3.69E+09
3.85E+09
4.02E+09
4 19E+09
4, 35E+09
4 53E+09
4 70E+09
4 92E+09
5.10E+09
5.30E+09
5.48E+09
5.67E+09
5.91E+09
6.09E+09
6.26E+09
6.43E+09
6.56E+09
6.75E+09
6.84E+09
6.88E+09
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0.853
0.863
0.872
0.882
0.892
0.902
0.912
0.921
0.931
0.941
0.951
0.961
0.97
0.98
0.99

10.007
10.309
10.63
10.974
11.351
11.772
12.255
12.829
13.541
14.47
15.77
17.773
21.331
29.469
63.197

q

3.62E-02
3.26E-02
2.94E-02
2.66E-02
2.42E-02
2.22E-02
2.05E-02
1.91E-02
1.79E-02
1.70E-02
1.64E-02
1.59E-02
1.56E-02
1.54E-02
1.63E-02

0

0.555
0.561
0.568
0.576
0.583
0.692
0.602
0.613
0.626
0.643
0.665
0.698
0.751
0.855
1.161

F(,p.q,0)

6.87E+09
6.79E+09
6.74E+09
6.49E+09
6.14E+09
5.67E+09
5.11E+09
4 59E+09
3.90E+08
3.17E+09
2.43E+09
1.74E+09
1.22E+09
7.09E+08
3.28E+08
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In our previous estimation we have taken £=.01 as the starting point and

integrated the equations of structure down to the point &=.99. Because of

singularity we have excluded the points £ =0 and £ =1. In the present case we

also take the same step length within the same limit. Equation (4.12) then

becomes

r= [F(E,p,q,06¢,

Now by Simpson’s one- third rule

fydx = g[(yo +y,)+40n s t o) Y200 + Yo+ V)l

where the step length /2=

at x,, y, the value of y at x, +h, ¥, the value of y at x, +2h, etc.

|

In our calculation

T =

X, —

(Fo + Fgs yH4x (Fop + Fogo
E 2x(Fo + Fog +

(4.14)

% , n the number of divisions, y, the value of y
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xn B xO

where /1 is the step length defined by /= , where x, =.99, x, =.01 and

h

n =100 and hence h= 99— 01

=9.8x107*, Taking F (¢, p,¢,0) from table 4.1

and #=9.8x10", we have

9.8x%x107°
=" x[(0+3.28x10%*)+

4% (0+1.25%x107 +....+7.09x10%)
+2x(7.37%10° +1.61x107 +....+1.00x10”)]

e 9.8x107 (

or 3.28x10° +4.78x10" +2.38x10")

9.8x107
_28x10 16328 %10"

=2.34x10%.
Since  is units of 107, this is, therefore, the time required to fall to the centre

1 =234x10° x107
=72.34%x10" seconds

~2.34x10° years.

In the conductive-radiative case using the same step length we find as in chapter 2

the values of p, g and & and hence of F(&,p,q,0) at different &. All these

values are given in table 4.2.



Table 4.2: The values of p, ¢, 8 and (&) for different values of &

&

01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1
0.1
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19

0.2
0.21
0.22
0.23
0.24
0.25
0.26
0.26
0.27
0.28
0.29

0.3
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39

in the conductive-radiative model

p

2.00E-08
2E-07
1.2E-06
3.9E-06
1.02E-05
2.22E-05
4.31E-05
0.000077
0.000129
0.000205
0.000314
0.000464
0.000667
0.000837
0.001288
0.001741
0.002317
0.003042
0.003945
0.005061
0.006431
0.0081
0.010123
0.012559
0.01548
0.018966
0.023109
0.028015
0.033804
0.040613
0.048597
0.057936
0.068829
0.081508
0.096231
0.113295
0.133034
0.155826
0.182102
0.212345

q

1.00E+00
1.00E+00
1.00E+00
1.00E+00
1.00E+00
1.00E+00
1.00E+00
1.00E+00
1.00E+00
1.00E+Q0
1.00E+00
1.00E+00
1.00E+00
9.99E-01
9.99E-01
9.99E-01
9.99E-01
9.98E-01
9.98E-01
9.98E-01
9.97E-01
9.96E-01
9.96E-01
9.95E-01
9.94E-01
9.93E-01
9.91E-01
9.90E-01
9.88E-01
9.87E-01
9.85E-01
9.83E-01
9.80E-01
9.77E-01
9.75E-01
9.71E-01
9.68E-01
9.64E-01
9.60E-01
9.56E-01

0

003
0.0051
0.0074
0.01
0.0127
0.0154
0.0183
0.0212
0.0241
0.0272
0.0303
0.0335
0.0367
0.0401
0.0435
0.047
0.0506
0.0543
0.0581
0.062
0.0659
0.07
0.0742
0.0785
0.083
0.0875
0.0922
0.097
0.1019
0.107
0.1122
0.1175
0.123
0.1287
0.1345
0.1405
0.1466
0.1529
0.1594
0.1661

F(, p,q,0)

3.07+02
2.30E+03
1.12E+04
3.08E+04
7.00E+04
1.35E+05
2.36E+05
3.84E+05
5.89E+05
8.64E+05
1.22E+06
1.68E+06
2.26E+06
2.97E+06
3.83E+06
4 86E+06
6.09E+06
7.53E+06
9.22E+06
1.12E+07
1.34E+07
1.60E+07
1.90E+07
2.23E+07
2. 61E+07
3.03E+07
3.60E+07
4 15E+07
4, 76E+07
5.44E+07
B8.19E+07
7.02E+07
7.93E+07
8.94E+07
1.00E+08
1.13E+08
1.26E+08
1.41E+08
1.56E+08
1.74E+08
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0.4
0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49

