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ABSTRACT

The thesis is concerned with generalizations of some important and interesting

properties of topological and bitopological spaces in a span of four chapters.

The first chapter constitutes an introduction and study of (i) a weak form of
strong continuity, (i1) RC- continuity, (ii1) perfect continuity, (iv) contra- precontinuity
and (v) contra continuity in bitopological spaces . It thus generalizes the corresponding
concepts in topology introduced by Donchev, Jafari and Noiri and studied by them. In
addition, generalizing the works of Ekici and Noiri, as investigation of relationships
between graphs and contra O -precontinuous functions in bitopological spaces has also

been made in this chapter.

In the second chapter the problems of O -compactness of topological spaces has
been generalized to the corresponding properties in bitopological spaces. Some important
properties of ¢ -compactness in bitopological spaces have been established, which are
generalizations of results of park, Srivastava and Gupta. Also, a characterization of O -
Hausdorff bitopological spaces has been made and some properties of such spaces have

been established, generalizing results of Srivastava and Gupta.

The third chapter introduces the notions of weakly [3-continuous functions in

tritopological spaces and investigates several properties of these functions, thus
generalizing the corresponding works in topological spaces by Khedr, Al-Areefi and

Noiri and in bitopological spaces by Tahiliani.

In the fourth chapter the idea of density topology has been introduced for
tritopological spaces and has been used to prove certain theorem involving some
separation properties. The concept of density of sets in a tritopological spaces and the
notion of its trioclosure generalizing topology have been introduced and fruitfully used

for study of separation properties.



CHAPTER ONE

ON CONTRA 5 -PRECONTINUOUS FUNCTIONS IN
BITOPOLOGICAL SPACES

1.1 Introduction

In this chapter, we introduce the notion of contra o -precontinuous functions in
bitopological spaces. Further we obtain a characterization and preservation theorems for
contra O -precontinuous functions in bitopological spaces.

The notion of contra-continuous functions (Donchev 1996) , perfect continuous functions
(Noiri 1984a) , contra precontinuous functions (Jafari and Noiri 2002) or RC-
continuous functions due to (Donchev and Noiri 1999) plays a significant role in general
topology. In this, chapter we introduce and study the notion of weak form of strong
continuity , RC-continuity, perfect continuity, contra- precontinuity and contra continuity
in bitopological spaces . Also investigated the relationships between graphs and contra
O -precontinuous functions in bitopological spaces , which is a generalization of Ekici

and Noiri (2006).

1.2. Preliminaries

In this chapter, the spaces (X,71,72) and (X,7) denote respectively the bitopological

space and topological space.



Let (X,71,72) be a bitopological space and let A be a subset of X, then the closure and

interior of A with respect to 71 are denoted by iCI(A) and ilnt(A) respectively , for

1=12.

Definition 1.2.1: A subset A of a bitopological space (X,71,72) is said to be

(1) (1,j)- regular open (Banerjee (1987)) if A = ilnt(jCI(A)) where i j, i,j = 1,2.

(i1) (1,)- regular closed (Bose (1981)) if A =iCI(jInt(A)) where i#j, 1, = 1,2.

(ii1)  (i,))- preopen (Jelic (1990)) if A — iInt(jCI(A)) where i# j, i,j = 1,2.

(iv)  (1,))- semi-open (Bose (1981)) if A — jCI(ilnt(A)) where i#j, 1, = 1,2.
Remark 1.2.2: From above definition 1.2.1, we have (i)=(iii) and (ii)=(iv) but
converse are not true. For these we give the following example.

Example 1.2.3: Let X = {ab,c,d} with topologies 71 = {X,¢,{a},{bc}},

T>={X, ¢ ,{b},{c.d}} and A = {c,d} be a subset of X. Then jCI(A) = {a,c,d} and

iInt(jCI(A)) = {a}. Therefore iInt(jCI(A)) & A. Hence (iii) does not imply (i).
Again, let A = {a)b} be a subset of X. Then jInt(A) = {b} and
1Cl(jInt(A)) = {b,c,d}. Therefore iCl(jInt(A)) & A. Hence (iv) does not imply (ii).

Definition 1.2.4: Let (X,71,72) be a bitopological space and A be a subset of X, then

(1) the union of all (i,j)- regular open sets of X contained in A is called (i,j)- O -
interior of a subset A of X and is denoted by (i,j)- O -(Int(A)) (Velicko

1968).



(i)
(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

A is called (i,j)- O -open if A = (i,j)- O -(Int(A)) (Velicko 1968).

The complement of a (i,j)- O -open set is called (i,j)- O -closed .
Equivalently, A is (i,j)- O -closed iff A = (i,j)- & -(CI(A)) where (i,j)- O -
(Cl(A) = {xEX: ANU= @, Uis (i,j)- O -open, x € U}

A subset A of X is said to be (i,j)- O -preopen if A < ilnt((i,j) O -CI(A)). The
family of all (i,j)- O -preopen sets of X containing a point X € X is denoted
by (i,j)- 0 PO(X,x) (M. et al.1982, R and M 1993).

The complement of a (i,j)- O -preopen set is called (i,j)- O -preclosed
(El-Deeb et al. 1983) .

The intersection of all (i,j)- O -preclosed sets of X containing A is called the
(ij)- O -preclosure of A and is denoted by (i,j)- O -p(CI(A)).

The union of all (i,j)- O -preopen sets of X contained in A is called the (i,j)-
O -preinterior of A and is denoted by (i,j)- O -p(Int(A)) (Raychoudhuri and
Mukherjee 1993).

A subset U of X is said to be (i,j)- O -preneighbourhood (Raychoudhuri and
Mukherjee 1993) of a point X €EX if 3 a (i,j)- O -preopen set V such that
XevcuU.

The family of all (i,j)- & -open (resp. (i,j)- O -preopen, semi-open, (i,j)- O -
preclosed , (i,j)- closed ) sets of X containing a point X € X is denoted by
(ij)- O O(X,x) (resp. (i,j)- O PO(X,x), (i,j)- SO(X,x) , (i,j)- O PC(Xx),

(laJ)'C(XaX))



Definition 1.2.5: A function f: (X,71,72)—>(Y,0 1,0 ») is said to be

(1) (i,j)-perfect continuous (Noiri 1984 a, N and P. 2007) if f _l(V) is

Ti-clopen in X for each O i.open set V of Y, for i=1,2.

(i1) (i,j)-contra-continuous (Dontchev 1996) if f _I(V) is Ti-closed in X for

eachO i.openset Vof Y, for 1,=1,2.

(iii)  (i,j)-RC- continuous (Dontchev and Noiri 1999) if [ 1 (V) is (i,j)- regular
closed in X for each O i.openset V of Y, fori#j, i,j = 1,2.

(iv)  (i,j)-contra-precontinuous (Jafari and Noiri 2002) if f _I(V) is (i,j)- pre-
closed in X for each O i.openset V of Y, fori#j, i,j = 1,2.

(v) (1,j)-strongly- continuous (Levine 1960) if f(iCl(jInt(A))) < f(A) for every

subset A of X .

1.3. Contra O -Precontinuous Functions in Bitopological Spaces

Definition 1.3.1: A function f:(X,71,72)—(Y,0 1,0 2) is said to be (i,j)-contra- O -

precontinuous at a point X € X if for each O ;. closed set V in Y with f(x) € V, 3 a
(i,j)- O -preopen set U in X such that X €U and f(U) < V and fis called (i,j)-contra- O -
precontinuous if it has this property at each point of X .

Theorem 1.3.2: The following are equivalent for a function f: (X,71,72) — (Y, 0 1,0 2):



6)) fis (i,j)-contra- & -precontinuous ;
(ii)  the inverse image of a O . closed set, i= 1,2 of Y is (i,j)- O -preopen ;

(iii)  the inverse image of a O i.open set, i= 1,2 of Y is (i,j)- O -preclosed ;
Proof: (i) =(ii) . Let V be a O . closed set, i = 1,2 in Y with X € f_l(V) . Since
f(x) € V and f is (i,j)-contra- & -precontinuous , 3 a (i,j)- O -preopen set U in X
containing x such that f(U) c V . It follows that X €U c f 1 (V) . Hence f _l(V) is

(i,j)- O -preopen.

(1i1)) = (i) . Let Ube a O i.openset,i=1,2 of Y . Since Y\U is O i. closed , then by (ii)
it follows that 1 Y\U) =X\ f— 1 (U) is (i,j)- O -preopen. Therefore f 1 (U) is (i,))-
O -preclosed in X .

(ii1)) = (1) . Let X€X and V be a O i.closed set, i = 1,2 in Y with f(x) € V . By (iii) ,
we have f_l(Y\V) = X\f_l(V) is (i,j)- O -preclosed and so f_l(V) is (i,j)- O -
preopen . Let U = f _I(V). We obtain that X €U and f(U) < V . This shows that f is

(i,j)-contra- & -precontinuous.
Remark 1.3.3: The following diagram holds:

(1,j)-strongly- continuous

U

(1,j)-perfect continuous

U



(1,))-RC- continuous

U

(1,j)-contra-continuous

U

(1,j)-contra-precontinuous

U

(i,j)-contra- & -precontinuous
None of these implications are reversible. For these we give the following examples.

Example 1.3.4: Let, X = {a,b,c,d} and 71 = {X, & ,{a},{b,c}}, T2 = {X, #,{b},{c.d} }.
Let, £:(X,71,72) = (X,T1,72) be the identity function. Then f is (i,j)-perfect continuous

but not (i,j)-strongly- continuous. For, let A = {a.b} be a subset of X and f(A) = A, then
f(iCI(jInt(A))) Z f(A).
Example 1.3.5: Define the topologies on X = {a,b,c} and Y = {p,q} respectively by

T = {X,¢,{b}.{ac}}, T2 = {X,,{a},{b},{ab},{bc}} and O = {Y,&,{p}},
02 =1{Y,¢,{q}}. Let, £:(X,71,72) —> (Y,0 1,0 2) be a map defined as f(a) = p,

f(b) = q, f(c) = p. Then f is (i,j)-RC- continuous but not (i,j)-perfect continuous , since

1(p) and f(q) are clopen in 77 but not in 7>.

Example 1.3.6: Define the topologies on X = {a, b, ¢} and Y = {p, q, r} respectively by



Ti = {X,#,{ch,{b, ¢}, T2 = {X,¢,{a},{c},{a, c}} and O = {Y,&,{p}},
O2={Y,,{p, q}. Let, (X, 71,72) — (Y,0 1,0 2) be a map defined as f(a) = p,

f(b) = q, f(c) = r. Then f is (i,j)-contra- continuous but not (i,j)-RC- continuous , since
then f!(p,q) is not regular closed in X.

Example 1.3.7: Define the topologies on X = {a, b, ¢} and Y = {p, q, r} respectively by

71 = {X,@,{ab},{b}}, T2 = {X,&,{a},{c},{ac}} and O = {Y,&,{p}},
O0:2=1{Y,¢,{r}}. Let, £:(X,71,72) — (Y, 0 1,0 2) be a map defined as f(a) =p, f(b) =

q, f(c) =r. Then f'is (i,j)-contra-precontinuous but not (i,j)-contra- continuous, since then

f1(p) is not 7i -closed in X.

Example 1.3.8: Let R be the set of all real numbers, F.~be the countable extension
topology on R i.e, the topology with subbase 71U T2, where 77 is the usual topology
of R and 72 is the topology of countable complements of R and O be the
discrete topology of R and P, = O > = T . Define a function fi( R, P, P,) —

(R, 0 1,0 ») as follows

] 1 if x is rational
)= 3 if x is irrational



Then f is (i,j)-contra- O -precontinuous but not (i,j)-contra-precontinuous since {1} is

closed in (R, 0 1,0 2) and f_l({l}) = & where & is the set of rationals, is not
(i,))-preopen in (R,771,72).

Definition 1.3.9: A function f:(X,71,72) — (Y, O 1,0 ») is said to be almost (i,j)-contra-

precontinuous (Ekici 2004) if 1 (V) is (i,j)- preclosed in X for each (i,))- regular open
setVinY.

Remark 1.3.10: Almost contra-precontinuity is a generalization of contra-precontinuity.
Almost contra-precontinuity and contra- & -precontinuity are independent. The following
examples prove it.

Example 1.3.11: If we take the function f such as in Example 1.3.4 then f is (i,j)-contra-
O -precontinuous but not almost (i,j)-contra-precontinuous.

Example 1.3.12: Let, X = {abcde}, 71 = {X, ¢,{b},{d},{bd}},
T2 = {X,¢,{a},{c},{ac}} and Y = {abecd}, O = {Y,&,{a},{ab},{ac}},
02 = {Y,,{b},{bc},{bd}}. If we take a function f:(X,71,72)—>(Y,O0 1,0 2)

defined as f(a) =a, f(b) = b, f(c) = ¢, f(d) = d, f(e) = d. Then f is almost (i,j)-contra-

precontinuous but not (i,j)-contra- & -precontinuous.



For topological spaces, Noiri and Ekici stated that if A and B be subsets of a space (X,7)

and if A € 0 PO(X) and B € & O(X), then A N Be & PO(B) (Raychoudhuri and
Mukherjee 1993), then we can state:

Lemma 1.3.13: Let A and B be subsets of a bitopological space (X,71,72). If A € (i,j)-

S5 PO(X) and B € (ij)- & O(X), then A N Be (ij)- S PO(B).

Proof: We need to prove that A N B C ilnt((i,j)- & -CI(A N B)).

Let, xe A N B, then xeilnt((i,j)- O -CI(A)) and x€(i,j)- O -Int(B), since A € (i,j)-O
PO(X) and B € (i,j)- © O(X). This implies that 3 i-open set G such that, xe G C (i,j)- O -
CI(A).

Also since xe(i,j)- O -Int(B), this implies that 3 (i,j)- O -open set U such that xeUC B
and hence U N A ¢ . Therefore, V (i,j)- O -open set U containing X, UN(A N B)= ¢.
Hence xeG C (i,j)- & -CI(A n B). Thus A N B Cilnt((i,j)- & -CI(A N B)).

Lemma 1.3.14: Let A c B < X. If B € (i,j)-0 O(X) and A € (i,j)- & PO(B) , then
A € (i,))- © PO(X) (Raychoudhuri and Mukherjee 1993).

