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Abstract

During the last decades, the support vector machine (SVM) has been applied broadly
within the �eld of computational biology or bioinformatics to answer biological ques-
tions and to reach valid biological conclusions. However, a successful application of
SVM depends heavily on the determination of the right type and suitable parameter
settings of kernel functions. The selection of the appropriate kernel and kernel param-
eters are both considered as the choice of kernel problem. Therefore, kernel learning
becomes a crucial problem for all kernel-based methods like the SVM. Recently, the
multiple kernel learning (MKL) has been developed to tackle the kernel learning prob-
lem ef�ciently and gives some scopes to improve the performance of a system.

On the other hand, sometimes it is desirable to handle multiple data sources for
pattern recognition in the �eld of bioinformatics. In this context, if these data sources
are combined appropriately as one data source, it is then possible to provide a more
"complete" representation of an entity which in turns, enhances the performance of a
pattern recognition system. In this case, MKL also provides a way to combine features
from various data sources, where each kernel will be dedicated to a particular type of
data source.

In order to use the above two advantages of MKL, we have applied MKL in two
challenging problems in bioinformatics: protein subcellular localization prediction and
protein post-translational modi�cations (PTMs) prediction. The knowledge of the sub-
cellular localization and PTMs of proteins are important for both basic research and
drug development. Recently various types of computational tools have been developed
to predict the subcellular localization and PTMs or PTMs site of a protein through dif-
ferent types of machine learning algorithms. However, in order to meet the current
demand of drug development and basic research, both of the above prediction systems
require additional effort to produce ef�cient high-throughput tools.

In our thesis work, we have applied MKL in order to give potential solution for the
choice of kernel problem in one of the two mentioned applications of bioinformatics.
In this case, the set of radial basis function (RBF) kernels (different values of sigma
create different kernels) has been considered as the search space of the choice of kernel
problem. Moreover, since both applications can be solved from various data sources,
features from various sources are fused using multiple kernel learning with the ex-
pectation of better improvements. The experimental results show that the prediction
systems using MKL based SVM provide better performance than other top existing sys-
tems in both applications. We have completed nine experiments throughout this thesis
work. Where, four of those show the capability of single kernel based SVM, one shows
the effects of the choice of kernel problem, one provides potential solution to the
choice of kernel problem using MKL, �nally, rest three show the application of MKL in
handling multiple data sources. In addition to it, we have developed six user-friendly
web servers for six speci�c prediction purposes as a product of these experiments.
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in the case of PTMs site prediction, protein sequences are segmented, called peptide
samples, according to a speci�c window size. In each peptide sample, the modi�ed
residue take the middle position of the peptide segment. So, post-translational modi�-
cation prediction is also a problem to handle multiple data sources. Although various
researcher used single feature to predict post-translational modi�cation prediction,
combining these features can improve the performance of the existing system. MKL
can be a good technique to combine multiple features.

1.2 Problem Statement

Multiple kernel learning (MKL) is very popular in machine learning domain mainly for
the following two reasons:

1. the ability to give a potential solution of the choice of kernel problem (selection
of an appropriate kernel and kernel parameters).

2. the ability to combine kernels for integrating data from different sources where
a speci�c kernel will be used for each individual data source.

Considering these two uses of MKL, we will apply this technique in two well known
bioinformatics problems to improve their performance than existing system. In both
applications, SVM will be used as base learner for MKL.

1.2.1 Problem Statement for Protein Subcellular Localization Prediction

Most of the protein subcellular localization prediction system has been developed by
using sequence information. Since most of the machine learning algorithm can handle
vector data (i.e. real valued data), various scientist invent various types of feature
extraction techniques to extract real valued feature from protein sequence. In this
context, some prediction systems use one feature representation to develop protein
subcellular localization prediction, and some other use a combination of these feature
representations. However, in order to meet the current demand to produce ef�cient
high-throughput tools for protein subcellular localization prediction, additional effort
are required to enrich the prediction quality. In this thesis, we will develop protein sub-
cellular localization prediction using MKL based SVM in the following two situations
in order to improve the performance than other existing system.

1. When we will use single source of information, in that case, choice of kernel
problem will be solved by MKL. Herein, the set of radial basis function (RBF)
kernels (different values of sigma create different kernels) will considered as the
search space of the choice of kernel problem.

2. MKL will be used to fuse different sources of information.

Moreover, we will also implement some prediction systems to show the power of
the single kernel based SVM.
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1.2.2 Problem Statement for Post-translational Modi�cations Prediction

There are various types of post-translational modi�cations exist in protein. Among
them, carbonylation, succinylatyion and phosphorylation PTM are very important in
controlling various functions of protein. In this thesis, we will focus on these PTMs.
Here, we will try to develop two different types of prediction systems. One is for post-
transtional modi�cation sites prediction where predictor will predict in which site can
be modi�ed. In this type of prediction, protein will be fragmented with a prede�ned
window size by keeping the modi�ed residue at the center position. After that, these
fragments, called peptide samples, will be used to extract features in order to train and
test the predictor. Another one is for predicting whether an uncharacterized protein
can be modi�ed or not. If yes, then which types of modi�cation will occur in that
protein. In this type of prediction, the whole protein sequence will be used to extract
feature in order to train and test the predictor.

However, both problem will handle sequence information in order to predict post-
translational modi�cations. Like, protein subcellular localization prediction, in this
case, various feature extraction techniques are available. Our hypothesis is by fusing
various features using MKL will improve the performance of the prediction system than
other existing system. Moreover, we will also implement some prediction systems to
show the power or capability of the single kernel based SVM.

1.3 Contributions

1.3.1 Core Contributions

The core contribution of this these will be shown from four different aspects or cat-
egories. We will perform nine experiments in these four aspects. These aspects are
de�ned and discussed below-

1.3.1.1 Category 1: Show the Power or capability of Single Kernel Based SVM

In this aspect or category, we will show the power of SVM with single kernel by devel-
oping some prediction systems in the �eld of protein subcellular localization prediction
and post-translational modi�cation prediction. We will perform four experiments or
develop four prediction systems. However to develop all of the prediction systems in
these category, we will use grid search method to �nd the kernel parameter (choice
of kernel among the set of RBF kernels) of the predictors. In addition, we will use
heuristic approach to choose RBF kernel in these prediction systems.

Experiment No 1:- predMultiLoc-Gneg: Predicting Subcellular Localization of Gram-
Negative Bacterial Proteins Using Feature Selection in Gene Ontology Space and Sup-
port Vector Machine with Resolving the Data Imbalanced Issue

Contribution
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� Show the power of SVM with single kernel in protein subcellular localization
prediction.

� Providing better accuracy by solving imbalance dataset issue.

� Develop prediction system considering multi-label issue.

� Establish a web server for public use.

Experiment No 2:- predCar-Site: Carbonylation Sites Prediction in Proteins Using
Support Vector Machine with Resolving Data Imbalanced Issue

Contribution

� Show the power of SVM with single kernel in carbonylation sites prediction.

� Providing better accuracy by solving imbalance dataset issue.

� Establish a web server for public use.

Experiment No 3:- predSucc-Site: Lysine Succinylation Sites Prediction in Proteins
Using Support Vector Machine with Resolving Data Imbalanced Issue

Contribution

� Show the power of SVM with single kernel in succinylation sites prediction.

� Providing better accuracy by solving imbalance dataset issue.

� Establish a web server for public use.

Experiment No 4:- mLysPTMpred: Multiple Lysine PTM Site Prediction Using Combi-
nation of SVM Classi�er with Resolving Data Imbalanced Issue

Contributions

� Show the power of SVM with single kernel in multiple lysine PTM site prediction.

� Providing better accuracy by solving imbalance dataset issue.

� Solve multi-label prediction issue using combination of SVM.

� Establish a web server for public use.

1.3.1.2 Category 2: Show Choice of Kernel Effects for Single Kernel Based SVM

In this aspect, we will show how proper kernel selection affects the performance of
a prediction system. We will perform one experiment here. In this experiment, we
consider four different types of kernels.

Experiment No 5:- Protein Subcellular Localization Prediction using Support Vector
Machine with the Choice of Proper Kernel

Contributions
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� Show how choice of kernel problem affects the performance of a single kernel
based SVM in protein subcellular localization prediction.

� Develop prediction system considering multi-label issue.

1.3.1.3 Category 3: Use MKL as a Solution for Choice of Kernel Problem

In this aspect, we will use multiple kernel learning (MKL) to solve kernel selection
problem. We will also compare the runtime performance of single kernel based SVM
and MKL based SVM. We will perform one experiment here. In this experiment, the
set of radial basis function (RBF) kernels (different values of sigma create different
kernels) will be considered as the search space of the choice of kernel problem.

Experiment No 6:- Protein Subcellular Localization Prediction Using Multiple Kernel
Learning Based Support Vector Machine

Contributions

� Show how choice of kernel problem will be solved using MKL in protein subcel-
lular localization prediction.

� Providing better performance over single kernel based SVM and other top sys-
tems.

� Providing less run time than single kernel based SVM and other top systems.

1.3.1.4 Category 4: Use MKL to Fuse Multiple Data Sources

Finally, we will use MKL in order to fuse multiple data sources. We will do three ex-
periments in this aspect. One in the �eld of protein subcellular localization prediction.
Other two in the �eld of protein post-translational modi�cation prediction.

Experiment No 7:- Protein Subcellular Localization Prediction Using Kernel Based
Feature Fusion

Contributions

� MKL will be used to integrate multiple data sources in predicting protein subcel-
lular localization.

� Providing better performance than existing systems.

� Develop prediction system considering multi-label issue.

� Providing better accuracy by solving imbalance dataset issue.

Experiment No 8:- predHumPhos: Predicting Human Phosphorylated Proteins Using
Multiple Kernel Learning (MKL) Based Support Vector Machine

Contributions
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� MKL will be used to integrate multiple data sources in predicting human phos-
phorylated proteins. Here, single label issue (binary classi�cation) will be con-
sidered, i.e., the prediction will be whether a protein can be phosphorylated or
not.

� Providing better performance than existing systems.

� Providing better accuracy by solving imbalance dataset issue.

� Establish a web server for public use.

Experiment No 9:- iMulti-HumPhos: A Multi-Label Classi�er For Identifying Human
Phosphorylated Proteins Using Multiple Kernel Learning (MKL) Based Support Vector
Machine

Contributions

� MKL will be used to integrate multiple data sources in predicting human multi-
label phosphorylated proteins.

� Providing better performance than existing systems.

� Providing better accuracy by solving imbalance dataset issue.

� Develop prediction system considering multi-label issue.

� Establish a web server for public use.

1.3.2 Related Contributions

Not all of the my works has been included in this thesis during my PhD time. In
this thesis, we mainly focus on the application of MKL in bioinformatics. Beside the
core applications area, We have done some experiments in some other areas, namely
intrusion detection. Intrusion detection is an important task in computer network
security. We have implemented some intrusion detection system using support vector
machine. In those systems, we have also shown that kernel selection is a critical
question for kernel methods like SVM. Only list of publications of these systems have
been included in this thesis in the publications section.

1.4 Organization of the Dissertation

This work is oriented forwards diverse audiences in machine learning and data min-
ing, especially for those who are interested in kernel methods, kernel learning and its
applications in bioinformatics. In the following we will outline the thesis and give an
overview of the content of the individual chapters and their contributions. This thesis
is divided into two parts. The �rst part is on the topic of machine learning and more
speci�cally about multiple kernel learning algorithms. The second part of the thesis
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demonstrate how the MKL described in the �rst part can be put into practice for some
applications in bioinformatics. Hence the �rst part is more focused on algorithmic and
theoretical questions, while the second part is concerned with practical problems, and
as such, contains a larger experimental part.

Chapter 2 will introduce the basic concepts of claissi�cation problem, kernel meth-
ods, SVM and MKL. This will lay the foundation for chapter 4 in which we will describe
ways of how to use kernel methods in experiments or applications. We start in section
2.1 and 2.2 with a basic introduction of classi�cation problems and kernels methods
especially support vector machine. In Section 2.3 we state various types of MKL algo-
rithm. For more details, please refer to references therein.

Chapter 3 will introduce basic concepts of bioinformatics. In section 3.2, some
basic concepts of molecular biology will be described. After that, some problems of
bioinformatics will be listed and then where MKL can be applied will also be discussed.
Section 3.6 will be dedicated to a speci�c problem of bioinformatics named protein
subcellular localization prediction. Another problem termed protein post-translational
modi�cation prediction will described in section 3.7.

Chapter 4 will discuss the implementation and analysis of our systems. It will dis-
cuss nine types of prediction systems in the �eld of protein subcellular localization
prediction and post-translational modi�cations prediction by considering various ob-
jectives.

Chapter 5 will present conclusion and future work of this thesis work.
Finally, list of publications as the outcome so far found from this thesis work will

be enclosed.



Chapter 2

Kernel Methods and Multiple
Kernel Learning

2.1 Learning Functions from Data

The goal of a machine learning algorithm is to synthesize functional relationships on
the basis of the data. A learning algorithm is a rule that associates a dataset D with a
function g : X ! Y, where X and Y are called input set and output set, respectively.
Depending on the structure of the dataset, learning problems can be classi�ed as being
supervised, unsupervised, or semi-supervised [56].

2.1.1 Supervised Learning

The dataset for a supervised learning problem is also called training set, and is made
of a �nite-number of input-output pairs (xi; yi) 2 (X � Y):

D = f(x1; y1); : : : ; (xl; yl)g

The framework of supervised learning describes a scenario in which a supervisor
shows a set of examples to a learner. There’s a training phase in which the learner in-
fers a functional relationship between inputs and outputs using a supervised learning
algorithm. The learned relationship can be used during a test phase to make predic-
tions over new inputs, possibly not present in the training set.

Depending on the structure of the output set Y, one can distinguish between two
types of supervised learning problems: classi�cation and regression.

2.1.2 Unsupervised Learning

Diffeerently from supervised learning problems, where samples of both inputs and
outputs are given, datasets for unsupervised learning problems are made only of inputs
xi 2 X :

D = fx1; : : : ; xlg

12
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The goal is to learn a functional relationship g : X ! Y, where even the structure
of the output set Y may possibly be learned from the data. Examples of unsupervised
learning problems are clustering and dimensionality reduction.

2.1.3 Semi-supervised Learning

Semi-supervised learning problems falls in between supervised and unsupervised learn-
ing problems, and are characterized by the presence of both labeled and unlabeled
examples in the dataset, namely:

D = DL [ DU ; DL = f(x1; y1); : : : ; (xl; yl)g; DU = fxl+1; : : : ; xl+lU g

Semi-supervised problems are motivated by situations in which obtaining output
labels is costly, whereas unlabeled examples abound. Similarly to the supervised case,
D is called training set, and the goal is to solve classi�cation or regression problems.
Under certain conditions, the availability of unlabeled examples can bring considerable
bene�t to the learning performances.

2.2 Kernel Methods

Kernel-based learning methods (in short, kernel methods) use kernel or kernel matrix
as their input in the learning process, not the values of input instances themselves.
They work by embedding the data into a Hilbert space and searching for linear rela-
tions in such a space [57]. The embedding space is usually characterized via a kernel
function, or in short, kernel.

While SVMs play a central role in kernel methods, there are several other popular
kernel methods which are also widely used [58], such as Kernel Target Alignment,
kernelized version of several methods such as Kernel Fisher Discriminant analysis,
kernelized metric learning algorithms [45]. In principle, any learning algorithms can
become kernel methods, i.e being kernelized, if they can be extended to work in some
kernel space; their optimization problems can be formulated in a way that only the
inner product of instances are required but not the explicit feature representations of
instances.

2.2.1 Suport Vector Machine (SVM)

Consider the problem of separating the set of training vectors belong to two linear
separate classes, (x1; y1); (x2; y2); : : : ; (xn; yn) where xi 2 Rn , yi 2 f�1;+1g with a
hyperplane wTx + b = 0. The SVM modeling algorithm �nds an optimal hyperplane
with the maximal margin to separate two classes, which requires solving the following
constraint problem [59, 60]:
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�nd w and b such that

wTxi + b � 1 if yi = +1

wTxi + b � �1 if yi = �1

Considering the maximum margin classi�er, there is hard margin SVM, applicable
to a linearly separable dataset, and then modi�es it to handle non-separable data. This
leads to the following constrained optimization problem:

minimize
w;b

1
2
kwk2

subject to yi(wTxi + b) � 1; i = 1; : : : ; n
(2.1)

The constraints in this formulation ensure that the maximum margin classi�er clas-
si�es each example correctly, which is possible since we assumed that the data is lin-
early separable. In practice, data is often not linearly separable and in that case, a
greater margin can be achieved by allowing the classi�er to misclassify some points.
To allow errors, the optimization problem now becomes:

minimize
w;b

1
2
kwk2 + C

nX

1=1

�i

subject to yi(wTxi + b) � 1� �i; i = 1; : : : ; n

�i � 0; i = 1; : : : ; n

(2.2)

The constant C > 0 sets the relative importance of maximizing the margin and
minimizing the amount of slack. This formulation is called the soft-margin SVM [59,
60]. Using the method of Lagrange multipliers, we can obtain the dual formulation
which is expressed in terms of variables �i [59, 60]:

maximize
�

nX

i=1

�i �
nX

i=1

nX

j=1

�i�jyiyjxTi xj

subject to
nX

i=1

yi�i = 0

0 � �i � C; i = 1; : : : ; n

(2.3)

The dual formulation leads to an expansion of the weight vector in terms of the
input examples:

w =
nX

i=1

�iyixi

Finally, the linear classi�er based on a linear discriminant function takes the fol-
lowing form

f(x) =
nX

i

�iyixTi x+ b
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In many applications a non-linear classi�er provides better accuracy. The naive
way of making a non-linear classi�er out of a linear classi�er is to map our data from
the input space X to a feature space F using a non-linear function � : X ! F . In the
space F, the discriminant function is:

f(x) = wT�(x) + b

Now, examine what happens when the nonlinear mapping is introduced into equa-
tion 2.3. We have to optimize

maximize
�

nX

i=1

�i �
nX

i=1

nX

j=1

�i�jyiyj�(xi)T�(xj)

subject to
nX

i=1

yi�i = 0

0 � �i � C; i = 1; : : : ; n

(2.4)

Notice that the mapped data only occurs as an inner product in the objectives. Now,
we can apply a little mathematically rigorous magic known as kernels. By Mercer’s
theorem, we know that for certain mapping �(x) and any two points xi and xj , the
inner product of the mapped points can be evaluated using the kernel function without
ever explicitly knowing the mapping [57]. The kernel function can be de�ned as

k(xi; xj) = �(xi)T�(xj)

Substituting the kernel in the equation 2.4, the optimization takes the following
form:

maximize
�

nX

i=1

�i �
nX

i=1

nX

j=1

�i�jyiyjk(xi; xj)

subject to
nX

i=1

yi�i = 0

0 � �i �< C; i = 1; : : : ; n

(2.5)

Finally, in terms of the kernel function the discriminant function takes the following
form:

f(x) =
nX

i

�iyik(x; xi) + b

2.2.1.1 Some Popular Kernel Functions

The de�nitions of some popular kernel functions are given below:

1. Linear kernel: K(xi; xj) =< xi; xj >

2. Polynomial kernel: K(xi; xj) = (< xi; xj > +1)d, d is the degree of polynomial.

3. Gaussian kernel: K(xi; xj) = exp(�kxi�xjk
2

2�2 ), � is the width of the function.

4. Laplace kernel: K(xi; xj) = exp(�kxi�xjk� ), � is the width of the function.
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2.2.1.2 Multiclass Support Vector Machine

Support vector machines are formulated for two class problems. But because support
vector machines employ direct decision functions, an extension to multiclass problems
is not straightforward [61, 60]. There are several types of methods available for SVM
to handle multiclass problems. Two commonly used methods are One-Vs-All and One-
Versus-One approach.

� The One-Vs-All technique is extended from the binary two-class problem to per-
form classi�cation tasks with k > 2 classes. In this approach, the base classi�er
(in our case - SVM) is trained on K copies of the K-class original training set, with
each copy having the K-th label as the positive label, and all other labels as the
negative label (combined class). We denote the optimal separating hyperplane
discriminating the class j and the combined class as

gj = xT ŵj + b̂j ; j = 1; 2; 3; : : : ; k

where the superscript in ŵj stands for the class which should be separated from
the other observations. After �nding the all k optimal separating hyperplanes,
the �nal classi�er has been de�ned by

fk(x) = argmax
j

�
gj(x)

�

In this approach the index of the largest component of the discriminant vector
�
g1(x); g2(x); : : : ; gk(x)

�
is assigned to the vector x. In other words, each input is

classi�ed by all k models, and the output is chosen by the model with the highest
degree of con�dence.

� Another classical approach for multi-class classi�cation is the one-versus-one
(1V1) or pairwise decomposition. It evaluates all possible pairwise classi�ers
and thus induces n(n� 1)=2 individual binary classi�ers.

Let the decision function for class i against class j, with the maximum margin,
be

Dij(x) = wTijx+ bij

where wij is the m-dimensional vector, bij is a scalar, and Dij(x) = Dji(x).

For the input vector x, we calculate

Di(x) =
nX

j 6=i;j=1

sign(Dij(x)) (2.6)

and classify x into the class
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arg max
i=1;:::;n

Di(x) (2.7)

But if 2.7 is satis�ed for plural i’s, x is unclassi�able.

2.2.1.3 Multiclass Multi-label Support Vector Machine

Support vector machines are formulated for two class single label problems. An exten-
sion to multiclass multi-label problems for SVM is not straightforward [62, 63]. We
have followed Binary relevance method (BR) [62] to solve multiclass multi-label prob-
lem. Binary relevance method (BR) [62] uses the one-against rest strategy to convert
a multi-label problem into several binary classi�cation problems. Given a multi-label
dataset with N class labels, BR method trains one classi�er for each class label. When
training one classi�er for each class label, BR method annotates all of the training ex-
amples associated with that label as positive examples while all remaining examples
are regarded as negative examples [63]. Given a test example, each classi�er in BR
will output a prediction score and BR will combine these scores into an N-dimensional
score vector, where each score corresponds to a speci�c class label. The value of the
score has two conditions, positive and negative, positive means the binary classi�er
predicts the test example belongs to the corresponding class label, negative means it
do not belong to the class label. Note that if all N scores are negative, the class label
with the maximum score is assigned to the test example.

In accordance with the method discussed above, in order to predict class-label(s)
of datasets containing both single-label and multi-label subject, N independent binary
SVMs are trained, one for each class. Then the class-label(s) of the i-th query subject
will be predicted as:

M�(xi) = [Nj=1 fj : fj(xi) > 0g (2.8)

Here, M�(xi) is a predicted set that may have one, or more elements, even it can
be empty too, which enables us to make multi-label prediction. However, if Eq. 2.8
provides an empty class label, i.e., M�(xi) = ;, in that case, the number of class-label
will be single one and that class-label will be given by

M�(xi) = arg maxj=1fj(xi) (2.9)

2.2.1.4 Parameter Setting

In order to use the SVM for classi�cation, two kinds of parameters have to be deter-
mined:

� The regularization parameter C of the SVM

� The kernel and its parameters
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A proper choice of these parameters is crucial to the good performance of the
algorithm. A standard way to �x parameters is to use cross-validation. Let us denote
by a parameter of a kernel to be set, for instance, the width of the Gaussian RBF kernel,
and C the parameter of the algorithm. Given speci�c values of C and  the k-fold cross-
validation error is calculated as follows: �rst of all, the training set Z = fxi; yigni=1 is
randomly divided into k subsets Z1; : : : ;Zk of approximately equal size. The SVM
is trained on k � 1 subsets and its error rate on the remaining subset is computed.
Repeating this process k times such that each subset is tested once, the cross-validation
error is determined by the average of the test errors. When k = n, the cross-validation
error is especially called the leave-one-out error.

In this scheme C and  are determined so as to minimize the cross-validation error.
This goal is approximately achieved by a Grid search. A set of candidate values are
chosen both for C and  and the cross-validation error is computed for every possible
combination of them. If nc and n are the number of candidate values for the of C
and � respectively, then the cross-validation error is computed nc � n times, which
means that the SVM is trained k � nc � n times in total. Typically, users do not have
any idea about the optimal values for C and  , so the candidate values must cover a
very large domain. Hsu et al. [64] suggest the candidate values be determined as an
exponentially growing sequence (e.g., C = 2�8; 2�7; : : : ; 28;  = 2�8; : : : ; 28). When
there are more than two parameters, the grid search becomes dif�cult as the number
of grid points grows exponentially. In such cases, one can use a gradient search to
minimize an upper bound on the leave-one-out error [65]. However, this process can
be easily parallelized, which alleviates the burden of cross-validation.

On the other hand, a question frequently posed by practitioners is "which kernel
should I use for my data?". There are several answers to this question. The �rst is
that it is, like most practical questions in machine learning, data-dependent, so several
kernels should be tried. That being said, we typically follow the following procedure:
Try a linear kernel �rst, and then see if we can improve on its performance using a
non-linear kernel [66].

2.2.2 Advantages of SVM and Other Kernel Methods

Kernel methods for machine learning have become an attractive alternative to tradi-
tional methods in machine learning for four main reasons: First, if the feature space
is rich enough, then simple linear estimators with decision functions such as hyper-
planes and half-spaces in feature space may be suf�cient. Second, kernels allow us to
construct machine learning algorithms in Hilbert space H without explicitly computing
the mapping of the input vectors. This makes it possible to kernelize linear algorithms
provided that they can be expressed in terms of dot products between the data. Third,
there is no need to make any assumptions about the input space X other than for it to
be a set. We can construct kernels from any kinds of data and then apply the kernel
to the learning algorithm [58]. Kernels act like a transparent bridge between data
and learning algorithm. This makes it possible to compute similarity between discrete
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objects such as strings, trees and graphs. Four, We can change the kernel or learning
algorithm separately. Moreover with the kernel-based method, we can avoid the curse
of dimensionality, that means all that we need in kernel-based learning is the kernel
matrix, which does not depend on the dimensionality of the instances.

2.2.3 Disadvantages and Limitations of SVM and Other Kernel Methods

Kernel-based methods have a big disadvantage: the ef�ciency of learning process de-
pends much on the kernels [58]. If we choose appropriate kernel and its parameters,
we can get high accuracy, but if we choose bad kernel and its parameters, the accuracy
can be cut down dramatically. Choosing an appropriate kernel or a group of appro-
priate kernels becomes a major problem in kernel-based learning. The traditional
approach to choosing the kernel function is to select the best kernel function among a
set of candidates, fk1; : : : ; krg, according to their prediction accuracy on a validation
set. This approach is very time consuming. Thus learning kernels comes to the scene
and plays an important role in kernel methods.

2.2.4 Kernel Learning

By choosing the kernel and function kernel parameter, we have a rather �exible way
to embed prior knowledge into a machine learning algorithm [58]. However, the
available prior knowledge might not be suf�cient to uniquely determine the best kernel
for a given problem among the set of all possible kernels on a given domain X . This
observation leads to the idea of learning the kernel function itself from the data, which
is motivating a considerable amount of research in recent years.

Kernel learning tries to address the problem of selecting or learning the appropriate
kernel(s) for a given problem. Work in kernel learning falls roughly in one of the
following categories according to the type of basic kernels that takes place:

1. Multiple Kernel Learning (MKL): methods that learn a combination, usually con-
vex, of kernels from some given �nite set of kernels [43, 44, 7, 8]. MKL can also
be extended to use in the following two situations:

(a) Kernel Parameter Learning: methods that learn the parameters of some
parametrized kernel family, e.g the degree of polynomial kernels, the width
of Gaussian kernels, the parameters of hyperkernels [67, 65, 3, 4].

(b) Kernel Learning with in�nite number of basic kernels: methods that learn a
kernel combination from an in�nite set of basic kernels or kernel matrices
[68].

2. Nonparametric Kernel Learning: methods that learn directly the kernel matrix,
without requiring any given basic kernels [69, 70].

Most of the work on kernel learning falls into the �rst category which is MKL. In
the following section, some basic concept and theory of MKL has been discussed.
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2.3 Multiple Kernel Learning

The goal of machine learning is to learn unknown concepts from data. But the success
of a learning machine crucially depends on the quality of the data representation. At
this point, the paradigm of kernel-based learning [57] offers an elegant way for de-
coupling the learning and data representation processes in a modular fashion. This
allows to obtain complex learning machines from simple linear ones in a canonical
way. Nowadays, kernel machines are frequently employed in modern application do-
mains that are characterized by vast amounts of data along with highly non-trivial
learning tasks such as bioinformatics or computer vision, for their favorable general-
ization performance while maintaining computational feasibility [5].

However, after more than a decade of research it still remains an unsolved prob-
lem for kernel methods to �nd the best kernel for a task at hand. Most frequently, the
kernel is selected from a candidate set according to its generalization performance on
a validation set, which is held back at training time. Clearly, the performance of such
an algorithm is limited by the performance of the best kernel in the set and can be ar-
bitrarily bad if the kernel does not match the underlying learning task. Unfortunately,
in the current state of research, there is little hope that in the near future a machine
will be able to automatically engineer the perfect kernel for a particular problem at
hand [71].

A �rst step towards a more realistic model of learning the kernel was achieved in
Lanckriet et al. [43], who showed that, given a candidate set of kernels, it is computa-
tionally feasible to simultaneously learn a support vector machine and a linear kernel
combination at the same time, if the so-formed kernel combinations are required to
be positive-de�nite and trace-norm normalized. This framework was entitled multiple
kernel learning (MKL).

Multiple kernel learning (MKL) provides a systematic approach to using data to
learn the most suitable kernel function for a learning task [4]. These methods are usu-
ally designed to combine kernels from a given set. Since a kernel function corresponds
to a notion of similarity between data instances, combining multiple kernels can be
interpreted as combining different notions of similarity.

The more common implementation of combined kernel for MKL is

k�(xi; xj) = f�(fkm(xmi ; x
m
j )gPm=1j�)

where the combination function, f� : RP ! R, can be a linear or a nonlinear function,
fkm : RDm �RDm ! RgPm=1 take P feature representations (not necessarily different)
of data instances: xi = fxmi g

P
m=1 where xmi 2 RDm , and Dm is the dimensionality

of the corresponding feature representation, �nally, � parameterizes the combination
function. For example, we can linearly parameterize the combination function as

k�(xi; xj) = f�
�
kmfxmi ; x

m
j g

P
m=1j�

�
=

PX

m=1

�mkm(xmi ; x
m
j )
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2.3.1 Key Properties of Multiple Kernel Learning

We identify and explain nine key properties of the existing MKL algorithms in order to
obtain a meaningful categorization. We can think of these nine dimensions (though
not necessarily orthogonal) de�ning a space in which we can situate the existing MKL
algorithms and search for structure (i.e., groups) to better see the similarities and
differences between them.

2.3.1.1 The Learning Method

The existing MKL algorithms use different learning methods for determining the kernel
combination function. We basically divide them into �ve major categories [10]:

1. Fixed rules

2. Heuristic approaches

3. Optimization approaches

4. Bayesian approaches

5. Boosting approaches

2.3.1.2 The Functional Form

There are different ways in which the combination can be done and each has its own
combination parameter characteristics. We group functional forms of the existing MKL
algorithms into three basic categories [10]:

1. Linear combination

2. Nonlinear combination

3. Data-dependent combination

2.3.1.3 The Target Function

We can optimize different target functions when selecting the combination function
parameters. We group the existing target functions into three basic categories [10]:

1. Similarity-based functions calculate a similarity metric between the combined
kernel matrix and an optimum kernel matrix calculated from the training data
and select the combination function parameters that maximize the similarity.
The similarity between two kernel matrices can be calculated using kernel align-
ment, Euclidean distance, Kullback-Leibler (KL) divergence, or any other simi-
larity measure.
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2. Structural risk functions follow the structural risk minimization framework and
try to minimize the sum of a regularization term that corresponds to the model
complexity and an error term that corresponds to the system performance.

