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Abstract 

First-principles investigation of the structural, elastic, electronic, thermodynamic 
and optical properties along with theoretical hardness of the four superconducting 
MAX compounds Mo2GaC, Nb2AsC, Nb2InC and Ti2GeC have been carried out 
by the plane-wave pseudopotential method based on the density functional theory 
(DFT) implemented in the CASTEP code. The hardness has been studied by 
means of Mulliken bond population analysis and electronic energy density of 
states. The thermodynamic properties are derived from the quasi-harmonic Debye 
model with phononic effect. The calculated structural properties are in excellent 
agreement with experiments. The pressure effect on the structural properties of 
these MAX compounds has been investigated. The results show that both lattice 
constants and unit cell volume decrease almost linearly with the increase of 
pressure, while the hexagonal ratio increases gradually with increasing pressure. 
This implies that the lattice constant a decreases at a faster rate than c. Thus, the 
compressibility along c-axis is lower than that along a-axis. Our results on the 
elastic parameters indicate the elastic anisotropy and brittleness of the compounds. 
Nb2InC and Ti2GeC possess small elastic anisotropy but for other two phases it is 
comparatively large since they exhibit the maximal deviation from unity. The 
calculated elastic constants at different pressures exhibit the monotonous increase 
of the five independent elastic constants Cij with the pressure up to 50 GPa and 
satisfy the Born criteria for the mechanical stability with the prediction of no phase 
transition of the studied four MAX phases. The electronic structures calculations 
reveal that the chemical bonding of the MAX nanolaminates may be a combination 
of covalent, ionic and metallic in nature. The phase Nb2AsC is relatively soft and 
easily machinable compared to the other three metallic-ceramics due to its lowest 
hardness value. The investigated Fermi surfaces are formed mainly by the low-
dispersive bands, which should be responsible for the presence of superconductivity 
in the four MAX materials. All optical functions are determined and analyzed for 
two different polarization directions. The theoretical findings are compared with 
available experimental data. The reflectivity spectra imply that the four MAX 
phases are the potential candidate materials for coating to reduce the solar heating. 
Finally, the thermodynamic properties such as bulk modulus, Debye temperature, 
volume thermal expansion coefficient and specific heats have been investigated 
successfully and analyzed in detail. 
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 1.  Introduction 

This chapter introduces the main topics covered in this thesis and provides a 

summary of the objective of this work, along with an outline of how the various 

chapters are structured. 

1.1 Background  

The world around us is largely made of condensed matter, i.e., matter whose 

energy is low enough that it has condensed to form stable systems of atoms and 

molecules, usually in solid or liquid phases. The large variety of ways in which 

these systems can take form leads to a rich diversity of physical phenomena that is 

practically endless in scope. Because of this, approaching the field of condensed 

matter physics from a theoretical or computational angle can be a very important 

and challenging task to undertake. For most part, the way this is done is to pick a 

particular macroscopic phenomenon, which has been well studied experimentally, 

and to build empirical, or semi-empirical models to describe the experimentally 

observed results. This often provides a good understanding of the physics of the 

system under study, and it is often possible to interpolate or extrapolate these 

models in order to predict the behavior of systems under conditions not yet tested 

experimentally. However, due to the complexity of condensed matter systems, 

and the difficulty in building accurate models, the predictive power of such an 

approach can be severely limited. 

The first principles approach to condensed matter theory is entirely different from 

this. It starts from what we know about all condensed matter systems - which they 

are made of atoms, which in turn are made of a positively charged nucleus and a 

number of negatively charged electrons. The interactions between atoms, such as 

chemical and molecular bonding, are determined by the interactions of their 

constituent electrons and nuclei. All of the physics of condensed matter systems 

arises ultimately from these basic interactions. If we can model these interactions 

accurately, then all of the complex physical phenomena that arise from them 

should emerge naturally in our calculations. 
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The physics that describes the interaction of electrons and nuclei that is relevant 

to most problems in condensed matter is actually relatively simple. There are only 

two different types of particle involved, and the behavior of these particles is 

mostly governed by basic quantum mechanics. What makes first principles 

calculations difficult is not so much the complexity of the physics, but rather the 

size of the problem in terms of a numerical formulation. The development of 

accurate and efficient theoretical and computational techniques for dealing with 

so many particles is therefore central to the ongoing research in this field. Simply, 

in physics, a study is said to be from the first-principles, or ab initio, if it starts 

directly at the level of established laws of physics and does not make assumptions 

such as empirical model and fitting parameters. For example, investigation of 

electronic structure using Schrodinger’s equation within a set of approximations 

that do not include fitting the model to experimental data is an ab initio approach, 

or first-principles calculation.   

The MAX phases are a family of ternary layered condensed compounds of transition 

metal carbides and nitrides with a unique combination of both metallic and ceramic 

properties [1], which are stimulating numerous researches with the hope that they 

will open the door to viable commercial applications for these materials in future. 

Like metals, they are electrically [2] and thermally [3] conductive, not susceptible 

to thermal shock [4], plastic at very high temperature [4], exceptionally damage 

tolerant [5], and most readily machinable [6]. Like ceramics, they are elastically 

rigid [7], lightweight [8], creep [9], fatigue [10], oxidation [11] and corrosion [12] 

resistant, and maintain their strengths to high temperatures [4]. These fascinating 

properties triggered extensive explorations on synthesis, microstructure, property, 

and design of MAX phases, and they highlighted technological perspectives of 

MAX phases as high-performance structural ceramics. The MAX materials are 

developed for defense, aerospace, automotive applications, medical, and portable 

electronic devices. A detailed study of such materials is important as the MAX 

phases have many advantages over the commonly used materials. The MAX phases 

are often termed as metallic ceramics due to their metallic and ceramic properties.    
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The MAX phases are thermodynamically stable nanolaminates that possess the 

chemical formula: Mn+1AXn, where n is 1, 2, or 3, M is an early transition metal, 

A is an A-group element, and X is either carbon and/or nitrogen. The terms MAC 

phases and MAN phases are sometimes used to refer to the MAX phase carbides 

(X = C) and nitrides (X = N) respectively. The MAX phases serve as effective 

nanolaminate materials because of their laminated layers having thickness in the 

nanometer range. The MAX phases aggregate into a big family that includes more 

than 70 members identified in experiments. There are also about 15 phases 

predicted theoretically that are awaiting exploration. The MAX phases are 

classified into three groups depending on the number of M, A, and X atoms in the 

unit cell of the compound: the M2AX or 211 MAX phases (n = 1), M3AX2 or 312 

MAX phases (n = 2), and M4AX3 or 413 MAX phases (n = 3). Experimental or 

theoretical evidence supports the possible existence of higher order MAX 

compounds such as 514 [13], 615 [14], and 716 [15] phases.  

Up to now, only eight members of the MAX family are identified as low transition 

temperature Tc superconductors: namely, Mo2GaC [16], Nb2SC [17], Nb2SnC [18], 

Nb2AsC [19], Ti2InC [20], Nb2InC [21], Ti2InN [22], and Ti2GeC [23]. All these 

superconducting MAX compounds belong to the 211 phases. When we started this 

study, the Ti2GeC phase was not identified as superconducting phase. By this time 

a complete study on structural, elastic, electronic, thermodynamic, and optical 

properties of Nb2SC and Nb2SnC as well as Ti2InC and Ti2InN has been carried 

out [24,25]. So, we have restricted our study on Nb2AsC, Nb2InC, Mo2GaC, and 

Ti2GeC.  

Theoretical studies related to MAX phase properties are numerous, ranging from 

investigations of, e.g., elastic properties to electronic-structure calculations. Such 

work is relevant to gain knowledge and understanding of existing phases. However, 

surprisingly little has been done to reflect on whether or not studied phases not yet 

synthesized can be expected to exist experimentally. Further, the theoretical study 

is needed to stimulate the experimental research on synthesis and applications of 

new MAX compounds with better characteristics.     
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1.2 History of MAX phases 

Hans Nowotny and his group, in the sixth decade of the twentieth century in Vienna, 

discovered more than 100 new carbides and nitrides [26-42]. Amongst them were 

more than thirty, the so-called H-phases that have a M2AX chemistry, where M is 

an early transition metal, A is an A-group element comes from column 13 – 16 in 

the periodic table and X is either C and/or N. They are layered and hexagonal with 

M2X layers interleaved with layers of pure A-group element. In 1967, Nowotny 

and coworkers also discovered Ti3SiC2 [35] and Ti3GeC2 [36], both of which have 

the structure similar to the H-phases in which M3X2 layers separate the A-layers. 

Schuster, a coworker of Nowotny and Pietzka added Ti3AlC2 as a new member of 

these phases [43,44]. In spite of these striking achievements, these compounds 

remained largely unexplored until the 1990s, when several researchers engaged 

themselves with great interest. The breakthrough contribution that triggered a 

renaissance came in the mid-1990s, when Barsoum and El-Raghy [2] synthesized 

relatively phase-pure samples of Ti3SiC2 and revealed a material with a unique 

combination of metallic and ceramic properties. After discovery of Ti4AlN3 [45], it 

became clear that these phases possessed a basic structure that gave them similar 

properties. This realization led to the introduction of the nomenclature of MAX 

phases with chemical formula: Mn+1AXn, where n varies from 1 to 3 and all symbols 

represent the same elements as mentioned for H-phases. 

The history of H-phases, henceforth referred to as the 211 phases, before 1997, is 

quite short. Surprisingly, from the time their discovery until the first report of 

Barsoum and El-Raghy [2]- and apart from the some Russian papers [46-48] in the 

mid 1970s in which it was claimed that 90-92% dense compacts of Ti2AlC and 

Ti2AlN were synthesized- they were totally ignored. Some magnetic permeability 

measurements on Ti2AlC and Cr2AlC were also reported in 1996 [33]. Nowotny 

[40] defined H-phases as a synonym for M2AX phases which are also referred to 

as Cr2AlC-type phases after the archetype Cr2AlC. In MAX phase articles a common 

misunderstanding is seen that the term H-phase and Hägg phase are synonyms. 

However, The H in H-phases does not stand for Hägg. Toth [49] in his famous book 
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‘Transition metal carbides and nitrides’ published a list for H-phases or Cr2AlC 

type phases and shown clearly that H-phases are different from Hägg phases. The 

H-phases are probably named following an alphabetic system; for example, Nowotny 

and his coworkers also studied D-phases [50,51], E-phases [52], and G-phases 

[53]. The erroneous belief that H-phases and Hägg phases are synonyms does not 

occur outside the MAX phase field; in other fields, the latter term is used in its 

correct sense: Hägg phases are carbides, nitrides, borides, and hydrides with 

close-packed or hexagonal arrays of metal atoms in which C, N, B, or H occupy 

the interstitial octahedral or trigonal sites [49,54]. The H-phases do not fulfill this 

criterion; the C or N atoms occupy an interstitial octahedral site, but the metal 

substructure is not close-packed or nearly close-packed. 

History of superconducting MAX phases: The compound Mo2GaC became the 

first MAX phase, for which superconductivity with transition temperature Tc~ 4 K 

was discovered in 1967 by Toth [16]. This compound, in fact, the first, and sole, 

Mo containing MAX phase first synthesized in the same year. Sakamaki et al. [17] 

in 1999 reported the discovery of a new class of superconductors, carbosulfide 

MAX superconductor, Nb2SC which was synthesized in 1968 by Backmann et al 

[38]. An experimental study conducted by Bortolozo et al. [18] in 2006 revealed 

that Nb2SnC shows superconducting transition at ~7.8 K. El-Raghy et al. [55] 

synthesized Nb2SnC in 2000. In 1968 Beckmann et al. [38] synthesized Nb2AsC 

first in powder form and Lofland et al. [19] in 2006 reported the discovery of its 

superconducting transition at 2 K.  Bortolozo et al. [20] in 2007, reported the 

observation of superconductivity in the Ti2InC compound with Tc 3.1 K. In 2009, 

Bortolozo et al. [21] showed that Nb2InC compound superconducts at 7.5 K and 

Jeitschko et al. [31] first synthesized the Nb2InC phase in 1964. Bortolozo et al. 

[22] in 2010 confirmed that Ti2InN is the first nitride MAX superconductor which 

was discovered in 1963 by Jeitschko et al. [30]. Recently, in 2012, Bortolozo et 

al. [23] have shown that the bulk superconductivity is induced at 9.5 K in Ti2GeC. 

Ti2GeC was first synthesized in 1963 by Jeitschko et al. [29].   
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1.3 Research objective 

The aim of the present study is to investigate the ground state structural, elastic, 

electronic, optical, and thermodynamic properties along with theoretical Vickers 

hardness of the four superconducting MAX phases Nb2AsC, Nb2InC, Mo2GaC, 

and Ti2GeC and also to elucidate the thermodynamic properties at elevated 

temperature and pressure. In fact, the goal of the present study is to evaluate the 

ground state crystal energy and from this the equilibrium volume, bulk modulus, 

elastic constants, band structure, total and partial density of states (DOSs). To 

describe the bonding nature and to calculate the theoretical Vickers’ hardness the 

Mulliken bond populations are investigated. Further, the shape of the Fermi 

surface is determined to add the information about the bonding character of the 

four MAX phase superconductors. All the optical properties e.g., dielectric 

function, refractive index, extinction coefficient, absorption spectrum, energy loss 

function, reflectivity and photoconductivity are calculated and analyzed. The 

thermodynamic properties such as bulk modulus, Debye temperature, specific 

heats and volumetric thermal expansion coefficient are also calculated and 

discussed. Finally all properties are compared with available theoretical and 

experimental data.  

1.4     Outline of the thesis 

In the present thesis, the background of the work, history of the MAX phases and 

research objective are discussed in this first chapter. Chapter two describes the 

crystal structure. As one of the main components of this research, first-principles 

methodology will be presented in chapter three, titled First-principles methods, 

while the detailed theory for investigated properties will be given in chapter four. 

Chapter five will focus on the computational tools used in present study. The 

results associated with different properties investigated in this research will be 

presented and discussed in chapter six. Conclusions will be presented in chapter 

seven along with several possibilities for technological applications.  
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2.  Crystal structure 

This present chapter provides the crystal structure and structural aspects of MAX 

phases with a special attention on superconducting 211 MAX phases.  

2.1 Crystal structure  

As defined by Barsoum [1], the MAX phases adopted the chemical formula 

Mn+1AXn (n = 1, 2, 3), where M is an early transition metal, A is an A-group 

element comes from column 13 – 16 in the periodic table, and X is C or N, or 

both.  The different MAX stoichiometries are sometimes addressed as 211 (n = 1), 

312 (n = 2), and 413 (n = 3) MAX phases. Fig. 2.1(a) represents the hexagonal 

unit cells of 211, 312, and 413 MAX phases. The number of M-layers separating 

the A-layers makes the difference between the three structures: in the 211 phases 

there are two; in the 312 phases three, and in the 413 phases four. The unit cells 

consisting of M6X octahedra, e.g. Nb6C, interleaved with layers of A-elements 

(e.g. As, In, Ga or Ge). The M6X edge-sharing octahedral building block in the 

MAX phases is the same as in the binary carbides and nitrides, MX. In the 312 

and 413 MAX structures, there are two different M sites, those adjacent to A, and 

those not. These sites are mentioned as M(1) and M(2), respectively. In the 413 

structure, there are also two nonequivalent X sites, X(1) and X(2). In the MAX 

phases, the MX layers are twinned with respect to each other and separated by the 

A-layer which acts as mirror plane. This is illustrated in Fig. 2.1(b), which is a 

high resolution transmission electron microscopy (TEM) image provided a cross 

section of the structure of Ti3SiC2 [2]. The twinning and resulting characteristic 

“zig-zag” stacking of the MAX phases is evident. The MAX structure is 

anisotropic: the lattice parameters are typically around a ~ 3 Å and c ~ 13 Å (for 

211 phases), c ~ 18 Å (for 312 phases), and c ~ 23-25 Å (for 413 phases).  

MAX phase compounds have nanolaminate structure. In fact, nanolaminates are 

multilayered thin film structures with nanometer dimensions and very high 

interfacial density. These multilayer structures can display novel properties, which 
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can be optimized by manipulating the thickness and composition of the individual 

nanolayer. Nanolaminates show unique physical properties when the nanolayer 

thickness is less than the characteristic length scale that defines the physical property. 

For example, thermal conductivity is reduced when the nanolayer thickness is less 

than the mean free path of the phonon that transfers the heat. Likewise, hardness 

is increased when the nanolayer thickness is less than the dislocation length for 

the slip plane motion that characterizes the response of the material to stress. 

In principle, a MAX phase does not necessarily have to be thermodynamically 

stable. The term “thermodynamically stable nanolaminates” is used to distinguish 

them from artificial nanolaminates, e.g., superlattice thin films. An equivalent, but 

more stringent, description to “thermodynamically stable nanolaminates” is to refer 

to the MAX phases as “inherently nanolaminated” (i.e., they are nanolaminated 

by nature, not by artificial design). However, that these terms are not restricted to 

the MAX phases, but include many other phases with a laminated structure. 

 

 

 

 

 

 
 

 

 

 

 

 

 
Fig. 2.1(a). Crystal structures of the three MAX groups. Early transition metal 
atoms are colored in red, A-group elements in blue, carbon or nitrogen in black [2] 
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Fig. 2.1(b). The TEM image shows the cross section of the structure of Ti3SiC2. 
Small carbon atoms are not visible in the image (left). Diagram on the right is a 
micrograph of the same [2].  

2.2 Structural aspects 

2.2.1 Lattice parameters 

A group of lattice constants is referred to as lattice parameters. A lattice constant is 

a measure of either length or angle that defines the size and shape of the unit cell of 

a crystal lattice. In fact, the lattice constants refer to the physical dimension of unit 

cells in a crystal lattice. In general, lattices in three dimensions have three lattice 

constants, namely, a, b and c that measures the length of the side of unit cell and 

three angles between the sides, namely, α, β, and γ that also denotes the angles 

between the vectors ‘b and c’, ‘c and a’, and ‘a and b’, respectively. Actually, a full 

set of lattice parameters consist of the three lattice constants and the three angles 

between them. However, in hexagonal crystal structure as in e.g., MAX phases, the 

a and b constants are equal, and we only refer to the a and c constants representing 

the basal and height parameters respectively, and for this system, the angles are α 

= β = 90° and γ = 120°. The M-M distances in the MAX phases are strongly 

correlated with, and almost equal to, the M-M distances in the MX phase [2,3]. As 



                                                              2. Crystal Structure   15 

 

for the binary MX compounds [4,5], it is useful to consider the MAX compounds 

to be interstitial compounds in which the A atoms and the X atoms fill the 

interstitial sites between the M atoms. In such a scheme, the c parameter of the 

211 phases- composed of four layers per unit cell-should be ~4 times the a 

parameter. Similar arguments for 312 and 413 phases, with six and eight M layers 

per unit cell, respectively, predict ratios of ~6 and ~8. The actual c/a ratios are ~4 

in 211 phases, ~5.8 to 6 in the 312 phases, and 7.8 in 413 phases, are consistent 

with this simple structural notation. The lattice constants for selected 211 MAX 

phases are given in Table 2.2.1. 

Table 2.2.1: Calculated lattice constants of superconducting 
211 MAX phases Nb2AsC, Nb2InC, Mo2GaC, and Ti2GeC. 

Phases a (Å) c (Å) c/a 

Nb2AsC 3.324 11.979 3.60 
Nb2InC  3.186 14.526 4.56 
Mo2GaC  3.064 13.178 4.30 
Ti2GeC 3.085 12.961 4.20 

2.2.2 Unit cell 

The unit cell of the MAX phases are characterized by near closed-packed M layers 

interleaved with layers of pure A-group element, with the X atoms filling the 

octahedral sites between the former. The M6X octahedra are identical to those found 

in the rock salt structure of the corresponding binary MX carbides. The A-group 

elements are located at the corners of trigonal prisms, which are slightly larger, and 

thus better able to accommodate the larger A atoms, than the octahedral sites [6-9]. 

When n = 1, two M layers separate the A layers. For n = 2, there are three M layers 

and for n = 3, there are four M layers that separate the A layers. The 312 and 413 

MAX phases exist in two polymorphs, α and β. The polymorphism of 413 phases 

is different than the one observed in the 312 phases, where the difference is in the 

A-element layers. The difference between α- and β-413 is in the positions of the 

M(2) and C(2) atoms. Only Ta4AlC3 exists in the bulk in the both polymorphs 
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[10-13], the remaining 413 phases crystallize in the bulk form in the α polymorph 

[14-16]. The superconducting MAX compounds are the member of 211 phases 

and these phases have two formula units as well as eight atoms per unit cell. 

2.2.3 Crystallography 

The MAX phases crystallize in the hexagonal space group D4
6h, with Hermann-

Mauguin notation P63/mmc, No. 194 in the International Tables. The meaning of 

this nomenclature is as follows: 

∗P - “Primitive” Bravais lattice, which means there is no additional translational 

symmetry for the lattice points, and the lattice points are on the cell corners 

only, i.e., there are no other face-, base-, or body-centered positions. All the 

hexagonal space groups have a primitive lattice. 

∗63 - This is the screw-axis (rotational and translational) symmetry, where the 

“6” refers to 6-fold symmetry and the “3” subscript refers to the distance for 

translation along the primary axis. For hexagonal systems, the primary direction 

is [0001] (along the c axis). The notation nr describes a symmetry with a 

rotation by 2π/n followed by a translation of a fraction r/n of the unit cell length 

along the rotation axis [0001] (i.e. the c lattice parameter). For 63, this is 

rotation by 2π/6=π/3 (60˚) around the c axis and translation halfway along c. 

∗mmc - The part after the slash refers to mirror and glide plane symmetry 

perpendicular to the primary, secondary, and tertiary axes. For hexagonal 

systems, the primary direction is [0001] (along the c axis), secondary is 

[1010] (along the a axis) and the tertiary is [1120] (the bisector of the a and b 

axes). The “mm” represents mirror symmetry across the (0001) and (1010) 

planes. The “c” denotes axial glide plane symmetry perpendicular to the 

(1120) plane, with glide vector c/2. Although the full notation is P63/m 2/m 

2/c, the number 2 may be omitted due to the fact that a 2-fold symmetry is 

trivial. Therefore, the shortened symbol is typically used. 
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The atoms in MAX phases are arranged in alternate nanolaminate layers 

consisting of close-packed layers of M and X atoms – where the X atoms fill the 

octahedral sites between M layers – interleaved with layers of pure A elements. 

The Wyckoff positions for the atom sites in 211, 312, and 413 structures are listed 

in Table 2.2.3. 

Table 2.2.3: The Wyckoff positions for the atom sites in 211, 312, and 413 MAX 
Phases  

Phases Space group Atoms Wyckoff  x y z 

211 M2AX P63/mmc M 4f 1/3 2/3 zM ≈ 0.08 

   A 2d 1/3 2/3 3/4 

   X 2a 0 0 0 

312 α-M3AX2 P63/mmc M1 2a 0 0 0 

   M2 4f 2/3 1/3 zM ≈ 0.14 

   A 2b 0 0 1/4 

   X 4f 1/3 2/3 zM ≈ 0.07 

312 β-M3AX2 P63/mmc M1 2a 0 0 0 

   M2 4f 2/3 1/3 zM ≈ 0.14 

   A 2d 1/3 2/3 3/4 

   X 4f 1/3 2/3 zM ≈ 0.07 

413 α-M4AX3 P63/mmc M1 4e 0 0 zM ≈ 0.16 

   M2 4f 1/3 2/3 zM ≈ 0.05 

   A 2c 1/3 2/3 1/4 

   X1 4f 2/3 1/2 zM ≈ 0.10 

   X2 2a 0 0 0 

413 β-M4AX3 P63/mmc M1 4f 1/3 2/3 zM ≈ 0.66 

   M2 4f 1/3 2/3 zM ≈ 0.05 

   A 2c 1/3 2/3 1/4 

   X1 4e 0 0 zM ≈ 0.10 

   X2 2a 0 0 0 
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3.  First-principles methods 

Various computational methods are available for materials modeling. One 

important tool is the use of calculations based on first principles, which are 

especially useful for materials in the solid state and phenomena that are controlled 

by properties of materials on the atomic length scale. These calculations are 

known as “first-principles,” or “ab initio”, calculations, which refer to the fact 

that they are derived from the first principles of quantum mechanics, with no 

experimental parameters used in the numerical model. While the central equations 

of quantum mechanics for many-body system are virtually impossible to solve 

explicitly, approximations and reformulations can be used to obtain a result that 

converges to the solution of the Schrödinger equation. One important first-

principles method for quantum mechanical modeling that uses functionals of the 

electron density is known as density functional theory (DFT). This chapter will 

summarize relevant concepts behind these calculations. 

