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Abstract

The present thesis entitled, “CHARACTERIZATIONS OF K-DERIVATIONS
AND BI-DERIVATIONS ON LIE IDEALS OF GAMMA RINGS” 1s the outcome
of researches carried out by me under the close supervisions of Dr. Akhil
Chandra Paul, Professor, Department of Mathematics, Rajshahi
University, Rajshahi. The main goal of this thesis is to characterize k-
derivations and then to generalize it.

At the begining we introduce the concept of gamma rings and then we
have mentioned the extention works on gamma rings, that means k-
derivations, jordan k-derivations, Jordan generalized k-derivations, bi-
derivations e.t.c. We have also mentioned the mathemeticians who have
worked on these fields.

In the first chapter we mainly described our works on Jordan k-
derivations. Here we have given the definition of k-derivation, Lie 1deal,
Jordan k-derivation etc. Some examples are also given. Here we define
oo (u, v) foru, v e U, a € I'; where U is a Lie ideal of a ['-ring M. When
M is a 2-torsion free prime I'-ring , then we have proved that every
Jordan k-derivation is a k-derivation also.

In the second chapter, we have discussed about Jordan generalized k-
derivation. Here we have define a new additive mapping, which is a
generalized form of k-derivation.We have defined it and then defined
Jordan generalized k-derivation. For a generalized k-derivation we have
defined it with k-derivation. We added some examples. We have defined
Jordan generalized k-derivation on Lie ideals. Here we have also defined
Yo (0, v), foru, v e U, a € I'; where U is a Lie ideal of a ['-ring M. At the

end of this chapter we have proved that every Jordan generalized k-



derivation is a Jordan k-derivation and so is a k-derivation on a Lie ideal
of a 2-torsion free prime I['-ring M also.

We have worked on semiprime I'-rings in the third chapter. In this
chapter we have characterized semiprime I'-rings and proved that every
Jordan k-derivation on a Lie ideal U of a 2-torsion free I'-ring M 1is a k-
derivation on U of M if M 1s semiprime.

The conception of Left centralizer is presented in the forth chapter. We
have denoted it by T. Here we have mentioned an additive mapping B,(u,
v) for all u, v € U; a € I''We have also defined Jordan left centralizers.
Here we have proved that every Jordan Left centralizer T is a Left
centralizer if M 1s a 2- torsion free semiprime I'-ring.

In the fifth chapter, we have discussed Jordan generalized k-derivations
on Lie ideals of semiprime I'-rings. We have studied Jordan generalized
k-derivations earlier. We have worked those on semiprime I'-rings. With
a special condition we have proved first that every Jordan generalized k-
derivation on a Lie ideal U of a 2-torsion free semiprime I'-ring M is also
a generalized k-derivation on U of M. Then we have proved the same
result without any special condition by using the left centralizer.

In the sixth chapter, we have studied bi-derivations. We have defined
symmetric mapping, bi-derivation, symmetric bi-derivation etc. Here we
have also defined trace, which is associated with a bi-derivation. Using
different types of conditions, we have proved that either the Lie ideal U is
contained in Z(M) or the trace d is zero, if M is a prime ['-ring. We have
developed these results for a semiprime I'-ring also.

We have worked on bi-additive mappings on semiprime [-rings in
chapter seven. In this chapter we have studied the commutativity of a Lie
ideal of a 2-torsion free semiprime I'-ring.

In the eighth chapter, we have discussed symmetric bi-derivations with

symmetric generalized bi-derivations. Here we have worked with two



symmetric bi-derivations associated with their respective traces and have
found some important results.

We have worked on commutativity with symmetric bi-derivations in the
nineth chapter. K. K. Dey and A. C. Paul have worked on symmetric bi-
derivations. Some of their results are extended here on Lie 1deals of prime
and semiprime ['-rings.

At the first stage of this thesis we have discussed about Nobusawa I'-
rings. In the tenth chapter we have tried to characterize k-derivations on
Lie ideals of Nobusawa I'-rings. When M is a I'-ring, then it is clear that
I' is also an M-ring. In the basis of this idea we have found a d-derivation
on a Lie ideal Q of an M-ring I'. In this chapter, we have tried to find out
the same types of results on these two categories of derivations on

respective Lie ideals of those rings. Also we have worked on d” and d°.

In the eleveth chapter, we have described Left k-derivation. We have
defined Jordan left k-derivation also. In this chapter we have used M as a
completely prime I'-ring. We have proved that if M is a 2-torsion free
completely prime I'-ring and U is a Lie ideal of M, then every Jordan left
k-derivation on U of M is also a left k-derivation on U of M.

A complete bibliography which have been helped us to finish my total

research 1s also added at the end of this thesis.



CHARACTERIZATIONS OF k-DERIVATIONS AND BI-
DERIVATIONS ON LIE IDEALS OF GAMMA RINGS

Introduction

We know that the concept of a Gamma ring is an extensive generalization
of a classical ring. A number of renowned mathematician have worked
on Gamma rings. They have researched and extended the theories of
classical rings to gamma rings .The continuation of their research, the
area of gamma ring have been enriched, enlarged and many new area
have come 1n. Throughout the world many famous mathematicians find
out very significant results on gamma rings

The notion of a I'-ring has been introduced by Nobusawa [48].
Furthermore Bernes [7] generaliged the concept of Nobusawa's I'-ring.
During forty years, many classical ring theories have been developed in
['-rings by a number of prominent mathematicians.

The notion of derivations and Jordan derivations in I'-rings have been
introduced by Sapanci and Nakajima [58]. Kandamar [40] first introduced
k-derivations in I'-rings and he obtained some remarkable results in
Nobusawa I'-rings. He defined and worked on a k-derivation of a I'-ring.
He studied the commutativity of a I'-ring. The notion of Jordan k-
derivations of a I'-ring was first introduced by S. Chakraborty and A. C.
Paul [15] . They [16], [17], [18], [19], [20], [21], [22]. They have worked
on Nobusawa I'-ring . They define k-derivation and Jordan k-derivation
and have developed some important results relating these concepts. They
have also worked on completely prime and semiprime ['-ring and

generalized it.



Herstein [30], [31], [32] studied derivations on any ring and also in prime
ring and proved that every Jordan derivation of a prime ring is a
derivation. He determined the structure of a prime ring R which has a
derivation d # 0, such that the values of d commute. A number of
mathematicians studied the derivations of Prime rings and Semiprime
rings. In [6] Awtar extended some of these results in Lie ideals.We have
developed these works on Lie ideals of prime I'-rings.

Posner [52] initiated the centralizing maps on prime rings. He stated that
the existence of a nonzero centralizing derivation on a prime ring R
implies that R is commutative. Mansoor Ahmad [1], [2], Motoshi
Hongan and Andrzej Trzepizur [34] studied and developed the theorem of
Posner. Vukman [60], [61], [62], [63], [64] worked on commuting and
centralizing mappings in prime rings, symmetric bi-derivations in prime
and semiprime rings, derivations and centralizers on semiprime rings.
Maksa [44], [45] worked on the trace of symmetric bi-derivation and M.
Ai Ozturk, M. Sapanci, M. Soyturk, Kyung Ho Kim [49] extended those
on Lie ideals of prime I'-ring. 1. Jeffrey Bergen, I. N. Herstein and Jeanne
Wald Kerr [8] worked on Lie ideals and derivations of prime rings. We
have extended those in chapter eleventh on Lie ideals of Nobusawa I -
rings. Argac and Yenigul [3] and Muthana [47] also worked and got the
similar type of results on Lie ideals of R.

Mohammad Ashraf [5] worked on symmetric Bi-derivations in Rings.
We have extended these results in eighth chapter on Lie ideals of prime
I'-rings. In [42] P. H. Lee and T. k. Lee worked on Lie ideals of prime
rings with derivation. N. Daif and H. E. Bell [24] worked on derivations
on semiprime rings. They proved that a semiprime ring R will be
commutative if it admits a derivation d such that xy + d(xy) = yx £ d(yx)
for all x, y € R. M. Bresar [10], [11], [12] worked on right ideals and

derivations of prime rings, centralizing mapping, Commuting traces. He
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generalized the results of Herstein . In [26] B. felzenszwalb worked on
derivations in prime rings. In [50] , [51], A. C. Paul and Sabur Uddin
worked on Lie and Jordan structure in simple I'-rings and involutions.
They developed some properties of these I'-rings. In [55] I. S. Rakhimov ,
K. K. Dey and A. C. Paul worked on Commutativity of completely prime
I'-rings. They define inner derivation and studied when the derivation
will be the inner derivation.

Asma Ali, V. De Filippis and Faiza Shujat [4] worked on symmetric
generalized bi-derivations of prime and semiprime rings. Y. Ceven [13],
[14] determined some extensive results of left derivation and Jordan left
derivation. He proved that every Jordan left derivation of a 2-torsion free
completely prime I'-ring is a Jordan left derivation. Halder and Paul [28],
[29] extended the results of Ceven in Lie 1deals.We have developed these
works on left k-derivation and Jordan left k-derivation in chapter twelfth.
Also M. M. Rahman and A. C. Paul [53], [54], Nadeem Ur Rehman and
Abu Zaid Ansari [56] worked on Lie ideals with symmetric bi-additive
maps in rings. M. F. Hoque and A. C. Paul [35], [36], [37], [38], [39]
worked on left centralizer . June and Kim [58] enlighten Jordan left

derivation of a classical ring.
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Jordan k- Derivations on Lie Ideals of Prime I'-
rings

Let M be a I'-ring and U a Lie ideal of M.Let d: M — M and k
:I' - I" be additive mappings . Then d is a k - derivation on U of M
if d(uav) = d(u)av + uk(a)v + vad(v) is satisfied forallu, v € U and o
e I'. Also d is a Jordan k- derivation on U of M if d(uou) = d(u)au +
uk(a)u + uad(u) holds for all u € U and a e I'. It is well-known that
every k- derivation on U of M 1s a Jordan k- derivation on U of M but the
converse is not true in general. In this article we prove that every Jordan
k- derivation on U of M is a k- derivation on U of M , if M is a 2-torsion
free prime I'- ring and U is a Lie ideal of M such that uau € U for all u

eUand ael.

1. Introduction: The notion of a I'- ring was introduced as an extensive
generalization of the concept of a classical ring . Nobusawa [46]
introduced the notion of a I'- ring and it was generalized by W. E. Bernes

[7] as a more broad sense. The definition of a I'-ring is as follows:

1.1 Definition: Let M and I' be two abelian groups. Suppose that there
1s a mapping (composition ) from M x I' x M — M (sending (x,a,y) into

xay ) such that

(1) (xty)oz = xaz + yaz, x(o+p)y = xay + xBy, xa(y+z)=xay + X0z,

(i1) (xay)Pz = xa(yPz), where x, y, z € M and a, f € I'. Then M is called
al-ring .

If the conditions of the above definition are strengthened to

(1*) xay 1s an element of M ; axf is an element of T,

(11*) same as (1)

12



(it*) (xay)Bz = x(ayp)z = xa(ypz)

(iv) xay = 0 for all x, y € M implies a =0, then M is called a I'-ring in
the sense of Nobusawa and we denote it [y - ring.

1.2 Example: Let X and Y be abelian groups. Let M = Hom (X, Y) and
I'=Hom (Y, X) and xay 1s the usual composite map for all x, y € M and

a € I'. Then clearly (1) and (i1) conditions are satisfied and M is a I" -ring .

1.3 Example : Every associative ring R with unity 1 1s a ['y —ring with "

=R.

Note that every ring M is a I'-ring if we put [' = M. But the converse is

not always true.

Also 1t 1s clear that every I'y — ring 1s a I'-ring , but the converse is not

true in general.

1.4 Definition: Let M be a I'-ring: A subset N of M is called a I'-sub
ring if N is itself a I'-ring. In other words, an additive subgroup N of a I'-

ring M is said to be a I'- sub ring of M if NI'N < N.

1.5 Example ([15], 1.1.4): Let R be a ring with identity 1 such that M =
M; »(R) and I" = {(n.1): n 1s an integer} then M 1s a ['-ring under the
usual addition and multiplication of matrices. Here if we consider N =
{(a,a) :a € R} < M, then N is also a ['-ring, in which case we say that N
1s a I'- sub ring of M.

1.6 Definition: A subset A of a ['-ring M is a right ( left ) ideal of M, 1f
A is an additive subgroup of M and ATM={aoac:ae A,ael, ce M
JMI'A={caa:ceM,ae A ael),)iscontained in A.

If A is both a right and a left ideal, then we say that A is an ideal or two
sided ideal of M.

13



1.7 Definition: If A and B are both right (respectively left or two sided )
ideals of M . Then A+B = { atb:a € A, b € B} is clearly a right
(respectively left or two sided ) ideal , called the sum of A and B.We
have every finite sum of right (respectively left or two sided ) ideals of a

['-ring is also the same.

Also the intersection of any number of right (left or two sided ) ideals of

M is again a right (left or two sided ) ideal of M.

If A is a left ideal of M, B is a right ideal of M and S is any non empty
subset of M, then the set ATS={Xays|ae A,yel,se S} isaleft
ideal of M and SI'B is aright ideal of M. ATB={ X ayb|ae A,yeI,b
€ B} is atwo sided ideal of M.

1.8 Definition: An ideal P of a I'-ring M is said to be prime if for any
ideals A and B of M, AI'B c P implies Ac Por B c P.

1.9 Definition : A I'-ring M is called a prime I'-ring if for every x , y
e M ; xI'MI'y =0 impliesx=0ory=0.

1.10 Definition : A I'-ring M 1s called 2-torsion free if for all x € M , 2x
= 0 implies x = 0.
1.11 Definition : A I'-ring M i1s said to be commutative if xay = yax for

everyx,y e Manda €T

1.12 Example([]21], Example 1.1.4 ): Let R be a ring with identity 1
such that M = M;, (R) and I'= {(ni]l): n is an integer}.Then M 1s a 2-
torsion free commutative I-ring under the wusual addition and
multiplication of matrices. Here if we consider N = {(a, a) : a € R}
M, then N is also a I'-ring . In that case we say that N is a ['—subring.

1.13 Definition : Let M be a I'-ring. Characteristic of M denoted by char

(M) 1s the least positive integer n such that nx = 0 , for every x € M; if

such n exists. Otherwise char (M) = 0.

14



Brouer's trick: A group cannot be the set theoretic union of two of its
proper subgroups. In other words, if H and K are subgroups of a group G
such that G=H n K, then G=H or G =K.

1.14 Definition: If a, b € M and a € I', then (aob), = aab + baa is
known as the Jordan product or the anti commutator of a and b with

respect to o.

The concept of a Jordan derivation of a I'- ring was first introduced by
M. Sapanci and A. Nakajima [56], [57] whereas the notion of k-
derivation of a I'- ring was used and developed by H. Kandamar [38] .
The notion of Jordan k- derivation of a I'- ring was first initiated by

S.Chakraborty and A. C. Paul [15] .

We shall use the notation [x, y], for the commutator x and y with respect
to a defined by [x, y]q = xay - yax. If A is a subset of M, by Z(A) we
shall mean the centre of A with respect to M, defined by Z(A)={a e A :
[a,b],=0forallb e A, a € I" }. The centre of a ['-ring M i1s denoted by
Z(M) which is defined by ZM) = { x e M : [x, y]=0forally e M: a €
I'}. AT-ring M is commutative if and only if M = Z(M). Throughout this
paper , we shall use the condition (*) aabfc = afbac foralla,b,c e M

and a , € I'. By the condition , the commutator identities

[aab, x]s = [a, X] pab +a [a, B]b + aa[b, x]s and

[x, aob]s = aa[x, b]g+ a[B, alb + [x, a]paf reduce to

[aab, x]g = aa[b, x] g+ [a, x] pab and [x, aab]s = aa[x, b] s+ [x, a]pab.

From the definition of commutator of two elements in a I'-ring, we have

the following :

(i) [a, b]a + [b, a]u = 0
15



(i1) [athb, c]q = [a, c]o * [b, c]a

(ii1) [a, b+c], = [a, b]s + [a, c]q

(1v) [a, blo+p =[a, b]a + [a, b]p.

Note that a I'-ring M is commutative if and only if [a, b], =0 forall a, b
eManda el

In this chapter, we introduce the concept of Jordan k- derivation on a Lie
ideal of a I'-ring M. We prove that every Jordan k- derivation on a Lie

ideal U of a 2-torsion free prime I'-ring is a k- derivation .

The definition of a k-derivation and a Jordan k- derivation

are as follows:

1.15 Definition : Let M be a I'-ring. Let d: M — M and k: I
— I be an additive mappings. If d(xay) = d(x)ay + xk(a)y +
xad(y) is satisfied for all x, y € M and a € I', then d is said
to be a k-derivation of M. And if d(xox) = d(x)ax + xk(a)x
+ xad(x) holds for every x € M and a € I', then d is said to
be a Jordan k- derivation of M. Note that every k-derivation

i1s a Jordan k-derivation but the converse is not true always.

1.16 Example : Let R be an associative Ring. Define M = M,
»(R) and I'=M; ; (R). Then M 1s a I'- ring. Define d: M —
M by d((a, b)) =(0,b) and k: I'— I by

k{(;j} :(Oﬁj' Then d i1s a k- derivation of M for,

(0. b) @ (x,y) + (a,b) (O j (x,y) + (a,b) @ 0, y)

=(bpx , bPy) + (-bPx, -bPy) + (0, aay + bPy)
=(bBx - bPx + 0, bPy - bPy + aay + bPy)

16



=(0, aay +bPy)

Also (a,b) m (x,y) = (aox + bBx , aay + bBy)
B

= d((a,b) @ (x,y) ) = d (( aax + bpx , aay + bBy ))

= (0, aay + bBy)

(0,b) [ij ¥) + (a, b) [fﬂ]m ¥) + (a, b) @(o, )

= d((a, b))@ (x, ¥)) + (a, b)k@j}(x, y) + (a, b) @d((x,

¥)).