3. Bayesian functions measure the quality of the resulting kernel function con-
structed from candidate kernels using a Bayesian formulation.

2.3.1.4 The Training Method

We can divide the existing MKL algorithms into two main groups in terms of their
training methodology [10]:

1. One-step methods calculate both the combination function parameters and the
parameters of the combined base learner in a single pass. One can use a sequen-
tial approach or a simultaneous approach.

2. Two-step methods use an iterative approach where each iteration, �rst we update
the combination function parameters while �xing the base learner parameters,
and then we update the base learner parameters while �xing the combination
function parameters. These two steps are repeated until convergence.

2.3.1.5 The Base Learner

There are many kernel-based learning algorithms proposed in the literature and all of
them can be transformed into an MKL algorithm, in one way or another [10]. The
most commonly used base learners are SVM and support vector regression (SVR), due
to their empirical success, their ease of applicability as a building block in two-step
methods, and their ease of transformation to other optimization problems as a one-
step training method using the simultaneous approach. Kernel Fisher discriminant
analysis (KFDA), regularized kernel discriminant analysis (RKDA), and kernel ridge
regression (KRR) are three other popular methods used in MKL. Multinomial probit
and Gaussian process (GP) are generally used in Bayesian approaches.

2.3.1.6 The Computational Complexity

The computational complexity of an MKL algorithm mainly depends on its training
method (i.e., whether it is one-step or two-step) and the computational complexity of
its base learner [10].

Some of the important modeling algorithm for one step method are semide�-
nite programming (SDP) problem, a quadratically constrained quadratic programming
(QCQP) problem, and second-order cone programming (SOCP) problem. Two-step
methods can be modeled as a semi-in�nite linear programming (SILP) problem, which
uses a generic linear programming (LP) solver and a canonical SVM solver in the inner
loop.
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2.3.1.7 Set of kernels

Instead of selecting kernels from a prede�ned �nite set, we can increase the number
of candidate kernels in an iterative manner. We can basically select kernels from an
uncountably in�nite set constructed by considering base kernels with different kernel
parameters [72]. Gehler and Nowozin [72] propose a forward selection algorithm
that �nds the kernel weights for a �xed size of candidate kernels using one of the
methods described above, then adds a new kernel to the set of candidate kernels, until
convergence.

2.3.1.8 Constraints on Kernel Combination Weights

L1-norm of the kernel weights, also known as the simplex constraint, is mostly used
in MKL methods [73]. The advantage of the simplex constraint is that it leads to a
sparse solution, i.e., only a few base kernels among manys carry signi�cant weights.
However, as argued in [74], the simplex constraint may discard complementary in-
formation when base kernels encodes orthogonal information, leading to suboptimal
performance. To improve the accuracy in this scenario, an L2-norm of the kernel
weights, known as a ball constraint, is introduced in their work. A natural extension
to the L2-norm is the Lp-norm, which is approximated by the second order Taylor
expansion and therefore leads to a convex optimization problem [75].

2.3.1.9 Generalized Performance Measure

Multiple kernel learning searches for a combination of base kernel functions/matrices
that maximizes a generalized performance measure [73]. Typical measures studied for
multiple kernel learning, include maximum margin classi�cation errors [43, 6, 76, 77],
kernel-target alignment [45], Fisher discriminative analysis [78], etc.

MKL is an important extension of support vector machines (SVM) for handling mul-
tiple information sources [79]. By prede�ning one (or multiple in general) "base" ker-
nel function for each source, MKL aims to �nd the optimal linear combination weights
of these kernels by maximizing classi�cation-performance-related criteria such as the
margin of two classes. One of the representative algorithms is SimpleMKL [8].

Recent research [80] proposes to use more sophisticated criteria to optimize the
kernel weights. In addition to the margin of two classes, these criteria consider the
radius of minimum enclosing ball (MEB) of training data. The logic lies at that the
radius affects the generalization performance of SVM and it varies with the kernel
weights. Hence, this radius shall be considered when seeking the optimal weight
values. One of the representative algorithm termed ’radius-incorporated MKL’ has
been developed by considering both margin and radius [80].
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2.3.2 Multiple Kernel Learning Algorithm

Most of the existing MKL methods use the SVM objective functions and try to �nd
a linear combination of basic kernels such that the separating margin between the
classes is maximized. There are some other base learners available for MKL besides
SVM that are dicussed in section 2.3.1.5.

In this work, we have considered SVM objective functions as base learner for MKL.

2.3.2.1 Fixed Rules

Fixed rules obtain k�(�; �) using f�(�) and then train a canonical kernel machine with
the kernel matrix calculated using k�(�; �). For example, we can obtain a valid kernel
by taking the summation or multiplication of two valid kernels [81]:

k�(xi; yi) = k1(x1
i ; x

1
j ) + k2(x2

i ; x
2
j )

k�(xi; yi) = k1(x1
i ; x

1
j )k2(x2

i ; x
2
j )

We can apply the rules of the above equations recursively to obtain the rules for
more than two kernels. For example, the summation or multiplication of P kernels is
also a valid kernel:

k�(xi; yi) =
PX

m=1

km(xmi ; x
m
j )

k�(xi; yi) =
PY

m=1

km(xmi ; x
m
j )

Pavlidis et al. [82] report that on a gene functional classi�cation task, training an
SVM with an unweighted sum of heterogeneous kernels gives better results than the
combination of multiple SVMs each trained with one of these kernels.

2.3.2.2 Heuristic Approaches

De Diego et al. [83] propose a matrix functional form of combining kernels:

k�(xi; xj) =
PX

m=1

�m(xi; xj)km(xmi ; x
m
j )

where �m(�; �) assigns a weight to km(�; �) according to xi and xj . They propose differ-
ent heuristics to estimate the weighing function values using conditional class prob-
abilities, Pr(yi = yj jxi) and Pr(yj = yijxj), calculated with a nearest-neighbor ap-
proach [10]. However, each kernel function corresponds to a different neighborhood
and �m(�; �) is calculated on the neighborhood induced by km(�; �). For an unlabeled
data instance x, they take its class label once as +1 and once as �1, calculate the
discriminant values f(xjy = +1) and f(xjy = �1), and assign it to the class that has
more con�dence in its decision (i.e., by selecting the class label with greater yf(xjy)
value).
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We can also use a linear combination instead of a data-dependent combination and
formulate the combined kernel function as follows:

k�(xi; xj) =
PX

m=1

�mkm(xmi ; x
m
j )

where we select the kernel weights by looking at the performance values obtained by
each kernel separately. For example, Tanabe et al. [84] propose the following rule in
order to choose the kernel weights for classi�cation problems:

�m =
�m � �PP
h=1(�h � �)

where �m is the accuracy obtained using only Km, and � is the threshold that should
be less than or equal to the minimum of the accuracies obtained from single-kernel
learners. Qiu and Lane [85] propose two simple heuristics to select the kernel weights
for regression problems:

�m =
RmPP
h=1Rh

8m

�m =
PP

h=1Mh �Mm

(P � 1)
PP

h=1Mh
8m

where Rm is the Pearson correlation coef�cient between the true outputs and the
predicted labels generated by the regressor using the kernel matrix Km, and Mm is
the mean square error generated by the regressor using the kernel matrix Km.

Cristianini et al. [45] de�ne a notion of similarity between two kernels called
kernel alignment. The empirical alignment of two kernels is calculated as follows:

A(K1;K2) =
hK1;K2iFp

hK1;K1iF hK2;K2iF

where hK1;K2iF =
PN

i=1
PN

j=1 k1(x1
i ; x

1
j )k2(x2

i ; x
2
j ). This similarity measure can be

seen as the cosine of the angle between K1 and K2. yyT can be de�ned as ideal kernel
for a binary classi�cation task, and the alignment between a kernel and the ideal kernel
becomes

A(K; yyT ) =
hK; yyT iFp

hK;KiF hyyT ; yyT iF
=
hK; yyT iF
N
p
hK;KiF

Kernel alignment has one key property due to concentration (i.e., the probabil-
ity of deviation from the mean decays exponentially), which enables us to keep high
alignment on a test set when we optimize it on a training set [10].

Qiu and Lane [85] propose the following simple heuristic for classi�cation prob-
lems to select the kernel weights using kernel alignment:

�m =
A(Km; yyT )
PP

h=1(Kh; yyT )
8m

where we obtain the combined kernel as a convex combination of the input kernels.
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2.3.2.3 Similarity Measure Optimizing Approaches

Linear Approaches with Arbitrary Kernel Weights

Lanckriet et al. [43] propose to optimize the kernel alignment as follows:

maximize A(Ktra
� ; yyT )

with respect to K� 2 SN

subject to tr(K�) = 1

K� � 0:

(2.10)

where the trace of the combined kernel matrix is arbitrarily set to 1, SN means real
symmetric N �N matrices.

Cortes et al. [44] give a different kernel alignment de�nition, which they call
centered-kernel alignment. The empirical centered-alignment of two kernels is calcu-
lated as follows:

CA(K1;K2) =
hKc

1;Kc
2iFp

hKc
1;Kc

1iF hKc
2;Kc

2iF
where Kc is the centered version of K and can be calculated as

Kc = K �
1
N

11TK �
1
N
K11T +

1
N2 (1TK1)11T

where 1 is the vector of ones with proper dimension. Cortes et al. [44] also propose
to optimize the centered-kernel alignment as follows:

maximize CA(K�; yyT )

with respect to � 2M
(2.11)

whereM = f� : k�k2 = 1g. This optimization problem 2.11 has an analytical solution:

� =
M�1a
kM�1ak2

where M = fhKc
m;Kc

hiF g
P
m;h=1 and a = fhKc

m; yyT iF gPm=1

Linear Approaches with Nonnegative Kernel Weights

Kandola et al. [86] propose to maximize the alignment between a nonnegative lin-
ear combination of kernels and the ideal kernel. The alignment can be calculated as
follows:

A(K�; yyT ) =
PP

m=1 �mhKm; yyT iF

N
qPP

m=1
PP

h=1 �m�hhKm;KhiF

We should choose the kernel weights that maximize the alignment and this idea
can be cast into the following optimization problem:
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maximize A(K�; yyT )

with respect to � 2 RP
+

(2.12)

where R+ means non-negative real numbers.
and the above problem is equivalent to

maximize
PX

m=1

�mhKm; yyT iF

with respect to � 2 RP
+

subject to
PX

m=1

PX

m=1

�m�hhKm;KhiF = c

(2.13)

Lanckriet et al. [43] restrict the kernel weights to be nonnegative and their SDP
formulation reduces to the following QCQP problem:

maximize
PX

m=1

�mhKtra
m ; yyT iF

with respect to � 2 RP
+

subject to
PX

m=1

PX

m=1

�m�hhKm;KhiF � 1

(2.14)

Cortes et al. [44] also restrict the kernel weights to be nonnegative by changing
the de�nition ofM in 2.11 to f� : k�k2 = 1; � 2 RP+g and obtain the following QP:

minimize �TM� � 2�Ta

with respect to � 2 RP
+

(2.15)

where the kernel weights are given by � = �
kvk2

.

Linear Approaches with Kernel Weights on a Simplex

He et al. [87] choose to optimize the distance between the combined kernel matrix
and the ideal kernel, instead of optimizing the kernel alignment measure, using the
following optimization problem:

minimize hK� � yyT ;K� � yyT i2F
with respect to � 2 RP

+

subject to
PX

m=1

�m = 1

(2.16)

where R+ means non-negative real numbers.
Nguyen and Ho [88] propose another quality measure called feature space-based

kernel matrix evaluation measure (FSM) de�ned as

FSM(K; y) =
s+ + s�

km+ �m�k2
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where fs+; s�g are the standard deviations of the positive and negative classes, and
fm+;m�g are the class centers in the feature space.

Tanabe et al. [84] optimize the kernel weights for the convex combination of
kernels by minimizing this measure:

minimize FSM(K�; y)

with respect to � 2 RP
+

subject to
PX

m=1

�m = 1

(2.17)

Again, Ying et al. [89] follow an information-theoretic approach based on the KL
divergence between the combined kernel matrix and the optimal kernel matrix:

minimize KL(N(0;K�)jjN(0; yyT ))

with respect to � 2 RP
+

subject to
PX

m=1

�m = 1

(2.18)

where 0 is the vector of zeros with proper dimension. The kernel combinations weights
can be optimized using a projected gradient-descent method.

2.3.2.4 Structural Risk Optimizing Approaches

Structural risk functions follow the structural risk minimization framework and try to
minimize the sum of a regularization term that corresponds to the model complexity
and an error term that corresponds to the system performance. Like similarity based
approach, deepening on various types of kernel weight, three approaches are popular
which are listed below [10]:

1. Linear Approaches with Arbitrary Kernel Weights

2. Linear Approaches with Nonnegative Kernel Weights

3. Linear Approaches with Kernel Weights on a Simplex

2.3.2.5 Nonlinear Approaches to Combine Kernel Functions

Varma and Babu [90] propose a generalized formulation called generalized multiple
kernel learning (GMKL) that contains two regularization terms and a loss function
in the objective function which uses nonlinear approach to combine kernel functions.
This formulation regularizes both the hyperplane weights and the kernel combination
weights. At the same time, Cortes et al. [9] develop another type of nonlinear kernel
combination method based on KRR and polynomial combination of kernels.
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2.3.2.6 Data-Dependent Approaches to Combine Kernel Function

Gönen and Alpaydin [47] propose a data-dependent formulation called localized mul-
tiple kernel learning (LMKL) that combines kernels using weights calculated from a
gating model. Inspired from LMKL, two methods that learn a data-dependent kernel
function are used for image recognition applications in the work of Yang et al. [91, 92];
they differ in their gating models that are constants rather than functions of the input.

2.3.2.7 Radius-Margin based Multiple Kernel Learning

The MKL methods that use the SVM objective function do not exploit the fact that the
error bound of SVM depends not only on the separating margin, but also on the radius
of the smallest sphere that encloses the data. In fact even the standard SVM algorithms
do not exploit the latter, because for a given feature space the radius is �xed. However
in the context of MKL the radius is not �xed but is a function of the weights of the
basic kernels. Huyen Do et al. [80] propose a novel MKL method that takes account
of both radius and margin to optimize the error bound.

2.3.2.8 MKL with Many Kernels

In general MKL algorithm, the number of base kernels K is �xed before runing the
optimization program. The size of the number of base kernel is very important in
MKL. Afkanpour [3, 4] has developed MKL with many kernels. On the other hand,
according to [72], it is an unnecessary restriction. Gehler [72] proposes in�nite kernel
learning (IKL) by using in�nite set of base-kernels. It is an extension of MKL where
the number of kernel is in�nite. On some datasets, �xed set of base kernel in MKL
can decrease the accuracy due to the possibility of using a largely increased kernel set.
On some datasets IKL yields massive increases in accuracy over SVM/MKL due to the
possibility of using a largely increased kernel set.

2.3.2.9 Bayesian Approaches

Girolami and Rogers [93] formulate a Bayesian hierarchical model and derive varia-
tional Bayes estimators for classi�cation and regression problems. The proposed deci-
sion function can be formulated as

f(x) =
NX

i=0

�i
PX

m=1

�mkm(xmi ; x
m)

where � is modeled with a Dirichlet prior and � is modeled with a zero-mean Gaussian
with an inverse gamma variance prior.

2.3.2.10 Boosting Approaches

Inspired from ensemble and boosting methods, Bennett et al. [94] modify the decision
function in order to use multiple kernels:
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f(x) =
NX

i=1

PX

m=1

�mi km(xmi ; x
m) + b

The parameters f�mgPm=1 and b of the KRR model are learned using gradient-
descent in the function space. The columns of the combined kernel matrix are gener-
ated on the �y from the heterogeneous kernels. Bi et al. [95] develop column gen-
eration boosting methods for binary classi�cation and regression problems. At each
iteration, the proposed methods solve an LP or a QP on a working set depending on
the regularization term used [10].

2.4 MKL with Some Other Directions

In theses previuos discussion, we only consider supervised case of MKL. Besides these,
some researcher are also developed MKL for unsupervised case [96]. In multiple kernel
learning algorithm, we only consider SVM as base leaner for MKL. We can also consider
other base learner such as Kernel Fisher discriminant analysis (KFDA), regularized
kernel discriminant analysis (RKDA), and kernel ridge regression (KRR)for MKL [10].
In some applications, multilabel muclass classi�cation is required. To handle these
problems, [97] developed MKL to solve multilabel problems.



Chapter 3

Applications of MKL in
Bioinformatics

3.1 Introduction

Over the past few decades, major advances in the �eld of molecular biology, coupled
with advances in genomic technologies, have led to an explosive growth in the bi-
ological information generated by the scienti�c community. This deluge of genomic
information has, in turn, led to an absolute requirement for computerized databases
to store, organize, and index the data, and for specialized tools to view and analyze
the data [98].

Bioinformatics involve the creation and advancement of algorithms using tech-
niques including computational intelligence, applied mathematics and statistics, infor-
matics, and biochemistry to solve biological problems usually on the molecular level
[99]. It is concerned with the use of computation to answer biological questions and
to acquire and exploit large-scale biological data. Answering biological questions re-
quires that investigators take advantage of large, complex data sets (both public and
private) in a rigorous fashion to reach valid biological conclusions. The potential of
such an approach is beginning to change the fundamental way in which basic science
is done, helping to more ef�ciently guide experimental design in the laboratory.

3.2 Basic Concept in Molecular Biology

In this section, we will introduce some basic concepts in molecular biology which are
the prerequisites to understand various problems of bioinformatics.

3.2.1 Deoxyribonucleic Acid (DNA)

Deoxyribonucleic acid (DNA) and proteins are biological macromolecules built as long
linear chains of chemical components [98]. A DNA strand consists of a large sequence
of nucleotides, or bases. For example, there are more than three billion bases in human

31
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DNA sequences. The units of DNA are called nucleotides. One nucleotide consists
of one nitrogen base, one sugar molecule (deoxyribose), and one phosphate. Four
nitrogen bases are denoted by one of the letters A (adenine), C (cytosine), G (guanine),
and T (thymine). A linear chain of DNA is paired to a complementary strand. The
complementary property stems from the ability of the nucleotides to establish speci�c
pairs (A-T and G-C). The resulting rope ladder is twisted around an imaginary central
axis to form the famous DNA double helix (see Figure 3.1).

Figure 3.1: Schematic view of a DNA double strand (a) and a DNA double helix (b)

Source: This �gure is taken from [100]

3.2.2 Ribonucleic Acid (RNA)

A large variety of different RNA species exist within any cell. All RNAs are transcribed
from RNA-encoding genes. The various types of RNA are constructed from the same
building blocks but perform different roles in the cell. In light of these different roles,
RNAs are divided into two general categories: messenger RNA and functional RNA
[101].

Genes transcribing messenger RNA (mRNA) are protein-producing genes, and their
transcripts direct protein synthesis by the process of translation. Messenger RNA is the
short-lived intermediary form of RNA that conveys the genetic message of DNA to
ribosomes for translation. Messenger RNA is the only form of RNA that undergoes
translation.

Functional RNAs perform a variety of specialized roles in the cell. The functional
RNAs carry out their activities in nucleic acid form and are not translated. Two major
categories of functional RNA are active in bacterial and eukaryotic translation: transfer
RNA (tRNA) and ribosomal RNA (rRNA).
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Figure 3.2: Structure of an amino acid consisting of a central carbon C� together with an
amino and a carboxyl group, and a speci�c side chain R

Source: This �gure is taken from [100]

3.2.3 Genomes and Genes

The entire DNA sequence that codes for a living thing is called its genome. The genome
doesn’t function as one long sequence, however. It is divided into individual genes. A
gene is a small de�ned section of the entire genomic sequence, and each gene has a
speci�c unique purpose [102].

There are three classes of genes [102]. Protein-coding genes are templates for
generating molecules called proteins. Each protein encoded by the genome is a chem-
ical machine with a distinct purpose in the organism. RNA-specifying genes are also
templates for chemical machines, but the building blocks of RNA machines are dif-
ferent from those that make up proteins. Finally, untranscribed genes are regions of
genomic DNA that have some functional purpose but don’t achieve that purpose by
being transcribed or translated to create another molecule.

3.2.4 Proteins

Proteins represent one of the most important of the molecule classes in living organ-
isms [100]. Their functions include the catalysis of metabolic processes in the form of
enzymes; they play an important role in signal transmission, defense mechanisms, and
molecule transportation; and they are used as building material, for example in hair.
They also function as structural supports, motors that drive movement, pumps, gene
regulators and many other things.

Proteins are chains of smaller molecular entities, so-called amino acids, which con-
sist of a central carbon atom, denoted as C�, connected to an amino group (NH2), a
carboxyl group (COOH), and a side chain (R), which is speci�c for the particular amino
acid. The fourth free binding site of C� is saturated by a single hydrogen (H) atom.
In Figure 3.2, this general structure is shown. According to this, the particular amino
acids only differ with respect to their side chains, which also determine their chemical
characteristics. We will, however, not consider the detailed chemical structure of the
side chains any further.

In nature, there are several known amino acids, but only twenty of them serve as
standard building blocks of proteins; these are given in Table 3.1.
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Table 3.1: The 20 standard amino acids and their single letter code

name Alanine Valine Leucine Isoleucine Phenylalanine
code A V L I F
name Proline Methionine Serine Threonine Cysteine
code P M S T C
name Tryptophan Tyrosine Asparagine Glutamine Aspartic acid
code W Y N Q D
name Glutamic acid Lysine Arginine Histidine Glycine
code E K R H G

3.2.5 Molecular Biology’s Central Dogma

The central dogma of molecular biology states that [102]:
"DNA acts as a template to replicate itself, DNA is also transcribed into RNA, and

RNA is translated into protein".
As it is observed that, the central dogma sums up the function of the genome in

terms of information. Genetic information is conserved and passed on to progeny
through the process of replication. Genetic information is also used by the individual
organism through the processes of transcription and translation. There are many layers
of function, at the structural, biochemical, and cellular levels, built on top of genomic
information. But in the end, all of life’s functions come back to the information content
of the genome.

DNA makes RNA and RNA makes proteins, stated by the Central Dogma of Molec-
ular Biology, is explained in Figure 3.3.

The DNA mainly occurs in the nucleus and is not able to leave it. On the other
hand, the "manufacturing halls" of proteins, the ribosomes, are located outside the
nucleus. The process of transforming genetic information encoded in a sequence of
nucleotides into a sequence of amino acids mainly consists of two steps, as shown
schematically in Figure 3.3.

3.2.6 Molecular Evolution

Molecular evolution is the process of change in the sequence composition of cellular
molecules such as DNA, RNA, and proteins across generations. The �eld of molecular
evolution uses principles of evolutionary biology and population genetics to explain
patterns in these changes. Major topics in molecular evolution concern the rates and
impacts of single nucleotide changes, neutral evolution vs. natural selection, origins of
new genes, the genetic nature of complex traits, evolution of development, and ways
that evolutionary forces in�uence genomic and phenotypic changes.

The study of molecular evolution�how gene sequences change and evolve over
time�is an important part of bioinformatics, the study of DNA sequence information.
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Figure 3.3: Schematic description of transcription and translation

Source: This �gure is taken from [100]

Genes that have diverged by mutation from a common ancestor are called homologs.

3.3 Bioinformatics Tasks

Different biological problems can be considered within the scope of bioinformatics. In
order to get better understanding, some speci�c tasks or problems of bioinformatics
are listed in below:

� Alignment and comparison of DNA,
RNA, and protein sequences

� Gene �nding and promoter identi�-
cation from DNA sequences

� Gene regulatory network identi�ca-
tion

� Gene Selection

� Protein Structure Prediction (PSP)

� Microarray Classi�cation

� Protein Subcellular Localiza-
tion Prediction

� Post-translation Modi�cation
Prediction

� Protein-protein interaction
prediction

� DNA Fragment Assembly (FA)

� Modeling Biological Systems

� High-throughput Image Anal-
ysis
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3.4 Aims of Bioinformatics

The increasing availability of annotated genomic sequences has resulted in the intro-
duction of computational genomics and proteomics, large-scale analysis of complete
genomes. The primary goal of bioinformatics is to increase the understanding of bi-
ological processes. What sets it apart from other approaches, however, is its focus
on developing and applying computationally intensive techniques to achieve this goal.
Major research efforts in the �eld include sequence alignment, gene �nding, genome
assembly, drug design, drug discovery, protein structure alignment, protein structure
prediction, prediction of gene expression and protein-protein interactions, genome-
wide association studies, the modeling of evolution and cell division/mitosis. Bioin-
formatics now entails the creation and advancement of databases, algorithms, compu-
tational and statistical techniques, and theory to solve formal and practical problems
arising from the management and analysis of biological data.

3.5 Uses of MKL in Bioinformatics

MKL has advanced rapidly since 2002 and now demonstrates state-of-the-art perfor-
mance in various �elds. MKL is familiar to do solve the following problem in data
analysis:

1. Provide a potential solution to the choice of kernel problem for kernel methods.

2. Data fusion from multiple data sources with different format or same format.

Support vector machine is an important classi�cation methods among all Kernel
based methods. The main dif�culties of SVM is to choose the proper kernel and its
parameter for a given problem. MKL provides a potential solution in this context. This
application of MKL can be used in every problems of bioinformatics where SVM as well
as kernel methods are applicable.

On the other hand, the second application of MKL requires handling of multiple
data sources of a problem. In bioinformatics, many problems require process of multi-
ple data sources. In the following sections we will discuss some problems in bioinfor-
matics that have multiple data sources for analysis:

� Protein Function Prediction:

Protein function prediction can be predicted from various types of data sources
[103]. Information may come from nucleic acid sequence homology, gene ex-
pression pro�les, protein domain structures, text mining of publications, phy-
logenetic pro�les, phenotypic pro�les, and protein-protein interaction. Most of
the researcher developed protein function prediction using single information
sources such as using gene expression pro�le, or protein-protein interaction fea-
ture. Integrating of these features can be an improvement of the prediction
process.
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� Protein Subcellular Localization Prediction (SCLP):

Protein subcellular localization prediction involves the prediction of where a pro-
tein resides in a cell, its subcellular localization. In general, prediction tools take
the input information about a protein from its sequence of amino acids [19, 21].
Several different approaches are available to extract feature from protein se-
quences such as Amino Acid Composition (AAC), Dipeptide Composition (DC),
Pseudo-Amino Acid Composition (PAAC), Amphiphilic Pseudo-Amino Acid Com-
position (APAAC), Physicochemical Properties Model, Amino Acid Index Distri-
bution, GO-based representation, SeqEvo (Sequential Evolution) Formulation,
FunD (Functional Domain) Representation, etc. Various types computational
methods have been proposed using these feature representations. Each feature
provides a different angle to view of a protein, therefore a combination of them
can produce better performance.

� Post-translation Modi�cations (PTMs) Prediction:

Most of PTMs sites predictors or PTM predictors use information from protein
sequence [104, 105, 106, 107, 55]. Various types of feature extraction tech-
niques from sequence are also available such as Binary encoding, CKSAAP encod-
ing scheme, Position-speci�c amino acid propensity (PSAAP), AAIndex property,
Amino Acid Occurrence Frequency (AAOF), K Nearest Neighbor Score (KNNS),
Encoding based on attribute grouping, Position Weight Amino Acid Composi-
tion(PWAAC), Sequence Coupling Model, etc. So, handling different sources
combinedly can be a good solution in the improvement of PTM site prediction as
well as PTM prediction.

� Protein-protein Interaction Prediction:

Prediction of protein-protein interaction (PPI) is very important for the investi-
gation of intracellular signaling pathways, modelling of protein complex struc-
tures and for gaining insights into various biochemical processes. Prediction can
be performed using different sources of evidence. Evidence for machine learn-
ing includes physical features (such as calculated statistics of hydrophobicity,
hydrophilicity, polarizability, etc.) and non-physical features (such as gene co-
expression, sequence similarity, function annotation enrichment, etc.). Each fea-
ture provides a different angle to view protein interactions and has the potential
for uncovering a novel subset of the whole interactome. For this reason, inte-
gration of these evidence can strengthen and �ourish the study of PPI prediction
and also give a proper direction in accurate prediction of PPI prediction.

� Drug-target Interaction Prediction:

Drug-target networks are receiving a lot of attention in late years, given its rele-
vance for pharmaceutical innovation and drug lead discovery. This problem re-
quires handling of multiple data sources such as chemical structures, side-effects,
amino acid sequence, biological function, PPI interactions and network topology.
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The data integration strategy can be able to improve the quality of the predicted
interactions, and can speed up the identi�cation of new drug-target interactions
as well as identify relevant information for the task.

Although various problems of bioinformatis require the analysis of heterogeneous
data sources. In this work, we have applied MKL in protein subcellular localization
prediction (SCLP) and protein post-translational modi�cation site or post-translational
modi�cation prediction. In the following section we will describe these problems in
details.

3.6 Protein Subcellular Localization

According to the cellular anatomy, most of the functions, which are critical to a cell’s
survival, are performed by the proteins in the cell [13]. A typical cell contains approxi-
mately 1 billion (or 109) protein molecules that reside in many different compartments
or organelles (an example of a cell is shown in Figure 3.4), usually termed ’subcellular
locations’.

It is well established that there is a relation between the function and the subcel-
lular location of a protein. Therefore, one of the fundamental goals in cell biology
and proteomics is to identify the subcellular locations and functions of these proteins.
Information of the subcellular locations of proteins can provide useful clues about
their functions. For understanding the intricate pathways that regulate the biological
processes at the cellular level, we also need to know the subcellular distributions of
proteins.

3.6.1 Challenges for Prediction of Protein Subcellular Locations

Prediction of protein subcellular locations are very complex task due to the following
challenges [15]:

� Informative representations of proteins.

� Performance measurement for multi-label system.

� Determining the number of subcellular locations of a query protein.
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Figure 3.4: Schematic illustration showing many different components or organelles of Gram-
negative bacterial cell.

Source: This �gure is taken from [29]

3.6.2 Laboratory Experimental Approaches for Determining Protein Sub-
cellular Localtion

A protein’s subcellular location has been traditionally determined in the laboratory via
techniques suitable for low throughput, single protein analysis only. However, more
recently a number of high-throughput identi�cation methods have become available.
A list of common experimental approaches will be mentioned below [108]:

� Microscopy-based visualization techniques.

� PhoA fusion technique.

� Subcellular fractionation and two-dimensional (2D) gel electrophoresis.

� Mass spectrometry identi�cation of subcellular fractions.
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3.6.3 Importance of Protein Subcellular Localization Prediction (SCLP)

One of the goals of basic microbiology research is to �gure out the functions of all
genes within a genome, so we can better understand the organism. By determining
the SCL of a protein, we can narrow down its potential set of functions. From a more
practical point of view, SCL identi�cation and prediction has many useful purposes.

Within microbiology research, subcellular location prediction is also helpful for re-
searchers, who may be working with a gene of unknown function and would like to
know its destined subcellular location to facilitate protein extraction or general exper-
imental design and con�rmation. Subcellular location prediction is now also routinely
used as part of a microbial genome annotation pipeline. There is a growing trend in
proteomics projects as well, where subcellular fractions of bacteria are submitted to
high-throughput identi�cation. Given there are always possible contaminations and
experimental errors, high precision computational subcellular location prediction can
serve as a valuable means for evaluation and con�rmation purposes.