3.1  Many-body problems in quantum mechanics 

The field of quantum mechanics makes it possible to describe a many-body system 

at the atomic level based only on its electronic structure and atomic arrangement, 

without the need to input any empirical parameters. Here we walk through important 

topics in quantum mechanics to set the stage for what equations must be solved to 

describe materials. 

3.1.1    Schrödinger’s equation 

In principle, the properties of a system may be obtained by solving the quantum 

mechanical wave equation governing the system dynamics. For non-relativistic 

systems this is simply the Schrödinger equation [1]. The dynamics of a time-

independent non-relativistic system are governed by the Schrödinger equation 

HΨ = EΨ,                                                                                                           (3.1) 
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where Ψ is the many-electron wave function, E is the system energy and H is the 

Hamiltonian of the system. For a system of Ne electrons and Nn nuclei, the 

Hamiltonian can be written as  

𝐻𝐻 = −
1
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 (3.2) 

 
The first and second terms are the kinetic energies of the electrons and nuclei, 

respectively. The third term describes the Coulomb attraction between nuclei and 

electrons. The fourth and fifth terms represent the electron-electron and nucleus-

nucleus Coulomb repulsion, respectively. While there is an analytical solution for 

the hydrogen atom, the main problem with Schrödinger’s equation for many-

particle systems is that it is not possible, in general, to solve analytically. 

Approximations must therefore be made. 

3.1.2    Born-Oppenheimer approximation 

Born-Oppenheimer approximation [2] allows us to separate the nuclear and 

electronic degrees of motion; the nuclei are of order ~103 times more massive 

than the electrons, and therefore may be considered to be stationary on the 

electronic timescale. As a result of this, it is possible to neglect the nuclear kinetic 

energy contribution to the system total energy. Thus the second term in Eq. 3.2 

can be set to zero. Since, the motion of the nuclei and electrons can be separated; 

the electronic and nuclear problems can be solved with independent wave 

functions. With the nuclei assumed as stationary then the Coulomb interaction 

between the nuclei is constant. Therefore, the final term can be omitted in solving 

the Schrödinger equation and added later as a constant to the total energy. This 

separation of electronic and nuclear problems is known as the Born-Oppenheimer 

approximation.  
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Applying the Born-Oppenheimer approximation in Eq. 3.2, the Hamiltonian can 

now be simplified to: 
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Although Schrödinger’s equation is exact within the non-relativistic regime, it is 

not possible, except for trivially simple cases, to solve it. There are two reasons for 

this: one mole of a solid contains N~1028 electrons; since the many-electron wave 

function contains 3N degrees of freedom, this is simply intractable; further, the 

electron-electron Coulomb interaction results in the electronic motions being 

correlated. Consequently the many-body wave function is a complicated 

mathematical object that incorporates the effects of this correlation, preventing a 

separation of the electronic degrees of freedom into N single-body problems. 

Further, the interaction is too strong to be treated as a perturbation. Thus we must 

search for approximations that render the Schrödinger equation tractable to 

numerical solution, whilst retaining as much of the key physics as is possible.  

3.1.3    Hartree and Hartree-Fock approximations 

The simplest method for approximating electron-electron interactions is through 

the Hartree approximation [3] where the N electron wave function Ψ is replaced 

by the product of the single-particle orbitals, Ψi (risi) 

Ψ(𝐫𝐫1𝑠𝑠1, 𝐫𝐫2𝑠𝑠2, … 𝐫𝐫𝑁𝑁𝑠𝑠N) =  
1
√𝑁𝑁

Ψ1(𝐫𝐫1𝑠𝑠1) Ψ2(𝐫𝐫2𝑠𝑠2) …Ψ𝑁𝑁 (𝐫𝐫𝑁𝑁𝑠𝑠N)  (3.4) 

However, this does not account for exchange interactions; in order to overcome 

this, the wave function is used as antisymmetrized product of its component 

orbitals – the Hartree-Fock [4] wave function, ΨHF 

ΨHF =
1
√𝑁𝑁!

[Ψ1(𝐫𝐫1𝑠𝑠1)Ψ2(𝐫𝐫2𝑠𝑠2) …Ψ𝑁𝑁(𝐫𝐫𝑁𝑁𝑠𝑠𝑁𝑁)

−Ψ1(𝐫𝐫2𝑠𝑠2)Ψ2(𝐫𝐫1𝑠𝑠1) …Ψ𝑁𝑁(𝐫𝐫𝑁𝑁𝑠𝑠𝑁𝑁) 
(3.5) 
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The Hartree-Fock wave function can be represented as an N × N determinant, as 

described by Slater [5]: 

ΨHF =
1
√𝑁𝑁!

�
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which can also be written as: 

ΨHF =  
1
√𝑁𝑁!

det [Ψ1(𝐫𝐫1𝑠𝑠1)Ψ2(𝐫𝐫2𝑠𝑠2) …Ψ𝑁𝑁(𝐫𝐫𝑁𝑁𝑠𝑠𝑁𝑁)] (3.7) 

The Slater determinant and the expected value of the Hamiltonian can be used to 

evaluate the Hartree-Fock energy EHF. The final term of this is equal to zero when 

the orbitals are antisymmetric; this is referred to as the exchange energy, EX, 
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 (3.8) 

The last term on the right-hand side is the exchange term; this looks similar to the 

direct Coulomb term, but for the exchanged indices. It is a manifestation of the 

Pauli exclusion principle, and acts so as to separate electrons of the same spin; the 

consequent depletion of the charge density in the immediate vicinity of a given 

electron due to this effect is called the exchange hole. The exchange term adds 

considerably to the complexity of these equations. 
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The Hartree-Fock equations deal with exchange exactly; however, the equations 

neglect more detailed correlations due to many-body interactions. The effects of 

electronic correlations are not negligible; indeed the failure of Hartree-Fock theory 

to successfully incorporate correlation leads to one of its most celebrated failures. 

The individual contributions to the total energy per electron for the homogeneous 

electron gas, as a function of Wigner-Seitz radius (rs) is depicted in Fig. 3.1, from 

which the momentousness of exchange and correlation contributions to the total 

energy can be realized. The requirement for a computationally practicable scheme 

that successfully incorporates the effects of both exchange and correlation leads 

us to consider the conceptually disarmingly simple and elegant density functional 

theory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1. The contributions to the total energy per electron as a function of the 
Wigner-Seitz radius. 
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3.2  Density functional theory 

Density Functional Theory (DFT) is one of the most widely used method for first-

principles calculations of the ground state electronic structure of many-body systems 

in particular atoms, molecules, crystals, surfaces, and the condensed phases. The 

DFT determines the properties of a many-body system using functional i.e., function 

of another function, which, in this case, is the spatially dependent electron density. 

Hence the name density functional theory comes from the use of functional of the 

electron density.  

The DFT treats the electron density as the central variable rather than the many-

body wave function. This conceptual difference leads to a remarkable reduction in 

difficulty: the density is a function of three variables, i.e. the three Cartesian 

directions, rather than 3N variables as the full many-body wave function is. An 

early density functional theory was proposed by Thomas and Fermi [6,7]. This 

took the kinetic energy to be a functional of the electron density, but in common 

with the Hartree and Hartree-Fock methods, only incorporated electron-electron 

interactions via a mean field potential: as such it neglected both exchange and 

correlation; a subsequent proposal by Dirac [8], formulating an expression for the 

exchange energy in terms of the electron density failed to significantly improve 

the method. Here we consider the Hohenberg-Kohn-Sham formulation of DFT; 

this technique is one of the choice state-of-the-art methods routinely applied in 

electronic structure theory, and has enjoyed success in fields ranging from 

quantum chemistry and condensed matter physics to geophysics. DFT is 

formulated quantum mechanically based on the remarkable and deceptively 

simple Thomas-Fermi model and two Hohenberg-Khon theorems implemented in 

Khon-Sham equations. 

3.2.1     Thomas-Fermi model 

One of the earliest tractable schemes for solving the many-electron problem was 

proposed by Thomas and Fermi [6,7]. In this model the electron density, ρ(r), is 

http://cmt.dur.ac.uk/sjc/thesis_prt/node124.html#Thomas-Fermi
http://cmt.dur.ac.uk/sjc/thesis_prt/node124.html#Dirac
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the central variable rather than the wave function, and the total energy of a system 

is written as a functional E [ρ(r)], where square brackets are used to enclose the 

argument of the functional, which in this case is the density. The Thomas-Fermi 

energy functional is composed of three terms,  

𝐸𝐸[𝜌𝜌(𝐫𝐫)] = 𝐴𝐴𝑘𝑘 �𝜌𝜌(𝐫𝐫)5/3𝑑𝑑𝐫𝐫 + �𝜌𝜌(𝐫𝐫)𝑣𝑣ext(𝐫𝐫)𝑑𝑑𝐫𝐫 +
1
2
�
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|𝐫𝐫 − 𝐫𝐫′|

𝑑𝑑𝐫𝐫𝑑𝑑𝐫𝐫′ (3.9) 

    
The first term is the electronic kinetic energy associated with a system of non-

interacting electrons in a homogeneous electron gas. This form is obtained by 

integrating the kinetic energy density of a homogeneous electron gas 𝑇𝑇𝑜𝑜[𝜌𝜌(𝐫𝐫)]  

[9,10],  

𝑇𝑇[𝜌𝜌(𝐫𝐫)] = �𝑇𝑇𝑜𝑜[𝜌𝜌(𝐫𝐫)]𝑑𝑑𝐫𝐫, (3.10) 

where 𝑇𝑇𝑜𝑜[𝜌𝜌(𝐫𝐫)] is obtained by summing all of the free-electron energy states 𝜀𝜀 =

𝑘𝑘2/2, up to the Fermi wave vector 𝑘𝑘𝐹𝐹 = [3𝜋𝜋2𝜌𝜌(𝐫𝐫)]1/3, 

𝑇𝑇𝑜𝑜[𝜌𝜌(𝐫𝐫)] =
2

(2𝜋𝜋)3 �
𝑘𝑘2

2
𝑛𝑛𝑘𝑘𝑑𝑑𝑑𝑑 =

1
2𝜋𝜋2

� 𝑘𝑘4𝑑𝑑𝑑𝑑
𝑘𝑘𝐹𝐹

0
, (3.11) 

𝑛𝑛𝑘𝑘 is the density of allowed states in reciprocal-space. This leads to the form 

given in (3.9) with coefficient 𝐴𝐴𝑘𝑘 = 3
10

(3𝜋𝜋2)2/3. The power-law dependence on 

the density can also be established on dimensional grounds [11]. The second 

term is the classical electrostatic energy of attraction between the nuclei and the 

electrons, where 𝑣𝑣ext(𝐫𝐫) is the static Coulomb potential arising from the nuclei,  

𝑣𝑣ext(𝐫𝐫) = −�
𝑍𝑍𝑗𝑗

�𝐫𝐫 − 𝐑𝐑𝑗𝑗�

𝑀𝑀

𝑗𝑗=1

 (3.12) 

Finally, the third term in (3.9) represents the electron-electron interactions of the 

system, and in this case is approximated by the classical Coulomb repulsion 

http://cmt.dur.ac.uk/sjc/thesis_ppr/node6.html#eq.E_TF
http://cmt.dur.ac.uk/sjc/thesis_ppr/node6.html#eq.E_TF
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between electrons, known as the Hartree energy which does not take into account 

of quantum phenomenon such as the exchange interaction. 

To obtain the ground state density and energy of a system, the Thomas-Fermi 

equation (3.9) must be minimized subject to the constraint that the number of 

electrons is conserved.  

3.2.2    Hohenberg-Khon theorems 

The Hohenberg-Kohn (HK) theorems [12] relate to any system consisting of 

electrons moving under the influence of an external potential vext(r). Stated simply 

they are as follows:  

Theorem 1: The electron density uniquely determines the external potential of 

many body systems and thus the Hamiltonian and hence all the ground state 

properties are functionals of the electron density.   

The many-body Hamiltonian H fixes the ground state of the system under 

consideration  i.e. it determines the ground state many-body wave function Ψ, and 

thus the above theorem ensures that this itself is also a unique functional of the 

ground state density. Consequently, the kinetic and electron-electron interaction 

energies will also be functionals of electron density ρ(r). One may therefore 

define the functional F [ρ(r)] 

F [ρ(r)] = T [ρ(r)] + Vee [ρ(r)]                                                                                   (3.13) 

where T is the kinetic energy operator, and Vee is the electron-electron interaction 

operator. This functional F is a universal functional in the sense that it has the 

same dependence on the electron density for any system, independent of the 

external potential concerned. The exact density dependence of this functional is, 

however, unknown. Using this functional, the energy functional E [ρ(r)] that 

alluded to in the first Hohenberg-Kohn theorem can be written in terms of external 

potential vext(r) in the following way,  

http://cmt.dur.ac.uk/sjc/thesis_ppr/node6.html#eq.E_TF
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𝐸𝐸[𝜌𝜌(𝐫𝐫)] = 𝐹𝐹[𝜌𝜌(𝐫𝐫)] + �𝜌𝜌(𝐫𝐫)𝑣𝑣ext(𝐫𝐫)𝑑𝑑𝐫𝐫 (3.14) 

Correspondingly, a Hamiltonian for the many-body system can be written such 

that the electron wave function Ψ that minimizes the expectation value gives the 

ground state energy (assuming a non-degenerate ground state),  

𝐸𝐸[𝜌𝜌(𝐫𝐫)] =  ⟨Ψ|𝐻𝐻|Ψ⟩                                                                                        (3.15) 
    
The Hamiltonian can be written as,  

H = F + Vext                                                                                                     (3.16) 

where Vext is the operator corresponding to the external potential vext(r). 

Proof: The proof of the first theorem is remarkably simple and proceeds by reductio 

ad absurdum. Assume that there are two potentials v1(r) and v2(r) that differ by 

more than an additive constant and further that these two potentials lead to different 

ground state wave functions Ψ1(r) and Ψ2(r)  as well as the Hamiltonians H1 and 

H2. Now assume that these both lead to the same ground state density ρo(r). The 

variational principle then asserts that 

𝐸𝐸1 ≤ ⟨Ψ2|𝐻𝐻1|Ψ2⟩ = ⟨Ψ2|𝐻𝐻2|Ψ2⟩ + ⟨Ψ2|𝐻𝐻1 − 𝐻𝐻2|Ψ2⟩ 

= 𝐸𝐸2 + �𝜌𝜌𝑜𝑜(𝐫𝐫)[𝑣𝑣1(𝐫𝐫) − 𝑣𝑣2(𝐫𝐫)]𝑑𝑑𝐫𝐫 (3.17) 

where E1 and E2 are the ground state energies of H1 and H2 respectively. Note that 

this inequality applies only to the ground state and that DFT, as a result, is only 

rigorously applicable to the ground state. Interchanging 1 and 2 gives a similar 

expression, and adding the two inequalities leads to  

𝐸𝐸1 + 𝐸𝐸2 ≤ 𝐸𝐸2 + 𝐸𝐸1 , (3.18) 

which is a contradiction, and as a result the ground state density uniquely determines 

the external potential vext (r) , to within an additive constant. 

Thus theorem 1 is proved.  
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Theorem 2: The ground state energy can be obtained variationally: the density 

that minimizes the total energy is the exact ground state density.  

Proof: The proof of the second theorem is also straightforward: as just shown, the 

ground state density ρo(r) determines the external potential vext (r) and vext(r) 

determines H and therefore Ψ. This ultimately means Ψ is a functional of ρo(r), 

and so the expectation value of F is also a functional of ρo(r), i.e.  

𝐹𝐹[𝜌𝜌𝑜𝑜(𝐫𝐫)] = ⟨Ψ|𝐹𝐹|Ψ⟩ (3.19) 

A density that is the ground state of some external potential of a system is known 

as v-representable. Following from this, a v-representable energy functional Ev[ρo(r)] 

can be defined in which the external potential vext(r)of the system is unrelated to 

another density ρʹ,  

𝐸𝐸𝑣𝑣[𝜌𝜌𝑜𝑜(𝐫𝐫)] =  �𝜌𝜌′(𝐫𝐫)𝑣𝑣ext(𝐫𝐫)𝑑𝑑𝐫𝐫 + 𝐹𝐹[𝜌𝜌′(𝐫𝐫)] , (3.20) 

and the variational principle asserts,  

⟨Ψ′|𝐹𝐹|Ψ′⟩ + ⟨Ψ′|𝑉𝑉ext|Ψ′⟩ > ⟨Ψ|𝐹𝐹|Ψ⟩ + ⟨Ψ|𝑉𝑉ext|Ψ⟩ (3.21) 

where Ψ is the wave function associated with the correct ρo(r). This leads to,  

�𝜌𝜌′(𝐫𝐫)𝑣𝑣ext(𝐫𝐫)𝑑𝑑𝐫𝐫 + 𝐹𝐹[𝜌𝜌′(𝐫𝐫)] > �𝜌𝜌𝑜𝑜(𝐫𝐫)𝑣𝑣ext(𝐫𝐫)𝑑𝑑𝐫𝐫 + 𝐹𝐹[ 𝜌𝜌𝑜𝑜(𝐫𝐫)] , (3.22) 

and so the variational principle of the second HK theorem is obtained,  

𝐸𝐸𝑣𝑣[𝜌𝜌′(𝐫𝐫)] > 𝐸𝐸𝑣𝑣[𝜌𝜌𝑜𝑜(𝐫𝐫)] (3.23) 

Although these two theorems prove the existence of a universal functional, they 

do not give any idea as to the nature of the functional, or how to actually calculate 

the ground state density. In order to do so, the Kohn-Sham formulation comes in. 
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3.2.3    Khon-Sham formulation 

Kohn and Sham [13] derived a coupled set of differential equations enabling the 

ground state density ρo(r) to be found. Kohn and Sham separated F [ρo(r)] into 

four distinct parts including self-interaction Hartree term (second term), so that 

the energy functional E becomes  

𝐸𝐸 [𝜌𝜌(𝐫𝐫)] = 𝑇𝑇𝑠𝑠[𝜌𝜌(𝐫𝐫)] +
1
2
�

𝜌𝜌(𝐫𝐫)𝜌𝜌(𝐫𝐫′)
|𝐫𝐫 − 𝐫𝐫′|

𝑑𝑑𝐫𝐫𝑑𝑑𝐫𝐫′ + �𝜌𝜌(𝐫𝐫)𝑉𝑉ext(𝐫𝐫)𝑑𝑑𝐫𝐫 + 𝐸𝐸𝑛𝑛 

+𝐸𝐸𝑋𝑋𝑋𝑋[𝜌𝜌(𝐫𝐫)] (3.24) 

This takes its minimum at the ground state electron density ρo(r). The functional 

consists of the corresponding parts of the Hamiltonian operator plus an additional 

exchange correlation term EXC that accounts for quantum mechanical corrections. 

The latter is not exactly known, though fairly good approximations exist. In order 

to attain an expression for the kinetic energy, Khon and Sham introduced the 

electron density and the kinetic energy of a non-interacting quantum mechanical 

system, described by a single Slater determinant with single electron orbitals Ψi 

(r), is 

𝑇𝑇𝑠𝑠[𝜌𝜌(𝐫𝐫)] = �Ψ 𝑖𝑖∗
𝑁𝑁

𝑖𝑖=1

(𝐫𝐫) �−
1
2
∇2�Ψ𝑖𝑖(𝐫𝐫)𝑑𝑑𝐫𝐫 (3.25) 

The variation of the energy functional with respect to the orbitals Ψi (r) leads to 

the Khon-Sham equations 

�−
1
2
∇𝑖𝑖2 + 𝑉𝑉eff(𝐫𝐫)�Ψ𝑖𝑖(𝐫𝐫) = 𝐸𝐸𝑖𝑖Ψ𝑖𝑖(𝐫𝐫) (3.26) 

which represents a Schrödinger equation for single electron orbitals Ψi (r), where 

the ground state electron density ρo(r) is calculated from the orbitals as 

𝜌𝜌𝑜𝑜(𝐫𝐫) = �|Ψ𝑖𝑖(𝐫𝐫)|2
𝑖𝑖

 (3.27) 

http://web.ornl.gov/%7Epk7/thesis/pkthnode76.html#WKohnPRA1965
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No 

      ρout→Vnew 

In the Khon-Sham equations the effective potential Veff known as Khon-Sham 

potential accounts for the interactions between the electrons only in an average 

way through the electrostatic potential build by all electrons and the nuclei, 

𝑉𝑉eff(𝐫𝐫) = 𝑉𝑉𝑋𝑋𝑋𝑋(𝜌𝜌, 𝐫𝐫) + 𝑉𝑉ext(𝐫𝐫) + �
𝜌𝜌(𝐫𝐫′)

|𝐫𝐫 − 𝐫𝐫′|
𝑑𝑑𝐫𝐫′ (3.28) 

The set of Khon-Sham equations should be solved self-consistently as 

𝑉𝑉eff(𝐫𝐫) = 𝑉𝑉eff[𝜌𝜌(𝐫𝐫)] (3.29) 

The Kohn-Sham formulation thus succeeds in transforming the N-body problem 

into N single-body problems, each coupled via the Kohn-Sham effective potential. 

As Veff (r) contains the electron density; the eigenvalue problem is nonlinear and 

must therefore be solved iteratively, which is done in the self-consisting field 

algorithm outlined in Fig. 3.2. 

Initial guess 
ρ (r) 

 

↓   

(1) Calculate effective potential  
𝑉𝑉eff(𝐫𝐫) = 𝑉𝑉ext(𝐫𝐫) + 𝑉𝑉𝑋𝑋𝑋𝑋(𝐫𝐫) + 𝑉𝑉Hartree[𝜌𝜌(𝑟𝑟)] 

 

↓ 
 

                          (2) Solve Khon-Sham equation 
�−

1
2
∇𝑖𝑖2 + 𝑉𝑉eff(𝐫𝐫)�Ψ𝑖𝑖(𝐫𝐫) = 𝐸𝐸𝑖𝑖Ψ𝑖𝑖(𝐫𝐫) 

↓ 
                                        (3) Calculate electron density 

𝜌𝜌𝑜𝑜(𝐫𝐫) = �|Ψ𝑖𝑖(𝐫𝐫)|2
𝑖𝑖

 

↓ 
 

Self- 
consistent? 

 
 

      ↓Yes 
Output quantities 
Energy, forces…. 

 
Fig. 3.2. Self-consistent field algorithm for solving the Khon-Sham equations. 
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The iteration scheme for the Kohn-Sham equations is summarized in the flow 

chart in Fig. 3.2. The most computationally intensive step is solving the Kohn-

Sham equation for a given potential, step (2) in the loop. In this step, the 

equations are uniquely solved with a given Vin, for an output density, ρout. 