Theorem 1.3.15: If (X, 71,72)—>(Y,0 1,0 ) is a (i,j)-contra- O -precontinuous

function and A is any (i,j)- O -open subset of X, then the restriction f| VE A—>Yis

(i,j)-contra- & -precontinuous.
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Proof: Let F be a O ;. closed set in Y. Then by Theorem 1.3.2 ,f_l(F) e (i,j)-o
PO(X). Since A is (i,j)- O -open in X, it follows from Lemma 1.3.13 , that (f |A)71(F)
=Anf _I(F) € (i,j)- 6 PO(A). Hence f'| 4 isa (i,j)-contra- & -precontinuous.
Theorem 1.3.16: Let £:(X,71,72) = (Y,O0 1,0 ») be a function and an ‘o e I} be a

(ij)- O -open cover of X . If for each o € 1 , f U is (i,j)-contra- & -precontinuous
(04

then £:(X,71,72) = (Y, 0 1,0 2) is a (i,j)-contra- & -precontinuous function.

Proof: Let F be a O i.closed set in Y. Since for each « € 1, f] U is (i,j)-contra- O -
a
-1
precontinuous L f |U J (F) € (ij)y 6 PO(U ). Since U e (ij)-6 O(X), by
(94

-1
Lemma 1.3.13 , [f|U J (F) e (1,))-0PO(X), for each el . Then
o

-1
~le= U L [y J (F)| e (ij)- S O(X) . This shows that fis a (i,j)-contra-
aecl a

O -precontinuous function.
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Definition 1.3.17: Let (X,71,72) be a bitopological space. The collection of all (i,j)-
*
regular open sets forms a base for topology 7 . It is called the semi-regularization. If

%
T1=T>=T then (X,71,72) is called semi-regular bitopological space.
Theorem 1.3.18: Let £:(X,71,72) = (Y,O0 1,0 2) be a function and g:X—>XXY the

graph function of f, defined by g(x) = (x,f(x)) for every x €X . If g is (i,j)-contra- O -
precontinuous then fis (i,j)-contra- & -precontinuous .

Proof: Let U be a O i open set in Y, then XXU is a O i. open set in XXY. It follows
from Theorem 1.3.2 that f_l(U) =g 1 (XXU)e (i,j)- 0 PC(X). Thus f'is (i,j)-contra-

O -precontinuous .

Lemma 1.3.19: Let A be a subset of a bitopological space (X,71,72) . Then A € (i,j)- O

PO(X) iff A N Ue (i,j)- © PO(X) for each (i,j)- regular open ((i,j)- O -open) set U of X
(Raychoudhuri and Mukherjee 1993).

Definition 1.3.20: A function f:(X,71,72) —>(Y,0 1,0 2) is called (i,j)-contra-super-

continuous for every x €X and each F €(i,j)-C(Y,f(x)), there exists a (i,j)- regular open

set U in X containing x such that f(U) < F (Jafari and Noiri 1999).
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Definition 1.3.21: A bitopological space (X,71,72) is said to be pairwise Urysohn

(Bose and Sinha 1982) if for each distinct points x,y , 3 i - open set U , j-open set V
such that X €U, y €V and jC(U)NICI(V) = ¢ fori#j,ij,k=1,2.

Theorem 1.3.22: If £:(X,71,72)—>(Y,0 1,02) is (i,j)-contra-super-continuous

g:X—>Y is (i,j)-contra- & -precontinuous and Y is pairwise Urysohn , then E = {x € X:
f(x) = g(x)} is (i,j)- O -preclosed in X.

Proof: If x € X\E , then it follows that f(x) # g(x) . Since Y is pairwise Urysohn , there
exist O i. open set V and O j. open set W such that f(x) € V , g(x) € W and
JCI(V) niCI(W) = ¢ . Since fis (i,j)-contra-super-continuous and g is (i,j)-contra- O -
precontinuous , there exists a (i,j)- regular open set U containing x and there exists a
(i,j)- O -preopen set G containing x such that f(U) < jCI(V) and g(G) < iCI(W) . Set O =
UNG . By the previous Lemma , O is (i,j)- O -preopen in X . Hence f(O) N g(0) = ¢
and it follows that x & (i,j)- © PC(E) . This shows that E is (i,j)- O -preclosed in X.
Definition 1.3.23: A filter base A is said to be (i,j)- O -preconvergent (resp. (i,j)-C-
convergent ) to a point x in X if for any U € (i,j)- & PO(X) containing x (resp. U e(i,j)-
C(X) containing x) , there exists a B € /\ suchthat Bc U'.

Theorem 1.3.24: If f:(X,71,72) — (Y, 0 1,0 2) is a (i,j)-contra- O -precontinuous , then

for each x €X and each filter base /A in X which is (i,j)- O -preconvergent to x , the

filter base f( /\) is (i,j)-C-convergent to f(x) .
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Proof: Let x €X and /\ be any filter base in X which is (i,j)- O -preconvergent to X .
Since f is (i,j)-contra- O -precontinuous, then for any V e C(Y) containing f(x) , there
exists U € (i,j)- O PO(X) containing x such that f(U) < V . Since A is (i,j)-O -
preconvergent to x there exists a B € /A such that B < U . It follows that f(B) — V and
hence the filter base f( /\) is (i,j)-C-convergent to f(x) .

Theorem 1.3.25: Let £:(X,71,72) = (Y, O 1,0 2) be a function and x €X . If there exists

U € (i,j)- © O(X) such that x € U and the restriction of f to U is a (i,j)-contra- O -
precontinuous function at x , then f'is (i,j)-contra- & -precontinuous at x .

Proof: Suppose that Fe C(Y) containing f(x). Since ﬂU is (i,j)-contra- O -

precontinuous at x , there exists V e (i,j)- © PO(U) containing x such that f(V) =

] U)(V) c F . Since U e (i,j)- O O(X) containing x , it follows from Lemma 1.3.13

that Ve (i,j)- 0 PO(X) containing x . This shows clearly that f is (i,j)-contra- &
-precontinuous at X .

Definition 1.3.26: A function f:(X,71,72) > (Y,01,02) is said to be (ij)-O -

preirresolute if for each x €X and each V e (i,j)- & PO(Y,f(x)), there exists a (i,j)- O -
preopen set U in X containing x such that f(U) c V .

Theorem 1.3.27: Let £:(X,71,72) —>(Y,0 1,0 2) and g:(Y,0 1,02) —> (Z,£21,Q>)

be functions. Then the following properties hold :
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(1) If fis (i,j)- O -preirresolute and g is (i,j)-contra- O -precontinuous , then
gof:X —> Z is (i,j)-contra- O -precontinuous .
(i1) If fis (i,j)-contra- & -precontinuous and g is (i,j)-continuous , then gof:X —>Z
is (i,j)-contra- O -precontinuous .
Proof: (i) Let xeX and We(Z,(gof)(x)) , since g is (i,j)-contra- & -precontinuous , there
exists a (i,j)- O -preopen set V in Y containing f(x) such that g(V) = W . Since fis (i,j)-
O -preirresolute, there exists a (i,j)- O -preopen set U in X containing x such that

f(U) < V . This shows that (gof)(U) € W . Hence gof is (i,j)-contra- & -precontinuous .

(i) Letx eX and We(Z,(gof)(x)) , since g is (i,j)-continuous , V.= g 1 (V) is (i,))-
closed. Since f'is (i,j)-contra- & -precontinuous, there exists a (i,j)- O -preopen set U in X
containing x such that f(U) < V. Therefore (gof)(U) — W . This shows that gof is (i,j)-

contra- O -precontinuous .

Definition 1.3.28: A function f:(X,71,72) — (Y,O0 1,0 ») is called (i,j)- O -preopen if

image of each (i,j)- O -preopen set is (i,j)- O -preopen .

Theorem 1.3.29: If f:(X,71,72) — (Y,01,07) is a surjective (i,j)- O -preopen
function and g:(Y,0 1,0 2) —> (Z,€21,Q2») is a function such that gof:(X,71,72) —>

(Z,€21,€25) is (i,j)-contra- & -precontinuous , then g is (i,j)-contra- & -precontinuous .
Proof: Let x eX and y €Y such that f(x) =y. Let VeC(Z,(gof)(x)) . Then there exists a

(i,j)- O -preopen set U in X containing x such that g(f(U)) < V . Since f is (i,j)-O -
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preopen, f(U) is a (i,j)- O -preopen set in Y containing y such that g(f(U)) < V. This
shows that g is (i,j)-contra- & -precontinuous .

Corollary 1.3.30: Let £:(X,71,72) — (Y,0 1,0 ») be a surjective (i,j)- O -preirresolute

and (i,j)- O -preopen function and let g:(Y,0 1,0 2) —> (Z,€21,022) be a function .
Then gof:X —> Z is (i,j)-contra- O -precontinuous iff g is (i,j)-contra- & -precontinuous .
Proof: It can be obtained from Theorem 1.3.24 and Theorem 1.3.26.

Definition 1.3.31: A function f:(X,71,72) — (Y,0 1,0 2) is said to be (i,j)-weakly

contra- O -precontinuous if for eachX € X and each O i-closed set F, i = 1,2 of Y
containing f(x) , 3 a (i,j)- O -preopen set U in X containing x such that ilnt(jCIf(U)) < V.

Definition 1.3.32: A function f:(X,71,72) — (Y,0 1,0 ) is called (i,j)- O -pre-semi-

open if the image of each (i,j)- O -preopen set is (i,j)-semi-open .

Theorem 1.3.33: If a function £:(X,71,72) — (Y,0 1,0 ») is (i,j)-weakly contra- O -

precontinuous and (i,j)- O -pre-semi-open , then f'is (i,j)-contra- & -precontinuous .

Proof: Let X €X and F be a (i,j)-closed set containing f(x) . Since f is (i,j)-weakly
contra- & -precontinuous , 3 a (i,j)- O -preopen set U in X containing x such that
ilntGCI(f(U))) < F. Since f is (i,j)- O -pre-semiopen , f(U)e(i,j)-SO(Y) and

f(U) < iCI(jInt(f(U))) < F. This shows that fis (i,j)-contra- & -precontinuous.
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1.4. Several Theorems in Bitopological Spaces
In this section, graphs and preservation theorems of (i,j)-contra- & -precontinuity are
studied.

Definition 1.4.1: A bitopological space (X,771,72) is said to be

(1) (1i,j)-weakly Hausdorff (Soundararajan , 1971) if each element of X is an
intersection of (i,j)-regular closed sets.
(i1) (ij)- O -pre-Hausdorff if for each pair of distinct points x and y in X , 3

Ue(i,j)- 0 PO(X,x) and Ve(i,j)- O PO(X,y) such that UnV = & .

(iii)  (ij)- O -pre-T; 1 if for each pair of distinct points x and y in X, 3 (i,j)- O -

preopen set U and V containing x and y respectively such that y& U and
X& V.
Here we have given the following examples:

Example 1.4.2: Consider the topologies on X = {a, b, ¢} be

T =X, ¢,{a}, b}, {c}, {a, bj,{b, c}.{ac)} and To={X, & ,{a},{bj,{a,b},{b,c}}

and let A = {b}, B={b, c}, C={a, c} and D={a, b} be subsets of X, then we have A, B, C,
D are (1, 2)-regular closed. Also we have AMB={b}, BMC={c} and CMND={a}.
Therefore, X is (1, 2)-weakly Hausdorff.

Example 1.4.3: Consider the topologies on X = {a, b, ¢} be

T1={X, ,{a},{b}, {a,b}} and T2 = {X, & ,{c},{a, c},{b, c} }. Then we have

(1, 2)- O -preopen sets are X, ¢, {a},{b},{a, b} and
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(2, 1)- & -preopen sets are X, ¢, {c},{b, c},{a, c}. Hence (X, T1, T2) is a (i,j)- O -pre-

Hausdorff space.
Example 1.4.4: Same as example 1.4.3.

Remark 1.4.5: The following implications are hold for a bitopological space (X,71,72):
(1) Pairwise 7' 1= (ij)- O -pre-T, 1
(i)  Pairwise T, )= (ij)- O -pre-T, )

These implications are not reversible.

Example 1.4.6: Let X = {ab,c,d} with topologies 71 = {X,¢,{a},{bc}},

T2 = {X, ¢,{b},{c,d}}. Then (X,71,72) is (i,))- O -pre- T2 but not pairwise T2.

Definition 1.4.7: For a function f£(X,71,72)>(Y,01,02) , the subset

{(x,f(x)): x eX}c XXY is called the graph of f and is denoted by G(f).

Definition 1.4.8: The graph G(f) of a function f:(X,71,72) 2 (Y, 0 1,0 2) is said to be

(i,j)-contra- & -preclosed if for each (x,y)e(XXY)N\G(f) , 3 (i,j)- O -preopen set U in X
containing x and Ve(x,y) such that (UXV)NG(f) = ¢ .
Lemma 1.4.9: The following properties are equivalent for the graph G(f) of a function f':
(1) G(f) is (i,j)-contra- O -preclosed
(i)  for each (x,y)e(XXY)\G(f), 3 (i,j)- O -preopen set U in X containing x and

Ve(i,))- (Y,y) such that f(U)"V = & .
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Proof: Obvious.

Theorem 1.4.10: If £:(X,71,72) — (Y,0 1,0 1) is (i,j)- contra- & -precontinuous and

Y is pairwise Urysohn , G(f) is (i,j)-contra- & -preclosed in XXY .

Proof: Suppose that Y is pairwise Urysohn . Let (x,y)e(XXY)\G(). It follows that f(x)=
y. Since Y is pairwise Urysohn , 3 O i_open set V and O j_open set W such that f(x)e
V,y € Wand jCI(V)NIiCI(W) = & . Since fis (i,j)- contra- & -precontinuous , 3 (i,j)- O
-preopen set U in X containing x such that f(U) < jCI(V). Therefore f(U)NiCI(W) = ¢

and G(f) is (i,j)-contra- & -preclosed in XXY .

Theorem 1.4.11: Let £:(X,71,72) — (Y,O0 1,0 2) have a (i,j)-contra- O -preclosed
graph. If f is injective, then X is (i,j)- O -pre-T, 1

Proof: Let x and y be any two distinct points of X. Then we have (x,f(y)) € (XXY)\G(f).
By Lemma 1.4.9, 3 (i,j)- O -preopen set U in X containing x and Fe C(Y,f(y)) such that
fUymF=¢. Hence UN 1 (F) = ¢ . Therefore we have y & U. This implies that
X is (i,j)- O -pre- T1 :

Definition 1.4.12: A bitopological space (X,71,72) is called (i,j)- O -preconnected

provided that X is not the union of two disjoint non-empty (i,j)- O -preopen sets .