Knowledge of the subcellular localization of a protein can signi�cantly improve
target identi�cation during the drug discovery process. For example, secreted proteins
and plasma membrane proteins are easily accessible by drug molecules due to their
localization in the extracellular space or on the cell surface.

3.6.4 Methods to Predict Subcellular Localizations and Dataset

Many computational techniques, such as the neural network [34], K-nearest neighbor
(KNN) [27, 35, 36], naive Bayes [30] and a few ensemble classi�ers [38, 39] have been
introduced for the prediction of protein subcellular localization. Some methods use
variations of k-NN to predict multiple locations for proteins such as WoLF PSORT [18]
uses k-NN with a distance measure that combines Euclidean and Manhattan distances,
Euk-mPLoc [28]uses an ensemble of k-NN. In recent days, the support vector machine
(SVM) [14, 21, 33, 40] has also been extensively applied to provide potential solutions
for the subcellular localization prediction.

Most of the existing computational method developed their system using some
speci�c dataset. Some of the dataset and their location are listed in Table 3.2.

3.6.5 Feature Extraction Techniques for SCLP

A protein or peptide sequence with L amino acid residues could be generally repre-
sented as fR1; R2; : : : ; RLg, where Ri represents the residue at the i-th position in
the sequence [109]. However, various non-sequential or discrete models to represent
protein samples have been proposed in hopes to establish some sort of correlation or
cluster manner through which the prediction could be more effectively carried out.
Some of the feature extraction approaches are discussed in the following sections.
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Table 3.2: Dataset name and their location of source

Dataset Name Location

Eukaryotic Proteins http://www.csbio.sjtu.edu.cn/bioinf/euk-multi/

Plant protein http://www.csbio.sjtu.edu.cn/bioinf/plant/

Gram-negative Bacteria
Protein

http://www.csbio.sjtu.edu.cn/bioinf/Gneg/

Human Proteins http://www.csbio.sjtu.edu.cn/bioinf/hum-multi/

Viral Proteins http://www.csbio.sjtu.edu.cn/bioinf/virus/

Hˆ�uglund Dataset
http://abi.inf.uni-tuebingen.de/Services/MultiLoc/
multiloc_dataset

DBMLoc Dataset
http://www.bioinfo.tsinghua.edu.cn/DBMLoc/ in-
dex.htm

3.6.5.1 Amino Acid Composition (AAC)

The Amino Acid Composition (AAC) is the fraction of each amino acid type within a
protein [109]. The fractions of all 20 natural amino acids are calculated as:

f(r) =
Nr

N
; r = 1; 2; : : : ; 20 (3.1)

where Nr is the number of the amino acid type r and N is the length of the sequence.

3.6.5.2 Dipeptide Composition (DC)

Dipeptide Composition (DC) represents the fraction of every two consecutive amino
acid residues of a protein [109, 110]. The Dipeptide Composition (DC) gives 400
descriptors, de�ned as:

f(r; s) =
Nrs

N � 1
r; s = 1; 2; : : : ; 20 (3.2)

where Nrs is the co-occurrence frequency of the dipeptide denoted by amino acid r
and type s.

3.6.5.3 Pseudo-Amino Acid Composition (PAAC)

Pseudo-Amino Acid Composition feature extraction method not only based on se-
quence composition but also its order information [109, 110]. This descriptor is pro-
posed in [110]. Let H0

1 (i), H0
2 (i), M0(i) (i = 1; 2; : : : ; 20) be the original hydropho-

bicity values, the original hydrophilicity values and the original side chain masses of



Applications of MKL in Bioinformatics 42

the 20 natural amino acids, respectively. Before their use, they are all subjected to
standard conversion as described by the following equation:

H1(i) =
H0

1 (i)� 1
20
P20

i=1H
0
1 (i)

r
P20
i=1[H0

1 (i)� 1
20

P20
i=1 H

0
1 (i)]2

20

(3.3)

H0
2 (i) and M0(i) are normalized as H2(i) and M(i) in the same way.

Consider a protein chain of L amino acid residues: R1R2R3R4R5R6 � � � � � �RL. A
set of descriptors called sequence order-correlated factors are de�ned as:

�1 =
1

L� 1

L�1X

i=1

�(Ri; Ri+1)

�2 =
1

L� 2

L�2X

i=1

�(Ri; Ri+2)

�3 =
1

L� 3

L�3X

i=1

�(Ri; Ri+3)

...
...

�� =
1

L� �

L��X

i=1

�(Ri; Ri+�)

(3.4)

�(� < L) is a parameter to be chosen. Here, �1 is called the �rst-tier correlation factor
that re�ects the sequence order correlation between all the most contiguous residues
along a protein chain, �2 the second-tier correlation factor that re�ects the sequence
order correlation between all the second most contiguous residues, and so forth. In
Eq. 3.4 the correlation function is given by

�(Ri; Rj) =
1
3
�

[H1(Ri)�H1(Rj)]2 + [H2(Ri)�H2(Rj)]2 + [M(Ri)�M(Rj)]2
	

(3.5)
This correlation function is actually an averaged value for the three amino acid

properties: hydrophobicity value, hydrophilicity value and side chain mass.
Let fi be the normalized occurrence frequency of the 20 amino acids in the protein

sequence. Now, the Pseudo-Amino Acid Composition of a protein can be expressed as:

X = [x1; x2; : : : ; x20; x21; : : : ; x20+�]

where

xu =

8
><

>:

fuP20
r=1 fr+w

P�
j=1 �j

(1 � u � 20)

w�u�20P20
r=1 fr+w

P�
j=1 �j

(21 � u � 20 + �)
(3.6)

Here, w is the weighting factor for the sequence-order effect and is set as w = 0:05 in
our work as suggested by Kuo-Chen Chou [110].
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3.6.5.4 Amphiphilic Pseudo-Amino Acid Composition (APAAC)

Amphiphilic Pseudo-Amino Acid Composition (APAAC) was proposed in [110]. The
de�nitions of these qualities are similar to the PAAC descriptors [109, 110]. Based
on previous calculation, we have H1(i) and H2(j). Then the hydrophobicity and hy-
drophilicity correlation functions are de�ned as:

H1
ij = H1(i)H1(j)

H2
ij = H2(i)H2(j)

From these qualities, sequence order factors can be de�nes as:

�1 =
1

L� 1

L�1X

i=1

H1
i;i+1

�2 =
1

L� 1

L�1X

i=1

H2
i;i+1

�3 =
1

L� 2

L�2X

i=1

H1
i;i+2

�4 =
1

L� 2

L�2X

i=1

H2
i;i+2

: : :

�2��1 =
1

L� �

L��X

i=1

H1
i;i+�

�2� =
1

L� �

L��X

i=1

H2
i;i+�

Then a set of descriptors called Amphiphilic Pseudo-Amino Acid Composition (APAAC)
are de�ned as:

X = [x1; x2; : : : ; x20; x21; : : : ; x20+2�]

where

xu =

8
><

>:

fuP20
r=1 fr+w

P2�
j=1 �j

(1 < u < 20)

w�uP20
r=1 fr+w

P2�
j=1 �j

(21 � u � 20 + 2�)
(3.7)

where w is the weighting factor and is taken as w = 0:5 in our work as suggested by
Kuo-Chen Chou [110].



Applications of MKL in Bioinformatics 44

3.6.5.5 Physicochemical Properties Model (PPM)

In Physicochemical Properties Model, amino acid residues in all proteins are divided
into neutral, hydrophobic and polar groups according to their seven physicochemi-
cal properties. The seven physicochemical properties are hydrophobicity, normalized
vander Waals volume, polarity, polarizibility, charge, secondary structures and solvent
accessibility. According to the seven properties of amino acids residues, compute oc-
currence frequency of the residues manifested as polar, neutral and hydrophobic in a
protein sequence. The calculation formula is [111]:

fi;polar =
npolar
N

(3.8)

fi;neutral =
nneutral
N

(3.9)

fi;hydrophobic =
nhydrophobic

N
(3.10)

i = 1; 2; : : : ; 7 (seven properties), fi;� is the frequency of amino acid characterized
by polar / neutral / hydrophobic, n� represents the total number of polar / neutral
/ hydrophobic characters present in protein sequence, N is the length of the protein
sequence.

So according to this feature extraction model, it creates 21 dimension feature vec-
tor for each protein sequence. The distribution situation of amino acids properties are
showed in Table 3.3.

In Table 3.3, the 20 capitals denote the 20 amino acids respectively, the left column

Table 3.3: The distribution situation of amino acids properties

Property Polar Neutral Hydrophobic

hydrophobicity RKEDQN GASTPHY CLVIMFW

normalized GASCTPD NVEQIL MHKFRYW

vander Waals

polarity LIFWCMVY PATGS HQRKNED

polarizibility GASDT CPNVEQIL KMHFRYW

charge KR ANCQGHILMFPSTWYN DE

secondary structures EALMQKRH VIYCWFT GNPSD

solvent accessibility ALFCGINW RKQEND MPSTHY
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shows the seven properties of the amino acids, and the line represents the distribution
situation of the 20 amino acids under a property [111].

3.6.5.6 Amino Acid Index Distribution (AAID)

Amino Acid Index Distribution (AAID) considers the physicochemical value and order
of amino acids appeared in the protein sequence to express the protein sequence [111].
In this kind of model, the feature vector of the protein sequence can be represented by
the following formula [111]:

FAAID = [x1; x2; : : : ; x20; y1; y2; : : : ; y20; z1; z2; : : : ; z20] (3.11)

Firstly here, the �rst 20 dimension of vector FAAID is the combination of statistical
information and physicochemical values. Let R1; R2; � � � ; R20 represent the 20 natu-
ral amino acids A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, and Y respectively
and Ji (i = 1; 2; : : : ; 20) be the amino acid index value of the 20 natural amino acids
Ri. Here amino acid index is a set of 20 numerical values representing any of the
different physicochemical properties of the 20 amino acids [111]. By considering the
physicochemical property of the amino acid, we can de�ne the feature xi of amino
acid

xi = Jifi i = 1; 2; : : : ; 20 (3.12)

where fi is the frequency of the amino acids Ri in the protein sequence, Ji is the
physicochemical values of the amino acids Ri which are as follows [111]: J1 = 0:486,
J2 = 0:2, J3 = 0:288, J4 = 0:538, J5 = 0:318, J6 = 0:12, J7 = 0:4, J8 = 0:37,
J9 = 0:402, J10 = 0:42, J11 = 0:417, J12 = 0:193, J13 = 0:208, J14 = 0:418, J15 = 0:262,
J16 = 0:2, J17 = 0:272, J18 = 0:379, J19 = 0:462, J20 = 0:161.

Secondly, the following 20 dimension feature vectors is 2-order center distance
information, it does not only includes the statistical information and physicochemical
values, but also contains position information. The formula is as follows:

yi =
NRiX

j=1

�
Ki;j � �Ki

L
� Ji

�2

(3.13)

where NRi is the total number of amino acid Ri appearing in the protein sequence P,
Ki;j is the jth position of the amino acid Ri in the sequence, and �Ki is the mean of the
position of amino acid Ri.

Now feature yi contains the physicochemical information, statistical information
and the sequence-order information of amino acid Ri, but it still does not distinguish
the protein pairs in some cases [111]. To solve this problem, the 3rd order center
distance zi of amino acid Ri was introduced, which is de�ned as

zi =
NRiX

j=1

�
Ki;j � �Ki

L
� Ji

�3

(3.14)
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The 3rd order center distance information is almost same as 2nd order center dis-
tance except the order number. In our work, we have used the �rst 40 dimension
vectors.

3.6.5.7 GO-based Representation

The GO-based representation, which is a mode of general form pseudo-amino acid
compositions, was widely applied in predicting multisite protein subcellular locations
[15]. Let n be the total number of GO numbers that are considered in a study. Every
given protein is represented as follows:

PGO = [41;42; : : : ;4n]T (3.15)

where 4i; i = 1; 2; : : : ; n, can be de�ned in different ways.
For example, in Euk-mPLoc2 [112], every protein sequence has been searched

against the entire UniProtKB/SwissProt database using BLAST [113]. The sequences
with similarity scoring higher than a threshold were collected to form a homology set.
Let N be the total number of protein sequences in the homology set of a given protein,
and �(i; k) an indicator function as follows:

�(i; k) =

8
>>><

>>>:

1 if the k-th protein in the homology

set hits the i-th GO number

0 Otherwise

4i was de�ned as:

4i = �(i; 1) _ �(i; 2) _ : : : _ �(i;N) (3.16)

where _ is the disjunction operator in logical algebra. PGO is a binary vector with the
de�nition in equation 3.16, of which the i-th dimension indicates whether a hit can be
found against the i-th GO number for any of the protein in the homology set. However,
the importance of i-th GO number cannot be represented using only a binary form.
Therefore, in iLoc-Animal [114] and iLoc-Euk [115], an improved4i was proposed as
follows:

4i =
1
N

NX

k=1

�(i; k) (3.17)

This de�nition incorporates the enrichment information of a certain GO number in the
homology set of a given protein, which can be used as the importance of GO number.

3.6.5.8 Sequential Evolution Information

Biology is a natural science with historic dimension. This is very interesting that a very
limited number of ancestral species are responsible for biological species developed
so far. The fact is also applicable for the protein sequences [115, 116]. However,
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the evolution of protein sequences involves changes of single residues, insertions and
deletions of several residues, gene doubling, and gene fusion [115, 116]. In spite
of having long times for the above changes take place, the same biological function
of proteins and their presence in a same subcellular location are still common but
many similarities between initial and resultant corresponding proteins sequences got
eliminated.

In this context, to incorporate the sequential evolution information, let us use the
information of the PSSM (Position-Speci�c Scoring Matrix) [117], as described below:

1. Given a query protein sequence P as formulated by

P = R1R2R3R4R5R6 : : : : : : RL (3.18)

According to [117], the sequential evolution information of protein P can be
expressed by a 20� L matrix as given by

2

6666666664

�E1!1 �E2!1 : : : �EL!1

�E1!2 �E2!2 : : : �EL!2

...
... : : :

...

�E1!20 �E2!20 : : : �EL!20

3

7777777775

(3.19)

where L is the length of P (counted in the total number of its constituent amino
acids as shown in Eq. 3.18), �Ei!j represents the score of the amino acid residue
in the i-th position of the protein sequence being changed to amino acid type j
during the evolutionary process. Here, the numerical codes 1; 2; : : : ; 20 are used
to denote the 20 native amino acid types according to the alphabetical order of
their single character codes. The 20�L scores in Eq. 3.19 were generated by us-
ing PSI-BLAST [117] to search the UniProtKB/Swiss-Prot database (In our work,
File Name: uniprot_sprot.fasta, Download date: 14-01-2016) through three iter-
ations with 0:001 as the E-value cutoff for multiple sequence alignment against
the sequence of the protein P.

2. Use the elements in PSSM of equation 3.19 to de�ne a new matrix M as formu-
lated by

2

6666666664

E1!1 E2!1 : : : EL!1

E1!2 E2!2 : : : EL!2

...
... : : :

...

E1!20 E2!20 : : : EL!20

3

7777777775

(3.20)
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with

Ei!j =
�Ei!j �

��Ej
SD

� ��Ej
� i = 1; 2; : : : ; L; j = 1; 2; : : : ; 20 (3.21)

where

��Ej =
1
L

LX

i=1

�Ei!j j = 1; 2; : : : ; 20 (3.22)

is the mean for �Ei!j (i = 1; 2; : : : ; L) and

SD
� ��Ej

�
=

vuut
LX

i=1

h
�Ei!j �

��Ej
i2
=L (3.23)

is the corresponding standard deviation.

3. Introduce a new matrix generated by multiplying M with its transpose matrix
MT , which contains 20� 20 = 400 elements. Since MMT is a symmetric matrix,
we only need the information of its 210 elements, of which 20 are the diagonal
elements and (400�20)=2 = 190 are the lower triangular elements, to formulate
the protein P. Now the protein P can be formulated as

PEvo =
�
�E1 �

E
2 � � � �

E
u � � � �

E
210
�T (3.24)

where the components �Eu (u = 1; 2; � � � ; 210) are respectively taken from the
diagonal and lower triangular elements of MMT matrix by following a given
order, say from left to right and from the 1st row to the last as illustrated by
following equation

2

66666666666664

(1)

(2) (3)

(4) (5) (6)
...

...
... . . .

(191) (192) (193) : : : (210)

3

77777777777775

(3.25)

where the numbers in parentheses indicate the order of elements taken from the
matrix MMT .

It should be mentioned here that in this paper, the term ’PSSM’ has been used to
mean the name of the sequential evolution feature extraction approach.
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3.7 Post-translational Modi�cations (PTMs)

There are two major mechanisms for expanding the coding capacity of the 6000 (yeast)
to 30,000 (human) genes in eukaryotic genomes to generate diversity in the corre-
sponding proteomes, the inventory of all proteins in a cell or organism [118]. The �rst
route of diversi�cation of proteins is at the transcriptional level, by mRNA splicing,
including tissue-speci�c alternate splicing. The second route to proteome expansion
is the post-translational modi�cations (PTMs) of proteins which are usually covalent
modi�cations and occur after DNA has been transcribed into RNA and translated into
proteins [119].

Post-translational modi�cations (PTMs) are widely used to modulate protein func-
tion in the cell. It increases the structural and biophysical diversity of proteins and
thus enrich the information stored in the genomes. The accomplishment of Human
Genomic Project is one of the greatest science and technology achievements in the
twen-tieth century [120]. Upon close inspection of the �rst complete draft of the hu-
man genome it is surprisingly found out that only about 30000 to 50000 genes have
been found [121], which is only about three or �ve times that in the eelworm or the
drosophila. It is far from enough to regulate such a complex life process only depend-
ing on such a small number of genes. Therefore protein post-translational modi�ca-
tion process is extremely important. It makes the protein obtain more complicated
structures, perfect functions, more accurate regulations and more speci�c operations.
Human complexity is not simply a result of the direct protein products of genes. It
is the protein post-translational modi�cation that allows one gene to correspond not
only to one protein, which therefore grants, to some extent, our human life diversity.

There are various types of PTMs that are incorporated by the cell. To achieve the
required effect, a protein may undergo a single PTM or several PTMs that may engage
in cross-talk. In many cases, a single position on the protein can be altered by different
modi�cations so that switching between several effects (or functions) can be regulated
by the identity of the PTM at that position. PTMs are often classi�ed according to the
mechanisms involved: the addition of functional groups (e.g., phosphorylation and
glycosylation); attachment of other polypeptides (e.g., ubiquitination and SUMOyla-
tion); changing of the chemical nature of amino acids (e.g., acetylation, deamidation
and oxidation); and cleavage of the backbone by proteolysis. PTMs can also be catego-
rized according to the conformational preference of the modi�cation sites; namely, if
the PTM occurs on a structured or disordered region. PTMs at structured domains are
crucial, for example, for modifying enzymatic activities or stabilizing protein structure.
PTMs at disordered regions are advantageous because of the high-exposure of these
sites, which enables them to be accessed easily by the modifying enzymes through
high-speci�city and low-af�nity interactions that also often involve a disorder-to-order
transition.

Some Common Post-translational modi�cations (PTMs) are listed below:
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Table 3.4: 10 most common experimentally found modi�cations.

Frequency Modi�cation

8383 Phosphorylation

6751 Acetylation

5526 N-linked glycosylation

2844 Amidation

1619 Hydroxylation

1523 Methylation

1133 O-linked glycosylation

878 Ubiquitylation

826 Pyrrolidone Carboxylic Acid

504 Sulfation

� Ubiquitylation

� Acetylation

� Acylation

� Glycosylation

� Hydroxylation

� Succinylation

� Phosphorylation

� Sulfation

� Methylation

� Lipodation

� Carbonylation

3.7.1 Statistics of PTMs of Proteins

In 2011, statistics of each post-translational modi�cation experimentally and puta-
tively detected have been compiled using proteome-wide information from the Swiss-
Prot database [122]. The 10 most common experimentally found modi�cations has
been shown in Table 3.4.



Applications of MKL in Bioinformatics 51

3.7.2 Laboratory Experimental Approaches for Determining PTMs in Pro-
teins

Various types of laboratory experimental approaches have been developed to detect
various types of PTMs sites [106, 123]. For example, liquid chromatography has
been used to analyze carbonylated protein, optical detection methodologies, phosphor-
speci�c antibody , dual-mode �eld-effect devices and nanoplasmonic sensors, and ra-
dioisotope labelling have been used to detect phosphorylated sites, af�nity-tagged Ub,
Ub antibodies and Ub-binding have been used to Ubiquitinated sites and �nally high-
throughput mass-spectrometry (MS) technique for almost all types of PTMs sites de-
tection.

However, all the purely experimental techniques to determine PTM substrates are
cost inef�cient, time consuming, laborious, or sometimes it require the involvement of
chemical reagents [106, 55]. For example, when mass spectrometry is used, it requires
expertise and large investments [55].

3.7.3 Necessity of Computation Tools for PTMs Prediction

As protein post-translational modi�cation is not directly decided by gene, studies on
protein post-translational modi�cation are of great signi�cance for future researches
of proteomics. Moreover, various types of major human diseases including Alzheimer’s
disease, diabetes, Parkinson’s disease, chronic renal failure, chronic lung disease, sep-
sis are associated with protein carbolnylation [48]. Understanding what in�uences
the post-translational modi�cation will help to uncover cellular process and function
of protein network in molecular level and �nally help to design and develop drug more
precisely[120].

However, the purely experimental techniques, de�ne in section 3.7.2 to determine
the exact modi�ed sites of proteins is expensive as well as time-consuming, especially
for large-scale datasets. In this context, it is highly demanded to use computational
approaches to identify the PTM sites effectively and accurately [106].

3.7.4 Methods to Predict Post-translational Modi�cation and Dataset

Various types of computational methods have developed to predict various types of
post-translational modi�cation. Some method have developed to predict whether a
protein can be able to be modi�ed by any PTM and some other methods have de-
veloped to predict PTM sites of a known modi�ed proteins. Random forest and en-
semble of random forest methods are very popular in the prediction of various types
of PTM and PTM sites (succinylation, carbonylation, phophorylation, etc.) prediction
[49, 51, 104, 105, 50, 55] . Another important used method in the prediction of PTM
sites is SVM [124, 106, 107, 125, 37, 126]

Generally, in the �eld of PTM site prediction, researchers collect protein sequences
containg PTM site from different sources such as UniProtKB/Swiss-Prot, CPLM databases,
multiple published articles, etc. Most of the researcher made benchmark dataset
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Table 3.5: Dataset name and their location of source

Dataset Name Location

Carbonylation Sites http://www.jci-bioinfo.cn/iCar-PseCp

Dephosphorylation Sites http://genomics.fzu.edu.cn/dephossite/

Lysine Malonylation Sites http://app.aporc.org/Mal-Lys/

S-sulfenylation Sites http://app.aporc.org/iSulf-Cys/

Succinylation Sites http://www.jci-bioinfo.cn/iSuc-PseOpt

Phophorylation sites http://www.jci-bioinfo.cn/iPhos-PseEn

Phophorylation Proteins http://www.jci-bioinfo.cn/Multi-iPPseEvo

set by collecting protein sequences from the web site at http://www.uniprot.org/ by
giving various constrains such as i) experimental assertion for evidence, ii)consider
only human protein sequences, and iii) use keywords of ’acetyllysine’, ’crotonyllysine’,
’methyllysine’ , ’succinyllysine’ or other name of PTM site in the advance search option.

Some of the benchmark dataset with their source of location and the name of the
reference paper are listed in Table 3.5.

3.7.5 Feature Extraction Technique of PTMs Site Prediction

In the theme of using machine learning methods to predict post-translational modi�-
cation sites (PTMs), the protein sequences are fragmented by considering a window
size with keeping the modi�ed residue in the central position. According to Chou’s
scheme, a potential PTM site containing peptide sample can be generally expressed by

P�(�) = R��R�(��1)R�(��2) � � �R�2R�1 �R+1R+2 � � �R+(��1)R+� (3.26)

where the symbol � denotes the single amino acid modi�ed residue (such as K, S, T, Y,
etc.) the subscript � is an integer, R�� represents the �-th upstream amino acid residue
from the center, the R+� represents the �-th downstream amino acid residue, and so
forth.

However, as most existing machine learning algorithm can handle only vector but
not sequence sample, one of the critical problem in PTMs prediction is how to extract
vector from peptide sample with keeping considerable sequence characteristics. The
appropriate features of protein samples plays very important roles for the prediction
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of PTM site in proteins. Some of the well known feature extraction technique in the
�eld of PTM site prediction are listed below [106, 105]:

� Binary encoding

� CKSAAP encoding scheme

� Position-speci�c amino acid propensity (PSAAP)

� AAIndex property

� Amino Acid Occurrence Frequency (AAOF)

� K Nearest Neighbor Score (KNNS) Encoding based on attribute grouping

� Position Weight Amino Acid Composition (PWAAC)

� Sequence Coupling Model

To understand clearly of some experiments of this thesis, one of the feature extrac-
tion techniques has been discussed in the following section:

3.7.5.1 Sequence Coupling Model

The (2� + 1)-tuple peptide sample (de�ned in equation 3.26) P�(�) can be further
classi�ed into the following two categories:

P�(�) 2

8
<

:
P+
� (�) if its center is a modi�ed site

P�� (�) otherwise
(3.27)

where P+
� denotes a true PTM segment with modi�ed residue (such as K, S, T, Y, etc.)

at its center, P�� denotes a corresponding false modi�ed segment, and the symbol 2
means ’a member of’ in the set theory.

Based on the general PseAAC’s concept, the peptide sequence of equation 3.26 can
be formulated as

P�(�) = P+
� (�)� P�� (�) (3.28)

where
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P+
� (�) =

2
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(3.29)

and

P�� (�) =
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666666666666666666666666666666664
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(3.30)

In Eq. 3.29 p���
�
R��jR�(��1)

�
is the conditional probability of amino acid R�� oc-

curring at the left 1st position (see Eq. 3.26) given that its closest right neighbor is
R�(��1), p��(��1)

�
R�(��1)jR�(��2)

�
is the conditional probability of amino acidR�(��1)

occurring at the left 2nd position given that its closest right neighbor is R�(��2), and
so forth. Note that in Eq. 3.29, only p+

�1 (R�1) and p+
+1 (R+1) are of non-conditional

probability since the right neighbor of R�1 and the left neighbor of R+1 are always �
(modi�ed residue). All these probability values can be easily derived from the positive
benchmark dataset. Likewise,the components in Eq. 3.30 are the same as those in Eq.
3.29 except for that they are derived from the negative benchmark dataset.



Chapter 4

Implementation of Experiments,
Results and Discussion

4.1 Introduction

Multiple kernel learning uses a prede�ned set of kernels and learns an optimal linear
or non-linear combination of kernels as part of the algorithm. Reasons to use multiple
kernel learning include a) the ability to select the appropriate kernel and its parame-
ters (both are considered as the choice of kernel problem) from a larger set of kernels,
and b) combining data from different sources that have different notions of similar-
ity. Considering these two uses of MKL, we have applied this technique in two well
known bioinformatics problem to improve their performance than existing systems.
One is protein subcellular localization prediction and another one is post-translation
modi�cations (PTMs) prediction.

In the case of protein subcellular localization prediction, we have used MKL based SVM
in the following two situations in order to improve the performance of our system than
other existing systems.

1. When we will use single source of information, in that case, choice of kernel
problem will be solved by MKL. Herein, the set of radial basis function (RBF)
kernels (different values of sigma create different kernels) will considered as the
search space of the choice of kernel problem.

2. MKL has been used to fuse different source of information.

In case of PTM prediction, we have tried to developed two different prediction system.

1. One is post-transtional modi�cations sites prediction. For a given protein, pre-
dictor will prediction in which site or amino acid will be modi�ed. In this type of
prediction, protein will be fragmented with a prede�ned with window size where
the modi�ed residue will take the middle position. After that, those fragment,
called peptide samples, will be used to train and test the predictor.

55
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2. Another one is that for a given protein, predictor will predict whether this protein
can be modi�ed or not. If yes, then which types of modi�cation will occur in this
protein. But, where the modi�cation will happen will not be predicted by this
system.

Like, protein subcellular localization prediction, in this two cases of PTMs predic-
tion, various feature extraction techniques are available. So, in this type of prediction,
we have also used MKL to fuse different source of information and improve the per-
formance than other existing system.

Table 4.1: Experiment name

No. Experiment Name

1
predMultiLoc-Gneg: Predicting Subcellular Localization of Gram-Negative
Bacterial Proteins Using Feature Selection in Gene Ontology Space and Sup-
port Vector Machine with Resolving the Data Imbalanced Issue

2
predCar-Site: Carbonylation Sites Prediction in Proteins Using Support Vector
Machine with Resolving Data Imbalanced Issue

3
predSucc-Site: Lysine Succinylation Sites Prediction in Proteins Using Support
Vector Machine with Resolving Data Imbalanced Issue

4
mLysPTMpred: Multiple Lysine PTM Site Prediction Using Combination of
SVM Classi�er with Resolving Data Imbalanced Issue

5
Protein Subcellular Localization Prediction using Support Vector Machine with
the Choice of Proper Kernel

6
Protein Subcellular Localization Prediction Using Multiple Kernel Learning
Based Support Vector Machine

7 Protein Subcellular Localization Prediction Using Kernel Based Feature Fusion

8
predHumPhos: Predicting Human Phosphorylated Proteins Using Multiple
Kernel Learning (MKL) Based Support Vector Machine

9
iMulti-HumPhos: A Multi-Label Classi�er for Identifying Human Phosphory-
lated Proteins Using Multiple Kernel Learning Based Support Vector Machine

However, we have done nine experiments in these two area of bioinformatics, as shown
in Table 4.1. In these experiments, at �rst we shown the power of SVM with single
kernel by developing four prediction systems (Experiments 1, 2, 3, 4 of Table 4.1).
In these four prediction systems, RBF kernel has been used in SVM and its parameter
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sigma has been found (choice of kernel from the set of RBF kernels) by using time
consuming grid search technique. In the second steps, we have done one experiment
(Experiment 5 of Table 4.1) to show how proper kernel selection affects the perfor-
mance of a predictor. In the third step, multiple kernel learning has been used in our
one experiment (Experiment 6 of Table 4.1 ) to solve the choice of kernel problem.
In this case, the set of radial basis function (RBF) kernels (different values of sigma
create different kernels) has been considered as the search space of the choice of ker-
nel problem. We have also compared the runtime performance of our system with the
system developed using single kernel based SVM and other existing top systems. Fi-
nally, we have used MKL in order to fused multiple data sources. We have done three
experiment (Experiments 7, 8, 9 of Table 4.1). One in the �eld of protein subcellular
localization prediction. Other two in the �eld of protein post translational modi�ca-
tions prediction. All of the experiments and their results are discussed one-by-one in
the following section of this chapter.

4.2 Common Topics for Most of the Experiments

4.2.1 Imbalance Data Management

Any data set that shows an unequal distribution between its classes can be considered
imbalanced data set problem. The main challenge in imbalance problem is that the
small classes are often more useful, but standard classi�ers tend to be weighed down
by the huge classes and ignore the tiny ones. Although SVMs work effectively with
balanced datasets, they provide sub-optimal models with imbalanced datasets [127,
128]. The main reason for the SVM algorithm to be sensitive to class imbalance would
be that the soft margin objective function given in Eq. 2.5 assigns the same cost (i.e.,
C) for both positive and negative misclassi�cations in the penalty term [129]. In this
thesis, for most of experiments, we have managed imbalance dataset issue to produce
better prediction result using the following techniques.