After achieving convergence in the self-consistent loop of Fig. 3.2, subsequent 

iteration schemes can be used to minimize the energy further – for instance, by 

moving the atomic positions or adjusting the cell volume. The Kohn-Sham 

equations are indeed much easier to solve than the equations for many-particle 

interacting systems. However, the major caveat to this technique is that we do not 

know the form of the exchange-correlation functional. It turns out that this can be 

approximated reasonably well. 

3.2.4    Exchange-correlation functional 

The Kohn-Sham equations in 3.26 are thus far exact: no approximations have yet 

been made; we have simply mapped the fully interacting system onto an auxiliary 

non-interacting system that yields the same ground state density.  

It is mentioned that the Kohn-Sham kinetic energy is not the true kinetic energy; 

we may use this to define formally the exchange-correlation energy as 

𝐸𝐸XC[𝜌𝜌(𝐫𝐫)] = (𝑇𝑇[𝜌𝜌(𝐫𝐫)] − 𝑇𝑇s[𝜌𝜌(𝐫𝐫)]) + (𝑉𝑉ee[𝜌𝜌(𝐫𝐫)]− 𝑉𝑉Hartree[𝜌𝜌(𝐫𝐫)]) (3.30) 

where T and Vee are the exact kinetic and electron-electron interaction energies 

respectively. Physically, this term can be interpreted as containing the contributions 

of detailed correlation and exchange to the system energy. Basically exchange-

correlation part comes from our attempt to map one N-body quantum mechanical 

(QM) problem onto N single-body QM problems. Simply, the exchange-correlation 

energy is defined as the sum of the error made in using a non-interacting kinetic 

energy and the error made in treating the electron-electron interaction classically. 

The definition above is such that it ensures that the Kohn-Sham formulation is 

exact. However, the actual form of EXC is not known except for the free electron 
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gas; thus we must introduce approximate functionals based upon the electron 

density to describe this term. There is a zoo of approximations: Local-density 

approximation (LDA), Local spin-density approximation (LSDA), Generalized 

gradient approximation (GGA), Meta-GGA, and so on. But LDA and GGA are 

two common approximations (in various forms) in use frequently. 

Local density approximation (LDA) 

The LDA [9] ignores corrections to the exchange-correlation (XC) energy due to 

inhomogeneities in the electron density about r. It may seem surprising that this is 

as successful as it is given the severe nature of the approximation in use; to large 

extent, it appears [14] that this is due to the fact that the LDA respects the sum 

rule, which states that exactly one electron is excluded from the immediate 

vicinity of a given electron at point r.  

Many approaches can yield local approximations to the XC energy. However, 

overwhelmingly successful local approximations are those that have been derived 

from the homogeneous electron gas (HEG) model. In this regard, LDA is generally 

synonymous with functionals based on the HEG approximation, which are then 

applied to realistic systems (molecules and solids). 

In this approach a real inhomogeneous system is divided into infinitesimal 

volumes, and the electron density in each of the volumes is taken to be constant. 

Exchange-correlation energy for the density within each volume is then assumed to 

be the exchange-correlation energy obtained from the uniform electron gas for that 

density. Thus, the total exchange-correlation energy of the spin-unpolarized 

system can be written as 

𝐸𝐸XCLDA[𝜌𝜌(𝐫𝐫)] = �𝜌𝜌(𝐫𝐫)𝜀𝜀𝑋𝑋𝑋𝑋[𝜌𝜌(𝐫𝐫)]𝑑𝑑𝐫𝐫 (3.31) 

where ρ is the electronic density and 𝜀𝜀𝑋𝑋𝑋𝑋 the exchange-correlation energy density, 

is a function of the density alone. The exchange-correlation energy is decomposed 

into exchange and correlation terms linearly, 

http://cmt.dur.ac.uk/sjc/thesis_prt/node124.html#Payne
http://en.wikipedia.org/wiki/Homogeneous_electron_gas
http://en.wikipedia.org/wiki/Electronic_density
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𝐸𝐸𝑋𝑋𝑋𝑋LDA = 𝐸𝐸𝑋𝑋LDA + 𝐸𝐸𝐶𝐶LDA (3.32) 

so that separate expressions for 𝐸𝐸XLDA and 𝐸𝐸𝐶𝐶LDA are sought. The exchange term 

takes on a simple analytic form for the homogeneous electron gas. Only limiting 

expressions for the correlation density are known exactly, leading to numerous 

different approximations for 𝜀𝜀𝐶𝐶. 

Exchange functional 

The exchange-energy density of a HEG is known analytically. The LDA for 

exchange employs this expression under the approximation that the exchange-

energy in a system where the density is not homogeneous, is obtained by applying 

the HEG results point wise, yielding the expression 

𝐸𝐸𝑋𝑋LDA[𝜌𝜌(𝐫𝐫)] = −
3
4
�

3
𝜋𝜋
�
1/3

�𝜌𝜌(𝐫𝐫)4/3𝑑𝑑𝐫𝐫 (3.33) 

Correlation functional 

Analytic expressions for the correlation energy of the HEG are not known except 

in the high- and low-density limits corresponding to infinitely-weak and infinitely-

strong correlation. For a HEG with density ρ, the high-density limit of correlation 

energy density is 

𝜀𝜀𝐶𝐶 = 𝐴𝐴 ln(𝑟𝑟𝑠𝑠) + 𝐵𝐵 + 𝑟𝑟𝑠𝑠[𝐶𝐶 ln(𝑟𝑟𝑠𝑠) + 𝐷𝐷], (3.34) 

and the low limit 

𝜀𝜀𝐶𝐶 =
1
2
�
𝑔𝑔𝑜𝑜
𝑟𝑟𝑠𝑠

+
𝑔𝑔1
𝑟𝑟𝑠𝑠

+ ⋯�, (3.35) 

where the Wigner-Seitz radius is related to the density as 

4
3
𝜋𝜋𝑟𝑟𝑠𝑠3 =

1
𝜌𝜌

 (3.36) 

Accurate quantum Monte Carlo simulations for the energy of the HEG have been 

performed for several intermediate values of the density, in turn providing accurate 

values of the correlation energy density. The most popular LDA's to the correlation 

http://en.wikipedia.org/wiki/Homogeneous_electron_gas
http://en.wikipedia.org/wiki/Quantum_Monte_Carlo
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energy density interpolate these accurate values obtained from simulation while 

reproducing the exactly known limiting behavior. Various approaches, using the 

different analytic forms for εc, have generated several LDA's for the correlation 

functional, including Vosko-Wilk-Nusair (VWN), Perdew-Zunger (PZ81), Cole-

Perdew (CP), and Perdew-Wang (PW92) functionals.    

Predating these, and even the formal foundations of DFT itself, is the Wigner 

correlation functional obtained perturbatively from the HEG model. 

Local-spin-density approximation (LSDA) 
The extension of density functionals to spin-polarized systems is straightforward 

for exchange, where the exact spin-scaling is known, but for correlation further 

approximations must be employed. A spin polarized system in DFT employs two 

spin-densities, ρ↑ and ρ↓ with ρ = ρ↑ + ρ↓, and the form of the local-spin-density 

approximation (LSDA) is  

𝐸𝐸XCLSDA[𝜌𝜌↑, 𝜌𝜌↓] = �𝜌𝜌(𝐫𝐫)𝜀𝜀𝑋𝑋𝑋𝑋[𝜌𝜌↑,𝜌𝜌↓]𝑑𝑑𝐫𝐫 (3.37) 

For exchange energy, the exact result is known in terms of spin-unpolarized 

functional 

𝐸𝐸𝑋𝑋[𝜌𝜌↑, 𝜌𝜌↓] =
1
2

(𝐸𝐸𝑋𝑋[2𝜌𝜌↑] + 𝐸𝐸𝑋𝑋[2𝜌𝜌↓]) (3.38) 

The spin-dependence of the correlation energy density is approached by introducing 

the relative spin-polarization: 

ζ (𝐫𝐫) =
𝜌𝜌↑(r) − 𝜌𝜌↓(𝐫𝐫)
𝜌𝜌↑(𝐫𝐫) + 𝜌𝜌↓(𝐫𝐫)

 (3.39) 

ζ = 0 corresponds to the paramagnetic spin-unpolarized situation with equal α 

and β spin densities whereas ζ= ± 1 corresponds to the ferromagnetic situation 

where one spin density vanishes. The spin correlation energy density for a given 

values of the total density and relative polarization, εc(ρ,ς), is constructed so to 

interpolate the extreme values. Several forms have been developed in conjunction 

with LDA correlation functionals [15,16]. 

http://en.wikipedia.org/wiki/M%C3%B8ller-Plesset_perturbation_theory#Rayleigh-Schr.C3.B6dinger_perturbation_theory
http://en.wikipedia.org/wiki/Spin_polarization
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Generalized gradient approximation (GGA) 
The generalized gradient approximation (GGA) attempts to incorporate the effects 

of inhomogeneities by including the gradient of the electron density; as such it is a 

semi-local method. The GGA XC functional can be written as 

𝐸𝐸𝑋𝑋𝑋𝑋𝐺𝐺𝐺𝐺𝐺𝐺[𝜌𝜌↑,𝜌𝜌↓] =  �𝑓𝑓 (𝜌𝜌↑, 𝜌𝜌↓,∇𝜌𝜌↑,∇𝜌𝜌↓)𝑑𝑑𝐫𝐫 , (3.40) 

where f is known as the enhancement factor. Unlike the LDA, there is no unique 

form for the GGA, and indeed many possible variations are possible [17-20], each 

corresponding to a different enhancement factor. The GGA succeeds in reducing 

the effects of LDA over binding [21], and is significantly more successful when 

applied to molecules.  

The GGA XC functional developed by Perdew-Burke-Ernzerhof [20] known as 

GGA-PBE leads to a reasonable description of a wide variety of properties of 

molecules and solids. It has become one of the most heavily used approximations 

in electronic structure calculations. However, several modifications have been 

proposed, all with the objective of improving the calculated values of various sets 

of properties. In the present work, the PBE-GGA is used. 

3.3    Bloch's Theorem and Plane Wave Basis Sets 

The correlated nature of the electrons within a solid is not the only obstacle to 

solving the Schrödinger equation for a condensed matter system: for solids, one 

must also bear in mind the effectively infinite number of electrons within the 

solid. Essentially, there are two difficulties to overcome: a wave function has to 

be calculated for each of the infinite number of electrons which will extend over 

the entire space of the solid and the basis set in which the wave function will be 

expressed will be infinite. 

One may appeal to Bloch's theorem [22] in order to make headway in obviating 

this problem. Bloch's theorem uses the periodicity of a crystal to reduce the 

infinite number of one-electron wave functions to be calculated to simply the 

http://cmt.dur.ac.uk/sjc/thesis_prt/node124.html#phil
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number of electrons within the unit cell of the crystal (or half that number if the 

electronic orbitals are assumed to be doubly occupied - that is, spin degenerate).  

The ions in a perfect crystal are arranged in a regular periodic way. Therefore, the 

external potential felt by the electrons will also be periodic - the period being the 

same as the length of the unit cell, l. That is, the external potential on an electron at 

r can be expressed as 𝑉𝑉(𝐫𝐫) = 𝑉𝑉(𝐫𝐫 + 𝐥𝐥). This is the requirement for the use of 

Bloch's theorem. By the use of this theorem, it is possible to express the wave 

function of the infinite crystal in terms of wave functions at reciprocal space 

vectors of a Bravais lattice. 

According to Bloch's theorem the wave function of an electron within a perfectly 

periodic potential may be written as 

Ψ𝑗𝑗,𝐤𝐤 = 𝑢𝑢𝑗𝑗(𝐫𝐫)𝑒𝑒𝑖𝑖𝐤𝐤.𝐫𝐫 (3.41) 

where 𝑢𝑢𝑗𝑗(𝐫𝐫) is a function that possesses the periodicity of the potential, i.e. 

𝑢𝑢𝑗𝑗(𝐫𝐫 + 𝐥𝐥) = 𝑢𝑢𝑗𝑗(𝐫𝐫), where l  is the length of the unit cell. In 3.41 j is the band 

index, and k is a wave vector confined to the first Brillouin Zone. Since 𝑢𝑢𝑗𝑗(𝐫𝐫) is a 

periodic function, this can be expressed by expanding it into a finite number of 

plane waves whose wave vectors are reciprocal lattice vectors of the crystal 

𝑢𝑢𝑗𝑗(𝐫𝐫) = �𝑐𝑐𝑗𝑗,𝐆𝐆𝑒𝑒𝑖𝑖𝐆𝐆.𝐫𝐫

𝐆𝐆

 (3.42) 

  
where the G are reciprocal lattice vectors defined through G.R = 2πm, with m is 

an integer, R is a real space lattice vector and the 𝑐𝑐𝑗𝑗,𝐆𝐆 are plane wave expansion 

coefficients. The electron wave functions may therefore be written as a linear 

combination of plane waves: 

Ψ𝑗𝑗,𝐤𝐤(𝑟𝑟) = �𝑐𝑐𝑗𝑗,𝐤𝐤+𝐆𝐆𝑒𝑒𝑖𝑖(𝐤𝐤+𝐆𝐆).𝐫𝐫

𝐆𝐆

 (3.43) 

Given that each electron occupies a state of definite k, the infinite number of 

electrons within the solid gives rise to an infinite number of k-points. At each k-

http://cmt.dur.ac.uk/sjc/thesis_prt/node26.html#bloch_theorem
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point, only a finite number of the available energy levels will be occupied. Thus 

one only needs to consider a finite number of electrons at an infinite number of k-

points. This may seem to be replacing one infinity (number of electrons) with 

another one (number of k-points) to little discernible advantage. However, one 

does not need to consider all of these k-points; rather, since the electron wave 

functions will be almost identical for values of k that are sufficiently close, one 

can represent the wave functions over a region of reciprocal space by considering 

the wave function at a single k-point. It is therefore sufficient to consider the 

electronic states at a finite number of k-points in order to determine the ground 

state density of the solid. The net effect of Bloch's Theorem therefore has been to 

change the problem of an infinite number of electrons to one of considering only 

the number of electrons in the unit cell (or half that number, depending on 

whether the states are spin-degenerate or not) at a finite number of k-points 

chosen so as to appropriately sample the Brillouin Zone. 

3.4    Kohn-Sham Equations in Plane Wave Form 

Exploiting the lattice periodicity using Bloch's theorem has now led to the one-

electron wave functions being expressed in terms of a Fourier expansion using 

plane waves as a basis set. Although plane waves are not the only possible basis 

set that can be used, for example, one could use atomic wave functions as a basis 

set, plane waves are perhaps more aesthetically appealing. More importantly, a 

plane wave basis set has the advantage of being mathematically simple, and is in 

principle complete, that is, it completely spans the Hilbert space. This is in 

contrast to localized basis sets. Plane waves also possess the advantage of 

covering all space equally, and are thus not biased to any particular region. This is 

particularly important when one does not have any a priori knowledge of the form 

of the electronic wave functions. However, it is a double-edged sword in that it 

results in regions devoid of electron density having equal quality of coverage as 

regions of high electron density. It is thus, in a sense, inefficient, and it is this that 

leads to the cubic scaling of plane wave DFT calculations with system size 
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[23,24]. Accordingly, most efforts at achieving methods that scale linearly with 

system size have concentrated upon localized basis sets [25-27]. 

In principle, the series in 3.43 should be infinite; in practice, the series should be 

truncated in order that it may be handled computationally. The coefficients for the 

plane waves have a kinetic energy ℏ
2

2𝑚𝑚
|𝐤𝐤 + 𝐆𝐆|2, and plane waves with high kinetic 

energy typically are less important than those of low kinetic energy. One may thus 

introduce a kinetic energy cut-off Ecut in order to achieve a finite basis set. The 

kinetic energy cut-off is defined through 

𝑬𝑬𝒄𝒄𝒄𝒄𝒄𝒄 =
ℏ2

2𝑚𝑚
|𝐤𝐤 + 𝐆𝐆|2 (3.44) 

and thus this fixes the highest reciprocal lattice vector G used in the plane wave 

expansion, resulting in a finite basis set. Expansion of the electron wave functions 

in terms of plane waves allows the Kohn-Sham equations to take on the 

particularly simple and appealing form 

��
1
2

|𝐤𝐤 + 𝐆𝐆|2𝛿𝛿𝐆𝐆𝐆𝐆′ + 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖(𝐆𝐆 − 𝐆𝐆′)𝑉𝑉𝑋𝑋𝑋𝑋(𝐆𝐆− 𝐆𝐆′) + 𝑉𝑉𝐻𝐻(𝐆𝐆− 𝐆𝐆′)�
𝐆𝐆′

× 

𝑐𝑐𝑖𝑖,𝐤𝐤+𝐆𝐆′ = 𝜀𝜀𝑖𝑖𝑐𝑐𝑖𝑖,𝐤𝐤+𝐆𝐆 , (3.45) 

which may be readily shown by substitution of 3.43 into 3.26. One can see that 

the reciprocal space representation of the kinetic energy is diagonal, whilst the 

potentials are described in terms of Fourier components. In principle, this secular 

equation could be solved by simply diagonalising the Hamiltonian matrix 

𝑯𝑯𝐤𝐤+𝐆𝐆,𝐤𝐤+𝐆𝐆′ whose matrix elements are given by the terms in brackets above. 

However, the size of the matrix is determined by the choice of cut-off energy𝑬𝑬𝒄𝒄𝒄𝒄𝒄𝒄, 

and for systems containing valence and core electrons will be intractably large.  
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3.5    k-point Sampling 

It has been already discussed how Bloch's theorem allows one to only consider 

the electrons within the unit cell at an infinite number of k-points within the first 

Brillouin zone. As alluded to, it is possible to use only a finite number of k-points 

if these are chosen so as to appropriately sample the reciprocal space.  

Electronic states are allowed only at a set of k-points determined by the boundary 

conditions that apply to the bulk solid. The infinite number of electrons in periodic 

solid is accounted for by an infinite number of k-points. The occupied states at each 

k-point contribute to the electronic potential, so that in principle an infinite number 

of calculations are needed. However, the electronic wave functions at k-points that 

are very close together will be almost identical. This suggests the DFT expressions 

contain a sum over k-points (or, equivalently, an integral over the Brillouin zone) 

can be efficiently evaluated using a numerical scheme that performs summation 

over a small number of special points in the Brillouin zone. In addition, symmetry 

considerations suggest that only k-points within the irreducible segment of the 

Brillouin zone should be taken into account. A number of prescriptions exist for 

generating such points and corresponding weights to be used in the summation 

[14,28]. Using these methods, one can obtain an accurate approximation of the 

electronic potential and the total energy of an insulator by calculating electronic 

states at a very small number of k-points. The calculations for metallic systems 

require a more dense set of k-points to determine the Fermi level accurately. 

The magnitude of any error in the total energy due to limited k-point sampling can 

always be reduced by using a denser set of k-points; in much the same way as the 

convergence with respect to the number of basis set functions is achieved. It is 

important to achieve high convergence with respect to the k-point sampling when 

the energies of two systems with different symmetries are compared, for example 

if one is looking at the relative stabilities of a FCC and an HCP structure. There is 

no cancellation of errors in this case and both energies have to be absolutely 

converged.  
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One of the most popular schemes for generating k-points was proposed by 

Monkhorst and Pack [29]. This scheme, which was later modified to include 

hexagonal systems [30], produces a uniform grid of k-points along the three axes 

in reciprocal space. The Monkhorst-Pack grid is defined by three integers, qi 

where i = 1,2,3, which specify the number of divisions along each of the axes. 

These integers generate a sequence of numbers according to the following: 

ur=(2r-qi-1)/2qi                       (3.46) 

where r varies from 1 to qi.  

The Monkhorst-Pack grid is obtained from these sequences by: 

kprs= upb1 + urb2 + usb3                                                                                    (3.47) 

This set of q1, q2, q3 distinct points is further symmetrized and weights are assigned 

according to the number of symmetry images of a given point in the symmetrized 

set. It is possible to add a constant shift to all of the points in the set before 

symmetrization. This operation, when applied to hexagonal symmetry systems, 

results in a slightly modified recipe for the points along the a and b axes:  

up=(p-1)/qi                                  (3.48) 

where p varies from 1 to qi.  

3.6    Pseudopotential 

Although the Kohn-Sham equations have been shown to be tractable when plane 

waves are used to expand the electron wave functions, an all-electron calculation 

including both core and valence electrons, along with the full Coulombic potential 

of the nuclei would still be prohibitively expensive using a plane wave basis set. 

This is because the tightly bound core orbitals, and the highly oscillatory nature of 

the valence electrons, demand that a high value of Ecut and hence number of plane 

waves be used in order to accurately describe the electronic wave functions [14]. 

However, it is possible to partition the electrons between core and valence states; 

such a partition is possible because the majority of physical properties of solids 
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depend upon the valence electrons; in contrast, the core electrons are almost 

environment independent. It is for this reason that the pseudopotential approximation 

[31-33] is introduced: the core electrons and ionic potential are removed and 

replaced with a pseudopotential that acts on a set of pseudo wave functions; this is 

illustrated schematically in Fig. 3.3. This potential can be represented with only a 

small number of Fourier coefficients. Pseudo wave-functions ideally should have 

no nodes inside the core regions and thus they only require a small basis set. It is 

now well known that the combination of the power of plane wave technology and 

the pseudopotential concept is extremely useful for the description of chemical 

bonding [28]. 

  

 

 

 

 

 

 

 

 

 

 

 

  

 

Fig. 3.3. Schematic representation of the all-electron and pseudized wavefunctions 

and potentials. 

http://cmt.dur.ac.uk/sjc/thesis_prt/node29.html#pseudo
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Traditionally, pseudopotentials are constructed so as to reproduce faithfully the 

scattering properties of the full ionic potential. The phase shift produced by the 

ionic core is different for each angular momentum component (s, p, d, etc.) of the 

valence wave function. Thus, the scattering from the pseudopotential must be 

angular momentum dependent. The most general form for pseudopotential is: 

𝑉𝑉𝑁𝑁𝑁𝑁 = ∑|𝑙𝑙𝑙𝑙〉𝑉𝑉𝑙𝑙〈𝑙𝑙𝑚𝑚|                                                                                           3.49)      

where |𝑙𝑙𝑙𝑙〉 are the spherical harmonics and Vl is the pseudopotential for angular 

momentum l. A pseudopotential that uses the same potential in each angular 

momentum channel is called a local pseudopotential. Local pseudopotentials are 

computationally much more efficient than a nonlocal ones, however, only a few 

elements can be described accurately using local pseudopotentials. 

An important concept in the pseudopotential applications is the degree of hardness 

of pseudopotential. A pseudopotential is considered soft when it requires a small 

number of Fourier components for its accurate representation and hard otherwise. 

Early development of accurate norm-conserving pseudopotentials quickly showed 

that the potentials for transition metals and for first row elements (O, C, N, etc.) 

turn out to be extremely hard [34,35]. Various schemes have been suggested to 

improve convergence properties of norm-conserving pseudopotentials [36]. 

Norm-conserving potentials in CASTEP are generated using the kinetic energy 

optimization scheme developed by Lin et al., [37] and Lee [38]. A more radical 

approach was suggested by Vanderbilt [39], which involves relaxing the norm 

conservation requirement in order to generate much softer pseudopotentials. 

Norm-conserving and ultrasoft are the two most common forms of pseudopotential 

used in modern plane-wave electronic structure codes. They allow a basis-set with 

a significantly lower cut-off (the frequency of the highest Fourier mode) to be used 

to describe the electron wave functions and so allow proper numerical convergence 

with reasonable computing resources. An alternative would be to augment the 

basis set around nuclei with atomic-like functions, as is done in LAPW. First-

mk:@MSITStore:C:%5CProgram%20Files%5CAccelrys%5CMaterials%20Studio%206.0%5Cshare%5Cdoc%5CSMCastep.chm::/Html/thCastepNormPseudo.htm
http://en.wikipedia.org/wiki/Basis_set_(chemistry)#Plane-wave_basis_sets
http://en.wikipedia.org/wiki/Quantum_chemistry_computer_programs
http://en.wikipedia.org/wiki/Muffin-tin_approximation
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principles pseudopotentials are usually non-local, meaning that different angular 

momentum states feel different effective potentials. 