0.5
0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59

0.6
0.61
0.62
0.63
0.64
0.65
0.66
0.67
0.68
0.69

0.7
0.71
0.72
0.73
0.74
0.75
0.75
0.76
0.77
0.78
0.79

0.8
0.81
0.82
0.83
0.84

p

0.247105
0.287001
0.332733
0.385091
0.444966
0.513361
0.591408
0.680379
0.781708
0.897005
1.028079
1.176962
1.345934
1.53755
1.75467
2.000498
2.27861
2.593003
2.948134
3.348963
3.801011
4.310407
4.883944
5.529139
6.254291
7.068542
7.981935
9.005472
10.15117
11.43209
12.8624
14.45736
16.23334
18.20776
20.39906
22.82655
25.51025
28.47064
31.72831
35.30356
39.21579
43.4828
48.11995
53.13906
58.54718
64.34514

q

9.51E-01
9.46E-01
9.40E-01
9.34E-01
9.28E-01
9.21E-01
9.13E-01
9.05E-01
8.97E-01
8.88E-01
8.78E-01
8.68E-01
8.57E-01
8.45E-01
8.33E-01
8.20E-01
8.07E-01
7.93E-01
7.78E-01
7.62E-01
7.45E-01
7.28E-01
7.10E-01
6.92E-01
6.72E-01
6.52E-01
6.31E-01
6.10E-01
5.87E-01
5.64E-01
5.41E-01
5.17E-01
4.92E-01
4.67E-01
4.41E-01
4.16E-01
3.89E-01
3.63E-01
3.37E-01
3.11E-01
2.85E-01
2.59E-01
2.34E-01
2.09E-01
1.86E-01
1.63E-01

)

0.173
0.1801
0.1873
0.1948
0.2026
0.2104
0.2185
0.2269
0.2355
0.2443
0.2534
0.2627
0.2723
0.2821
0.2922
0.3025
0.3131

0.324
0.3351
0.3465
0.3582
0.3701
0.3823
0.3948
0.4075
0.4204
0.4336

0.447
0.4607
0.4745
0.4884
0.5026
0.5168
0.5312
0.5456

0.56
0.5745
0.5888
0.6031
0.6172

0.631
0.6446
0.6578
0.6705
0.6827
0.6944

F(&,p,q.0)

1.93E+08
2.13E+08
2.36E+08
2.60E+08
2.86E+08
3.15E+08
3.46E+08
3.80E+08
4.16E+08
4 56E+08
4 98E+08
5.45E+408
5.94E+08
6.48E+08
7.06E+08
7.70E+08
8.37E+08
9.11E+08
9.90E+08
1.08E+09
1.17E+09
1.27E+09
1.38E+09
1.49E+09
1.62E+09
1.76E+09
1.90E+09
2.06E+09
2.23E+09
2.42E+09
2.63E+09
2.84E+09
3.08E+09
3.34E+09
3.63E+09
3.93E+09
4.63E+09
5.04E+09
5.50E+09
6.00E+09
6.55E+09
7.16E+09
7.85E+09
8.61E+09
9.46E+09
1.04E+10
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5 p 1 6 F(&,p,q,0)

0.85 70.52585 1.41E-01 0.7053 1.15E+10
086  77.07253 1.20E-01 0.7155 1.27E+10
0.87 83.95674 1.01E-01 0.7249 1.41E+10
0.88 91.1365 8.33E-02 0.7334 1.58E+10
0.88 98.5545 6.72E-02 0.7409 1.77E+10
0.9 106.1369 5.29E-02 0.7474 1.98E+10
0.91 113.7932 4.04E-02 0.7529 2.25E+10
0.92 121.4173 2.98E-02 0.7574 2.57E+10
0.93 128.8925 2.10E-02 0.761 2.96E+10
0.94 136.101  1.40E-02 0.7636 3.42E+10
0.95 142.9456 8.79E-03 0.7656 3.98E+10
0.96 149.3979 5.11E-03 0.7669 4.58E+10
0.97 155.6336 2.78E-03 0.7679 4.93E+10
0.98 162.5544 1.53E-03 0.7686 4.15E+10
0.99 175.5677 1.04E-03 0.7702 1.64E+10

With these values of F(&, p,q,68) from the table 4.2 we can calculate the falling

time by integrating equation (4.14) again by Simpson’s one-third rule. Proceeding

in the usual manner we have the falling time to be given by

9.8x107
T=———[(Fy +Fg) +ax(Fgy + Fgp.nnnn. +Fg)+
2 % F g5 Py Fovsnssonmins +Fg)]
-3
T=Mx[(3.07x102+1.64x10'°
3
or +4x(2.30%x10% +3.08x10* +....+4.15x10")
+2x(1.12x10* +7x10% +...+ 4.93x10")]
-3
o r= 283197 (1 64510 +1.03x10™ +4.84x10")
3
-3
_ 98107 ) s304x 10"
3
=4.9993 x10°.

Therefore, the estimated time is

[ =4.9993x10° x10’
— 4.9993x 10" seconds

~ 4.9x10° years.
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This gives the time required to fall from the surface to the centre of the

protoplanet, which is in conductive-radiative equilibrium state.
ii) grain mass variable

When the grain mass is variable then the equation of motion (4.1) takes the form

o o L& dm, GM(x)m, P .-
n — = _F _
4 d{2 d[ dt (R _ x)z res ( )

If the grain is growing by accretion, soon it will reach a size where the resistance
to the motion given by Stokes’ formula (4.3) will be applicable.
Then the equation of motion (4.15) becomes

d’x dedm, GM(@x)m, g

X
n +— = —onnr, —. 4.16
A d a | (R-xn? e (.16)

Again with the assumption that for most of the time the grain moves with terminal

velocity the equation of motion (4.16) becomes

dx dm, _ GM (x)n;g — dx ‘ @17
de dt (R-x)

Now, the mass of the grower grain at any time is given by
4
my =5l O Py (4.18)

where p, is the density of the grain, which is assumed to be constant throughout.
g

Substituting 1, from equation (4.18) in equation (4.17), we get

dx
ar}p, — 6mir, o

ded(4 s )z GM (x) 4
didi\3 ¢ %) (R-x)*3

4 M@@)r? ;
4 p ﬁffi_r_g_ = 7Gp; M) S — 6, &
or 78 gt odt 3 R-x) dl




65

or 4p &y _4Gp, M), 6n d y 15
Ydidt 3 (R-x) T di’ (4.19)

The falling grain is postulated to accrete all other grains that collide with it. 1f we
assume that the travel speed of the grain is greater than the mean thermal speed of

the grains, then the appropriate equation giving the rate of growth of the grain has
been found by Baines and Williams (1965) as

where A is the proportion by weight of the grains adhering to the growing grain.

ar, dx
—= = fp— 420
o dt hr dt’ (4.20)
i
where A= . (4.21)
4p,
The radius of the growing grain is given by
rg=ryt+p .[pdx, (4.22)
.01
where 7, is the initial radius of the grain.
. ar, : .
Substituting y from (4.20) in equation (4.19), we get
dx dx  AGp, M(X)r, 6 dx
Ap PP = T T I dl
dt di 3 (R-x)" r, drl
2
ap. ol ) = 40Py ___M(x)rgz _Snax (4.23)
o | PP\ ar 3 (R-x)? 1, di

where 7, is given by (4.22).