4.2.1.1 Techniques Used in Experiments 1, 2, 3, 4, 8, 9

In the experiments 1, 2, 3, 4, 8, and 9, we have used a Different Error Costs (DEC)
method to handle imbalance dataset problem. The Different Error Costs (DEC) method
is a cost-sensitive learning solution proposed in [127] to overcome this problem in
SVMs. In DEC method, the SVM soft margin objective function is modi�ed to assign
two misclassi�cation costs, such that C+ is the misclassi�cation cost for positive class
examples, while C� is the misclassi�cation cost for negative class examples. In our
work, the following equations give the cost for the positive and negative classes

C+ = C �N=(2 �N1); C� = C �N=(2 �N2) (4.1)

where N is the total number of instances, N1 is the number of instances for positive
class, and N2 is the number of negative class.
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4.2.1.2 Techniques Used in Experiment 7

In the experiment 7, we have used a hybrid model using random oversampling and
Different Error Costs (DEC) to handle imbalance dataset problem. At �rst we have
applied random oversampling and after that we have applied Different Error Costs
(DEC) in our implementation. Random oversampling is simple but well-known resam-
pling methods applied to solve the problem of class imbalance. Oversampling balances
the data set by replicating the examples of minority class. In experiment 7, random
oversampling has been used to replicate minority class in such a way that the ratio
among majority and minority class will be almost 2:1. After doing the oversampling,
still the dataset suffers from data imbalance problem. To overcome this rest imbalance
situation, we have used DEC method. In DEC method, the SVM soft margin objective
function is modi�ed to assign two misclassi�cation costs, such that C+ is the misclas-
si�cation cost for positive class examples, while C� is the misclassi�cation cost for
negative class examples, as given in Eq. 4.1.

4.2.2 Experimental Setting

In statistical prediction, there are three commonly used methods to derive the metric
values for a predictor, these are, the independent dataset test, subsampling (e.g., K-fold
cross validation) test, and jackknife test [105, 49, 130] . These methods are often used
for testing the accuracy of a statistical prediction algorithm. However, among those
three methods, the jackknife test is deemed the most objective because it can always
yield a unique result for a given benchmark data set, as reported in a comprehensive
review [131]. Although the jackknife test has been increasingly and widely adopted
by investigators to examine the power of various prediction methods, it takes huge
computational time for a larger dataset.

In most of the experiments (Experiments 2-7, 8 of Table 4.1) of this thesis, we have
used K-fold cross validation (subsampling) method to save the computational time. As
the information about the exact K-way (K can be 5 or 10) splits of dataset used in
previous studies is not published, therefore, in order to validate the stability and the
statistical signi�cance of our results, we have repeated the K-fold cross validation for
multiple times. In order to compare our results with other system, we have also used
jackknife test to derive the value of a metric in the experiments 1 and 8.

It can be mentioned here that all the trains and tests in all experiments have been
conducted on a standard machine of DELL Optiplex 390 with 8 GB RAM and Core-i3
processor running at 3.30 GHz.

4.2.3 Measuring Metrics

For measuring the predictive capability and reliability of our systems or predictors we
have different types of evaluation metrics depending on the nature of experiments. Al-
though different experiments use different evaluation metrics, some experiments use
common metrics. Some experiments are binary class single-label problem and some
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are multiclasss multi-label problem. The evaluation metrics for multi-label problems
are different than single-label problems. There are various types of multi-label eval-
uation metrics are available. Herein, we have also used different types of evaluation
metrics in different experiments depending on the existing top systems, so that we can
make comparison with that systems.

4.2.3.1 Evaluation Metrics for the Experiments 1, 7

In the experiments 1, 7, we have used the (overall) locative and actual accuracy to
measure the performance of multi-label predictors. The concept of locative proteins
and actual proteins has been introduced in [14, 63, 29]. The overall locative and
actual accuracy are de�ned as follows [14]:

overall locative accuracy =
1
Nloc

NdifX

i=1

jYi \ Zij (4.2)

overall actual accuracy =
1

Ndif

NdifX

i=1

1(Yi � Zi) (4.3)

where Yi is the set of true labels of each protein, Zi the set of predicted labels of
each one, Nloc the number of locative proteins, Ndif the number of different (actual)
proteins, j � j the operator acting on the set to count the number of its elements, \ the
intersection of sets, 1(Yi � Zi) equals 1 if true labels are entirely identical to predicted
labels, 0 otherwise.

According to Eq. 4.2, a locative protein can be de�ned as correctly predicted if any
of the predicted labels matches any labels in the true label set. On the other hand,
Eq. 4.3 describes that an actual protein is considered to be correctly predicted when
all of the predicted labels must match in the true label set exactly [14]. Therefore, the
actual accuracy is stricter than the locative accuracy [14, 63].

4.2.3.2 Evaluation Metrics for the Experiments 2, 3, 8

In the experiments 2, 3 and 8, the problems which we have solved are binary single-
label problems. To evaluate for this kind of systems, a set of four metric is usually used
in the literature: (i) overall accuracy or Acc, (ii) Mathew’s correlation coef�cient or
MCC, (iii) sensitivity or Sn, and (iv) speci�city or Sp [106, 132, 133, 134].

Sn =
TP

(TP + FN)

Sp =
TN

(TN + FP )

Acc =
(TP + TN)

(TP + TN + FP + FN)

MCC =
(TP � TN)� (FP � FN))

p
((TP + FP )(TP + FN)(TN + FP )(TN + FN)

(4.4)
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where TP (true positive) denotes the number of modi�ed (carbonylated, succinylated
or phophorylated) peptides correctly predicted, TN (true negative) the numbers non-
modi�ed peptides correctly predicted, FP (false positive) the non-modi�ed incorrectly
predicted as the modi�ed peptides, and FN (false negative) the modi�ed peptides
incorrectly predicted as the non-modi�ed peptides.

4.2.3.3 Evaluation Metrics For the Experiments 5, 6

In the experiments 5 and 6, we have developed two multiclass multi-label systems in
the �eld of protein subcellular localization prediction. In these experiments, we have
used various types of adapted measures such as accuracy and F1 score proposed by
Tsoumakas et al. [62] for evaluating multi-label classi�cation in our evaluation.

To formally de�ne these evaluation measures, let D be a dataset containing m
proteins and S = fs1; s2; : : : ; sqg be the set of q possible subcellular components in
the cell. For a given protein P, let MP = fsijlPi = 1; where 1 � i � qg be the set of
locations to which protein P localizes according to the dataset, and let M̂P = fsijl̂Pi =
1; where 1 � i � qg be the set of locations that a classi�er predicts for protein P, where
l̂Pi ; l

P
i 2 f1; 0g. It should be noted here that lPi or l̂Pi takes the value 1 if P actually

localizes si or predicted to si respectively. The multi-label accuracy and the multi-label
F1 score are computed as [17]

Acc =
1
jDj

X

P2D

jMP \ M̂P j
jMP [ M̂P j

and

F1 =
1
jDj

X

P2D

jMP \ M̂P j
jMP j+ jM̂P j

respectively.
In our evaluation, we have also used adapted measures of multi-label precision and

recall denoted Presi and Recsi to evaluate how well our system classi�es proteins as
localized or not localized to each individual location si, and de�ned as follows [39]:

Presi =
1

jfP 2 Djsi 2 M̂P gj

X

P2Djsi2M̂P

jMP \ M̂P j
jM̂P j

Recsi =
1

jfP 2 Djsi 2 M̂P gj

X

P2Djsi2MP

jMP \ M̂P j
jMP j

We have used here the terms Multilabel-Precision and Multilabel-Recall to refer to
Presi and Recsi respectively. It should be mentioned that Presi represents the ratio
of the number of correctly predicted multiple locations to the total number of multiple
locations predicted, and Recsi represents the ratio of the number of correctly predicted
multiple locations to the number of original multiple locations, for all the proteins that
co-localize to location si [17][8]. Therefore, high values of these measures for proteins
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that co-localize to the location si can be used to indicate that the sets of predicted
locations that include location si are predicted correctly [17].

Standard precision and recall measures, denoted by Pre_Stdsi and Rec_Stdsi , are
used in this paper to evaluate the correctness of predictions made for each location si
and computed as:

Pre_Stdsi =
TP

TP + FP

Rec_Stdsi =
TP

TP + FN
where TP (true positives) denotes the number of proteins that localize to si and are
predicted to localize to si, FP (false positives) denotes the number of proteins that do
not localize to si but are predicted to localize to si, and FN (false negatives) denotes
the number of proteins that localize to si but are not predicted to localize to si.

Additionally, the adapted measure of F1-label score used by Briesemeister et al.
[30] for evaluating the performance of multi-location predictors will be used in our
evaluation and it is de�ned as:

F1 � label =
1
jSj

X

si2S

2� Presi �Recsi
Presi +Recsi

where S is the set of all locations.

4.2.3.4 Evaluation Metrics For the Experiments 4, 9

Evaluation metrics for experiments 4 and 9 are described in their respective material
and methods section.

4.3 Experiment No 1:- predMultiLoc-Gneg: Predicting Sub-
cellular Localization of Gram-Negative Bacterial Proteins
Using Feature Selection in Gene Ontology Space and Sup-
port Vector Machine with Resolving the Data Imbalanced
Issue

4.3.1 Motivation and Goals

With the rapid increase of protein sequences in the post-genomic age, the need for
an automated and accurate tool to predict protein subcellular localization becomes
increasingly important. In this context, several types of subcellular localization predic-
tion methods have been proposed depending on various classi�cation methods which
produce different levels of accuracy. Most of them aim to �nd the optimal classi�-
cation scheme and less of them take simplifying the complexity of biological system
into consideration. There are two important issues that can take place to simplify
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the complexity of prediction system before developing successful predictor: handling
high dimension feature, and overcoming the challenge of large data imbalance in the
training data. To the best of our knowledge, Gneg-mPLoc [135], iLoc-Gneg [29] and
Gneg-ECC-mPLoc [63] are capable of predicting multi-label gram-negative bacterial
proteins with highest accuracy so far. They have used GO approach to do prediction
which increases the dimension of input features. However, they have not reduced
the dimension of the input feature and have not solved the issue of dataset imbal-
ance problem to develop their systems. In this context, in order to meet the current
demand to produce ef�cient high-throughput tools, additional effort are required to
further improve the prediction quality

Therefore, in this experiment, a novel computational tool termed predMultiLoc-
Gneg has been developed to predict the subcellular localization of gram-negative bac-
terial proteins by (1) selecting relevant GO (Gene Ontology) terms in order to create
a GO subspace which reduces feature dimension in contrast to the whole GO space
and extracting GO-based features for a protein by considering only these relevant GO
terms, (2) constructing a multi-label predictor using support vector machine (SVM)
with resolving data imbalance issue. Moreover, a user-friendly web server for the
predMultiLoc-Gneg has also been established at http://research.ru.ac.bd/predMultiLoc-
Gneg/

4.3.2 Materials and Methods

4.3.2.1 Short Description of Dataset and Working Procedure of the Proposed
System

In this work, the gram-negative bacterial benchmark dataset used in Gneg-mPLoc
[135], iLoc-Gneg [29] and Gneg-ECC-mPLoc [63] is used to evaluate the prediction
performance of our system. The gram-negative bacterial dataset contains 1392 differ-
ent proteins, called actual proteins, which are distributed in 8 locations. Among these
gram-negative proteins, 1328 belong to one subcellular location, 64 to two locations,
and none to more locations. Hence, there are 1456 (1328+64 *2) locative proteins
in total in this dataset. The concept of locative proteins and actual proteins has been
explained in detail in literature [14, 63]. The name of these eight locations and the
number of proteins in each location are shown at Table 4.2. The pairwise sequence
identity among proteins in this dataset is controlled fewer than 25%. This benchmark
is available at: http://www. csbio.sjtu.edu.cn/bioinf/Gneg-multi/.

The proposed predictor, called predMultiLoc-Gneg, has followed the following steps

1. GO Subspace Selection

2. Extract GO vector using GO terms (relevant GO terms) of GO subspace.

3. Finally train support vector machine with resolving data imbalance issue and
produce prediction output.
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Table 4.2: Distribution of protein subcellular locations in the gram-negative bacterial dataset

No. Subcellular location No. of proteins

1 Cell inner membrane 557

2 Cell outer membrane 124

3 Cytoplasm 410

4 Extracellular 133

5 Fimbrium 32

6 Flagellum 12

7 Nucleoid 8

8 Periplasm 180

Total number of locative proteins 1456

Total number of different proteins 1392

To provide an intuitive view, the working procedure of our system is shown in
Figure 4.1.

4.3.2.2 Feature Extraction Approaches of Proteins

The appropriate features of protein samples plays very important roles for the predic-
tion of protein subcellular localization, as a result it draws much attention of scientist
that how to select the core and essential features of protein samples. Moreover, as most
existing machine learning algorithm can handle only vector but not sequence sample,
one of the critical problem in bioinformatics is how to extract vector from biological
sequence with keeping considerable sequence characteristics [49]. In this experiment,
primarily GO based feature has been used and dipeptide composition (DC) feature has
been used as backup where GO based feature is not available. Dipeptide composition
(DC) feature extraction approach has been discussed in section 3.6.5.2. In this study,
we have extracted GO based feature a little bit different ways than that de�ned in
section 3.6.5.7, which is discussed in below:

Gene Ontology
Gene Ontology (GO) is a set of standardized vocabularies that annotate the function
of genes and gene products across different species [14, 136]. In the GO database,
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Figure 4.1: A �owchart to show the prediction process of predMultiLoc-Gneg
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the annotations of gene products are organized in three related ontologies: cellular
components, biological processes, and molecular functions. For having continuous
effort of the GO consortium annotation, the Gene Ontology (GO) annotation database
has become a large and comprehensive resource for proteomics research [136] such
as predicting the enzymatic attribute of proteins, predicting the transcription factor
DNA binding preference. As a result, Gene Ontology could be used to improve the
predictive performance of protein subcellular localization [33]. In this paper, the GO
based feature extraction process has been divided into two parts :- (I) GO subspace
selection and (II) GO terms extraction and GO-vector construction.

(I) GO Subspace Selection
To facilitate the sophisticated machine learning approach for the multi-label prob-

lem, GO subspace selection is adopted from the work of Wan et. al.[14]. Unlike some
prediction methods [135, 29, 63] which use all of the GO terms in the GO annotation
database to form the GO-vector space, predMultiLoc-Gneg selects a GO subspace by
�nding a set of distinct relevant GO terms. With the rapid growth of the GO database,
the number of GO terms is also increasing. As of January 2016, the number of GO
terms is 27003, which means that without feature selection, the GO vectors will have
dimension 27003. This imposes computational burden on the classi�er, especially
when leave-one-out cross validation is used for evaluation [14]. There is no doubt
that many of the GO terms in the full space are redundant, irrelevant or even detri-
mental to prediction performance [14]. In this work, we have selected 1902 GO terms
that appeared for the 1392 gram-negative bacterial proteins in the GO database to
form a GO subspace. By selecting a set of distinct GO terms to form a GO subspace,
predMultiLoc-Gneg has reduced the irrelevant information and at the same time in-
creased the speed of the prediction system without compromising the performance. It
should be mentioned that these selected 1902 GO terms will be called as relevant GO
term.

(II) GO Terms Extraction and GO-Vector Construction
The predMultiLoc-Gneg predictor supports two types of input format of protein.

One format considers both the accession numbers and amino acid (AA) sequences as
input and should follow the FASTA format. The other one consider only amino acid
(AA) sequences as input. When we know both accession numbers and amino acid (AA)
sequences of query protein then we will use the following steps to �nd GO terms and
construct GO-vector.

1. Search the accession number against the GO database (release of GO database
on 20-01-2016) at http://www.ebi.ac.uk/GOA/ to �nd the corresponding GO
term. If we get GO term for that protein using the accession number then go to
step 4. However, many proteins have not been annotated in the GO database due
to recently addition to Swiss-Prot. As a result, if we use the accession numbers
of these proteins to search against the GO database, the corresponding GO term
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will be empty. This suggests that we should use the ACs of their homologs as the
searching keys. In order to get ACs of a protein’s homologs go to step 2.

2. Use BLAST [117] to search the homologous proteins of the query protein P from
the Swiss-Prot database (File Name: uniprot_sprot.fasta, Download Date: 14-
01-2016), with the expect value E � 0:001 for the BLAST parameter. Those
proteins which have � 60% pairwise sequence identity with the query protein P
are collected into a set, SHP , called the "homology set" of P. All the elements in SHP
can be deemed as the "representative proteins" of P. Because they are retrieved
from the Swiss-Prot database, these representative proteins must have their own
accession numbers.

3. Use the accession number of top homolog of SHP to �nd GO term against the GO
database and go to step 4 if GO term has been found. However, we observed
that for some novel proteins, even the top homologs do not have any GO terms
annotated to them. To overcome this limitation, the following procedure has
been adopted. For the proteins whose top homologs do not have any GO terms
in the GO database, we have used the second-top homolog to �nd the GO terms,
similarly, for the proteins whose top 2nd homologs do not have any GO terms, the
third-top homolog has been used, and so on until got an accession number from
SHP that have GO terms. If GO terms of an accession number has been found in
the search procedure then stop the search and go to step 4. It should be noted
that if we do not get any GO term for any homolog of SHP then our system will
use backup feature to predict the subcellular location of the query protein.

4. Suppose K distinct GO terms have been found in step 1 or step 3. Then the query
protein P has been expressed by the following formulation

PGO = [�G1 �
G
2 � � � �

G
u � � � �

G
1902]T (4.5)

where T is the transposing operator, and

�Gi =

8
<

:
1 if a hit is found the i-th GO term

0 otherwise

In order to use the bene�t of GO approach the accession number of a query protein
is indispensable as an input. But, there are many proteins, such as synthetic and
hypothetical proteins, or newly-discovered sequences without being deposited into
databanks yet, which do not have accession numbers [135, 112]. In that case, we
have followed the above mentioned steps 2 to 4 to extract GO terms and construct GO
vector.

Note that the GO formulation of Eq. 4.5 may become a naught or meaningless
vector under any one of the following situations: (1) the query protein itself and its
homolog proteins do not have GO information, (2) the query protein does not have
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signi�cant homology to any protein in the Swiss-Prot database, i.e., SHP = ; meaning
the homology set is an empty one, (3) there is no common GO term between found GO
terms in the above mentioned steps 2 and 3 and the relevant GO terms de�ned in GO
subspace selection. Therefore, it is necessary to consider the dipeptide composition
(DC) based feature representation for those proteins which fail to be meaningfully
expressed the GO feature representation.

4.3.2.3 Support Vector Machine and its Kernel

The multiclass multi-label SVM modeling algorithm has been used in this study. It is
explained in section 2.2.1.3. In the study, we have used radial basis function (RBF)
kernel. The de�nition of RBF kernel has been de�ned in section 2.2.1.1.

4.3.2.4 Imbalance Data Management

In this experiment, we have used a Different Error Costs (DEC) method to handle
imbalance dataset problem for this kind of prediction that is discussed in 4.2.1.1.

4.3.2.5 Experimental Setting

In this paper, in order to save the computational time, two stage approaches has been
used to �nd the best model for our predictor. In the �rst stage, we have used 5 com-
plete runs of the 5-fold cross validation and each time we have used grid-search tech-
nique to select the values of parameters considering the highest actual accuracy. In
this way, we have got 5 sets of parameters (such as values of C and sigma) for SVM.
In the second stage, we have used jackknife test and searched again using grid search
approach to select the values of parameter. But, this time the search space will be
limited to the 5 sets of values of the parameter which has been found in the �rst stage.

4.3.2.6 Measuring Metrics

In this work we have used the (overall) locative and absolute accuracy to measure the
performance of multi-label predictors. The formulation of locative proteins and actual
proteins has been de�ne in section 4.2.3.1.

4.3.3 Results and Discussion

4.3.3.1 Model Selection for SVM

The selection of an appropriate kernel and its parameters for a certain classi�cation
problem in�uence the performance of the SVM. The literature survey have showed that
most of the researchers applied radial basis function (RBF) kernel to build SVM based
subcellular localization prediction [14] and have found the value of its parameter by
using different techniques such as trial and error, heuristics or grid search procedure.
In our experiment, we have also used RBF kernel and at the same time, grid-search
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Table 4.3: Selected C and � of 5 complete runs of the 5-fold cross-validation for RBF kernel
based SVM.

No. of Completes Run C �

1st 28 27

2nd 26 26

3rd 28 27

4th 28 27

5th 27 27

technique has been used to �nd the best model for SVM. Grid search method selects
the best solution by evaluating several combinations of possible values. To �nd the
parameter value C (penalty term for soft margin) and sigma, we have considered the
values from 2�8 to 28 for C and from 2�8 to 28 for sigma as our searching space. Herein,
the value of C will be used to �nd the misclassi�cation cost of C+ and C� de�ned in
equation 4.1

According to the experimental setting de�ned in section 4.3.2.5, in the �rst stage,
we have performed 5 complete runs of the 5-fold cross-validation and each time we
have selected the best parameter (value of C and sigma) of the classi�er depending on
the value of actual accuracy using grid search technique. In this way, �ve sets of C and
sigma have been selected for SVM classi�er as shown in Table 4.3. However, in the
second stage, we have performed jackknife test and searched the best parameter for C
and sigma among the selected �ve sets of C and sigma. Finally, we have found the best
model with the value of C = 28 and � = 27 for our predictor through jackknife test.

It can be mentioned here that we have used Matlab 2014b version to implement
our system where the svmtrain function of Matlab by default uses DEC with the same
cost de�ned in Eq. 4.1 to handle imbalance situation.

4.3.3.2 Prediction Performance Evaluation

In this section, we have compared our proposed predMultiLoc-Gneg predictor with
three state-of-the-art gram negative bacterial multi-label predictors, i.e., Gneg-mPLoc
[135], iLoc-Gneg [29] and Gneg-ECC-mPLoc [63] predictors. In this article, we have
used the jackknife test to evaluate the prediction performance of our proposed predMultiLoc-
Gneg predictors. Note that if a query protein itself and its homologous proteins do not
have any GO term from the GO database or produce zero GO-vector if GO terms found,
i.e. no GO hit found in GO subspace (explained in section 4.3.2.2), dipeptide compo-
sition feature based backup method is used for predicting subcellular localization of
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Table 4.4: Performance comparison of predMultiLoc-Gneg with the state-of-the-art predictors
on the gram-negative bacterial benchmark dataset by the jackknife test

Subcellular
location

Success rate by jackknife test

predMultiLoc-
Gneg

Gneg-
ECC-
mPLoc

Gneg-
mPLoc

iLoc-
Gneg

Cell inner membrane 98.38% 95.5% 94.3% 96.8%

Cell outer membrane 95.16% 94.4% 84.7% 83.1%

Cytoplasm 96.59% 92.2% 87.1% 89.5%

Extracellular 96.99% 93.2% 59.4% 86.5%

Fimbrium 100% 93.8% 87.5% 93.8%

Flagellum 100% 100% 0.0% 100%

Nucleoid 87.50% 87.5% 0.0% 50%

Periplasm 96.11% 94.4% 85.6% 89.4%

Overall locative accuracy 97.18% 94.1% 85.7% 91.4%

Overall actual accuracy 92.96% 92.4% _ 89.9%

protein. In the gram-negative bacterial benchmark dataset, we have not got any situ-
ation de�ned above. But, in order to predict future data, we have added DC feature
based backup classi�er using SVM in our prediction system.

Table 4.4 shows the comparison results of our proposed predMultiLoc-Gneg pre-
dictor against three state-of-the-art multi-label predictors for gram-negative bacterial
benchmark dataset. As can be seen from Table 4.4, considering the overall loca-
tive accuracy, predMultiLoc-Gneg performs better than Gneg-mPLoc, iLoc-Gneg and
Gneg-ECC-mPLoc. Speci�cally, the overall locative accuracy achieved by predMultiLoc-
Gneg is 97.18%, which is more than 11% higher than that achieved by Gneg-mPLoc,
5% higher than that achieved by iLoc-Gneg and 3% higher than that achieved of
Gneg-ECC-mPLoc . On the other, the overall actual accuracy of predMultiLoc-Gneg
is 92.96%, which is little bit higher than Gneg-ECC-mPLoc and 3% higher than iLoc-
Gneg.

As for the individual locative accuracies for the gram-negative bacterial dataset,
predMultiLoc-Gneg achieves higher locative accuracies than Gneg-ECC-mPLoc and
iLoc-Gneg for all of the 8 locations, except for the ’Flagellum’ for which predMultiLoc-
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Gneg, Gneg-ECC-mPLoc, and iLoc-Gneg achieve the similar locative accuracies. On
the other hand, the locative accuracies of predMultiLoc-Gneg for all of the 8 locations
are remarkably higher than Gneg-mPLoc, as shown in Table 4.4.

Compared with the existing predictors, predMultiLoc-Gneg have done better due
to the following two advantages: (I) predMultiLoc-Gneg reduces the dimension of GO
space by selecting a GO subspace which eliminates redundant information and then
improves the prediction performance of multi-label proteins [14], (II) it minimizes the
effect of imbalance training dataset which can generate better prediction results [49].

4.3.3.3 Protocol Guide

To attract more users especially for the experimental scientists and enhance the value
of practical application, a user-friendly web-server for predMultiLoc-Gneg has been es-
tablished at http://research.ru.ac.bd/predMultiLoc-Gneg/. A brief step-by-step guide
on how to use the web server is given below

I Open the web server at http://research.ru.ac.bd/ predMultiLoc-Gneg / and you
will �nd the home page of the predictor on your display as shown in Fig. 4.2.
You will have to either type or copy and paste the query protein sequence into
the input text box at the center of Fig. 4.2. The predMultiLoc-Gneg predictor
supports two types of input protein format. One format has both the accession
numbers and amino acid (AA) sequences as input and should follow the FASTA
format. The other one consider only amino acid (AA) sequences as input. The
example of these input format of protein sequences are available by clicking at
example button located right above the input text box.

II In order to get the predicted result, click on the Submit button. For example, if
you use any of the query protein sequence given under Example button as input,
it will take 30s or more from the time of your submission to get desired output
of each sequence.

III In order to get batch prediction, you will have to enter desired batch input �le
(in FASTA format of course) via Browse button located on the lower panel, as
shown in Fig. 4.2.
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Figure 4.2: A Semi-screenshot for the home page of the webserver predMultiLoc-Gneg at
http://research.ru.ac.bd/predMultiLoc-Gneg/

4.4 Experiment No 2:- predCar-Site: Carbonylation Sites Pre-
diction in Proteins Using Support Vector Machine with
Resolving Data Imbalanced Issue

4.4.1 Motivation and Goals

The carbonylation is found as an irreversible post-translational modi�cation (PTM)
and considered a biomarker of oxidative stress. In protein carbonylation sites, most
carbonyl groups are formed from lysine (K), proline (P), arginine (R), and threonine
(T) residues. The carbonylation plays major role not only in orchestrating various bi-
ological processes but also associated with some diseases such as Alzheimer’s disease,
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diabetes, Parkinson’s disease, chronic renal failure, chronic lung disease, and sepsis.
As a result, it requires an easiest way to detect carbonylation modi�cation in proteins.
However, since the experimental technologies are costly and time-consuming, so it’s
quite hard to detect the carbonylation modi�cation timely at lost to face the explo-
sive growth of protein sequences in postgenomic age. In this context, an accurate
computational method for predicting carbonylation sites is an urgent issue which can
be useful for drug development. Recently various types of computational classi�ers
[107, 106, 105] have been developed to identify carbonylation sites through different
types of machine learning algorithms such as random forest, support vector machine.
Moreover, in the recent works, the performance of PTMPred [107], CarSpred [106],
and iCar-PseCp [105] on a large set of proteins has been studied in [105]. However,
in order to meet the current demand to produce ef�cient high-throughput tools, addi-
tional effort are required to further improve the prediction quality [106, 105].

In this experiment, a novel computational tool termed predCar-Site has been devel-
oped to predict protein carbonylation sites by (1) incorporating the sequence-coupled
information in to the general pseudo amino acid composition, (2) balancing the effect
of skewed training dataset by Different Error Costs (DEC) method, and (3) construct-
ing a predictor using support vector machine as classi�er. Moreover, a user-friendly
web server for the predCar-Site has also been established at http://research.ru.ac.bd/
predCar-Site/

4.4.2 Materials and Methods

4.4.2.1 Short Description of Dataset

iCar-PseCp’s [105] benchmark dataset set has been used in this study. iCar-PseCp’s
dataset was derived from the 230 carbonylated protein sequences from human [137,
138] and 20 carbonylated protein sequences from Photobacterium and Escherichia coli
[138, 139].

In iCar-PseCp [105], according to Chou’s scheme, a peptide sample was generally
expressed by

P�(�) = R��R�(��1)R�(��2) � � �R�2R�1 �R+1R+2 � � �R+(� � 1)R+� (4.6)

where the symbol � represents a sinlge amino acid code K, P, R, or T, the subscript � is
an integer, R�� represents the �-th up stream amino acid residue from the center, the
R+ represents the �-th downstream amino acid residue, and so forth.

The (2� + 1)-tuple peptide sample P�(�) was further classi�ed into the following
two categories [105]

P�(�) 2

8
<

:
P+
� (�) if its center is a phosphorylation site

P�� (�) otherwise
(4.7)
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Table 4.5: Summary of carbonylation site samples in the benchmark dataset

Attribute
Carbonylation Type and Number of Samples

� = K � = P � = R � = T

Positive 300 126 136 121

Negative 1949 792 847 732

where P+(�) denotes a true carbonylation segment with K, P, R, or T at its center,
P�(�) a false carbonylation segment with K, P, R, or T at its center, and the symbol 2
means "a member of" in the set theory.

The benchmark dataset S�(�) in iCar-PseCp’s study was formulated as

S�(K) = S+
� (K) [ S�� (K); when � = K

S�(P ) = S+
� (P ) [ S�� (P ); when � = P

S�(R) = S+
� (R) [ S�� (R); when � = R

S�(T ) = S+
� (T ) [ S�� (T ); when � = T

(4.8)

where the positive subset of S+
� (�) only contains the samples of true carbonylation

segments P+
� (�), and negative subset S�� (�) only contains the samples of false car-

bonylation segments P�� (�) and the symbol [ means "union" in the set theory.
In iCar-PseCp’s work, (2� + 1)-tuple peptide window was used to collect peptide

segment that have K, P, R, or T at the center. It should be mentioned here that if the
upstream or downstream in a protein sequence is less than � or greater than L � � (L
is the length of the protein sequence concerned) then the lacking amino acid has been
�lled with a dummy residue X in iCar-PseCp [105].

After applying some screening procedure based on some constraints on that col-
lected peptide samples, for example, considering window size, � 30% pairwise se-
quence identity to any other peptides, iCar-PseCp �nally constructed a benchmark
dataset [105]. The detail procedure about the construction of iCar-PseCp’s benchmark
dataset is explained in [105].

Note that, depending on some preliminary test, window size was selected as 15
(2 � � + 1) in iCar-PseCp’s study, where � = 7. Thus, the benchmark dataset obtained
by iCar-PseCp for S�=7(K), S�=7(P ), S�=7(R), and S�=7(T ) are available at online
supplementary materials (http://research.ru.ac.bd/predCar-Site/) as Supporting In-
formation S1, S2, S3, and S4, respectively. It should be mention that our published
online supplementary materials are taken from iCar-PseCp’s work [105]. A summary
of this benchmark dataset is given in Table 4.5.
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4.4.2.2 Feature Extraction

In this work, the sequence-coupling model has been adopted to extract feature from
peptide segment. This feature extraction aprroach has been discussed in section 3.7.5.1.