Norm-conserving pseudopotential 
The development of the first-principles norm-conserving pseudopotentials by 

Kleinman and Bylander [40] has paved the way to accurate calculations of solid-

state properties. Kleinman-Bylander pseudopotentials can be expressed formally as 

𝑉𝑉𝐾𝐾𝐾𝐾 = 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙 + �
|𝜓𝜓𝑙𝑙𝑙𝑙𝛿𝛿𝛿𝛿𝑙𝑙〉〈𝛿𝛿𝛿𝛿𝑙𝑙𝜓𝜓𝑙𝑙𝑙𝑙|
⟨𝜓𝜓𝑙𝑙𝑙𝑙|𝛿𝛿𝛿𝛿𝑙𝑙|𝜓𝜓𝑙𝑙𝑙𝑙⟩

 (4.50) 

where 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙 is an arbitrary local potential, 𝜓𝜓𝑙𝑙𝑙𝑙 are the pseudo-atom wave functions, 
and 𝛿𝛿𝛿𝛿𝑙𝑙 is defined through 

𝛿𝛿𝛿𝛿𝑙𝑙 = 𝑉𝑉𝑙𝑙,𝑛𝑛𝑛𝑛𝑛𝑛−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙                                                                               (4.51) 

where 𝑉𝑉𝑙𝑙,𝑛𝑛𝑛𝑛𝑛𝑛−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the the l angular momentum component of a non-local 

pseudopotential. Writing the pseudopotential in this form allows the calculation to 

scale linearly with the size of the basis set. 

Ultrasoft pseudopotentials 

In 1990, Vanderbilt [39] proposed a new and radical method for generating much 

softer pseudopotentials by relaxing the norm-conservation constraint. In this 

scheme the pseudo-wave-functions are allowed to be as soft as possible within the 

core region, so that the cutoff energy can be reduced dramatically. For this reason 

they are usually called ultrasoft pseudopotentials (USP). Technically, this is 

achieved by introducing a generalized orthonormality condition. The electron 

density given by the squared moduli of the wave functions has to be augmented in 

the core region in order to recover the full electronic charge. The electron density 

is thus subdivided into (i) a smooth part that extends throughout the unit cell, and 

(ii) a hard part localized in the core regions. The augmented part appears in the 

density only, not in the wave functions. This differs from methods like LAPW, 

where a similar approach is applied to wave functions. 
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Ultrasoft potentials have another advantage besides being much softer than norm-

conserving potentials (NCP). The USP generation algorithm guarantees good 

scattering properties over a pre-specified energy range, which results in much 

better transferability and accuracy of pseudopotentials. The USP usually also 

treats "shallow" core states as valence by including multiple sets of occupied 

states in each angular momentum channel. This also adds to high accuracy and 

transferability of the potentials, although at a price of computational efficiency. 

Ultrasoft pseudopotential constructed by Vanderbilt can be expressed as 

𝑉𝑉𝑈𝑈𝑈𝑈𝑈𝑈 = 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙(𝑟𝑟) + �𝐷𝐷𝑙𝑙𝑙𝑙|𝛽𝛽𝑙𝑙〉
𝑙𝑙,𝑚𝑚

〈𝛽𝛽𝑚𝑚| (5.52) 

Charge density with ultrasoft pseudopotential is defined to be  

𝜌𝜌(𝐫𝐫) = �𝜙𝜙𝑛𝑛𝑛𝑛∗ (𝐫𝐫)𝜙𝜙𝑛𝑛𝑛𝑛(𝐫𝐫) + �𝑃𝑃𝑙𝑙𝑙𝑙𝑄𝑄𝑙𝑙𝑙𝑙(𝐫𝐫)
𝑙𝑙𝑙𝑙𝑛𝑛,𝑘𝑘

 (5.53) 

where 

𝐷𝐷𝑙𝑙𝑙𝑙 = 𝐵𝐵𝑙𝑙𝑙𝑙 + 𝜀𝜀𝑚𝑚𝑄𝑄𝑙𝑙𝑙𝑙 (5.54) 
 

𝑃𝑃𝑙𝑙𝑙𝑙 = �〈𝛽𝛽𝑙𝑙|
𝑛𝑛,𝑘𝑘

𝜙𝜙𝑛𝑛𝑛𝑛〉〈𝜙𝜙𝑛𝑛𝑛𝑛|𝛽𝛽𝑚𝑚〉 (5.55) 

 

𝑄𝑄𝑙𝑙𝑙𝑙(𝐫𝐫) = 𝜓𝜓𝑙𝑙∗(𝐫𝐫)𝜓𝜓𝑚𝑚(𝐫𝐫) − 𝜙𝜙𝑙𝑙∗(𝐫𝐫)𝜙𝜙𝑚𝑚(𝐫𝐫) (5.56) 

Vanderbilt ultrasoft pseudopotentials have a separable form well suited for plane 

wave’s solid-state calculations, and show promise for application to first-row and 

transition metal systems.   
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4.  Theory of Investigated Properties 

The purpose of the present chapter is to provide an overview of the theory used to 

investigate the different properties of superconducting MAX phases Nb2AsC, 

Nb2InC, Mo2GaC, and Ti2GeC. In the present work, the goal is fixed to calculate 

the ground state crystal energy and from this the equilibrium lattice parameters, 

unit cell volume, bulk modulus, elastic constants, band structure, total and partial 

density of states are evaluated. Theoretical Vickers hardness and Fermi surface 

are determined to add the information about the bonding nature of four 211MAX 

superconducting phases. The optical properties (such as dielectric function, 

refractive index, extinction coefficient, absorption spectrum, energy loss function, 

reflectivity and photoconductivity) and thermodynamic properties (such as bulk 

modulus, Debye temperature, specific heats and volumetric thermal expansion 

coefficient) are also calculated. The discussions of the theory of above mentioned 

properties are the including subjects of this chapter. 

4.1  Ground State Energy 

The CASTEP Geometry Optimization task allows one to refine the geometry of a 

3D periodic system to obtain a stable structure or polymorph. This is done by 

performing an iterative process in which the coordinates of the atoms and possibly 

the cell parameters are adjusted so that the total energy of the structure is 

minimized. This minimized total energy is the ground state energy of the system. 

In the field of computational chemistry, energy minimization (also called energy 

optimization or geometry optimization) is the process of finding an arrangement 

in space of a collection of atoms where, according to some computational model 

of chemical bonding, the net inter-atomic force on each atom is acceptably close 

to zero and the position on the potential energy surface is a stationary point. The 

collection of atoms might be a single molecule, an ion, a condensed phase, a 

transition state or even a collection of any of these. The computational model of 

chemical bonding might, for example, be quantum mechanics. 

http://en.wikipedia.org/wiki/Computational_chemistry
http://en.wikipedia.org/wiki/Molecule
http://en.wikipedia.org/wiki/Ion
http://en.wikipedia.org/wiki/Condensed_phase
http://en.wikipedia.org/wiki/Transition_state
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The geometry of a set of atoms can be described by a vector of the atoms' positions. 

This could be the set of Cartesian coordinates of the atoms or, when considering 

molecules, might be so called internal coordinates formed from a set of bond 

lengths, bond angles and dihedral angles. 

Given a set of atoms and a vector, r, describing the atoms' positions, one can 

introduce the concept of the energy as a function of the positions, E(r). Geometry 

optimization is then a mathematical optimization problem, in which it is desired 

to find the value of r for which E(r) is at a local minimum, that is, the derivative 

of the energy with respect to the position of the atoms, ∂E/∂r, is the zero vector 

and the second derivative matrix of the system, ∂∂E/∂ri∂rj, also known as the 

Hessian matrix, which describes the curvature of the potential energy surface at r, 

has all positive eigenvalues (is positive definite). 

The computational model that provides an approximate E(r) could be based on 

quantum mechanics or force fields. Using this computational model and an initial 

guess (or Ansatz) of the correct geometry, an iterative optimization procedure is 

followed, for example: 

1. calculate the force on each atom (that is, -∂E/∂r) 

2. if the force is less than some threshold, finish 

3. otherwise, move the atoms by some computed step ∆r that is predicted to 

reduce the force 

4. repeat from the start 

4.2    Elastic Properties 

Elastic properties of a solid are important because they relate to the various 

fundamental solid-state properties such as interatomic potentials, equation of 

state, and phonon spectra. Elastic properties are also linked thermodynamically to 

the specific heat, thermal expansion, Debye temperature, melting point, and 

Grüneisen parameter. Elastic properties of materials are also closely associated 

with the shear moduli along the slip planes of mobile dislocations, since these 

http://en.wikipedia.org/wiki/Cartesian
http://en.wikipedia.org/wiki/Mathematical_optimization
http://en.wikipedia.org/wiki/Local_minimum
http://en.wikipedia.org/wiki/Hessian_matrix
http://en.wikipedia.org/wiki/Potential_energy_surface
http://en.wikipedia.org/wiki/Eigen_values
http://en.wikipedia.org/wiki/Positive-definite_matrix
http://en.wikipedia.org/wiki/Quantum_mechanics
http://en.wikipedia.org/wiki/Force_field_(chemistry)
http://en.wikipedia.org/wiki/Ansatz
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dislocations can dissociate into partials with a spacing determined by the balance 

between the fault energy and the repulsive elastic force. The elastic constants 

determine the response of the crystal to external forces, as characterized by bulk 

modulus, shear modulus, Young’s modulus, and Poisson’s ratio, and obviously 

play an important part in determining the strength of the materials. Values of 

elastic constants provide valuable information about the bonding characteristic 

between adjacent atomic planes and the anisotropic character of the bonding and 

structural stability. It has also been noticed that there is a correlation between the 

elastic constants and the melting temperature of a solid. Elastic properties are 

classified into two types. These are discussed in below: 

4.2.1    Single Crystal Elastic Constants 

The elastic constants of a material describe its response to an applied stress or, 

conversely, the stress required to maintain a given deformation. Both stress and 

strain have three tensile and three shear components, giving six components in 

total. The linear elastic constants form a 6 × 6 symmetric matrix, having 27 

different components, such that σi = Cij εj for small stresses, σ, and strains, ε [1]. 

Any symmetry present in the structure may make some of these components equal 

and others may be fixed at zero. Thus, a hexagonal crystal like MAX phases has 

only six different symmetry elements (C11, C12, C13, C33, C44 and C66), and only 

five of them are independent since C66 = (C11 −C12)/2. Properties such as the bulk 

modulus (response to anisotropic compression), Poisson ratio, Lame constants, 

and so forth may be computed from the values of Cij. 

Methods to determine the elastic constants from first principles usually involve 

setting either the stress or the strain to a finite value, re-optimizing any free 

parameters and calculating the other property (the strain or stress, respectively). 

The finite strain technique has been successfully used to study the elastic 

properties of a range of materials including metallic systems. This is the method 

implemented in CASTEP.  
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The elastic constants are determined by a Taylor expansion of the total energy of 

the system ),( δVE , with respect to a small strain δ  of the lattice of volume V. 

The Bravais lattice for hexagonal crystal structure is spanned by three vectors 

(√3𝑎𝑎/2, -a/2, 0), (0, 0, 0), and (0, 0, c). In matrix form the Bravais lattice vectors 

are expressed as: 

𝑅𝑅 = �
√3𝑎𝑎/2 −𝑎𝑎/2 0

0 𝑎𝑎 0
0 0 𝑐𝑐

�                                                                                (4.1) 

We express the energy of the strained system by means of a Taylor expansion in 

the distortion parameters [2]: 

𝐸𝐸(𝑉𝑉, 𝛿𝛿) = 𝐸𝐸(𝑉𝑉0, 0) + 𝑉𝑉0 ��𝜏𝜏𝑖𝑖𝜉𝜉𝑖𝑖𝛿𝛿𝑖𝑖 +
1
2
�𝐶𝐶𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝜉𝜉𝑖𝑖𝛿𝛿𝑗𝑗𝜉𝜉𝑗𝑗
𝑖𝑖𝑖𝑖𝑖𝑖

�, (4.2) 

where E (V0,0) is the energy of the unstrained system with equilibrium volume V0, 

τi is an element in the stress tensor, and ξi is a factor to take care of Voigt index. 

The linear terms vanish if the strain causes no changes in the volume of the 

crystal. Otherwise, τi is related to the strain on the crystal. Since there are five 

independent elastic constants for hexagonal crystal, we need five deferent strains 

(distortions) to determine these. The first distortion is written as: 

𝐷𝐷1 = �
1 + 𝛿𝛿 0 0

0 1 + 𝛿𝛿 0
0 0 1

�                                                                                 (4.3) 

This changes the size of the basal plane, maintaining the z-axis constant. The 

symmetry of the strained lattice is therefore still hexagonal and the energy for this 

distortion can be obtained as: 

𝐸𝐸(𝑉𝑉, 𝛿𝛿) = 𝐸𝐸(𝑉𝑉0, 0) + 𝑉𝑉0[(𝜏𝜏1 + 𝜏𝜏2)𝛿𝛿 + (𝐶𝐶11 + 𝐶𝐶12)𝛿𝛿2] (4.4) 

The second type of distortion elongates the cell along x-axis and compresses 

along the y-axis while conserving the volume and leads to monoclinic symmetry: 
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𝐷𝐷2 = �
1 + 𝛿𝛿 0 0

0 1 − 𝛿𝛿 0
0 0 1

�                                                                                (4.5)                                                             

The energy for this distortion can be expressed as:  

𝐸𝐸(𝑉𝑉, 𝛿𝛿) = 𝐸𝐸(𝑉𝑉0, 0) + 𝑉𝑉0[(𝜏𝜏1 − 𝜏𝜏2)𝛿𝛿 + (𝐶𝐶11 − 𝐶𝐶12)𝛿𝛿2] (4.6) 

The third distortion stretches or compresses the z-axis while keeping the other 

axis unchanged. The volume changes but the symmetry is preserved. The 

distortion is as follows:  
 

𝐷𝐷3 = �
1 0 0
0 1 0
0 0 1 + 𝛿𝛿

�                                                                                        (4.7)                                                                       

The elastic constant can be obtained from the energy relation 

𝐸𝐸(𝑉𝑉, 𝛿𝛿) = 𝐸𝐸(𝑉𝑉0, 0) + 𝑉𝑉0[𝜏𝜏3𝛿𝛿 +
1
2
𝐶𝐶33𝛿𝛿2] (4.8) 

In the forth distortion, the c/a ratio is assumed to be constant under a small strain, 

gives compression or expansion to the system. The symmetry is conserved but the 

volume changes. The deformation is written as: 

𝐷𝐷4 = �
1 + 𝛿𝛿 0 0

0 1 + 𝛿𝛿 0
0 0 1 + 𝛿𝛿

�                                                                          (4.9)                                          

The strain energy associated with this distortion is 

𝐸𝐸(𝑉𝑉, 𝛿𝛿) = 𝐸𝐸(𝑉𝑉0, 0) + 𝑉𝑉0[(𝜏𝜏1 + 𝜏𝜏2 + 𝜏𝜏3)𝛿𝛿 

     +
1
2

(2𝐶𝐶11 + 2𝐶𝐶12 + 4𝐶𝐶13 + 𝐶𝐶33)𝛿𝛿2] (4.10) 

Finally, the fifth one is the volume conserving triclinic distortion and can be 

written as: 
 

𝐷𝐷5 = �
1 0 𝛿𝛿
0 1 0
𝛿𝛿 0 1

�                                                                                            (4.11)                                                         
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The energy corresponding to this distortion can be written as: 

𝐸𝐸(𝑉𝑉, 𝛿𝛿) = 𝐸𝐸(𝑉𝑉0, 0) + 𝑉𝑉0[𝜏𝜏5𝛿𝛿 + 2𝐶𝐶44𝛿𝛿2] (4.12) 

The relations (4.4), (4.6), (4.8), (4.10), and (4.12) give the five independent elastic 

constants C11, C12, C13, C33, and C44, respectively. 

4.2.2    Elastic properties of polycrystalline aggregate 

The theoretical polycrystalline elastic properties for hexagonal crystal can be 

calculated from the set of five independent elastic constants. 

The bulk modulus (B) and shear modulus (G) of polycrystalline aggregates are 

calculated from individual elastic constants, Cij, by the well-known Voigt [3] and 

the Reuss [4] approximations that are frequently used in averaging the single-

crystal elastic constants for polycrystalline behavior. Voigt assumes the uniform 

strain throughout a polycrystalline aggregate and Reuss assumes the uniform 

stress. The bulk modulus BV and shear modulus GV in the Voigt approximation for 

the hexagonal lattice are expressed as:  

]4)(2[
9
1

33131211 CCCCBV +++=                                                                  (4.13) 

)121242(
30
1

664413331211 CCCCCCGV ++−++=                                      (4.14) 

In the Reuss approximation, the bulk modulus BR and the shear modulus GR are 

defined as: 

13331211

2
13331211

42
2)(

CCCC
CCCCBR −++

−+
=                                                                         (4.15) 

)]}(2){(3[2
]2)[(5

6644
2

133312116644

2
133312116644

CCCCCCCCB
CCCCCCG

V
R +−++

−+
=                           (4.16) 

It is evident that the Voigt and Reuss assumptions are true only when the aggregate 

concerned is made of isotropic crystals, but for an aggregate made of anisotropic 

crystals their assumptions become immediately invalid. Hill [5] has shown that 
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for an aggregate of anisotropic crystals the Voigt and Reuss assumptions result in 

theoretical maximum and minimum values of the isotropic elastic moduli of the 

polycrystalline aggregate, respectively, and suggested that the actual effective 

moduli of anisotropic polycrystalline crystals could be approximated by the 

arithmetic mean of the two values. According to Hill approximation, the bulk 

modulus B and shear modulus G are given by:  

)(
2
1

VR BBB +=     and )(
2
1

VR GGG +=                                                      (4.17) 

Again, the calculated bulk modulus B and shear modulus G allow us to estimate 

the Young’s modulus Y and Poisson’s ratio ν by the following relations [6]: 

GB
BGY
+

=
3
9

 and ν
)3(2

23
GB
GB

+
−

=                                                                   (4.18) 

The accuracy of DFT elastic constants is typically within 10% or less of experiment. 

This allows us to predict elastic constants for new materials or for materials where 

experimental data do not exist; to predict elastic properties under pressure or to 

resolve discrepancies between contradictory experimental results. 

4.3    Electronic properties 

4.3.1    Band structure 

The electrons of a single isolated atom occupy atomic orbitals, which form a 

discrete set of energy levels. If multiple atoms are brought together into a 

molecule, their atomic orbitals will combine to form molecular orbitals each with 

a different energy. In other words, n atomic orbitals will combine to form n 

molecular orbitals. As more and more atoms are brought together, the molecular 

orbitals extend larger and larger, and the energy levels of the molecule will 

become increasingly dense. Eventually, the collection of atoms forms a giant 

molecule, or in other words, a solid. For this giant molecule, the energy levels are 

so close that they can be considered to form a continuum known as energy bands, 

http://en.wikipedia.org/wiki/Atomic_orbital
http://en.wikipedia.org/wiki/Energy_level
http://en.wikipedia.org/wiki/Molecular_orbital
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allowed bands, or simply bands that an electron within the solid may have. The 

bands have different widths, with the widths depending upon the degree of overlap 

in the atomic orbitals from which they arise. Two adjacent bands may simply not 

be wide enough to fully cover the range of energy. So, a gap is found between two 

adjacent bands. This gap is called band gaps or forbidden bands. Band gaps are 

essentially leftover ranges of energy not covered by any band, a result of the finite 

widths of the energy bands. The full picture of energy bands and band gaps of a 

solid is known as electronic band structure or simply band structure.  

In fact, in solid-state physics, the band structure describes those ranges of energy 

that an electron within the solid may have, and ranges of energy that it may not 

have. In view of quantum mechanics, it is due to the diffraction of the quantum 

mechanical electron waves in the periodic crystal lattice. Band theory derives 

these bands and band gaps by examining the allowed quantum mechanical wave 

functions for an electron in a large, periodic lattice of atoms or molecules or solids. 

Band structure calculations take advantage of the periodic nature of a crystal lattice, 

exploiting its symmetry. The single-electron Schrödinger equation is solved for an 

electron in a lattice-periodic potential, giving Bloch waves as solutions: 

𝜓𝜓𝑛𝑛𝐤𝐤(𝐫𝐫) = 𝑒𝑒𝑖𝑖𝐤𝐤.𝐫𝐫𝑢𝑢𝑛𝑛𝐤𝐤(r),                                                                                     (4.19) 

where k is called the wave vector. For each value of k, there are multiple solutions 

to the Schrödinger equation labeled by n, the band index, which simply numbers 

the energy bands. Each of these energy levels evolves smoothly with changes 

in k, forming a smooth band of states. For each band we can define a 

function En(k), which is the dispersion relation for electrons in that band. The 

wave vector takes on any value inside the Brillouin zone, which is a polyhedron in 

wave vector space that is related to the crystal's lattice. Wave vectors outside the 

Brillouin zone simply correspond to states that are physically identical those 

states within the Brillouin zone. Special high symmetry points in the Brillouin 

zone are assigned labels Γ, H, K, Γ, M, L for hexagonal 211 MAX phases. 

http://en.wikipedia.org/wiki/Electron
http://en.wikipedia.org/wiki/Atomic_orbital
http://en.wikipedia.org/wiki/Band_gap
http://en.wikipedia.org/wiki/Band_gap
http://en.wikipedia.org/wiki/Solid-state_physics
http://en.wikipedia.org/wiki/Energy
http://en.wikipedia.org/wiki/Electron
http://en.wikipedia.org/wiki/Wave_function
http://en.wikipedia.org/wiki/Wave_function
http://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
http://en.wikipedia.org/wiki/Bloch_wave
http://en.wikipedia.org/wiki/Dispersion_relation
http://en.wikipedia.org/wiki/Brillouin_zone
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It is difficult to visualize the shape of a band as a function of wave vector, as it 

would require a plot in four-dimensional space, E vs. kx, ky,kz. In scientific literature 

it is common to see band structure plots which show the values of En(k) for values 

of k along straight lines connecting symmetry points. Another method for visualizing 

band structure is to plot a constant-energy isosurface in wave vector space, showing 

all of the states with energy equal to a particular value. The isosurface of states 

with energy equal to the Fermi level is known as the Fermi surface. 

A solid has an infinite number of allowed bands, just as an atom has infinitely 

many energy levels. However, most of the bands simply have too high energy, 

and are usually disregarded under ordinary circumstances [7]. Conversely, there 

are very low energy bands associated with the core orbitals (such as 1s electrons). 

These low-energy core bands are also usually disregarded since they remain filled 

with electrons at all times, and are therefore inert [8]. Likewise, materials have 

several band gaps throughout their band structure. The most important bands and 

band gaps-those relevant for electronics and optoelectronics-are those with 

energies near the Fermi level. The bands and band gaps near the Fermi level are 

given special names, depending on the material: 

• In a semiconductor or band insulator, the Fermi level is surrounded by a band 

gap. The closest band above the band gap is called the conduction band, and 

the closest band beneath the band gap is called the valence band. The name 

"valence band" was coined by the analogy to the chemistry, since in many 

semiconductors the valence band is built out of the valence orbitals. 

• In a metal or semimetal, the Fermi level is inside of one or more allowed bands. 