Let us replace the physical variables x, ¢ and M(x) by the non dimensional

variables &, 7 and ¢ respectively with the help of the following transformations



66
121071,
M (x)=qM ,

x=¢R

At Yo =Rry,

where R, is the non dimensional radius of the grain and is given by

"“ﬂh ) Pac. (4.24)

Then equation (4.23) with p = 4M

R3

M p R* (d&Y
4:02/6 3 g 1nl4 ['—
47R* 9 10" | dr

_4Gp, gMR, 6y R d¢
T3 (R-¢R)® R, 10" dv

P becomes
0

M p[d:fj
4nR G
> 4><10“‘Gpg gMR,  6x10"yR d&
3R? (1-&)F R, dr
p(deY  4x10"2G qR,  6x107ayR® 1 d¢
o E[’J{J TR (-8 feM R dr
or E(dgj 4T BLE’E, (4.25)
6\ dv =& R, dr
4x10" G (4.26)
where = 38R
d B:M— (4'27)
an ﬂng

Equation (4.25) can also be written as
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dr) R ar e
B BY R
= [—] vaal s
or ag __ R W& 6 (1-8)
v 22 7P
o 6
B
*R— —\] ‘i4 P 1R
or as _ _ S_Rs 9(1 &)?
dr 2£_ 2£
Z 6
R3
8B wdd—E
or d_gz— 59 3+ (1 6) 4
dt 2R, p 2R, p :

Taking A =107 and p, =1gm cm™, we have from (4.21)

107
4x]

B = =2.5%107,

With the prescribed values of A and R we have from (4.26)

4><10'4 x3.14159%6.675x10™
3x2. 5%107° x3x10"

=3.728x107%.

With 77 = 5.0886 %10~ dyne sec cm 3 where 77 is taken at 100°K’, we have from

(4.27)

6x107 %x3.14159x5. 0886x107 x(3x10'2)
2.5%x107 3w 1x2x10™

=17.2652.

y d¢ be negati
Since 4 and B are positive, and 9; can never be negative, so we take



68

3
- 9\}324‘4,4 R _ma
a& ___BY (1-£)7 0
dr 2R.p 2R p :

(4.28)

It can be shown that for 0 < £ <1, the right hand side of (4.28) is always positive.
Equation (4.28) can be written as

3

0B a4 s P4 _pg
dg

or - (1-¢)* ¢
dt 2R, p
R3
Bo \/1 + 4‘3 . .
or 5 _ 5 U8’ 8 (4.29)
dr 2R, p ' '
Inserting the values of 4 and B in equation (4.29), we get
R, _1rq
17.26520| [1+5.0026x107° —&— 2% —1
o (1-¢7 6
dr 2R, p '
Thus the time of fall of the grain from the surface to the centre is given by
.99
=[G 9,00, (4.30)
01
2R p
where G(&,p,9,0) = 2 (4.31)

R, pq |
17.26520 1+5.0026%x107° —2— =]
\H (1-¢)

Here again this integral can be evaluated for both the convective and conductive-
radiative cases. In the convective case, G(&,p, q,0) have been calculated at

different depth using the corresponding values of p, ¢ and @ from chapter 2.

These values together with the calculated values of the non-dimensional radius of

the grain K, are shown in table 4.3.



Table 4.3: The values of p, ¢ , g, R, and G(¢) for different values of &

3

0.01
0.02
0.03
0.039
0.049
0.059
0.069
0.079
0.088
0.088
0.108
0.118
0.128
0.137
0.147
0.157
0.167
0.177
0.186
0.196
0.206
0.216
0.226
0.235
0.245
0.255
0.265
0.275
0.284
0.294
0.304
0.314
0.324
0.333
0.343

0.353 1.000001
0.363 1.000001
' 0.373 1.000001

5]

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

in the convective model

G(¢,p,q,6)

20619.72
20205.27
19814.85
19448.87
19065.3
18703.95
18326.95
17971.49
17675.4
17342.48
17011.8
16700.42
16390.8
16136.9
15846.72
15574.11
15318.53
15047.72
14845.86
14607.83
14370.23
14148.54
13927.09
13757.14
13566.61
13376.11
13185.62
13010.44
12886.56
12726.84
12567.19
1242317
12279.38
12188.14
12061.04
11934.49
11824.86
11716.21

3

0.51
0.52
0.529
0.539
0.5649
0.559
0.569
0.578
0.588
0.598
0.608
0.618
0.627
0.637
0.647
0.657
0.667
0.676
0.686
0.696
0.706
0.716
0.725
0.735
0.745
0.755
0.765
0.774
0.784
0.794
0.804
0.814
0.823
0.833
0.843
0.853
0.863
0.872

R,

1.000002
1.000002
1.000002
1.000002
1.000002
1.000002
1,000002
1.000002
1.000002
1.000002
1.000003
1.000003
1.000003
1.000003
1.000003
1.000003
1.000003
1.000003
1.000004
1.000004
1.000004
1.000004
1.000004
1.000004
1.000004
1.000005
1.000005
1.000005
1.000005
1,000005
1.000005
1,000005
1,000006
1,000006
1.000006
1.000006
1.000006
1.000007

G, p.9,9)

10983.28
10968.86
11009.81
11014.96
11003.06
11031.04
11042.5
11120.23
11127.85
11186.73
11228.11
11289.83
11392.43
11458.62
11501.42
11569.48
11668.09
11813.85
11924.9
12005.46
12126.96
12211.6
12433.87
12524.56
12670.99
12772.95
12870.78
13060.95
13144.56
13191.89
13210.66
13166.42
13239.94
13101.71
12872.81
12563.55
12117.68
11729.47
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0.382
0.392
0.402
0.412
0.422
0.431
0.441
0.451
0.461
0.471
0.48
0.49
0.5