4.4.2.3 Support Vector Machine and its Kernel

The SVM modeling algorithm has been used in this study. It is de�ned in section 2.2.1.
In the study, we have used radial basis function (RBF) kernel. The de�nition of RBF
kernel has been de�ned in section 2.2.1.1.

4.4.2.4 Imbalance Data Management

In this experiment, we have used a Different Error Costs (DEC) method to handle im-
balance dataset problem of carbonylation sites prediction that is discussed in 4.2.1.1.

4.4.2.5 Experimental Setting

In this study, we have used K-fold cross validation (subsampling) method to save the
computational time. As the information about the exact 10-way splits of dataset used
in previous studies is not published [105], therefore, in order to validate the stability
and the statistical signi�cance of our results, we have repeated the 10-fold cross vali-
dation for 5 times (i.e. 50 runs in total). It can be mentioned here that in each 10-fold
cross validation the given training samples are randomly partitioned into 10 mutually
exclusive sets of approximately equal size and approximately equal class distribution.
Finally, we have reported the average results of all metrics in this study.

4.4.2.6 Measuring Metrics

For measuring the predictive capability and reliability for this kind of classi�cation, a
set of four metrics is usually used in the literature: (i) overall accuracy or Acc, (ii)
Mathew’s correlation coef�cient or MCC, (iii) sensitivity or Sn, and (iv) speci�city or
Sp [106, 132, 133, 134]. The de�nition of these metrics is given in section 4.2.3.2.

However, in addition to these four metrics, we have used the measure of precision
since it is one of the most important measurements to evaluate the degree of credibility
of a prediction system. The precision is de�ned as

precision =
TP

(TP + FP )
(4.9)

where the meaning of TP and FP is de�ned in section 4.2.3.2.
At last, AUC (area under the curve) is also used to evaluate our system which will

be calculated from ROC curve (receiver operating characteristic curve).
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Table 4.6: Selected C and � of 5 complete runs of the 10-fold cross-validation for RBF kernel
based SVM.

No. of
Completes
Run

Type of Carbonylation

K P R T

C � C � C � C �

1st 25 24 26 23 2�1 23 2�2 23

2nd 26 24 26 23 22 23 21 23

3rd 25 24 25 23 22 23 21 23

4th 26 24 26 23 22 23 2�2 23

5th 25 24 24 23 2�2 22 2�2 23

4.4.3 Results and Discussion

4.4.3.1 Model Selection for SVM

In order to generate highly performing SVM classi�ers capable of dealing with real data
an ef�cient model selection is required. In our experiment, grid-search technique has
been used to �nd the best model for SVM. This method selects the values of parameters
considering highest performance which will be measured using a speci�c metric (AUC,
in this case) and then time if more than one position in search space has the same
performance. We have performed 5 complete runs of the 10-fold cross-validation and
each time we have selected the best parameter of the classi�er on basis of the value of
AUC (area under the curve).

It noted here that depending on the four types of residues (K, P, R, or T) which
are susceptive to carbonylation, four times model selection has been considered. If the
center residue of a query peptide is � = K then the corresponding training data must
be taken from S�=7(K) if the center residue of a query peptide is � = P , then the
training data must be taken from S�=7(P ) and so forth.

For radial basis function (RBF) kernel based SVM, to �nd the parameter value C
(penalty term for soft margin) and � (sigma), we have considered the value from 2�8

to 28 for C and from 2�8 to 28 for sigma as our searching space. Herein, the value
of C will be used to �nd the misclassi�cation cost of C+ and C� de�ned in equation
4.1. We have performed 5 times complete run of 10 fold cross-validations and each
time we have selected the best parameter of the classi�er depending on the value AUC
(area under curve). The selected C and sigma of 5 complete runs of the 10-fold cross-
validation on each types (dataset depending on K, P, R, or T) of training dataset is
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Table 4.7: Selection of C and � to train the system for web server

Type of PTM C �

K 25 24

P 26 23

R 22 23

T 2�2 23

shown in Table 4.6. Finally, we have averaged our results in order to ensure unbiased
model selection.

It should be mentioned that we have used that value of C and sigma which appears
most of the times as best model in 5 complete runs of the 10-fold cross-validation to
trained the system for the web server. Considering the mentioned criteria, the selected
C and sigma for each type of residue (K, R, P, or T) is given in Table 4.7.

4.4.3.2 Prediction Performance Evaluation

The values of the four metrics (cf. Eq. 4.4) obtained by the current predCar-Site
predictor for K-, P-, R-, and T-type carbonylation are given in the Table 4.8. These
values are the average result of 5 times complete run of 10 fold cross-validation on the
benchmark dataset given in Supporting information S1, S2, S3 and S4 respectively.
Moreover, standard deviations of each metrics of 5 complete runs of the 10-fold cross-
validation are shown in parentheses.

The Table 4.8 also includes the corresponding rates achieved by PTMPred [107],
CarSpred [106], and iCar-PseCp [105], the three existing predictors for identifying the
carbonylation sites in the aforesaid benchmark dataset. It should be mentioned here
that the performance of PTMPred [107], CarSpred [106] , and iCar-PseCp [105] as
shown in Table 4.8 are noted from [105].

It is obvious from the Table 4.8, predCar-Site has performed remarkably better over
PTMPred [107], CarSpred [106], and iCar-PseCp [105] while considering Acc, MCC,
and Sn. It indicates that, the proposed new predictor has produced over all better
accuracy, sensitivity, and stability. Although the achieved Sp by iCar-PseCp is higher
than that by our predictor in the case of center residues K and R, the gap between its
Sn and Sp is very large (54% for K, 53% for R). Which implies that the results achieved
by iCar-PseCp contain many false negative events [140] and hence its higher achieved
Sp rate is problematic.

The area under the ROC curve is called AUC (area under the curve). The greater
the AUC value is, the better the predictor will be [141, 142]. As we can see from
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Table 4.8: A Comparison of the proposed predictor with the existing methods on the same 250
carbonylated proteins.

Predictor Metrics
Type of Carbonylation

K P R T

PTMPred

Acc (%)

88.59 82.93 86.64 88.39

CarSpred 87.22 82.93 86.22 86.61

iCar-PseCp 84.43 86.79 84.23 86.17

predCar-
Site

96.95
(�0.10)

99.61
(�0.09)

99.10
(�0.26)

99.11
(�0.16)

PTMPred

MCC

0.1892 0.2573 0.1878 0.2186

CarSpred 0.2268 0.2331 0.2245 0.2040

iCar-PseCp 0.5906 0.6006 0.6076 0.6185

predCar-
Site

0.8799
(�0.0034)

0.9837
(�0.0039)

0.9642
(�0.0101)

0.9646
(�0.0059)

PTMPred

Sn (%)

23.45 21.43 20.02 22.38

CarSpred 23.17 25.34 25.47 21.39

iCar-PseCp 45.18 48.20 46.67 50.68

predCar-
Site

96.67
(�0.33)

99.68
(�0.43)

1
99.34
(�0.69)

PTMPred

Sp (%)

92.99 93.20 90.99 91.36

CarSpred 92.43 93.28 93.39 93.42

iCar-PseCp 99.25 98.54 99.57 98.58

predCar-
Site

96.99
(�0.14)

99.60
(�0.14)

98.96
(�0.31)

99.07
(�0.22)

PTMPred

AUC

0.6858 0.6903 0.5981 0.6563

CarSpred 0.6849 0.7163 0.7158 0.7134

iCar-PseCp 0.8728 0.8484 0.8668 0.8603

predCar-
Site

0.9959
(�0.00002)

0.9999
(�0.000005)

1
0.9997
(�0.000005)
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Table 4.8, the value of AUC clearly indicates that the proposed predictor is better than
PTMPred [107], CarSpred [106], and iCar-PseCp [105]. Therefore, it is projected that
predCar-Site may become a useful and higher throughput tool in carbonylation sites
predictions.

Apart from the above mentioned metrics, we have calculated precision too for
our system and got the average (� standard deviation) values of 83.19(�0.62)%,
97.52(�0.82)%, 93.95(�1.67)%, and 94.66(�1.19)% in predicting the carbonylation
sites for K, P, R, and T, respectively. Since the values of precision for the other systems
(PTMPred [107], CarSpred [106], and iCar-PseCp [105]) are not publicly available,
as a result, we could not show those �ndings. The achieved values of precision of our
system is very promising and encouraging. Note that precision measures how much
believable the system is when it says a peptides sample is carbonylated.

Why can the proposed method enhance the prediction quality so signi�cantly?
First, the coupling effects among the amino acids around the target sites have been
taken into account via the conditional probability. Second, the predictor used Differ-
ent Error Costs (DEC) method to balance the effect of skewed training dataset.

4.4.3.3 Protocol Guide

To attract more users especially for the experimental scientists and enhance the value
of practical application, a user-friendly web-server for predCar-Site has been estab-
lished at http://research.ru.ac.bd/predCar-Site/. A step-by-step guide on how to use
the web server is given below:

I Open the web server at http://research.ru.ac.bd/predCar-Site/ and you will �nd
the home page of the predictor on your display as shown in Fig. 4.3. You will
have to either type or copy and paste the query protein sequence into the input
text box at the center of Fig. 4.3. The input sequence should follow the FASTA
format. The example of a sequence of FASTA format is available by clicking at
example button located right above the input text box.

II In order to get the predicted result, at �rst you have to check one of the four
option (K, P, R, or T) and then click on the Submit button. For example, if
you use the Sequence_K query protein sequences given under Example button
as input and check on the K button, it will take 20s or more from the time of
your submission to get desired output of each sequence in separate tables. All
the predicted results of each lysine (K) are presented in each row of the table.

III In order to get batch prediction, you will have to enter desired batch input �le
(in FASTA format of course) via Browse button located on the lower panel, as
shown in Fig. 4.3.
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Figure 4.3: A semi-screenshot for the home page of the webserver predCar-Site at
http://research.ru.ac.bd/predCar-Site/

4.5 Experiment No 3:- predSucc-Site: Lysine Succinylation
Sites Prediction in Proteins Using Support Vector Ma-
chine with Resolving Data Imbalanced Issue

4.5.1 Motivation and Goals

The Lysine succinylation is found as an important post-translational modi�cation where
succinyle group is added to a Lys (K) residue of a protein molecule. It plays major role
not only in regulating the cellular processes but also associated with some diseases.
As a result, it requires an easiest way to detect succinylation modi�cation in proteins.
However, since the experimental technologies are costly and time-consuming, so it’s
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quite hard to detect the succinylation modi�cation timely at low cost to face the ex-
plosive growth of protein sequences in postgenomic age. In this context, an accurate
computational method for predicting succinylation sites is an urgent issue which can
be useful for drug development. Recently various types of computational classi�ers
have been developed to identify succinylation sites through different types of machine
learning algorithms [143, 51, 49]. However, in order to meet the current demand to
produce ef�cient high-throughput tools, additional effort are required to enrich the
prediction quality [51, 49].

In this study, a novel computational tool termed predSucc-Site has been developed
to predict protein succinylation sites by (1) incorporating the sequence-coupled infor-
mation into the general pseudo amino acid composition, (2) balancing the effect of
skewed training dataset by Different Error Costs (DEC) method, and (3) construct-
ing a predictor using support vector machine as classi�er. Moreover, a user-friendly
web server for the predSucc-Site has also been established at http://research.ru.ac.bd/
predSucc-Site/

4.5.2 Materials and Methods

4.5.2.1 Benchmark Dataset

pSuc-Lys’s benchmark dataset set has been used in this study, that dataset was derived
from the CPLM, a protein lysine modi�cation database [49, 144]. CPLM contains
2521 lysine succinylation sites and 24128 non-succinylation sites determined from 896
proteins [144]. In pSuc-Lys, all of the corresponding protein sequences were derived
from the UniProt [21] database. After applying some screening procedure based on
some constraints on that dataset, for example, considering window size, <= 40%
pairwise sequence identity to any other peptides, pSuc-Lys �nally extracted a �ltered
training dataset. Detail description of screening procedure is explained in [49].

The �nal dataset of pSuc-Lys consisted of 896 proteins with 1167 lysine succiny-
lation sites and 3553 non-succinylation sites. It can be noted here that sliding win-
dow method was used to encode every lysine residue K of that dataset since suc-
cinylation only occurred in lysine residues K. According to [51, 49], window size
has been selected as 31 (2 � � + 1) in our study, where � = 15. The detailed se-
quences for the 1167 samples in the positive subset (S+

�=15) and those for the 3553
samples in the negative subset (S��=15) are available at online supplementary materials
(http://research.ru.ac.bd/predSucc-Site/). Thus, the benchmark dataset set S for the
current study can be formulated as

S�=15 = S+
�=15 [ S

�
�=15 (4.10)

4.5.2.2 Feature Extraction

In this work, the sequence-coupling model has been adopted to extract feature from
peptide segment. This feature extraction aprroach has been discussed in section 3.7.5.1.
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4.5.2.3 Support Vector Machine and its Kernel

The SVM modeling algorithm has been used in this study. It is de�ned in section 2.2.1.
In the study, we have used radial basis function (RBF) kernel. The de�nition of RBF
kernel has been de�ned in section 2.2.1.1.

4.5.2.4 Imbalance Data Management

In this paper, we have used a Different Error Costs (DEC) method to handle imbalance
dataset problem for this kind of prediction that is discussed in 4.2.1.1.

4.5.2.5 Experimental Setting

In this study, we have used K-fold cross validation (subsampling) method to save the
computational time. As the information about the exact 5-way splits of dataset used in
previous studies is not published [105], therefore, in order to validate the stability and
the statistical signi�cance of our results, we have repeated the 5-fold cross-validation
for 5 times (i.e. 25 runs in total). It can be mentioned here that in each 5-fold cross-
validation the given training samples are randomly partitioned into 5 mutually ex-
clusive sets of approximately equal size and approximately equal class distribution.
Finally, we have reported the average results of all metrics in this study.

4.5.2.6 Measuring Metrics

For measuring the predictive capability and reliability for this kind of classi�cation, a
set of four metrics is usually used in the literature: (i) overall accuracy or Acc, (ii)
Mathew’s correlation coef�cient or MCC, (iii) sensitivity or Sn, and (iv) speci�city or
Sp [106, 132, 133, 134]. The de�nition of these metrics are given in section 4.2.3.2. In
addition, the AUC (area under the curve) is also used to evaluate the prediction system
which will be calculated from ROC curve (receiver operating characteristic curve).

4.5.3 Results and Discussion

4.5.3.1 Model Selection for SVM

In order to generate highly performing SVM classi�ers capable of dealing with real data
an ef�cient model selection is required. In our experiment, grid-search technique has
been used to �nd the best model for SVM. In our experiments, this method selects the
values of parameters considering highest performance which will be measured using
a speci�c metric (AUC, in this case) and then time if more than one position in search
space has the same performance. We have performed 5 complete runs of the 5-fold
cross-validation and each time we have selected the best parameter of the classi�er on
basis of the value of AUC (area under the curve).

For radial basis function (RBF) kernel based SVM, to �nd the parameter value C
(penalty term for soft margin) and � (sigma), we have considered the value from 2�8



Implementation of Experiments, Results and Discussion 82

Table 4.9: Selected C and � of 5 complete Runs of the 5-fold cross-validation for RBF kernel
based SVM

No of Complete Run C �

1st 2�2 23

2nd 2�3 23

3rd 2�3 23

4th 2�3 23

5th 2�2 23

to 28 for C and from 2�8 to 28 for sigma as our searching space. Herein, the value
of C will be used to �nd the misclassi�cation cost of C+ and C� de�ned in equation
4.1. We have performed 5 complete runs of the 5-fold cross-validation and each time
we have selected the best parameter of the classi�er depending on the value of AUC
(area under curve). The selected C and sigma of 5 complete runs of the 5-fold cross-
validation on the benchmark data set is shown in Table 4.9. Finally, we have averaged
our results in order to ensure unbiased model selection. It should be mentioned that
we have used C = 2�3 and � = 23 to train the system for the web server, because most
of the times, the best model is found for the value of C = 2�3 and � = 23.

4.5.3.2 Prediction Performance Evaluation

The values of the four metrics (cf. Eq. 4.4) obtained by the current predSucc-Site
predictor are given in the Table 4.10. These values are the average result of 5 com-
plete runs of the 5-fold cross-validation on the benchmark dataset given in Supporting
information S1 and Supporting information S2. Moreover, standard deviations of each
metrics of 5 times complete run of 5 fold cross validation are shown in parentheses.

The Table 4.10 also includes the corresponding rates achieved by iSuc-PseAAC
[124], SucPred [143], pSuc-Lys [49], and iSuc-PseOpt [51], the four existing pre-
dictors for identifying the lysine succinylation sites in the aforesaid 896 proteins. It
should be mentioned here that the performance of iSuc-PseAAC [124], SucPred[143],
pSuc-Lys [49], iSuc-PseOpt [51] as shown in table 4.10 are noted from [51, 49].

It is obvious from the Table 4.10, predSucc-Site has performed remarkably better
over iSuc-PseAAC, SucPred, pSuc-Lys and iSuc-PseOpt while considering Acc, MCC,
and Sn. It indicates that, the proposed new predictor has produced over all better
accuracy, sensitivity, and stability. Although the achieved Sp by SucPred, pSuc-Lys and
iSuc-PseOpt is higher than that by our predictor, the gap between its Sn and Sp is
very large (48% for SucPred, 19% for pSuc-Lys, 27% for iSuc-PseOpt). Which implies
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that the results achieved by SucPred, pSuc-Lys and iSuc-PseOpt contain many false
negative events [30] and hence its higher achieved Sp rate is problematic.

Table 4.10: A Comparison of the proposed predictor with the existing methods

Method Acc (%) MCC Sn (%) Sp (%) AUC

iSuc-PseAAC 79.98 0.4370 50.63 89.68 0.7823

SucPred 85.32 0.5710 49.13 97.17 0.8933

pSuc-Lys 90.83 0.7695 76.79 95.97 0.9325

iSuc-PseOpt** 87.86 0.7193 69.38 96.86 0.9475

predSucc-Site
92.00
(�0.07)

0.8029
(�0.0023)

93.42
(�0.35)

91.47
(�0.04)

0.9788
(�0.0001)

** Taken the best result of iSuc-PseOpt from Table 1 of [51]

The area under the ROC curve is called AUC (area under the curve). The greater
the AUC value is, the better the predictor will be [141]. As we can see from Table
4.10, the value of AUC clearly indicates that the proposed predictor is better than
iSuc-PseAAC [124], SucPred [143], pSuc-Lys [49], and iSuc-PseOpt [51]. Therefore,
it is projected that predSucc-Site may become a useful and higher throughput tool in
succinylation sites predictions.

4.5.3.3 Protocol Guide

It has been well accepted that the availability of web-server of a prediction method
will attract more users. In that context, a user-friendly web-server for predSucc-Site
has been established for the convenience of experimental scientists. A brief guide on
how to use the web server is given below:

I Open the web server at http://research.ru.ac.bd/predSucc-Site/ and you will
�nd the home page of the predictor on your display as shown in Fig. 4.4. You will
have to either type or copy and paste the query protein sequence into the input
text box at the center of Fig. 4.4. The input sequence should follow the FASTA
format. The example of a sequence of FASTA format is available by clicking at
example button located right above the input text box.

II In order to get the predicted result, click on the Submit button. For example, if
you use the two query protein sequences given under Example button as input,
it will take 20s or more from the time of your submission to get desired output
of each sequence in separate tables. All the predicted results of each lysine are
presented in each row of the table.
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Figure 4.4: A semi-screenshot for the home page of the webserver predSucc-Site at
http://research.ru.ac.bd/predSucc-Site/

4.6 Experiment No 4:- mLysPTMpred: Multiple Lysine PTM
Site Prediction Using Combination of SVM Classi�er with
Resolving Data Imbalanced Issue

4.6.1 Motivation and Goals

Protein post-translational modi�cation (PTM) increases the functional diversity of the
proteome and plays major role not only in orchestrating various biological processes
but also associated with some diseases. PTMs do modi�cation by introducing new
functional groups to the side chain of amino acid of a protein. Among all amino acid
residues, the side chain of lysine can undergo many types of PTM, called K-PTM, such
as ’acetylation’, ’crotonylation’, ’methylation’ and ’succinylation’ and also responsible
for occurring multiple PTM in the same lysine of a protein which lead to the require-
ment of multi-label PTM site identi�cation. In this context, in order to avoid the costly
and time-consuming experimental technologies, an accurate computational method
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for predicting multi-label PTM sites is an urgent issue which can be useful for drug de-
velopment. Meanwhile, many computational methods have been developed to predict
the modi�cation sites in proteins for different K-PTM types which called single-label
prediction [126, 105, 51, 130]. According to our best knowledge, so far one computa-
tional tool has been developed to predict several different K-PTM types simultaneously
for multiplex lysine residues. However, in order to meet the current demand to pro-
duce ef�cient high-throughput tools, additional effort are required to further improve
the prediction quality [104].

Therefore, in this experiment, a novel computational tool termed mLysPTMpred
has been developed to predict multi-label lysine PTM sites by (1) incorporating the
sequence-coupled information into the general pseudo amino acid composition, (2)
balancing the effect of skewed training dataset by Different Error Costs (DEC) method,
and (3) constructing a multi-label predictor using a combination of support vector ma-
chine (SVM) as classi�er. Moreover, a user-friendly web server for the mLysPTMpred
has also been established at http://research.ru.ac.bd/mLysPTMpred/

4.6.2 Materials and Methods

4.6.2.1 Short Description of Dataset

iPTM-mLys’s [104] benchmark dataset set has been used in this study. iPTM-mLys’s
dataset was derived from the 1769 protein sequences from human. These 1769 protein
sequences were collected from the web site at http://www.uniprot.org/ by giving var-
ious constrains such as i) experimental assertion for evidence, ii)consider only human
protein sequences, and iii) use keywords of ’acetyllysine’, ’crotonyllysine’, ’methylly-
sine’ or ’succinyllysine’ in the advance search option.

In iPTM-mLys [104], according to Chou’s scheme, a peptide sample was generally
expressed by

P�(K) = R��R�(��1)R�(��2) � � �R�2R�1KR+1R+2 � � �R+(� � 1)R+� (4.11)

where the subscript � is an integer, R�� represents the �-th up stream amino acid
residue from the center, the R+� represents the �-th downstream amino acid residue,
and so forth.

The (2� + 1)-tuple peptide sample P�(K) was further classi�ed into the following
two categories [104]

P�(K) 2

8
<

:
P+
� (K) if its center is a lysine PTM site

P�� (K) otherwise
(4.12)

After applying some screening procedure based on some constraints on that col-
lected peptide samples, for example, considering window size, keep only one when
two or more samples share same sequence, iPTM-mLys �nally constructed a bench-
mark dataset [104]. It should be mentioned here that iPTM-mLys constructed four
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Table 4.11: Summary of the four benchmark dataset

Attribute

PTM Type and Number of Samples

Ace Cro Met Suc

S(1) S(2) S(3) S(4)

Positive 3991 115 127 1169

Negative 2403 6279 6267 5225

Ace, acetylation; Cro, crotonylation; Met, methylation; Suc, succinylation.

bench mark dataset for ’acetylation’, ’crotonylation’, ’methylation’ and ’succinylation’,
respectively using same the above mentioned procedure. The detail procedure about
the construction of iPTM-mLys’s benchmark dataset is explained in [104].

The four benchmark dataset S�(K) in iPTM-mLys’s study was formulated as

S�(acetylation) = S+
� (acetylation) [ S�� (acetylation)

S�(crotonylation) = S+
� (crotonylation) [ S�� (crotonylation)

S�(methylation) = S+
� (methylation) [ S�� (methylation)

S�(succinylation) = S+
� (succinylation) [ S�� (succinylation)

(4.13)

where the positive subset S+
� (acetylation) contains only the peptide samples with their

center residues K (Eq. 4.13) con�rmed by experiments being able to be of acetylation,
while the negative subset S�� (acetylation) only contains those samples unable to be of
acetylation, and the symbol [ means union in the set theory. Likewise, the remaining
three sub-equations in Eq. 4.13 have exactly the same de�nition but refer to ’crotony-
lation’, ’methylation’ and ’succinylation’, respectively.

Using numeric values, in iPTM-mLys’s study, the equation 4.13 was formulated as

S�(1) = S+
� (1) [ S�� (1)

S�(2) = S+
� (2) [ S�� (2)

S�(3) = S+
� (3) [ S�� (3)

S�(4) = S+
� (4) [ S�� (4)

(4.14)

where the numerical argument 1, 2, 3 and 4 denotes ’acetylation’, ’crotonylation’,
’methylation’ and ’succinylation’, respectively.

Note that, depending on some preliminary test, window size was selected as 27
(2 � � + 1) in iPTM-mLys’s study, where � = 13. Thus, the benchmark dataset obtained
by iPTM-mLys for S�=13(1), S�=13(2), S�=13(3), and S�=13(4) are available at online
supplementary materials (http://research.ru.ac.bd/mLysPTMpred/) as Supporting In-
formation. It should be mentioned that our published online supplementary materials
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are taken from iPTM-mLys’s work [104]. A summary of this benchmark dataset is
given in Table 4.11.

4.6.2.2 Feature Extraction

In this work, the sequence-coupling model has been adopted to extract feature from
peptide segment. This feature extraction approach has been discussed in section
3.7.5.1.

4.6.2.3 Support Vector Machine and its Kernel

The SVM modeling algorithm has been used in this study. It is de�ned in section 2.2.1.
In the study, we have used radial basis function (RBF) kernel. The de�nition of RBF
kernel has been de�ned in section 2.2.1.1.

4.6.2.4 Imbalance Data Management

In this experiments, we have used a Different Error Costs (DEC) method to handle im-
balance dataset problem for this kind of prediction that is discussed in section 4.2.1.1.

4.6.2.5 Experimental Setting

In this experiments, we have used K-fold cross validation (subsampling) method to
save the computational time. As the information about the exact 5-way splits of dataset
used in previous studies is not published [104], therefore, in order to validate the
stability and the statistical signi�cance of our results, we have repeated the 5-fold
cross validation for 5 times (i.e. 25 runs in total). It can be mentioned here that in
each 5-fold cross validation the given training samples are randomly partitioned into
5 mutually exclusive sets of approximately equal size and approximately equal class
distribution. Finally, we have reported the average results of all metrics in this study.

4.6.2.6 Measuring Metrics

According to the description of iPTM-mLys dataset in [104], we have a total of 6394
samples, of which 3991 are labeled with ’acetylation’ 115 with ’crotonylation’, 127
with ’methylation’, 1169 with ’succinylation’ and 1,750 with ’non-K-PTM’. However,
in the above samples, some have two or more labels. It should be noted that in this
study, we have considered {acetylation, crotonylation, methylation, succinylation, ;}
as class label set for a protein. Here ; is used to denote non-K-PTM. Since we are
dealing with a multi-label system [145], so the metrics for a multi-label system will be
used in this work instead of the conventional metrics de�ned for single-label systems
[132, 133, 134].

For measuring the predictive capability and reliability for this kind of classi�cation,
a set metrics are usually used in the literature which are de�ne below [145]:
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Aiming = 1=N
NX

k=1

�
kYk \ Zkk
kZkk

�

Coverage = 1=N
NX

k=1

�
kYk \ Zkk
kYkk

�

Accuracy = 1=N
NX

k=1

�
kYk \ Zkk
kYk [ Zkk

�

Absolute� True = 1=N
NX

k=1

4 (Yk; Zk)

Absolute� False = 1=N
NX

k=1

�
kYk [ Zkk � kYk \ Zkk

M

�

(4.15)

where N is the total number of the samples concerned, M the total number of labels
in the system, [ and \ the symbols are for the ’union’ and ’intersection’ in the set
theory, k � k means the operator acting on the set therein to count the number of its
elements, Yk denotes the subset that contains all the labels experiment-observed for
the k-th sample, Zk represents the subset that contains all the labels predicted for the
kth sample, and

4 (Yk; Zk) =

8
<

:
1 if all labels in Zk are identical with those in Yk

0 otherwise

All of these metrics de�ned in this section have been successfully applied to study
several multi-label systems, such as those in which a protein may stay in two or more
different subcellular locations [114], or a membrane protein may have two or more
different types [146], or an antimicrobial peptide may have two or more different
types [147].

4.6.3 Results and Discussion

4.6.3.1 Model Selection and Working Procedure of the Proposed System

In order to generate highly performing SVM classi�ers capable of dealing with real
data an ef�cient model selection is required. Grid-search technique has been used to
�nd the best model for SVM in this work. In our experiments, grid-search technique
selects the values of parameters considering highest performance which is measured
using a metric and then time if more than one position in search space has the same
performance.

In this study, four SVM classi�ers, one for each dataset, have been used for pre-
dicting the acetylation, crotonylation, methylation and succinylation sites. The model
selection of each SVM classi�ers has been done separately as binary classi�er using the
corresponding benchmark dataset given in Table 4.11. In this work, we have used RBF
kernel for all SVM classi�ers.
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Figure 4.5: A �owchart to show how the mLysPTMpred predictor works

For radial basis function (RBF) kernel, to �nd the parameter value C (penalty term
for soft margin) and � (sigma), we have considered the value from 2�8 to 28 for C
and from 2�8 to 28 for sigma as our searching space. Herein, the value of C will be
used to �nd the misclassi�cation cost of C+ and C� de�ned in equation 4.1. Since
the information about the exact 5-way splits of dataset used in previous studies is not
published [104], We have performed 5 complete runs of the 5-fold cross-validation and
each time we have selected the best parameter of the classi�er depending on the value
of AUC (area under curve). It should be noted here that AUC (area under the curve)
is an important metric for single-label PTM site prediction [51, 105] which will be
calculated from ROC curve (receiver operating characteristic curve). Finally, �ve sets
of C and sigma have been selected from 5 complete runs of the 5-fold cross-validation
for each SVM classi�er (as shown in Table 4.12) which is dedicated to a speci�c types
of training dataset (acetylation, crotonylation, methylation, or succinylation).

After getting the four trained binary SVM classi�er with appropriate values of C and
sigma, a multi-label predictor, named mLysPTMpred, has been developed by combing
output from these four SVM classi�ers, as shown in Figure 4.5. It should be noted
here that the negative results of all (four) classi�ers will be treated as class label ’non-
K-PTM’ protein. As we have repeated the 5-fold cross validation for 5 times for our
mLysPTMpred, we have got �ve sets of values for all metrics de�ned in section 4.6.2.6.
Finally, we have averaged our results in order to ensure unbiased model selection.

However, in order to train the system for the web server, we have used that value
of C and sigma which appears most of the times as best model in 5 complete runs of
the 5-fold cross-validation in each dataset. Note that, a random selection of the value
of C and sigma has also been performed from 5 set of C and sigma of each dataset
where ’most of the times’ criteria fail to select C and sigma. In this way, the selected C
and sigma for each type of dataset is given in 4.13.
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Table 4.12: Selected C and � of 5 complete runs of the 5-fold cross-validation for RBF kernel
based SVM

No. of
Completes
Run

Type of Carbonylation

acetylation crotonylation methylation succinylation

C � C � C � C �

1st 24 24 2�1 24 20 24 21 23

2nd 24 24 20 26 24 24 21 23

3rd 21 21 22 27 20 24 25 24

4th 21 21 2�2 25 24 24 21 23

5th 24 24 2�2 27 25 24 25 24

Table 4.13: Selection of C and � to train the system for the web server

Type of PTM C �

acetylation 24 24

crotonylation 2�2 27

methylation 20 24

succinylation 21 23

It can be mentioned here that we have used Matlab 2014b version to implement
our system where the svmtrain function of Matlab by default uses DEC with the same
cost de�ned in Eq. 4.1 to handle imbalance situation.