1.18 Definition : Let M be a I'- ring . An additive subgroup U of M is
called a Lie ideal of M if [u, m], € U foreveryue U, me Mand a €
I' . Note that every ideal of a I'- ring M is a Lie ideal of M but the

converse 1s not true in general.

1.19 Example : Let R be a commutative ring with unity

having characteristic 2. Define M = M, , (R) and

nl

1
I' = {(n j :n € Z and n 1s not divisible by 2} .

Then M 1s a I'- ring. Define N = {(a, a) : a € R}. It is clear
that N i1s

an additive subgroup of M. Now foru = (a, a) € N; m = (x, y)

n

eMandaz(njeF,wehave

uam — mau =(a, a) U(X y) -~ (X, ¥) @(a, a)

n
= (anx — yna, any - xna)
= (anx - 2yna + yna, any -2xna + xna)

17



= (anx + yna , any + xna)

= (anx + any, anx + any) € N

Therefore, uam — mau € N and N is a Lie i1deal of M. It is
clear that N i1s not an ideal of M.

In [50] and [51], Paul and Sabur Uddin worked on Lie and
Jordan structure of a 2-torsion free simple I'-ring and they
developed a number of significant results of classical ring
theories in ['-rings.

Now we introduce the concepts of a k-derivation,a Jordan k-
derivation on Lie ideals in a I'-ring and then build up a
relationship between these two concepts 1n a concrete
manner.

Let M be a I'-ring and U, a Lie ideal of M. Let d:M—M and
k:I' — T be additive mappings. If d(uvav) = d(u)av +tuk(a)v +
uad(v) 1s satisfied for every u, v € U and a € I', then d 1is
called a k-derivation on a Lie ideal U of M. And if d(uau) =
d(u)au + uk(a)u + uvad(u) holds for all u € U and a € T', then
d is said to be a Jordan k- derivation on a Lie ideal U of M.

It 1s clear that every k-derivation on a Lie ideal U of a I'-ring
M is a Jordan k-derivation on U of M but the converse may
not be true. Now we make an example of a Jordan k-
derivation for the case of a Lie ideal which ensures that
Jordan k-derivation on a Lie ideal exists and it is evidently

not a k-derivation on a Lie 1deal.

1.20 Example : Let M be a ['-ring and let U be a Lie ideal of
M. Let d: M — M be a k-derivation on a Lie ideal U of M.

18



Define M; = {(x, x) : xe M} and I'; = {(a, a): a € I'}.Define

addition and multiplication on M; as follows:

(X, x) + (y, y) = (x+y, xFy) and (x, x)(a, a)(y, y) = (xay, xay)
Under these addition and multiplication M; is a ['j-ring.
Define U; = {(u, u): u € U}. Now we show that U; is a Lie
ideal of M as follows:

For (u, u) € Uy, (0, a) € I'1, (x, X) € M, we have

(u, w)(o, a)(x, x) — (x, x)(a, a)(u, u) = (vax, vox) — (xau,
xau) = (uax — xau, uax — xou) € Uy, since uax — xou € U.
Now let d; : My — My, k; : I'y — I'y be the mappings defined
by di((u, u)) = (d(u), d(u)) for all u € U and k;((a, a)) =
(k(a), k(a)) for all o € I''Then d; and k; are additive
mappings. If we say that (u, u) = u;e U, for all u € U and (a,
a)=v € I'y for all « € I'.Then we have

di(u;yuy) = di((u, w)(a, a)(u, u)) = (dy(uou, voau)) = (d(uau),
d(uau))

= (d(u)au + uk(a)u + vad(u), d(u)au + uk(a)u + vad(u))

= (d(w)au, d(u)au) + (uk(a)u, uk(a)u) + (vad(u), vad(u))

= (d(u), d(w)(a, a)(u, u) + (u, w) (k(a), k(a))(u, ) + (u,
w)(a, a)(d(u), d(u))

= dy(u, u)(a, a)(u, u) + (u, wk;(a, a)(u, u) + (u, u)(a, a)d;(u,
u)

= di(up)yu; + uiky(y)uy + uyy di(uy)

Hence 1t follows that d; 1s a Jordan k;-derivation on a Lie

itdeal U;of M,.It 1s obvious that d; 1s not a k;-derivation on a

Lie ideal U of M.
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1.21 Lemma : Let M be a 2- torsion free I'- ring satisfying the condition
(*) and let U be a Lie ideal of M such that uau € U forallu € Uand a €
I'. Let d : M — M be a Jordan k- derivation on U of M. Then for all u, v,
w e Uand a € I' , we have the following :

(1) d(uav + vou ) = d(w)av + uk(a)v + vad(v) + d(v)au + vk(a)u + vad(u)
(1) d(uavBu) = d(u)avpu + uk(a)vpu + uad(v)pu + vavk(P)u + vavpd(u)
(111) d(uavpw + wavpu) = d(u)avpw + uk(a)vpw + uad(v)Pw + uavk(p)w
+ uavpfd(w)+ d(w)avpu + wk(a)vpu + wad(v)Pu + wavk(p)u + wavpd(u).
Proof :

(i) Since uav + vau = (utv)o(utv) - uau - vav and the right side is in U,
it 1s clear that the left side of the identity is in U. Hence

d(uav + vou) = d((ut+v)a(ut+v) - uau — vav)

= d(ut+v)a(utv) + (utv)k(a)(utv) + (u+v)ad(utv) — (d(u)ou + uk(a)u +
uad(u) + d(v)av + vk(a)v + vad(v))

= (d(w) + d(v)a(utv) + (utvik(@)(utv) H(utvia(d(w) + d(v)) - d(wau -
uk(a)u — uad(u) — d(v)av — vk(a)v — vad(v)

= d(w)ou + d(u)av + d(v)au + d(v)av + uk(a)u + uk(a)v + vk(a)u +
vk(a)v + uad(u) + vad(v) + vad(u) + vad(v) — d(u)au — uk(a)u — vad(u) —
d(v)av — vk(a)v — vad(v).

= d(uw)av +uk(a)v +uad(v) + d(v)au +vk(a)u +vad(u).
(ii) Replace v by ufv +vpu in (1) we have,

d(ua(upv +vpu) + (upv +vpu)au) = d(u)a(upfv +vpu) + uk(a)( ufv +vpu)
+ uad(ufv +vpu) + d(upv +vpu)au + (upv +vpuk(ayu + (upv +vpu)ad(u)

... (a)

Here, d((uau)pv + vB(uau)) = d(uou)pv + (naun)k(B)v + (vau)pd(v) +
d(v)B(uau) + vk(B)(uou) + vd(uou)
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= d(w)aupv + uk(a)ufv + vad(uw)pv + vauk(B)v + uoufd(v) + d(v)Buou +
vk(B)uau + vBd(u)au + vBuk(a)u + vfuad(u)

Then from (a) we have

d(uavfu + upvou) + dw)oufv + uk(o)yufv + vad(u)pv + vauk(P)v +
uoufd(v) + d(v)Buau + vk(fluau + vpd(uw)ou + vBuk(a)u + vBuad(u) =
d(w)aupv + d(w)avpu + uk(a)ufv + uk(a)vfu + uvad(u)pv +uouk(B)v
+uoufd(v) + vad(v)pu + vavk(f)u + uavpfd(u)) + (u)pvoau + uk(B)vou +
upd(v)au + d(v)puau + vk(B)uout+ vBd(u)au + upvk(a)u + vPuk(a)u +
upvad(u) +vBuad(u).

Using the condition (*) we have,

2d(uavBu) = 2(d(v)avpu + uk(a)vpu + vad(v)pu + vavk(B)u + uavpd(u))

And hence d(uavpu) = d(u)avpu + uk(a)vBu + vad(v)pu + vavk(B)u +
uavfd(u)

(111) Replacing ut+w for u in (i1) we have,

d((utw)avp(utw)) = d@utw)avButw) + (utwk(o)vp(utw) +
(utw)ad(v)B(utw) + (u+w)avk(B)( u+w) + (utw )avpd(ut+w).

The left side 1s = d(uavfu + uavpw + wavpu + wavpw)

= d(uavpw + wavfu) + d(uavfu) + d(wavpw)

= d(uavpw + wavfu) + d(u)avpu + uk(a)vfu + vad(v)Bu + vavk(P)u +
uavpfd(u) + dw)avpw + wk(a)vpw + woad(v)pw + wavk(B)w +

woavpd(w)

The right side 1s = d(w)avfu + d()avpw + d(w)avButd(w)avpfw +
uk(a)vpu + uk(a)vpw + wk(a)vpu + wk(o)vpw + uad(v)Bu + uad(v)pw +
wod(v)pu + wad(v)Bw + uavk(B)u + vavk(B)w + wavk(B)u + wavk(p)w
+ uavpd(u) + vavpfd(w) + wavBd(u) + wavpd(w) .

Hence we have,

d(uavpw + wavfu) + d(w)avpu + uk(a)vfu + uad(v)pu + vavk(flu +

uavpfd(u) + dw)avpw + wk(a)vpw + woad(v)pw + wavk(B)w +
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wavBd(w) = d(u)avpu + d(u)avpw + d(w)avButd(w)avpw + uk(a)vPu +
uk(a)vpw + wk(a)vpu + wk(a)vpw + uad(v)pu + vad(v)pw + wad(v)pu +
wod(v)Pw + uavk(B)u + uavk(p)w + wavk(p)u + wavk(B)w + uavpd(u) +
uavpd(w) + wavBd(u) + wavpd(w).

That implies

d(uavpfw + wavpu) = d(uw)avpw + uk(a)vpw + uad(v)Bw + uavk(B)w +

uavpd(w) + d(w)avBu + wk(a)vpu + wad(v)pu + wavk(p)u + wavpd(u)

1.22 Definition : We define o, (v, v) = d(uav) - d(uw)av - uk(a)v -

uad(v) forevery uuve Uanda T

1.23 Remark : It s clear that d is a k- derivation on U of M if and only

if @ (u, v) =0.

1.24 Lemma : Let M, U and d be as in above . Then for all u, v, w € U
and a, p € I', the following relations hold.

D 0, V) + @u(v,u) =0

(i) - @ (utW, V) = @u (U, V) +0u (W, V)

(i11) o (u, VW) = o (U, V) + @ (U, W)

(iV) Qasp (U, V) = @a (U, v) + @p(u, v).

1.25 Lemma : Let M , U and d be as in above , then for all u, v, w € U
and a B,y e, ¢o(u, v)Bwy[u, v] o+ [u, V]fWwy ¢q(u, v) =0.
Proof :
Consider A = 2uav)Bwy(2vau) + (2vou)wy(2uav)
Then d(A) = d((2uav)Bwy(2vau) + (2vou)wy(2uav))
=  dQuoav)Bwy2vau + 2uoavk(B)wy(Q2vou) +2uavpd(w)y2vou +
2uavpwk(y)2vou  +  2uavpwyd(2vou) <+  dQvou)pwyluav  +
2vouk(B)wy2uav  +2voupfd(w)y2uav  + 2voupwk(y)2uav  +
2voaufwyd(2uav)
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= 4(d(uav)pwyvau +uavk(B)wyvau +uavBfd(w)yvau + vavBwk(y)vau +
uavpwyd(vau) + d(vau)Bwyuav + vouk(B)wyuav +voupd(w)yuav +
voupwk(y)uav + voupwyd(uav)) .

Again A = (Cuav)Bwy(2vau) + 2vou)wy(2uav)

= ua(4vpwyv)au) + va(dufwyu)av

Then d(A) = d(ua(4vBwyv)au) + va(duPwyu)av)

= da@dvpwyviou + uk(a)@vpwyvieu + uad(dvfwyv)au +
ua(dvpwyvk(oyu  +  uwa@vBwyv)ad(u)  Hd(v)a(dupwyu)av  +
vk(a)(dupwyw)av  +  vad(duPwyn)av  +  va(dupwyw)k(a)v  +
va(4upwyw)ad(v).

= 4(d(u)avBwyvau + uk(a)vpwyvau + vad(v)Bwyvau + uavk(B)wyvou +
ua vd(w)yvau + uavpwk(y)vou + uavBwyd(v)ou + uavBwyvk(a)u +
uavpwyvad(u) + d(v)aupwyuav + vk(a)upwyuav + vad(u)pwyuav + va
uk(B)wyuav + vaupd(w)yuav + voauPwk(y)uav + voupwyd(u)av +
vaupwyuk(a)v + voupwyuad(v)).

Comparing the two types of expression of d(A) we have

4(d(uav) — d(u)av — uk(a)v —uad(v))pwyvau + 4uavpwy(d(vou) — d(v)au
— vk(a)u — vad(u)) + 4(d(vau) — d(v)au - vk(a)u — vad(u))pwyuav +
4vouPwy(d(uav) — d(u)av - uk(a)v — uad(v)) = 0.

That implies

4(po(u, V)Pwyvau - @4 (u, v)pwyuav - uavpwy @u(v, u) + voupwy o.u,
v))=0.
Since M is 2- torsion free, we have

- 0u(u, V)Pwy(uav — vau) - (uav — vou)Bwyee(u, v) =0
Therefore, ¢q(u, v)Bwy[u, v]y + [u, V]Wy @u(u, v) =0.

1.26 Lemma : Let U ¢ Z(M) be a Lie ideal of a 2- torsion free prime I'-
ring M , then Z(U) = Z(M).
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Proof : We have Z(U) is both a I'-subring and a Lie ideal of M. Also we
know that Z(U) cannot contain a nonzero ideal of M. So by [51, Lemma

3.7], Z(U) 1s contained in Z(M). Therefore, Z(U) = Z(M).

1.27 Lemma : let U be a Lie ideal of a 2- torsion free prime I'- ring M
satisfying the condition (*) anda € M . If a € Z([U, U]y), then a € Z(U) .
That is Z([U, U] ) = Z(U).

Proof : Obviously Z(U) < Z([U, U]p). If Z(JU, U]) « Z(M) , then by
Lemma 1.26, a € Z(M) implies a € Z(U).

On the other hand if Z([U, U]) c Z(M) , thenforallu e U ;m € M ; a, 8
e I',we have a= [u, [u,m], ] € Z(M) .

Using the condition (*) we have ayu=[u, [u, uym],]p € ZM).

If a#0,weget ueZM) implies a=0.

Thus, [u, [u, uym],]p =0 forallm e M.

By the subLemma 3.8 of [51] ,u € Z(M) . Hence U c Z(M).

In both cases we see that a € Z(U) . This gives that Z([U, U]r) = Z(U).

1.28 Lemma : Let U ¢ Z(M) be a Lie ideal of a 2- torsion free I'- ring M
satisfying the condition (*) such that uou € U forallu e Uand a € I'. If
u € Z(U) then d(u) € Z(M).

Proof :

Letu € Z(U) =Z(M), then uav =vou , forevery ve Uand a € I
From Lemma 1.21 (1) we have,

d(uav + vau) = d(u)av + uk(a)v + vad(v) + d(v)ou + vk(a)u + vad(u)
which implies

d(2uav) = d(u)av + uk(a)v + uad(v) + d(v)au + vk(a)u + vad(u)

= d(u)av + vad(u) + 2uk(a)v + 2uad(v)

Replace v by (vfw + wfv), we have
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dQua(vpw + whv)) = dw)o(vpw + whv) + (vVfw + wBv)ad(u) + 2uk(a)
(vBw + wpBv) + 2uad((vw + wfv))

= dWavpw + d(w)awPv + vpwad(u) + wpvad(u) + 2uk(a)vfw +
2uk()ywBv +2uad(v)Bw + 2uavk(B)w + 2uavpfd(w) + 2uad(w)pv +
2uawk(B)v + 2uawfBd(v)

Again |

dQua(vpw + wPv)) = 2d(uavBw + uawpv) = 2d(uavpfw + whvau)

= 2(d()avpw + uk(o)vpw + uvad(v)pw + uavk(B)w + uavpfd(w) +
dw)avpu + wk(a)vBu + wad(v)pu + wavk(B)u + wavpd(u)).

From these two expressions we have,

2d(w)avpw + 2uk(a)vfw + 2uad(v)pw + 2uavk(B)w + 2uavpfd(w) +
2dw)avpu + 2wk(a)vBu + 2wad(v)Bu + 2wavk(B)u + 2wavpd(u) =
dw)avfw + dwowpv + vpwad(u) + wpvad(u) + 2uk(a)vpw +
2uk()ywBv +2uad(v)Bw + 2uavk(B)w + 2uavpfd(w) + 2uad(w)pv +
2uawk(B)v + 2uawfBd(v)

That implies

dw)avfw + 2d(w)avPu + 2wk(a)vfu + 2wad(v)Pu + 2wavk(B)u +
2wavBd(u) = d(w)awpv + wpvad(u) + 2uk(e)wPv + 2uad(w)pv +
2uawk(B)v + 2uawfBd(v)

Therefore , du)a(vpw — wBv) = (vfw — wBv)ad(u), for every v, w € U;
a,Bel.

1. €., d(walv, w]g = [v, w]gad(u). That implies d(u) € Z([U, U)).

To prove our main results we have needed the following two Lemmas:

1.29 Lemma [54, Lemma 2.10]: Let U be a Lie ideal of a 2- torsion
free prime - ring M satisfying the condition (*) and U ¢ Z(M). If a, b €
M (res.b € Uand a € M ) such that aaUBb=0 foralla, B € I', thena =
Oorb=0.
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1.30 Lemma | 54, Lemma 2.11] : Let U & Z(M) be a 2- torsion free Lie
ideal of a prime I'-ring M . Ifa,b € M (res.a € M and b € U ) such that
aoxPb + baxPa= Oforallx e Uand a, B € I', then aaxpb = baxPa = 0.