R

4

1.000001
1.000001
1.000001
1.000001
1.000001
1.000001
1.000001
1.000001
1.000001
1.000001
1.000001
1.000001
1.000001

G, p,q,6)

11663.18
115657.23
11469.99
11384.69
11319.69
11278.75
11220.24
11165.43
11114.68
11068.41
11069.6
11034.43
11005.43

g

0.882
0.892
0.802
0.912
0.921
0.931
0.941
0.951
0.961
0.97
0.98
0.99

R

¥

1.000007
1.000007
1.000007
1.000007
1.000008
1.000008
1.000009
1.000009
1.00001
1.000011
1.000014
1.000022

G, p.q,6)

11018.05
10145.61
9107.051
7953.107
6880.279
5601.861
4314.305
3086.817
2019.794
1221.838
556.1725
151.6861

With these values of G(&, p,¢,8) from the table 4.3 and with the same step length

we can calculate the falling time by integrating equation (4.30) again by

Simpson’s one-third rule. Now by Simpson’s one- third rule

(G.Ol +G.99)+
r=2|4x (G +Gagrerenn +Gg )+
I (G gy + G F corvinresmses g
_9.8x107

T x[(20619.72+151.6861) +

or 4 (20205.27 +19448.87 +....+ 556.1725)
+2x(19814.85+19065.3 +....+1221.838)]

-3

& o= 2807 (557714061 + 24698 +1211238)
| 3

9.8x107

3

x3.6959 x 10°

=1.2073x10%.

Therefore, the estimated time is

/=12073x10% x10’



n

=1.2073x10" seconds

~1.2x10% years.

In the conductive-radiative case using the same step length we find the values of

p, q and 6 and hence of G(&, p,q,0) at different &. All these values are given
in table 4.4,

Table 4.4: The values of p, g, 8, R, and G(£) for different values of &

in the conductive-radiative model

g R, G¢,p9,0. ¢ R, G, p.q0)
0.01 1 4539.03 051  1.000001 1281.746
0.02 1  4447.795 052 1.000001 1245.646
003 1  4357.487 0529 1.000001 1215.725
0039 1 4277.001 0539 1.000001 1181.604
0.049 1  4188.453 0543 1.000001 1148.727
005 1  4100.831 0559 1.000002 1116.777
0060 1 4014135 0569 1.000002 1085867
0079 1 3928758 0578 1.000002 1061.128
0088 1 385235 0588 1.000002 1032338
0098 1  3768.332 0598 1.000003 1004.525
0408 1 8554982 0608 1.000003 977.8032
0118 1  6433.957 0618 1.000003 952.0313
0128 1 3522.893 0627 1.000004 932.324
0137 1 3451239 0637 1.000004 908.5827
0147 1 3372395 0647 1.000004 8859344
0157 1 3294.447 0657 1.000005 864.1235
o167 1 3217.717 0667 1.000005 8434524
0177 1 3141869 0676 1000006 8289173
0186 1 3074761 0686 1000007 810.4143
0ise 1  3001.183 0696 1.000007 792.7785
0208 1 2928753 0706 1000008 776.226
0516 1 2857.167 0716 1000008 760.8604
0506 1 2786.984 0725  1.00001 7519312
0938 1 2724739 0735 1.000011 7387788
Ohe 1 2656641 0745 1000012 726.9345
Do 1 2589602 0755 1000013 7160613
282 4 2523856 0765 1000015 7087526
0.275 1 5459.123 0.774 1.000016 704.7111
0.284 1 5402.00 0784 1.000018 698.2657



g

0.294
0.304
0.314
0.324
0.333
0.343
0.353
0.363
0.373
0.382
0.392
0.402
0.412
0.422
0.431
0.441
0.451
0.461
0.471
0.48
0.49
0.5

&g
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1.000001
1.000001
1.000001
1.000001

G, p,9.0

2339.726
2278.305
2218.267
2159.345
2107.827
2051.189
1995.782
1941.367
1888.313
1842.335
1791.414
1741.729
1693.235
1646.066
1605.465
1560.406

- 1516.374

1473.66
1432.054
1396.882
1357.323
1319.059

g

0.794
0.804
0.814
0.823
0.833
0.843
0.853
0.863
0.872
0.882
0.892
0.902
0.912
0.921
0.931
0.941
0,261
0.961
081
0.98
.99

RS

1.00002

1.000022
1.000024
1.000026
1.000029
1.000031
1.000034
1.000037
1.000041
1.000044
1.000048
1.000051
1.000055
1.000059
1.000063
1.000067
1.000071
1.000075
1.000079
1.000084
1.000091

With these values of G(&, p,¢,0) from the table 4.4 we can

time by integrating equation (4.30) again by Simpson’s

Simpson’s one-third rule

or

or

h
7==|4x(Gp + G

T

9.8x107

(G,Ol i G.99 ) *+

X [(4539.03 + 445.2047) +

G(s, 1. 4,0)

693.373
690.2424
688.8824

697.079
700.7937
706.9047
715.9604

728.682
757.1105
780.5391
810.2084
847.5837
894.7639
978.3426
1057.559
1155.869
1270.266
1380.373
1493.679
1199.438
445.2047

Ax (4447.795+4188.453 + ... +1199.438)
1 2% (4357.487 +4100.453 +....+1493.679)]

9.8x107°

TE————

3

(4984.2347 +373845.3 +185645.9)
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calculate the falling

one-third rule. By
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_9.8x107?

X5.6447x10°

=1.8439x10°%,

Therefore, the estimated time is

1 =1.8439%10% x107
=1.8439x10" seconds

~1.8x10%years.