4.6.3.2 Prediction Performance Evaluation

The values of the �ve metrics (cf. Eq. 4.15) obtained by the current mLysPTMpred
predictor for multi-label lysine PTM site are given in the Table 4.14. These values
are the average result of 5 complete runs of the 5-fold cross-validation on the bench-
mark dataset given in Supporting Information. Moreover, standard deviations of each
metrics of 5 times complete run of 5-fold cross validation are shown in parentheses.

The Table 4.14 also includes the corresponding rates achieved by iPTM-mLys [104],
the one existing predictors for identifying the multiple lysine PTM site in the aforesaid
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Table 4.14: A Comparison of the proposed predictor with the existing methods on the same
dataset

Predictor
Aiming
(%)

Coverage
(%)

Accuracy
(%)

Absolute-
True
(%)

Absolute-
False (%)

iPTM-mLys 69.78 74.54 68.37 60.92 13.40

mLysPTMpred
84.82
(�0.22)

86.56
(�0.21)

83.73
(�0.24)

79.73
(�0.29)

6.66
(�0.009)

benchmark dataset. It should be mentioned here that the performance of iPTM-mLys
[104] as shown in Table 4.14 are noted from [104].

In Eq. 4.15, the �rst four metrics are completely opposite to the last one. For the
former, the higher the rate is, the better the multi-label predictor’s performance will
be; for the latter, the lower the rate is, the better its performance will be [104]. The
rate of "Absolute-False" or "Hamming- Loss" [145] for our predictor is 6.66% which is
about half than iPTM-mLys. So, the average ratio of the completely wrong hits over
the total prediction events for mLysPTMpred is signi�cantly lower than iPTM-mLys.

Among the �ve metrics in Eq. 4.15, the most strict and harsh one is the ’Absolute-
True’. According to [104], very few multilabel predictors in biology could reach over
50% for the absolute true rate. However, the absolute-true rate achieved by mLysPTM-
pred can reach over 80% as shown in Table 4.14.

Also, among the same �ve metrics, the most important is the ’Accuracy’, the av-
erage ratio of the correctly predicted labels over the total labels including correctly
and incorrectly predicted ones as well as those real labels but are missed out during
the prediction. The mLysPTMpred achieves 83.73% accuracy which is considerable
amount of higher than iPTM-mLys. In addition, the rate of "Aiming" or "Precision"
[145] and the rate of "Coverage" or "Recall" [145] achieved by mLysPTMpred also
better than iPTM-mLys.

Therefore, it is obvious from the Table 4.14, mLysPTMpred has performed remark-
ably better over iPTM-mLys [104] in all types of metrics measurement. To provide
an intuitive comparison, a bar chart to represent the Table 4.14 is shown Figure 4.6.
Therefore, it is projected that mLysPTMpred may become a useful and higher through-
put tool in multiple lysine PTM sites predictions.
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Figure 4.6: Performance comparison between iPTM-mLys and mLysPTMpred

In iPTM-mLys, an example protein sequence (Q16778) has been used to validate
their �ndings. It should be noted here that the example protein sequence (Q16778) is
also available in our site under Example button. For making comparison, we have not
changed the sequence as example. The prediction result using this sequence (Q16778)
from mLysPTMpred and the actual experimental result of this sequence is reported in
Table 4.15. By putting this predicted result in equation 4.15, we have got the rate of
aiming=88.33%, coverage=87.50%, accuracy=85.83%, absolute-true= 80.00% and
absolute-false= 6.00% which is similar to the rates obtained by the cross-validation
tests as given in Table 4.14.

Why can the proposed method enhance the prediction quality so signi�cantly?
First, the coupling effects among the amino acids around the target sites have been
taken into account via the conditional probability as done by many investigators in
successfully enhancing the prediction quality in some applications [55, 148, 149].
Second, the predictor used Different Error Costs (DEC) method to balance the effect
of skewed training dataset and hence many false prediction events produced by im-
balanced and skewed training datasets can be avoided as established in some recent
studies [105, 51, 55, 148].
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Table 4.15: Comparison between the predicted and experimental results on protein Q16778

Sites
Predicted Result Experimental Result

Ace Cro Met Suc Ace Cro Met Suc

6 Yes Yes Yes No Yes Yes No No

12 Yes Yes No No Yes Yes No No

13 Yes Yes No No Yes Yes No No

16 Yes Yes No No Yes Yes No No

17 Yes Yes No No Yes Yes No No

21 Yes Yes No No Yes Yes No No

24 Yes Yes No No Yes Yes No No

25 No No No No No No No No

28 No No No No No No No No

29 No No No No No No No No

31 No No No No No No No No

35 No Yes No No No Yes No No

44 No No No No No No No No

47 No No Yes No No No Yes No

58 No No Yes No No No Yes No

86 Yes No Yes No Yes No Yes No

109 No No Yes No No No Yes No

117 Yes No No No No No No No

121 Yes No No No No No No No

126 Yes No No No No No No No
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4.6.3.3 Web Server

To attract more users especially for the experimental scientists and enhance the value
of practical application, a user-friendly web-server for mLysPTMpred has been estab-
lished at http://research.ru.ac.bd/mLysPTMpred/. In order to get the predicted result,
users are required to submit protein sequence through the input text box in our site.
The input sequence should follow the FASTA format. An example of a sequence of
FASTA format is available under example button in our published site. Moreover, in
order to get batch prediction, users are required to enter desired batch input �le in the
FASTA format. Noted that, the benchmark dataset used to train and test the mLysPTM-
pred predictor are available under Supporting Information button.

4.7 Experiment No 5:- Protein Subcellular Localization Pre-
diction using Support Vector Machine with the Choice of
Proper Kernel

4.7.1 Motivation and Goals

Prediction of subcellular locations of proteins can provide useful hints for revealing
their functions as well as for understanding the mechanisms of some diseases and �-
nally for developing novel drugs. As the number of newly discovered proteins has been
growing exponentially, which in turns, makes the subcellular localization prediction by
purely laboratory tests prohibitively laborious and expensive. In that context, to tackle
the challenges, computational methods are developed as an alternative choice to help
biologists in selecting target proteins and designing related experiments. However, the
success of protein subcellular localization prediction is still a complicated and challeng-
ing problem, particularly when query proteins may have the multi-label characteristics,
i.e., their simultaneous existence in more than one subcellular location or if they move
between two or more different subcellular location as well. At this point, to get rid
of this problem, many computational techniques, such as the neural network [34],
K-nearest neighbor (KNN) [35, 36, 37], Bayesian [17, 31, 30] approach and a few
ensemble classi�ers [38, 39] have been introduced for the prediction of protein sub-
cellular localization. In recent times, support vector machine (SVM) [14, 21, 33, 40]
has also been extensively applied to provide potential solutions for the prediction of
protein subcellular localization. However, the practicability of SVM is affected by the
dif�culties in selecting its appropriate kernel as well as in selecting the parameters of
that selected kernel. The literature survey have showed that most of the researchers
applied radial basis function (RBF) kernel to build SVM based subcellular localization
prediction. Surprisingly still there are many other kernel functions which are not yet
applied in protein subcellular localization prediction. But the nature of classi�cation
problem requires applying of different kernels for SVM to ensure optimal result.

From this viewpoint, this experiment presents the work to apply different kernels
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for SVM in protein subcellular localization prediction to �nd out which kernel is the
best for SVM. We have evaluated our system on a combined dataset containing 5447
single-localized proteins (originally published as part of the Höglund dataset) and
3056 multi-localized proteins (originally published as part of the DBMLoc set). It can
be noted here that these dataset was used by Briesemeister et al. in their extensive
comparison of multi-localization prediction systems [30].

4.7.2 Materials and Methods

4.7.2.1 Datasets

In our experiments we use a combined dataset containing 5447 single-localized pro-
teins, originally published as part of the Höglund dataset [30] and 3056 multi-localized
proteins that was originally published as part of the DBMLoc set [150]. This combined
dataset was �rst constructed for an extensive comparison of multi-localization predic-
tion systems by Briesemeister et al. [30]. This dataset is already homology-reduced,
i.e. the protein sequences from the Höglund dataset share no more than 30% sequence
identity with each other, and in the same time, sequences from the DBMLoc dataset
share less than 80 % sequence similarity with each other. We report results using dif-
ferent evaluation metric that obtained over the set of multi-localized proteins for com-
paring our system to other published systems, since the results for these systems are
only available for this subset. In the case, where reports obtained over the combined
set of single- and multi-localized proteins from other system are available, we also
make comparison with our system. The 5447 single-localized proteins covering the
following 9 locations (abbreviations and number of proteins per location are given in
parentheses): cytoplasm (cyt, 1411 proteins); endoplasmic reticulum (ER, 198), extra
cellular space (ex, 843), golgi apparatus (gol, 150), lysosome (lys, 103), mitochon-
drion (mi, 510), nucleus (nuc, 837), membrane (mem, 1238), and peroxisome (per,
157). The multi-localized proteins come from the following pairs of locations: cyt and
nuc (cyt_nuc , 1882 proteins), ex and pm (ex_mem , 334), cyt and mem (cyt_mem,
252), cyt and mi (cyt_mi, 240), nuc and mi (nuc_mi, 120), er and ex (ER_ex, 115),
and ex and nuc (ex_nuc , 113). It should be noted that all the multi-location subsets
used have over 100 representative proteins and this is currently the largest data set of
proteins from multiple locations [62].

4.7.2.2 Biological Input Features of Protein

In this study, we have used the 30-dimensional features vector of protein as same
as used by Briesemeister et al. for YLoc+ and R. Ramanuja Simha for MDLoc and
BNCs [17, 31, 30, 151]. However, thirteen of those features constructed directly from
the protein sequence such as length of the amino acid chain, length of the longest
very hydrophobic region, respective number of Methionine, Asparagine, and Trypto-
phane, occurring in the N-terminus etc [17]. Again, nine of those features are ex-
tracted from pseudo-amino acid composition, which is based on certain physical and
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chemical properties of amino acid subsequences. The remaining 8 feature were come
from two types of annotation based features. Here, the �rst type annotation-based fea-
tures contain two features constructed using two distinct groups of PROSITE patterns,
and the second type annotation-based features contain six features extracted based on
GO-annotations [17, 31].

4.7.2.3 Support Vector Machine and its Kernel

The multiclass multi-label SVM modeling algorithm has been used in this study. It is
explained in section 2.2.1.3. In the study, we have used three kernels namely linear,
polynomial, RBF, and laplace kernel. The de�nition of these kernels has been de�ned
in section 2.2.1.1.

4.7.2.4 Evaluation Metrics

Performance measurement in multi-label classi�cation is more complicated than tra-
ditional single-label classi�cation, as each example could be associated with multiple
labels simultaneously. In this study, we have used various types of adapted measures
such as accuracy, F1 score, Presi , Recsi , Pre_Stdsi , Rec_Stdsi , and F1 � label. The
de�nitions of these metrics are discussed in section 4.2.3.3.

4.7.2.5 Experimental Setting

In this study, to save the computational time, we have used K-fold cross validation
(subsampling) methods and compared the performance of our system (SVM with the
best performed kernel based system) to that of other systems (MDLoc [31], BNCs
[17], YLoc+ [30], Euk-mPLoc [28], WoLF PSORT [18], and KnowPredsite [25]) and
the systems based on other kernels. It should be noted that the performance of YLoc+,
Euk-mPLoc, WoLF PSORT, and KnowPredsite on a large set of multi-localized proteins
have been studied comprehensively in [31]. As the information about the exact 5-way
splits of dataset used in previous studies is not published, therefore, in order to validate
the stability and the statistical signi�cance of our results, we have repeated the 5-fold
cross validation for 5 times (i.e. 25 runs in total). It can be mentioned here that in
each 5-fold cross validation the given training samples are randomly partitioned into
5 mutually exclusive sets of approximately equal size and approximately equal class
distribution. Finally we have reported the average results in this study.

4.7.3 Results and Discussion

4.7.3.1 Model Selection of SVM

In order to generate highly performing SVM classi�ers capable of dealing with real
data an ef�cient model selection is required. Grid-search technique has been used to
�nd the best model for SVM with different kernel in this work. In our experiments,
this method selects the values of parameters considering highest multi-label accuracy
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Table 4.16: Selected Parameters of 5 times run of the 5-fold cross-validation on combined set
of single- and multi-localized proteins for each kernel (Linear, Polynomial, RBF,
Laplace).

No. of
Complete
Run

Linear Polynomial RBF Laplace

C C d C � C �

1st 2�1 2�2 3 21 21 28 23

2nd 2�1 21 3 22 21 25 22

3rd 2�4 2�4 3 21 21 28 23

4th 2�4 21 3 21 21 28 23

5th 2�2 21 3 27 21 28 23

and then time if more than one position in search space has the same multi-label
accuracy. According to the experimental setting, we have performed 5 complete runs
of the 5-fold cross-validation and each time we have selected the best parameter of the
classi�er on basis of the multi-label accuracy.

For linear kernel, to �nd the parameter value C (penalty term for soft margin),
we have considered the values from 2�4 to 24 as our searching space. The selected
C of 5 complete runs of the 5-fold cross-validation on combined set of single- and
multi-localized proteins is shown in Table 4.16. From the Table 4.16, it is seen that
most of the times, the best model is found for the value of C = 2�4 or C = 2�1.
Finally, we have used C = 2�4 (using random selection between these two values) in
all 5 complete runs of the 5-fold cross-validation and averaged our results in order to
ensure unbiased model selection.

For polynomial kernel, to �nd the parameter value C (penalty term for soft margin)
and d, we have considered the value from 2�4 to 24 and from 1 to 3 for d as our
searching space. The selected C and d of 5 complete runs of the 5-fold cross-validation
on combined set of single- and multi-localized proteins is shown in Table 4.16. From
the Table 4.16, it is seen that most of the times, the best model is found for the value
of C = 21 and d=3. Finally, we have used C = 21 and d=3 in all 5 complete runs of
the 5-fold cross-validation and averaged our results in order to ensure unbiased model
selection.

For radial basis function (RBF) kernel, to �nd the parameter value C (penalty term
for soft margin) and � (sigma), we have considered the value from 2�8 to 28 for C
and from 2�8 to 28 for sigma as our searching space. The selected C and sigma of
5 complete runs of the 5-fold cross-validation on combined set of single- and multi-
localized proteins is shown in Table 4.16. From the Table 4.16, it is seen that most of
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Table 4.17: Comparison of the results of multi-location prediction systems of different kernels,
averaged over 5 times run of the 5-fold cross-validation applied on combined set
of single-localized and multi-localized proteins.

Linear Polynomial RBF Laplace

F1 0.613(�0.016) 0.677(�0.033) 0.810(� 0.017) 0.829(�0.002)

Acc 0.498(�0.016) 0.602(�0.031) 0.764(� 0.017) 0.786(�0.002)

the times, the best model is found for the value of C = 21 and � = 21. Finally, we
have used C = 21 and � = 21 in all 5 complete runs of the 5-fold cross-validation and
averaged our results in order to ensure unbiased model selection.

Again, for Laplace kernel, to �nd the parameter value C (penalty term for soft
margin) and � (sigma), we have considered the value from 2�8 to 28 for C and from
2�8 to 28 for sigma as our searching space. The selected C and sigma of 5 complete runs
of the 5-fold cross-validation on combined set of single- and multi-localized proteins
is shown in Table 4.16. From the Table 4.16, it is seen that most of the times, the best
model is found for the value of C = 28 and � = 23. Finally, we have used C = 28

and � = 23 in all 5 complete runs of 5-fold cross-validation and averaged our results
in order to ensure unbiased model selection.

4.7.3.2 Prediction Performance Evaluation

In this section, we have compared the performance of each kernel for SVM and also
compared the performance of the best performed kernel (SVM with laplace kernel
based system, called LKLoc) with that of existing location prediction systems. We have
trained our system using combined dataset and measured two set of results, one set is
for combined set of single and multi-localized proteins and another one is for multi-
localized proteins only. It is noted that all the values of all metrics of our system are the
average result of 5 complete runs of the 5-fold cross-validation. Moreover, standard
deviations of each metrics of 5 complete runs of the 5-fold cross validation are shown
in parentheses.

Table 4.17 shows comparisons of the F1 score and the accuracy obtained by each
kernel used in SVM for combined dataset. The table shows that SVM with Laplace
kernel based system, named LKLoc, performs better than other kernels. In addition,
Table 4.18 shows the comparative studies of F1 score and the accuracy obtained by
LKLoc with those obtained by other multi-location predictors applied on combined
dataset (BNCs as reported in Table 2 of Ramanuja Simha et al [17]). It is clear from
this table that LKLoc provides better accuracy than the existing systems.

Table 4.19 shows comparative studies of the results of per-location predictions ap-
plied on combined dataset of both single- and multi-localized proteins obtained by
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Table 4.18: Comparison of the results of multi-location prediction systems, averaged over 5
times run of the 5-fold cross-validation applied on combined set of single-localized
and multi-localized proteins.

LKLoc BNCs

F1 0.829(�0.002) 0.81(�0.01)

Acc 0.786(�0.002) 0.76 (�0.01)

LKLoc and those obtained by MDLoc and BNCs [17, 31]. In the Table 4.19, the results
are shown for the �ve locations with the largest number of associated proteins. It is
obvious from the table, most of the cases the precision values provided by LKLoc are
somewhat higher than those of MDLocs, and on the other hand, recall provided by
LKLoc has a little bit variation (up and down) than those of MDLocs.

Table 4.20 shows comparisons of the F1-label score and the accuracy obtained
by the best performed kernel (Laplace kernel in this case) with those obtained by
other multi-location predictors for multi-localized proteins only (MDLoc [31], BNCs
[17], YLoc+ [30], Euk-mPLoc [28], WoLF PSORT [18], and KnowPredsite [25] as
reported in Table 1 of Ramanuja Simha et al. [31]). It can be noted here that all the
predictors mentioned above used the same set of multi-localized proteins. The table
shows that the prediction based on SVM with Laplace kernel or LKLoc performs better
than the existing top-systems, including MDLoc, YLoc+, and BNCs which have the best
performance reported so far.

Table 4.21 shows the per-location prediction results for multilocalized proteins ob-
tained by LKLoc compared with those systems reported by MDLoc [31]. Since the
per-location predictions for the other systems (BNCs, Euk-mPLoc, WoLF PSORT and
KnowPredsite) are not publicly available, as a result, we could not show those �nd-
ings. In the Table 4.21, the results are shown for the �ve locations with the largest
number of associated proteins. However, for each location si, we show Multilabel-
Precision (Presi)) and Multilabel-Recall (Recsi) as well as standard precision (Pre �
Stdsi ) and recall (Rec� Stdsi). The results shows that, almost all of the cases, these
four measures obtained from LKLoc are signi�cantly higher than those obtained using
MDLoc and YLoc+ for all protein locations.
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Table 4.19: Per-locations based results, averaged over 5 times run of the 5-fold cross-
validation applied on combined dataset.

Metrics Predictor
cyt
(3785)

nuc
(2952)

ex
(1405)

mem
(1824)

mi (870)

Recsi

LKLoc
0.829
(�0.008)

0.818
(�0.015)

0.818
(�0.005)

0.800
(�0.002)

0.753
(�0.004)

MDLoc
0.825
(�0.009)

0.830
(�0.010)

0.780
(�0.020)

0.822
(�0.012)

0.773
(�0.013)

BNCs
0.795
(�0.011)

0.784
(�0.017)

0.737
(�0.022)

0.780
(�0.014)

0.730
(�0.025)

Presi

LKLoc
0.833
(�0.004)

0.843
(�0.005)

0.886
(�0.009)

0.864
(�0.001)

0.868
(�0.005)

MDLoc
0.819
(�0.013)

0.822
(�0.014)

0.864
(�0.020)

0.872
(�0.014)

0.861
(�0.024)

BNCs
0.809
(�0.018)

0.832
(�0.013)

0.912
(�0.019)

0.900
(�0.012)

0.885
(�0.023)

Rec� Stdsi

LKLoc
0.890
(�0.003)

0.764
(�0.027)

0.837
(�0.009)

0.740
(�0.004)

0.713
(�0.009)

MDLoc
0.867
(�0.015)

0.808
(�0.021)

0.715
(�0.030)

0.842
(�0.017)

0.719
(�0.028)

BNCs
0.861
(�0.014)

0.736
(�0.031)

0.652
(�0.024)

0.805
(�0.017)

0.664
(�0.034)

Pre� Stdsi

LKLoc
0.855
(�0.004)

0.814
(�0.008)

0.907
(�0.009)

0.831
(�0.003)

0.868
(�0.003)

MDLoc
0.854
(�0.014)

0.783
(�0.020)

0.839
(�0.028)

0.882
(�0.014)

0.843
(�0.026)

BNCs
0.840
(�0.011)

0.786
(�0.026)

0.906
(�0.022)

0.900
(�0.015)

0.873
(�0.034)
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Table 4.20: Multi-location prediction results, averaged over 5 times run of the 5-fold cross-
validation, for multi-localized proteins only.

LKLoc MDLoc BNCs YLoc+
Euk-

mPLoc
WoLF

PSORT
KnowPredsite

F1 �
label

0.741

(�0.004)

0.71

(�0.02)

0.66

(�0.02)
0.68 0.44 0.53 0.66

Acc
0.700

(�0.010)

0.68

(�0.01)

0.63

(�0.01)
0.64 0.41 0.43 0.63

4.8 Experiment No 6:- Protein Subcellular Localization Pre-
diction Using Multiple Kernel Learning Based Support
Vector Machine

4.8.1 Motivation and Goals

Prediction of subcellular locations of proteins can provide useful hints for revealing
their functions as well as for understanding the mechanisms of some diseases and �-
nally for developing novel drugs. As the number of newly discovered proteins has
been growing exponentially, which in turns, makes the subcellular localization predic-
tion by purely laboratory tests prohibitively laborious and expensive. In that context,
to tackle the challenges, computational methods are developed as an alternative choice
to help biologists in selecting target proteins and designing related experiments. How-
ever, the success of protein subcellular localization prediction is still a complicated and
challenging problem, particularly when query proteins may have the multi-label char-
acteristics, i.e., their simultaneous existence in more than one subcellular location or
if they move between two or more different subcellular location as well. At this point,
to address this problem, many computational techniques, such as the neural network
[34], K-nearest neighbor (KNN) [35, 36, 37], Bayesian [17, 31, 30] approach and a
few ensemble classi�ers [38, 39] have been introduced for the prediction of protein
subcellular localization. Some methods use variations of k-NN to predict multiple lo-
cations for proteins such as WoLF PSORT [18] uses k-NN with a distance measure that
combines Euclidean and Manhattan distances, Euk-mPLoc [28] uses an ensemble of
k-NN. Again, KnowPredsite [25] uses sequence-based similarity to create a collection
of location-annotated peptide fragments and predict multiple locations for proteins.
However, in recent days, the support vector machine (SVM) [14, 21, 33, 40] has also
been extensively applied to provide potential solutions for the subcellular localization
prediction. But, the selection of an appropriate kernel and its parameters for a cer-
tain classi�cation problem in�uence the performance of the SVM. The selection of the
appropriate kernel and kernel parameters are both considered as the choice of kernel
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Table 4.21: Per-location based results, averaged over 5 times run of the 5-fold cross-validation,
for multi-localized proteins only.

Metrics Predictor
cyt
(2374)

nuc
(2115)

mem
(586)

ex (562) mi (360)

Recsi

LKLoc
0.750
(�0.014)

0.776
(�0.017)

0.557
(�0.009)

0.590
(�0.008)

0.527
(�0.006)

MDLoc
0.750
(�0.012)

0.776
(�0.014)

0.527
(�0.022)

0.547
(�0.035)

0.519
(�0.026)

YLoc+
0.712
(�0.009)

0.728
(�0.011)

0.543
(�0.018)

0.573
(�0.026)

0.536
(�0.031)

Presi

LKLoc
0.934
(�0.003)

0.944
(�0.0006)

0.870
(�0.013)

0.917
(�0.008)

0.868
(�0.014)

MDLoc
0.911
(�0.008)

0.929
(�0.008)

0.807
(�0.036)

0.833
(�0.044)

0.832
(�0.042)

YLoc+
0.893
(�0.010)

0.924
(�0.008)

0.764
(�0.029)

0.740
(�0.053)

0.765
(�0.033)

Rec� Stdsi

LKLoc
0.849
(�0.004)

0.700
(�0.034)

0.615
(�0.020)

0.440
(�0.009)

0.431
(�0.017)

MDLoc
0.817
(�0.021)

0.746
(�0.028)

0.588
(�0.042)

0.385
(�0.058)

0.388
(�0.062)

YLoc+
0.786
(�0.020)

0.684
(�0.015)

0.614
(�0.042)

0.401
(�0.037)

0.429
(�0.060)

Pre� Stdsi

LKLoc
0.950
(�0.002)

0.929
(�0.001)

0.867
(�0.013)

0.921
(�0.006)

0.829
(�0.013)

MDLoc
0.942
(�0.009)

0.904
(�0.014)

0.794
(�0.039)

0.830
(�0.046)

0.784
(�0.057)

YLoc+
0.935
(�0.009)

0.914
(�0.014)

0.730
(�0.047)

0.771
(�0.055)

0.670
(�0.055)
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problem [3, 4]. The literature survey have showed that most of the researchers ap-
plied radial basis function (RBF) kernel to build SVM based subcellular localization
prediction [14, 16, 39] and have found the value of its parameter by using different
techniques such as trial and error, heuristics or grid search procedure, unfortunately,
these approaches are time consuming[41]. To reduce the complexity in �nding ker-
nel parameters such as sigma for RBF (choice of kernel from the set of RBF kernel),
multiple kernel learning approach can be adopted [41]. In this case, the set of radial
basis function (RBF) kernels (different values of sigma create different kernels) has
been considered as the search space of the choice of kernel problem [3]. However,
Several researchers have proposed various multiple kernel learning approach in which
multiple kernels are used to construct a combined kernel [41, 3, 75, 7, 8, 44, 85].

This experiment is aimed to develop an ef�cient multi-label protein subcellular
localization prediction system, named MKLoc, by introducing multiple kernel learning
(MKL) based SVM. We have evaluated MKLoc on a combined dataset containing 5447
single-localized proteins (originally published as part of the Höglund dataset) and
3056 multi-localized proteins (originally published as part of the DBMLoc set). It can
be noted here that this dataset was used by Briesemeister et al. in their extensive
comparison of multi-localization prediction systems [30].

4.8.2 Materials and Methods

4.8.2.1 Datasets

In our experiments we use a combined dataset containing 5447 single-localized pro-
teins, originally published as part of the Höglund dataset [30] and 3056 multi-localized
proteins that was originally published as part of the DBMLoc set [150]. This combined
dataset was �rst constructed for an extensive comparison of multi-localization predic-
tion systems by Briesemeister et al. [30]. This dataset is already homology-reduced,
i.e. the protein sequences from the Höglund dataset share no more than 30% sequence
identity with each other, and in the same time, sequences from the DBMLoc dataset
share less than 80 % sequence similarity with each other. We report results using dif-
ferent evaluation metric that obtained over the set of multi-localized proteins for com-
paring our system to other published systems, since the results for these systems are
only available for this subset. In the case, where reports obtained over the combined
set of single- and multi-localized proteins from other system are available, we also
make comparison with our system. The 5447 single-localized proteins covering the
following 9 locations (abbreviations and number of proteins per location are given in
parentheses): cytoplasm (cyt, 1411 proteins); endoplasmic reticulum (ER, 198), extra
cellular space (ex, 843), golgi apparatus (gol, 150), lysosome (lys, 103), mitochon-
drion (mi, 510), nucleus (nuc, 837), membrane (mem, 1238), and peroxisome (per,
157). The multi-localized proteins come from the following pairs of locations: cyt and
nuc (cyt_nuc , 1882 proteins), ex and pm (ex_mem , 334), cyt and mem (cyt_mem,
252), cyt and mi (cyt_mi, 240), nuc and mi (nuc_mi, 120), er and ex (ER_ex, 115),
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and ex and nuc (ex_nuc , 113). It should be noted that all the multi-location subsets
used have over 100 representative proteins and this is currently the largest data set of
proteins from multiple locations [62].

4.8.2.2 Biological Input Features of Protein

In this study, we have used the 30-dimensional features vector of protein as same as
used by Briesemeister et al. for YLoc+ and R. Ramanuja Simha for MDLoc and BNCs
[17, 31, 30, 151]. However, thirteen of those features constructed directly from the
protein sequence such as length of the amino acid chain, length of the longest very
hydrophobic region, respective number of Methionine, Asparagine, and Tryptophane,
occurring in the N-terminus etc [17]. Again, nine of those features are extracted from
pseudo-amino acid composition [19], which is based on certain physical and chemical
properties of amino acid subsequences. The remaining 8 feature were come from
two types of annotation based features. Here, the �rst type annotation-based features
contain two features constructed using two distinct groups of PROSITE patterns, and
the second type annotation-based features contain six features extracted based on GO-
annotations [17, 31].

4.8.2.3 Support Vector Machine and its Kernel

The multiclass multi-label SVM modeling algorithm has been used in this study. It is
explained in section 2.2.1.3. In the study, we have used radial basis function (RBF)
kernel. The de�nition of RBF kernel has been de�ned in section 2.2.1.1.

4.8.2.4 Multiple Kernel Learning

A successful application of SVMs depends heavily on the determination of the right
type and suitable parameter settings of kernel functions [41]. The selection of the
appropriate kernel and kernel parameters are both considered as the choice of kernel
problem [3, 4]. However, Hsu et al.[64] claimed the RBF kernel to be a reasonable
�rst choice for the SVM. Again, various other researchers have used trial and error,
heuristic or grid search procedures to determine the settings of the hyperparameters
of a kernel [65, 152]. This obviously takes a lot of efforts.

In order to avoid, the time consuming parameter tuning problem (choice of kernel
among the set of RBF kernels), one approach of MKL, which is adopted by many
practitioners, is to discretize the parameter space (space of sigma for RBF kernel) into
r values and then �nd an appropriate combination of the resulting set of base kernels,
S = k�1 ; k�2 ; � � � ; k�r [3]. The advantage of this approach is that once the set S is �xed,
any of the standard MKL methods available in the literature can be used to �nd the
coef�cients for combining the base kernels in S [41, 10, 43, 8, 85, 153, 9, 79, 3, 46, 45].
In this work, we have used RBF kernel and applied MKL for solving the problem of
choosing sigma of RBF kernel.
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The form of linear combined kernel of multiple kernel learning (MKL) is de�ned
below [10]:

k�(xi; xj) =
PX

m=1

�mkm(xmi ; x
m
j ) (4.16)

where �m denotes the kernel weights, km(xmi ; x
m
j ) take P feature representations (not

necessarily different) of data instances, xmi 2 R
Dm , and Dm is the dimensionality of

the corresponding feature representation.
In our research work, in order to get the combination function parameters or kernel

weights, a heuristic approach proposed by Qiu and Lane [85] has been used that uses
kernel alignment based similarity measure to �nd the kernel weights. Note that kernel
alignment based similarity measure is discussed in section 2.3.2.2 and 2.3.2.3.

Qiu and Lane [85] propose the following simple heuristic for classi�cation prob-
lems to select the kernel weights using kernel alignment:

�m =
A(Km; yyT )
PP

h=1Kh; yyT
8m (4.17)

where we obtain the combined kernel as a convex combination of the input kernels.