Now we are in the position to prove our main result.

1.31 Theorem : Let M be a 2- torsion free prime I'- ring satisfying the
condition (*) and let U be a Lie ideal of M such that uou € U for allu eU
and oo € I' . Ifd: M — M is a Jordan k- derivation on U of M , thend is a
k- derivation on U of M .

Proof: If U is commutative Lie ideal of M, then for all u, v € U and o
e I', [u, v]o = 0 . That 1s, uav = vau. Then by Lemma 1.21(111), we have
d(uavpfw + wavpu) = d(uw)avpw + uk(a)vpw + uad(v)Bw + uavk(B)w +
uavpfd(w) + d(w)avBu + wk(a)vpu + wad(v)Pu + wavk(B)u + wavpd(u).
By using (*) we obtain,

d(uavpfw + wavBu) = d((uav)pw + wh(uav))

= d(uov)pw + (uav)k(B)yw +uoavpd(w) + d(w)puav + wk(B)uav
+wBd(uav).

Comparing these two expressions and using (*) we obtain,

d(uav)pw + (uav)k(B)w +uavpd(w) + d(w)puav + wk(B)uav +wpd(uav)
= d(u)avpw + uk(a)vpw + vad(v)pw + uavk(B)w + uavpd(w) + d(w)Buav
+ wk(B)uav + wBd(v)au + wBvk(a)u + wBvad(u).

that implies

(d(uav) — d(u)av — uk(a)v — uad(v))pw + wB(d(vau) — d(v)au — vk(a)u —
vad(u)) =10

That means 0 = @q(u, V)W + WR(v, u) = @u(u, v)BwW — wBo.(u, v)

Then @u(u, v)Bw = wBoy(u, v), forallw e U ;B e I

Therefore we have, ¢q(u, v) € Z(U) = Z(M), by Lemma 1.26.

That implies

d(uav) — d(w)av — uk(a)v — uad(v) € Z(M).
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Since uau € U and uauPv =vPuoau forall f e I'.

Hence d(uaupv) — d(uau)pv — nauk(B)v — nvaupd(v) € Z(M).

That implies d(uaufv) — d(w)aupv - uk(a)ufv - vad(w)pv — vauk(B)v —
uoupd(v) € Z(M).......... (1)

Also 2ufv € U and ua(2ufv) = upv)au, we get

d(ua2upv)) — d(u)a(2upv) — uk(a)2ufv) — uad(2upv)

= 2(d(uaufv) — d(u)oupv — uk(a)ufv — uad(upv)) € Z(M)

And hence d(uaufv) — d(u)aufv — uk(a)ufv — uad(upv) € Z(M) ... .(i1)
From (i) and (i1) we have

d(uaupv) — d(w)oupv - uk(o)upv - vad(u)pv — vouk(B)v — voupd(v) -
d(uaupv) + d(u)aufv + uk(a)yupfv + vad(upv)

= uad(upv) — vauk(B)v —uaupd(v) — vad(u)pv

= ua(d(upv) — d(uw)Bv — uk(B)v —upd(v)) = uapp(u, v) € Z(M)

If p(u, v) # 0 ,since M 1s prime and @p(u, v) € Z(M) hence u € Z(M).
Therefore by Lemma 1.28, d(u) € Z(M)

By Lemma 1.21(1), we have

d(uav + vau ) = d(u)av + uk(a)v + vad(v) + d(v)ou + vk(a)u + vad(u)
That implies d(2uav) = 2(d(u)av + uk(a)v + uad(v))

And so 2(d(uav) - 2(d(w)av - uk(a)v - uad(v)) = 0.

Therefore, 2¢4(u, v) = 0.

That implies @q(u, v) =0

Again let U 1s not commutative . That 1s U ¢Z(M) ,Then by Lemma 1.25,
we have

(@) @u(u, VIBwWy[u, v]o + [u, v]epwy @olu, v) = 0.

Applying Lemma 1.27 in (a) we obtain

() @o(u, V)Pwy[u, vle =0or (c) [u, v]pwy ¢u(u, v) =0.

In view of Lemma 1.26, we have from (b) that ¢,(u, v) =0 or [u, v],=0.

The same result follows from (c) by applying Lemma 1.26.
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Now, for every v € U, let us define A= {u € U: @4 (u, v)=0} and B =
fueU: [u,v]y=0}.

Then A and B are additive subgroup of U such that AUB = U, Therefore,
by Brauer’s trick, either A =U or B = U. By using the same argument we
have U={veU:U=A}and U= {v e U:U=B}. For the latter case,
we have U ¢ Z(M) which is a contradiction.

So we have @(u, v) = 0, which completes the proof.
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Jordan Generalized k- Derivations on Lie
Ideals of Prime I'-rings

Let M be a 2-torsion free prime I'- ring and U a Lie 1deal of
M. Let F : M — M be a mapping defined by F (uav) =
F(uw)av + uk(a)v + uad(v), for all u ,v € U and a € I'. Then F
1s a generalized k- derivation on U of M if there exists a k-
derivation d on U of M. Also F is a Jordan generalized k-
derivation on U of M if there exists a k - derivation d on U of
M such that F(uau) = F(u)au + uk(a)v + uad(v), for allu € U
and a € I'. In this article, we prove that every Jordan
generalized k - derivation on a Lie ideal U of a 2 - torsion
free prime I'- ring M is a generalized k - derivation on U of
M.

2.Introduction : We know that the I'- ring 1s a generalized
form of a ring. Nobusawa [46] and Barnes [7] developed the
concept of a I'- ring. In the previous chapter we have
discussed about I'- rings and Nobusawa I'- rings. We know
that M 1s a I'y -ring implies that ' is an M-ring. M is called a
semiprime ['- ring if for all x € M, xI'M I'x = 0 implies x =
0. It 1s clear that every prime I'- ring is also semi prime but
the converse i1s not true in general. Also M is called a 2-
torsion free if 2x = 0 implies x = 0 for every x € M.

We know that the notion of Jordan k- derivation of a I'- ring
was first introduced by S. Chakraborty and A. C. Paul [15]
and they proved that every Jordan k- derivation on a 2-
torsion free prime I'y - ring M 1s a k- derivation on M. The

generalized derivations of a I'-ring was introduced by Y.
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Ceven and M. A. Ozturk [47] and proved that every Jordan
generalized derivation of a I'-ring M 1s a generalized
derivation of M. Rahman and Paul [7] extended the results
of [47] on Lie ideals of prime ['-rings. In [48], S. Uddin and
Paul worked on simple I'-rings with involutions and extended
various results of Herstein [28] in I'-rings. S. Chakraborty
and A. C. Paul [10,11,12,13,14,15] worked on Jordan
generalized k-derivations on prime I’y - rings, completely
prime and completely semiprime 'y - rings and developed the
various significant results on these fields.

In this chapter, we shall prove that every Jordan generalized
k- derivation on a Lie ideal U of M is a generalized k-

derivation on U of M.

Generalized and Jordan Generalized k- Derivation

2.1 Definition : Let M be a I'-ring and let k : ' — I" be an
additive mapping. An additive mapping F: M — M is called a
generalized k-derivation on M if there exists a k-derivation d
: M — M such that F(xay) = F(x)ay + xk(a)y + xad(y) for all
x,y € Mand a € I And if F(xax) = F(x)ax + xk(a)x +
xad(x) holds for all x € M and a € I', then F is said to be a

Jordan generalized k-derivation on M.
2.2 Example : Let M be a I'- ring and let F be a generalized

k- derivation of M.Then by definition, there exists a k-
derivation d: M—M such that d(xay) = d(x)ay + xk(a)y +
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xad(y) and F(xay) = F(x)ay + xk(a)y + xad(y) , for all x, y €
Mand a € T'.

Let M; = M x M and I'y = I' x I'. Define the operations of
addition and multiplication of M; and I'; by (x, y) + (z, w) =
(x + z, y + w) and (x, y)(a, B)(z, w) = (xaz, ypw), for every
X,V,2z, we Mand a, € I'. Then M ; is obviously a I';-
ring under these operations.

Let F{ : My —> M;, d;: My - M; and k; : I'y — I'; be the
additive mappings defined by Fi((x, y)) = (F(x) F(y)),
di((x,y)) = (d(x),d(y)) and k; ((a, B)) = (k(a), k(B)) for all x,
y € M and a ,f € I'.'Then clearly d; is a k;- derivation of M;.
put (x,y) =a € My, (a,P)=7 eI, foranyx,y € M and a ,B
e I' ; then we have,

Fi (aya) =Fi((x,y) (a, B) (x,y))

= Fi((xax , yBy))

= (F(xax), F(yBy) )

= (F(x)ax + xk(a)x + xad(x) , F(y)By + yk(B)y + yBd(y))

= (F(x)ax, F(y)By ) + (xk(a)x , y k(B)y) + (xad(x) , ypd(y))
=(F(x), F(y) )(a,p)(x, y) + (x,y) (k(a) , k(B)) (x, y) + (x,y)(a,
B) (d(x).d(y))

= Fi(x, y)(a, P)(x, y) + (x, ) ki(a, P)(x, y) + (x, y) (o, B)
di(x, y)

= Fi(a)ya + aki(y)a + aydi(a),

which follows that F; 1s a Jordan generalized k;- derivation
of M; associated with the k;-derivation d; of M;.

Now we give an example of a Lie ideal which 1s not an 1deal

of a I'-ring M.

2.3 Example : Let R be a ring and U be a Lie ideal of R.
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Let M =M, ,(R) and I'= {le:nez}. Then M 1s a I'-ring.

Define N= {(x,x):xe€ R} c M. Then N is a-ring.
Let Uy = {(u,u) :u e U}.

Now (u , u)m(a, a) - (a ,a)m(u ,u)
0 0
=(una , una) - (anu , anu)
=(una - anu, una - anu) € Uj.
Then U; 1s a Lie 1deal of N. It is clear that U; 1s not an ideal
of N.

2.4 Definition : Let M be a I'-ring and let U be a Lie 1deal of
M. Let ki ' — I' be an additive mapping. An additive
mapping F: M — M is called a generalized k- derivation on
U of M if there exists a k- derivation d on U of M such that

F(uav) = F(u)av + uk(a)v + vad(v) for all u ,v € U and a €
I'. And if F(uau) = d(u)au + uk(a)u + uad(u) , for every u €
U and a € I'. then F is said to be a Jordan generalized k-

derivation on U of M.

2.5 Example : Let M be a I' -ring and let U be a Lie 1deal of
M. Let f: M — M be a generalized k- derivation on U of M,
then there exists a derivation d on U of M such that f(uav) =
f(u)av + uk(a)v + vad(v) forallu,ve Uanda € I'.

Let M; = {(x, x) : x € M} and I'y = {(a, a) : a € I'}. Define
addition and multiplication of M are as follows:

(x, X))+ (y,y) =(xty,xty), (x x)(a, a)(y, y) = (xay, xay)
for all (x, x) € M; and (a, a) € I'y.

Under these operations M; is a I';- ring.
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Let U; = {(u, u) : u € U }. Then clearly U; is a Lie ideal of
M,. Define F: M; — M,, D: M; — M; and k;: I'y — I'; by
F((x, x)) = (f(x), f(x)), D((x, x)) = (d(x), d(x)) and k;((a,
a)) = (k(a), k(a)), forallx e Uand a e T.
Then F((x, x) (a, o) (y, y)) = F((xay, xay))

= (f(xay), f(xay))

= (f(x)ay + xk(a)y + xad(y), f(x)ay + xk(a)y + xad(y))

= (f(x)ay, f(x)ay) + (xk(a)y, xk(a)y) + (xad(y), xad(y))

= (.10 (a,a)(y.y)  +  xx)(k(a).k(a))(y, )
(x,x)(a,0)(d(y), d(y))

= F((x, x))(a, o)(y, y) + (x, x)ki(a, o)(y, y) + (x, x)(a,

a)D(y, ¥).

Therefore F 1s a generalized k- derivation on U; of M;.

Also F : M — M is called a Jordan generalized k-
derivation on U of M if there exist a k- derivation d on U of
M such that F(uau) = F(u)au + uk(a)u + vad(u) , for every u
e Uanda e T.

2.6 Example : Let M be a I' -ring and let U be a Lie 1deal of
M. Let f: M — M be a generalized k- derivation on U of M,
then there exists a derivation d on U of M such that f(uav) =
f(u)av + uk(a)v + vad(v) forallu,ve Uanda € I'.

Let M; = {(x, x) : x € M} and I'y = {(a, a) : a € I'}. Define
addition and multiplication of M are as follows:

(x, x) + (y,y) = (x Ty, x+y);(x, x)(a, a)(y, y) = (xay, xay)
for all (x, x) € M; and (a, a) € I';. Under these operations M,

1s a [';- ring.
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Let U; = {(u, u) : u € U }. Then clearly U; is a Lie ideal of
M,. Define F: M; — M;, D: M; — M, and k;: 'y — I'; by
F((x, x)) = (f(x), f(x)), D((x, x)) = (d(x), d(x)) and k;((a,
a)) = (k(a), k(a)) forall x e Uand a €T,
Then F((x, x) (a, a) (x, x)) = F((xax, xax))

= (f(xax), f(xax))

= (f(x)ax + xk(a)x + xad(x), f(x)ax + xk(a)x + xad(x))

= (f(x)ay, f(x)ax) + (xk(a)x, xk(a)x) + (xad(x), xad(x))
=(f(x), f(x)(a, a)(x, x) + (x, x)(k(a), k(a))(x, x) + (x, x)(a,
a) (d(x), d(x))
=F((x, x))(a, a)(x, x)*+(x, x)k;(a, a)(x, x)+(x, x)(a, a)D(x, x).

Therefor, F 1s a Jordan generalized k- derivation on U; of M;.

2.7 Lemma : Let M be a 2- torsion free ' -ring satisfying (*)
and U a Lie ideal of M such that uau € U for all u € U and
let F : M — M be a Jordan generalized k- derivation on U,
then

(1) F(uav +vou ) = F(u)av +uk(a)v + vad(v) +F(v)au + vk(a)u

+ vad(u).

(i1) F(uavBu) = F(u)avpfu + uk(a)vPfu + vad(v)pu + uavk(p)u
+ uavpd(u)

(111) F(uavpw + wavBu) = F(u)avpw + uk(a)vpw +uad(v)pw
+uavk(f)w + vavpfd(w) + F(w)avpfu + wk(a)vpu + wad(v)pu +

wavk(B)u + wavpd(u).

Proof. We have uav + vou = (u + v)a(u + v) - uau - vav,
and the left side as like as the right side is in U. Hence

F(uav +voau) = F((u+v)a (u+v) - uau - vav)
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= F (utv)a(u+v) + (utv)k(a)(u + v) + (utv)ad(utv) -

(F(u)au + uk(a)u + vad(u) + F(v)av + vk(a)v + vad(v) )

= F(u)au + F(u)av +F(v)au +F(v) av + uk(a)u + uk(a)v +
vk(a)u + vk(a)v + uad(u)+ vad(v) +vad(u) +vad(v) - F(u)ou -
uk(a)u - vad(u) -F(v)av - vk(a)v -vad(v).

That implies

F(uav + vau) = F(u)av + uk(a)v + vad(v) + F(v)a u + vk(a)u
+ vad(u).

Replacing v by upv + vpu we have,

F(ua(upv +vBu) +(upv +vPu)au) = F(u)a(upv+vpu) +uk(a)
(upv +vpu) + vad(upv + vpu) + F(upv + vpu)au + (ufv +vpu)
k(a)u + (upv + vu)ad(u)................(1)

Left side of (1) is equal to

F(uaupv + vavfu + upvou + vBfuou) = F(uavBfu + ufvou) +
F((uau)Bv + vB(uou))

=F(uavPu + uPpvau) + F(uau)Bv + vauk(f)v + uvaupfd(v) +
F(v)Buou + vk(B)uau + vpd(uau)

= F(uavpBu + uPvou) + F(u)auPv + uk(a)upfv + vad(u)pv +
vauk(f)v + vaupd(v) + F(v)Buoau + vk(B)uau + vBd(u)au +
vBuk(a)u + vpuad(u).

Right side of (1) is equal to

F(w)aupv + F(uw)avpu + uk(a)ufv + uk(a)vpu + vad(u)pv +
vauk(B)v + voaupd(v) tuad(v)pu + vavk((B)u + vavpd(u) +
F(u)Bvou + uk(B)vau + ufd(v)au+F(v)Buaut+ vk(p)uau +
vBd(u)au + upvk(a)u + vpuk(a)u + upvad(u) + vpuad(u).

Computing both sides we have,
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F(uavBu + ufvou) = F(u)avBfu + uk(a)vBu + uvad(v)pu +
uvavk(f)u + vavpd(u) + F(u)Bvau + uk(f)voau + u d(v)au +
ufvk(a)u + upvad(u).
Putting ufvau = uavpfu we have ,
F(2uavfu) = F(u)avPu + uk(a)vpu + vad(v)Pu + uvavk(p)u +
uvavBd(u) + F(w)avpBu + uvavk(B)u + uvad(v)pu + uk(a)vpu +
uavfBd(u)
That implies 2F(uavpu) = 2(F(u)avpu + uk(a)vpu + ua d(v)pu
+ vavk(f)u + uavpd(u)).
Since M is a 2- torsion free, hence we have
F(uavBu) = F(u)avPu + uk(a)vPu + uvad(v)pu + vavk(f)u +
uavfBd(u).
Replace u + w for u we have,
F((u +w)avB(ut+tw)) = F(u+tw)avpB(u+tw)+ (utw)k(a)vp(utw) +
(urw)ad(v)B(u+w)+(u+tw)avk(p)(u+tw)+(utw)avpd(ut+w).