Theorem 1.4.13: If f:(X,71,72) — (Y,01,02) is (i,j)- contra- O -precontinuous

surjection and X is (i,j)- O -preconnected , then Y is (i,j)-connected .
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Proof: Suppose Y is not (i,j)-connected space . There exist disjoint O ;_open set V, and

1

O ;_open set V2 such that Y = V1 U V2 . Therefore Vl and V2 are (i,j)-clopen in Y.

Since f is (ij)- contra- & -precontinuous , f _I(Vl) and f _I(VZ) are (ij)-O -
preopen in X . Moreover, f _I(Vl) and f _I(Vz) are non-empty disjoint and

X=if" 1 ( Vl) Ujf~ 1 ( V2 ) . This shows that X is not (i,j)- & -pre-connected, which

is a contradiction. Hence Y is (i,j)-connected .

Definition 1.4.14: A bitopological space (X,71,72) is called

1) (ij)- O -pre-ultra-connected if every two non-empty (i,j)-O -preclosed
subsets of X intersect ,
(11) (1,j)-hyperconnected (Steen and Seebach 1970) if every i-open set is j- dense.
Here we have given the following examples:
Example 1.4.15: Consider the topologies on X = {a, b, c} be

T1={X, #,{a},{b}, {a,b}} and T2 = {X, & ,{c},{a, c},{b, c} }. Then we have

(1, 2)- O -preclosed subsets are X, ¢, {b, c},{a, c},{c} and we see that any two non-

empty subsets are intersect, hence (X, 71, 72) is (1, 2)- O -pre-ultra-connected.

Example 1.4.16: Consider the topologies on X = {a, b, c} be

T1=1{X,,{b}, {b,c}} and T2 = {X, #,{b},{a, b} }. Then we have

T2-Cl{b,c} = X and 7>-Cl{b}= X.



20
Again, 71-Cl{a, b} = X and 71-Cl{b} = X.
Hence (X, T1, T2) is (i,))-hyperconnected.
Theorem 1.4.17: If X is (i,j)- O -pre-ultra-connected and f:(X,71,72) — (Y,0 1,0 2) is

(i,j)- contra- & -precontinuous and surjective , then Y is (i,j)-hyperconnected.
Proof: Let us suppose that Y is not (i,j)-hyperconnected. Then 3 O ; — open set V such

that V is not j- dense in Y. Then 3 disjoint non-empty O ; - open subset B1 and

O ; — open subset 32 in Y, such that B,= ilnt(jCI(V)) and B = Y\jCI(V). Since f is

1 2

(ij)- contra- & -precontinuous and onto, by Theorem 1.3.2, Alz f _I(Bl) and

A2= f _I(Bz) are disjoint non-empty (i,j)-preclosed subsets of X . By assumption,
the (i,j)- O -pre-ultra-connectedness of X implies that A1 and A2 must intersect, which

is a contradiction. Hence Y is (i,j)-hyperconnected.

Theorem 1.4.18: If f:(X,71,72) — (Y,01,02) is (i,j)- contra- O -precontinuous

injection and Y is pairwise Urysohn , then X is (i,j)- © -pre-Hausdorff.
Proof: Suppose that Y is pairwise Urysohn. By the injectivity of f , it follows that
f(x)# f(y) for any distinct points x,ye X. Since Y is pairwise Urysohn , 3 O j_open set V

and O j - open set W such that f(x) € V, f{y) € W and jCI(V)NiCI(W) = ¢ . Since f is

(i,j)- contra- & -precontinuous , 3 (i,j)- O -preopen set U and G in X containing x and y
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respectively such that f(U) < jCI(V) and f(G) < iCI(W) . Hence UNG = ¢ . This shows

that X is (i,j)- O -pre-Hausdorff.

Theorem 1.4.19: If £:(X,71,72) — (Y,01,02) is (i,j)- contra- O -precontinuous
injection and Y is (i,j)-weakly Hausdorff then X is (i,j)- O -pre-T, 1

Proof: Suppose that Y is (i,j)-weakly Hausdorff. For any distinct points x,yeX, 3 (i,j)-

regular closed sets V, W in Y such that f(x)e V, f(y) & V, f(x) € W and f(y)e W. Since
fis (i,j)- contra- & -precontinuous, by Theorem 1.3.2, f _l(V) and f _I(W) are (i,j)-
O -preopen subsets of X such that xe f_l(V), y & f_l(V), X & f_l(W) and

ye f— 1 (W). This shows that X is (i,j)- O -pre- T1 :

Definition 1.4.20: A bitopological space (X,71,72) is said to be

(1) (ij)- O -pre-compact (Dontchev 1996) if every (i,j)- O -preopen (resp. (i.j)-
closed ) cover of X has a finite subcover

(11) (i,j)-countably O -pre-compact ((i,j)-strongly countably S-closed ) if every
countable cover of X by (i,j)- O -preopen (resp. (i,j)-closed ) sets has a finite
subcover.

(iii))  (i,j)- O -pre-Lindelof ((i,j)-strongly S-Lindelof) if every (i,j)- O -preopen

(resp. (i,))-closed ) cover of X has a countable subcover.



22

Theorem 1.4.21: The (i,j)- contra- & -precontinuous image of (i,j)- O -pre-compact
((i,))- O -pre-Lindelof, (i,j)-countably O -pre-compact) space are (i,j)-strongly S-closed
(resp.(i,j)-strongly S-Lindelof, (i,j)-strongly countably S-closed).

Proof: Suppose that f:(X,71,72) — (Y,01,02) is (i,j)- contra- & -precontinuous
surjection. Let iVa ael } be any closed cover of Y. Since fis (i,j)- contra- o -
precontinuous, then { /'~ 1 ( Va .ax el }isa (i,j)- O -preopen cover of X and hence 3

a finite subset [0 of I such that X = U{f_l(Va):OtEIO} . Hence we have

Y=U iVa ael } and Y is (i,j)-strongly S-closed.

0

Similarly, the other proof can be obtained.

Definition 1.4.22: A bitopological space (X,71,72) is said to be

(1) (ij)- O -preclosed-compact if every (i,j)- O -preclosed cover of X has a finite
subcover.
(i1) (i,j)-countably O -preclosed-compact if every (i,j)-countable cover of X by
(ij)- O -preclosed sets has a finite subcover.
(iii)  (i,))- O -preclosed-Lindelof if every cover of X by (i,j)- O -preclosed set has
a countable subcover.
Theorem 1.4.23: The (i,j)- contra- & -precontinuous image of (i,j)- O -preclosed-
compact ((i,j)- O -preclosed-Lindelof, (i,j)-countably & -preclosed-compact) space are

pairwise compact (resp. pairwise Lindelof, pairwise countably compact ).
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Proof: Suppose that fi(X,77,72)—>(Y,01,02) is (i,j)- contra- O -precontinuous
surjection. Let {Va cael } be any open cover of Y . Since f is (i,j)- contra- o -
precontinuous, then { 1 ( Va .o €l }isa (i,j)- O -preclosed cover of X. Since X is
(i,j)- O -preclosed-compact , 3 a finite subset ]0 of I such that X = U { _I(Va ):

ae [O } . Hence we have Y = U fVa ‘ae IO } and Y is pairwise compact.

Similarly, the other proof can be obtained.



CHAPTER TWO

ON VARIOUS PROPERTIES OF 6-COMPACTNESS IN
BITOPOLOGICAL SPACES

2.1. Introduction.

By introducing the notion of O -compact Anjali Srivastava and Sandhya Gupta in a paper
(A. Srivastava and S. Gupta 2005) obtained the generalization of various results of Park
in a paper (Herrington and Long 1975 and Park 1988). In this chapter, we introduce the
concept on various properties of O -compactness in bitopological spaces. Jong Suh Park
in the paper “ H-closed spaces and W-Lindelof spaces “ has got various interesting
results related with H-closed spaces. Moreover Park has introduced the concept of
W-Lindelof spaces which is a generalization of Lindelof spaces. By using the notions of
O -continuous maps, w-closure, w-limit point etc. Park has proved various results
concerned with these concepts.

Anjali Srivastava and Sandhya Gupta in the paper “ On various properties of O -compact
spaces “ have introduced the concept of ¢ -compact spaces and have got many theorems

giving a generalization of Park’s theorems by using the tools of O -continuous maps,

* .
W’ -closure, O -convergence of nets and O - cluster points of nets etc.
In this chapter, we have introduced the concept of o -compactness in bitopological

spaces and have got many theorems giving a generalization of Park’s theorem by using
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the tools of O -continuous maps, w -closure, 0 -convergence of nets and O - cluster
points of nets etc. in bitopological spaces.

In section 2 of this chapter we obtain a characterization of O -Hausdorff bitopological
spaces and discuss various properties of ¢ -Hausdorff bitopological spaces which
compare (i,j)-Hausdorff spaces and Hausdorff spaces. Further the notion of O -

compactness in bitopological spaces is introduced and it is shown that ¢ -compactness in

bitopological spaces is preserved by O -continuous surjections and w” closed sets in
bitopological spaces, which is a generalization of A. Srivastava and S. Gupta (2005).

In section 3 of this chapter we study € -compactness in bitopological spaces a
generalization of quasi-H-closed sets and its applications to some forms of continuity using
0 -open and O -open sets in bitopological spaces. Among other results, it is shown that a
weakly @ -retract of a Hausdorff spaces X is a O -closed subset of X in bitopological

spaces, which is a generalization of some results of Mohammad Saleh (2004).

2.2. O -Compactness in Bitopological Spaces.
The section beings with the following definitions of O -compactness in bitopological

spaces.
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Definition 2.2.1: (Fletcher et al., 1969). A cover U = {Us | a € A} of (X,71,72) is said
to be a pairwise open cover of Xif U C 77 U7z and foreachi € {1, 2}, U NT;
contains a nonempty set, where 4 is a subset of X.

Definition 2.2.2: A bitopological space (X,71,7>2) is called (i,j)- O -compact if for each

pairwise open cover {Un} of X there are finitely many nx such that

n
X= U int(GCl(Unk)) where i#j,1,j =1,2 if Unk is open in 7 .

k=1
Definition 2.2.3: Let (X,71,72) be a bitopological space. A subset A of X is called a (i,))-

H-closed set or (i,j)-H-set in X (J. Vermeer, 1985) if every pairwise open cover {U,} of

n
X there are finitely many nx such that X = |J (GCI(Unk)) where i#], 1,j =1,2 if Uny is
k=1

open in T .

Obviously (i,j)- O -compact space is (i,j)-H-closed. But the converse is not true.

Example 2.2.4: Let X = R, 71= The usual topology on R, 72= The discrete topology

on R.
Let A=[m,m+r ], m,reZ,r>1.

Then clearly A is (i,j)-H-closed. Now consider
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€ = {(n-1, n)neZ } U {{s}| s€Z } U {the unions of these subsets}. Then € is a

pairwise open cover of A in (X,771,72).

Let € = {(m+r-1, m+r), {{ m+r-1} U { m+r }}, (m+r-2, m+r-1), {{ m+r-2} U {m+r-1}},
........ , (m, m+1), {{m} U {m+1}}}. Therefore,

T2-Cl(m+i-1, m+i1) = (m+i-1, m+1), 1= 1,2,....,r-1 and
T1-Cl{m+i} = {m+i},i=1,2,....,r-1.

Clearly, these two types of closures together cover A.

Now, T1-Int(7>-Cl(m+i-1, m+i)) = (m+i-1, m+i), i= 1,2,.....,r-1 and
To-Int(T1-Cl({m+i}) = ¢ i= 1,2,....,r-1. Therefore, the two classes of sets
9

together do not cover A. Hence A is not (i,j)- 0 -compact.

Definition 2.2.5: Let (X,71,72) be a bitopological space. A net (xa) in X is said to be

o

(i,j)- O - accumulate to a point x of X denoted by x,00 x if for any i-neighbourhood U of

x and n there is an n; = n such that x, € iInt(jCI(U)) where 1 # ], 1i,j =1,2.
1

Definition 2.2.6: Let (X,71,72) be a bitopological space. A net (xa) in X is said to be

1)
(i,j)- O - converge to a point x of X denoted by x,—> x if for each i-neighbourhood U of

x there is an n; > n such that x, € iInt(GCI(U)) where i # j, 1,j =1,2.
1
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Definition 2.2.7: A net (xn) on a set X is called universal, or an ultranet (From
wikipedia) if for every subset A of X, either (X,) is eventually in A or (Xx) is eventually
in X-A. (By eventually in A we mean, 3 N such that for alln> N, x,€ A).

Lemma 2.2.8: Let (X,71,72) be a bitopological space. If a ultranet (x») of X (i,j)- O -

accumulate to a point x of X then (xy) is (i,j)- O - converge to x.

Definition 2.2.9: If (X,771,7>) is a bitopological space, then for any AcX, we define
(1) ClI(A)= N {F1UF; where Ac F1 UF; and F,F; are respectively 71 and 7>

closed}, then CI(A) is called a pairwise closure of A.

(2) We also define a pairwise closure in a bitopological space (X,71,72) by
Cl(A)= {xeX: AN(UUYV) # ¢, where AcX andxeUe Ti,xeVe T2}
Note that the closure of a subset A w.r.to 71 and w.r.to 7> is a subset of the pairwise

closure of A.
Note: Now we show that the above two definitions are equivalent.
Proof: Let x¢ CI(A) in (2). This implies that AN (UUV)= g = ANU= ¢ and

ANV = ¢. Let Ug is the union of all 77 neighborhood U of x and V) is the union of

all 7> neighborhood V of x. Then ANUg = ¢ and ANV = @. Therefore A < (Uo)°
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and A C (Vo). Hence 71-CI(A) < (Up)® and T>2-CIl(A) < (Vo)® where (Uo)°is closed in
Tiand (Vo)© is closed in 72. Therefore x & (Up)® U (Vo) = x¢ CI(A) in (1).
Conversely, let x ¢ CI(A) in (1) then there exist 71-closed set F1 and 7T>-closed set F»

such that x ¢ F1 UF; this implies that x ¢ F1 and x ¢ F». Therefore x € (F1)° and x € (F»)°
implies x € (F1)°U (F2)® where (F1)¢ is T1-open and (F2)° is 72-open and
AN((F1)°U (F2)° )= ¢.Hence x ¢ CI(A) in (2).