In semimetals the bands are usually referred to as "conduction band" or "valence 

band" depending on whether the charge transport is more electron-like or hole-

like, by analogy to semiconductors. In many metals, however, the bands are 

neither electron-like nor hole-like, and often just called "valence band" as they 

are made of valence orbitals. The band gaps in a metal's band structure are not 

important for low energy physics, since they are too far from the Fermi level. 

http://en.wikipedia.org/wiki/Isosurface
http://en.wikipedia.org/wiki/Fermi_level
http://en.wikipedia.org/wiki/Fermi_surface
http://en.wikipedia.org/wiki/1s_electron
http://en.wikipedia.org/wiki/Semiconductor
http://en.wikipedia.org/w/index.php?title=Band_insulator&action=edit&redlink=1
http://en.wikipedia.org/wiki/Conduction_band
http://en.wikipedia.org/wiki/Valence_band
http://en.wikipedia.org/wiki/Valence_orbital
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Energy band gaps can be classified using the wave vectors of the states surrounding 

the band gap: 

• Direct band gap: the lowest-energy state above the band gap has the same k as 

the highest-energy state beneath the band gap. 

• Indirect band gap: the closest states above and beneath the band gap do not 

have the same k value. 

4.3.2    Density of states  

In quantum mechanical (QM) systems, waves, or wave-like particles can occupy 

modes or states with wavelengths and propagation directions dictated by the 

system. Often only specific states are permitted. In some systems, the interatomic 

spacing and the atomic charge of the material allows only electrons of the certain 

wavelengths to exist. In other systems, the crystalline structure of the material 

allows waves to propagate in one direction, while suppressing wave propagation 

in another direction. Thus it can happen that many states are possible at a specific 

wavelength, and therefore at this associated energy, while no states are available 

at other energy levels: this distribution is characterized by the density of states 

(DOS). Depending on the QM system the density of the states can be calculated 

for electrons, photons, or phonons, and can be given as a function of either energy 

or the wave vector k. 

In solid-state and condensed matter physics, the electron density of states of a 

system describes the number of states per interval of energy at each energy level 

that are available to be occupied by electrons. A high DOS at a specific energy 

level means that there are many states available for occupation. A DOS of zero 

means that no states can be occupied at that energy level. In general a DOS is an 

average over the space and time domains occupied by the system 

The density of states (DOS) for a given band n, Nn (E), is defined as: 

𝑁𝑁𝑛𝑛(𝐸𝐸) = �
𝑑𝑑𝐊𝐊
4𝜋𝜋3

𝛿𝛿(𝐸𝐸 − 𝐸𝐸𝑛𝑛(𝐊𝐊)), (4.20) 

http://en.wikipedia.org/wiki/Direct_band_gap
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where En(k) describes the dispersion of the given band and the integral is 

determined over the Brillouin zone. An alternative representation of the density of 

states is based on the fact that Nn (E) dE is proportional to the number of allowed 

wave vectors in the nth band in the energy range E to (E + dE). 

The total density of states, N (E), is obtained by summation over all bands: 

𝑁𝑁(𝐸𝐸) = �𝑁𝑁𝑛𝑛(𝐸𝐸) = ��
𝑑𝑑𝐊𝐊
4𝜋𝜋3

𝛿𝛿(𝐸𝐸 − 𝐸𝐸𝑛𝑛(𝐊𝐊)) (4.21) 

The integral of N (E) from minus infinity to the Fermi level gives the total number 

of electrons in the unit cell. 

𝑁𝑁𝑢𝑢𝑢𝑢 = � 𝑁𝑁(𝐸𝐸)𝑑𝑑𝑑𝑑
𝐸𝐸𝐹𝐹

−∞
 (4.22) 

In a spin-polarized system, separate DOS for electrons with spin up and spin 

down can be introduced. Their sum produces the total DOS and their difference is 

referred to as the spin density of states. 

DOS is often used for quick visual analysis of the electronic structure. Characteristics 

such as the width of the valence band, the energy gap in insulators and the number 

and intensity of the main features are helpful in qualitatively interpreting the 

experimental spectroscopic data. DOS analysis can also help to understand the 

changes in electronic structure caused by, for example, external pressure. 

There are a variety of numerical techniques for evaluating the DOS. CASTEP use 

a simplified linear interpolation scheme developed by Ackland [9]. This method is 

based on linear interpolation in parallelepipeds formed by the points of Monkhorst-

Pack set, followed by the histogram sampling of the resultant set of band energies. 

Partial and local density of states 

Partial density of states (PDOS) and local density of states (LDOS) represent useful 

semi-qualitative tools for analyzing electronic structure. LDOS shows which atoms 

in the system contribute electronic states to various parts of the energy spectrum. 

ms-its:Tools.chm::/Html/thBrillouinZone.htm
mk:@MSITStore:C:%5CProgram%20Files%5CAccelrys%5CMaterials%20Studio%206.0%5Cshare%5Cdoc%5CTheory.chm::/Html/threferences.htm#ackland_1998
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PDOS further qualifies these results by resolving the contributions according to the 

angular momentum of the states. It is often useful to know whether the main peaks 

in the DOS are of s, p, or d character. LDOS and PDOS analyses give a qualitative 

handle on the nature of electron hybridization in the system, on the origin of the 

main features in X-ray photoelectron spectroscopy and optical spectra, etc. 

PDOS calculations are based on Mulliken population analysis, which allows the 

contribution from each energy band to a given atomic orbital to be calculated. The 

summation of these contributions over all bands produces a weighted DOS. CASTEP 

allow one to select the type of weighting required. It is possible, for example, to 

generate LDOS by adding together all the contributions due to orbitals on a given 

atom. 

PDOS analysis formalism is not valid for high energy states in the conduction 

band: PDOS representation will usually decay to zero at about 20 eV above the 

Fermi level. This is related to the fact that expansion of essentially free electron 

states in terms of a limited number of atomic-like basis functions is impossible to 

carry out with any degree of accuracy. Only the valence band and lower part of 

the conduction band are meaningful in the PDOS plot. 

The calculation itself can be carried out using either Gaussian smearing or linear 

interpolation, similar to the total DOS calculation. In this case, the latter method 

includes the interpolation of the weights as well as the electronic energies. 

4.3.3    Fermi surface 

Fermi surfaces are abstract boundaries, useful for predicting the thermal, electrical, 

magnetic, and optical properties of metals, semi-metals, and doped semiconductors. 

The shape of the Fermi surface is derived from the periodicity and symmetry of 

the crystalline lattice and from the occupation of electronic energy bands. The 

existence of a Fermi surface is a direct consequence of the Pauli Exclusion 

Principle, which allows a maximum of one electron per quantum state.  
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In the one-particle approximation Fermi surface can be considered as an energy 

isosurface, E (k) = EF (Fermi energy), in reciprocal space. Because the Fermi 

surface is an infinite periodic object it is conventionally represented as being 

clipped by the Brillouin zone. 

The Fermi surface problem is the counterpart of the band gap problem for metals. 

The highest occupied energy in the density functional Khon-Sham equations can 

easily be shown to be the energy for adding an electron to a metal and is thus the 

chemical potential. The problem is whether the Fermi surface given by the eigen 

energies of the Khon-Sham equations is the same as the true Fermi surface. The 

true Fermi surface can be constructed from the one-particle Green’s function 

which gives the quasi-particle energies. The LDA-like approximation for the 

Green’s function [10] yields the same Fermi as Khon-Sham equations.  

By the Pauli exclusion principle, no two particles can be in the same state. Therefore, 

in the state of lowest energy, the particles fill up all energy levels below EF, which 

is equivalent to saying that EF is the energy level below which there are exactly 

N states. 

In momentum space, these particles fill up a sphere of radius PF, the surface of 

which is called the Fermi surface [11].  

The linear response of a metal to an electric, magnetic or thermal gradient is 

determined by the shape of the Fermi surface, because currents are due to changes 

in the occupancy of states near the Fermi energy. Free-electron Fermi surfaces are 

spheres of radius 

𝑘𝑘𝐹𝐹 =
�2𝑚𝑚𝐸𝐸𝐹𝐹

ℏ
 , (4.23) 

determined by the valence electron concentration where ħ is the reduced Planck's 

constant. A material whose Fermi level falls in a gap between bands is an insulator 

or semiconductor depending on the size of the band gap. When a material's Fermi 

level falls in a band gap, there is no Fermi surface. 

http://en.wikipedia.org/wiki/Pauli_exclusion_principle
http://en.wikipedia.org/wiki/Reduced_Planck%27s_constant
http://en.wikipedia.org/wiki/Reduced_Planck%27s_constant
http://en.wikipedia.org/wiki/Electrical_insulation
http://en.wikipedia.org/wiki/Bandgap
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4.4    Mulliken bond population and theoretical hardness 

Mulliken charges and bond populations are calculated according to the formalism 

described by Segall et al. [12,13]. In Mulliken analysis [14] the charge associated 

with a given atom, A, is determined by: 

𝑄𝑄(𝐴𝐴) = �𝑤𝑤𝐊𝐊
𝐊𝐊

��𝑃𝑃𝜇𝜇𝜇𝜇(𝐊𝐊)𝑆𝑆𝜈𝜈𝜈𝜈(𝐊𝐊)
𝜈𝜈

𝑜𝑜𝑜𝑜𝑜𝑜

𝜇𝜇

 (4.24) 

and the overlap population between two atoms, A and B, is: 

𝑃𝑃𝜇𝜇(𝐴𝐴𝐴𝐴) = �𝑤𝑤𝐊𝐊
𝐊𝐊

�� 2𝑃𝑃𝜇𝜇𝜇𝜇(𝐊𝐊)𝑆𝑆𝜈𝜈𝜈𝜈(𝐊𝐊)
𝑜𝑜𝑜𝑜𝑜𝑜

𝜈𝜈

𝑜𝑜𝑜𝑜𝑜𝑜

𝜇𝜇

 (4.25) 

Mulliken bond populations provide a deep understanding about the bonding nature 

in crystals and the first-key step of calculating the theoretical Vickers hardness. To 

estimate accurately the values of Vickers hardness of metallic crystals, the already 

established empirical formula is as follows [15,16]:  

( )( ){ }
µ

µ
µµµ

µ n
n

bV vPPH
Σ

−′



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 −Π=

/1
3/5740   ,                                                   (4.26) 

where Pµ is the Mulliken bond overlap population, µ
bv  is the bond volume, and nµ 

is the number of µ-type bond and µ′P is the metallic population.  

4.5    Optical properties 

By “optical properties” is meant a material’s response to exposure to electro-

magnetic radiation and, in particular to visible light. When radiations are exposed to 

electromagnetic radiation, it is sometimes important to be able to predict and after 

their responses. This is possible when we are familiar with their optical properties 

and understand the mechanisms responsible for their optical behaviors. This 

section will discuss some of the basic theories and concepts relating to the nature 

of electromagnetic radiation and its possible interactions with solid materials.  
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To extract all optical properties, the frequency dependent dielectric function is a 

key optical quantity, 𝜀𝜀(𝜔𝜔) = 𝜀𝜀1(𝜔𝜔) + 𝑖𝑖𝜀𝜀2(𝜔𝜔), which keeps up a close relation to 

the electronic band structure. On the basis of the momentum matrix elements 

between the occupied and the unoccupied electronic states, the imaginary part 

𝜀𝜀2(𝜔𝜔) of the dielectric function can be expressed as:  

𝜀𝜀2(𝜔𝜔) =
2𝑒𝑒2𝜋𝜋
Ω𝜀𝜀0

� |⟨𝜓𝜓𝑘𝑘𝑐𝑐 |𝒖𝒖 ∙ 𝒓𝒓|𝜓𝜓𝑘𝑘𝑣𝑣⟩|2
𝑘𝑘,𝑣𝑣,𝑐𝑐

𝛿𝛿(𝐸𝐸𝑘𝑘𝑐𝑐 − 𝐸𝐸𝑘𝑘𝑣𝑣 − 𝐸𝐸) (4.27) 

where ω is the frequency of light, e is the electronic charge, u is the vector 

defining the polarization of the incident electric field, and 𝜓𝜓𝑘𝑘𝑐𝑐  and 𝜓𝜓𝑘𝑘𝑣𝑣 are the 

conduction and valence band wave functions at k, respectively. From the 

imaginary part 𝜀𝜀2(𝜔𝜔), the real part 𝜀𝜀1(𝜔𝜔) of the dielectric function is derived 

through the Kramers-Kronig relations: 

𝜀𝜀1(𝜔𝜔) = 1 +
2
𝜋𝜋
𝑃𝑃�

𝜔𝜔′𝜀𝜀2(𝜔𝜔′)𝑑𝑑𝜔𝜔′

(𝜔𝜔′2 − 𝜔𝜔2)

∞

0
 (4.28) 

where P represents the principal integral. 

The remaining optical properties, such as refractive index, absorption spectrum, 

loss-function, reflectivity and photoconductivity (real part) are derived from 𝜀𝜀(𝜔𝜔), 

𝜀𝜀1(𝜔𝜔), and 𝜀𝜀2(𝜔𝜔). For the metallic compounds both inter-band and intra-band 

transitions contribute to dielectric function. As the investigated material is 

metallic, which is evident from our calculated band structure, a Drude term 

[17,18] with unscreened plasma frequency 5 eV and damping 0.05 eV has been be 

used. Its effect is to enhance the low energy part of the spectrum.  

The refractive index, n(𝜔𝜔), and the extinction coefficient, k(𝜔𝜔), are evaluated in 

terms of the real  as well as imaginary parts of the complex dielectric function as 

follows: 

𝑛𝑛(𝜔𝜔) =
1
√2

��{𝜀𝜀1(𝜔𝜔)}2 + {𝜀𝜀2(𝜔𝜔)}2 + 𝜀𝜀1(𝜔𝜔)�
1/2

 (4.29) 
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𝑘𝑘(𝜔𝜔) =
1
√2

��{𝜀𝜀1(𝜔𝜔)}2 + {𝜀𝜀2(𝜔𝜔)}2 − 𝜀𝜀1(𝜔𝜔)�
1/2

 (4.30) 

Expressions for the absorption coefficient α (ω), energy loss function L (ω), and 

the real part of optical conductivity σ (ω) are given as: 

𝛼𝛼(𝜔𝜔) = √2𝜔𝜔 ��{𝜀𝜀1(𝜔𝜔)}2 + {𝜀𝜀2(𝜔𝜔)}2 − 𝜀𝜀1(𝜔𝜔)�
1/2

 (4.31) 

𝐿𝐿(𝜔𝜔) = 𝜀𝜀2(𝜔𝜔)/[{𝜀𝜀1(𝜔𝜔)}2 + {𝜀𝜀2(𝜔𝜔)}2] (4.32) 

σ(ω) =
𝜔𝜔𝜀𝜀2
4𝜋𝜋

 
(4.33) 

The reflectivity R(ω) follows directly from Fresnel’s formula if the crystal surface 

is oriented parallel to the optical axis and is given by 

𝑅𝑅(𝜔𝜔) = �
�𝜀𝜀(𝜔𝜔) − 1
�𝜀𝜀(𝜔𝜔) + 1

�
2

, (4.34) 

4.6    Thermodynamic Properties 

The DFT-based quasi-harmonic Debye model [19], in which the phononic effect 

is considered, is applied to investigate the thermodynamic properties of solids. 

According to standard thermodynamics, if the system is held at a fixed T and 

suffers a constant and hydrostatic pressure P, the equilibrium state is one that 

minimizes the non-equilibrium Gibbs energy of the crystal phase [20], 

𝐺𝐺∗(𝐱𝐱;𝑃𝑃,𝑇𝑇) = 𝐸𝐸(𝐱𝐱) + 𝑃𝑃𝑃𝑃(𝐱𝐱) + 𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣(𝐱𝐱;𝑇𝑇), (4.35) 

with respect to all internal configuration parameters. These parameters, gathered 

in the configuration vector x, include all the relevant geometric information for 

the given crystal structure. On the right-hand side of the Eq. (4.35), E(x) is the 

total energy of the crystal. The second term, PV, corresponds to the constant 

hydrostatic pressure condition. Finally, the third term, Avib, is the vibrational 

Helmholtz free energy including the contributions of the lattice vibration on the 
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internal energy and entropy change. The rigorous statistical calculation of Avib 

depends on the knowledge of the exact vibrational levels is obtained by the quasi-

harmonic approximation [20], 

𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥;𝑇𝑇) = � �
1
2
ℏ𝜔𝜔 + 𝑘𝑘𝑘𝑘 ln�1 − 𝑒𝑒−ℏ𝜔𝜔/𝑘𝑘𝑘𝑘��

∞

0
g(𝐱𝐱;𝜔𝜔)d𝜔𝜔, (4.36) 

where g(x;ω) is the phonon or vibrational density of states. Applying the static 

condition Eq. (4.35) can be changed as the following form: 

𝐺𝐺∗(𝑉𝑉;𝑃𝑃,𝑇𝑇) = 𝐸𝐸(V) + 𝑃𝑃𝑃𝑃 + 𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣(𝜃𝜃𝐷𝐷(𝑉𝑉);𝑇𝑇), (4.37) 

Now, the Debye model of the phonon density of states allows us to write the 

vibrational Helmholtz free energy as [21,22] 

𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣(𝜃𝜃𝐷𝐷 ,𝑇𝑇) = 𝑛𝑛𝑛𝑛𝑛𝑛 �
9𝜃𝜃D
8𝑇𝑇

+ 3 ln(1 − 𝑒𝑒−𝜃𝜃𝐷𝐷/𝑇𝑇) − 𝐷𝐷(𝜃𝜃𝐷𝐷/𝑇𝑇)�, (4.38) 

where θD is the Debye temperature, n is the number of atoms per formula unit, 

and D(θD/T) is the Debye integral, which is defined as   

𝐷𝐷(𝜃𝜃𝐷𝐷/𝑇𝑇) =
3

(𝜃𝜃𝐷𝐷/𝑇𝑇)3
�

𝑥𝑥3

𝑒𝑒𝑥𝑥 − 1
𝑑𝑑𝑑𝑑

𝜃𝜃𝐷𝐷/𝑇𝑇

0
 (4.39) 

For an isotropic solid with Poisson ratio σ, the characteristic Debye temperature 

θD can be expressed as 

𝜃𝜃𝐷𝐷 =
ℏ
𝑘𝑘
�6𝜋𝜋2𝑉𝑉1/2𝑛𝑛�

1/3
𝑓𝑓(𝜎𝜎)�

𝐵𝐵𝑆𝑆
𝑀𝑀

, 
(4.40) 

where M is the molecular mass per formula unit and BS is the adiabatic bulk 

modulus that can be computed as 

𝐵𝐵𝑆𝑆 ≈ 𝐵𝐵(𝑉𝑉) = 𝑉𝑉 �
𝑑𝑑2𝐸𝐸(𝑉𝑉)
𝑑𝑑𝑉𝑉2

� (4.41) 

and the f(σ) is defined as 

𝑓𝑓(𝜎𝜎) = �3 �2 �
2
3

1 + 𝜎𝜎
1 − 2𝜎𝜎

�
3/2

+ �
1
3

1 + 𝜎𝜎
1 − 𝜎𝜎

�
3/2

�
−1

�

1/3

 
(4.42) 
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Therefore, for the given pressure P and temperature T with respect to the volume 

V, the non-equilibrium Gibbs function merely depends on V (P,T ) and can be 

solved as 

�
𝜕𝜕𝐺𝐺∗(𝑉𝑉;𝑃𝑃,𝑇𝑇)

𝜕𝜕𝜕𝜕
�
𝑃𝑃,𝑇𝑇

= 0 (4.43) 

By solving Eq. (4.43), the thermal equation of state (EOS) V (P,T ) can be obtained. 

Then the isothermal bulk modulus BT, the constant- volume heat capacity CV, the 

constant-pressure heat capacity CP, which account for the lattice contribution, and 

volumetric thermal expansion α can be derived as 

𝐵𝐵𝑇𝑇(𝑃𝑃,𝑇𝑇) = 𝑉𝑉 �
𝜕𝜕2𝐺𝐺∗(𝑉𝑉;𝑃𝑃,𝑇𝑇)

𝜕𝜕𝑉𝑉2
�
𝑃𝑃,𝑇𝑇

 
(4.44) 

𝐶𝐶𝑉𝑉 = 3𝑛𝑛𝑛𝑛 �4𝐷𝐷 �
𝜃𝜃𝐷𝐷
𝑇𝑇
� −

3𝜃𝜃𝐷𝐷/𝑇𝑇
𝑒𝑒𝜃𝜃𝐷𝐷/𝑇𝑇 − 1

� (4.45) 

 
𝐶𝐶𝑃𝑃 = 𝐶𝐶𝑉𝑉(1 + 𝛼𝛼𝛼𝛼𝛼𝛼) (4.46) 
 

𝛼𝛼𝑉𝑉 =
𝛾𝛾𝐶𝐶𝑉𝑉
𝐵𝐵𝑇𝑇𝑉𝑉

 (4.47) 

where γ is the Grüneisen parameter, which is defined as  

𝛾𝛾 = −
𝑑𝑑 ln 𝜃𝜃𝐷𝐷(𝑉𝑉)
𝑑𝑑 ln 𝑉𝑉

 (4.48) 

To obtain the values of all the thermodynamic properties defined above, the non-

equilibrium Gibbs function G* and the energy E would be predetermined. 
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5.  Computational tools 

The aim of this chapter is to provide an overview of the different computational 

tools used in present investigation. We have carried out the first-principles 

calculations of structural, elastic, electronic and optical properties of some 

superconducting MAX phases using CASTEP code. The thermodynamic properties 

are investigated by implementation of Gibbs program along with the third-order 

Birch-Murnaghan equation of state (EOS). The salient features of these tools are 

given from next section. 

5.1 Cambridge serial total energy package (CASTEP) 

Cambridge serial total energy package abbreviated as CASTEP [1] is a state-of-

the-art quantum mechanics-based program designed specifically for solid-state 

materials science. CASTEP employs the density functional theory plane-wave 

pseudopotential method, which allows us to perform first-principles quantum 

mechanics calculations that explore the properties of crystals and surfaces in 

materials such as semiconductors, ceramics, metals, minerals, and zeolites. 

Typical applications involve studies of surface chemistry, structural properties, 

band structure, density of states, and optical properties. CASTEP can also be used 

to study the spatial distribution of the charge density and wave functions of a 

system. In addition, one can use CASTEP to calculate the full tensor of second-

order elastic constants and related mechanical properties of a crystal (Poisson 

ratio, Lame constants, bulk modulus). The transition-state searching tools in 

CASTEP enable us to study chemical reactions in either the gas phase or on the 

surface of a material using linear synchronous transit/quadratic synchronous 

transit technology. These tools can also be used to investigate bulk and surface 

diffusion processes. CASTEP can also be used effectively to study the properties 

of both point defects (vacancies, interstitials, and substitutional impurities) and 

extended defects (for example the grain boundaries and the dislocations) in 

semiconductors and other materials. 
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Furthermore, the vibrational properties of solids (phonon dispersion, total and 

projected density of phonon states, thermodynamic properties) can be calculated 

with the CASTEP using either the linear response methodology or the finite 

displacements technique. The results can be used in various ways, for instance, to 

investigate the vibrational properties of adsorbents on surfaces, to interpret the 

experimental neutron spectroscopy data or the vibrational spectra, to study the 

phase stability at the high temperatures and pressures, etc. The linear response 

method can also be used to calculate the response of a material to an applied 

electric field - polarizability for molecules and dielectric permittivity in solids - 

and to predict IR spectra. Again, CASTEP can be used to calculate the properties 

required to analyze the results of the solid-state NMR experiments, i.e., chemical 

shifts and electric field gradients on atoms of interest. 