3. Summary and conclusion

We have investigated the segregation time for falling grains inside a protoplanet.
This is important in forming terrestrial planets from a set of gaseous protoplanets.
We have calculated the time for two possible cases of interest, namely, (i) the
mass of the grain remains constant during falling, and (ii) the grain mass increases
dﬁe to its adherence with other grains. In our calculations we have not assumed
any density model for solving the problem. We have, rather, determined the
density distribution, and hence the mass distribution inside the protoplanet and
calculated the time of fall by solving the equation of motion of grain falling under

gravity. It is found that for the constant mass model the time of fall of a grain from

the surface to the centre is quite long, being of the order of 10° years for, whether
the protoplanet is in convective equilibrium or in conductive-radiative
equilibrium. However, if the grain grows in size by accreting more grains that the
time of fall is reasonably short in both cases of convective and conductive-
radiative. This time is of the order of a few thousand years. 1t should be noted that
McCrea and Williams (1965) arrived at similar conclusion by assuming the
protoplanet to be of uniform density. Their calculated time in this case of variable
grain mass is of the order of 10° years. In reality the grains are likely to adhere to
each other and grow in size. We therefore conclude that a solid core in a
protoplanet could form in a reasonable short period of time on astronomical time

scale due to gravitational settling. Removal of gaseous envelopes from such

protoplanets might produce terrestrial type planets.
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Chapter-5

Orbital evolution of protoplanets with mass loss

1. Introduction

One known feature of the solar system is the planetary distance. The distances are

approximately given by the Titius-Bode law, ie, r=04+0.3x2", where

n=—oc for Mercury, 0 for Venus, 1 for the Earth 2 for Mars, 4 for Jupiter, 5

for Saturn, 6 for Uranus, 7 for Neptune and 8 for Pluto, and 7 is in units of 10"
cm. Observed distances of the planets do not differ much from the Titius-Bode
values. One noticeable feature is that the distance of the outer planets increases
with decreasing mass while for the inner planets, smaller the mass, closer is it to
the Sun. As far as we know there exists no physical explanation for this
distribution of planetary distances. In this thesis we attempt to investigate the
problem within the context of the protoplanetary model. of planetary formation. In
a protoplanetary model mass loss is the mechanism resbonsible for the variations.
of the planets that we observe today (e.g., McCrea and Williams 1965, Williams
and Handbury 1974, Williams and Crampin 1971, Bhattacharjee and Williams
1978, Donnison and Williams 1977). In this investigation we address ourselves to
the question,  can mass loss from a set of identical protoplanets account for the

observed distribution of the planetary distance?’

2. The rate o'f mass loss

Mass loss in a protoplanet is a complex problem. It can occur as a consequence of
many effects such as solar heating, solar wind bombardment, tidal effects, energy

released in core formation etc. No explicit expression for the rate of mass loss
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from a protoplanet is available in the literateur. Bhattacharjee and Williams
(1979) and Bhattacharjee (1983) estimated a mass loss rate from the kinetic theory
approach in explaining the distribution of spin angular momentum of the planets
and have shown that the amount of angular momentum taken away by the mass

lost from a set of identical protoplanets is in excellent accord with observation. In

our calculation we adopt this mass loss rate.

For a nonrotating atmosphere whose molecules each of mass m,, obey a

Maxwellian velocity distribution related to a temperature T, the probability that a
molecule has a velocity component in the range u, to u, +du, in a prescribed
direction is

1 1

B2 exp(—fu )duy,

where B = n;"r, k being Boltzmann’s constant.
2k1

Then the mass escaping through an area do in time d¢ is given by
3

3
—nmyBm ? HI w, exp(—fus +ve +wg V)t dvodw,dsdi

2 24,2
Wy ZO,Hg +Vg Wy 2V,

where n is the number of surface molecules and u,, v,, W, are the components
of velocity in three mutually perpendicular directions. w, being in the outward
normal direction and v, the escape velocity. For a rotating atmosphere where ds
has a velocity V' the rate of mass loss in a fixed frame is given by (e.g,

Bhattacharjee 1983)

= _nm ﬁ%ﬂ'% 3”” W, exp[—-ﬂ(uz +(-V)? +w?)dudvdwds , (5.1)

2.2
wzﬂ,uz-i-\'z*'w 2ve

dam
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where u, v and w are now the velocity components in the frame fixed in space.

For mass loss to occur v <1. Evaluation of the integral in (5.1) under this

condition gives (Bhattacharjee 1980)

dm
o -R*p W, (5.2)

where W is the mean thermal velocity of the surface molecules. Ignoring any

small variation in the temperature and density of the surface molecules, and

eliminating R in terms of m we have from (5.2)

2
dm

;1— = ’—C/ng, . (53)

where ¢ is an unknown constant. If we assume that a protoplanet took about a

million years to lose most of its mass then ¢ is found to be ~107. ¢ can be taken
as a free parameter. However, since we are interested in determining the effect of
mass loss on the protoplanetary orbits, exact value of ¢ is not needed. We take the

mass loss rate as

2

i =_107m?, (5.4)

di

3. Equation of motion and its solution

i) Two body problem:

Let M. be the mass of the Sun with centre at the origin and m denote the mass
©

of a protoplanet at any time which moves in the gravitational field of the Sun
suffering mass loss. We assume that both the Sun and protoplanets spherical and
that mass loss is spherically symmetric so that this mass can always be considered
concentrated at the centre. SO Newton’s theory is applicable. Since m <<Mgy, m

can be considered to move about the centre of the Sun. If r be the distance of the
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protoplanet at any time ¢ relative to the Sun, then the equation of motion is given
by

d, - GmMg
dt(mi)_ A (5.5)

where G is the gravitational constant.

Equation (5.5) can be written as

mr+rms= _Gm[B\Je r. (5.6)
e A 4 Id -

If the coordinates of m be (x,y), then the equation (5.6) can be written in

component form as

d’x dmde _ GmMgx

M—t——= =
dt dt dt r
mdzy dmdy __GmMey ’
di*  dt dt r?
.S
where r= (xz +)’2)2

d:x 1ldmde GMgx

di* m dt dt I

o 4 _ (5.7)
d*y 1 dm_céE:_GM@y
di* mdt dt r
Now,
‘1’2:—10"3"1% .
dl

~107%1 = j‘m—%dm ,

iy

or

where n1, the initial mass of the protoplanet.

o %:Im
or —10 pd[m

ny

1 1 l -3
or ’né "._.'InOA'_:_;'XIO [.
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If we take m, =10% gm, then

m% =10" ——-l—xlO"Jt
3

1 3
or mz(lO'” —gxlo_st) :
Therefore,
ddm_ 102 m%
m dt 23 3
[10‘“—10 zj
3
-3 3 2
or i@:_ lG % 1010_10 {
m df 10—3 3 3
10% ———zJ
1 dm i
or ——-———:—___._.__.j._.
m dt 10,0-_10 ,
1 dm 3
or —— = 5.8
m df 3x10% —¢ (2:5)
I 1 dm . .
Substituting ——— from equation (5.8) in (5.7), we get
m dt
3dx )
d*x _ di GMgx
dir 3x10% =1 (2 4 2V
IR (5.9)
gz
dy  Ta ___GMey
di*  3x10% -t (xzﬂ,z)%‘

To determine the orbit we have to solve (5.9) with known initial conditions. It

should be noted that to avoid tidal disruption a protoplanet must have formed

outside the Roche limit defined by

1

ap | *?