Definition 2.2.10: Let (X,71,72) be a bitopological space. For a subset A of X the (i,j)-

weak closure of A denoted by (i,j)-Clw (A) is defined by the set (i,j)-Cly (A) = {x € X:
ANilnt(jCI(U))# @ for all i-open neighborhood U of x } where i # ], i,j =1,2.

Example 2.2.11: Consider the topologies on X = {a,b,c} be T1={X, ¢,{a},{a,c}}
and T> = {X, ¢,{b},{a,b}}. Letac X and A = {b,c} be a subset of X, then A is (1,2)-
weak closure of A, since for all 71, 72-open neighborhood U of a, we have
ANT1Int(7T2-Cl(U))# ¢

Recall that a subset A of X is called (i,j)-regular open if A =iInt(jCI(A)) and X is called
(1,))-semi-regular space if it has a base consisting of (i,j)-regular open sets.
Following lemma establishes the similar behaviour of a pairwise closure and (i,j)-weak

closure of a set in terms of the (i,j)- O - convergence of nets.
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Lemma 2.2.12: Let (X,771,72) be a bitopological space and A < X. Then x € (i,))-

Cly'(A) iff there is a net (xa) of points of A, (i,j)- O - converge to x € X.
Proof: Let x € (i,j)-Clw (A). Then A Nilnt(jCI(Un))# ¢ for all i- neighborhoods U, of

x in X. Consider the family My of all i-neighborhood of x with the reverse order

inclusion and define a net in X as follows:
S:17,. = X by

o
S(Up) = Xn where xn€ AN ilnt(jCI(yy,)) then (xn) is a net of point of A and xn—>x.

o

Conversely, assume that x,—> x. For a i- neighborhoods U of x, 3 n; such that

xn € ilnt(GCI(U)) V n>ny. Since xa€ A V n, we have ANilnt(GCI(U))# ¢ Thus

X € (i,))-Clw " (A).

Definition 2.2.13: Let (X,71,72) be a bitopological space and A C X Then A is called
(i,j)- w'-closed if A = (i,j)-Clw (A).

Definition 2.2.14: Let (X,771,72) be a bitopological space and Ac X. A point x of X is
called a (i,j)- O - limit point of A iff AN T>-CI(U) # ¢ , for every T1-open set U

containing x. The set of all (i,j)- O - limit points of A is called the (i,j)- O - closure of A,
denoted by (i,j)- O - CI(A). A subset A of X is called (i,j)- O - closed iff A = (i,j)- O -

CI(A). The complement of (i,j)- O - closed set is called (i,j)- O - open.
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Definition 2.2.15: A bitopological space (X,71,72) is called (i,j)- O - Hausdorff if for

any two distinict points x and y of X there are i-open neighborhood U of x and j-
open neighbourhood V of y such that ilnt(GCI(U)) NjInt(iCI(V)) = ¢ where i#], i,j =1,2.
Equivalently, X is said to be (i,j)- 0 - Hausdorff if for every x2yeX, 3 (i,j)-O - open
set Ux and (j,i)-O - openset Vy such that y,Nvy= ¢

Definition 2.2.16: (Noiri and Popa 2007) A bitopological space (X,71,72) is said to be
pairwise Hausdorff if for every x, ye X, x2y 3 U €71, Ve T2 such that xeU, yeV and

UnV=¢.
Note that a (i,j)- O -Hausdorff space is pairwise Hausdorff but the examples can be

found which are pairwise Hausdorff but not (i:))- 0 - Hausdorff.

Following theorem gives a characterization of (i,j)- O -Hausdorff spaces in terms of

diagonal of X.

Theorem 2.2.17: Let (X,71,72) be a bitopological space. Then the following statement
are equivalent:

(i) X is (i,))- O - Hausdorff

(i1) Every net in X (i,j)- O - converges to atmost point of X.

(iii)  The diagonal A = {(x,x):x € X} is a (i,j)- w -closed set of X x X.
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Proof: () => (ii) . Assume that a net (xs) in X (i,j)- O - converges to distinict points x
and y of X. Since X is (i,j)- O - Hausdorff there are i-open neighbourhood U of x and

o
j-open neighbourhood V of y such that ilnt(GCI(U)) NjInt(iCI(V)) = @ . Since xn—>x, 3

o
n; such that x, € ilnt(GCI(U)) V n>n;. Since xn—>y, 3 n2 such that x, € jInt(iCI(V))

V n2n,.
Choose m2>nj and m2n;. Then x, € ilnt(jCI(U)) M jInt(iCI(V)). This is a contradiction.
Thus x =y.

(i))=> (iii). Let (x,y) € (i,j)-Clw"( A ).Then there is a net (x,) in X such that

o o o
(Xn,Xn) —> (X,y) .Since xn—>x and x,—>y by (ii) x =y. Thus (x,y) € A .

(ii))=>(i). Let x,y € X withx #y. Then (X,y) € A = (i,j)-Clw (A ). Hence there is a
i- neighborhood W of (x,y) such that A Nilnt(jCI(w)) = ¢ Choose i-open set U
and j-open set V of X withx €y |y € v and UxVcCW. Then
ilntGCI(U)) NjInt(iCI(V)) = ¢ .

Lemma 2.2.18: Let X be a (i,))- O - compact space_Then for each net (xa) in X there is

o

an x € X such that x,00 x.
Proof: Suppose that (x,) has no (ij)- O limit point in X. Then (%) is not (ij)-
O - accumulate to a point x in X. For each X €X there is a i-neighborhood Uy of x and

ny such that x, & iInt(jCI(Ux)) V' n2nx. Then {Uy: X €X } is a pairwise open cover of
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X. Since X is (,j)- O_. compact , there are finitely many xx such that

n
X= U iInt(jCl(UXk)). Choose m such that m=> ny k Y k=12,.....0. Conclude from

k=1

n
above xn & U int(Cl(y, k )V k=1,2,.....n. This contradiction shows that (x,) has
k=1

necessarily a (i,j)- O - cluster point in X.
Theorem 2.2.19: If a bitopological space X is (i,j)- O - compact then every net in X has a
(i,)- O -convergent subnet.

Proof: Let (xn) be a net in X. Since every net has a ultra subnet, (x,) has a ultra subnet

o
(Xn k ). Then by above lemma 2.2.17 there is an x € X such that x, k oo X. Therefore we
o
have x, k —>X.

Theorem 2.2.20: Let X be a (i,j)- O - compact space. If A is (i,j)-Clw -closed subset of X,
then A is (i,j)- O - compact.

Proof: Let (x,) be anet in A. Then (x») is a net in X. Since X is (i,j)- O - compact (xn)

o
has a (i,j)- O -convergent subnet. Let x,—>x. Since x € (i,j)-Clw(A) and A is a (i,j)-Cly -

closed we conclude that x € A. It shows that A is (i,j)- O _ compact.
Theorem 2.2.21: Let X be a (i,j)- O - Hausdorff space. Then every (i,j)- O - compact

subset of X is (i,j)- w"-closed.
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o
Proof: Let x € (i,j)-Clw (A). Then there is a net (x,) in A such that x,—>x. Then x is a

(i,j)- O - limit point of (xn). Since A is (i,j)- O - compact, x € A. Hence (i,j)-Cly (A) = A
i.e, Ais a (i,j)- w'-closed set of X.

Definition 2.2.22: A function f: (X,71,72) = (Y, 0 1,0 2) is said to be (i,j)- O -

continuous at a point x if for each o ; —neighborhood U of f(x) there are

Ti-neighborhood V of x such that f(ilnt(jCI(y))) cilnt(GCI({y)) where i# j, 1,j = 1,2. If fis

(i,j)- O - continuous at every x € X, then fis called (i,j)- O - continuous.
Definition 2.2.23: (Noiri, Khedr and AL-Areefi,1992) A mapping

f: (X,71,72) > (Y, 0 1,0 2) is said to be pairwise continuous if inverse image of
every O 1-open (resp. O 2-open) set in Y is T1-open (resp. 72 -open) in X.

Note that the concepts of pairwise continuous maps and (i,j)- - continuous maps are
different.

Example 2.2.24: Define the topologies on X = {a, b, c} and Y = {p, q, r} respectively by

Ti = {X,9,{ab},{a}}, T = {X,@,{b}.{bc}} and o1 = {Y,0,{p}.{p.r}},
o> = {Y,9,{q}}. Let, £:(X,71,72)>(Y,01,02) be a map defined as f(a) = p,

f(b) = q, f(c) =r. Then f'is (1,2)- O - continuous since if a€ X and & 1-neighborhood U = {p,r}

we have Ti-neighborhood V = {a} such that f{(71.Int(72-CI(V))) c o 1-Int( 0 2-Cl(U)) .
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But it is not a pairwise continuous maps since inverse image of O 1— open set f

(p,r)= {a,c} in Y which is not 71 _open in X.

Following theorem gives a characterization of (i,j)- O - continuous maps between two spaces.

Theorem 2.2.25: A mapping f:(X,71,72) > (Y, 0 1,0 2) is (i,j)- O - continuous at x € X

o o
iff for any net (xa) in X satisfying Xo—> X, the net f(( xn)) > f(x) in Y.

Proof: Given any 0O i- neighborhood U of {(x), there is a Ti-neighborhood V of x such
that f(75-Int(73-C1(V))) c 0 i-Int( 0 j.CI(U)) where i j, i,j = 1,2.

Also there is an n; such that x, € ilnt(CI(V)) for all n2n1. Since f(x,) €

o
fiInt(;CI(V))) < iInt(GCI(U)) for all n>n1, we have f(( xn)) = f(x).

Conversely, assume that f is not (i,j)- O - continuous at x. Then there is a
O i-neighborhood U of f(x) such that f(75.Int(7;-C1(V))) « 0 i-Int( 0 ;-Cl(U)) where i# j,

1,) = 1,2 for all Ti-neighborhood V of x. Let (V,) be the family of 7i-neighborhoods of x

with the reverse inclusion order. For each n, since f(ilntGCL(V ))) & ilnt(jCI(U)), there is
an X € iInt(GCI(V )) such that f (xn) € iInt(CI(U)). Then the net (Xa) in X (i,j)- o -

converges to x but the net f(xn) in Y does not (i,j)- O - converges to f(x). Thus we have a

contradiction. Hence fis (i,j)- O - continuous at x.
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Definition 2.2.26: A mapping £:(X,71,72) = (Y, 0 1,0 2) is said to have (i,j)-w"-closed

graph if its graph G(f) = {x,f(x): x € X}is (i,j)-w -closed subset of X X Y.

Theorem 2.2.27: A mapping £:(X,71,72) —>(Y,0 1,0 2) has a (i,j)-w"-closed graph iff

o o
for any net (xn) in X ,xn—>x € X and f(xn) >y €Y implies y = f(x).

Proof: Assume that £:(X,771,72) —> (Y, 0 1,0 2) has a (i,j)-w -closed graph. Since

o
(xnf(xn)) is a net in G(f) and (xaf(xn)) = (x,y), we have (x,y) € (i,j)-Cly (G() = G(H).

Thus y = f(x).
Conversely, assume that (x,y) € (i,j)-Clw (G(f)). Then there is a net (x») in X such that

o o o
(Xn,f(xn0)) = (x,¥). Since X, —>x and f(xn) = f(x) , y = f(x).Thus (x,y) € G(f). Hence G(f)

is (i,j)-w"-closed.
Theorem 2.2.28: Let (Y, 0 1,0 2) be a (i,j)- O - Hausdorff space. Then every (i,j)- O -

continuous mapping £:(X,71,72) —> (Y, 1,0 2) has a (i,j)-w -closed graph.

Proof: Let (x,y) € (i,j)-Clw (G(f)) . Then there is a net (xa) in X such that

o o o
(xn,f(Xn)) = (X,y). Then x,—>x and f(xs) —y. Since fis (i,j)- O - continuous at x,

o
f(xn) = f(x). Since Y is (i,j)- O - Hausdorff, y = f(x). This implies (x,y) € G(f). Hence

G(f) is (i,j)-w -closed.
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Theorem 2.2.29: Let (Y, 0 1,0 2) be a (i,j)- O - compact space. If a mapping

£:(X,71,72) > (Y,0 1,0 2) has a (i,j)-w -closed graph then fis (i,j)- O - continuous.

o
Proof: Let (xn) be a net in X and x,—>x. Since Y is (i,j)- O - compact the net (f(xn)) in Y

o
has a (i,j)- O - convergent subnet by Theorem 2.2.17. Let f(xn) —>y € Y. Since

o o
(xnf(xn)) = (X,y), (x,y) € (1,))-Clw " (G(f)) = G(f). Thus y = f(x) and so f(xn) —> f(x). This

means that f is (i,j)- O - continuous at x.

Theorem 2.2.30: Let (X,71,72) be a (i,j)- O - compact space and (Y, 0 1,02) a
bitopological space. If f:(X,71,72) = (Y, 0 1,0 2) is (i,j)- O - continuous surjection, then

Y is a (i,j)- O - compact.
Proof: Let (yn) be anet in Y. For each n, there is an x, € X such that y, = f(Xs). Since X

o
is (1,j)- O - compact, there is a subnet (xn k) of (xn) and an x € X such that x, k —>X.

o
Since fis (i,j)- O - continuous at x, f(xn k )—>f(x). Thus Y is (i,j)- O - compact.

2.3. Hausdorffness and Weak Forms of Compactness in Bitopological Spaces.
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Definition 2.3.1: Recall that in chapter one a bitopological space (X,71,72) is said to

be pairwise Urysohn (Bose and Sinha 1982) if for each distinct points x,y , 3 i - open

set U , j-openset V such that x eU, y €V and jCI(U) NiCI(V) =¢ for i#j,i,j=1,2.

Lemma 2.3.2: A bitopological space (X,71,72) is (i,j)-R-Hausdorff if for every x=y € X

3 (i,j)-regular open set Ux and (j,i)-regular open set Vy such that {5, M Vy= o )

By a (i,j)- weak @ - restriction we mean a (i,j)- weak @ - continuous function

f:(X,71,72) = A where Ac X and f]A is the identity function on A. In this case A is said

to be a (i,j)- weak @ - restriction of X.
The next theorem is an improvement of Theorem 3.3 of (M. Saleh 2004).