The CASTEP STM analysis tool allows one to model scanning tunneling microscopy 

images at different bias voltages in order to solve the surface structures based on 

the experimental STM images. 

5.2 Gibbs program 

Given the energy of a solid (E) as a function of the molecular volume (V), the Gibbs 

program [2] uses a quasi-harmonic Debye model to generate the Debye temperature 

Θ (V), obtains the non-equilibrium Gibbs function G*(V; p, T), and minimizes G* 

to derive the thermal equation of state (EOS) V (p, T) and the chemical potential  

G (p, T) of the corresponding phase. The other macroscopic properties are also 

derived as a function of p and T from standard thermodynamic relations. The 

program focuses on obtaining as much thermodynamical information as possible 

from a minimum set of (E, V) data, making it suitable to analyze the output of 

costly electronic structure calculations, adding thermal effects at a low cost for 

computation. Any of three analytical EOS widely used in the literature can be 

fitted to the p−V (p, T) data, giving an alternative set of isothermal bulk moduli 

and their pressure derivatives that can be fed to the Debye model machinery.  
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5.3 Equation of States  

On the theoretical side, the determination of the equation of state (EOS) and the 

chemical potential from first principles are two of the main objectives of the 

Physics and Chemistry of crystals. The EOS and the chemical potential are two of 

the key thermodynamic properties of a solid. The EOS of a given crystalline 

phase determines its behavior with respect to changes in the macroscopic 

variables, mainly pressure, P and temperature, T. Three EOS are incorporated in 

gibbs program to determine the thermodynamic properties of solids: the Vinet et 

al. EOS [3], the Birch–Murnaghan EOS [4,5], and the spinodal EOS [6]. In the 

present study, the third-order Birch-Murnaghan EOS is used to carry out the 

thermodynamic properties calculation.   

Expressions for the third-order Birch-Murnaghan EOS  
The Birch–Murnaghan isothermal equation of state, published in 1947 by Francis 

Birch [4], is a relationship between the volume of a body and the pressure to 

which it is subjected. This equation is named after Albert Francis Birch and 

Francis Dominic Murnaghan. Birch proposed this equation in a publication in 

1947, based on the work of the Murnaghan published in 1944 [5]. The third-order 

Birch–Murnaghan isothermal equation of state is given by:   

𝑃𝑃(𝑉𝑉) =
3𝐵𝐵0
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where P is the pressure, V0 is the reference volume, V is the deformed volume, B0 

is the bulk modulus, and B'0 is the derivative of the bulk modulus with respect to 

pressure. The bulk modulus and its derivative are usually obtained from fits to 

experimental data and are defined as 

𝐵𝐵0 = −𝑉𝑉 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑃𝑃=0

    and     𝐵𝐵0′ = �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑃𝑃=0

 (5.2) 

The internal energy, E (V), is found by integration of the pressure: 
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  6.  Results and discussions 

In the present study, the first-principles calculations have been performed by using 

the pseudopotential plane-wave approach based on the density functional theory [1] 

implemented in the CASTEP (Cambridge Serial Total Energy Package) code [2]. 

The exchange-correlation potential is evaluated by using the generalized gradient 

approximation (GGA) with the functional developed by Perdew-Burke-Ernzerhof 

[3] known as the PBE scheme. Vanderbilt-type ultrasoft pseudopotentials [4] are 

employed to describe the electron-ion interactions. The energy cutoff of the plane-

wave basis set is chosen as 500 eV to determine the number of plane waves in the 

expansion. For the Brillouin zone integration, the Monkhorst-Pack scheme [5] is 

used to produce a uniform grid of k-points along the three axes in reciprocal space 

and a 16 × 16 × 4 special k-points are taken to achieve geometry optimization for 

Nb2AsC and Mo2GaC, 10 × 10 × 2 for Nb2InC, and 12 × 12 × 2 for Ti2GeC. The 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) minimization technique [6] is used to 

search the ground state of crystal and convergence tolerance is set to energy change 

below 5 × 10-6 eV/atom, force less than 0.01 eV/Å, stress less than 0.02 GPa, and 

change in atomic displacement less than 5 × 10-4 Å. To obtain the smooth shapes of 

the Fermi surfaces, we used 32 × 32 × 6, 35 × 35 × 9, 32 × 32 × 6, and 38 × 38 × 8 

k-point mesh for Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC, respectively. To calculate 

the elastic constants, CASTEP uses the finite strain theory. In this approach, the 

elastic constants are determined from the first principles calculations by applying a 

set of given homogeneous deformations with a finite value and then by calculating 

the resultant stress with respect to the optimizing internal atomic coordinates.  

The quasi-harmonic Debye model [7] implemented in the Gibbs program [7] is 

employed to determine the thermodynamic properties at ambient and elevated 

temperatures and pressures. In this investigation, we have used energy-volume 

data calculated from the third-order Birch-Murnahgan equation of state [8] using 

the zero temperature and zero pressure equilibrium values of energy, volume, and 

bulk modulus obtained through DFT calculations.  
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6.1 Structural properties 

The MAX phases crystallize in the hexagonal structure with space group P63/mmc 

(No. 194) and have eight atoms with two formula units in each unit cell. The 

structure is defined by two lattice constants a and c and the internal parameter zM. 

The calculated lattice constants, internal free parameters, hexagonal ratios, and 

unit cell volumes for the four superconducting MAX phases Mo2GaC, Nb2AsC, 

Nb2InC, and Ti2GeC, as determined from geometry at zero pressure, are listed in 

Table 6.1a along with available theoretical [9-20] and experimental [21-28] values 

for comparison. Our results are in reasonable agreement with both theoretical and 

experimental values. The calculated lattice constants a and c for Mo2GaC deviate 

from measured ones within 1.79 and 0.02%, respectively. For Nb2AsC, the change 

from experimental values is 0.21 and 0.66%, whereas for Nb2InC it is 0.44 and 

1.09%, respectively. On the other hand, the lattice constants a and c of Ti2GeC 

deviate not more than 0.48 and 0.25%, respectively. The calculated internal free 

parameter zM for Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC is consistent with the 

values obtained in experiments and other first-principles calculations. The deviation 

from the experimental value of c/a for the four MAX superconducting phases is 

found to be 1.78, 0.42, 0.64, and 0.11%, respectively. The unit cell volume obtained 

in present investigation deviates from the experimental values for Mo2GaC, Nb2AsC, 

Nb2InC, and Ti2GeC within 3.63, 1.10, 2.15, and 1.20%, respectively. 

To study the pressure effect on structural properties of these MAX compounds, 

the equilibrium geometries of Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC were 

investigated at the fixed values of applied hydrostatic pressure in the 0 – 50 GPa 

range with a step of 5 GPa, where at each pressure a complete optimization for the 

structural parameters was performed. In the present study, it is observed that no 

phase transition is occurred in these compounds within the pressure range. Indeed, 

it has been reported for Nb2AsC [23] and the isostructural 211 MAX phases: 

Zr2InC, Ti2AlN, Ti2AlC, Ti2SC, V2AlC, Cr2AlC, Nb2AlC, and Ta2AlC that there 

is no phase transformation up to pressure ≈ 50 GPa [29-32]. The structural 

parameters calculated at different pressures for the four superconducting phases 
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are presented in Table 6.1b. The behavior of the lattice constants a and c, internal 

parameter zM, hexagonal ratio c/a and unit cell volume V as a function of pressure 

is demonstrated in Figs. 6.1(a) – 6.1(e). It is observed that both lattice constants 

and unit cell volume decrease almost linearly with the increase of pressure. On the 

other hand, the hexagonal ratio increases gradually with increasing pressure, 

which implies that the lattice constant a decreases with a faster rate than c. Thus, 

the compressibility along c-axis is lower than that along the a-axis. This situation 

is reversed for Ti3Si0.5Ge0.5C2 [33], Ti3SiC2 [34], and Zr2InC [29], where the 

compressibility along c-axis is higher than that along the a-axis. Interestingly, the 

internal parameter also increases in the same condition for all the phases. The 

relatively high zM value for Nb2AsC, the highest ever reported for a MAX phase, 

recall that the high zM values enhance the M-A bonds at the expense of the M-X 

bonds. The MAX compound Nb2AsC also combines relatively low c parameter 

with relatively high a parameter shown Tables 6.1a and Tables 6.1b. This result is 

consistent with the previous reports on S-, P-, and As-containing MAX phases 

[21]. Indeed, these three types of compounds are different from the rest of MAX 

phases. This observation implies that the Nb–As bonds in Nb2AsC must be quite 

resistant to compression along the c axis [23].        

In Figs. 6.1(f) – 6.1(h), we exhibit the normalized lattice constants a/ao and c/co as 

well as the normalized volume V/Vo (where ao, co, and Vo are the zero pressure 

equilibrium lattice constants and unit cell volume) together with the available 

theoretical and experimental values as a function of pressure. It is seen that, when 

pressure increases from 0 to 50 GPa, a decrease of a/ao is found to be 7.28, 6.59, 

6.80, and 7.16% for Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC, respectively, 

whereas for c/co it is 2.37, 3.37, 5.47, and 5.48%, respectively. The amount of 

decrease of normalized volume for the four phases is obtained as 16.09, 15.50, 

17.88, and 18.51%, respectively. The phasewise relative change in structural 

properties a/ao, c/co, and V/Vo are shown again in Figs. 6.1(i) – 6.1(l). The 

equation of states calculation is shown in Figs. 6.1(m) – 6.1(p). 
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Table 6.1a: Calculated lattice constants ao and co (in Å), hexagonal ratio co/ao, internal 
parameter zM, unit cell volume Vo (in Å3), bulk modulus (in GPa) and its pressure 
derivatives at zero pressure for superconducting MAX phases Mo2GaC, Nb2AsC, 
Nb2InC, and Ti2GeC using PBE-GGA with CASTEP code.  

Phases ao  co  co/ao zM Vo  B  B′ 

Mo2GaC- Present 3.064 13.178 4.301 0.0880 107.2 189.2 5.26 
LDA-VASP [9] 3.068 13.153 4.287 0.0889 108.4 248.6  
PW91 GGA-VASP [10] 3.084 13.16 4.267  104.7 190.0  
PBE-GGA-WIENK2k [11] 3.042 13.064 4.195 0.0893 103.4 250.6  
PBE-GGA-VASP [12]  3.071 13.147 4.281  107.3 191.5  
Expt. [21] 3.01 13.18 4.379  103.4   
        
Nb2AsC-Present 3.324 11.979 3.603 0.0945 114.6 207.7 4.72 
LDA-VASP [9] 3.344 12.048 3.603 0.0944 116.7 234.3  
PW91-GGA-VASP [10] 3.339 12 3.594  115.6   
Calc. & Expt. [13] 3.3235 11.9036 3.582  113.9 209.0*  
Expt. [21] 3.31 11.9 3.595  112.9   
Expt. [22] 3.317 11.90 3.588 0.0980 113.4   
Expt. [23]  3.327 11.917 3.582 0.0955 114.2 224.0 4.00 
        
Nb2InC- Present 3.186 14.526 4.559 0.0820 127.9 154.7 4.80 
LDA-VASP [9] 3.193 14.495 4.539 0.0819 128.0 182.4  
PW91-GGA-VASP [10] 3.196 14.47 4.528  128.0 182.4  
LDA-CASTEP [14] 3.137 14.280 4.552 0.0830 121.7 195.6  
PW91-GGA-CASTEP [15] 3.185 14.546 4.567 0.0822 127.8 156.4  
GGA-CASTEP [16] 3.189 14.470 4.538 0.0827 127.4 157.3 4.66 
LDA-CASTEP [16] 3.144 14.242 4.530 0.0815 121.9 182.8 4.06 
Expt. [21] 3.17 14.73 4.647  128.2   
Expt. [24] 3.172 14.37 4.530  125.2   
        
Ti2GeC-Present 3.085 12.961 4.202 0.0891 106.8 158.6 4.10 
LDA-CASTEP [17] 3.054 12.891 4.221 0.0903 104.2 160.0 4.36 
LDA-CASTEP [18] 3.047 12.776 4.193 0.0915 102.7 173.0 3.86 
GGA-WIEN2k [19] 3.09 13.04 4.220 0.0885 107.8 163.0  
PBE-GGA-CASTEP [20] 3.101 13.159 4.244  109.6   
Expt. [25] 3.079 12.930 4.199 0.0860  106.2   
Expt. [26] 3.07 12.93 4.212  105.5   
Expt. [27] 3.078 12.934 4.202  106.1 211.0 3.90 
Expt. [28] 3.081 12.929 4.197 0.0953 106.3   

   *Calculated  
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Table 6.1b: Calculated lattice parameters (a and c), hexagonal ratio (c/a) internal 
parameter (zM) and unit cell volume (V) at different pressure. 

Phases Pressure a (Å) c (Å) a/c zM V (Å3)  
Mo2GaC   0 3.085 12.961 4.201 0.0891 106.815 
   5 3.053 12.843 4.207 0.0899 103.683 
 10 3.025 12.745 4.213 0.0905 100.985 
 15 2.999 12.662 4.222 0.0910   98.609 
 20 2.975 12.590 4.232 0.0915   96.483 
 25 2.953 12.524 4.241 0.0919   94.552 
 30 2.932 12.463 4.251 0.0923   92.802 
 35 2.913 12.406 4.259 0.0927   91.186 
 40 2.896 12.352 4.265 0.0929   89.704 
 45 2.880 12.301 4.271 0.0932   88.329 
 50 2.864 12.251 4.278 0.0934   87.047 
       
Nb2AsC   0 3.324 11.979 3.604 0.0945 114.638 
   5 3.292 11.927 3.623 0.0950 111.925 
 10 3.265 11.870 3.636 0.0954 109.611 
 15 3.241 11.819 3.647 0.0958 107.537 
 20 3.219 11.771 3.657 0.0961 105.641 
 25 3.199 11.728 3.666 0.0964 103.972 
 30 3.179 11.695 3.679 0.0966 102.342 
 35 3.159 11.666 3.693 0.0969 100.813 
 40 3.141 11.635 3.704 0.0971   99.388 
 45 3.125 11.601 3.712 0.0973   98.112 
 50 3.109 11.575 3.723 0.0974   96.871 
       
Nb2InC   0 3.192 14.498 4.542 0.0817 127.913 
   5 3.164 14.353 4.536 0.0826 124.456 
 10 3.134 14.247 4.546 0.0834 121.199 
 15 3.107 14.157 4.556 0.0841 118.388 
 20 3.084 14.074 4.564 0.0847 115.902 
 25 3.062 13.998 4.572 0.0852 113.681 
 30 3.043 13.929 4.577 0.0856 111.667 
 35 3.024 13.865 4.585 0.0860 109.821 
 40 3.007 13.807 4.592 0.0864 108.118 
 45 2.991 13.754 4.598 0.0867 106.530 
 50 2.975 13.705 4.607 0.0870 105.036 
       
Ti2GeC   0 3.085 12.961 4.201 0.0891 106.815 
   5 3.053 12.843 4.207 0.0899 103.683 
 10 3.025 12.745 4.213 0.0905 100.985 
 15 2.999 12.662 4.222 0.0910   98.609 
 20 2.975 12.590 4.232 0.0915   96.483 
 25 2.953 12.524 4.241 0.0919   94.552 
 30 2.932 12.463 4.251 0.0923   92.802 
 35 2.913 12.406 4.259 0.0927   91.186 
 40 2.896 12.352 4.265 0.0929   89.704 
 45 2.880 12.301 4.271 0.0932   88.329 
 50 2.864 12.251 4.278 0.0934   87.047 
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Fig. 6.1(a). Pressure dependence of lattice constant a for superconducting 
MAX phases Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC.  

 
  
 
 
 
 
 
 
 
 

 
 

 
 
 

 
 

 
Fig. 6.1(b). Pressure dependence of lattice constant c for superconducting 
MAX phases Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC. 
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Fig. 6.1(c). Pressure dependence of internal parameter zM for superconducting 
MAX phases Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC. 

 
 
   
 
 
 
 
 
 
 
 

 
 
 
 

 
 

Fig. 6.1(d). Pressure dependence of unit cell volume V for superconducting 
MAX phases Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC. 
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Fig. 6.1(e). Pressure dependence of hexagonal ratio c/a for superconducting 
MAX phases Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Fig. 6.1(f). Pressure dependence of normalized lattice constant a/ao for four 
superconducting MAX phases Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC. 
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Fig. 6.1(g). Pressure dependence of normalized lattice constant c/co for four 
superconducting MAX phases Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
Fig. 6.1(h). Pressure dependence of normalized unit cell volume V/Vo for 
four superconducting MAX phases Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC.  
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Fig. 6.1(i). Pressure dependence of normalized lattice constants a/ao and 
c/co and unit cell volume V/Vo for MAX phase Mo2GaC. 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

Fig. 6.1(j). Pressure dependence of normalized lattice constants a/ao and 
c/co and unit cell volume V/Vo for MAX phase Nb2AsC. 
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Fig. 6.1(k). Pressure dependence of normalized lattice constants a/ao and 
c/co and unit cell volume V/Vo for MAX phase Nb2InC. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

 
Fig. 6.1(l). Pressure dependence of normalized lattice constants a/ao and 
c/co and unit cell volume V/Vo for MAX phase Ti2GeC. 
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Fig. 6.1(m). Total energy as a function of unit cell volume for superconducting 
MAX phase Mo2GaC. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 6.1(n). Total energy as a function of unit cell volume for superconducting 
MAX phase Nb2AsC. 
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Fig. 6.1(o). Total energy as a function of unit cell volume for superconducting 
MAX phase Nb2InC. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 6.1(p). Total energy as a function of unit cell volume for superconducting 
MAX phase Ti2GeC. 
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6.2 Elastic properties 

Elastic properties of solids are closely related to many fundamental solid state 

properties, such as equation of states, specific heat, thermal expansion, Debye 

temperature, Gruneisen parameter, and melting point. From elastic constants, one 

can obtain valuable information about the bonding characteristics between 

adjacent atomic planes, the anisotropic character of the bonding, and the structural 

stability. As polycrystalline material every MAX compound can be treated as an 

aggregate of single crystals at random orientation. Both single crystal elastic 

constants and elastic properties of polycrystalline aggregate will be discussed in 

the next sections for the selected four superconducting MAX phases.  

6.2.1     Single crystal elastic constants  

Single crystal elastic constants of the selected superconducting MAX phases 

Mo2GaC, Nb2AsC, Nb2InC and Ti2GeC are evaluated at 0 K temperature and 0 GPa 

pressure from first-principles calculations. As hexagonal crystal all MAX phases 

have six different elastic constants C11, C12, C13, C33, C44 and C66, and only five of 

them are independent because C66 = (Cl1- C12)/2. In Table 6.2.1a, the calculated 

elastic constants at zero pressure are listed along with available other theoretical 

results for comparison. It is seen that our results are consistent with the previous 

reported values [9-18,20]. The elastic anisotropy of a crystal is the orientation 

dependence of the elastic moduli or sound velocities. A proper description of such 

an anisotropic behavior has an important implication in engineering science as 

well as in crystal physics. To quantify the elastic anisotropy of the studied MAX 

compounds with the hexagonal structure, we have evaluated the shear anisotropic 

factor defined by A = 4C44/(C11 + C33 – 2C13). This factor is used as a measure of 

the degree of elastic anisotropy for the {1 0 1 0} shear planes between the 〈0 1 1 1〉 

and 〈0 1 1 0〉 directions that is identical to the shear anisotropy factor for the {0 1 1 0} 

shear planes between 〈1 0 1 1〉 and 〈0 0 0 1〉 directions. The calculated shear 

anisotropic factors are presented in Table 6.2.1a along with other results. For an 

isotropic crystal, A must be equal to unity and that any value of A either smaller or 
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greater than unity indicates elastic anisotropy. The magnitude of the deviation from 

unity is a measure of the degree of elastic anisotropy possessed by the crystal. 

According to the present as well as the previous results (excepting that obtained in 

literature [9] for Nb2InC phase) Nb2InC and Ti2GeC possess small anisotropy for the 

shear planes described above. This small anisotropy indicates that the in-plane and 

out-of-plane inter-atomic interactions in these nanolaminates differ slightly. Other 

two phases achieve comparatively more elastic anisotropy since they exhibit the 

maximal deviation from unity. Yet another elastic anisotropy parameter defined by 

the ratio between linear compressibility coefficients along the c and a axis for the 

hexagonal crystal is kc/ka = (C11 + C12 – 2C13)/(C33 – C13). The unit value of this 

parameter implies that the compressibility along both directions is same i.e., the 

crystal is isotropic. Any value less (greater) than unity indicates the compressibility 

along the c axis is smaller (larger) than that along the a-axis. Our results agree 

well with other values [9-13,16,18,20] excepting that found in calculations for 

Nb2InC [14,15] and Ti2GeC [17] and reveal that the compressibility along the c axis 

is slightly less than that along the a axis for all the four phases. This factor also 

indicates that studied four compounds are characterized by a small anisotropy. 

The calculated elastic constants at different pressures are listed in Table 6.2.1b. 

Figures 6.2(a) – 6.2(t) represent the monotonous increase of the five independent 

elastic constants Cij with pressure up to 50 GPa along with the earlier theoretical 

results [15,16,18,21] for comparison. It is worth mentioning that certain pressure 

dependent elastic constants of Nb2AsC show (e.g., Fig. 6.2.1 (g)) non-monotonic 

behavior. To check the results, we have repeated the calculations for these cases 

with different cut-off parameters and different optimization criteria. But, the non-

monotonic behavior persists in every case. Experimentally, Nb2AsC was found to 

be structurally stable within the pressure range 0 – 41 GPa [23]. Moreover, it has 

been reported for some isostructural 211 MAX phases that there is no phase 

transformation up to ≈ 50 GPa [29-32]. Therefore, this non-monotonic behavior is 

probably not related to any possible tendency towards structural instability. 

Further study is required to explain this interesting behavior. 
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For the phases Mo2GaC and Nb2AsC there is not found any data on elastic constants 

in the literature for comparison. The present results for the phase Nb2InC are very 

close to an earlier study [16]. The results from previous study [15] are somewhat 

greater than those found in both present and early work [16] excepting C13. There 

are available two calculated results [18,21] for the compound Ti2GeC. The value 

obtained in the present calculations for the elastic constants, C11, C12, and C13 of 

Ti2GeC agrees well with the results found in literature [18]. Moreover, the elastic 

constants C33 and C44 of the present study show almost average of the both early 

calculations [18,21].  

For the MAX phases with the hexagonal crystal structure, the mechanical stability 

under the isotropic pressure is verified from the following well-established Born 

criteria [35]: 

C11 > 0,    C33 > 0,    C44 > 0,   (C11 – C12) > 0,   and   (C11 + C12) C33 > 2
132C .                                                              

The calculated elastic constants at different pressures shown in Table 6.2.1b and 

Figs. 6.2.1(a) – 6.2.1(t) are positive and satisfy the all above conditions. Even 

within the pressure range 5 – 25 GPa, in which some elastic constants of Nb2AsC 

showing the non-monotonic behavior, the Born mechanical stability criteria are 

fully valid. These suggest that the four superconducting 211 MAX phases are 

mechanically stable under the applied pressure and predicts that there is no a 

phase transition under the pressure range from 0 to 50 GPa.  

It is observed that, when pressure increases from 0 to 50 GPa, a increase of C11 is 

found to be 70, 78, 95, and 78% for Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC, 

respectively, whereas for C12 the respective figures are 221, 110, 220, and 232%. 

The rate of increase for C13 is seen to be 143, 133, 180, and 178%, respectively. 

The elastic constant C33 for the four superconducting MAX phases increases by 

99, 66, 155, and 94%, whereas C44 increases by 94, 83, 92, and 91%, respectively. 