.. (2)
Left side of (2) is equal to
F(uavBu + vavpw + wavpfu + wavpw) = F(uavpw +wavpu) +
F(uavpu) + F(wavpw)
= F(uavBw + wavBu) + F(u)avBu + uk(a)vpu + uvad(v)pu +
uvavk(f)u + vavpd(u) + F(w)avpw + wk(a)vpw + wad(v)pw +
wavk(B)w+ wavpBd(w) .
Right side of (2) is equal to
F(w)avBu + F(w)avpfu + F(uw)avpw + F(w)avpw + uk(a)vPu +
wk(a)vBu + uk(a)vpw + wk(a)vpw + uad(v)Bu +wad(v)pu +
vad(v)pw + wad(v)Bw + uavk(B)u + wavk(p)u + vavk(p)w +
woavk(B)w + uavpfd(u) + vavpd(w) + wavpd(u) + wavpd(w).

Comparing both sides we get,
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F(uavBw + wavpBu) = F(u)avpw + uk(a)vpw + uvad(v)Bw +
uvavk(f)w + vavpd(w) + F(w)avpu + wk(a)vpu + wad(v)pu +

wavk(B)u + wavpd(u).

2.8 Definition : We define wy,(u, v) = F(uav) - F(u)av -

uk(a)v - vad(v) forallu,ve Uand a € T.

2.9 Remark : It is clear that F is a generalized k- derivation

if and only if y,(u, v) = 0.

2.10 Lemma : Let M, U and F be as in above. Then for all u,

v,w € Uand a ,p € I', the following relations hold :

(1) Yo (U, V) +yu (v, u) =0

(i) yo (u + W, v) = yq (0, V) + Yo (W, V)
(ii1) W (u, v+ W) =y, (U, v) + vy (u, w)
(1v) Wi p (U, V) = Vo (u, v) + yp (1, v).

2.11 Lemma : Let M, U, F and d be defined as in above, then
forallu, v, we Uand a, B,y e I', yo(u, v)pwy[ u, v], = 0.
Proof : Consider A = (2uav)pwy(2vau) + (2vau)Bwy(2uav).
From Lemma 2.7 (111) we have,

F(A) = F((2uav)Bwy(2vau) + (2vau)Bwy(2uav))
=FQuav)Bwy(2vau) + 2uavk(B)wy(2vou) + (Cuav)Bd(w)y(2vou) +
Cuav)pwk(y)2vou) + (Cuav)pwyd(2vau) + FQvou)pwy(Cuav) +
Cvaw)k(B)wyCuav) + (2vau)Bd(w)yuav) + (2vou)pwk(y)uav) +
2vau)pwyd(Cuav)

=4[F(uav)Bwy(vau) + uvavk(B)wvau + uoavpd(w)yvau +

vavBwk(y)vau + uavpwyd(voau) +  F(vau)Pwyuav +
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vauk(f)wyuav +  vauBfd(w)yuwav +  voauPpwk(y)uav +
vauBwyd(uav) ]
Again A = (2uav)Bwy(2vau) + (2vau)pwy(2uav) = ua(4vpwyv
Jau + va(4upwyu)av
That implies
F(A) = F(ua(4vBwyv)au + va(4duPwyu)av
=4[F(un)avpwyvau + uk(a)vpwyvau + uvad(vpwyv)au +
uvavBwyvk(a)u + uvavpwyvad(u) +  F(v)auPwyuav +
vk(a)upwyuav+vad(upwyun)av+voaufwyuk(a)v+vauBwyuad(v)]
{using Lemma 2.4 (11)}
= 4[F(w)avBwyvau + uk(a)vBwyvau + vad(v)Bwyvoau +
vavk(f)wyvau + uvavfd(w)yvou + uvavpwk(y)voau +
vavBwyd(v)au + uvavBwyvk(o)u + uvavpwyvad(u) +
F(v)auBpwyuav + vk(o)uBpwyuwav +  vad(u)pwyuav +
vauk(f)wyuav +  vauBfd(w)yuwav +  voauPpwk(y)uav +
vauBwyd(u)av +vauPwyuk(a)v + vau Bwyuad(v)]
Comparing both expressions we have,
A[F(uvav)pwyvau + F(vou)pwyuav + uwoavBwyd(vau) +
vauBwyd(uav)]
= 4[F(u)avpwyvau + uk(a)vpwyvau + uoad(v)Bwyvau +
vavBwyd(v)au + uvavBwyvk(o)u + uvavpwyvad(u) +
F(v)auBpwyuav + vk(o)uBpwyuwav +  vad(u)pwyuav +
vauBwyd(u)av + vaupwyuk(a)v + voupwyuad(v)]
Since M is a 2- torsion free , we have
0 = [F(uav) - F(w)av - uk(a)v - vad(v)]pwyvau + [F(vau) -
F(v)au - vk(a)u -vad(u)] Bwyuav + vavpwy[d(vau) - (d(v)au
+ vk(a)u + vad(u))] + vauBwy[d(uav) - (d(u)av + uk(a)v +

uad(v)]
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= Yo(u, v)Bwyvau + yu(v, u)pwyuav + [d(vau) - d(vau)] +
[d(uav) - d(uav)]

= yo(u, V)Bwyvou - ye(u, v)pwyuav

= - yu(u, v)pwy(uav - vau )

That implies wy,(u, v)p wy[u, v], = 0.

2.12 Lemma: Let U ¢ Z(M) be a Lie 1deal of a 2- torsion

free prime ['- ring M. Then [u, v],Bwyy,(u, v) = 0.

Proof. From Lemma 2.11 we have, y,(u, v)oxufu, v], =0
That implies [ u, v]Bwyy(u, v)oxu [u, v].Bwy yu(u, v) = 0,
for all x € U.

In view of Lemma 1.29, we have [u, v].,fwy yq(u, v) =0,

2.13 Lemma: Let U ¢ Z(M) be a Lie ideal of a 2- torsion free
prime I -ring M. Then wy,(u, v) Bwy [x, y]s =0 forallu, v
,W,x,yeUanda, B,y,0e I.
Proof. From Lemma 2.11 we have ,
0=vyu(u+x,v)Pwy [u+x, v]

= Vo(u, V)Pwylu, v]g + wo(u, v)Pwy[x, v]a + Wa(x, v)Bwy[u,
Vle + Wa(x, V)Pwy[x, v]q

= ya(u, v) Bwy [x, v]e + ya(x, v) Pwy [u, v]a

= ya(u, v) Bwy [x, v]a = - yu(x, V) Bwy [u, v]a

=(Wa(u , v) Pwy [x, v]a )OpO wo(u , v) Pwy [x, V],

= - Ya(x, v) Bwy [u, v]a 8pO yo(u , v) Pwy [x, V],

= - Yal(x, v) Bwy( [u, v]a 8p6 wo(u , v))Pwy [x, v]a

[ by Lemma 2.11]

By Lemma 1.29, we have yq,(u, v) Bwy [x, v], =0
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Likewise by replacing v + y for v we get
Vo(u, v) Pwy [x, yle =0...........(1)
Proceeding in the same way as above , by the similar
replacement in the result, we have
[X, V]BWY Wyo(u,v)=0 ...........(11)
Now putting a+d for a in (i) we have,
Vo 5(u L VIBWY [X, ¥las s =0
Then 0 = yo(u, V)Bwy [x, y]a + Ws(u, v)Pwy [X, y]a + Wa(u,
VIPwyIx, yls + ws(u, v) Pwy [x,y]s
= ys(u, v) Pwy [x, y]a + ya(u, v) Bwy [x, y]s
That implies wo(u, v) Bwy [x, y]s = - ws(u, v) Bwy [x,y]a
Therfore, wo(u , v) Bwy [x, yls0qu yo(u , v) Pwy [x, yls
= - ys(u, V)Bwy( [x, yla 0quya(u, v)) Bwy [x, y]s
=0 by (i1)
Using Lemma 1.29, y,(u , v)Bwy[x, y]s = 0.

2.14 Lemma : Let U ¢ Z(M) be a Lie ideal of a 2- torsion
free prime I'- ring M. Then wy,(u,v) € Z(U) =2Z(M) for

every u, v € U.

Proof : We have y,(u, v) pwy( [x, y]s =0

Now 2[ya(u, v) , ¢]s Pwy[ wo(u , v), c]s

= 2(yo(u, v)dc - ¢d yo(u , v))Pwy [wa(u , v), ¢ls

=Wa(u, V)8(2ePw)y[va(u,v), cls -2¢8 yo(u, vV)Bwy[va(u, v), c]s
= 0, for every ¢ € U.

In view of Lemma 1.29, we have [yq,(u, v), c]s =0,

Hence wy,(u,v) € Z(U) and that implies yy(u, v) € Z(M)
by Lemma 1.26.
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2.15 Lemma : Let M be a 2- torsion free prime ['- ring
satisfying the condition (*) and U a Lie ideal of M. Let u € U
be such that [u, [u,x]qs]o = 0 for all x € M and a € I'. Then
[u, x], = 0.

Proof. We have [u, [u ,x],]o =0 forall x e M and a € T.
Lety € M, then xay € M forall a e T".

Replace x by xay we have, 0 = [u, [u, xay], ]«

= [u, (xa[u.y]o + [u, X]a ay)]a

= [u, xa[w,y]o Jot [u.[u, X]a0y Ja

= xafu, [u, ylo] ot [u . x]eafu,y]e +[u x]eafu,ylot [u, [u,
X]a]a0ty

Hence 2 [u, x]q afu ,y]qa =0

Since M is 2 - torsion free , we have [u ,x],0 [u,y]e =0
Putting y = uBfx , we have [u , x]q.ofu ,upfx], =0

Then [u, x], auPfu ,x], = 0 by using (*) .

Hence by Lemma 1.29, we have [u, x], = 0.

2.16 Lemma : Let M be a 2-torsion free prime I'- ring
satisfying the condition (*) and U be a commutative Lie 1deal
of M, then U ¢ Z(M).

Proof : Since U is commutative ,we have [u ,v], = 0 for all u
,velU and a € I'. Also we have [u, x], € U forallu € U,
x e Mand a €T

Replacing v by [u, x], , we obtain [u, [u, x]s ]a =0 .

By Lemma 2.15 we have [u, x ], =0 . Hence U c Z(M).
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2.17 Theorem : Let M be a 2-torsion free prime I['-ring
satisfying the condition (*) and let U be a Lie ideal of M
such that uwou € U for all u e Uand if F: M — M 1s a
Jordan generalized k-derivation on U of M then, y,(u, v) =
O forallu,ve Uand ael.
Proof: Let U be a commutative Lie ideal of M. Then by
Lemma 2.16, U c Z(M).
Since U is commutative, then we have [v, w]g =0 .
That implies vpw = wpv , for every v, w e U, a e IT.
From Lemma 2.7 (i11) we have,
F(uavpw + wavBfu) = F(uw)avpw + uk(a)vpw +uad(v)pw
+uavk(p)w + u a v B d(w) + F(w)avpu + wk(a)vfu +
woad(v)pBu + wavk(B)u + wavpd(u) ...............(1)
Putting u = 2vBw in (1), we have
L.S. =FQ2vBwavBw + wavp2vpiw)

= 2F(vBwavpBw +wBvavpw)

= 2F(vBwavpw+vBwavpfw)

=4 F ((vBw)a(vBw))

=4 (F(vPw)a(vBw) + vBwk(a)vpw + vBwad(vpw))
Also R.S. = 2F(vBw)avpBw +2vBwk(a)vpw + 2vBwad(v)Bw +2
vBwavk(B)w + 2vBwavpd(w) + F(w)avB2vpw + wk(a)vB2vpw
+  wad(v)B2vpw  +  wavk(B)2vBw +  wavpd(2vpw)
=2F(vBw)avpw+2vBwk(a)vpw+2vBwa(d(v)pw+vk(B)w+vBd(w
))  +2F(w)avpvBw+ 2wk(a)vpvBw + 2wad(v)BvPw +
2wavk(B)vPw + 2wavBd(vpw)
=  2F(vpw)avpw + 2vBwk(a)vfw + 4vBwad(vPw)+
2F(w)Bvavpw  + 2wk(a)vBvpw +  2wad(v)Bvpw  +
2wavk(B)vpw

Comparing both sides we get
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0 = 2F(vPw)avpw + 2vBwk(a)vpw - 2F(w)Bvavpw -
2wk(B)vavpw - 2wBd(v)avBw - 2vBwk(a)vBw

= 2(F(wBv) - F(w)Bv - wk(B)v - wBd(v))a vPw

= 2yp(w, v)avpw

Since M is 2- torsion free ,we get wyp(w , v) av fw = 0.
Then 0 = yg(w , v) av Bwyxdy, where x € U,y e M

= yp(w, v) axPyyvow

= (yp(w , v) axyy)pvow using (*)

From Lemma 1.29 either yg(w , v) axyy = 0 or w = 0.

Since w e U, w =0, hence yg(w, v) axyy = 0.

That implies wyg(w , v)aUyy =0

Using Lemma 1.29 we have , yg(w , v) = 0.

Again if U is not commutative , 1.e., U ¢ Z(M), then from
Lemma 2.13 we have, y.(u, v)Bwy[x, y]s = 0.

But [x, y]s = 0 implies U < Z(M), a contradiction .

Hence y,(u, v) =0 forall u,ve Uand a eI,

2.18 Corollary : Every Jordan generalized k-derivation of a
2 -torsion free prime I'- ring M 1s a generalized k- derivation

on M.
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Jordan k- Derivations on Lie Ideals of Semiprime I -
Rings

In this chapter, we obtain some characterizations of semiprime I'- rings
with Lie ideals . By using these results , we prove that every Jordan k-
derivation on a Lie i1deal U of M is a k- derivation on U of M , where M i1s
a 2- torsion free semiprime I'- ring satisfying the condition aabfc =

aPbac foralla, b, c € Mand a, B € I' and the Lie ideal U of M is such

thatuou e U forallueUanda eI

3. Introduction: We know that every k-derivation is a Jordan
k-derivation but the converse is not true always. In the first
chapter we have proved that every Jordan k-derivation on a
Lie ideal U of a 2- torsion free prime I'- ring M is a k-
derivation on U of M. The same results were also proved in
the second chapter for the case of generalized k- derivation
on U of M.

Let M be a 2-torsion free semiprime I'- ring and U a Lie ideal
of M. First we prove some properties of M with Lie ideal U
and then using these, we prove that every Jordan k-
derivation on U of M i1s a k- derivation on U of M where the

Lie ideal U is such that vou € U for all u eU and a € I.

Lie Ideals of Semiprime I'- Rings :
In this section we denote M to be a 2- torsion free semiprime I'-ring

satisfying the condition (*) and U be a Lie ideal of M .
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3.1 Lemma : I[f U # 0 1s a I'- sub ring of M , then either U< z(M) or U
contains a nonzero ideal of M .

Proof: First we assume that U is not commutative , Then for some u, v €
U and a € I" we have [u, v], # 0 and also [u, v], € U.

Therefore, the ideal J of M generated by [u, v], is nonzero and J < U.

On the other hand, let us assume that U is commutative .Then for every u
e U,wehave [U,[u,X] ],=0 forallx e Manda e T

Hence by Lemma 2.15 we have [u, X],=0 .

This shows that Uc zZ(M) .

3.2 Lemma : T(U)={xeM:[x, M]. c U} is both a I'- sub ring and a Lie

ideal of M such that U < T(U).

Proof : We have U is a Lie ideal of M , so [U, M]r c U. Thus U < T(U).
Also we have [T(U), M]r c U < T(U). Hence T(U) is a Lie ideal of M.

Now suppose that x, y € T(U), then [X,m], €U and [y,m], €U for

al meManda el .

So that [xay, m]y = xa[y, m]g + [x, m]gay € U. Therefore ,
[xay, m]g €U forallx,y € T(U); me M and a, p € I'. Hence xay €
T(U).

3.3 Lemma : Let Uz Z(M), then there exists a nonzero ideal
K=MT[U,U,I' M of M generated by [U, U] such that [K, M]. c U.

Proof : First we prove that if [U, U],=0, then Uc Z(M), So let [U, U],=0,
then for all u € U and a € I, we have [u, [u, X],],= 0 for all x € M. For

allz e M and B € I', we replace x by xpz in [u, [u, X],],= 0 and obtain

[u9 [u9 XBZ]U ]u: O
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That is 0 = [u, XP[u, z], + [u, x],Bz],
= [u, xB[u, ], ], +[u.[u, x],Bz],
=xB[u, [u, z], ], +u, x],Blu,z], + [u, [u, x],1,pz + [u, x] B[y, z],
That implies 2[u, x] B[u, z],= 0
By the 2- torsion freeness of M , we obtain [u, X] B[u, z],= 0
Now replacing z by zyx , we get
0= [u, x],B[u. zyx],
~[u, x],B(zv[u. x],+{u, 7],y%)
= [u, x],Bzy[u, x], + [u, x],B[u, z],yx
= [u, x],Bzy[u, x],
That is [u, x],fMy[u, x], = 0.
Since M is semi prime, [u, X], = 0. This implies that u € Z(M). Thus U <
Z(M), a contradiction. So let [u, U]r# 0. Then K=MITU, UJ;I'M isa
non zero ideal of M generated by [U, U]r. Letx,y € U, m € M and a,

Be I', we have

[x, yBm],, v, [X, X]o € U< T(U) . Hence by Lemma 3.2,

[x, ylupm = [x, ypm], — yB[x, m], € T(U).

Also we can show that mB[x.,y], € T(U) .

Therefore , we obtain [[U, U], M]rc U.