Theorem 2.3.3: Let A — X and £:(X,771,72) = A be a (i,j)- weak @ - restriction of X

onto A . If X (i,j)-R-Hausdorff, then A is an (i,j)- O - closed subset of X.

Proof: Suppose not, then there exists a point x € (i,j)- O - CI(A). Since fis a (i,j)- weak
@ - restriction, we have f(x) # x. Since X is (i,j)-R-HausdorfT, there exist 3 (i,j)-regular
open set U and (j,i)-regular open set V of x and f(x) respectively such that yNy= ¢.
Let W be any open set in X containing x. Then U N ilnt(jCI(W)) is a (i,j)-regular open
set containing x and hence ilnt(GCI(U)) Nilnt(GCI(W)) NA# @ , since x € (i,j)- O -

CI(A). Therefore, J a point y € ilnt(GCI(U)) Nilnt(GCI(W)) M A. Since y € A,

f(y) = y€ilnt(jCI(U)) and hence f(y) € jCI(V). This shows that f(ilnt(jCI(W))) is not
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contained in jCI(V). This contradicts the hypothesis that fis a (i,j)- weak €@ - continuous .
Thus A is a (i,j)- O - closed as claimed.

Definition 2.3.4: A function f:(X,71,72) = (Y, 0 1,0 2) is said to be (i,j)- weak -
continuous at x € X if given any & i-open set V in Y containing f(x) , 3 a 7i- open

set U in X containing x such that {f(ilnt(jC1(V)))cjCIl(U) where i# j, i,j = 1,2. If this
condition is satisfied at each point x € X, then f is said to be (i,j)- weak @ - continuous
(briefly, (i,j)-w. 6.c).

Theorem 2.3.5: Let f, g be (i,j)-w. @ .c from a bitopological space (X,71,72) into a

pairwise Urysohn space (Y, 0 1,0 2). Then the set A = {x € X: f(x) = g(x)} is an an (i,j)-
O - closed set.

Proof: We will show that X\A is (i,j)- O - open. Let x€ A°. Then f(x) # g(x). Since Y is
a pairwise Urysohn, J 0 i-open set Wyx) and O j-open set Vg(x) such that
JCIW)NiCI(V) = @. By (ij)-w. O.cof fand g, 3 (i,j)-regular open set Uy and (j,i)-
regular open set U> of x such that f(U;)cjCI(W) and g(Uz) < iCI(V). Clearly U =

Ui NUz < X\A. Thus X\A is (i,j)- O - open and hence A is (i,j)- O - closed.

Definition 2.3.6: Let (X, 71, 72) be a bitopological space, then Ac X is called (i,j)- @ -

dense if (i,j)- Cl Q(A) =X.
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Corollary 2.3.7: Let f, g be (i,j)-w. @ .c from a bitopological space (X,771,7>) into a

pairwise Urysohn space (Y, 0 1,0 2). If f and g agree on a (i,j)- @ - dense subset of X
then f= g every where.

Theorem 2.3.8: Let £:(X,71,72) > (Y, 0 1,0 2) be (i,j)-w. & .c map and let Ac X. Then

fLA—>Y is (i,j)-w. O.c.
Proof: Straight forward.

Remark 2.3.9: If £:(X,71,72) > (Y, 0 1,0 2) is (i,j)-w. 6@ .c map. Then £:X — f(X) need

not be (i,j)-w. & .c.

Definition 2.3.10: A function f:(X,71,72) = (Y, 0 1,0 2) is said to be (i,))- almost

strongly- @ - continuous at x € X if given any O i-open set V in Y containing f(x) , 3

a Ti- open set U in X containing x such that f(jCI(U)) c jInt(iCI(V)) where i# j,

1,) = 1,2. If this condition is satisfied at each point x € X, then f'is said to be (i,j)- almost
strongly- & - continuous (briefly, (i,j)-a.s.c) .

Definition 2.3.11: A function f:(X,71,72) —> (Y, 0 1,0 2) is said to be (i,j)- weak

continuous at x € X if given any O i-open set V in Y containing f(x) , 3 a 7i- open

set U in X containing x such that f(U) < iCI(V) where i j, 1,j = 1,2. If this condition
is satisfied at each point x € X, then f'is said to be (i,j)- weak continuous (briefly,

(ij)-w.c).
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Definition 2.3.12: A function £:(X,71,72) > (Y, 0 1,0 2) is said to be (i,j)- O -

continuous at x € X if given any O i-open set V in Y containing f(x) , 3 a 7i- open

set U in X containing x such that f(ilnt(jCI(U))) < iInt(CI(V)) where i#j, 1,j = 1,2. If
this condition is satisfied at each point x € X, then f is said to be (i,j)- & -continuous
(briefly, (i,j)- O .c) .

Definition 2.3.13: A subset A of a bitopological space X is said to be (i,j)- & _ compact if
every cover of (i,j)- @ _open sets has a finite subcover.

Lemma 2.3.14: A subset A of a bitopological space X is (i,j)- O _compact iff every cover
of (i,j)- O _open sets has a finite subcover.

Theorem 2.3.15: Let £:(X,71,72) > (Y, 0 1,0 2) be (i,j)-w. @ .c and K be an (i,j)- O -

compact subset of X. Then f(K) is a (i,j)- O -compact subset of Y.

Proof: Let V' be an open cover of f(K). For each k€ K (k) € v for some vk € V.. By
(i,j)-w. @ .c of £, f1(Cl(v)) is (i,j)-regular open. The collection { f!(Cl(vk)) : k€K} is a
(i,j)-regular open cover of K and so since K is (i,j)- 0 _.compact , there is a finite
subcollection { f1(Cl(vk)) : k€ vo} where v, is a finite subset of K and { £'!(Cl(vx)) :
ke v} covers K. Clearly, { (Cl(vk)) : k€ vo} covers f(K) and thus f(K) is a (i,j)- O -
compact subset of Y.

Theorem 2.3.16: A (i,j)- O _compact subset of a (i,j)- 0 _Hausdorff space is (i,j)- O -

closed.
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Proof: Let A be a (i,j)- O _compact subset of a (i,j)- 0 _Hausdorff space X. We will show
that X\A is (i,j)- O _open. Let, x€ X\A then for each a€ A, 3 (i,j)- O -open set Ux, and
(j»i)- O _open set V, such that UxaMVa = @. The collection {va: a€A } is a (i,j)- O -

open cover of A. Therefore, J a finite subcollection vi, v2, ....., va that covers A. Let U =

UN.......... M Up, then UNA = ¢@. Thus X\A is (i,j)- O _open , proving that A is
(i,j)- O -closed.
Theorem 2.3.17: Every (i,j)- O _closed subset of a (i,j)- 0 _compact space is (i,j)- O -

compact.

Proof: Let X be a (i,j)- O _compact and let A be a (i,j)- O _closed subset of X. Let C be a
(ij)- O —open cover of A, then C plus X\A is a (i,j)- O —open cover of X. Since X is (i,)-
O _compact, this collection has a finite subcollection that covers X. But then C has a

finite subcollection that covers A as we need.

Theorem 2.3.18: A (i,j)- O _compact subset of a (i,j)- & _Hausdorff space is (i,j)- &

closed.

Proof: Let A be a (i,j)- O _compact subset of a (i,j)- @ _Hausdorff space X. We will show
that X\A is (i,j)- @ -open. Let, x € X\A then for each a€ A, 3 (i,j)- @ _open set Uy, and
(j»i)- @ -open set V, such that Uxa MV, = @. The collection {va: a€ A } is a (i,j)- & _open

cover of A. Therefore, 7 a finite subcollection vi, vz, ....., va that covers A. Let
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U=UN.......... MUy, then UNA = @. Thus X\A is (i,j)- @ _open. , proving that A is
(i,j)- @ closed.

Definition 2.3.19: A bitopological space (X,71,72) is said to be pairwise connected

(Previn 1967) if it can not be expressed as the union of two non empty disjoint sets U
and V such that U is i-open and V is j-open , where i# j, 1,] = 1,2.

Theorem 2.3.20: Let £:(X,71,72) = (Y, 0 1,0 2) be a surjective (i,j)-w. @.c and let X be

pairwise connected. Then Y is pairwise connected.

Proof: Suppose Y is pairwise disconnected. Then 3 & i-open set V and o j-open set
W such that Y = VUW. By (i,j)-w. @ .c of f, f1(jC1(V)) = £1(V) and f!(iCI(W)) = (W)
are open in X. But X = (V) U (W) and £1(V) N /(W) = @. Thus X is pairwise

disconnected, a contradiction. Therefore, Y is pairwise connected.



CHAPTER THREE
A NOTE ON WEAKLY g-CONTINUOUS FUNCTIONS IN
TRITOPOLOGICAL SPACES

3.1 Introduction

As a generalization of [3-continuous functions and weakly /3 -continuous functions in
bitopological space, we introduce and study some properties of weakly /3 -continuous
functions in tritopological spaces and we obtain its some characterizations.

In general topology the notation of semi-preopen sets due to Andrijevic (1986) or /[ -
open sets due to Mashhour et al (1983) plays a significant role. In Mashhour et al (1983)
the concept of f -continuous functions is introduced and further Popa and Noiri (1994)
studied the concept of weakly [ -continuous functions. In 1992, Khedr et al. introduced
and studied [F-continuity in bitopological spaces. Recently 2008, Sanjay Tahiliani
introduced and studied weakly [ -continuous functions in bitopological spaces. In this
chapter, we introduce and study the notation of weakly /3-continuous functions in

tritopological spaces and investigate several properties of these functions in
tritopological spaces.

The concept of tritopological spaces are introduced in (Hassan (2014)).
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3.2 Basic Definitions

In the present chapter, the space (X,F1,F2,F3), (X,F1,F2), and (X,7) denote the

tritopological, bitopological and topological spaces respectively.

Let (X,7) be a topological space and A be a subset of X. The closure and interior of A

are denoted by CI(A) and Int(A) respectively.

In (X, P1,P2) the closure and interior of AC X w. r. to F; are denoted by iCI(A) and

iInt(A) respectively, for i=1,2.

In (X, P1,P2,F3), the closure and interior of AC X w. r. to P; are denoted by iCI(A)
and iInt(A) respectively, for i=1,2,3.

Definition 3.2.1: (Hassan (2014)) Let X be a non-empty set. If Pi, P>, P3 are
three collections of subsets of X such that (X, P1), (X, P2) and (X, F3) are three

topological spaces then X is called a tritopological space and is denoted by

X, P1,P2,F3).

Example 3.2.2: Let X = {a,b, C,d}

Pi={X,¢,lc.dfl, P2={X 4.fa,b.c}{b}} and P3={X,¢,{c}, fa,c},{c,d}, fa,c,d]}
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then (X, P1), (X, P2) and (X, F3) are three topological spaces and (X, 1,2, F3)

is a tritoplogical space.

Definition 3.2.3: A subset A of a tritopological space (X, F1, P2, F3) is said to be

(1) (1,),k)-regular open (Banerjee 1987) if A = iInt(jCl(kInt(A))), where
i#j#k, 1,j,k=1,2,3.

(i1))  (1,),k)-regular closed (Bose and Sinha 1981) if A = iClI(jInt(kCI1(A))),
where 1#j#Kk, 1,),k=1,2,3.

(ii1)  (1,,k)-semi-open (Bose 1981) if A < iCl(jInt(kCI(A))), where i#j#k,
1,),k=1,2,3.

(iv)  (i,j,k)-preopen (Jelic 1990) if A c ilnt(jCl(kInt(A))), where i#j#k,
1,j,k=1,2,3.

Definition 3.2.4: A subset A of a tritopological space (X, P1, P2, F3) is said to be

(i,j,k)-semi-preopen (Khedr and Noiri 1992) if 3 a (i,j,k)-preopen set U such that
UC ACjCl(kInt(U)) or it is said to be (i,j,k)- f-open if ACjCl(kInt(iCI(A))),
where 1#j#Kk, 1,),k=1,2,3.
The complement of (i,j,k)-semi-preopen set is said to be (i,j,k)-semi-preclosed
(Khedr and Noiri 1992) or is said to be (i,j,k)- f -closed if ilnt(CI(kInt(A))) C A,

where 1#j#k, 1,),k=1,2,3.
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Lemma 3.2.5: Let (X, P1, P2, F3) be a tritopological space and {Al ‘Ae A}be a

family of subsets of X. Then

Q) if Aﬂ, is (i,j,k)- [ -open for each A € A, then UA/1 is (i,j,k)- [ -open

AeA

) if A 2 is (i,j,k)- [ -closed for each A € A, then ﬂ A4, is (i,j,k)- B -closed.

AeA
Proof: (1) The proof follows from Theorem 3.2 of (Khedr and Noiri 1992).
(2) This is an immediate consequence of (1) .

Definition 3.2.6: Let A be a subset of a tritopological space (X, P1, P2, P3)

(1) The (i,j,k)- f-closure (Khedr and Noiri 1992) of A, denoted by (i,j,k)-
PCI(A) is defined to be the intersection of all (i,j,k)- f-closed sets

containing A.

(2) The (i,j,k)- B -interior of A, denoted by (i,j,k)- #Int(A) is defined to be the
union of all (i,j,k)- /3 -open sets contained in A.

Lemma 3.2.7: Let (X, P1, P2, F3) be a tritopological space and A be a subset of X.

Then
(1) (i.k)- BInt(A) is (i.j.k)- B-open
() (i,j,k)- BCIA) is (ij,k)- B-closed
(3) Ais (i,j.k)- B -openiff A = (i,j.k)- BInt(A)

(@) A is (i,j,k)- B-closed iff A = (i,j,k)- BCI(A).
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Proof: (1) and (2) are obvious from Lemma 3.2.3, (3) and (4) are obvious from
(1) and (2).

Lemma 3.2.8: For any subset A of a tritopological space (X, FP1, P2, P3), x € (i,j,k)-

PBCIA)iff UNA# @ for every (i,j,k)- f -open set U containing x.
Proof: The proof is trivial.

Lemma 3.2.9: Let (X, P1, P2, F3) be a tritopological space and A be a subset of X.