R:R = J >
e[pe
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where Rq and pg are the radius and density of the Sun and @ a dimensionless

parameter whose numerical values lie between 1 and 3 (e.g., Williams 1977).

With appropriate values of the parameters this distance is R = 434%10"%cm. So

the initial distance of the protoplanet must be> 4.34x10" cm. As initial conditions
we take

x=10"cm,
y=0,
x=0

y =1.2x10° cmm/sec.

where the initial angular velocity @, has been taken arbitrarily as

1.6789x 1078 sec ™ which is less than the present day angular velocity of Mars.
Now, we replace the variables x, y and ¢ by the dimensionless variables X', ¥

and 7 respectively by the following set of relations:

x=10"X
y:1014Y , (5.10)
t=10"¢

where ¢ has been measured in units of thousand years.

Then (5.9) becomes

10[4
0% @*X X7t ax  10“GMeX
WL 3
10 de?  3x10%-10"7 dr 107 (X% +7?) \
10]4
0% gy CX1o°  ar __10"GMeY
e (2 - 3
10® d*  3x10% -10"7 d7 10%(X? +77)? |




or

or
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d’X  3x10°  dx GM X

de®  3x10” —10°7 dr ]
102 (X? +¥?)7 |

d’Y _ 3x10°  ar GMY

dr’  3x10° -10°7 dr 3
107 (X*+7*%)? |

d’X 3 dX

dr:  3000-7 dr

Y 3 dY

dr® 3000—7 dr

Introducing the parameters involved, we get

To solve the eq

as follows:

X 3

GMoX ]

3

10?(X? +Y?)?
>
GM oY

dX 6.675x107" x1.989x10% X

2
2

102(X*+7?)

/

dr®  3000—7 dt

dY 3

dy

3
102(X* +7?%)?
6.675%x107% x1.989x10*Y

di®  3000—7 dr

X 3

dx _ 13276.575X )

3
107(X?+77%)? )

472 3000-¢ dr

sy 3 dr
dr*>  3000-7 dr

dr

3
(X +7?)?
13276.575Y

3

(X*+YH? |

L. (5.11)

uations in (5.11), we break these equations into the four equations

dX

——:U,

dr

day

Z=v,

dr

(5.12)

(5.13)
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du _ 3u 13276525 |
dr 3000-7 7 & (5.14)
' (X412
anid v 3v 13276.525 :
dr  3000-7 54 - (5.13)
(X*+1?)?

The initial conditions now reduce to

at =0,
X =]
Y =0,

- : 5.16
u=X=0, (318)
v=Y =120

We have solved equations (5.12), (5.13), (5.14) and (5.15) using (5.16) by the 4"
order Runge-Kutta method. The solution is shown in figure 5.1. It is immediately

evident from the figure that as mass loss proceeds the orbital distance increases.
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Fig. 5.1: Orbital distance of a protoplanet as it loses mass in a two body system

A is the initial position of the protoplanet, S is the position of the Sun
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ii) Three body problem:

The effect of mass loss in a two body problem is to push the planets outward. This
is not in conformity with the observed distributions of the planetary distances in
the inner part of the solar system. The dynamics of the solar system is, of course, a
complicated many body problem. However, since all the protoplanets suffered
mass loss excepting Jupiter the dynamics can be treated as a three body problem.

Let My be the mass of the Sun and M, the mass of Jupiter which revolves about

m (X, y)

M (X1, Y1)

Me

Fig. 5.2: Motion of a protoplanet with mass loss

in the field of the Sun and Jupiter.

the Sun with constant angular velocity @ . Let a third body of smaller mass m,
which suffers mass loss, moves in a mutual gravitational field of the Sun and

Say’ ’ . *

Jupiter. We also assume that the motion of the body is 1n the same plane as that of

Jupiter. Then the orbit of the body can be determined by using the Lagrangian
upiter.

technique. Let at any time the coordinates of m be (x,y) with respect to a fixed
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frame of reference with origin at the centre of the Sun, and (x,,y,) be the

coordinates of Jupiter. If a is the constant distance between M o and M, then

X, = acoswt}

Y, =asinwt (5.17)
Then the kinetic energy T is given by
1 2 2
T:Em(x +y) (5.18)
and the mutual potential energy V is given by (e.g., Blanco et al 1961) -
Vz_[GM9n1+GMJ111+GM®MJJ’ (5.19)
% ¥ a
]_ -
where o=+ %) (5.20)
1
and = ((Jc—xl)2 +(y—y,)2)2. (5.21)
We know that Lagrangian is given by
M
I = T+G[M9m +Mjm +M@ j]_
I r, a
Substituting for 7 and ¥ from (5.18) and (5.19) respectively, we get
| o a® Mgm M;m MQMJJ
= G + + . (5.22)
_217r(x +y )+ ( . 2 e

i 1 iven b
Now, Lagrange’s equations of motions are gl y

i[g'L"]‘QL‘= 0 (5.23)
dt ox ox
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i d| oL | oL
Z P (5.24)

Now, from (5.22), we get

oL _ nx
" (5.29)
aL :
and —=0m| - E
™ Gn{ Mox(x*+y*) 2 -M, {(x—xl)2 +(y~y,)2}(x—xl)J
or Qé =—-Gm Mox + M, (x=x)
3 3
(x* +y*)? {(X—xl)z 4‘(,"_}’1)2}E
oL Mox M,(x-x,)
or —==Gr e+ l
o 7{ i r ] £
Similarly,
oL .
L =y (5.27)
oy
. oL _ —Gm[M?y # = (y}— )’1)] ' 3:28)
o . 7

Now using (5.25) and (5.26) in equation (5.23), we get

_ M,(x-
g-(m Xx)+ Gm{fo +—Z (xz x‘)} =
fi h

1 I

) _
d’x dxggz_Jer{MexJ,MJ(xa "1)}=o

or m—+t— .3 .
di*  dt di h &1

2 y P, S
dix 1 dmdx G{Mex+y_i_(%_ﬂ}=0. (5.29)