That is [[[X, Y]a, m]s, S]a,t]le € U, forallm,s,t e Manda €T

Hence
[x,y],amas - mo[x,y],as + [s,m] a[x.y],- [[sa[xy],.m],, t], € U

Since, [X, y], amas, sa[X, Y]e [S, m]ea[X, Y]o € T(U) , we have [ma][x,

y]aas, t]l, € U forallm,s,t € Mand a € I'. Hence [K, M]r < U.
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3.4 Lemma : LetU ¢ Z(M)anda € U . [facUBa= {0} forall a, B € I,

then aca = 0 and there exists a non zero ideal K=MT[UU].ITM of M
generated by [U,U]. such that [KM]. c U and KI'a =al'’K = {0}.
Proof : If aaUPa =0 for all a, B € I', then
aala, adm] fa=0 forallme M; a.B,6 €.
Therefore , aa(acadm - admaa)pa = 0.
That implies 0 = (acacadm — acadmaa)Pa
= acadaompPa — acadmpPaca
= (aca)dmpP(aca), since acada =0

Therefore, aca =0, since M 1s semi prime.

Now we obtain
aalkya,m] oufa=0forallke K,meM,ueUandyel
This implies that
0 = aa(kyaum - mukya)auPa
= aokyaumaoufa - aamukyaauPa
=aokyaumfuaa , using (*) and aoufa = 0.
Hence we have 0 = aokyaumf[k, al aa , putu= [k, a],
= aokyaump (kya - ayk)aa
= aakyaumPBkyaoa - aockyaumpPaykaa
= aokyaumpPaykaa | since aca=0
= (aokya)umpP(aokya) using(*)
Since M 1s semiprime, ackya = 0. Thus we find that (ack)yMp(aak) = 0.
Hence aok =0, for all ke K 1i.e., aaK = {0}.
Similarly we obtain Koaa ={0}.

3.5 Lemma : Let U Z(M), ae U and let a , B € I, then the

following:
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(1) If acUBa= {0}, thena=0

(i1) If aaU ={0}(or Uaa ={0}), thena =0

(iv) If uoau € U for all u € U and aaUBb = {0}, then aab = 0 and boa =
0 foralla €l

Proof : (i) By Lemma 3.4, we have Kaa=MI[U,U].I'Maa = {0} and aca =
0 for all a € I'. Therefore forallx,y e Mand o, € I', we get

0=[a, x],, a] By

= [aox - xaa, a] Pyoa

= ao[x,a] Pyaa - [x,a] aaPyoa

= aaxyafyoa - acayxPyoa - xyacaPyoa + ayxaaPyoa

= aaxyafyaa + ayxaafyoaa

= aoxyaPyoa + aaxyaPyoa using (*)

= 2aoxvyafyaa

By the 2- torsion freeness of M we have aaxyafyaa = 0

Therefore we obtain that, aaxyaPyoadxya =10

That implies (aoxya)Byd(aaxya) = 0 , using (*)

and we have (aaxya)pMo(aaxya) =0

Since M 1s semi prime aoaxya=0 forallx e Mand a,y el

Again using the semi primeness of M we get a = 0.

(i1) If aaU = {0} , then aocUPa = {0} for all B € I'" . Therefore by (1) we
obtain a = 0. Similarly 1f Uaa = {0}, then a = 0.

(i11) If aaUPb = {0} , then we have (bya)aUP(bya) = 0 and hence by (1)
bya =0 for all y € I'. Also (ayb)aUB(ayb) < aaUBb = 0 and hence ayb =
0.

Jordan k- Derivations on Lie Ideals of Semiprime I'-Rings

From Lemma 1.21 we have the following :
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Let d : M — M be a Jordan k-derivation on U of M, then

(1) d(uav + vou) = d(w)av + uk(a)v + vad(v) + d(v)ou + vk(a)u + vad(u)
(1) d(uavBu) = d(u)avpu + uk(a)vBu +uad(v)Pu + uavk(P)u + vavpd(u)
(111) d(uavpw + wavpu) = d(u)avpw + uk(a)vpw + uad(v)Pw + uavk(p)w
+ uwovpd(w) +  dw)avfu + wk(a)vfu + wad(v)Bu + wavk(B)u +

wavBd(u).

3.6 Remark : If U is commutative , then by Lemma 2.16 , Uc zZ(M).

Therefore, from Lemma 1.21 (i), ¢,(u,v) = 0. So we consider Uz Z(M).

3.7 Lemma : If Uc Z(M)and d 1s a Jordan k-derivation on U of M, then

[v, Wl B, (v. W) = 0.

Proof : Forany v, w € U , vaw + wav € U and vaw - wav € U, as U is a
Lie ideal . Hence we have 2vaw € U. From lemma 1.16(ii1) we have,
d(uavpfw + wavpu) = d(uw)avpw + uk(a)vpw + uad(v)Bw + uavk(B)w +
uavpfd(w) + d(w)avBu + wk(a)vpu + wad(v)Pu + wavk(B)u + wavpd(u).
Putting 2vaw for u we get,

d(Q2vaw)avpw + wavB(2vaw)) = dQvaw)avfw + 2vawk(o)vpw +
2vawoad(v)pw + 2vawavk(B)w + 2vawavBd(w) + d(w)avp2vaw +

wk(a)vp2vaw + wad(v)B2vaw + wavk(B)2vaw + wavpd(2vaw)

L.S. = dQ2(vawBvaw + wavpvaw))

= 2d(vawBvaw) + 2d(wa(vpv)aw) (using (*))

= 2[d(vaw)B(vaw)+(vaw)k(B)(vaw) + (vaw)Bd(vaw) + d(w)a(vBv)
aw + wk(a)(vfviaw + wa (d(v) Bv + vk(B)v + vBd(v))aw +
wa(vBv)k(a)w + wo(vBv)ad(w)

=2[d(vaw)Bvaw+vawk(B)vaw +vawpd(vaw)
+d(w)avBvawtwk(a)vpvaw+  wad(v)Bvaw +  wavk(Byjvaw  +

wavBd(v)aw + wavBvk(a)w + wavBvad(w)]
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Also R. S. = 2 [d(vow)avpw + vawk(a)vpw + vawad(v)pw +
vawavk(B)yw + vawavBd(w) + d(w)avBvaw + wk(a)vBvaw  +
woad(v)Bvaw +wavk(p) vaw + wavBd(vaw)]

Comparing both sides and using the condition (*) we get

2[d(vaw)Bvaw - d(vaw)Bvaw + vawBd(vaw) -wavBd(vaw) +
vawk(B)vaw + wavBd(v)aw + wavBvk(a)w + wavBvad(w) -
vawk(a)vpw-vawad(v)Bw -vawavk(B)w -vawavpd(w)] = 0.

Since M is 2- torsion free , we have

(vaw - wav)Bd(vaw) + (wav- vaw)Bd(v)aw + (wav-vaw)k(a)vpw +
(wav - vaw)Bvad(w) =0

That implies (vaw - wav) B(d(vaw) - d(v)aw -vk(o)w - vad(w)) = 0
Therefore , [v, W] ,B@, (v, w)=0.

Similarly we can show that ¢, (v, w)B[v, w], =0

3.8 Lemma : If M is a semiprime ['-ring , then ¢,(u, v) € Z(U) .
Proof : We have from Lemma 3.7

(@, (u, v).[u, v], 1= @.(u, v)Blu, v],- [u, v],p@,(u, v) =0

Therefore , @, (u, v) € Z([U, U].) = Z(U). [by Lemma 1.27]

3.9 Lemma : If M is a semiprime ['-ring, then

o, (%, y)Bwruv];=0forallx,y,w,u,v € Uand o,B,y,0 el
Proof: We have ¢,(u,v)B[u,v] =0

Thatis 0=wB@,(u, v)y[u, v],, forallwe U

=@, (u, v)Bwylu, v] , since ¢, (u,v)eZ(U)=2Z(M).
Replacing u by u+x we have

0= g, (utx, v)Pwylutx, v],

=@, (U, VIPwylu, V], + ¢, (x.v)pwrlu.v], +¢, @, IBwrx, v, + ¢,(x, VIBwrlx, v],
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Then we have ¢, (X, v)Bwy[u, v], =—¢,(u, vV)Bwy[x, v],
Now @, (X,V)Bwylu,v],ypye, X v)pwylu,v],

= -, (WV)Bwy[x.v],ypy @, (X,v)Bwylu,v],

==, (WV)BWY[x, V], Y0, (X,V)yppwy[u,v],

=0 forpeU, yel.
HenCe wa (XDV)BW?/[HDV]Q = O
Similarly replacing v by v+y we can show that ¢, (X, y)Bwy[u,v], =0
Again replacing a by a+d we get

¢a+5 (X: Y)BWV[U, V]u+8 = O
Then

0= g, y)Bwru, vl, + ¢, yI)BWr{u, vl; + 9;(Xy)Bwrlu,v], + @5 (x, y)Bwru, vl
=@, (x, )pwylu,v]s + ¢;(x, y) Bwylu,v],
Hence ¢, (x, ) wylu,v]; = —@5(x, ) Bwylu,v],

NOW (Da (X,Y)Bwy[u,V]SﬂmUCDa (X:Y)Bwy[u:V]S
= _(05 (X,Y)Bwy[u,V]uﬂmUCDa (X:Y)Bwy[u:V]S
=0,meU; unel.

Therefore, @, (X,y)pwylu,v]; =0,

Similarly we can show that [wV],Bwyp, (x,y)=0,

3.10 Lemma :If M is a semiprime ['-ring then [uv]Bwye, (x,y) =0

Proof : We have from Lemma 3.7, [w,v] B¢, (u,v)=0

That1s 0 = [u,v] Be, (u,v)yw, forallw € U
=lu,v] Bwye,(u,v), since ¢_(u,v) € Z(M)
replacing u by u+x, we get [u+x,v]pwyp, (utx,v) =0
That implies
0= [uv],Bwrp,(0y) + [x.v] Bwyp, (0v) + [uV], Bwye, (x.v) + [x.V], Bwre, (x,V)
=[x V].Bwye, (W) + [wv] pwyp, (X,v)
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Hence we have, [X,V] Bwyo,(u,v)=-[uVv] Bwyp, (X,v)

Now, [x,v],Bwy@, (w,v)upn[x,v] Bwyg, (u.v)
= - [wvl Bwye, (x,viupn[x.v],pwy g, (u.v)
= - [wVl, Bwypup, X V)NXV], fwyp, (u.v)
=0

Therefore , [X,V] Bwye, (u,v) =0
Similarly replacing w by w+y we have [v,w] B¢, (X,y) =0
Proceeding in the same way replacing o by oatd we have

[v.wl];f0,(xy)=0.

3.11 Lemma : [f M is a semiprime ['-ring , then

(1) @u(x, y)Blu, vls =0 (i1) [u, vIsp @u (X, y) .
Proof : We have , [u, v]sPwy [u, v]sBwy @ (x, y) =0.

Hence, ¢@u(x, y)Blu, v]sywnoux, y)B[u, v]s=0.
Therefore, ¢, (x,y)Blu,v]; =0.

Similarly we can prove that [u, v]; B¢, (x,y)=0.

3.12 Definition : Let M be a I'-ring . An element x of M i1s called
nilpotent if for some yel’, there exists a positive integer n such that (xy)"x

= (XYXY........ yxy)x =0.

3.13 Definition: An ideal A of a I'- ring M is called nilpotent if (AI')"A
= (AI'...'AT')A = 0, where n is the least positive integer.

3.14 Lemma (|21], Lemma 3.1) Let M be a semiprime [ -ring. Then M

contains no nonzero nilpotent ideal.
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3.15 Theorem : Let U ¢ Z(M) be a Lie ideal of a semiprime ['-ring M
and d : M — M a Jordan k- derivation on U .Then d is a k- derivation on
UofM.

Proof : Let Uz Z(M) .

Now @, (v.W)B2¢,(v.w) = ¢,(v,W)B(¢,(v.W)+¢,(v.W))

= 0,(v,W)B(@, (V. W) - ¢,(W,V))

= @, (v,w)B(d(vaw)-d(v)aw-vk(a)w - vad(w) - d(wav) + d(w)av + wk(a)v + wad(v))
= @, (v,w)Bld(vaw - wav)Hwad(v)-d(v)aw)+Hwk(a)v - vk(a)w)+(d(w)av - vad(w)]
= @, (v, WB(([v,w],) + [W.d(V)], + [W. V], T [d(W),V],)

= @, (v.W)Bd([v,w], )+ @, (v,W)B[W.d(V)], + @, (V. W)B[W, V], + @, (v,W)B[d(W), V],

=, (v.w)Bd([v,w],)-¢, (v.w)B[d(V).W],- @, (v.W)B[v.W], - @, (v, W)B[v.d(W)],

=@, (v,w)Bd([v,w],) by Lemma 3.11. Hence we have

20, (v, W)Bop,(v.w) =@, (v,Ww)Bd([v,w],) ............. (i)
Also

@, (v,w)B[p.al, t[p.ql, By, (v.w) =0

That means 0 = d(¢, (v,w)B[p.ql, +[p.q],Be, (v,w))

=d(@, (v,w)B[p.al, t @, (v.w)k(B)[p.al, + @, (v.w)Bd([p.q],)+d([p.ql, B¢, (v,w)+
[p.al.k(B)¢, (v,w)+[p.,q] Bd(e, (V,W))

=d(p, (v,w)B[p.al, +¢, (v,w)Bd([p.ql,)+d([p.al,)Be, (v.w)*+[p.ql Bd(¢, (v,W))

Now ¢, (v,w) € Z(M) implies ¢, (v,w)Bd([p.ql,) = d([p.ql,)Be, (v.w)
Hence we have,
d(o, (v,w)BIp.ql, +2¢,(v,w)Bd([p.ql, )+ [p.ql,Bd(®, (V,w))=0

That implies 2¢,(v,w)pd([p.q],) = - d(¢,(v.w))B[p.al, - [p.a],Bd(¢, (v,w)) .....(i1)
Hence we obtain 4@, (V,.W)B@,(V,w) =220, (v,W)B@,(V,W)

20, (v;W)BA([v.wl,)
=-d(p,(v,w))B[v,w],-[v.w] Bd(¢, (v,wW))
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Thatis 4¢,(v,w)pe, (v,.W)Bg,(V.w)

= - d(p, (v.W)B[v.w],B, (v.W) - [v,w],Bd(p, (v.W))B @, (V.W)

But [v, w],Be, (v, w) =0 implies d(¢, (v, w))B[v, w],pe, (v, w) =0
Also [v,w],Bd(¢,(v.w))pe,(v.w) = 0,

since d(¢,(v,w))eM ,forall vweM,ael™

That implies 0 =4¢,(v,w)Bp,(v,w)B¢,(v,w)

Therefore,

o, (v, W)Bo, (v,W)Bep, (v,w) =0, since M is 2- torsion free

Since semiprime ['- ring contains no nonzero central nilpotent element,

we obtain ¢, (v, w) = 0. Therefore, d is a k- derivation.
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Left centralizer on Lie ideals in prime and Semiprime
Gamma rings

Let U be a Lie ideal of a 2-torsion free prime gamma ring M such that
uou € uforallue Uand a € I'. If T : M—M is an additive mapping
satisfying the relation T(uou) = T(u)au , then we prove that T(uav) =
T(uw)av for all u, v € U and a € I'. Also this result is extended to

semiprime ['-rings.

4. Introduction : An extensive generalized concept of classical ring set
forth the notion of a gamma ring theory. As an emerging field of
research, the research work of classical ring theory to the gamma ring
theory has been drawn interest of many algebraists and prominent
mathematicians over the world to determine many basic properties of
gamma ring and to enrich the world of algebra. The different researchers
on this field have been doing significant contributions to this field from
its inception. In recent years, a large number of researchers are engaged
to increase the efficacy of the results of gamma ring theory over the
world.

Nobusawa [48] has shown that I'- ring is more general than a ring.
Bernes[7] weakened slightly the conditions in the definition of I'-ring in
the sense of Nobusawa. Bernes, kyuno [41] , Luh [43], Ceven[13, 14] ,
Haque and Paul [35, 36, 37, 38, 39] and others were obtained a large
numbers of important basic properties of I'-rings in various ways and
determined some more remarkable results of I'-rings. Note that during
the last some decades many authors have studied Lie ideals in the context
of prime and semiprime rings and I'-rings. We start with the following

necessary definitions.
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4.1 Definition : An additive mapping T : M — M 1s called a left (right)
centralizer if T(aab) = T(a)ab ( resp. T(aab) = aaT(b)) for all a, b € M
anda €T

The goal of this chapter is to extend the results of [33] on Lie ideals in

prime and semiprime [ - rings.

Left Centralizers of Prime Gamma Rings:

4.2 Lemma : Let M be a I'-ring and U be a Lie ideal of M such that uou
e UforallueUanda e I' . If T: M — M is an additive mapping
satisfying the relation T(uoau) = T(u)au for allu € U and a € T", then
(a) T(uav + vau) = T(w)av + T(v)au
(b) T(uavpu + upvaou) = T(u)avPu + T(u)pvau
(¢) T(uavPu) = T(w)avpu
(d) Twavpw + whvau) = T(w)avpw + T(w)Bvau, for all u, v, w € U and
ael.
Proof : By the definition of Lie ideal U ,uou € Uforallue U ;a e I'.
Thus we have ufv + vpu = (u+v)p(ut+v) —upu—vpv € U forallu, v e U
and B € I'. Therefore ,
T(uav + vBu) = T((u+v)a(utv)) — T(uau) — T(vav)

= T(u+v)a(ut+v) — T(u)au — T(v)av

= T(wou + T(w)av + T(v)au + T(v)av — T(u)au — T(v)av

= T(w)av + T(v)au
Hence T(uav + vou) = T(u)av + T(v)ou ...... (1)
Since upv+ vpu € U forallu,ve Uand f € I', we replace v by (ufv
+ vPu) in relation (1) , we obtain,
T(ua(upv + vpu) + (uPv + vpu) au) = T(w)a(ufv + vpu) + T(upv +
vBu)au

Left side implies T(uaufv + uavBu + ufvou + vfuou)
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= T(uavBu + ufvou) + T(uau)pv + T(v)Buau

= T(uavPu + ufvau) + T(u)aupv + T(v)Buou

And Right side implies T(u)aupv + T(w)avpfu + T(u)Bvau + T(v)Buoau
Hence we have

T(uavBu + upvau) = T()avpu + T(u)pvou ........ (i1)

By using the condition (*) we have

2T(uavpu) = 2T(wavpu which implies T(uavfu) = T(u)avpu

Putting u = utw in the relation (ii1) we obtain,

T((utw)avB(utw)) = T(u+rw)avp(utw)

Left side implies T(uavpu + uavpfw + wavBu + wavBw)

= T( uavpw + wBvou ) + T(uavBu) + T(wavpw)

= T( uavpw + wBvou ) + T(u)avPu + T(w)avpw

Right side implies T(w)avpu + T(w)avpw + T(w)avpu + T(w)avpw
= T(wavpu + T(wavpw + T(w)avpu + T(w)avpw

Therefore , T( uavpfw + wpvau ) = T(w)avpw + T(w)avpu.