Then
(1) X-(i,j,k)- BInt(A) = (i,j.k)- B CIX-A)
2) X-(i,K)- BCIA) = (,j,k)- BInt(X-A).
Proof: (1) By Lemma 3.2.5, (i,j,k)- S CI(A) is (i,j,k)- B -closed. Then X-(i,j,k)- B CI(A)
is (i,j,k)- #-open. On the other hand, X - (i,j,k)- # CI(X-A) C A and hence X - (i,j,k)-
CI(X-A) C (i,j,k)- B Int(A). Conversely, let x € (i,j,k)- fInt(A) . Then T (i,j,k)- [ -open
set G such that xeGC A. Then X-G is (ij,k)- f-closed and X-A < X-G. Since
x €X-G, x  (ij,k)- BCI(X-A) and hence (ij,k)- BInt(A) C X-(i,j,k)- B CI(X-A).
Hence X-(i,,k)- fInt(A) = (i,j,k)- £ CI(X-A).
(2) This follows immediately from (1).

Definition 3.2.10: Let (X, F1, P2, F3) be a tritopological space and A be a subset of X.

A point x of X is said to be in the (i,j,k)- @ -closure (Kariofillis 1986) of A, denoted by
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(i,j.k)-cl 0 (A) if for every i-open set U containing x, ANjCl(kInt(U))# ¢, where

1#j#k, 1,),k=1,2,3.

A subset A of X is said to be (i,j,k)- @ -closed if A=(i,j,k)- cle (A). A subset A of X is

said to be (i,j,k)- @ -open if X-A is (i,j,k)- @ -closed.

The (i,j,k)- @-interior of A, denoted by (i,j,k)- Int 0 (A) is defined as the union of all
(i,j,k)-@-open sets contained in A . Hence x e(i,j,k)-Int 0 (A) iff 3 a i-open set U

containing x such that x € UC jCl(kInt(U)) C A.

Lemma 3.2.11: For any subset A of a tritopological space (X, Fi, P2, F3) the

following properties hold:

(1) X-(i,j,k)- ]nte (A) = (i,j,k)- Cl@ (X-A)

(2) X-(i,j,k)-cl 0 (A) = (i,j,k)- Int 0 (X-A) .
Lemma 3.2.12: (Kariofillis 1986) Let (X, P1, P2, F3) be a tritopological space. If U
is a k-open set of X, then (i,j,k)- ¢l 0 (U) = iCI(GInt(U)).
Definition 3.2.13: A mapping f: (X, P1, P2, F3) — (Y, &1, &>, &3) is said to be

(i,j,k)- B -continuous (Khedr and Noiri 1992) if f _I(V) is (i,j.k)- B-open in X for

each & .openset VofY.
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Example 3.2.14: Consider the following tritopologies on X ={a,b,c} and Y= {p,q,r}

respectively:

Pi=X.g.{ah{a.b}} ; P2={X.4.la}, b.c}} s P3=1{X.4.la}, (b, c}}

and &= {Y, @, {p}, {p, 1‘}} ; Qo= {Y, 9, {p}} ; As= {Y’ ¢, {Q}}

We define the mapping f: (X, P, P2, F3) = (Y, &1, &>, &3) by f(a) =p,

f(b) = q and f(c) = r. Then fis (1,2,3)- [ -continuous since the inverse of each

member of the topology &.i-on Y is a (1,2,3)- -open set in (X, P1, P2, P3).

Definition 3.2.15: (1) A mapping f: (X, P1, P2, F3) — (Y, &1, &2, &3) is said to
be (i,j,k)- weakly precontinuous if for each x eX and each &; .open set V of Y

containing f(x), 3 (i,j,k)- preopen set U containing x such that f(U) C jCl(kInt(V)).
Example 3.2.16: Consider the following tritopologies on X Z{a,b,c} and Y Z{p,q,r}

respectively:

Pi={X.4.{al{a,b}} : P=1X,8.{a},{b.c}}: Pi=1{X.4.la}. b} {a.b}}

and & = {Y, ¢, {p}, {p, I'}} ; Q2 :{Y9 ¢9 {p}} ;s = {Y9 ¢9 {q}}



We define the mapping f: (X, P, P2, P3) — (Y, &1, &>, &3) by f(a) =p,

f(b) = q and f(c) = r. Then fis (1,2,3)- weakly precontinuous. Since if a € X and

&.1-open set V= {p, r}, then we have (1,2,3)- preopen set U = {a} such that

f(U) C Qo-Cl(&3-Int(V)).

(2) A mapping f: (X, P, P2, F3) = (Y, &1, &2, &53) is said to be (i,j,k)

weakly- [3- continuous if for each xeX and each &; .open set V of Y

containing f(x), 3 (ijk)- [-open set U containing x such

f(U) C jCI(kInt(V)).

Remark 3.2.17: Since every (i,j,k)-preopen set is (i,j,k)- 5 -open (Remark 3.1 of Khedr

and Noiri 1992) ,every (i,j,k)- weakly precontinuous function is (i,j,k)- weakly- /-

continuous for i#j#k, 1,j,k=1,2,3. The converse is not true.

3.3. Characterization.

Theorem 3.3.1: For a mapping f: (X, P1, P2, P3) — (Y, &1, &2, &3) the following

properties are equivalent:

(1) fis (i,j,k)- weakly- /3 -continuous

@) (k- B-Cl £~ L kmGelima®yy)) < f ~LicimeBy) for every subset

BofY
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(3) (i,4,k)-p-CI( f _l(klnt(F))) cf _l(F) for every (i,j,k)- regular closed set F

of Y

4) (i,j.k)-p-CI( [~ 1 ClV)) < f 1 (iC1(jInt(B))) for every &-open set V of Y
o) [ 1 (V) S (i,j.k)-f-Int( f— 1 (jCI(kInt(V)))) for every & i.open set V of Y

Proof: (1)=(2) . Let B be any subset of Y. Suppose that x e X- f _l(jCl(iInt(B))) .

Then f (x) e Y- jCl(iInt(B)) so thatd a @i open set V of Y containing f(x) such that
VAB= ¢ ,so VNkInt(jCl(ilnt(B))) = ¢ and hence kCI(ilnt(V)) NkInt(jCI(ilnt(B))) =
@. Therefore 3 (i,j,k)- [- open set U containing x such that f(U)C kCI(iInt(V)).

Hence we have U A £~ L(kInt(jCIGIntB)) = ¢ and xeX- (ijk)- B-Cl(f ]

(kInt(GCl(iInt(B))))) by Lemma 3.2.6 . Thus we have

(i,j,k)- B-CI( f— 1 (kInt(jCl(iInt(B))))) < f 1 (Cl(Int(B))) .

(2)=(3). Let F be any (i,j,k)-regular closed set of Y . Then F = iCI(jInt(kCI(F))) and we
have (i.k)- f-CI( f _l(klnt(F))) = (i,j,k)- B-CI( f _1(kInt(iCl(jInt(kCl(F)))))) -

S Giagmkeir = £,
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(3)=(4). For any Q.- open set V of Y , iCI(jInt(V)) is (i,j,k)-regular closed . Then we

have  Ggk-B-ClfTHCvy)  cdib-g-acs Gy c
/o 1 (CI(Int(V))) .

(4)=>(5). Let Vbe @i open set of Y. Then Y - JCI(kInt(V) is & - open set in Y and
we have (ij,k)- B-CI( £~ Ley<iCikinivy)) < £ LGCIY=iCltking(v))) and hence
X- (1.0 B-Int( £~ LGClkIn v < X- £~ Lmike1vy)c X- £~ 1(v). Thus we
obtain £~ L(vy (il B-Int( £ LGCIInt(VY))) .

(5)=>(1). Let x X and V be a ... open set containing f(x) . We have x e £~ L(V) €
G3.0)- B-Int( £~ LGOI VY))) . Put U = (k- B-Int( £~ LGCIkInt(V)) . By
Lemma 3.2.5 , U is (ijk)- f3- open set containing x and f(U)C jCI(KInt(V)). This

shows that fis (i,j,k)- weakly- /3 -continuous .

Theorem 3.3.2: For a mapping f: (X, P1, P2, P3) — (Y, &1, &2, &3) the following

properties are equivalent:
(1) fis (i,j,k)- weakly- [ -continuous

() f((i,jk)- BCIA) < (ij.k)- CI 9( 1(A)) for every subset A of X

3) (k- Al £~ my < L Ggw- oUf(B))) for every subset B of Y
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@ G- BACS ™ Lamiir- Cly(fB)) = £~ (G- Cly(/(B)) for

every subset B of Y.

Proof: (1)=>(2) . Suppose that f'is (i,j,k)- weakly- /3 -continuous . Let A be any subset

of X, x (ij,k)- fCI(A) and V be a &.i. open set of Y containing f(x) . Then 3 (i,j,k)-

[3- open set U containing x such that f(U) C jCI(kInt(V)). Since x € (i,j,k)- f CI(A) ,
by Lemma 3.2.6 , we obtain UNA #¢@ and hence @ = f(U) N f(A) C jCl(kInt(V))Nf(A) .

Therefore , we obtain f(x) € (ij.k)- Cl (£(A4)).

(2)=>(3) . Let B be any subset of Y. Then we have f(ij,k)- BCI £~ LB)) < (ij.k)-
Clg[f ‘I(B)j C(ij}-Cly(B) and hence (ijk- ACI ST B) < 7 (Gjk-
Cly(/(B)).

(3)=(4) . Let B be any subset of Y. Since (1,j,k)- CZ@ (B) is & closed set in Y , by
Lemma 3.2.10 , Gijk)- ACf LimiGjk- CI 2B < rlajn- p
(g0 Cly(B)) = £~ acigmcijn- Cly@m < £~ iciigo- Cly®))
= £~ Gk Cly®y.

(4)= (1). Let Vbe any &k opensetofY . Then by Lemma 3.2.10,V C jInt(iCI(V))

= jInt((ijk)-Cly(V)) and we have (ijk)- ACI(f vy cahjl- gacs!
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(int((ij)- Cly®)) < f - Clyv) = f ~LiciGmt(vy)). Thus we have

Qik- Bl £~ Lvy) < £ LGcIntvy)). Tt follows from Theorem 3.3.1 that f is
(i,j,k)- weakly- /3 -continuous .

Definition 3.3.3: A tritopological space (X, FP1, P2, F3) is said to be (i,j,k)-regular
(Kelly 1963) if for each x € X and each Pi. open set U containing x , 3 a Pi. open set

V such that x eV < jCl(kInt(V)) C U.

Example 3.3.4: Consider the following tritopologies on X = {a,b, C, d}:

Pi=1{X.¢,{a},{a,b,c},{a,c},la,d}} ; P.={X.4,{a,b},{b,c},b}} and

Pi=1X,4.{a,c},ib.cl{c}}

Then X is (1,2,3) regular since for a € X, Pi.open set U = {a,b,c}, 3 P1-open set

V = {a,c} such that V. P> —CI(P3.Int(V)) < U .

Lemma 3.3.5 : (Popa and Noiri 2004) If a tritopological space (X, P1, P2, FP3) is

(i,j.k)-regular , then (i,j,k)- CI o ®)=F for every Pi. closed set F .
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Theorem 3.3.6: Let (Y, &1, &2, &3) be an (i,j,k)- regular tritopological space . For a
mapping f : (X, P1, P2, F3) — (Y, &1, &2, &3) the following properties are

equivalent:

(1) fis (i,j,k)- [ -continuous

(2) f_l((i,j,k)- CZ@ (B)) is (i,j.k)- - closed in X for every subset B of Y
(3) fis (i,j,k)- weakly - /3 -continuous

@ f _I(F) is (i,j,k)- f - closed in X for every (i,j,k)- €- closed set F of Y

(5) f_l(V) is (i,j,k)- - open in X for every (i,j,k)- €- open set V of Y .
Proof : (1)= (2). Let B be any subset of Y. Since (i,j,k)- Cl@ (B) is &.i- closed set in

Y , it follows by Theorem 5.1 of (Khedr and Noiri 1992) that f 1 ((i,.k)- CI 0 (B)) is

(ij,k)- [ -closed in X .

(2)= (3) . Let B be any subset of Y. Then we have (i,j,k)- SCI( f _l(B))) C (i,j,k)-
ﬂCl(f_l(i,j,k)- Cl‘g (B)) = f_l (i,j.k)- CZQ(B) . By Theorem 3.32 , fis

(i,j,k)- weakly - /3 -continuous .
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(3)=> (4). Let F be any (i,k)- O- closed set of Y. Then by Theorem 3.3.2 , (i, k)-
goc ey c 1 @G- Cly®) = f ~1(F) . Thercfore by Lemma 3.2.5 ,
£ L E)is (jk)- B- closed in X .

4)=> (5). Let V be any (i,j,k)- §- open set of Y. By @), £ Ley-vy=x- f~Lw

is (i,j,k)- - closed in X and hence f 1 (V) is (i,j,k)- f-openin X .

(5)= (1). Since Y is (i,J,k)- regular , by Lemma 3.3.5 , (i,j,k)- CIH (B) = B for every
@.i. closed set B of Y and hence &.i- open set is (i,j,k)- - open set . Therefore f 1 V)
is (i,j,k)- [3 - open for every &.i- open set V of Y . By Theorem 5.1 of (Khedr and Noiri

1992) , fis (i,j,k)- [ -continuous .
3.4. Weakly - [ -Continuity and [ -Continuity.
Definition 3.4.1: A mapping f: (X, P1, P2, F3) — (Y, &1, &>, &3) is said to be

(1,j,k)- weakly * quasi continuous (briefly w .q.c) (Popa and Noiri 2004) if for every

GiopensetVofY, f 1 (jCI(kInt(V))) is triclosed in X .

Theorem 3.4.2: If a mapping f: (X, P1, P2, F3) —> (Y, &1, &2, &3) is (i,),k)-

weakly- [f -continuous and (i,j,k)- w * .q.c , then fis (i,j,k)- f -continuous .
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Proof : Letx € X and V be any &.i. open set of Y containing f(x) . Since fis (i,j,k)-

weakly- £ -continuous , 3 an (i,j,k)- #- open set U of X containing x such that

f(U) C jCI(KInt(V))

Hence xg £~ LGCI(KInt(V)) - V) . Therefore xeU - £~ LGCIkInt(V)) - V) =
U n X - folcinevy - vy) . Since U is (ij.k)-f - open and
X - £~ LCInt(v)) - V) is triopen , by Theorem 3.3 of (Khedr and Noiri 1992)

G=UnX- f_l(jCl(kInt(V)) -V)is (i,j,k)- f - open . Then x €G and f(G) C V . For
if yeG,then f (y) ¢ (jCI(kInt(V)) - V) and hence f(y) € V . Therefore fis (i,j,k)- [ -

continuous .