T
or
di2 mod dt h 13 4



87

Similarly, using (5.27) and (5.28) in equatiocr: (5.24), we get

2
d y+idn7d_y+G{M®y+MJ()zhyl)}:

di*  m dt d 73 i 0. (5.30)
1 2
Now using the mass loss rate (5.4), i.e.,
d)
d;;l =107 m?
1 dm 3x107?
we have APPSRk A
m dt L ? (5.31)
3mg —1071
where m, is the initial mass of the body.
.. ldm : .
Substituting —— from equation (5.31) in (5.29), we get
3 dx
d’x dt e Mex+MJ(x—xl) i
dr? L r v B
- 3x10Pm} ¢ : .
3 dx :
d? dt Mgx M,(x-x
or df: Bl —G{ r? + J(rS 1)}. (5.32)
C o 3x10°m} —t : 2
- . ldm : (530
Similarly, substituting —— from equation (5.31) in (5.30), we get
m d
3 Y
R ST
| 3x10°m —1
Now, using (5.20) and (5.21) in (5.32), we get
de ‘
P > — /
il_zi=__,__d£1__——G[M§t+M’(x fcosw)jl, (5.34)
dt® " Iy

3x10°m —1
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1
where no=(x" +y?)2 (5.35)
and = { - 2 ' 5
r, = (X —acoswrl)? +(y-asin a)t)z}l. (5.36)
Similarly, using (5.20) and (5.21) in (5.33), we get
3V
d? dr — asi
3): dt] _G M@y+MJ(y asin wl) . (5.37)
dt 5y = r v '
3x10°mé -t - 2

Case (i): The body is within A and M,

When the protoplanet is an interior one we consider the following initial

conditions:

x=5x10%cm, x=0at¢=0.

y=0 y=15x10%cm/sec at/=0.

J

Now we replace the variables x, y and 7 by the non dimensional variables X,

Y and 7 by the relations given below:

x=5x10"X
y=5x10"Y
1=10"7

Then from equation (5.34), we get

35x10'3g)£ L
5x10% d*X 10° dr  _g 5x10° Mo X

1 3

107 dr’ 3x10°md =107 1.25%x10% (X? +77%)?

M, {5%x10" X —acos(10"” wr)}

_G . ) ;
({5 10" X —acos(10° wr)}? +{5x10°Y —asin(10" wr)}z)z
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L X
, i
d )2(: ar & 10 Mo X
T iny :
~3x10 'mg -t | 1.25x10% (X 1+ 1?)2
or |
20 a
. 10 1\/[J{X~5><1013 cos(10"° wr)}
3
1.25><10‘“(X~ a P 1)} +{¥ - —L_sin(10" :
i { 5x10" cos07@r)}" + {¥ 5x10" sin10% )y’ ]
39X
d2X= dr _ Gmy X
dTZ 1 21 3
3107 i3 7 1.25x10 (X 177);
o 1 (5.39)
Gm, a (
X cos(10"w
1.25x1021{ 5x10" ( o)

3 |

a 2

a
X - cos(10"° wr)}? +{¥ -
L[{ 5x10% ( Oy 5x1

e sin(lO'owr)}ZJ

Similarly, from (5.37), we get

LdY
dvy _ dr _ Gm Y
" I 1.25%10% :
107 m — (X? +7%)?
— Gn, * (5.39)
"2

a . 10
-2 (Y -———sin(l0 wr
1.25x10“{ 5x10" ( )}

- 3

. i :
({X— ??_y?cos(lo%r)f +{ -
X

sin(10" wr 2)
5x10" ( )} ]

Now M, =1.8994x10* gmand a= 7.7791x 10" cm. The mean orbital velocity

of Jupiter is y=1306x10°cm sec”'. Therefore the mean angular velocity of
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v _ 1306x10°

————=1.6789% 10_8 sec" .

Jupiter is @W=—=
a 7.7791x10"

Now taking
Mg =1.989x10% gmand m, =10 gm, we get

! !
3x107m3 =3x107" x(10%) =3000,

a _ 7.7791x10"
5x10" 5x10%

=1.5558,

It is to be noted that m1, has been taken as 10*® <M, so that it does not disturbed

the motion of M.

Now from equation (5.38), we get

3dX
a*X  Tdr

dr?  3000-1

6.675%107% x1.989 x10% X
1.25%x10%

3

(X*+7?)?

6.675%x107 x1.8994 x10%
1.25%x10%

P,

where
(X -1.5558¢0s¢)

P= ;
(X ~15558cosg)* + (¥ ~1.5558sin 9 )

with q=10"wr =167.897.

d*X 77 1.0621x10°X

= 3
or dr? 3000-7 (Xz +Y2)5 (5.40)

101.42796{X 15558 cos(167.897))
1 ; 3 |
(. ~1.5558c0s(167.897))" +{¥ —1.5558sin(l 67.89))? )7

Similarly, from equation (5.39), we get



91

3 &
d’Y _ "4y 1.0621x10°Y
dr®*  3000-7 3

(X +7%)2
101.42796(F —1.55585in(167.897)}
-
(x ~1.555805(167.897))” +{¥ —1.55585in(167.897)}* )2

(5.41)

To solve the equations (5.40) and (5.41), we break these equations into the four

equations as follows:

g{‘_“ 5.42
dr . ( . )
dY '

=¥, 5.43
7 (5.43)

du  3u 1.0621x10°X

dr 3000- 3
T T (X2+Y'Z)2 (5 44)
101.42796{X —1.5558 cos(167.897)}
- 3
(o ~ 15558 cos(167.89¢)} +{¥ ~1.5558sin(167.897))* )2
and
dv 3y 1.0621x10° Y
a __3v 3
dr  3000-7 ]
i (X* +17)? (5.45)
101.42796{Y —1.55585in(167.897))
- 3
(X ~1.5558 cos(167.897)}" +{ ~1.5558 sin(167.897)}° )2
=0
X= 6
5.4
with conditions Y=0 " (5.46)
u=X=0
y=Y =300

/
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We have solved i
— equations (5.42), (5.43), (5.44) and (5.45) using (5 46) with th
p e 4" order Runge-Kutta method. The solution is shown in fi 5.2 e
1gure 5.2. The

diagram [
g clearly shows that the protoplanet spirals in as it loses mass

Fig. 5.3: Orbital distance of an interior protoplanet as it loses mass

in a three body system . A is the interior position of the protoplanet

and S is the position of the Sun.
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Case (ii): The body is an exterior protoplanet

In this case the initial conditions are taken as:

x=10"cm, x=0at =0

y=0, y=11x10°cm/sec at¢=0.