4.3 Definition: We define By(u, v) = T(uav) — T(u)av , for all u, v e U

ando eI

4.4 Remark : It is clear that B,(u, v) is an additive mapping such that
Boy(u, v) + Byg(v, u)=0.

4.5 Remark : It is also clear that T 1s a left centralizer if and only if B,(u,

v) =0.

4.6 Lemma : Let M be a 2-torsion free ['-ring and U be a Lie ideal of M
such that uau € U forallu e Uanda e I'. If T : M — M is an additive
mapping satisfying the relation T(uou) = T(u)au for allu € Uand a € T,
then By(u, v) Bwy[u, v]s = 0 and [u, v]spwy By(u, v) =0 .
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Proof : First we shall compute A = T(uavpfwyvou + vaufwyudv) in two
different ways.
A = T(ua(vBpwyv)du + va(upfwyu)ov)
= T(w)avpwyvou + T(v)aupwyuov ....... (4) [using4.2(c) ]
Again A = T(uavBwyvou + vauPpwyudv)
= T(uavBwyvou + vouPwyuav)
= T((uav)Bwy(vou) + (vau)Bwy(uov))
= T(uov)Bwyvou + T(vau)Bwyudv .....(5) [using 4.2(d) ]
Comparing (4) and (5) we obtain,
0 = T(uav)Bwyvou + T(vau)Bwyudv - T(u)avpwyvou - T(v)aupwyudv
= (T(uav) - T(w)av)Bwyvou + (T(vau) - T(v)au)wyudv
= By(u, v)Bwyvdu + By(v, u)fwyudv
= By(u, v)Bwyvou - By(u, v)pwyudv
= By(u, v)Bwy (vou — udv)
= By(u, v)Bwy[v, uls
Hence we have Bgy(u, v)Bwy[u, v]s=0

Similarly we can easily prove that [u, v]spwy By(u, v) =0.

4.7 Theorem : Let U be a Lie ideal of a 2-torsion free semiprime I'- ring
such that uau € U forallu € Uand a € T' . If T: M—M be an additive
mapping satisfying the relation T(uou) = T(u)ou forallu e U, a € T,
then T(uav) = T(u)av forallu,ve Uanda € I'.

Proof : If U is a commutative Lie ideal of M , then by Lemma 2.16, U
Z(M). Therefore by Lemma 4.2 (a) we have 2T(uav) = 2T(u)av .

Thus by 2-torsion freeness of M we have T(uav) = T(u)av.

If U 1s not commutative, then U ¢ Z(M) . In this case we have from
Lemma 4.6 By(u, v)Bwy[u, v]s=0

Putting u =utx for all u € U, we have

0= Ba(u+X: V)BW'Y[U+X, V]8
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=By (u, v)Bwy[u, v]s + By(u, v)pwy[x, v]s + Bua(X, V)BWY[u, v]s + Bu(X,
v)Bwylx, vis

= By(u, V)Bwy[x, v]s + Bo(X, V)BWY[u, v]s

Hence By(u, v)Bwy[x, v]s =- Bu(X, v)Bwy[u, v]s

Now Bg(u, v)Bwy[x, v]s nzy Bo(u, v)Bwy[x, v]s

= - Bo(u, v)Bwy ([x, vlsuzy Bu(x, v)) Pwy[u, vs

=0 [using the 2™ part of Lemma 4.6]

Therefore by Lemma 1.29 we have

Bo(u, v)Pwy[x, v]s =0 forallx e U .

Similarly using v =v+y , we obtain By(u, v)Bwy[x, y]s=0, forall v e U.
Againg using Lemma 1.29 we have By(u, v) =0 or [x, v]s = 0.

If [x, v]s=0, then U is commutative , a contradiction. Therefore B,(u, v)
= 0.

4.8 Corollary: Let M be a 2-torsion free prime I'-ring and T: M — M be

a Jordan left centralizer , then T is a left centralizer.

Left Centralizers of Semiprime Gamma Rings

4.9 Lemma: Let U be a commutative Lie ideal of a 2-torsion free
semiprime ['-ring M. Then U ¢ Z(M).

Proof : Foru € U and x € M, we have [u, [u, x].]s = 0.

Replacing x by xyy we have 0= [u, [u, xyy].]p

= [u, xy[u, y]a+ [u, xJoyy Ip

=[u, xy[w, ylalp + [0, [u, X]ayy Ip

=xy [, [, ylalp + [w x]py [u, y]o+ [u, [u, x]a ]g vy + [u, x]ay[u, ylp
= [u, xJgy [w, y]oa + [u, x]oy[u, ¥]p

=2[u, x]qy[u, y]p [ using condition (*)

Then [u, x]qy[u, y]p =0.

Now replacing y by yox we have 0 = [u, x]qy[u, yox]p
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= [u: X](I’YYS [u: X]B + [u: X](I’Y[u: Y]BSX
= [u, X]oyyd[u, x]p , for all y in M.
Since M is semiprime, [u, X], = 0. Therefore, U < Z(M).

4.10 Lemma : Let U be a Lie ideal M satistying the condition (*) . Then
T(U)= {x € M : [x, M]r ¢ U} is both a I'- sub ring and a Lie ideal of M
such that U < T(U).

Proof: Since U is a Lie ideal of M, we have [U, M]r < U . Thus U c
T(U) . Also we have [T(U), M]r c U c T(U) . Hence T(U) is a Lie ideal
of M. Suppose that x, y € T(U) , then [x, m],, [y, m], € U, forall m e
Manda e T.

Now [xay, m|p = xa[y, m]s + [x, m]gay € U implies xay € T(U).

4.11 Lemma : Let U ¢ Z(M) be a Lie ideal of M .Then there exists a
nonzero ideal K = MI'[U, U]r-I'M of M generated by [U, U]r such that
[K, M]rc U.

Proof : First we have to prove that if [U, U] =0, then foralla e U ;a €
I" we have [u, [u, x],]¢ =0 for all x € M. Then using the proof of Lemma
4.9 we obtain U < Z(M), a contradiction. Thus let [U, U]y # 0. Then K =
MI'[U, U]rI'M is a nonzero ideal of M generated by [U, U]r. Let x, y €
U;m e Mand a, B € I', we have [x, yPm],, y, [x, m], € U < T(U).
Hence by Lemma 4.10, we have

[x, y]pm = [x, yPm]. — yB[x, m], € T(U).

Also we can show that mB[x, y], € T(U) and therefore , we obtain [[U,
Ur], M]r c U. Thatis, [[[[X, Y]o, m]a, Sle t]le € U, forallm, s, t e M
anda e I'.

Hence [[x, y]. ams — ma[x, y], as + [s, m]y a[X, y]o = [SO[X, Y]o, M]o t]e €

T(U). Since [x, y], amas, so[X, Y] [S, m]ea[x, Y]« € T(U).Thus we
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have [ma[x, y],0s, t],€ U, forallm,s,t €e Mand a € I' . Hence [K, M]r
c U.

4.12 Lemma : Let U ¢ Z(M) be a Lie ideal of a 2-torsion free semiprime
I-ringand a € U . IfaaUPa = {0} for all a, f € T, then aca = 0 and there
exists a nonzero ideal K = MI[U, U]tI'M of M generated by [U, U]y
such that [K, M]r < U and KI'a =al'K = {0}.
Proof : If aaUBa= {0} forall a, B € I', then aa[a, adm],Ba = 0 for all m
€ M and 6 € I'. Therefore,
0 = ac(acadm — admaa)Pa

= acacadompPa — acadmaaPa

= aciadaompPa — acadmpPaca
Since acada = 0 , we have (aca)dmP(aca) = 0 and hence aca = 0 for
semiprimeness of M. Now we obtain aa[kya, m],fuaa = 0 for all k € K;
m eM ;u eUanda, B, u e I'. Therefore,
0 = aa(kyapm — mukya)Buca

= ackyaumpuoa
Thus we have 0 = aokyaump[k, a],aa

= aokyaump(kya — ayk)aa

= aokyaumpkyaca - aokyaumpaykoa

= (aokya)ump(aykaa) [ by using aca = 0]

= (aokya)ump(ackya) [using (*) ]
That implies (ackya) =0, Since M is semiprime.
Thus we find that (ack)I'MI (ack) = 0.
Hence aok =0 for all k € K . That is ack = {0}.

Similarly we have kaa = {0}.

4.13 Lemma : Let Uz Z(M) be aLicideal of Manda,be U;a,pf e T.
(1) If aaUPa = {0} , then a = 0.
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(i) If aoU = {0} (Uaa=0),thena=0

(ii1) If uvau € U for all u € U and aocUBb = {0} , then aob = 0 and boa =
0.

Proof (i): By Lemma 4.12, we have Koa = MI'[U, U];I' Maa = {0} and
aca=0, forall x,y e Mand a € I' We have,

0=[a, x]., al,Pyoa

= [ aox — xaa , a], Byoa

= [aox, a], Byoa - [xaa, a], Byoaa

= aoa[x, a], Byoa + [a, a], axPyaa — xa[a, a], fyaa - [X, a], aaPyaa

= aa[x, a], Byoa - [x, a], cafyaa

= ao(xya — ayx) Pyoa + (xya — ayx)oafyaa

= aaxyafyaa — acayxpyoa + xyacaPyaa — ayxoafyoa

= 2aoxyaPyoaa [since aca = 0]

Thus aaxyafyoa =0

Then we have aoxyaPycaadxya =0

Using (*) we have (aaxya)Byo(aaxya) = 0.

Since M is semiprime , we have aaxya = 0.

And then we have a = 0 for semiprimeness of M.

(i1) If aaU = {0} , then aaUPa = {0} for all § € I".Thus by (1) we have a =
0. Similarly if Uga = {0} then a= 0.

(i11) If aaUPb = {0}, then we have (bya)aUB(bya)= {0}.

Hence by (1)

bya=0, for all y € I'. Also aybaUBayb = {0} implies ayb = 0.

4.14 Theorem : Let U be a lie ideal of M such that uou € U for every u
e Uand a € I'. If T: M — M is an additive mapping satisfying the
relation T(uau) = T(u)au for all u € U and then, T(uav) = T(u)av for all

uwveUanda el

62



Proof: If U is a commutative Lie ideal of M then by Lemma 4.9 we have
U < Z(M). Thus from Lemma 4.2(a), 2T(uav) = 2T(u)av and hence
T(uav) = T(u)av. If U is not commutative , then U ¢ Z(M) . In this case,
we have from Lemma 4.6

Bo(u, v)Pwy[u, v]s =0

Linearising we obtain,

0 = By(utx, v)pwy[utx, v]s

= By(u, v)Pwy[u, vls +Bd(u, v)Bwylx, v]s +Bu(x, v)Bwy[u, v]s +Ba(x,
v)Bwylx, vis

= By(u, V)Bwy[x, v]s + Bo(X, V)BWY[u, v]s

Then By(u, v)Bwy[x, v]s = - Bu(X, v)Bwy[u, v]s

Now By(u, v)Bwy[x, v]s uzaBq(u, v)Bwy[x, v]s

= - Bu(u, v)Bwy([x, v]s nzi Bu(x, v))Bwrylu, v]s

=0, forall z € U . Hence By(u, v)Bwy[x, v]s =0.

Similarly linearizing v we obtain By(u, v)pwy[x, y]s =0, forally € U.
Hence the similar proof of the Theorem 2.1 in [35], we obtain the

required result.

4.15 Corollary : Let M be a 2-torsion free semiprime I'- ring and T: M

— M be a Jordan left centralizer , then T is a left centralizer.
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Jordan Generalized k-Derivation on Lie Ideals of
Semiprime Gamma Rings

In view of k-derivations and Jordan k-derivations, Jordan generalized k-
derivation has been introduced. In this paper we have worked on Jordan
generalized k-derivations on Lie ideals of semiprime gamma rings.We
have characterized Left centralizers and Jordan left centralizers and going
through this way we have proved that every Jordan generalized k-

derivation on a Lie ideal U of M is a generalized k-derivation on U of M.

5. Introduction: The notion of a I'-ring has been developed by
Nobusawa [48] as a generalized form of a ring and then Bernes
generalized I'-rings as a new type, which 1s known as 'y -ring.

The notion of derivation and Jordan derivation in I'-rings have been
introduced by Sapanci and Nakajima [58]. Ceven [13] , [14] has studied
left derivations and Jordan derivations. Haldar and Paul [28], [29]
extended the results of Ceven 1n Lie ideals . Awtar [6] extended some
results on derivations in Lie ideals. In this chapter we extend some results

on Lie ideals of semiprime I'- rings.

5.1 Definition : Let M be a gamma ring , U a Lie ideal of M and let k : M
— M be an additive mapping . An additive mapping F : M — M is called
a generalized k-derivation if there exists a k-derivation d : M — M such
that F(uav) = F(u)av + uk(a)v + uad(v), forallu,ve Uand a € I'. And
if F(uau) = F(u)au + uk(a)u + uad(u) holds for allu € Uand a € I, then

F is said to be a Jordan generalized k-derivation on U of M.

5.2 Theorem : Let M be a 2-torsion free semiprime I'-ring and U be a Lie

ideal of M such that uvou € U for all u € U and aa € T'. If U 1s
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commutative and F(u)av = F(v)au ; uad(v) = d(u)av, then yu(u, v) =0,
foralluuve U;a el.

Proof : Since U is commutative and F(u)av = F(v)au, uvad(v) = d(u)av.
From lemma 2.7, we have

F(uav + vou) = F(u)av + uk(a)v + uad(v) + F(v)au + vk(a)u + vad(u)
Then F(2uav) = 2F(uw)av + 2uk(a)v + 2uad(v) [ since vad(u) = d(u)av
=uad(v)]

= 2(F(uw)av + uk(a)v + uad(v))

That is, F(uav) — F(w)av — uk(a)v — uad(v) =0

And hence we have y,(u, v) =0.

5.3 Lemma : If M is semiprime ['- ring and U & Z(M) is a Lie ideal of M
, then [u, v],Bwyye(u, v) =0

Proof : We have from Lemma 2.11, if M is a ['-ring and U is a Lie ideal
of Mthen forallu,v, we Uand a, B,y € I', yo(u, v)Bwy[u, v], =0 .
Then [u, v]Bwyy.(u, v)oxulu, vlapwyy.(u, v) = 0, for all x €
U.

Then from Lemma 3.5(i) we have [u, v]Bwyy,(u, v) = 0.

5.4 Lemma : If M is semiprime, then yq(u, v)pwy[x, y]s=0 .
Proof : From Lemma 2.11, we have
yo(u, v)Bwy[u, vl =0, forallu,v, we Uand a, B,y € '
Then, y,(utx, v)Bwy[u+x, v], =0, forall x e U
That implies
0 = wo(u, VIBwy[u, vla + Wu(x, VIPWy[u, v]a + Wo(u, V)BWY[x, v]o + Wu(X,
V)Bwylx, vl
= Vo(X, V)Pwy[u, v]u + wo(u, VIPWy[X, V]
Then wy,(u, v)BWY[X, V]e = - Yo(X, V)BWY[U, V]y
Hence  yo(u, V)PWy[X, v]a ppn Wo(u, V)PWY[X, V]
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= - Wo(X, VIBWY([u, V]a upn Wo(u, V))PWY[X, V]
=0,forallpe U ;pnel.

From the semiprimeness of M, we have

Yo(u, v)Bwy[x, v]e = 0.

By similar replacement of v by v+y ,y € U we have
Va(u, vV)Bwylx, y]« = 0.

Again replacing a by a+06 we have

0 =Wars (U, V) PWy [X, y] ass

= Yo(u, VIPWY[X, ylo + Ws(u, VIBWY[X, ylo + wa(u, vV)Bwylx, yls + ws(u,
vIBwylx, yls

= ys(u, VIBWY[X, ylo T Wa(u, vV)Bwy[x, yls

Then wo(u, VIBWY[X, yls = - ws(u, V)BWY[X, y]a
Now yo(u, V)Bwy[X, yls pun we(u, v)Bwy[X, y]s

= - Ws(u, VIBwWy( [X, ylo mum yo(u, v)) Bwylx, yls
=0,forallue Uand pu,n el

Since M is semiprime, yq(u, v)Bwy[x, y]s = 0.

5.5 Lemma (|21], Lemma 3.2) The center of a semiprime I'-ring does

not contain any nonzero nilpotent element.

5.6 Theorem : Let M be a Jordan generalized k- derivation on a Lie 1deal
U of a 2- torsion free semiprime I'- ring M . If F(u)av = F(v)au and
uad(v) = d(u)av hold for all u, v e Uand a € T", then F 1s a generalized
k- derivation on U of M.

Proof : Let F be a Jordan generalized k- derivation on U of M. Suppose
that F(u)av = F(v)au and vad(v) = d(u)av.