Definition 3.4.3: A mapping f: (X, P1, P2, P3) = (Y, &1, &>, &3) is said to have
a (i,j.k)- B~ interiority condition if (ij,k)- AInt( £~ LGCIKInt(V)) < £~ L(V) for
every &iopenset VofY.

Theorem 3.4.4: If a mapping f: (X, P1, P2, F3) —> (Y, &1, &2, &3) is (i,),k)-

weakly- F -continuous and satisfies the (i,j,k)- £ - interiority condition then f is (i.j,k)-
/3 -continuous .

Proof : Let V be &i. open set of Y . Since fis (i,j,k)- weakly- [f-continuous , by

Theorem 3.3.1 , £~ 1 (V) C(jk)-BInt £~ LGkt v)) . By (ijk)-S-
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interiority condition of f, we have (i,j,k)- fInt( f _l(jCI(kInt(V))) cf _I(V) and
hence (i.j,k)- Ant( £~ LGCIInt(VY) = £~ L(V) . By Lemma 325 , £~ 1(V) is
(i,j,k)- B - open in X and thus fis (i,j,k)- [ -continuous .

Definition 3.4.5: Let (X, P1, P2, F3) be a tritopological space and let A be a
subset of X . The (i,j,k)- - frontier of A is defined as (i,j,k)- BFr(A) = (i,j.k)-

B CUA)N(,j.k)- BCIX -A) = (i,j,k)- BCI(A) - (i,j,k)- SInt(A) .
Theorem 3.4.6: The set of all points x of X for which a mapping

f: (X, P, P2, P3) = (Y, &1, G2, @&3) is not (i,j,k)- weakly- [ -continuous is

identical with the union of the (i,j,k)- - frontier of the inverse images of the

jCl(kInt(V)) of &.i- open set V of Y containing f(x).

Proof : Let x be a point of X at which f(x) is not (i,j,k)- weakly- / -continuous . Then
d a &.i open set V of Y containing f(x) such that U n ( X - f _l(jCI(kInt(V)))) =@
for every (i,j,k)- 3 - open set U of X containing x . By Lemma 3.2.6 , x € (i,j,k)- S CI( X
-~ Lciaaniovyyy) . Since xe £ LGCIKINIVY)) | we have x e (ij.k)- BCI( £

(jCl(kInt(V)))) and hence x € (i,j,k)- BFr( f 1 (jCI(kInt(V)))) .

Conversely , if fis (i,j,k)- weakly- [ -continuous at x , then for each @.i- open set V of

Y containing f(x) , 3 (i,j,k)- - open set U containing x such that f(U) < jCI(kInt(V))
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and hence xeU C f _l(jCI(kInt(V))) . Therefore we obtain that x e(i.j,k)- fInt

(f~ 1 (GCI(kInt(V)))) . This contradicts that x € (i,j,k)- SFr( f 1 (jCI(kInt(V)))) .

3.5 Weakly - -Continuity and Almost 5 -Continuity .

Definition 3.5.1: A mapping f: (X, P1, P2, F3) — (Y, &1, &>, &3) is said to be
(i,j,k)- almost [3- continuous if for each x € X and each @i open set V containing

f(x), 3 an (i,j,k)- - open set U of X containing x such that f(U) < ilnt(Cl(kInt(V))) .

Lemma 3.5.2 : A mapping f : (X, P1, P2, P3) — (Y, &1, &2, &3) is (i,j,k)-

almost [ - continuous iff f _l(V) is (i,j,k)- 3 - open for each (i,j,k)-regular open set
VofY.

Definition 3.5.3: A tritopological space (X, FPi, P2, P3) is said to be (i,j,k)-

almost regular (Singal and Arya, 1971) if for each x € X and each (i,j,k)-regular
open set U containing x , 3 an (i,j,k)-regular open set V of X such that xeV C
JCI(kInt(V)) < U .

Theorem 3.5.4: Let a tritopological space (Y, &1, &2, &3) be (i,,k)- almost
regular . Then a mapping f : (X, P1, P2, P3) = (Y, &1, &2, &3) is  (1,j,k)-

almost [ - continuous iff it is (i,j,k)- weakly- /3 -continuous .

Proof : Necessity . This is obvious .
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Sufficiency. Let us suppose that f is (i,j,k)- weakly- f-continuous . Let V be any

(i,j,k)-regular open set of Y and x € f _1(V) . Then we have f(x) eV . By the almost

(i,j,k)-regularity of Y , 3 an (i,j,k)-regular open set VO of Y such that f(x)e VO -
jCI(kInt( VO ) C V. Since fis (i,j,k)- weakly- [ -continuous , 3 an (i,j,k)- /3 - open set
U of X containing x such that f(U) C jCl(kInt( VO ))C V . This follows that x e U C
£~ Lvy . Therefore we have £~ L(V)C (ijk)- BInt( £~ 1(V) . By Lemma 3.2.5 ,
f_l(V) is (i,j,k)- 3 - open and by Lemma 3.5.2, fis (i,j,k)- almost /- continuous .

Definition 3.5.5: A tritopological space (X, P1, P2, FP3) is said to be triowise /3 -

Hausdorff or triowise -7’ b if for each distinct points x,y,z of X , 3 (i,j,k) /- open

set U, Vand W containing x, y and z respectively such that UnVAW=¢ for i#j#Kk,
1,j,k=1,2,3.

Theorem 3.5.6: Let (X, P1, P2, P3) be a tritopological space . If for each distinct
points x, y, z in X , 3 mapping f of (X, P1, P2, P3) into triowise Hausdorff

tritopological space (Y, &1, &2, &3) such that

(1) fx) = f(y) # f(z)

(2) fis (i,j,k)- weakly- [ -continuous at x

(3) fis (j.k,i)-almost- /3 -continuous at y
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(4) fis (k,i,j)- almost- /3 -continuous at z .

Then (X, P1, P, P3) is triowise [ -Hausdorff .

Proof : Let x, y, z be three distinct points in X . Since Y is triowise Hausdorff , 3 a

@&.i-open set U containing f(x) and a & ;- open set V containing f(y) and a & - open set W

containing f(z) such that UNnVAW = ¢@. Since U, V and W are disjoint we have
kCI(U) N kInt(jCI(V)) N kCI(Int(iC(W)) = ¢ . Since fis (i,j,k)- weakly- f -continuous

atx, 3 an (i,j,k) [ - openset U , of X containing x such that f{( U ) SkCI(U) . Since f
is (j,k,i)- almost- /3 -continuous at y , 3 an (j,k,i) - open set U y of X containing y
such that (U y )< kInt(jCI(V)) and since f is (k,i,j)- /- open set U - of X containing z
such that f(U - )C kCI(jInt(iCI(W))) . Hence we have U Mg U y NnU .= @. This

shows that (X, P1, P2, P3) is triowise f-Hausdorff .

3.6 Some Properties

Definition 3.6.1: A tritopological space (X, Pi1, P2, F3) is said to be triowise

Urysoshn (Bose and Sinha 1992) if for each distinct points x,y,z , 3 i - open set U ,

j-open set V and k- open set W such that x eU, y eV and z € W and jCI(U) n kCI(V)

AICIW) =@ for i#j#k, ijk=123.



63

Theorem 3.6.2: If (Y, &1, &2, &3) is triowise Urysohn and f: (X ,P1, P2, F3) —>
(Y, &1, &, &3) is triowise weakly [ - continuous injection , then (X, P1, P2, P3)
is triowise f# — T2'

Proof : Let x,y,z be three distinct points of X . Then since f is injection, f(x)= f(y)=f(z) .
Since Y is triowise Urysohn , 3 Pi.open set U, P . open set V and P - open set W
such that f(x) €U, f(y) € V and f(z) € W and jCI(U)" kCI(V) n iCI(W)=¢ for i#]j#k,
k=123 Hence fLGclUy n £ lkciovy) £ Laciowy) = ¢ . Therefore

(ii0- A LGOI A Gk St fTIKRCIVY) A (i) B £
(iCI(W))) = @ . Since f is triowise weakly - continuous by Theorem 3.3.1,
ve SN cagl-pmclgawy . ove Iy ciki- B!
«Clvy)) , ze £ Yw) c(kij-Bint fTLGCIW)) . This implies that

X, P1, P2, P3)is triowiseﬂ—Tz.
Definition 3.6.3: A tritopological space (X, Pi, P2, FP3) is said to be triowise

connected (Previn 1967) (resp. triowise f -connected) if it can not be expressed
as the union of three non-empty disjoint sets U,V and W such that U is i-open ,
V is j-open and W is k-open (resp.(i,j,k)- -open , (j.k,i)- f-open and (k,i,j)- [ -

open).
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Theorem 3.6.4: If a mapping f : (X, P1, P2, P3) = (Y, &1, &>, &3) is triowise
weakly [ - continuous surjection and (X, P1, P2, P3) is triowise [ -connected , then
(Y, &1, &», &) is triowise connected .

Proof: Suppose that (Y, &1, &2, &3) is not triowise connected . Then 3 a Qi
open set U, @ . open set V and & - open set W such that Uz¢ ,V =z, W =¢ ,

“luy . v and

UnVAW=¢ and UOVUW= Y . Since f is surjective , f
£~ L w) are non-empty . Moreover , f1W) A~ vy AWy = 4 and
Loy o Yvyu 71wy =X . Since fis triowise weakly - continuous , by
Theorem 3.3.1 , we have £~ L(U) C(ijk)- At £~ LGciuyy , £~ 1v) c (k-
Bint( £~ Laciovyy and £ W) < (ki) Snt( £ LGCIW)Y)) . Since U is j-closed
and k-closed, V is i-closed and k-closed, W is i-closed and j-closed , we have £~ L(U)
c k- A Ly, ) k- A T vy and W) S (ki)
pini( £~ wy) . Hence £ V) = igdo- B Ly . £ Hw) = Gk B

vy and £ w) = i)- Bine £ I W) . By Lemma 325, £~ L) is

Gik)-B-open . FLvy is (ki) B-open , fTLW) is (ki) B-open in

(X, P1, P2, P3) . This shows that (X, P, P2, P3) is not triowise f -connected.
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Definition 3.6.5: A subset A of a tritopological space (X, P1, P2, F3) is said to be

(1,j,k)-quasi H-closed relative to X (Banerjee 1987) if for each cover an aed } of A

by Piopen sets of X , I a finite subset J 0 of Jsuch that A C
UyCLindy , ):a e |
Definition 3.6.6: A subset A of a tritopological space (X, F1, P2, F3) is said to be

(i,j,k)- [ -compact relative to X if every cover of A by (i,j,k)- 5 -open sets of X has a
finite subcover .

Theorem 3.6.7: If £ : (X, P1, P2, P3) — (Y, &1, &o, &3) is triowise weakly [3-

continuous and A is (i,j,k)-  -compact relative to X , then f(A) is (i,j,k)-quasi H-closed
relative to Y.

Proof : Let A be (i,j,k)-  -compact relative to X and iVa aeJ } any cover of f(A) by
@.iopen sets of (Y, &1, &2, &3) . Then fA)c U iVa o EJ} and so Ac U
{f_l(Va):a S J}. Since f is (i,j,k)- weakly [- continuous , by Theorem 3.3.1,
we have f _I(Va)g (i,j,k)- BInt( f _l(jCl(kInt( Va ))) for each & € J . Therefore A
cU {(i,j,k)-,BInt(f_l(jCl(kInt( Va )} for each aeJ. Since A is (i,j,k)- [ -

compact relative to X and (i,j,k)- S Int( f _l(jCl(kInt( Va ) is (i,j,k)- 3 -open for each
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a € J , 3 a finite subset JO of Jsuchthat A < U {(i,j,k)-ﬂlnt(f_l(jCl(kInt( VO! )
‘0 € J ). This implies that f(A)C U {R(ij0)- Blnt( f Lcitkm Ve,

C U{f(f_l(jCl(kInt(Va))) a eJO } U{jCl(kInt(Va ) & eJO } . Hence

f(A) is (i,j,k)-quasi H-closed relative to Y.



CHAPTER FOUR

DENSITY TOPOLOGY IN
TRITOPOLOGICAL SPACES

4.1. Introduction.

In this chapter we introduce the concept of density topology in a
tritopological space and derive some relevant separation properties involving the

density topology.

The idea of density topology has been widely studied in various spaces

such as bitopological space, measure space, real number space, Romanvoski
space etc. (see Goffman and Waterman (1961), Lahiri and Das (2002), Martin

(1964), Saha and Lahiri (1989), A.K. Banerjee (2008).

We have generalized a work of Lahiri and Das (2002) to tritopological

spaces.

In this chapter we attempt to define density of sets in a tritopological

space (X, F1, F2, F3) and with the idea of trioclosure we generate a topology

which is helpful in study of some separation properties.
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Here we study density of sets in a tritopologcial space satisfying certain
axioms and investigate some relevant separation properties.
4.2. Tritopological Spaces.
Here we give some definitions in tritopological spaces.
Definition 4.2.1: A cover Q of a tritoplogical space (X, Pi, P2, F3) is said to
be trio-pen if Q < P1uU Pru P3 and Q contains at least one non-empty member

from each of F1, P2, and P53 . The space (X, F1, P2, F3) is said to be tricompact

if every trio-open cover of it has a finite subcover.

Definition 4.2.2: Recall that if (X, P1, P2, F3) be a tritopological space for any

AcX, define A = N {F1UF2UF3 where A cF{UF2UF3 and Fi, F, and Fs are

respectively P, P2, and P3 ~ closed}, then A is called the triowise closure of A.

When A is a subset of a tritopological space X (bitopological space X) by

A we mean triowise closure of A (pairwise closure of A).

Theorem 4.2.3: Let X be a tritopological space and let 5={V:VcX and

(X-V)=X -V}, then (X,3) is a topological space.
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Note: We observe that if F is P1 or P> or P3 closed then FcF u o = F, so

that F = F. Hence F is 3 —closed. This implies that 5 is finer than P, P2, and Ps.

Lemma 4.2.4: The family {PNQNR: Pe P1, Qe P> and Re P3} forms a base

for 3.

Proof: Clearly, the sets PNQMR belong to 5. If Ve 5 then

X -V =(X-V)

=N {FuFuF:F uF uF X -V and Fi, F2 and F3 are

respectively P1, P2 and P3- closed}

Therefore V=X - (X -V)

=uU {PNQNR: PN Q RV, Pe P1,Qe P2 and Re FP3}

Hence the proof is complete.
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4.3. Density of Sets in (X, P1, P2, P3).