Now we replace the variables x, y and ¢ by the non dimensional variables X,

Y and ¢ by the relations given below

X = 10141Y
y=10"Y
1=10"7

Then from equation (5.34), we get

31014 aX
10" d*X 10° dr G 10" M X
10®° de? = 1 - 3
3x10°md -10°¢ 10% (X2 +1?)?
. M, {10" X - acos(10" w7)}

3

({10“‘X—acos(l()"’cur)}2 +{10'4Y—asin(101°wr)}2)3

3dX
d*X dr  GMg X
2 1 C10% 3
W 107 - (X747’
or
a 10
{X ——cos(10" wz )}

_GM, 10" :
22 bk
10 a 10 2 a . 10 2 |2
({X—Wcos(lo w7)} +{Y~—W4—sm(10 a)r)})

Inserting the parameters involved, we get
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;X

) —

d’X _ dr _6.675x107° x1.989x10% X

2 . o 1 10% 3
3x1077(10%°)2 —¢ (X*+r?)z | (5.47)
6.675%107° x1.8994 x 10*°
- 1022 2,
7.7791x10"
{X——l);l—cosq}
where p= ,10
3

7.7791x 10"
({X————>-<-—--ﬂcosq}2 +{¥ -

10]4

7.7791x10" . ZJE
————————sin g}

10|4

{X -.77791cos q}

32

(X - 77791 cos g} +{¥ - .77791sin ¢}* :
where g=10"wr =10 x1.6789x10™" =167.89

Therefore, from equation (5.47), we get

;X
d*X _ “gp 13277x10°X
dz? 30007

3
(X*+Y?)? (5.48)
12.6785{X —.77791cos(167.897)}

—
(X = 77791c0s(167.895))? +{¥ —.777915in(167.397)} )

Similarly from equation (5.37), we get

;4
d*Y g7 13277x10'Y
dr® 3000-7

3
(X +Y?)? (5.49)
12.6785{Y —.777915in(167.897)}

((x -.77791cos(167.897))? +{¥ = 777915in(167.897))° )

3
2

To solve the equations (5.48) and (5.49), we break these equations into the four

equations as follows:
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dx
= s (5.50)
dy _
a5 v, (5.51)
du _ 3u 13277x10°X
dv  646.33 - 2
L ary .5
_ 12.6785{X ~.77791cos(167.897)} '
: 3
(X - 77791c0s(167.897)}* + (¥ — 777915in(167.897))? )2
and
dv 3y 13277x10%Y
dr 64633 - g
T T (X2+Y2)2 (5 53)
12.6785{Y —.77791sin(167.897)}
_ -
({X - .'7"7791(‘,05(167.891)}2 +{Y - .'If7791s'm(167.897)}2)E
With conditions
=0
X =
Y =0 L (5.54)
u=X=0
y= Y = IIO‘

We have solved equations (5.50), (5.51), (5.52) and (5.53) using conditions (5.54)

with the help of the 4™ order Runge-Kutta method. The solution is shown in figure

5.4.
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<
(&0
1

Fig. 5.4: Orbital distance of an outer protoplanet as it loses mass in
a three body system . A is the initial position of the protoplanet and

S the position of the Sun.
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It is evident from the diagram that the protoplanet is pushed outward as it loses
mass. Figures 5.2 and 5.3 clearly indicate that the orbital distance of a

protoplanet losing mass is in qualitative agreement with observation, the orbit

‘being always elliptical.

Comparison with observation

With our calculated data we obtain a plot of log(aphelion distance) against log

(mass) in fig. 5.5.

g 15,

&

—O -

5 M- .

[s erd
-8_135_ /m

L,

g B+—- l . .

27 28 29 0 a1
log(ress)

L

Fig. 5.5: The predicted mass distance relation
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It is found that the distance-mass relation is given by the form

D M*. (5.55)

When D is the distance, A/ is the mass .
a =-.25 for outer planets
= +.23 for the inner planets.

If D, and M, are the values of the parameters for Jupiter, then from (5.55) we

have :
D (MY 56
DJ MJ ' - , ( - )
It is now easy to calculate the distance of a planet for any known value of M In

the table below 5.1 we compare the theoretically predicted distances with the

observed distances of the present day planets.

Table 5.1

Comparison of the predicted distance with observation

Planets Mercury Venus Earth Mars Jupiter Saturn Uranus Neplune Pluto

Mass (gm) 2.99 4.78 5.98 6.42 1.90 5.69 8.69 1.03 1.02

%10% | x107| x107| x10%| x10® | x10% | x10* | x10%® | x10¥

Predicted 1.08 2.05 2.16 1.29 178 1.10 1.76 1.68 5.35

distance (cm) X10]3 X1013 X]OB XIOB xloﬂ x-loM x1014 X 1014 x1014

Observed 7.07 1.08 1.52 2.48 778 15 3 4.52 7.39

distance (cm) x1012 x1013 ><10]3 X1013 xlol3 X1014 X 10l4 XIOM x1014

4, Conclusion

We have investigated the effect of mass loss on the protoplanetary orbits. In a two

body problem the orbital distance is found to increase as a result of mass loss.
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However, in a three body problem with the Sun, Jupiter and the protoplanet under

consideration, all being in the same pl ane, There is found a clear division in the

effect of mass loss on protoplanetary orbits. For the interior protoplanets (i.e.,

within the Sun and Jupiter) mass loss decreases the orbital distance whereas for

the outer protoplanets the orbital distances are found to increase as mass loss

proceeds. The mass-distance relation is found to be given by a power law form.

. ) Ove
The predicted distances of the present day planets with known masses aH found to

be in good agreement with the observed distances. We, therefore, conclude that
mass loss from a set of identical protoplanets can explain the distribution of

planetary distances as observed today.
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