4.8.2.5 Implementation Procedures of the Proposed System

To implement the proposed system, we have followed the following steps:

I Discretize the parameter space of sigma of RBF kernel into 17 values in order to
get the set of base kernels, S = k�1 ; k�2 ; � � � ; k17 . In our work, 17 values of sigma
for base kernels is 2�8; 2�7; � � � ; 27; 28

II Find kernel weights for each of these 17 kernels using equation 4.17.

III Combine these 17 kernels using equation 4.16 in order to get the combined
kernel.

IV N (N=9 in our case) independent binary SVMs are trained, one for each location,
using the combined kernel.

V Make prediction of a query protein through learned SVM using equations 2.8
and 2.9 de�ned in section 2.2.1.3.

4.8.2.6 Experimental Setting

In this study, to save the computational time, we have used K-fold cross validation
(subsampling) methods and compared the performance of MKLoc to that of other
systems (MDLoc [31], BNCs [17], YLoc+ [30], Euk-mPLoc [28], WoLF PSORT [18],
and KnowPredsite [25]). It should be noted that the performance of YLoc+, Euk-
mPLoc, WoLF PSORT, and KnowPredsite on a large set of multi-localized proteins
have been studied comprehensively in [31]. As the information about the exact 5-way
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splits of dataset used in previous studies is not published, therefore, in order to validate
the stability and the statistical signi�cance of our results, we have repeated the 5-fold
cross validation for 5 times (i.e. 25 runs in total). It can be mentioned here that in
each 5-fold cross validation the given training samples are randomly partitioned into
5 mutually exclusive sets of approximately equal size and approximately equal class
distribution. Finally we have reported the average results in this study.

4.8.2.7 Evaluation Metrics

Performance measurement in multi-label classi�cation is more complicated than tra-
ditional single-label classi�cation, as each example could be associated with multiple
labels simultaneously. In this study, we have used various types of adapted measures
such as accuracy, F1 score, Presi , Recsi , Pre_Stdsi , Rec_Stdsi , and F1 � label. The
de�nitions of these metrics are discussed in section 4.2.3.3.

4.8.3 Results and Discussion

4.8.3.1 Model Selection of SVM

In order to generate highly performing classi�ers capable of dealing with real data
an ef�cient model selection is required. In our experiment, grid-search technique has
been used to �nd the best model. This method selects the best solution by evaluating
several combinations of possible values of parameters of the classi�er. We have per-
formed 5 complete runs of the 5-fold cross-validation and each time we have selected
the best parameter of the classi�er on basis of the multi-label accuracy.

In SVM with multiple kernel, we have used combined kernel that will be formed
using equation 4.16 from a set of RBF kernel with different values of sigma. Here,
in our work, we have discretized the parameter space of sigma of RBF kernel into 17
values in order to get the set of base kernels, S = k�1 ; k�2 ; � � � ; k�17 . We have also
considered the resulting set of sigma for base kernels is 2�8; 2�7; � � � ; 27; 28.

Next, to �nd the parameter value C (penalty term for soft margin), we have con-
sidered the value from 2�8 to 28 for C as our searching space. We have performed 5
complete runs of the 5-fold cross-validation and each time we have selected the best
parameter of the classi�er depending on the value of accuracy. Here, in our work, this
model selection is applied on combined set of single- and multi-localized proteins. In
this way, the selected C for 5 complete runs of the 5-fold cross-validation shown in
Table 4.22.

From Table 4.22, we see that most of the times, best model is found for the value
of C = 25. Finally, we have used C = 25 in all 5 complete runs of the 5-fold cross-
validation and averaged our results on combined dataset in order to ensure unbiased
model selection.

We have also implemented and tuned parameters (C and sigma for RBF Kernel) for
single kernel based SVM using the same procedure as like MKL based SVM and �nally,
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Table 4.22: Selected C for 5 times run of the 5-fold cross-validation on combined set of single-
and multi-localized proteins.

No. of Completes Run C

1st 26

2nd 25

3rd 25

4th 26

5th 25

used C = 20 and � = 21 in all 5 times 5 fold cross validation run and averaged our
results on combined dataset.

4.8.3.2 Prediction Performance Evaluation

In this section, we have compared the performance of MKLoc on ’multi-localized pro-
teins’ as well as on ’combined set of single and multi-localized proteins’ with that
of existing location prediction systems. We have trained our system using combined
dataset and measured two set of results, one set is for multi-localized proteins only
and another one is for combined set of single and multi-localized proteins.

Table 4.23 shows comparisons of the F1-label score and the accuracy obtained
by MKLoc with those obtained by other multi-location predictors for multi-localized
proteins only (MDLoc [31], BNCs [17], YLoc+ [30], Euk-mPLoc [28], WoLF PSORT
[18], and KnowPredsite [25] as reported in Table 1 of Ramanuja Simha et al. [31]).
In addition to the tabular presentation shown in Table 4.23, comparisons of the F1-
label and Acc results are also graphically shown in Fig. 4.7 and 4.8, respectively. It
can be noted here that all the predictors mentioned above used the same set of multi-
localized proteins. The table as well as the �gures show that MKLoc performs better
than the existing top-systems, including MDLoc, YLoc+, and BNCs which have the best
performance reported so far.
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Table 4.23: Multi-location prediction results, averaged over 5 times run of the 5-fold cross-
validation, for multi-localized proteins only.

MKLoc MDLoc BNCs YLoc+
Euk-

mPLoc
WoLF

PSORT
KnowPredsite

F1 �
label

0.727

(�0.005)

0.71

(�0.02)

0.66

(�0.02)
0.68 0.44 0.53 0.66

Acc
0.694

(�0.003)

0.68

(�0.01)

0.63

(�0.01)
0.64 0.41 0.43 0.63

Figure 4.7: Multi-location prediction results for multi-localized proteins only when consider-
ing the evaluation metric F1-label.

Table 4.24 shows the per-location prediction results for multilocalized proteins ob-
tained by MKLoc compared with those systems reported by MDLoc [31]. Since the
per-location predictions for the other systems (BNCs , Euk-mPLoc, WoLF PSORT and
KnowPredsite) are not publicly available, as a result, we could not show those �nd-
ings. In the Table 4.24, the results are shown for the �ve locations with the largest
number of associated proteins. However, for each location si, we show Multilabel-
Precision (Presi) and Multilabel-Recall (Recsi) as well as standard precision (Pre_Stdsi)
and (Rec_Stdsi) . The results shows that, almost all of the cases, these four measures
obtained from MKLoc are signi�cantly higher than those obtained using MDLoc and
YLoc+ for all protein locations.
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Figure 4.8: Multi-location prediction results for multi-localized proteins only when consider-
ing the evaluation metric Acc.

Table 4.25 shows the comparative studies of F1 score and the accuracy obtained
by MKLoc with those obtained by other multi-location predictors for combined dataset
(single kernel based SVM and BNCs as reported in Table 2 of Ramanuja Simha et
al [17]). It is clear from this table that MKLoc provides better accuracy than the
existing systems. Moreover, for the experiments described in this work, we have run
5 times run of the 5-fold cross validation, where the total run time including tuning
parameter is nearly 30 hours (wall clock) which is about half of time required for
BNCs implementation. In addition to it, another �nding from this table is that, the F1

and accuracy found from our implementation with single kernel based SVM are better
than those from single kernel SVM [17] and very close to MKLoc. The main problem of
single kernel based SVM is that the required execution time is about double of MKLoc,
as shown in Table 4.25. It should be mentioned that the F1, accuracy and execution
time for the other system [17, 31] except BNCs are not compared as they are not
publicly available.

Table 4.26 shows comparative studies of the results of per-location predictions for
combined dataset of both single- and multi-localized proteins obtained by MKLoc and
those obtained by MDLoc and BNCs [17, 31]. It is obvious from the table, MKLoc’s
recall values are somewhat lower than those of MDLocs, on the other hand, MKLoc’s
precision is typically higher.

The following point may be the reason why the proposed predictor can improve
the success rates over single kernel based SVM. MKLoc uses combined kernel which
has been derived from all the kernels with different rates of contribution from the set
of base kernels de�ned in model selection section 4.8.3.1 to build SVM based classi�er.
Here it should be noted that the in�uences or weights of all kernel has been derived
using MKL. On the other hand, the main reasons for taking less time than single kernel
based SVM is that it is avoiding the grid search operation for the value of sigma which
is mandatory for single kernel based SVM.
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Table 4.24: Per-location based results, averaged over 5 times run of the 5-fold cross-validation,
for multi-localized proteins only.

Metrics Predictor
cyt
(2374)

nuc
(2115)

mem
(586)

ex (562) mi (360)

Recsi

MKLoc
0.749
(�0.003)

0.778
(�0.002)

0.534
(�0.004)

0.572
(�0.002)

0.513
(�0.002)

MDLoc
0.750
(�0.012)

0.776
(�0.014)

0.527
(�0.022)

0.547
(�0.035)

0.519
(�0.026)

YLoc+
0.712
(�0.009)

0.728
(�0.011)

0.543
(�0.018)

0.573
(�0.026)

0.536
(�0.031)

Presi

MKLoc
0.936
(�0.001)

0.944
(�0.001)

0.886
(�0.004)

0.925
(�0.009)

0.840
(�0.014)

MDLoc
0.911
(�0.008)

0.929
(�0.008)

0.807
(�0.036)

0.833
(�0.044)

0.832
(�0.042)

YLoc+
0.893
(�0.010)

0.924
(�0.008)

0.764
(�0.029)

0.740
(�0.053)

0.765
(�0.033)

Rec� Stdsi

MKLoc
0.834
(�0.003)

0.713
(�0.003)

0.606
(�0.006)

0.416
(�0.002)

0.429
(�0.014)

MDLoc
0.817
(�0.021)

0.746
(�0.028)

0.588
(�0.042)

0.385
(�0.058)

0.388
(�0.062)

YLoc+
0.786
(�0.020)

0.684
(�0.015)

0.614
(�0.042)

0.401
(�0.037)

0.429
(�0.060)

Pre� Stdsi

MKLoc
0.955
(�0.001)

0.928
(�0.003)

0.879
(�0.008)

0.928
(�0.009)

0.802
(�0.006)

MDLoc
0.942
(�0.009)

0.904
(�0.014)

0.794
(�0.039)

0.830
(�0.046)

0.784
(�0.057)

YLoc+
0.935
(�0.009)

0.914
(�0.014)

0.730
(�0.047)

0.771
(�0.055)

0.670
(�0.055)
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Table 4.25: Comparison of the results of Multi-location prediction systems, averaged over 5-
times run of the 5-fold cross-validation applied on combined set of single-localized
and multi-localized proteins.

MKLoc
Our Implementation
of SVM with Single
Kernel

Single Ker-
nel SVM
[17]

BNCs

F1 0.814(�0.001) 0.810(�0.017) 0.77(�0.01) 0.81(�0.01)

Acc 0.771(�0.002) 0.764(�0.017) 0.72 (�0.01) 0.76(�0.01)

Running
Time

30 Hours (includ-
ing run time of
model selection)

75 Hours (including
run time of model
selection)

Data is not
available

75 Hours

4.9 Experiment No 7:- Protein Subcellular Localization Pre-
diction Using Kernel Based Feature Fusion

4.9.1 Motivation and Goals

The success of protein subcellular localization prediction is a complicated and chal-
lenging problem, particularly when query proteins may have multiple feature rep-
resentation and multiplex character, i.e., simultaneously exist at, or move between,
two or more different subcellular location sites. To get rid of this problem, several
types of subcellular localization prediction methods have been proposed depending on
various feature extractions methods which produce different levels of accuracy. Con-
ventional methods for subcellular localization prediction can be roughly divided into
sequence-based methods and annotation-based methods [14, 17]. Sequence-based
predictors make use of (I) sequence-coded sorting signals such as WoLF PSORT [18]
(II) amino acid composition information [19, 20], (III) both information sources [18,
21]. Annotation-based predictors use information about functional domains and mo-
tifs [23], protein-protein interaction [24], homologous proteins such as KnowPredsite
[25], annotated Gene Ontology (GO) terms [26] such as Euk-OET-PLoc [27], Euk-
mPLoc [28], iLoc-Gneg [29].

Among the feature extractions methods, feature extractions based on GO terms
provides better accuracy [14, 16, 154, 155, 135, 156, 157]. However, there are several
cases, especially for newly discovered proteins, where the GO term feature representa-
tion are not available, in some cases GO terms of top homology are not found [16, 156]
and �nally in some worse cases, the homology of proteins are not available too [156],
all these proteins from all the cases are called as ’non-GO termed’ proteins. In such
cases, researcher depends on some backup methods using other features extraction ap-
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Table 4.26: Per-locations based results, averaged over 5 times run of the 5-fold cross-
validation applied on combined dataset.

Metrics Predictor
cyt
(3785)

nuc
(2952)

ex
(1405)

mem
(1824)

mi (870)

Recsi

MKLoc
0.825
(�0.001)

0.82
(�0.001)

0.805
(�0.003)

0.776
(�0.003)

0.741
(�0.005)

MDLoc
0.825
(�0.009)

0.830
(�0.010)

0.780
(�0.020)

0.822
(�0.012)

0.773
(�0.013)

BNCs
0.795
(�0.011)

0.784
(�0.017)

0.737
(�0.022)

0.780
(�0.014)

0.730
(�0.025)

Presi

MKLoc
0.835
(�0.002)

0.842
(�0.001)

0.905
(�0.002)

0.883
(�0.003)

0.79
(�0.004)

MDLoc
0.819
(�0.013)

0.822
(�0.014)

0.864
(�0.020)

0.872
(�0.014)

0.861
(�0.024)

BNCs
0.809
(�0.018)

0.832
(�0.013)

0.912
(�0.019)

0.900
(�0.012)

0.885
(�0.023)

Rec� Stdsi

MKLoc
0.878
(�0.002)

0.773
(�0.002)

0.828
(�0.004)

0.713
(�0.002)

0.706
(�0.008)

MDLoc
0.867
(�0.015)

0.808
(�0.021)

0.715
(�0.030)

0.842
(�0.017)

0.719
(�0.028)

BNCs
0.861
(�0.014)

0.736
(�0.031)

0.652
(�0.024)

0.805
(�0.017)

0.664
(�0.034)

Pre� Stdsi

MKLoc
0.863
(�0.003)

0.806
(�0.001)

0.924
(�0.003)

0.846
(�0.004)

0.789
(�0.005)

MDLoc
0.854
(�0.014)

0.783
(�0.020)

0.839
(�0.028)

0.882
(�0.014)

0.843
(�0.026)

BNCs
0.840
(�0.011)

0.786
(�0.026)

0.906
(�0.022)

0.900
(�0.015)

0.873
(�0.034)
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proaches but unfortunately the reason of selecting their feature extraction approach is
not explained. It can be noted here that in most of the cases, prediction performance
of only the backup method is not provided separately, that is, combined prediction
performance is given based on GO term based method along with the backup method.
This makes it harder to get any idea about the prediction performance of the non-GO
termed proteins.

Therefore, in this experiment, our main goal is to develop an ef�cient predic-
tion system using feature representation other than GO term feature representation
for predicting the subcellular location of proteins especially for non-GO termed pro-
teins. Keeping this goal in mind, we have considered seven types of feature extraction
approaches for the gram-negative dataset. Finally, we have developed a subcellular
location prediction system , named KFFLoc-Gneg, using kernel based feature fusion
through multiple kernel learning (MKL) based support vector machine (SVM).

4.9.2 Materials and Methods

4.9.2.1 Short Description of Dataset and Working Procedure of the Proposed
System

In this paper, the gram-negative bacterial benchmark dataset used in Gneg-mPLoc
[135], iLoc-Gneg [29] and Gneg-ECC-mPLoc [63] is used to evaluate the prediction
performance of our system. The gram-negative bacterial dataset contains 1392 differ-
ent proteins, called actual proteins, which are distributed in 8 locations. Among these
gram-negative proteins, 1328 belong to one subcellular location, 64 to two locations,
and none to more locations. Hence, there are 1456 (1328+64 *2) locative proteins
in total in this dataset. The concept of locative proteins and actual proteins has been
explained in detail in literature [13, 14, 16, 63]. The name of these eight locations
and the number of proteins in each location are shown at Table 4.27. The pairwise
sequence identity among proteins in this dataset is controlled fewer than 25%. This
benchmark is available at: http://www. csbio.sjtu.edu.cn/bioinf/Gneg-multi/.

The proposed predictor, called predMultiLoc-Gneg, has followed the following steps:

1. Extract seven types of features using various types of feature extraction ap-
proaches.

2. Integrate data sources and train a system using multiple kernel learning based
support vector machine. Here, multiple kernel learning has been used to do
kernel based feature fusion.

To provide an intuitive view, the working procedure of our system is shown in
Figure 4.9.
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Table 4.27: Distribution of protein subcellular locations in the gram-negative bacterial dataset

No. Subcellular location No. of proteins

1 Cell inner membrane 557

2 Cell outer membrane 124

3 Cytoplasm 410

4 Extracellular 133

5 Fimbrium 32

6 Flagellum 12

7 Nucleoid 8

8 Periplasm 180

Total number of locative proteins 1456

Total number of different proteins 1392

Figure 4.9: A �owchart to show the prediction process of KFFLoc-Gneg

4.9.2.2 Feature Extractions

In this study, we have considered the following seven approaches to extract feature
from protein sequences.
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1. Amino Acid Composition (AAC) [See section 3.6.5.1]

2. Dipeptide Composition (DC) [See section 3.6.5.2]

3. Pseudo-Amino Acid Composition (PAAC) [See section 3.6.5.3]

4. Amphiphilic Pseudo-Amino Acid Composition (APAAC) [See section 3.6.5.4]

5. Physicochemical Properties Model (PPM) [See section 3.6.5.5]

6. Amino Acid Index Distribution (AAID) [See section 3.6.5.6]

7. Sequential Evolution Information (PSSM) [See section 3.6.5.8]

4.9.2.3 Support Vector Machine and its Kernel

The multiclass multi-label SVM modeling algorithm has been used in this study. It is
explained in section 2.2.1.3. In the study, we have used radial basis function (RBF)
kernel. The de�nition of RBF kernel has been de�ned in section 2.2.1.1.

4.9.2.4 Multiple Kernel Learning

Multiple kernel learning (MKL) based SVM is as an extension of single kernel based
SVM to incorporate multiple kernels in classi�cation [41, 10, 43]. There are two
well-known problem formulations of MKL namely one-stage MKL and two-stage MKL
[10, 45]. In this paper, the two-stage MKL problem formulation has been used. In
two-stage MKL based system, at �rst, an individual kernel on each set of features are
de�ned, after that these individual kernels are combined into a single kernel using
speci�c rules of MKL, and �nally, trained a single SVM on that combined kernel.

The form of linear combined kernel of multiple kernel learning (MKL) is de�ned
below [10]

k�(xi; xj) =
PX

m=1

�mkm(xmi ; x
m
j ) (4.18)

where �m denotes the kernel weights, km(xmi ; x
m
j ) take P feature representations (not

necessarily different) of data instances, xmi 2 R
Dm , and Dm is the dimensionality of

the corresponding feature representation.
In our research work, in order to get the combination function parameters or kernel

weights, a heuristic approach proposed by Qiu and Lane [85] has been used that uses
kernel alignment based similarity measure to �nd the kernel weights. Note that kernel
alignment based similarity measure is discussed in section 2.3.2.2 and 2.3.2.3. Qiu
and Lane [85] propose the following simple heuristic for classi�cation problems to
select the kernel weights using kernel alignment:

�m =
A(Km; yyT )
PP

h=1Kh; yyT
8m

where we obtain the combined kernel as a convex combination of the input kernels.
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4.9.2.5 Imbalance Data Management

In this work, we have used a hybrid model using Random oversampling and Different
Error Costs (DEC), de�ned in section 4.2.1.2, to handle imbalance dataset problem of
gram-negative dataset. In our work, equations 4.1 has been used to assign the cost for
the positive and negative classes in the DEC method.

4.9.2.6 Experimental Setting

In this study, to save the computational time, we have used subsampling (K-fold cross
validation) methods and compared the performance among our developed classi�ers.
The problem with this kind of subsampling test is that the number of possible selec-
tions in dividing a benchmark dataset is an astronomical �gure even for a very simple
dataset [158]. Therefore, in any actual subsampling cross-validation tests, only an ex-
tremely small fraction of the possible selections are taken into account. Since different
selections will always lead to different results even for a same benchmark dataset and
a same predictor, the subsampling test cannot provide a unique outcome. To reduce
the problem of unique outcome, we have repeated the 5-fold cross validation for 5
times (i.e. 25 runs in total), where the given training samples are randomly parti-
tioned into 5 mutually exclusive sets of approximately equal size and approximately
equal class distribution. Finally we have reported average result of 5 complete runs of
the 5-fold cross-validation. The use of multiple runs with different splits helps validate
the stability and the statistical signi�cance of the results.

4.9.2.7 Measuring Metrics

In this work we have used the (overall) locative and absolute accuracy to measure the
performance of multi-label predictors. The formulation of locative proteins and actual
proteins has been de�ne in section 4.2.3.1.

4.9.3 Results and Discussion

4.9.3.1 Model Selection of SVM (Both Single and Multiple Kernel Based SVM)

In order to generate highly performing classi�ers capable of dealing with real data
an ef�cient model selection is required. In our experiment, grid-search technique has
been used to �nd the best model for support vector machine. This method selects
the best solution by evaluating several combinations of possible values. We have per-
formed 5 complete runs of the 5-fold cross-validation and each time we have selected
the best parameter of the classi�er depending on the actual accuracy.

For each feature representation, we have used SVM with single kernel predictor. In
SVM with single kernel, we have used radial basis function as kernel and tune it kernel
parameter, sigma, as well as soft margin parameter C of SVM. To �nd the parameter
value C (penalty term for soft margin) and sigma, we have considered the values from
2�8 to 28 for C and from 2�8 to 28 for sigma as our searching space. Herein, the value
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Table 4.28: Selected C and � of 5 complete runs of the 5-fold cross-validation for single-kernel
based SVM using RBF kernel

Feature
Extraction
Approaches

Selected C from 5 Times
Run

Selected � from 5 Times
Run

1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th

AAC 20 22 22 2�1 21 21 22 21 21 22

DC 21 21 21 21 21 24 24 24 24 24

PAAC 23 21 24 21 24 23 22 24 22 24

APAAC 22 22 21 24 21 23 23 23 24 23

PPM 25 25 24 24 24 22 22 22 22 22

AAID 22 21 21 21 22 22 22 22 22 22

PSSM 26 26 24 23 23 23 22 23 22 22

of C will be used to �nd the misclassi�cation cost of C+ and C� de�ned in equation
4.1. The selected C and sigma of 5 complete runs of the 5-fold cross-validation for the
gram-negative bacteria dataset for each feature extraction approach is shown in Table
4.28.

In feature fusion case, we have used SVM with MKL predictor, named KFFLoc-
Gneg. In SVM with multiple kernel, we have also used radial basis function as base
kernel and tune it kernel parameter, sigma, as well as soft margin parameter C of
SVM. To �nd the parameter value C (penalty term for soft margin) and sigma, we
have considered the values from 2�8 to 28 for C and from 2�8 to 28 for sigma as our
searching space. The selected C and sigma of 5 complete runs of the 5-fold cross-
validation for the gram-negative bacteria dataset for feature fusion based approach is
shown in Table 4.29.

It can be mentioned here that We have used Matlab 2014b version to implement
our system where the svmtrain function of Matlab by default uses DEC with the same
cost de�ned in Eq. 4.1 to handle imbalance situation.

4.9.3.2 Prediction Performance Evaluation

The major objective of this work is to fuse different feature extracted using different
extraction approach that may be capable to produce a higher performance of protein
subcellular localization prediction especially for non-GO termed protein. Keeping in
mind this objective, we have compared the prediction performance of seven different
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Table 4.29: Selected C and � of 5 complete runs of the 5-fold cross-validation for MKL based
SVM using RBF kernel

No. of Completes Run C �

1st 2�2 23

2nd 2�3 23

3rd 2�3 23

4th 2�3 23

5th 2�2 23

feature representations extracted from seven different approaches and feature fusion
approach, named KFFLoc-Gneg.

Table 4.30: Prediction results, averaged over 5 times run of the 5-fold cross-validation, for
each prediction algorithm using different feature extraction approaches and fea-
ture fusion approaches for the gram-negative bacterial dataset.

Feature Extrac-
tion Approaches

Classi�cation
Method

Actual ACC % Locative ACC %

AAC SVM (Single Kernel) 66.27 (�0.448) 70.92 (�2.216)

DC SVM (Single Kernel) 65.40 (�0.749) 69.71 (�0.702)

PAAC SVM (Single Kernel) 64.59 (�0.368) 68.89 (�2.224)

APAAC SVM (Single Kernel) 64.75 (�0.460) 68.35 (�0.962)

PPM SVM (Single Kernel) 61.97 (�0.347) 66.19 (�0.538)

AAID SVM (Single Kernel) 64.96 (�0.416) 69.11 (�0.968)

PSSM SVM (Single Kernel) 61.14 (�0.389) 66.08 (�1.486)

Feature Fusion
SVM with MKL
(KFFLoc-Gneg)

73.14 (�0.299) 75.47 (�0.384)

Table 4.30 provide the actual accuracy as well as locative accuracy of the predictor
based on each of the seven feature extraction approach and feature fusion approach
for the gram-negative bacteria datasets. For each of feature extraction approach and
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feature fusion approach, 5 complete runs of the 5-fold cross-validation have been per-
formed and the averaged performance have been presented in Table 4.30. In addition
to tabular presentation as in Table 4.30, the comparison of the results of actual accu-
racy and locative accuracy have also been shown graphically in Figure 4.10 and 4.11
respectively. From the Table 4.30 as well as from the �gures, it is clear that feature fu-
sion based predictor produces the best performance while considering actual accuracy
and locative accuracy than all other single feature based predictor. According actual
accuracy, feature fusion based predictor i.e. SVM with MKL (KFFLoc-Gneg) produces
at least 8% better result than any of the single feature based predictor. On the other
hand, fusion based predictor provides at least 5% better locative accuracy than any of
the single feature based predictor. Moreover, feature fusion based predictor achieved
smaller standard deviation than all single feature based predictor.

Figure 4.10: Performance comparison of actual accuracy among single feature based predictor
VS feature fusion based predictor

The following point may be the reason why the proposed feature fusion based
predictor can improve the success rates over single feature based predictor. KFFLoc-
Gneg uses combined kernel which has been derived from all the kernels with different
rates of contribution for each of the feature representation in order to build SVM
based classi�er. It should be noted that different feature provides complementary
views about a protein. We can expect that having more information about a subject,
we have better chance of analyzing it with higher accuracy. Here it should be noted
that the in�uences or weights of all kernel has been derived and combined using MKL.
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Figure 4.11: Performance comparison of locative accuracy among single feature based predic-
tor VS feature fusion based predictor

4.10 Experiment No 8:- predHumPhos: Predicting Human
Phosphorylated Proteins Using Multiple Kernel Learn-
ing (MKL) Based Support Vector Machine

4.10.1 Motivation and Goals

Human protein phosphorylation is one of the most important post-translational mod-
i�cations (PTMs) which show a crucial role in the transmission of signals that con-
trols a diverse array of cellular functions, such as cell growth, survival differentiation,
and metabolism. In this context, in order to avoid the costly and time-consuming
experimental technologies [159, 123], an accurate computational method for pre-
dicting phosphorylated protein is an urgent issue which can be useful for drug de-
velopment. Various types of computational classi�ers have been developed for iden-
tifying the phosphorylation sites for a known phosphorylated protein [50, 52, 53],
to our best knowledge, so far very few computational methods has been developed
to predict whether an uncharacterized protein is being able to be phosphorylated or
not [54]. However, in order to meet the current demand to produce ef�cient high-
throughput tools for prediction, additional effort are required to enrich the prediction
quality [54, 160].

Therefore, in this experiment, a novel computational tool termed predHumPhos
has been developed to predict phosphorylated proteins by (1) extracting three different
set of features from protein sequences, (2) de�ning an individual kernel on each set
of features and combining them into a single kernel using multiple kernel learning
(MKL), (3) constructing a predictor using support vector machine (SVM) which has
been trained with the combined kernel. In addition, we have balanced the effect of
skewed training dataset by Different Error Costs (DEC) method in the development of



Implementation of Experiments, Results and Discussion 121

our system. Moreover, a user-friendly web server for the predHumPhos has also been
established at http://research.ru.ac.bd/predHumPhos/

4.10.2 Materials and Methods

4.10.2.1 Short Description of Dataset

iPhos-PseEvo’s [54] benchmark dataset set has been used in this study. iPhos-PseEvo’s
dataset consist of 1770 protein sequences from human. At �rst, in iPhos-PseEvo’s study,
some protein sequences were collected from the web site at http://www.uniprot.org/
by giving various constrains such as i) experimental assertion for evidence, ii)consider
only human protein sequences, iii) use keywords of ’phosphoserine’, ’phosphothreo-
nine’, or ’phosphotyrosine’ in the advance search option. After that some more addi-
tional constraint has been applied on that collected sequences such as a) exclude se-
quences with less than 50 and more than 5000 amino acid residues for the convenience
of constructing Position Speci�c Scoring Matrix (PSSM) and b) reduce the redundancy
and homology bias by removing > 50% pairwise sequence identity to any other in the
same subset. Finally, iPhos-PseEvo obtained 1770 human protein sequences [54].

Among 1770 protein sequences of iPhos-PseEvo’s dataset, denoted as dataset S,
1132 are phosphorylated proteins, noted as S+, and 638 non-phosphorylated proteins,
noted as S�. Also, among the 1132 phosphorylated proteins, 845 are phosphorylated
at serine (S), 386 at threonine (T), and 249 at tyrosine (Y). The proteins benchmark
dataset S can be formulated

S = S+ [ S�

where S+ is used to denote the set of phosphorylated proteins, and S� is used to
denote the set of non-phosphorylated proteins.

In iPhos-PseEvo, the protein samples was generally expressed as

P = R1; R2; R3; � � � ; R(L�1); RL . fS;T ; orY g

where R1 represents the 1st residue of the protein P, R2 the 2nd residue, R3 the 3rd

residue, and so forth; the symbol . means that, of the L amino acid residue, at least
one must be S (serine), or T (threonine), or Y (tyrosine). In other words, there is at
least one i 2 1; 2; 3; � � � ; L subject to Ri 2 S; T; Y .

Thus, the benchmark dataset obtained by iPhos-PseEvo for S+, S� are available
at online supplementary materials (http://research.ru.ac.bd/predHumPhos/) as Sup-
porting Information S1 and Supporting Information S2 respectively . It should be men-
tion that our published online supplementary materials are taken from iPhos-PseEvo’s
work [54]. A summary of this benchmark dataset is given in Table 4.31.
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Table 4.31: Summary of the dataset

Subset
Number of
Samples

S+ 1132

S� 638

Total different proteins 1770

4.10.2.2 Feature Extraction

In this study, we have considered the following three approaches to extract feature
from protein sequences.

1. Amino Acid Composition (AAC) [See section 3.6.5.1]

2. Dipeptide Composition (DC) [See section 3.6.5.2]

3. Sequential Evolution Information (PSSM) [See section 3.6.5.8]

4.10.2.3 Support Vector Machine and its Kernel

The SVM modeling algorithm has been used in this study. It is de�ned in section 2.2.1.
In the study, we have used radial basis function (RBF) kernel. The de�nition of RBF
kernel has been de�ned in section 2.2.1.1.