Definition 4.3.1: BcPiuUP>2UP3 is said to be triowise open base of

(X, P1,P2,P3) if BPi form a base for P, B> form a base for P> and B P3

form a base for Ps.

Definition 4.3.2: The c-algebra generated by the class of all sets of the form

P UQUR, Pe P1, Qe P> and Re P; is called the class of triowise Borel sets.

Definition 4.3.3: (Noiri, Khedr and AL-Areefi,1992) A mapping f : (X, P1, P2, P3)

— (Y, &1, &2, @&3) is said to be triowise continuous if inverse image of every

&.1-open (resp. &.2-open, & 3-open) set in Y is P1-open (resp. P2-open, F3 -open)

in X.

In (X, P1, P2, F3), let £ be the class of all triowise Borel sets. Let p be a

measure on & such that p (X) is finite. We also assume p to be non-zero for all

non-void sets of the form PNQMNR, Pe P, Qe P2, Re P3. Let u* be the outer

measure on P(X) generated by u. Let S be the class of all p*-measurable sets and

A be a class of sets from &.
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Definition 4.3.4: By a decomposition (SOLOMON (1969)) Ev of Ve& we mean

a finite disjoint family

{A1, Az, ,An} < A such that
(1) UAi cV and
i=1

Gi) u(v —OA:’) =0

The class A is called a triowise fundamental sets (SOLOMON (1969)) if the

following axioms hold.
AXIOM 1. A form a triowise open base of (X, P1, P2, F3) (and hence also Ac

o Pau ).

AXIOM 1I. For any AeA and €>0 there is a decomposition &a of A such that
A'e&a implies p (A)<e.
AXIOM III. For each triowise compact set W and for each P or, P> or P3-open

set VoW, there is an €>0 such that if AeA and p (A)<e and ANW = @ then

AcV.
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AXIOM 1V: Given AeA and >0 there is a A'eA such that A < A' and
u(A'-A)<e.

Let xeX, since by Axiom I, A forms a triowise open base of (X, P1, P2, F3)
there exists a AeA such that xeA. Let €>0, by AXIOM II there exists a

decomposition {Ai1,Aa,.....An} of A with p (Aj) <e, 1=1, 2, ........... , n. We now

prove that xe A, for some i. If not, let x ¢ A, for all i. Since A, is the

intersection of all 5-closed sets containing Aj, there exists a 5-closed set Ai,

containing A; which does not contain x. Then clearly the set G = A- U;ll is
i=1

5-open and non-void (xeG) and GCA-UAi and so by our assumption about L,
i=1

0<p (G) <p (A- UAi ) which contradicts the condition (ii) of definition 4.3.4.

i=l
Hence for €>0 there exists a A;j such that xe K‘ and p (Aj<e.

Consequently, for each xeX there exists a sequence of triowise

fundamental sets {An,x} such that xe An ~and p (An,x)<l VY n.
n
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Definition 4.3.5: (Lahiri and Das (2002)) For xe X and EcX the upper and lower
outer density of E at x denoted respectively by g;*(E, x), ¢* (E, x) are defined

by

— lim *
@(E,X): (Dn (E,X)
n— 0

. lim .
PH(E,x)= @*, (E,x)
n— oo —

where,

0, (E.x)= sup {m* (E, A);xe A, (A) <, AcA)
n

@, *(E,x) = inf {m* (E, A); xe K, n(A) <l, AeA}
— n

HF(ENA)

dm* (E, A) =
and m* ( ) ()

Clearly 0<¢*(E, x) <@* (E,x) <l. If they are equal, we denote the common value
by ¢o*(E, x) and say the outer density of E exists at x. If E€3 we write
p*(Ex) = ¢(Ex) and p*Ex) = ¢(Ex). If they are equal we write

9 (E.x) = ¢ (E.x) = ¢(E.x).



74

We say x, an outer density point or an outer dispersion point of E according as

@*(E, x) =1 or ¢*(E.x)=0.

Theorem 4.3.6: (Theorem 4.1 of A.K. Banerjee (2008)) If E, Fe3, ¢(Ex),

¢ (F,x) exist and if ECF, then ¢@(F-E,x) exists and ¢(F-E,x) = ¢(F,x)-o(E,x).

The proof is similar to the proof of theorem 3 of Saha and Lahiri (1989).
Definition 4.3.7: Let D= {V:VcX and ¢*(X-V,x)=0, VxeV}. As in Martin
(1964) one can verify that D is a topology on X which is called the density

topology (or, in short d-topology) on (X, P1, P2, P3).

The following two theorems is a generalizations of theorems 3 and 4 of (Lahiri

and Das (2002)) .

Theorem 4.3.8: If V is S-open, then V xe V the outer density of V exist at x
and @*(V,x) =1.

Proof: Let xeV, so by Lemma 4.2.6 there exists Pe P1, Qe P2, Re 3 such that

xe PMQMRcV. Since {x} triowise compact and {x}c P, by Axiom III, there is

€>0 such that AeA and {x} A #¢ and p (A)<e = AcP. Choose no €N such

that 1/n0 <e. Then V n>n, AeA and xe 4 and n (A) <l/n will imply Ac P.
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Similarly, we can find nieN such that V n>n;, AeA and xe 4 and p(A) <1/n
— Ac Q and mxeN such that V n>ny, AeA and xe 4 and p(A) < 1/n =AcR.
Then V n>m = max {no, ni, n2}, AeA and xe A and p (A < I/n

= AcPNQMNRcV. Hence from definition of gpn* (V, x) it follows that ¥V n>m.

*(V A A)

go_n*(V,x)Zinf‘u’u(A) ,AeA xe A, u(A)<1/n

=1, since AcCV.
Therefore *(V,x)=1 and hence ¢*(V,x)=1.

Theorem 4.3.9: The d- topology D is finer than 3.
Proof: Since Sc £ — 9 so by theorems 4.3.6 and 4.3.8 Ve35 implies

¢ (X-V,X)z (P(X,X)' ¢ (V,X)
—1-1
=0V xeV.

Therefore 3 — D. This completes the proof.
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4.4. Separation Properties in (X, 3).
Theorem 4.4.1: (Theorem 5 of Lahiri and Das (2002)) (X, 5) is regular.

Proof: Let E be 5-closed and x¢E. Then xeX-E €5 and so by Lemma 4.2.6,

there are Pe P, Qe P> and Re P such that xePNQMR < X-E. We associate

with x, a sequence of triowise fundamental sets {As,x} such that xe An,x and 0

(Anyx) <1/n V n. By Axiom IV for Ao, there is Bnx € A and a 3-closed sets

121 2n’x Such that Xe 2211,)( g Azn’x (@ Bn,x al’ld H (Bn’x — A2n,x) < 1/2 n. Then H (Bn’x)

< u (A2nx) + W(Bnx—A2nx) <L+L:y. Thus we obtain a sequence {Bnx}
2n 2n n

from A such that xe Bnx and p (Bnx) < 1/n Vn. Again, proceeding as above for

Bonx we get a sequence {Cnx) from A satisfying xe Bonx —Bonx Cnx and 0

(Cux) < 1/n V n. Since {x} is triowise compact and xep so by Axiom III, there is

€>0 such that Ae A and {x} NA # ¢ and p (A) <e implies A < P. Choose

no€ N such that 1/n° <e. Then Cpo, x <P, since x& Cno, x Eno, x and p (Cpo, X)

< 1/n0 <e€. Now, x€ Bano, X < B 210, X < Cno, x < P.
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Similarly, we can find n1e€ X such that xe Bon, x < Ban,x < Chi, x < Q and for

n2e N such that xe Banz, x © Bon2, X Cn2,x < R.

Thus xe€ Bano,x MBon1,x,M Bon2,x = U (say) B 2n0,X M Ban1,x N Bana,x =F (say)

< Cno,x N Cu,x N Cn2,x < pnQN R < X-E, Hence we have Ue 5 (by

Axioml), V = X-F e 3 satisfying xeU, EcV and UNV = ¢. Hence proved.

Corollary 4.4.2: (A.K. Banerjee (2008)) If (X, 3) is To then it is Tx.

Proof: Let, X, y be two distinct points of X, then by Ty there is a 5-open set U
containing one of them say x, such that yeF = X-U. Since F is 5-closed and
x¢F, so by regularity there are S-open sets V,W such that xeV, FEW and

VAW = @. Then xeV, ye W and VAW = ¢@. Therefore (X, 3) is Ta.

Definition 4.4.3: In (X, P1, P2, F3), P is said to be regular w.r.to & if for any P -
closed set F and x eX with x¢ F, 3 U € P1, Ve P such that xeU, FcV and UnV = @ .
If P1 is regular w.r.to P> , and P> is regular w.r.to 3 and P is regular w.r.to P1 then
(X, P1, P2, P3) is called (1,2,3)-regular. If the space (X, P1, P2, P3) is (i,j,k)- regular

then it is called triowise regular fori#j#k, 1,j, k=1,2,3.
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If we consider the bitopological space the (X, F1, F2) and define 7 = {U:

UcX and X-U = X-U} then (X,7) is a regular toplogical space by Lahiri and Das

(2002).

This topology 7 is finer than both P and P>. By Lemma 2 of Lahiri and Das (2002),
we have {P NQ: P € P and Qe P} form a base for 7. Therefore by Lemma 4.2.6, 5 is
finer than 7.

Then we have the following corollary.

Corollary 4.4.4: In (X, D, 3, T) 3 is regular with respect to D and T is regular with
respect to 3 and D.

Note: When we say that 7 is regular with respect to D , without loss of generality, we
assume that D is the d- topology on (X, P1, P2) .

Theorem 4.4.5: (X, D,3,T) is triowise regular if the following condition:

(a) For any D-closed set E, if {Aq} is a sequence of triowise fundamental sets such that
u* (ENAn)—0 as n—o, there is at least one ke N such that EnAx=¢ holds.

Proof: We only need to show that in X, 7 is regular with respect to 3, 3 is regular with

respect to D and D is regular with respect to 7 . By corollary 4.4.4 it is sufficient to
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show that D is regular with respect to 7. Let E be D-closed and x¢E. As in Theorem

4.4.1 we construct two sequences {Bn,}, {Cn,x} from A such that xeBan,x cﬁzn < Cox

and p (Cnx) < '/n V n. Since X-E is D-open and xeX-E, g;* (E,x)=0. Let €>0 be

arbitrary. Then there is np € N such that !/x<e and (7,1* (E,x) <eV n2=ny. Since xe Cp,x

cCux, W (Cny) <'/n, m* (E, Coy)<eVn>ng i.e, p* (ENCny)/p (Coy)<e ie; u* (ENCnx) < €.

i (Cox) < € V n2p. Thus p* (ENCpx)—0 as n—oc. By the condition (a) there is ke
such that ENCix = ¢. Hence using Axiom I, xeBaxre Tc D, EcX-CixcX-Buxe T

and Boi,x N (X-E 2kx) = ¢@. This proves the theorem.

Definition 4.4.6: (X, P1, P>, F3) is said to be triowise Hausdorff if for every x, y, z € X,
x2y#z 3 U € P1, Ve P2 and We P3such that xeU, yeV, zeW and UnVNW = ¢.

Example 4.4.7: Consider the following tritopologies on X = {a,b, C}:
Pi= {X7¢’{a}s {a’b}} , Pa= {X=¢={bac}9 {b}} , Pa= {X9¢a{aac}9{c}}

Then X is (1,2,3) Hausdorff since for a,b,c € X, Pi-open set U = {a}, P>- open

set V= {b} , P3-open set W = {c}, then we have UnVAW = ¢.
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Theorem 4.4.8: If (X, P1) or (X, P2) or (X, P3) is Ti, then (X, D, T) is pairwise
Hausdorff. Also if (X, D, 7) is pairwise Hausdorff then (X, D, 3, T) is triowise

Hausdorff.
Proof: The proof of the first part is similar to Theorem 7 of Lahiri and Das (2002).

For the last part of the theorem, let (X, D, T) be pairwise Hausdorff. Let x, y, ze X with
xzy#z. Since (X, P, T) is pairwise Hausdorff, for x, y 3 U'e D, V'e T such that xeU',
yeV'and UNnV'= @, for y,z 3 U"eD, V"e T such that yeU", ze V" and U""V"= @ and
also for x, z 3 U"eD, V"e T such that xeU"', ze V" and U"NV"'= @. Put UnU"=U,
V'=V and V'"NnV"=W. Then xeUe P, yeVe Tc 3, ze W c T and clearLUNVNW= ¢ .
Therefore (X, D, 3, T) is triowise Hausdorff.

Definition 4.4.9: (X, P1, P2, F3) is called (1,2,3) normal if for any pairwise disjoint
Pi-closed set A, P»>-closed set B, Ps3-closed set C, 3 Ue P1, Ve P2, We P3 such that

AcV, BcW, CcU and UNnVNW = @ .

If (X, P1, P2, P3) is (i, j, k) normal then it is called triowise normal for i#j=k,

ij.k=1,23.

Theorem 4.4.10: If (X, D) is compact then (X, D, T, 3) is triowise normal.
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Proof: Let A, B and C be pairwise disjoint D-closed, 7 -closed and 3-closed sets
respectively. Since (X, 3) is regular for any xe A, 3 U,, Vxe3 such that xe Uy,CcVx and

UxnVy= @. Now, {U;: xeA} form a 3-open cover of A and hence D-open cover of A.
Since A is D-closed 3 xi1, x2.......... JXn€A such that AcUUxi: Ue 3, Ccﬂin:
i1 i=l

We 3c D, UnV= ¢. Also since (X, 7) is regular for each xeA, 3 U'x, V'x € T such

that xeU’x, BcV'x and Ux"V'x= ¢. Also {U'x: xeA} form a T open cover of A and

hence D-open cover of A. Since A is D-closed ACUU’xi = Ue T, BCﬂV'xi:
i=1

i=1

VeU'e Tc3, UnW= ¢@. Therefore , we have AcUeT, Bc Ve3, Cc We D and

UnVnW = ¢.

Thus (X, D, T, 3) is (1,2,3) normal. Similarly, we can show that (X, D, 7, 3) is

(2,1,3) normal. Therefore (X, D, T, 3) is triowise normal.
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