From Lemma 2.11, we have wy(u, v)Bwy[u, v], =0, forallu, v, w e U

anda, B,y eT.
Now 2[we(u, v), yly BWB [wa(u, v), yl,
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=2 (Wo(u, V) vy = yYWa(u, v) ) PWPB [Wo(u, v), yl,

= Vo (0, VIY(2YBW)B [wa(u, v), ]y - 2yyw(u, V)BWB[vu(u, v), vl

=0, since 2yPw € U ; yu(u,v) e Mforallu,v,y,we U, a, B,y e IT.
Since M 1s semiprime and 2- torsion free, [yq(u, v),y], =0, forallu, v,y
eUandao,y el

That implies yu(u, v) € Z(U) = Z(M), the centre of M.
Now let 6 € I' . Then we have

Wo(u, V)O[X, y],BWBW(u, v)9[x, y], =0 [from Lemma 5.3]

Since M 1s semiprime , we have yq(u, v)o[X, y],=0.............. (1)
Similarly we can prove that [X, y],0yu(u, v)=0 ........ (11)

Again 2y,(u, V)oyu(u, v) = Ye(u, V)o(Yu(u, v) + YU, v))

= W1, V)O(Wo(U, V) - Yo(V, 0))

= Yo(u, v)o(F(uav) — F(uw)av — uk(a)v —uad(v) — F(vau) + F(v)au
+vk(a)u + vad(u))

= VYa(u, V)0 (F([u, v]o) — [u, V]k)

=yt VI (F([U, Vo) = walt, ¥) 3 [0, Vi)

Here k(a) € T" implies yq(u, v)oF([u, v])

Hence 2wyu(u, v)oy(u, v) = yu(u, v)o (F([u, v]y) ...... (111)

From (i) and (i1) we have

0 =wyo(u, VIO[X, yl, + [x, y],0Wu(u, v)

= F(ya(u, v)3[x, yl; + [X, y],0ya(u, v))

= F(yo(u, v)) 8[x, yly + wa(u, VIKO)[x, ]y +wu(u, v)od([x, yly) + F([x,
Y1owa(u, v) +[x, yLk(©@)wa(u, v) + [x, y,0d(y(u, v))

= F(yo(u, V))O[X, yly + wo(u, V)od([x, yl,) + F([x, y]l)owu(u, v) + [x,
y1,8d(wa(u, v))

= F (yo(u, v)O[x, yl; + Wa(u, VIOF([x, yl,) + d([x, y]1)0 wu(u, v) + [X,
y1,8d(wa(u, v))

= F([x, y]1)0 wo(u, v) + F([x, y]o) wo(u, v) + [x, ylyod(ya(u, v)) + [x,
ylyod(we (u, v)) [using the given condition]

= 2F([x, y1)3 wa (u, v) + 2[X, y],0d(Wa(u, v))
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Since M is 2- torsion free , we have
F([x, y])oyu(u, v) + [X, y],0d(ye(u, v)) =0
Then, F(1x, yI)8Wa(u, V) = - [x, yh3d(Wa(u, v)) -....(iv)
From (ii1) and (iv) we obtain
2\|](1(u: V) S\V(I(u: V) 8\|](1(u: V) - \lj(l(u: V)SF([H: V]a) S\V(I(u: V)
- - \lj(l(u: V)8 [Xn Y]"{Sd(\lj(l(u: V))
That implies yq(u, v)0 yo(u, v)o ye(u, v) = 0, since M is 2-torsion free.

Hence it follows that y,(u, v) is a nilpotent element of the I'-ring M. But
we know that the centre of a semiprime ['- ring does not contain any

nonzero nilpotent element. Therefore yy(u, v) =0, forallu,ve U;a eI

For removing the condition F(u)av = F(v)au and vad(v) = d(u)av from
the theorem 5.6, we start the following:

We know that an additive mapping T : M — M 1s called a left (right )
centralizer of M if T(uav) = T(w)av (= uaT(v)) for allu,ve M ;and a €

I'. Also T i1s called a left (right ) centralizer on U of M if T(uav) =

T(uw)av (=uaT(v)) foreveryu,ve Uanda e I'.

5.7 Theorem : Let M be a 2-torsion free semiprime I'-ring satisfying the
condition (*) and let U be a Lie ideal of M such that uau € U for every u
e Uand a € I'If F is a Jordan generalized k-derivation on U of M with
an associated k-derivation d on U of M, then F is a generalized k-
derivation on U of M.

Proof : We have F is a Jordan generalized k-derivation on U of M, then
there exists a k- derivation d on U of M such that F(uou) = F(u)au +
uk(a)u + uad(u) , foreveryue Uand a € T'.

Let T=F-d

Then T(uou) = F(uou) — d(uou)

= F(u)au + uk(a)u + vad(u) — d(u)ou — uk(a)u — vad(u)
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= (F(u) — d(u))au

= T(u)au

Hence T 1s a Jordan left centralizer on U of M. By theorem 4.14 T is a
left centralizer on U of M.

That 1s T(uav) = T(u)av forallu,ve Uand a e T.

Therefore F(uav) = T(uav) + d(uav)

= T(w)av + d(u)av + uk(a)v + ud(a)v

= F(u)av + uk(a)v +uad(v) .
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Bi-Derivations in Lie ideals of Gamma Rings

In this chapter we have studied the trace of symmetric bi-derivations on
Lie 1deals of prime and semiprime gamma rings. Using some conditions
on the trace d of a bi-derivation D on a Lie ideal U of a gamma ring M,we

have proved that either U is commutative or d is zero.

6. Introduction : We know that a subset U of M 1s a Lie ideal of M if [u,
m], € Uforeveryue U me Manda € I'. If U is a Lie ideal of M such
that uou € U for every u € U , a € I', then we have uav + vou € U.
Also uav — vau € U. Hence we conclude that 2uav € U for every u, v
eUand ael.

An additive mapping d : M — M is called a derivation if d(xay) = d(x)ay
+ xad(y) forevery x,y e Mand a, B € I

A mapping D( , ) : MxM —M is called symmetric bi- additive, if it is
additive in both the arguments and  D(x, y) = D(y, x) forallx,y e M.
Then the mapping d: M — M defined by d(x) = D(x, x) 1s called the
trace of D. A symmetric bi-additive mapping is called symmetric bi-
derivation if D(xay, z) = D(x, z)ay + xaD(y, z) for all x, y, z € M and «
e I'. We denote Z(M) as the centre of a ['-ring M.

In [61] ,Vukman proved that the existance of a nonzero symmetric bi-
derivation D in R, a prime ring of characteristic not two, with the
property D(x, x)ax = xaD(x, x) , x in R, forces R to be commutative. In
[3] Argac and Yenigul obtained the similar results on Lie ideals of R. In
[49], Mehmet Ali, Ozturk, M .Sapanci ,M. Soyturk and Kyung Ho Kim
extended all of [61] to the ideal of prime gamma rings. In [44], Maksa
worked on the trace of symmetric bi-derivation. In [9], J.Bergen, 1. N.
Herstein worked on Lie ideals and derivations of prime rings. In [31],

[32] I. N. Herstein worked on Lie structure of an associative ring. In [52],
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Posner has worked on the commutativity of a ring with derivation. In
[33], Nadeem ur Rehman and Abu Jaid Ansari has worked on the trace of
bi-derivation on a ring.

The objective of this paper is to obtain some general results of prime and
semiprime gamma rings M considering various conditions on Lie ideals

of M involving the trace of the symmetric bi-derivation D.

6.1 Definition : Let M be a I'- ring . Then a mapping D: MxM — M is
called a bi- additive mapping if it is additive in both the arguments. It is

called symmetric if D(x, y) = D(y, x) forall x,y e M.

6.2 Definition : Let M be a I'- ring and D : MxM — M be an additive
mapping and U be a Lie ideal of M.Then D is called a bi - derivation on
U of M if one of the following relations hold.

(1) D(uav, w) = D(u, w)av + uaD(v, w)

(i1) D(u, vaw) = D(u, v)aw + vaD(u, w) forallu,v, we U ;a eI

Note : If D is symmetric , then these two relations are equivalent .

We need the following Lemmas for the next results.

6.3 Lemma : Let M be a 2 torsion free prime I'- ring and U be a non zero
Lie i1deal of M such that uau € U forallue U. Let D: MxM — M be a
symmetric bi-derivation and d be the trace of D such that

(1) d(U)=0,then Uc Z(U) ord =0.

(i) d(U) < Z(U) , then U < Z(U) or d = 0.

6.4 Lemma : Let M be a 2-torsion free prime I'-ring satisfying the
condition (*) and U be a Lie ideal of M such that uau € U for allu € U
and a € I'. If D: MxM—M is a symmetric bi-derivation with trace d such

that [d(u), v], € Z(M) for allu, v e U, a € [',;then U € Z(M) ord = 0.
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Proof : Suppose that U & Z(M). We have given that [d(u), v], € Z(M)
forallu,ve Uanda e I'.
Replacing v by 2vBw ; w € U, B € I, we get
[d(u), 2vBw], = 2vB[d(u), W], + 2[d(u), V].fWw € Z(M)
That implies vB[d(u), w], + [d(u), V],fw € Z(M)
Then we have 0= [d(u), v],fw + vB[d(u), W], , m], , for every m € M.
= [d(w), v]sB[w, m], + [[d(w), V]e m],Bw + vB[[d(w), W]s, m], + [v,
m].B[d(u), W],
— [d(u), VsBIw, ml, +[v, m],B[d(w), wl,
Now 1n particular replacing m by w we obtain
[v, whBld(u), wl, = 0
Replacing v by 2vox ; x € U ,0 € ['we get
0 = [2vox, w],B[d(u), W]«
= (2v3[x, W], +2[v, wh,3x) Bd(w), wl,
= 2v3[x, WI,B[d(w), Wl + 2[v, wh,xBld(), Wl
=2[v, w],0xB[d(u), w]«
And hence [v, w],0xB[d(u), w], =0
Since M is prime , we have
[v, w]y =0 or [d(u), w], =0
If [v, w]ly = 0, then [U, U]y = 0 implies U < Z(M), contradicts our
assumption.
Hence [d(u), w], =0.
Nowlet A={veU:[v,w],=0}and B= {u € U : [d(u), w],=0}.
Hence A and B are the additive subgroup of U such that AUB = U . By
Brauer's trick, we have either U= A or U=B.If A=U , then [v, w], =0
for all v, w € U and then U < Z(M), a contradiction. On the other hand 1f
U =B, then [d(u), w], = 0 for all u, w € U implies d(u) ¢ Cu(U) = Z(M).
Then by Lemma 6.3 we get d = 0.
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6.5 Theorem : Let M be a 2-torsion free prime I'-ring satisfying the
condition (*) and U be a Lie ideal of M such that u € U implies uau € U
forall o € I'. If D: MxM — M is a symmetric bi-derivation with trace d
such that [d(u), u],=0forallu e U, a € I'. Then either U € Z(M) ord =
0.
Proof : Suppose that U ¢ Z(M) .
Here we have [d(u), u],=0,forallue Uanda € T
Linearizing we have
0 = [d(utv), utv],
= [d(u) + d(v) + 2D(u, v) , utv],
= [d(u), uls + [d(V), u]s + 2[D(u, v), u]o + [d(u), V]a + [d)(V), V]o + 2[D(u,
V), V]
=[d(v), ula + 2[D(u, v), u]s + [d(w), V] + 2[D(u, v), V]«
Replacing u by — u we get
0= [d(v), -u]u + 2[D(-u, v), -u]o + [d(-u), v]a + 2[D(-u, v), v]a
= [d(u), V] - [d(V), u]s + 2[D(u, v), u]s - 2[D(u, v), v],
Combining these two expressions we have
0 =2[d(u), v]¢ + 4 [D(u, v), u]s
Using 2-torsion freeness of M we get
[d(u), v]¢ + 2 [D(u, v), u]o =0
Replacing v by 2vpw we have
0 =[d(u), 2vBw], + 2 [D(u, 2vBw), u]y
= 2vB[d(w), w]o + 2[d(u), v]ospw + 4[D(u, v)Pw, u], + 4[vPD(u, w), u],
= 2vB[d(w), Wl + 2[d(u), v]pw + 4[D(u, v), u]spfw + 4D(u, v)B[w, u]s +
4vB[D(u, w), ulo + 4[v, u]opD(u, w)
= 2vp([d(w), wlo +2[D(u, w), uly ) + 2([d(w), v]a +2[D(u, v), uls )pw +
4D(u, v)B[w, ula + 4[v, u]opD(u, w)
= 4D(u, v)B[w, u]o + 4[v, u]«fD(u, W)
Then D(u, v)B[w, u]y + [v, u]ofD(u, w) =0
In particular putting w = u we obtain
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0= [v, u]lpD(u, u) = [v, uop d(u)
Replacing v by 2vyw, w € U ; we have
0 = [2vyw, u],B d(u)
= 2vy[w, u],Bd(u) + 2[v, u],ywpd(u)
= 2[v, u]aywBd(u)
And hence [v, u]aywBd(u) =0
Since M 1s prime, w € U, we have [v, u],= 0 or d(u) =0.
If [v,u]q =0, then [U, U] = 0 implies U c Z(M), a contradiction.
Hence d(u) = 0. Then D(u, u) = 0.
IfuezZ(M)and w ¢ Z(M) then ut+w, u-w ¢ Z(M).
Thus D(utw, u+w) = 0 and D(u-w, u-w) = 0.
Adding these two relations we have,
0 = D(ut+w, utw) + D(u-w, u-w)
= D(u, u) + D(u, w) + D(w, u) + D(w, w) + D(u, u) - D(u, w) — D(w, u)
+ D(w, w)
= 2d(u) + 2d(w). Then
0 =2d(U) + 2d(U) = 4d(U). Therefore, d(U)= 0.
Since U ¢ Z(M) , hence d = 0.

6.6 Theorem : Let M be a 2-torsion free prime I'-ring satisfying the
condition (*) and U be a Lie ideal of M such that u € U implies uau € U
for all a € I'. Suppose that D: MxM — M is a symmetric bi-derivation
with trace d such that d([u, v],) -[d(u), V], € ZM) for allu,ve U a €
I'. Then either U € Z(M) or d = 0.

Proof: Suppose that U ¢ Z(M) . We have

d(Ju, v]o) — [d(u), V]o € Z(M) forallu,ve U ;a el

Replacing v by v+w in the above expression, we obtain

d(u, vtw]y) — [d(w), v+w]q

=d[u, v]e + d[u, W], + 2D(Ju, v]a , [u, w]o) — [d(u), V] — [d(u), W],
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= d([u, v]o) —[d(u), v]o + d([u, W]) — [d(u), W]o + 2D([u, v]s, [u, W]o) €
Z(M)

This implies that 2D([u, v]e, [u, w]q € Z(M).

Hence D([u, v]q, [u, w],) € Z(M).

In particular putting w = v we find that

D(Ju, v]o, [u, v]o) € Z(M) , forallu,ve Uanda € I".

That means d([u, v],) € Z(M) and so [d(u), V], € Z(M).

By Lemma 6.4, since U ¢ Z(M) , we have d = 0.

6.7 Theorem : Let M be a 2-torsion free prime I'-ring satisfying the
condition (*) and U be a Lie ideal of M such that uau € U for allu € U,
a € I'. Suppose that D: MxM—M is a symmetric bi-derivation with
trace d such that d((uov),) — [d(u), V], € Z(M) for all u, v € U, a €
I".Then either U € Z(M) or d = 0.

Proof : Suppose that U ¢ Z(M). We have

d((uov),) — [d(u), v]e € Z(M) forallu,ve U, ael.

Replacing v by v+w we get

d((uo(v+w))e) — [d(u), viw],

= d(uov), + d(uow), + 2D(uov, uow), — [d(u), v], — [d(u), W], € Z(M)

= d(uov), — [d(u), v]¢ + d(uow), — [d(u), w], + 2D(uov, uow), € Z(M)
That implies 2D(uov, uow), € Z(M) and hence D(uov, uow), € Z(M).
In particular putting w = v we get

D(uov, uov) € Z(M) .

That means d(uov) € Z(M), forallu,ve Uanda e I'.

In view of our hypothesis we have [d(u), v], € Z(M) .

Then by Lemma 6.4, since U ¢ Z(M) , we have d = 0.

6.8Theorem : Let M be a 2-torsion free prime I'-ring satisfying the
condition (*) and U be a Lie ideal of M such that uau € U for allu € U,
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a € I'. Suppose that D: MxM—M is a symmetric bi-derivation with
trace d such that (d(u)ov), —[d(u), v], € Z(M) forallu, ve U, a e I .
Then either U € Z(M) or d = 0.
Proof : Suppose that U ¢ Z(M).
We have (d(u) o v),— [d(u), v] € Z(M), forallu,ve Uanda e I'.
This implies that (d(u)ov), — [d(u), V],
= d(u)av + vad(u) — d(u)av + vad(u)
=2vad(u) € Z(M).
And then vad(u) € Z(M).
Hence [vod(u), m]p=0,forallm e M;u,ve Uanda, B eT.
Then va[d(u), m]g + [v, m]gad(u) =0 ........... (1)
Replacing vby 2wyv; w € U ;v € I', we have,
0 =2wyva[d(u), m]g + [2wyv, m]gad(u)
=2wyva[d(u), m]p + 2wy[v, m]gad(u) + 2[w, m]gyvad(u)
= 2wy(va[d(u), m]s + [v, mlgod(w) + 2[w, mlgrvod(w)
= 2[w, m]gyvod(u) [ From (1)]
Hence [w, m]gyvad(u) =0
Putting mdéx for m (x € M), we get
0 = [w, mox]gyvad(u) = [w, m]pdxyvad(u) + mo[w, x]gyvad(u)
= [w, m]pdxyvod(u)
Since M 1s prime, we have [w, m]g=0 ord(u)=0
If [w, m]g =0 then U c Z(M), a contradiction.
Hence we have d(u)=0, forallu € U.