It can be seen that the elastic constants C12 and C13 are more sensitive to pressure 

than other three constants.   
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Table 6.2.1a: Calculated elastic constants* Cij (in GPa) as well as the shear anisotropic 
factors A and kc/ka at 0 K temperature and 0 GPa pressure for four superconducting MAX 
phases Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC using PBE-GGA with CASTEP code.   

Phases C11 C12 C13 C33 C44 A kc/ka 

Mo2GaC - Present 301   91 157 303 126 1.74 0.53 
LDA-VASP [9] 306 105 169 311 102 1.46 0.52 
PW91-GGA-VASP [10] 294   98 160 289  127 1.93 0.56 
PBE-GGA-WIENK2k [11] 306 101 169 303 102 1.50 0.52 
PBE-GGA-VASP [12] 312   94 164 314 128 1.72 0.52 
        
Nb2AsC - Present 334 113 159 346 168 1.86 0.69 
LDA-VASP [9] 325 114 161 326 150 1.83 0.71 
PW91-GGA-VASP [10] 327 108 155 347 162 1.78 0.65 
Calc. [13] 334 104 169 331 167 2.04 0.62 
        
Nb2InC - Present 283   70 107 259 105 1.28 0.91 
LDA-VASP [9] 291   77 118 289   57 0.66 0.78 
PW91-GGA-VASP [10] 291   76 108 267 102 1.19 0.95 
LDA-CASTEP [14] 363 103 131 306 148 1.45 1.17 
PW91-GGA-CASTEP [15] 303   76   99 256 100 1.11 1.15 
GGA-CASTEP [16] 287   74 107 265 104 1.23 0.93 
LDA-CASTEP [16] 329   90 128 298 119 1.27 0.96 
        
Ti2GeC - Present 301   72   94 307 131 1.25 0.87 
LDA-CASTEP [17]  279   99   95 283 125 1.34 1.00 
LDA-CASTEP [18] 309   84 105 321 143 1.35 0.85 
PBE-GGA-CASTEP [20] 281   81   99 294 122 1.25 0.84 

.*All elastic constants are shown in round figures. 
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Table 6.2.1b: Calculated single crystal elastic properties Cij (in GPa), and anisotropy 
factors A and kc/ka at different pressure for superconducting four MAX phases.  

Phases Pressure C11 C12 C13 C33 C44 A kc/ka 

Mo2GaC 0 301   91 157 303 126 1.7379 0.5342 
 5 333 109 182 339 141 1.8312 0.4968 
 10 358 116 210 375 160 2.0447 0.3273 
 15 382 127 235 403 180 2.2857 0.2321 
 20 407 148 263 430 186 2.3923 0.1737 
 25 423 160 289 460 198 2.5967 0.0292 
 30 445 188 304 495 201 2.4217 0.1309 
 35 477 216 320 531 211 2.2935 0.2512 
 40 489 255 334 557 223 2.3598 0.3408 
 45 506 273 356 583 233 2.4721 0.2952 
 50 511 292 381 604 244 2.7649 0.1839 
         
Nb2AsC 0 334 113 159 346 168 1.8564 0.6898 
 5 353 127 190 377 184 2.1029 0.5348 
 10 363 161 208 391 200 2.3669 0.5902 
 15 398 161 229 411 215 2.4501 0.5549 
 20 399 209 251 425 227 2.8199 0.6092 
 25 429 204 272 449 241 2.8862 0.5028 
 30 488 188 295 475 254 2.7239 0.4778 
 35 518 199 301 467 268 2.7990 0.6928 
 40 547 210 326 501 283 2.8586 0.6000 
 45 571 223 355 547 296 2.9020 0.4375 
 50 593 237 371 573 307 2.8962 0.4356 
         
Nb2InC 0 283   70 107 259 105 1.2805 0.9145 
 5 306   89 132 294 112 1.3333 0.8086 
 10 336 102 153 331 123 1.3629 0.7416 
 15 370 120 171 366 134 1.3604 0.7590 
 20 414 128 191 403 149 1.3701 0.7547 
 25 447 144 207 432 159 1.3677 0.7867 
 30 476 157 226 463 169 1.3881 0.7637 
 35 501 171 246 489 177 1.4217 0.7407 
 40 524 184 264 513 183 1.4381 0.7229 
 45 545 198 283 536 191 1.4835 0.6996 
 50 553 224 300 558 202 1.5812 0.6860 
         
Ti2GeC 0 301   72   94 307 131 1.2476 0.8685 
 5 327   86 114 331 143 1.3302 0.8525 
 10 352   98 137 361 159 1.4487 0.7857 
 15 373 112 158 386 170 1.5350 0.7412 
 20 385 132 179 412 183 1.6674 0.6824 
 25 409 150 196 437 195 1.7181 0.6929 
 30 433 167 209 465 207 1.7250 0.7109 
 35 459 184 222 499 218 1.6965 0.7184 
 40 485 202 233 531 228 1.6582 0.7416 
 45 509 221 247 564 239 1.6511 0.7445 
 50 537 239 261 596 250 1.6367 0.7582 
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Fig. 6.2.1(a). Pressure dependence of elastic constant C11 of superconducting 
MAX phase Mo2GaC. 

 
  
 
 
 
 
 
 
 

 
 
 
 
 

 
 

 
Fig. 6.2.1(b). Pressure dependence of elastic constant C12 of superconducting 
MAX phase Mo2GaC. 
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Fig. 6.2.1(c). Pressure dependence of elastic constant C13 of superconducting 
MAX phase Mo2GaC. 

 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

 
 
Fig. 6.2.1(d). Pressure dependence of elastic constant C33 of superconducting 
MAX phase Mo2GaC. 
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Fig. 6.2.1(e). Pressure dependence of elastic constant C44 of superconducting 
MAX phase Mo2GaC. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

 

Fig. 6.2.1(f). Pressure dependence of elastic constant C11 of superconducting 
MAX phase Nb2AsC. 
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Fig. 6.2.1(g). Pressure dependence of elastic constant C12 of superconducting 
MAX phase Nb2AsC. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

 
Fig. 6.2.1(h). Pressure dependence of elastic constant C13 of superconducting 
MAX phase Nb2AsC. 
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Fig. 6.2.1(i). Pressure dependence of elastic constant C33 of superconducting 
MAX phase Nb2AsC. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

 

Fig. 6.2.1(j). Pressure dependence of elastic constant C44 of superconducting 
MAX phase Nb2AsC. 
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Fig. 6.2.1(k). Pressure dependence of elastic constant C11 of superconducting 
MAX phase Nb2InC. 
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Fig. 6.2.1(l). Pressure dependence of elastic constant C12 of superconducting 
MAX phase Nb2InC. 
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Fig. 6.2.1(m). Pressure dependence of elastic constant C13 of superconducting 
MAX phase Nb2InC. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

 

Fig. 6.2.1(n). Pressure dependence of elastic constant C33 of superconducting 
MAX phase Nb2InC. 
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Fig. 6.2.1(o). Pressure dependence of elastic constant C44 of superconducting 
MAX phase Nb2InC. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

Fig. 6.2.1(p). Pressure dependence of elastic constant C11 of superconducting 
MAX phase Ti2GeC. 
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Fig. 6.2.1(q). Pressure dependence of elastic constant C12 of superconducting 
MAX phase Ti2GeC. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

 

Fig. 6.2.1(r). Pressure dependence of elastic constant C13 of superconducting 
MAX phase Ti2GeC. 
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Fig. 6.2.1(s). Pressure dependence of elastic constant C33 of superconducting 
MAX phase Ti2GeC. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

 

Fig. 6.2.1(t). Pressure dependence of elastic constant C44 of superconducting 
MAX phase Ti2GeC. 
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6.2.2     Elastic properties of polycrystalline aggregate 

We have estimated the bulk modulus B and shear modulus G of polycrystalline 

aggregates from the individual elastic constants Cij, by the well-known Voigt [36] 

and Reuss [37] approximations combined with the Hill [38] suggestion. We also 

calculated the Young’s modulus Y and the Poisson’s ratio ν. All these properties 

are presented in Table 5.2.2a together with other results [9-18,19]. Our results are 

in reasonable agreement with these values. Bulk and shear moduli are still the 

most important parameters for estimating the material hardness. The materials 

with high bulk modulus represent their incompressibility and with high shear 

modulus restrict deformation. Among the studied four superconducting MAX 

phases, Nb2AsC has the largest average bulk modulus (205 GPa), indicating that it 

is the most difficult to compress among these compounds, followed by Mo2GaC 

(194 GPa), Nb2AsC (168 GPa), and Ti2GeC (162 GPa). As we know, shear 

modulus shows a better correlation with hardness than with bulk modulus. From 

Table 5.2.2a, it can be seen that Nb2AsC has the largest average shear modulus 

(120 GPa), suggesting that it can withstanding shear strain to the largest extent. 

The Young’s modulus defined by the ratio of stress to strain measures the 

stiffness of the solids. The materials having high Young’s modulus represent them 

as stiff materials. As a result, Nb2AsC is stiffer than the other three MAX phases.  

According to the Pugh’s criteria [39], a material should be brittle if its G/B > 0.5, 

otherwise it should be ductile. Hence, the four superconducting phases under study 

should behave in a brittle manner. According to Frantsevich rule [40], a material 

should be brittle if its Poisson’s ratio is less than 0.33, otherwise it should be ductile. 

In our case, this value is smaller than 0.33. So, Mo2GaC, Nb2Asc, Nb2InC, and 

Ti2GeC possess the property of brittleness. Therefore, we can conclude that the 

studied four nanolaminates are brittle in nature according to both indicators. In 

fact, the brittleness is the general trend of MAX phases [41,42]. The relatively low 

values of Poisson’s ratios for hard materials in general exhibit the high degree of 

directional covalent bonding. As seen from Table 5.2.2a, the small Poisson’s ratios 

of four nanolaminates indicate their high degree of directional covalent bonding. 
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The pressure effect on elastic properties of polycrystalline aggregate has also been 

studied and presented in Table 6.2.2b and Figs. 6.2.2(a) – 6.2.2(h). It is seen that 

all the moduli increase monotonically with increasing of pressure. Figs. 6.2.2(e) – 

6.2.2(h) show the effect of applied pressure on the Pugh’s and Poisson’s ratios. 

The G/B ratios decrease with increasing of pressure, which implies the gradual 

decrease of brittleness of the four compounds. Moreover, the G/B value is equal 

to ∼0.5 at P = 10 GPa for Mo2GaC, at P = 20 GPa for Nb2AsC, and at P = 35 GPa 

for Nb2InC and thus the transition from brittle to ductile occurs at the respective 

pressures. Only the phase Ti2GeC remains brittle within the entire pressure range. 

According to Frantsevich rule only Mo2GaC switches from brittle to ductile nature.   

Table 6.2.2a: Calculated Bulk moduli (BV, BR, B in GPa), shear moduli (GV, GR, G in GPa), 
Young’s modulus (Y in GPa), Pugh’s ratio G/B, and Poisson’s ratio ν in comparison with available 
data for the four superconducting MAX phases.   

Phases BV BR B GV GR G Y G/B ν 

Mo2GaC-Present 190.6 187.8 189 104.6   97.3 101 257 0.534 0.274 
LDA-VSP [9]  201.0 198.0 200   92.9   88.4   91 236 0.455 0.303 
PW 91-GGA-VASP [10] 191.3 188.6 190 101.6   93.2   97 250 0.513 0.281 
PBE-GGA-WIEN2k [11] 199.1 196.4 198   93.0   87.3   90 235 0.456 0.302 
PBE-GGA-VASP [12] 198.0 195.0 197 107.4   99.8 104 265 0.528 0.276 
          

Nb2AsC-Present 208.4 206.8 208 128.3 119.0 124 309 0.596 0.252 
PW 91-GGA-VASP [10] 205.3 204.2 205 117.1 109.2 113 287 0.554 0.267 
PBE-GGA-WIEN2k [11] 204.1 202.2 203 125.6 117.6 122 304 0.599 0.250 
Calc. [13] 209.2 207.2 208 126.9 114.5 121 304 0.582 0.257 
          

Nb2InC-Present 154.6 154.5 155   99.2   97.2   98 243 0.636 0.238 
PW 91-GGA-VASP [10] 166.3 165.6 166   81.4   75.2   78 203 0.472 0.296 
PBE-GGA-WIEN2k [11] 159.2 159.2 159   99.4   98.0   99 246 0.620 0.243 
LDA-CASTEP [14] 195.8 195.4 196 129.7 125.8 128 315 0.653 0.232 
PW 91-GGA-CASTEP [15] 156.7 156.4 157 101.9 100.5 101 250 0.646 0.234 
GGA-CASTEP [16] 157.2 157.2 157   99.6   98.1   99 245 0.629 0.240 
LDA-CASTEP [16] 183.1 183.1 183 112.2 110.0 111 277 0.607 0.248 
          

Ti2GeC-Present 158.8 158.5 159 118.7 117.6 118 284 0.745 0.202 
LDA-CASTEP [17] 157.6 157.6 158 104.8 102.3 104 255 0.657 0.231 
LDA-CASTEP [18] 169.8 169.4 170 122.7 120.4 122 294 0.717 0.211 
PBE-GGA-CASTEP [20] 157.0 156.6 159 107.0 105.6 106 260 0.678 0.223 
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Table 6.2.2b: Calculated Bulk moduli (BV, BR, B in GPa), shear moduli (GV, GR, G in GPa), 
Young’s modulus (Y in GPa), Pugh’s ratio G/B, and Poisson’s ratio ν at different pressures. 
Phases Pressure BV BR B GV GR G Y G/B ν 

Mo2GaC   0 190.6 187.8 189 104.6   97.3 101 257 0.534 0.274 
   5 216.8 213.3 215 114.2 104.9 110 281 0.510 0.282 
 10 240.3 233.0 237 125.0 110.5 118 303 0.500 0.287 
 15 262.0 252.2 257 135.4 115.0 125 323 0.487 0.291 
 20 287.9 276.0 282 138.2 115.1 127 331 0.449 0.305 
 25 308.9 291.2 300 143.3 114.6 129 338 0.430 0.312 
 30 330.8 315.8 323 145.2 122.1 134 352 0.413 0.318 
 35 354.9 343.2 349 152.6 132.2 142 376 0.408 0.320 
 40 375.8 366.6 371 153.6 132.2 143 380 0.385 0.329 
 45 396.3 385.4 391 157.1 132.8 145 387 0.371 0.335 
 50 414.6 399.4 407 157.5 127.3 142 383 0.350 0.343 
           

Nb2AsC   0 208.4 207.0 208 128.2 119.0 124 309 0.595 0.252 
   5 233.0 229.5 231 134.6 120.7 128 323 0.552 0.267 
 10 252.3 249.7 251 136.2 117.4 127 326 0.505 0.284 
 15 271.7 268.5 270 148.9 127.4 138 354 0.512 0.281 
 20 293.9 291.6 293 143.9 115.8 130 339 0.444 0.307 
 25 311.4 307.6 310 156.2 125.7 141 367 0.455 0.302 
 30 334.1 329.7 332 176.5 143.5 160 414 0.482 0.292 
 35 345.0 343.7 344 185.9 149.4 168 433 0.487 0.291 
 40 368.8 366.4 368 195.8 155.2 176 454 0.477 0.294 
 45 395.0 389.5 392 203.6 160.0 182 472 0.463 0.299 
 50 413.0 407.1 410 210.4 166.0 188 490 0.459 0.301 
           

Nb2InC   0 154.6 154.5 155   99.2   97.2   98 243 0.636 0.238 
   5 178.9 178.4 179 103.5 101.2 102 258 0.573 0.260 
 10 202.4 201.4 202 112.1 109.2 111 281 0.548 0.268 
 15 225.5 224.6 225 121.6 118.7 120 306 0.534 0.273 
 20 249.9 248.9 249 136.3 132.6 134 342 0.539 0.272 
 25 271.1 270.3 271 145.0 141.3 143 365 0.529 0.275 
 30 292.6 291.5 292 153.2 148.8 151 386 0.517 0.280 
 35 312.8 311.5 312 159.1 154.2 157 403 0.502 0.285 
 40 331.8 330.2 331 163.9 158.4 161 416 0.487 0.291 
 45 350.7 348.8 350 168.6 162.3 165 429 0.473 0.296 
 50 375.6 370.5 373 174.8 170.0 172 448 0.462 0.300 
           

Ti2GeC   0 158.8 158.5 159 118.7 117.6 118 284 0.745 0.202 
   5 179.3 179.0 179 126.0 124.0 125 304 0.698 0.217 
 10 200.8 200.0 200 135.2 131.6 133 328 0.666 0.228 
 15 221.0 219.7 220 140.8 135.9 138 343 0.628 0.240 
 20 240.3 238.3 239 144.7 137.4 141 354 0.590 0.254 
 25 259.7 257.8 259 151.7 143.1 147 372 0.570 0.261 
 30 278.0 276.2 277 159.0 149.6 154 390 0.557 0.265 
 35 297.2 295.4 296 167.3 157.5 162 412 0.548 0.268 
 40 315.2 313.7 315 174.9 165.1 170 432 0.541 0.271 
 45 334.7 333.0 334 182.4 171.5 177 451 0.530 0.275 
 50 354.6 353.1 354 190.4 179.0 185 472 0.522 0.278 
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Fig. 6.22(a) Bulk, shear and Young’s modulus of Mo2GaC as a function of 
pressure. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.22(b) Bulk, shear and Young’s modulus of Nb2AsC as a function of 
pressure. 
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Fig. 6.22(c) Bulk, shear and Young’s modulus of Nb2InC as a function of 
pressure. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.22(d) Bulk, shear and Young’s modulus of Ti2GeC as a function of 
pressure. 
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Fig. 6.22(e) Pugh’s and Poisson’s ratios of Mo2GaC as a function of 
pressure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6.22(f) Pugh’s and Poisson’s ratios of Nb2AsC as a function of 
pressure. 
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Fig. 6.22(g) Pugh’s and Poisson’s ratios of Nb2InC as a function of 
pressure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.22(h) Pugh’s and Poisson’s ratios of Ti2GeC as a function of 
pressure. 
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6.3. Electronic properties 

Electronic properties calculations not only predict physical and chemical properties 

of the materials, but they also provide good insight into the experimentalists to 

synthesize novel materials for various applications. In the present study, we discuss 

our results pertaining to electronic properties of the four superconducting MAX 

phases Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC through energy band structure, 

density of states, and Fermi surfaces. Since there is no precise experimental DOSs 

at the Fermi level available for the presently investigated materials, we have 

calculated the same using the plane-wave pseudopotential method based on the 

density functional theory implemented in the CASTEP code. 

6.3.1     Band structures 

The electronic band structure of a material is the key link between its crystal 

structure and physical properties. Electronic band structure has been successfully 

used to explain many physical properties of solids, such as electrical resistivity, 

electronic transport properties and optical absorption, and forms the foundation of 

the understanding of all solid-state devices such as transistors, solar cells, etc. The 

calculated band structures for the four superconducting MAX phases Mo2GaC, 

Nb2AsC, Nb2InC, and Ti2GeC along the high symmetry directions in the first 

Brillouin zone are illustrated in Figs. 6.3.1(a) – 6.3.1(d) in the energy range from 

–15 to 6 eV. The Fermi levels are set to 0 eV. There are many valence bands 

crossing the Fermi level (EF) and overlapping with conduction bands, which 

indicates the metallic conductivity of the four compounds. Moreover, the energy 

bands around the Fermi level mainly from the M d states, suggesting that the M d 

states dominate the conductivity of Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC. The 

energy band structures of the four MAX phases exhibit anisotropic characters, 

indicating their anisotropic properties, such as optical and mechanical properties. 

The band structures show both the hole-like and electron-like character of the 

crossing bands, resulting in the multiband system dominated by M d character.  

http://en.wikipedia.org/wiki/Electrical_resistivity
http://en.wikipedia.org/wiki/Optical_absorption
http://en.wikipedia.org/wiki/Solid-state_(electronics)
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Fig. 6.3.1(a). Electronic band structure of superconducting MAX phase Mo2GaC. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.3.1(b). Electronic band structure of superconducting MAX phase Nb2AsC. 
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Fig. 6.3.1(c). Electronic band structure of superconducting MAX phase Nb2InC. 

 

 

 

 

 

 

 

 

 

 
Fig. 6.3.1(d). Electronic band structure of superconducting MAX phase Ti2GeC. 
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6.3.2     Density of states  

The calculated total and partial density of states (DOS) of the four superconducting 

MAX compounds Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC are shown in Figs. 

6.3.2(a)–6.3.2(d). The DOS in the vicinity of the Fermi level EF normally lies in a 

dip for a mechanically stable phase. This location may split bonding and antibonding 

states giving rise to stronger cohesion, the structural stability [43] and high bulk 

modulus. In addition, the existence of a deep valley named pseudogap at the left 

of the Fermi level in the DOS indicates the structural stability [44]. Therefore, the 

studied four nanolaminates are stable mechanically. The d states of the M (Mo, 

Nb, and Ti) elements are mainly contributing to the DOS at the Fermi level of the 

selected four 211 MAX phases and should play a dominant role in the conduction 

properties. Carbon (C) does not contribute significantly to the DOS at the Fermi 

level and therefore is not involved in electrical transport. A (Ga, As, In, and Ge) 

atoms have a poor contribution at the Fermi level. These results are consistent 

with the previous reports on other MAX phases [45]. At the Fermi level, the 

DOSs for Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC are 4.55, 2.46, 3.66, and 3.03 

states per unit cell per eV, respectively, which are similar to those found in 

literatures [11,15,17-19,46,47]. The finite values of the DOSs at the Fermi levels 

confirm the metallic properties of these nanolaminates.   

It is observed that just below the Fermi level the p states of A-elements interact 

with the d states of M-atoms and in the deeper energy C 2p as well as C 2s states 

hybridize with M d states and as a result the covalent M–A and M-C bonds occur. 

Due to closeness to the Fermi level M-A bonds are weaker than M-C bonds and 

strong M d–C p hybridization stabilizes the structures of M2AC. It is obvious that 

a covalent bonding occurs between the comprising elements due to the reason that 

states are degenerate with both angular momentum and lattice site, and also due to 

the difference in electronegativity between the constituting elements, some ionic 

interaction can be expected. Therefore, the bonding nature in four carbide M2AC 

compounds may be described as a mixture of covalent, ionic, and, due to the d 

resonance in the vicinity of the Fermi level, metallic. 
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Fig. 6.3.2(a). Total and partial density of states of superconducting Mo2GaC. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 6.3.2(b). Total and partial density of states of superconducting Nb2AsC. 
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Fig. 6.3.2(c). Total and partial density of states of superconducting Nb2InC. 
 
 
 
 
 
 
 
 
 

 
 
 
 

   
 
 
 
 

Fig. 6.3.2(d). Total and partial density of states of superconducting Ti2GeC. 
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6.3.3     Fermi surfaces 

The investigated Fermi surfaces of the four superconducting MAX phases are shown 

in Figs. 6.3.3(a) – 6.3.3(d). The Fermi surface of Mo2GaC presented in Fig. 6.3.3(a) 

consists of electronic-like sheet with prismatic-like system centered along the Γ–A 

direction. The surface also includes enough complex topology of the hole-like 

sheets centered in the corners of the Brillouin zone. The Fermi surface of Mo2GaC 

is formed mainly by the low-dispersive Mo 4d like bands from [MoC] blocks, 

which should be responsible for the superconductivity of Mo2GaC.  

The superconducting Nb2AsC has the Fermi surface formed by both the electron- 

and hole-like sheets of different topology shown in Fig. 6.3.3(b). The cylindrical-

like first sheet with rectangular cross section is centered along the Г-A direction. 

The central sheet is surrounded by two similar sheets positioned at the opposite 

directions, which formed cross-shaped combinedly. Two different prismatic sheets 

are positioned at the lateral sides of the Brillouin zone along the both L–M and 

H–K directions. The superconducting behaviour of this nanolaminate arises due to 

the low dispersive Nb 4d like bands from [NbC] blocks.       

Fig. 6.3.3(c) shows the Fermi surface of Nb2InC that is made of enough complex 

topology of both electronic- and hole-like sheets centered along the Γ–A direction. 

There are two dimensional-type sheets parallel to the kz direction, centered at the 

lateral sides of the Brillouin zone along the L–M direction. The Fermi surface of 

Nb2InC like Mo2GaC is formed mainly by the low dispersive Nb 4d like bands 

from [NbC] layers, which should be responsible for superconductivity for Nb2InC. 

The investigated Fermi surface of Ti2GeC is shown in Fig. 6.3.3(d). The centre of 

the Fermi surface consists of four hole-like sheets with different topology centered 

along the Г-A direction. The first sheet is sand-watch shaped and surrounded by 

very close cylindrical-like second sheet. The remaining two sheets are cylindrical-

like with hexagonal cross-section. These two sheets are nearly closed but apart 

from the second sheet. There is also additional electron and hole-like sheets along 

the H-K direction. The Fermi surface is formed mainly by the low-dispersive bands, 

which should be responsible for the superconductivity in the compound.    
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Fig. 6.3.3(a). Fermi surface of superconducting MAX phase Mo2GaC. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.3.3(b). Fermi surface of superconducting MAX phase Nb2AsC. 
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Fig. 6.3.3(c). Fermi surface of superconducting MAX phase Nb2InC.    
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 6.3.3(d). Fermi surface of superconducting MAX phase Ti2GeC.    
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6.4. Mulliken bond population and theoretical hardness 

To describe the bonding nature and to evaluate the theoretical Vickers hardness of 

Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC, the Mulliken bond populations are 

investigated. The results obtained from the calculations are given in Table 5.4(a). 

The Mulliken bond populations measure the degree of overlap of the electron clouds 

of the two bonding atoms, and its highest and lowest values signify the strength of 

covalency and ionicity in chemical bonds, respectively. Therefore, it can be seen 

that the M-C bonds possess stronger covalent bonding than M-M bonds. This 

result is consistent with DOS calculation and Mulliken bond population analysis 

for V4AlC3 [48] and Nb4SiC3 [49]. Further, the typical electronegativity rule is 

that bonds with an electronegativity difference within 0.5 to 1.6 are considered 

polar covalent. On the other hand, a difference between 0.0 and 0.4 indicates a 

non-polar covalent. Here in Nb-C bond, the electronegativity difference between 

Nb (1.6) and C (2.5) is 0.9 and in Nb-Nb bond, the difference is exactly zero. As 

per this rule, the Nb-C bonds possess polar covalent bonding and Nb-Nb bonds 

hold non-polar covalent bonding. Since Nb is a metal, the Nb-Nb bonds are also 

metallic. Polar covalent bonds are always stronger than non polar covalent bonds. 

In fact, transition metals and intermetallic compounds based on transition metals 

can exhibit mixed metallic and covalent bonding [50]. DOS calculations of these 

materials also reveal that the overall bonding picture in these compounds may be 

described as a mixture of covalent, metallic, and ionic interactions.   

Again, the degree of metallicity may be defined as fm= µ ′P /Pµ. In our calculations, 

the values of fm for Nb-Nb bonds in Nb2AsC and Nb2InC are 0.042 and 0.064, 

respectively, which are larger than that of the other bond (i.e., Nb-C: 0.016, 0.0135), 

indicating that the Nb-Nb bonds are more metallic than Nb-C bonds. Similarly, 

Mo-Mo (Ti-Ti) bond is more metallic than Mo-C (Ti-C) bond in Mo2GaC (Ti2GeC). 

After calculating the individual bond hardness of all bonds in the crystal the total 

Vickers hardness of the compound is found by taking geometric average of these 

bonds hardness. Considering the individual bond hardness, we can conclude that 

Nb-C bonds have the highest hardness in Nb2AsC and Nb2InC. However, Nb-C 
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bond-lengths are shorter than those of Nb-Nb bonds, and thus considering general 

relationships between bond length and hardness, we expect that Nb-C bonds are 

harder than Nb-Nb bonds. This expectation is also valid for Mo2GaC and Ti2GeC. 

The theoretically calculated values of the Vickers hardness for Mo2GaC, Nb2AsC, 

Nb2InC, and Ti2GeC are 9.6, 6.7, 7.9, and 11.6 GPa, respectively. It is worth 

mentioning that the values obtained here lie between the lowest (1.4 GPa for 

Cr2GaC [51]) and the highest values (~15 GPa for Ti3SiC2 [52]) for MAX phases 

known so far. Further, to understand deeply the origin of intrinsic hardness on the 

atomistic level and to calculate accurately the values of Vickers hardness, the 

empirical formula (Eq. 4.26) used here has already been successful. For 

justification, one can see a set of theoretical values of Vickers hardness reported 

by Gou et al. [53] for crystals with partial metallic bonding that coincide with 

experiments. For instance, the theoretical (experimental) Vickers hardness for 

TaC, ZrC, TiN, and ZrN are 30.1 (29.0), 22.5 (25.8), 24 (23), and 16.7 (15) GPa, 

respectively. According to the value of µ
bv , we observe that the lowest bond 

volume results in a highest hardness of the bond and according to the value of HV, 

we may conclude that Nb2AsC is relatively soft and easily machinable compared 

to other three phases. 

Table 6.4a: Calculated Mulliken bond numbers nµ, bond length dµ, bond overlap 
population Pµ, bond volume µ

bv and bond hardness µ
vH of µ-type bond and metallic 

population Pµ′, and Vickers hardness Hv of Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC.  
 

Compounds Bonds nµ dµ (Å) Pµ µ
bv  (Å3) Pµ′ µ

vH  (GPa) Hv (GPa) 

Mo2GaC Mo-C 4 2.12 0.92   5.24 0.0478 40.83   9.6 
 Mo-Mo 2 4.27 0.43 43.11 0.0478   0.53  

Nb2AsC Nb-C 4 2.23 1.09   8.58 0.0178 22.06   6.7 
 Nb-Nb 2 3.73 0.42 40.16 0.0178   0.63  

Nb2InC Nb-C 4 2.19 0.99   4.89 0.0134 51.29   7.9 
 Nb-Nb 2 4.88 0.21 54.07 0.0134   0.19  

Ti2GeC Ti-C 4 2.12 1.06   5.57 0.0181 44.03 11.6 
 Ti-Ti 2 4.17 0.58 42.26 0.0181   0.81  
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6.5. Optical properties 

The calculated optical properties of Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC for 

photon energies up to 20 eV for polarization vectors [100] and [001] are shown in 

Figs. 6.5(a) – 6.5(p). For the metallic compounds both inter-band and intra-band 

transitions contribute to dielectric function. As the investigated materials are 

metallic, which is evident from our calculated band structures, a Drude term 

[54,55] with unscreened plasma frequency 5 eV and damping 0.05 eV has been 

used. Its effect is to enhance the low energy part of the spectrum. We have used a 

0.5 eV Gaussian smearing for all calculations. 

Dielectric function is the most general property of a solid, which modifies the 

incident electromagnetic wave of light. The real parts of the dielectric functions of 

the four nanolaminates for two different polarizations are shown in Figs. 6.5(a) 

and 6.5(b) along with the measured values for NbC0.87 [56] and TiC [57]. All the 

phases exhibit metallic characteristics in the energy range for which ε1(ω) < 0. We 

observe that the highest peak centered at 3.7 eV for NbC0.87 is shifted to the left 

with a sharp peak at around 2.66 eV for Nb2AsC, and 2.20 eV for Nb2InC for the 

polarization direction [100]. We also see that the highest peak positioned at 1.9 

eV for TiC is shifted to the left with a sharp peak at around 0.9 eV for Ti2GeC. A 

highest peak for Mo2GaC is found at around 2.77 eV. In Figs. 6.5(c) and 6.5(d), 

the imaginary part of the dielectric functions of the four MAX superconductors 

for both polarization directions approaches zero from above at about 10.5 – 11.75 

eV. The peak of the imaginary part of the dielectric function is related to the 

electron excitation. In imaginary part ε2, the peak for <1.2 eV is due to the intra-

band transitions. 

In optics, the index of refraction of an optical medium is a dimensionless number 

that describes how light, or any other radiation, propagates through that medium. 

The real parts of the refractive indices for the incident light directions [100] and 

[001] are shown in Figs. 6.5(e) and 6.5(f), respectively. The nature of the variation 

of the refractive indices of Mo2GaC, Nb2AsC, and Nb2InC with the incident light 

http://en.wikipedia.org/wiki/Optics
http://en.wikipedia.org/wiki/Optical_medium
http://en.wikipedia.org/wiki/Dimensionless
http://en.wikipedia.org/wiki/EM_radiation
http://en.wikipedia.org/wiki/Radiation
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energy is almost same but for Ti2GeC it shows different qualitative features except 

in the 10 – 15 eV regions for the both directions. The static refractive indices of 

the four phases for polarization direction [100] are 17.53, 10.46, 7.98, and 84.56, 

respectively. On the other hand, the corresponding values for these compounds for 

direction [001] are 7.49, 7.88, 6.06, and 84.58, respectively. The large value of n 

for Ti2GeC implies that the velocity of light in Ti2GeC is reduced by many times 

with compared to other three phases when light enters into Ti2GeC from air. The 

extinction coefficients of the four nanolaminates are presented in Figs. 6.5(g) and 

6.5(h) for the polarization vectors [100] and [001], respectively. The extinction 

coefficients of the four MAX superconductors exhibit the same qualitative features 

in the entire energy range excepting 0 – 3.8 eV.  

The absorption coefficient provides the information regarding optimum solar energy 

conversion efficiency and it indicates how far light of a specific energy (frequency) 

can penetrate into the material before being absorbed. In Figs. 6.5(i) and 6.5(j) the 

four nanolaminates confirm their metallic nature showing absorption band in the 

low energy range. For Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC the absorption 

spectra for both directions arise sharply below 7 eV and their highest peaks for the 

polarization direction [100] arise at 7.7, 8.1, 7.4, and 6.2 eV, respectively. The 

highest peaks for the incident light direction [001] are found at around 7.2, 8.2, 

7.0, and 6.1 eV, respectively. The highest peaks are associated with the transition 

from A/C p to M d states.   

The energy loss spectrum describes the energy loss of a fast electron traversing 

inside the material [58]. The frequency associated with the highest peak of energy 

loss spectrum is defined as the bulk plasma frequency ωp, which appears at ε2 < 1 

and ε1 = 0 [55,59]. The energy loss functions for the compounds under study are 

displayed in Figs. 6.5(k) and 6.5(l). In the energy loss spectra, we find that the 

plasma frequencies of Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC for both incident 

light directions are nearly equal to 17.2, 16.5, 14.8, and 14.5 eV, respectively. 

These materials will be transparent if the incident light has frequency greater than 

their respective plasma frequency.  
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Figs. 6.5(m) and 6.5(n) represent the reflectivity spectra for the two different 

polarizations as a function of incident light energy. For comparison, the measured 

spectra of NbC0.98 [56] and TiC [57] are displayed in the plot. It is seen that the 

reflectivity spectra for the four phases exhibit no significant changes in the energy 

range 1.8 – 6.0 eV and the values are always above 44%. This almost constant 

reflectance in the visible region (up to 3.1 eV) should make the four phases 

appear metallic gray. Further, the spectra of the different phases rise to reach 

maximum value of ~ 0.93 – 0.97 in the UV region (between 10.48 and 11.65 eV). 

According to Li et al. [56] the MAX compound Ti3SiC2 having the average 

reflectivity ~ 44% in the visible light region, show the nonselective characteristic 

that is responsible for reducing solar heating. Therefore, we can say that the four 

MAX compounds Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC are also candidate 

materials for coating to minimize the solar heating.  

The optical conductivity means the electrical conductivity in the presence of an 

alternating electric field. The term ‘optical’ here covers the entire frequency 

range, and is not restricted only to the visible region of the spectrum. The optical 

conductivity may be expected to be a good gauge of photoconductivity. Absolutely, 

it was illustrated in Nd2CuO4-δ [60] by synchronous measurements of both the 

optical and photoconductivity. The real parts of optical conductivity for the four 

MAX superconductors are shown in Figs. 6.5(o) and 6.5(p). For all the phases, it 

is seen that optical conductivity occurs at zero photon energy due to the overlapping 

of the valence and conduction bands at the Fermi level. Therefore, photocurrent 

can be generated within a wide range of photon energies.  These four nanolaminates 

have their highest peaks in optical conductivity in the energy range 0.8 – 6.0 eV. 

Therefore, the studied four superconducting MAX phase compounds will be highly 

electrically conductive when the incident photon has energy within this range. 

The enhancement of electrical conductivity due to absorption of electromagnetic 

radiation of photon energy greater than 11.2 eV is so small. The measured optical 

conductivity of NbC0.98 [56] is also shown in the figure for comparison.  
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Fig. 6.5(a). Real part of the dielectric function ε1 of Mo2GaC, Nb2AsC, 
Nb2InC, and Ti2GeC for the incident light direction [100]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 6.5(b). Real part of the dielectric function ε1 of Mo2GaC, Nb2AsC, 
Nb2InC, and Ti2GeC for the incident light direction [001]. 
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Fig. 6.5(c). Imaginary part of the dielectric function ε2 of Mo2GaC, Nb2AsC, 
Nb2InC, and Ti2GeC for the incident light direction [100]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.5(d). Imaginary part of the dielectric function ε2 of Mo2GaC, Nb2AsC, 
Nb2InC, and Ti2GeC for the incident light direction [001]. 
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Fig. 6.5(e). Real part of the refractive index n of Mo2GaC, Nb2AsC, 
Nb2InC, and Ti2GeC for the incident light direction [100]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6.5(f). Real part of the refractive index n of Mo2GaC, Nb2AsC, 
Nb2InC, and Ti2GeC for the incident light direction [001]. 
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Fig. 6.5(g). Extinction coefficient k of Mo2GaC, Nb2AsC, Nb2InC, and 
Ti2GeC for the incident light direction [100]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.5(h). Extinction coefficient k of Mo2GaC, Nb2AsC, Nb2InC, and 
Ti2GeC for the incident light direction [001]. 
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Fig. 6.5(i). Absorption coefficient α of Mo2GaC, Nb2AsC, Nb2InC, and 
Ti2GeC for the incident light direction [100]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.5(j). Absorption coefficient α of Mo2GaC, Nb2AsC, Nb2InC, and 
Ti2GeC for the incident light direction [001]. 
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Fig. 6.5(k). Energy loss function L of Mo2GaC, Nb2AsC, Nb2InC, and 
Ti2GeC for the incident light direction [100]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

Fig. 6.5(l). Energy loss function L of Mo2GaC, Nb2AsC, Nb2InC, and 
Ti2GeC for the incident light direction [001]. 
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Fig. 6.5(m). Reflectivity R of Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC for 
the incident light direction [100]. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 6.5(n) Reflectivity R of Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC for 
the incident light direction [001]. 
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Fig. 6.5(o) Real part of the optical conductivity σ of Mo2GaC, Nb2AsC, 
Nb2InC, and Ti2GeC for the incident light direction [100]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 6.5(p) Real part of the optical conductivity σ of Mo2GaC, Nb2AsC, 
Nb2InC, and Ti2GeC for the incident light direction [001]. 
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6.6. Thermodynamic properties 

The quasi-harmonic Debye model is applied to investigate the thermodynamic 

properties in the temperature range from 0 to 1200 K. The pressure effect is studied 

in the 0–50 GPa range.  

The dependence of the isothermal bulk modulus of the four superconducting MAX 

phases on temperature and pressure is shown in Figs. 6.6(a) and 6.6(b), respectively. 

Our results reveal that all B values (larger for Nb2AsC) are nearly flat for 

temperature below 150 K and above 150 K, B for Ti2GeC decreases at a slightly 

faster rate than other compounds. Figure 6.6(b) shows the pressure variation of 

room temperature (300 K) bulk modulus along with the results for Ti2GeC 

calculated by Fu et al. [20]. Our results for Ti2GeC show fair agreement with 

these results. It is observed that B increases with increasing pressure at a given 

temperature and decreases with increasing temperature at a given pressure, which 

is harmonious with the trend of volume.  

Figure 6.6(c) presents the temperature variation of Debye temperature ΘD at zero 

pressure of Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC and Fig. 6.6(d) shows Debye 

temperature at 300 K as a function of pressure. We observe that ΘD decreases 

non-linearly with increasing temperature for all the phases. On the other hand, the 

pressure dependent Debye temperature exhibits a non-linear increase. The 

variation of ΘD with pressure and temperature assures that the thermal vibration 

frequency of atoms in the MAX phases changes with pressure and temperature.  

The specific heat capacity, CV at constant-volume and CP at constant-pressure for 

Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC as a function of temperature are shown 

in Figs. 6.6(e) and 6.6(f). The experimental values of specific heat at constant 

pressure for a typical superconducting MAX phase Nb2SnC [61] are displayed in 

Fig. 6.6(e) for comparison with our results. These experimental results roughly 

coincide with our values. We see that both heat capacities increase with increasing 

temperature. These results indicate that phonon thermal softening occurs when the 

temperature is raised.  
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There is a difference between CP and CV in the normal state for the phases due to 

the thermal expansion caused by anharmonic effects. This difference is given by

BTVTCC VVP )(2α=− , where αV is the volume thermal expansion coefficient. The 

specific heat obeys the Debye T 

3 power-law in the low temperature limit. The 

anharmonic effect on heat capacity is restrained at the temperature above 300 K, 

and CV approaches the classical asymptotic limit of CV = 3nNkB = 99.8 J/mol K. 

These results imply that the interactions between ions in the nanolaminates have 

great effect on heat capacities particularly at low temperatures. To evaluate the 

electronic contribution to specific heat through the Sommerfeld constant γ within 

the free electron model: )()3/1( 22
FB ENkπγ = , we can use N(EF) from the investigated 

DOS for the four nanolaminates. This scheme gives the values 5.4, 2.9, 4.3, and 

3.6 mJ mol-1 K-2 for Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC, respectively.  

We can determine the electron-phonon coupling constant (λ) using McMillan’s 

relation [62]. Taking the known values of TC, calculated ΘD with the repulsive 

Coulombic pseudopotential (µ* = 0.10), the estimated λ values are 0.48, 0.40, 

0.57, and 0.56 for Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC, respectively. These 

values are similar in several studied MAX phases [63,64] and indicate that all the 

phases are moderately coupled superconductors.  

The volume thermal expansion coefficient, αV as a function of temperature and 

pressure are shown in Figs. 6.6(g) and 6.6(h), respectively. The coefficients of all 

phases under study increase rapidly with increasing temperature up to 300 K but 

at temperature above 300 K the increment is gradual. On the contrary, at a constant 

temperature, the expansion coefficients decrease rapidly with increasing pressure 

but at different rates. It is established that the volume thermal expansion coefficient 

is inversely related to the bulk modulus of a material. The calculated values of αV 

at 300 K for Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC are 2.40×10-5 K-1, 2.04×10-5, 

2.42×10-5, and 3.155 × 10-5 K-1, respectively. For Nb2AsC, the estimated linear 

expansion coefficient (α = αV/3) is 6.8 ×10-6 K-1, which agrees rather well with 

the experimental value of α = 7.3 ×10-6 K-1 [13]. 
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Fig. 6.6(a). Temperature dependence of Bulk modulus B of the four MAX 
phase superconductors Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 6.6(b). Pressure dependence of Bulk modulus B of the four MAX 
phase superconductors Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC. 
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Fig. 6.6(c) Temperature dependence of Debye temperature ΘD of the four 
MAX superconductors Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6.6(d). Pressure dependence of Debye temperature ΘD of the four 
MAX superconductors Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC. 
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Fig. 6.6(e) Temperature dependence of heat capacity CV of the four MAX 
phase superconductors Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6.6(f) Temperature dependence of heat capacity CP of the four MAX 
phase superconductors Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC. 
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Fig. 6.6(g) Temperature dependence of thermal expansion coefficient αV of 
the four MAX phases Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC. 

 

 

 

 

 

 

 

 
 
 
 
Fig. 6.6(h) Pressure dependence of thermal expansion coefficient αV of the 
four MAX phases Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC. 
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7.  Conclusions 

First-principles calculations based on density functional theory have been carried out 

to investigate the structural stability, elastic properties, electronic structure, Fermi 

surface, theoretical hardness, optical functions, and thermodynamic properties of 

the four 211 MAX superconducting phases Mo2GaC, Nb2AsC, Nb2InC, and Ti2GeC. 

The evaluated structural parameters at zero pressure are in excellent agreement 

with the available theoretical and experimental data. The pressure effect on the 

structural properties of these nanolaminates shows that both the lattice constants 

and unit cell volume decrease almost linearly with the increase of pressure. On the 

other hand, the hexagonal ratio increases gradually with increasing pressure. These 

mean that, the lattice constant a decreases with a faster rate than c. Therefore, the 

compressibility along c-axis is lower than that along the a-axis. 

The calculated elastic parameters allow us to conclude that the superconducting 

phases are mechanically stable compounds. In addition, they are characterized as 

brittle material and show elastic anisotropy. Comparatively, Mo2GaC and Nb2AsC 

possess large elastic anisotropy in comparison with other two phases. The elastic 

constants at different pressures satisfy the Born criteria for the mechanical stability 

of the studied four MAX phases and show the monotonous increase of the five 

independent elastic constants Cij with the pressure up to 50 GPa. Nb2AsC has the 

highest bulk modulus, shear modulus and Young modulus among the studied four 

superconducting MAX phases. As a result, Nb2AsC is the most difficult to be 

compressed. It is also stiff and can withstand shear strain to the largest extent. The 

relatively low values of Poisson’s ratios of the four nanolaminates indicate their 

high degree of directional covalent bonding. The pressure effect on polycrystalline 

elastic properties such as bulk modulus, shear modulus and Young’s modulus results 

their monotonous increase with increasing pressure. The G/B ratios decrease with 

increase of pressure and consequently, the brittleness of the four compounds should 

decrease gradually with continuous increase of pressure.  
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The electronic structures of the four MAX superconductors reveal that they are 

metals and exhibit covalent nature. Moreover, the M-C bonds possessed stronger 

covalent bonding than the M-M bonds. At around the Fermi level, the DOS 

mainly originates from the M d states. The M d-C p hybridization is the driving 

force in the structure and the presence of A-atoms changes the M-C-M-C covalent 

bond chain into a M-C-M-A bond chain, forming a layered structure. The Fermi 

surfaces are formed mainly by the low-dispersive bands, which should be 

responsible for the presence of superconductivity in Mo2GaC, Nb2AsC, Nb2InC 

and Ti2GeC. The optical properties such as dielectric function, refractive index, 

absorption spectrum, energy-loss function, reflectivity, and photoconductivity are 

determined and analyzed in detail. The optical properties such as refractive index, 

reflectivity, and photoconductivity are found to be polarization dependent. The 

reflectivity spectra imply that the studied MAX phases are potential candidate 

materials for coating to reduce solar heating.  

Finally, the temperature and pressure dependence of volume thermal expansion 

coefficient, bulk modulus, Debye temperature, and specific heats are investigated 

successfully using the quasi-harmonic Debye model and the results are discussed. 

The increase of specific heats with temperature indicates that phonon thermal 

softening occurs when the temperature increases. The estimated electron-phonon 

coupling constants signify that the four MAX phases are moderately coupled 

superconductors. The present study provides us with clear indications of small 

anisotropy in the elastic and optical properties of the four superconducting MAX 

phases. In conclusion, we hope that these findings will stimulate experimental effort 

to investigate the optical and thermodynamic properties of the four superconducting 

211 MAX phases.  