Since U ¢ Z(M) , we have d = 0.
6.9 Theorem : Let M be a 2-torsion free prime I' -ring satisfying the

condition (*) and U be a Lie ideal of M such that uau € U for allu € U,

a € I'. Suppose that D: MxM—M is a symmetric bi-derivation with
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trace d and g : M—M is any mapping such that [d(u),v]s - [u, g(V)]« €
Z(M) forallu,v € U, a € I""Then either U € Z(M) or d = 0.
Proof : Suppose that U ¢ Z(M).
Given that [d(u), v]o — [u, g(V)]e € Z(M) , forallu,ve U,a eI
Replacing u by u + w in the above expression, we get
[d(utw), v]o — [utw, g(V)]a € Z(M)
[d(u) + d(w) + 2D(u, w), V]s - [utw, g(V)]a
=[d(w), v]o + [d(W), V]a + 2[D(u, W), V]« = [0, g(V)]a = [W, g(V)]a € Z(M)
Using the hypothesis we have
[2D(u, w), v]q € Z(M). Then [D(u, w), v], € Z(M).
In particular putting w = u, we find that
[D(u, u), vl = [d(u), V] € Z(M).
From Lemma 6.4 since U & Z(M) , we have d = 0.

6.10 Theorem : Let M be a 2-torsion free prime I -ring satisfying the
condition (*) and U be a Lie ideal of M such that uoau € U for allu € U,
a € I".Suppose that D : MxM—M is a symmetric bi- derivation with
trace d such that (d(u)od(v)),— [d(u), V], € Z(M) forallu,ve U,a eI
Then either U € Z(M) or d = 0.
Proof : Suppose that U ¢ Z(M) .
Given that (d(u)od(v)),— [d(u),v], € Z(M), forallu,ve U,a el
Replacing v by v+w in the above expression, we have
(d(w) od(v+w))e— [d(u),v+w],
= (d(w) 0 d(v))s H(d(u) 0 d(W))a + (d(u) 0 2D(v, W))s - [d(u), V] — [d(w),
wl. € Z(M)
That implies 2(d(u) o D(v, w)) and hence (d(u) o D(v, w)) € Z(M).
In particular putting w = v we find that (d(u) o D(v, v)) € Z(M) .
So (d(u) od(v)) € Z(M).
Using the hypothesis we have [d(u), v], € Z(M).
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From Lemma 6.4, since U ¢ Z(M), we have d=0.

6.11 Theorem : Let M be a 2-torsion free prime I' -ring satisfying the
condition (*) and U be a Lie ideal of M such that uau € U for allu € U,
a € [".Suppose that D: MxM—M is a symmetric bi-derivation with trace
dand g : M — M be any mapping such that d(u)av —uag(v) € Z(M) for
allu,v e U;a eI Then either U € Z(M) ord = 0.

Proof : Suppose that U ¢ Z(M) .Given that

d(u)av —uag(v) € ZM) foralluve U,a e T.

Replacing u by u+w ; w € U, we get,

d(utw)av — (utw)ag(v)

= d(u)av + d(w)av + 2D(u, w)av — uag(v) — wag(v) € Z(M).

That implies 2D(u, w)av € Z(M) and so D(u, w)av € Z(M).

In particular putting w = u we get d(u)av € Z(M).

Then [d(uw)av, m]p=0forallu,ve U;a, B el ;me M.

That 1s d(u)a[v, m]g+ [d(u), m]gav =0

Replacing v by 2vyt we get

0 = d(w)a[2vyt, m]g+ [d(u), m]ga2vyt

= 2d(w)avy[t, m]s + 2d(w)a[v, m]gyt + 2[d(u), m]govyt

= 2(d(wavy[t, m]p + (d(w)a[v, m]s + [d(u), m]pav)yt)

=2 d(w)avy[t, m]p

And hence d(wavy[t, m]p=0, forallu,v,te U;meM;a,B,yel.
Since M is prime d(u) € M, from [52, Lemma 2.10 |, we have d(u) =0
or [t, m]p=0

If[t, mlp=0,forallt e U; m e M, then U c Z(M) , a contradiction.
Hence we have d(u) =0 .Then from Lemma 6.3 since U ¢ Z(M), d = 0.

6.12 Theorem : Let M be a. 2-torsion free prime I' -ring satisfying the
condition (*) and U be a Lie ideal of M , such that uau € U for allu € U,
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a € I'. Suppose that D: M x M — M is a symmetric bi- derivation with
trace d such that d(uav) —d(w)av — uad(v) € Z(M) forallu,ve U, a e T
Then either U € Z(M) or d = 0.
Proof : Suppose that U ¢ Z(M). Given that d(uav) —d(u)av — vad(v) €
Z(M) for all u, v € U; a € T'. Replacing u by utw we get

d((utw)av) — d(utw)av — (u+w)ad(v)

= d(uav) +d(wav) +2D(uav, wav) — d(u)av — d(w)av — 2D(u, w)av —
uad(v) — wad(v) € Z(M)

That implies 2D(uav, wav) — 2D(u, w)av € Z(M)
Hence D(uav, wav) — D(u, w)av € Z(M).

In particular putting w = u we get

D(uav, uav) — D(u, u)av = d(uav) — d(u)av € Z(M) ....... (1)

Again replacing v by v+w we have

d(ua(v+w)) — d(w)o(v+w)

= d(uav) + d(uaw) + 2D(uav, uow) — d(u)av — d(u)aw € Z(M)

That implies 2D(uav, uaw) € Z(M) and so D(uav, uaw) € Z(M)

In particular putting w = v we get D(uav, uav) = d(uav) € Z(M).

Using relation (1) we have d(u)av € Z(M) forallu,ve U, a e T.

Then [d(w)av, m]p=0,forallu,ve U;me M;a,B eI.

1.e., d(uw)alv, m]g + [d(u), m]pav="0

In particular putting m = d(u) , we get d(u)a[v, d(u)]p=0{forallu, v € U;
meM;a pfel.

Now replacing v by 2vyw we get

0= dwa[2vyw, d(uw)]p

= 2d(@palv, dwlgrw + 2dWavy[w, dwls

= 2d(wavy[w, d(w]p

Then d(u)avy[w, d(u)]g =0

Also d(w)avy[d(u), wlp=0 ....... (2)

Then zéd(u)avy[w, dwW]g=0 ;ze U,d eI
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Again replacing v by 2zov in (2) , we get

0 = d(w)o2zdvy[d(u), wlp

That implies d(u)ozdvy[d(u), wlp=0 ....(3)

Combining (2) and (3) and using (*) we have

0 = (d(u)az — zad(u))ovy[d(u), w]B

= [d(u), z]Ovy[d(u), w]p, forallu, v, w e U; o, B, v, 0 € I.
Since M 1s prime , we have [d(u), z], = 0 or [d(u), w]g =0
In both cases we have d(u) c Z(U) = Z(M).

Then from Lemma 6.3(i1) we have d = 0.

6.13 Theorem : Let M be a 2-torsion free prime I' -ring satisfying the
condition (*) and U be a Lie ideal of M such that uau € U for allu € U,
a € I'. Suppose that D : M x M — M is a symmetric bi- derivation with
trace d such that d(uav) — vad(u) - d(v)au € Z(M) forallu,ve U ;a €
I'. Then either U € Z(M) or d = 0.

Proof : Suppose that U ¢ Z(M). Here we have

d(uav) — vad(u) — d(v)au € Z(M), for allu,ve U, a e T

Replacing u by u+w we get

d((u + w)a v) — vad(utw) — d(v)a(u + w)

= d(uav) + d(wav) + 2D(uav, wav) - vad(u) — vad(w) — 2vaD(u, w) —
d(v)au — d(v)aw € Z(M)

Then 2D(uav, wav) — 2vaD(u, w) € Z(M)

That means D(uav, wav) — vaD(u, w) € Z(M)

In particular putting w = u, we obtain that D(uav, uav) — vaD(u, u) €
Z(M).

That implies d(uav) — vad(u) € Z(M)

Using hypothesis we have d(v)au € Z(M) forallu,ve U,;a eI

Then [d(v)au, m]g=0forallm e M .

That implies d(v)a[u, m]g + [d(V), m]gau =0
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Replacing u by 2uyw we find that

0= d(v)a[2uyw, m]g + [d(V), m]ga2uyw

= 2d(v)auy[w, m]p + 2d(v)a[u, m]gyw + 2[d(V), m]pauyw

= 2(d(v)ofu, mJ + [d(v), mlpuyyw + 2d(v)ouy[w, m];

= 2d(v)auy[w, m]p

Hence d(v)ouy[w, m]g=0

Since M 1s prime and d(v) € M, we have d(v) =0 or [w, m]gp=0

If [w, m]g =0, then Uc Z(M) ; a contradiction . Hence we have d = 0.

6.14 Theorem : Let M be a 2-torsion free prime I -ring satisfying the
condition (*) and U be a Lie ideal of M such that uoau € U for allu € U,
a € I'. Suppose that D: M x M — M is a symmetric bi-derivation with
trace d such that d(uav) —uad(v) —vad(u) € Z(M) for allu, v e U; a €
I".Then either U € Z(M) or d=0.

Proof: Suppose that U ¢ Z(M). We have

d(uav) —uad(v) — vad(u) € ZM) forallu,ve U,a € T

Replacing u by u+w, we have

d((utw)av) — (u+w)ad(v) — vad(u+w)

=dwav + d(wav) +2D(uav, wav) — uad(v) — wad(v) — vad(u) — vad(w)
—2vaD(u, w) € Z(M)

Then 2D(uav, wav) - 2vaD(u, w) € Z(M)

And so D(uav, wav) - vaD(u, w) € Z(M)

In particular putting w = u we have

D(uav, uav) - vaD(u, u) = d(uav) — vad(u) € Z(M)

Using the hypothesis we have uad(v) € Z(M)

Then [uad(v), mJp=0forallu,ve U;meM;a,BeT.

Using similar process of the proof of last theorem we get d = 0.
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6.15 Theorem : Let M be a 2-torsion free prime I'-ring satisfying the
condition (*) and U be a Lie ideal of M such that uau € U for allu € U,
a € I'. Suppose that D: M x M — M is a symmetric bi- derivation with
trace d such that d([u, v]y) —[d(u), V]e- [u, d(V)]¢ € Z(M) forall u, v e U,
a € I'. Then either U € Z(M) or d = 0.

Proof : Suppose that U ¢ Z(M) . We have given that

d([u, v]o) —-[d(w), V]e- [u, (V)]s € Z(M) forall u,ve U, a el
Replacing u by u+w we get

d(Jutw, v],) — [d(u+w), v]e- [utw, d(V)],

= d([u, v]o) + d([w, v]s) +2D([u, vla, [W, v]e) — [d(w), v]a - [d(W), V]« -
2[D(u, w), v]o — [u, dV)]a — [W, d(V)]a € Z(M)

That implies 2D([u, v]q, [W, V]o) — 2[D(u, W), v]s € Z(M)

Using the hypothesis we have [u, d(v)], € Z(M).

Therefore [d(v), u], € Z(M).

Hence from Lemma 6.4, we have d = 0.

Results on Semiprime I'- rings

6.16 Theorem : Let M be a 2-torsion free semiprime I'-ring and U be a
Lie ideal of M such that uau € U for allu € U, a € I'. Suppose that D:
MxM — M is a symmetric bi-additive mapping with trace d such that
d(Ju, v]e) = [u, v]le € Z(M) forall u, v € U, a € I'.Then either U € Z(M)
ord=0.

Proof : We have d([u, v]y) — [u, V], € Z(M) forallu,ve U; a eT.
Replacing u by u+w we get ,

d([utw, v]e) — [utw, V],

=d([u, v]y) + d([w, V]s) + 2D([u, V]s, [W, V]e) = [u, V]e — [W, V]s € Z(M).
That implies 2D([u, v]a, [W, V]s) € Z(M). And hence D([u, v],, [W, V]o) €
Z(M).
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In particular putting w = u we get D([u, v],, [u, v]o) = d([u, v]y) € Z(M).
Hence from the hypothesis [u, v], € Z(M)
That implies [u, v]r < Z(M). Therefore, U < Z(M).

6.17 Theorem : Let M be a 2-torsion free semiprime I'-ring and U be a
Lie 1deal of M such that uou € U for all u € U, a € I".Suppose that D:
MxM — M is a symmetric bi- additive mapping with trace d such that
d((uov)y) — (uov), € ZM) forallu,v e U;a e I'. Then U € Z(M) .
Proof : Suppose that U ¢ Z(M) . We have

d(uov), — (uov), € Z(M), forallu,ve U,a e I'.

Replacing u by u+w we get

d(utw o v), — (utw o v),

= d(uov), + d(wov), + 2D(uov, wov), — (uov) + wov), € Z(M)

That implies 2D(uov, wov), € Z(M) and hence D(uov, wov), € Z(M).
In particular putting w =u we obtain, D(uov, uov), = d(uov), € Z(M).
Using hypothesis we have (uov), € Z(M), forallu,ve U;a e T.
Replacing u by 2vfu we have

(2vBu 0 V), = 2vP(uov), + 2(vov)Pu = 2vp(uov), € Z(M)

Then vB(uov), € ZM)=Z(U), forallu,ve U a,Bel.

Therefore, [vBf(uov),,w],=0,forallu,v,we U;a, B eT.

0 = VBl(uov)uy Wl + [V, WI,B(uov),

= [v, w],B(uov), [since (uov), € Z(M) =Z(U) ]

Again replacing u by 2udéw we obtain

0 =[v, w],2(udwov),

=2[v, w],B((uov)sw +ud[w, v],)

=2[v, w],B(uov)sw + 2[v, w],Bud[w, v],

=2[v, w],Bud[w, v],

That implies [v, w],fud[w, v],=0. And then [v, w],BUd[v, w],=0

By Lemma 4.13 we get U < Z(M), a contradiction.
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6.18 Theorem : Let M be a 2-torsion free semiprime I'-ring satisfying the
condition (*) and U be a Lie ideal of M such that uau € U for allu € U,
a € I'. Suppose that D: M x M — M is a symmetric bi-additive mapping
with trace d such that d(Ju, v],) — (uov), € Z(M) forallu, ve U, a €
I"'Then U < Z(M) .

Proof : Suppose that U ¢ Z(M) . Given that

d(Ju,v]e) — (uov), € ZM) foralluve U, a eT.

Replacing u by u+w we get

d(Jutw, v]y) — (utw 0 v),

=d([u, v]e) + d([w, V]s) + 2D([u, V]s, [W, V]s) — (WOV), — (WOV), € Z(M)
Using the hypothesis we have 2D([u, v],, [W, V]o) € Z(M)

In particular putting w = u we find that 2D([u, v],, [u, v]e) = 2d([u, v],) €
Z(M).

Then d([u, v],) € Z(M).

Again using hypothesis (uov), € Z(M) , forallu,ve Uanda € I'.

From the last steps of proof of theorem 6.17 we have U < Z(M).

6.19 Theorem : Let M be a 2-torsion free semiprime I -ring and U be a
Lie ideal of M such that uau € U for allu € U, a € I'. Suppose that D:
MxM — M is a symmetric bi- additive mapping with trace d such that
d((uov)y) — [u, v]le € Z(M) for all u, v € U, a € I".Then either U € Z(M)
ord=0.

Proof : We have given that d((uov),) — [u, v]q € Z(M) for allu, v € U; a
el

Replacing u by utw we have d((u+w o v),) — [utw, V]

= d((uov),) + d((wov),) + 2D(uov, wov), — [u, V], — [W, V], € Z(M)

That implies 2D(uov, wov), € Z(M) and hence D(uov, wov), € Z(M) .

In particular putting w =u we get

D(uov, uov), = d(uov), € Z(M), forallu,ve Uanda e I'.
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Using hypothesis we have [u, vla € Z(M) .
That means [U, U]r < Z(M) . Therefore by Lemma 2.15 we get U <
Z(M).

6.19 Theorem : Let M be a 2-torsion free semiprime I'-ring and U be a
Lie 1deal of M such that uou € U for all u € U, a € I".Suppose that D:
MxM — M is a symmetric bi- additive mapping with trace d such that
2(uov), =d(u) - d(v) forallu,v € U,a € I''Then U € Z(M) .

Proof : Suppose that U ¢ Z(M).

We have 2(uov), =d(u)—d(v), forallu,veUanda €T

Replacing u by u+v in the above expression , we obtain

2(utvov), =d(utv)—dv)

Computing both sides we have 4vav = 2D(u, v) + d(v) , forallu, v e U
anda e I'.

Replacing u by — u we get 4vav =2D(-u, v) + d(v)

Combining these two expressions , we have 8vav = 2d(v)

That implies 4vav = d(v).

Putting u = v in our hypothesis we have 4vav = 0.Then 2(uov), = 0.

And so (uov), =0 ,foralluveU;ael.

Replacing u by 2ufw we have ,

0 = upw o0 V), = 2(uov)fw + 2uP[w, v], = 2uB[w, V], .

Hence uf[w, v], = 0. That implies

0 = (uov)fw + up[w, v]e = up[w, vl .

Hence [w, v]oyup[w, v],=0forallu,v, we Uand o, B,y € I

Since M is semiprime , we have [w, v], = 0 .That is [U, U]r = 0.

Therefore U — Z(M) , a contradiction.

6.21 Theorem : Let M be a 2-torsion free semiprime I'-ring and U be a
Lie 1deal of M such that uou € U for all u € U, a € I".Suppose that D:
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MxM—M 1is a symmetric bi-additive mapping with trace d such that
(d(w)od(v)y) — (uov), € Z(M) for all u,v € U, a € [""'Then<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>