4.10.2.4 Multiple Kernel Learning

Multiple kernel learning (MKL) based SVM is as an extension of single kernel based
SVM to incorporate multiple kernels in classi�cation [41, 10, 43]. There are two
well-known problem formulations of MKL namely one-stage MKL and two-stage MKL
[10, 45]. In this paper, the two-stage MKL problem formulation has been used. In
two-stage MKL based system, at �rst, an individual kernel on each set of features are
de�ned, after that these individual kernels are combined into a single kernel using
speci�c rules of MKL, and �nally, trained a single SVM on that combined kernel. The
architecture of the proposed system is shown in Figure 4.12.
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Figure 4.12: A �owchart to show how the predHumPhos predictor works

The form of linear combined kernel of multiple kernel learning (MKL) is de�ned
below [10]

k�(xi; xj) =
PX

m=1

�mkm(xmi ; x
m
j ) (4.19)

where �m denotes the kernel weights, km(xmi ; x
m
j ) take P feature representations (not

necessarily different) of data instances, xmi 2 R
Dm , and Dm is the dimensionality of

the corresponding feature representation.
In our research work, in order to get the combination function parameters or kernel

weights, a heuristic approach proposed by Qiu and Lane [85] has been used that uses
kernel alignment based similarity measure to �nd the kernel weights. Note that kernel
alignment based similarity measure is discussed in section 2.3.2.2 and 2.3.2.3. Qiu
and Lane [85] propose the following simple heuristic for classi�cation problems to
select the kernel weights using kernel alignment:

�m =
A(Km; yyT )
PP

h=1Kh; yyT
8m

where we obtain the combined kernel as a convex combination of the input kernels.

4.10.2.5 Imbalance Data Management

In this experiments, we have used a Different Error Costs (DEC) method to handle im-
balance dataset problem for this kind of prediction that is discussed in section 4.2.1.1.

4.10.2.6 Experimental Setting

In this paper, in order to save the computational time, two stage approaches has been
used to �nd the best model for our predictor. In the �rst stage, we have used 5 com-
plete runs of the 5-fold cross validation and each time we have used grid-search tech-
nique to select the values of parameters considering the highest accuracy. In this way,
we have got 5 sets of parameters (values of C and sigma) for the MKL based SVM. In
the second stage, we have used jackknife test and searched again using grid search
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approach to select the values of parameter. But, this time the search space will be
limited to the 5 sets of values of the parameter which has been found in the �rst stage.

4.10.2.7 Measuring Metrics

For measuring the predictive capability and reliability for this kind of classi�cation, a
set of four metrics is usually used in the literature: (i) overall accuracy or Acc, (ii)
Mathew’s correlation coef�cient or MCC, (iii) sensitivity or Sn, and (iv) speci�city
or Sp [54, 107, 133, 133]. The de�nitions of these metrics are discussed in section
4.2.3.2.

4.10.3 Results and Discussion

4.10.3.1 Model Selection for SVM

In order to generate highly performing classi�ers capable of dealing with real data an
ef�cient model selection is required. It is noted that, we have used RBF kernel as base
kernel for each of the kernel of MKL. For radial basis function (RBF) kernel, to �nd the
parameter value C (penalty term for soft margin) and � (sigma) for predHumPhos, we
have considered the value from 2�8 to 28 for C and from 2�8 to 28 for sigma as our
searching space. Herein, the value of C will be used to �nd the misclassi�cation cost
of C+ and C� de�ned in equation 4.1

According to the experimental setting de�ned in section 4.10.2.6, in the �rst stage,
we have performed 5 complete runs of the 5-fold cross validation and each time we
have selected the best parameter (value of C and sigma) of the classi�er depending on
the value of accuracy using grid search technique. In this way, �ve sets of C and sigma
have been selected for the MKL based SVM classi�er as shown in Table 4.32. However,
in the second stage, we have performed jackknife test and searched the best parameter
for C and sigma among the selected �ve sets of C and sigma. Finally, we have found
the best model with the value of C = 22 and � = 23 for our predictor through jackknife
test.

It can be mentioned here that we have used Matlab 2014b version to implement
our system where the svmtrain function of Matlab by default uses DEC with the same
cost de�ned in Eq. 4.1 to handle imbalance situation.

4.10.3.2 Prediction Performance Evaluation

The values of the four metrics (cf. Eq. 4.4) obtained by the current predHumPhos
predictor for the prediction of phosphorylated proteins using jackknife test with the
selectedC = 22 and � = 23. From Table 4.33, it is observed that predHumPhos exhibits
accuracy rate of 73.50% for predicting phosphorylation proteins which shows that our
model can predict whether a given site is positive or negative with high con�dence.
Likewise, predHumPhos produces Matthew’s correlation coef�cients (MCC) of 0.4487
for predicting phosphorylated proteins. Finally, predHumPhos also has performed well
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Table 4.32: Selected C and � of 5 complete runs of the 5-fold cross-validations for MKL based
SVM using RBF kernel

No. of Completes Run C �

1st 22 23

2nd 23 22

3rd 20 22

4th 22 23

5th 20 22

Table 4.33: A Comparison of the proposed predictor with the existing methods on the same
dataset

Predictor ACC(%) MCC Sn (%) Sp (%)

iPhos-PseEvo 71.79 0.4362 71.16 70.06

predHumPhos 73.50 0.4487 74.65 71.47

in regard to both speci�city, which measures the predictor’s ability to correctly predict
non-phosphorylated proteins (71.47%) and sensitivity, which measures the percentage
of positive sites that are predicted correctly out of all known phosphorylated proteins
(74.65%).

The Table 4.33 also includes the corresponding rates achieved by iPhos-PseEvo
[54], the one existing predictors for identifying the phosphorylated protein in the
aforesaid benchmark dataset. It should be mentioned here that the performance of
iPhos-PseEvo [54] as shown in Table 4.33 are noted from [54].

It is obvious from the Table 4.33, predHumPhos has performed remarkably better
over iPhos-PseEvo while considering Acc, MCC, Sn, and Sp. It indicates that, the
proposed new predictor has produced over all better accuracy, sensitivity, speci�city
and stability.

Why can the proposed method enhance the prediction quality so signi�cantly?
First, three features are used instead of one feature that provide a more "complete"
representation of proteins as done by previous investigators in successfully improving
the prediction performance for various protein attributes [50, 20, 161, 77]. Second,
multiple kernel learning (MKL) has been used to make a combined kernel by fusing
these three features and �nally, SVM has been trained using the combined kernel which
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enhances the prediction quality and increases the stability as proved by many previous
studies [161, 77, 41, 10, 85, 153]. Third, the predictor used Different Error Costs
(DEC) method to balance the effect of skewed training dataset and hence reduced
many false prediction events caused by imbalanced and skewed training datasets as
established in some recent studies [54, 105, 51].

Figure 4.13: A Semi-screenshot for the home page of the webserver predHumPhos at
http://research.ru.ac.bd/predHumPhos/

4.10.3.3 Protocol Guide

To attract more users especially for the experimental scientists and enhance the value
of practical application, a user-friendly web-server for predHumPhos has been estab-
lished at http://research.ru.ac.bd/predHumPhos/. A step-by-step guide on how to use
the web server is given below

I Open the web server at http://research.ru.ac.bd/predHumPhos/ and you will
�nd the home page of the predictor on your display as shown in Fig. 4.13. You
will have to either type or copy and paste the query protein sequence into the
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input text box at the center of Fig. 4.13. The input sequence should follow
the FASTA format. The example of a sequence of FASTA format is available by
clicking at example button located right above the input text box.

II In order to get the predicted result, click on the Submit button. For example, if
you use any of the query protein sequence given under Example button as input,
it will take 40s or more from the time of your submission to get desired output
of each sequence.

III In order to get batch prediction, you will have to enter desired batch input �le
(in FASTA format of course) via Browse button located on the lower panel, as
shown in Fig. 4.13.

4.11 Experiment No 9:- iMulti-HumPhos: A Multi-Label Clas-
si�er for Identifying Human Phosphorylated Proteins
Using Multiple Kernel Learning Based Support Vector
Machine

4.11.1 Motivation and Goals

Human protein phosphorylation is one of the most important post-translational modi-
�cations (PTMs) which show a crucial role in the transmission of signals that controls
a diverse array of cellular functions, such as cell growth, survival differentiation, and
metabolism. In this context, given a human protein sequence, a question may be raised
whatever it can be phosphorylated or not? Clearly, this is a very important problem for
cellular physiology and pathology, which in turns, helps in providing some valuable
evidence for the researcher in the area of biomedical as well as for the designing and
development of drugs [55]. Recently various types of computational methods have
been developed for predicting the phosphorylation sites for a recognized phosphory-
lated protein [50, 52, 53], to our best knowledge, so far a very few computational
methods [55] has been developed to identify whether an uncharacterized protein can
be phosphorylated or not. Moreover, among all residues of protein molecules, three
types of amino acid residues, namely serine (S), threonine (T), and tyrosine (Y), have
been found susceptible to phosphorylation which leads to the requirement of multi-
label phosphorylated protein identi�cation. However, in order to meet the current
demand to produce ef�cient high-throughput tools for both single- and multi-label
prediction, additional effort are required to enrich the prediction quality [55].

Therefore, in this experiment, a novel computational tool termed iMulti-HumPhos
has been developed to predict multi-label phosphorylated proteins by (1) extracting
three different set of features from protein sequences, (2) de�ning an individual ker-
nel on each set of features and combining them into a single kernel using multiple
kernel learning (MKL), (3) constructing a multi-label predictor using a combination
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Table 4.34: Summary of the dataset (1)

Subset
Number of
Samples

S1 845

S2 386

S3 249

S4 375

Total locative proteins 1855

of support vector machine (SVM) where each SVM has been trained with the com-
bined kernel. In addition, we have balanced the effect of skewed training dataset
by Different Error Costs (DEC) method in the development of our system. More-
over, a user-friendly web server for the iMulti-HumPhos has also been established at
http://research.ru.ac.bd/iMulti-HumPhos/

4.11.2 Materials and Methods

4.11.2.1 Short Description of Dataset

Multi-iPPseEvo’s [55] benchmark dataset set has been used in this study. Multi-iPPseEvo’s
dataset consist of 1507 protein sequences from human. At �rst, in Multi-iPPseEvo’s
study, 2076 protein sequences were collected from the web site at http:// www.uniprot.org/
by giving various constrains such as i) experimental assertion for evidence, ii)consider
only human protein sequences, iii) use keywords of ’phosphoserine’, ’phosphothreo-
nine’, or ’phosphotyrosine’ in the advance search option. After that some more addi-
tional constraint has been applied on that collected sequences (2076 sequences) such
as a) exclude sequences with less than 50 and more than 5000 amino acid residues for
the convenience of constructing Position Speci�c Scoring Matrix (PSSM) and b) reduce
the redundancy and homology bias by removing > 50% pairwise sequence identity to
any other in the same subset. Finally, Multi-iPPseEvo obtained 1507 human protein
sequences [55].

Among 1507 protein sequences of Multi-iPPseEvo’s dataset, denoted as dataset S,
845 occur in phosphoserine phosphorylation subset, noted as S1, 386 in phosphothre-
onine phosphorylation subset, noted as S2, 249 in phosphotyrosine phosphorylation
subset, noted as S3, and 375 in non-phosphorylation subset, noted as S4. The proteins
benchmark dataset S covers 4 different subsets, and can be formulated
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Table 4.35: Summary of the dataset (2)

Number of
phosphorylation

Number of
Samples

One 820

Two 276

Three 36

Zero 375

Total actual proteins 1507

S = S1 [ S2 [ S3 [ S4

Here, 1507 different proteins of the dataset S are called actual proteins and the
subsets S1, S2 and S3 of S are not mutually exclusive. However, to have a look from
the multi-label view of the dataset S, we have found that among 1507 proteins of S,
820 proteins have any one type of phosphorylation among the three types of possible
phosphorylations (phosphoserine, phosphothreonine and phosphotyrosine), 276 pro-
teins have any two types of phosphorylation, 36 proteins have all of the three types
of phosphorylation and 375 have no phosphorylation at all. Hence, there are 1855
(820+276*2+36*3+375) locative proteins in total in this dataset S. The concept of
actual proteins and locative proteins has been described in detail in literature [14, 63].
A summary of this benchmark dataset is given in Table 4.34 and Table 4.35.

In Multi-iPPseEvo, the protein samples was generally expressed as

P = R1; R2; R3; � � � ; R(L�1); RL . fS;T ; orY g

where R1 represents the 1st residue of the protein P, R2 the 2nd residue, R3 the 3rd

residue, and so forth; the symbol . means that, of the L amino acid residue, at least
one must be S (serine), or T (threonine), or Y (tyrosine). In other words, there is at
least one i 2 1; 2; 3; � � � ; L subject to Ri 2 S; T; Y .

Thus, the benchmark dataset obtained by Multi-iPPseEvo for S1, S2, S3, and S4 are
available at online supplementary materials (http://research.ru.ac.bd/iMulti-HumPhos/)
as Supporting Information. It should be mention that our published online supplemen-
tary materials are taken from Multi-iPPseEvo’s work [55].
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4.11.2.2 Feature Extractions

In this study, we have considered the following three approaches to extract feature
from protein sequences.

1. Amino Acid Composition (AAC) [See section 3.6.5.1]

2. Dipeptide Composition (DC) [See section 3.6.5.2]

3. Sequential Evolution Information (PSSM) [See section 3.6.5.8]

4.11.2.3 Support Vector Machine and its Kernel

In this study, a little bit variation in the decision function of multi-label SVM modeling
algorithm, de�ned in section 2.2.1.3, has been used. For better understanding, some
part of section 2.2.1.3 are again stated here to accommodate the variation clearly.

In this study, N independent binary MKL based SVMs predictors are trained, one pre-
dictor for each class of phosphorylation. In the �nal step, the phosphorylation(s) of
the i-th query protein are predicted as

M�(xi) = [Nj=1 fj : fj(xi) > 0g (4.20)

Here, M�(xi) is a predicted set that may have one, or more elements, even it can be
empty too, which enables us to make multi-label prediction. However, if Eq. 4.20
provides an empty class label, i.e., M�(xi) = ;, in that case, the number of phospho-
rylation will be zero and will be predicted as non-phosphorylated protein.

4.11.2.4 Multiple Kernel Learning

Multiple kernel learning (MKL) based SVM is as an extension of single kernel based
SVM to incorporate multiple kernels in classi�cation [41, 10, 43]. There are two
well-known problem formulations of MKL namely one-stage MKL and two-stage MKL
[10, 45]. In this paper, the two-stage MKL problem formulation has been used. In
two-stage MKL based system, at �rst, an individual kernel on each set of features are
de�ned, after that these individual kernels are combined into a single kernel using
speci�c rules of MKL, and �nally, trained a single SVM on that combined kernel.

The form of linear combined kernel of multiple kernel learning (MKL) is de�ned
below [10]

k�(xi; xj) =
PX

m=1

�mkm(xmi ; x
m
j ) (4.21)

where �m denotes the kernel weights, km(xmi ; x
m
j ) take P feature representations (not

necessarily different) of data instances, xmi 2 R
Dm , and Dm is the dimensionality of

the corresponding feature representation.
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In our research work, in order to get the combination function parameters or kernel
weights, a heuristic approach proposed by Qiu and Lane [85] has been used that uses
kernel alignment based similarity measure to �nd the kernel weights. Note that kernel
alignment based similarity measure is discussed in section 2.3.2.2 and 2.3.2.3. Qiu
and Lane [85] propose the following simple heuristic for classi�cation problems to
select the kernel weights using kernel alignment:

�m =
A(Km; yyT )
PP

h=1Kh; yyT
8m

where we obtain the combined kernel as a convex combination of the input kernels.

4.11.2.5 Imbalance Data Management

In this experiments, we have used a Different Error Costs (DEC) method to handle im-
balance dataset problem for this kind of prediction that is discussed in section 4.2.1.1.

4.11.2.6 Experimental Setting

In this work, we have used K-fold cross validation (subsampling) method to save the
computational time. As the information about the exact 5-way splits of dataset used
in previous studies is not published [55], therefore, in order to validate the stability
and the statistical signi�cance of our results, we have repeated the 5-fold cross valida-
tion for 5 times (i.e. 25 runs in total). It can be mentioned here that in each 5-fold
cross validation the given training samples are randomly partitioned into 5 mutually
exclusive sets of approximately equal size and approximately equal class distribution.
Finally, we have reported the average results of all metrics in this study.

4.11.2.7 Measuring Metrics

In this study, we have considered {phosphoserine, phosphothreonine, phosphotyro-
sine, ;} as class label set for a protein. Here ; is used to denote non-phosphorylated
protein. Since we are dealing with a multi-label system [145], so the metrics for a
multi-label system will be used in this work instead of the conventional metrics de-
�ned for single-label systems [132, 133, 134].

For measuring the predictive capability and reliability for this kind of classi�cation,
a set metrics are usually used in the literature which are de�ne below [145, 162, 163,
104]:
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Precision = 1=N
NX

k=1

�
kYk \ Zkk
kZkk

�

Recall = 1=N
NX

k=1

�
kYk \ Zkk
kYkk

�

Accuracy = 1=N
NX

k=1

�
kYk \ Zkk
kYk [ Zkk

�

Subset�Accuracy = 1=N
NX

k=1

4 (Yk; Zk)

Humming � loss = 1=N
NX

k=1

�
kYk [ Zkk � kYk \ Zkk

M

�

(4.22)

where N is the total number of the samples concerned, M the total number of labels
in the system, [ and \ the symbols are for the ’union’ and ’intersection’ in the set
theory, k � k means the operator acting on the set therein to count the number of its
elements, Yk denotes the subset that contains all the labels experiment-observed for
the k-th sample, Zk represents the subset that contains all the labels predicted for the
k-th sample, and

4 (Yk; Zk) =

8
<

:
1 if all labels in Zk are identical with those in Yk

0 otherwise

In Chou’s work [145], these metrics are de�ned with different names in order to
make more intuitive and easier to be understood for most biologists. For example, Aim-
ing, Coverage, Accuracy, Absolute-True and Absolute-False in [145] are corresponding
to Precision, Recall, Accuracy, Subset-Accuracy and Hamming-loss, respectively [55].

All of these metrics de�ned in this section have been successfully applied to study
several multi-label systems, such as those in which a protein may stay in two or more
different subcellular locations [114], or a membrane protein may have two or more
different types [146], or an antimicrobial peptide may have two or more different
types [147].

4.11.3 Results and Discussion

4.11.3.1 Model Selection for SVM

In order to generate highly performing classi�ers capable of dealing with real data
an ef�cient model selection is required. In this paper, grid-search technique has been
used to �nd the best model for MKL based SVM classi�er. In our experiments, this
method selects the values of parameters considering the highest accuracy and then
time if more than one position in search space has the same performance.

In this study, three MKL based SVM classi�ers have been used, one for each class
label phosphoserine, phosphothreonine, or phosphotyrosine. It should be noted here
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Table 4.36: Number of positive and negative samples for the three sub-predictors

Attribute
Phosphorylation Type and Number of Samples

phosphoserine phosphothreonine phosphotyrosine

Positive 845 386 249

Negative (1507-845)=662 (1507-386)=1121 (1507-249)=1258

Table 4.37: Selected C and � of 5 complete runs of the 5-fold cross-validations for MKL based
SVM using RBF kernel

No. of
Completes
Run

Type of Phosphorylation

Phosphoserine Phosphothreonine Phosphotyrosine

C � C � C �

1st 21 23 24 23 24 23

2nd 21 23 22 23 23 22

3rd 20 23 23 23 23 23

4th 21 23 24 23 23 23

5th 21 23 23 23 22 23

that the negative results of all (three) classi�ers will be treated as class label ; (non-
phosphorylated protein). The model selection of each MKL based SVM classi�er has
been done separately as binary classi�er using the corresponding benchmark dataset
given in Table 4.36. Noted that Table 4.36 has been derived from Table 4.34 and
Table 4.35, where the number of positive proteins comes from the corresponding class
(phosphoserine, phosphothreonine, or phosphotyrosine) and the number of negative
proteins is calculated by subtracting the number of positive proteins from the number
of total actual proteins.

In this work, we have used RBF kernel as base kernel for each of the kernel of
MKL. For radial basis function (RBF) kernel based SVM, to �nd the parameter value
C (penalty term for soft margin) and � (sigma), we have considered the value from
2�8 to 28 for C and from 2�8 to 28 for sigma as our searching space. Herein, the value
of C will be used to �nd the misclassi�cation cost of C+ and C� de�ned in equation
4.1. Since the information about the exact 5-way splits of dataset used in previous
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Figure 4.14: A �owchart to show how the iMulti-HumPhos predictor works

studies is not published [55], We have performed 5 complete runs of the 5-fold cross-
validation and each time we have selected the best parameter (value of C and sigma)
of the classi�er depending on the value of accuracy (traditional accuracy). Finally,
�ve sets of C and sigma have been selected from 5 complete runs of the 5-fold cross-
validation for each MKL based SVM classi�er which is dedicated to a speci�c types of
training dataset (phosphoserine, phosphothreonine, or phosphotyrosine) as shown in
Table 4.37.

After getting the three trained binary MKL based SVM classi�er with appropriate
values of C and sigma (shown in Table 4.37 ), a multi-label predictor, named iMulti-
HumPhos, has been developed by combing output from these three MKL based SVM
classi�ers, as shown in Figure 4.14. As we have repeated the 5-fold cross validation for
5 times for our iMulti-HumPhos, we have got �ve sets of values for all metrics de�ned
in section 4.11.2.7. Finally, we have averaged our results in order to ensure unbiased
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Table 4.38: Selected C and � to train the system for the web server

Type of Phosphorylation C �

phosphoserine 21 23

phosphothreonine 23 23

phosphotyrosine 23 23

model selection and cross validations.
However, in order to train the system for the web server, we have used that value

of C and sigma which appears most of the times as best model in 5 complete runs of
the 5-fold cross validation in each dataset given in Table 4.36. Note that, a random
selection of the value of C and sigma has also been performed from 5 sets of C and
sigma of each dataset where ’most of the times’ criteria fail to select C and sigma. In
this way, the selected C and sigma for each type of dataset is given in Table 4.38.

It can be mentioned here that we have used Matlab 2014b version to implement
our system where the svmtrain function of Matlab by default uses DEC with the same
cost de�ned in Eq. 4.1 to handle imbalance situation.

4.11.3.2 Comparison with the Existing Methods

The values of the �ve metrics (cf. Eq. 4.22) obtained by the current iMulti-HumPhos
predictor for the prediction of multi-label phosphorylated proteins are given in the
Table 4.39. These values are the average result of 5 complete runs of the 5-fold cross-
validation on the benchmark dataset given in Supporting Information. Moreover, stan-
dard deviations of each metrics of 5 complete runs of the 5-fold cross validation are
shown in parentheses.

The Table 4.39 also includes the corresponding rates achieved by Multi-iPPseEvo
[55], the one existing predictors for identifying the mult-label phosphorylated protein
in the aforesaid benchmark dataset. It should be mentioned here that the performance
of Multi-iPPseEvo [55] as shown in Table 4.39 are noted from [55].

In Eq. 4.22, the �rst four metrics are completely opposite to the last one. For the
former, the higher the rate is, the better the multi-label predictor’s performance will
be; for the latter, the lower the rate is, the better its performance will be [104]. Since,
the rate of ’Hamming- Loss’ [145] for our predictor is 0.2225, so, the average ratio of
the completely wrong hits over the total prediction events for iMulti-HumPhos is lower
than Multi-iPPseEvo.

Among the �ve metrics in Eq. 4.22, the most important and strict one is the ’Subset-
Accuracy’. Intuitively, subset- accuracy can be regarded as a multi-label counterpart
of the traditional accuracy metric. The iMulti-HumPhos achieves 0.4835 for Subset-
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Table 4.39: A Comparison of the proposed predictor with the existing method on the same
dataset

Predictor Precision Recall Accuracy
Subset-
Accuracy

Hamming
Loss

Multi-iPPseEvo 0.5998 0.7335 0.5761 0.4056 0.2520

iMulti-HumPhos
0.6464
(�0.0045)

0.6286
(�0.0067)

0.5855
(�0.0044)

0.4835
(�0.0068)

0.2225
(�0.0025)

Accuracy which is higher than Multi-iPPseEvo.
Multi-label accuracy metric measures the average ratio of the correctly predicted

labels over the total labels including correctly and incorrectly predicted ones whose
higher value is also an indication of good predictor. The iMulti-HumPhos achieves
0.5855 for multi-label accuracy which is also higher than Multi-iPPseEvo.

Although the achieved recall by Multi-iPPseEvo is higher than that by our predictor,
the gap between its precision and recall is very large. This implies that the results
achieved by Multi-iPPseEvo contain many false positive events due to over prediction
and hence its higher achieved recall is problematic.

Therefore, it is obvious from the Table 4.39, iMulti-HumPhos has performed re-
markably better over Multi-iPPseEvo [55] in almost all types of metrics measure-
ment. Therefore, it is projected that iMulti-HumPhos may become a useful and higher
throughput tool in multi-label phosphorylation protein predictions.

Why can the proposed method enhance the prediction quality so signi�cantly?
First, three features are used instead of one feature that provide a more ’complete’
representation of proteins as done by previous investigators in successfully improving
the prediction performance for various protein attributes [50, 20, 161, 77]. Second,
multiple kernel learning (MKL) has been used to make a combined kernel by fusing
these three features and �nally, SVM has been trained using the combined kernel which
enhances the prediction quality and increases the stability as proved by many previous
studies [161, 77, 41, 10, 85, 153]. Third, the predictor used Different Error Costs
(DEC) method to balance the effect of skewed training dataset and hence reduced
many false prediction events caused by imbalanced and skewed training datasets as
established in some recent studies [54, 105, 51].
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Figure 4.15: A semi-screenshot for the home page of the webserver iMulti-HumPhos at
http://research.ru.ac.bd/iMulti-HumPhos/

4.11.3.3 Protocol Guide

To attract more users especially for the experimental scientists and enhance the value
of practical application, a user-friendly web-server for iMulti-HumPhos has been es-
tablished at http://research.ru.ac.bd/iMulti-HumPhos/. A brief step-by-step guide on
how to use the web server is given below

I Open the web server at http://research.ru.ac.bd/iMulti-HumPhos/ and you will
�nd the home page of the predictor on your display as shown in Fig. 24.15.
You will have to either type or copy and paste the query protein sequence into
the input text box at the center of Fig. 4.15. The input sequence should follow
the FASTA format. The example of a sequence of FASTA format is available by
clicking at example button located right above the input text box.

II In order to get the predicted result, click on the Submit button. For example, if
you use any of the query protein sequence given under Example button as input,
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it will take 40s or more from the time of your submission to get desired output
of each sequence.

III In order to get batch prediction, you will have to enter desired batch input �le
(in FASTA format of course) via Browse button located on the lower panel, as
shown in Fig. 4.15.



Chapter 5

Conclusion

5.1 Introduction

Computational Intelligence (CI) has increasingly gained attention in bioinformatics
research and computational biology. With the availability of different types of CI algo-
rithms, it has become common for researchers to apply the off-shelf systems to classify
and mine their databases. At present, with various intelligent methods available in the
literature, therefore scientists are facing dif�culties in choosing the best method that
could be applied to a speci�c data set. Support vector machines (SVMs) has become
a popular learning paradigm in bioinformatics in the last decades. However, their per-
formance strongly depends on the choice of kernel and kernel parameters. Therefore,
kernel learning becomes a crucial problem for all kernel-based methods, in which the
central question is how to choose an appropriate kernel and kernel parameters. Mul-
tiple kernel learning provides a potential solution in kernel learning problem.

On the other hand, the recent availability of multiple types of genome-wide data
(multiple sources of data) provides biologists with complementary views of a single
subject and highlights the need for algorithms capable of unifying these views. Each
of these distinct data types provides one view of the molecular machinery of the cell.
Moreover, not all of the feature descriptors will have the same discriminative power for
all classes. Different data sources are likely to contain different and thus partly inde-
pendent information about the task at hand. Combining those complementary pieces
of information can be expected to enhance the total information about the problem at
hand which in turns, enhances the performance of a system. In the near future, re-
search in bioinformatics will focus more and more heavily on methods of data fusion.

This dissertation demonstrates the uses of multiple kernel learning(MKL) for ad-
dressing choice of kernel problem for SVM and for handling multiple data sources. This
thesis highlights two problems of binoinformatics and uses MKL in order to improve
their accuracy than other top existing systems. One problem is protein subcellular
localization prediction and another one is post-translational modi�cations prediction.
We have done nine experiments to solve different problems in these two �elds. These
nine experiments show the contribution of this thesis from four different aspects or
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categories.

5.1.1 Category 1: Show the Power or Capability of Single Kernel Based
SVM

In this category, four experiments have been done to show the power or capability of
SVM with single kernel. In these experiments, we have got better result than other top
exiting systems but the time consuming approach has been used to select the kernel
(parameter tuning of RBF kernel) here. The concluding remarks of these experiments
are shown below:

Experiment No 1:- predMultiLoc-Gneg: Predicting Subcellular Localization of Gram-
Negative Bacterial Proteins Using Feature Selection in Gene Ontology Space and Sup-
port Vector Machine with Resolving the Data Imbalanced Issue

Concluding Remarks

� Solved imbalance dataset issue using DEC.

� Solved multi-label issue through binary relevance (BR) method.

� Provided better performance than existing top systems.

� Established a web server for public use at http://research.ru.ac.bd/predCar-Site/

Experiment No 2:- predCar-Site: Carbonylation Sites Prediction in Proteins Using
Support Vector Machine with Resolving Data Imbalanced Issue

Concluding Remarks

� Solved imbalance dataset issue using DEC.

� Provided better performance then existing top systems.

� Established a web server for public use at http://research.ru.ac.bd/predCar-Site/

Experiment No 3:- predSucc-Site: Lysine Succinylation Sites Prediction in Proteins
Using Support Vector Machine with Resolving Data Imbalanced Issue

Concluding Remarks

� Solved Imbalance dataset issue using DEC.

� Provided better performance than existing top systems.

� Established a web server for public use at http://research.ru.ac.bd/predSucc-
Site/

Experiment No 4:- mLysPTMpred: Multiple Lysine PTM Site Prediction Using Combi-
nation of SVM Classi�er with Resolving Data Imbalanced Issue

Concluding Remarks
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� Solved imbalance dataset issue using DEC.

� Solved multi-label issue using combination of SVM.

� Provided better performance than existing top systems.

� Established a web server for public use at http://research.ru.ac.bd/mLysPTMpred/

5.1.2 Category 2: Show Choice of Kernel Effects for Single Kernel Based
SVM

In this aspect, We have done one experiment to show how the choice of kernel problem
affects the performance of a system. We have done this experiment in the �eld of
protein subcellular localization prediction. The concluding �ndings of this experiment
are given below:

Experiment No 5:- Protein Subcellular Localization Prediction using Support Vector
Machine with the Choice of Proper Kernel

Concluding Remarks

� Evaluated the performance of different kernels for SVM in protein subcellular
localization prediction.

� Results indicate that the performance of the SVM classi�cation depends mainly
on the types of kernels and their parameters.

� Choice of laplace kernel performed better than other kernels as well as other
existing top systems.

5.1.3 Category 3: Use MKL as a Solution for Choice of Kernel Problem

One experiment has been done to show MKL as a tool to solve the choice of kernel
problem. In this experiment, RBF kernel has been used in SVM, but the time consum-
ing parameter tuning part (choice of kernel among the set of RBF kernels) has been
avoided by using MKL. It should be noted here that different values of sigma of ra-
dial basis function (RBF) create different kernels in the domain of RBF kernel. In this
work, the range of the parameter space of sigma for RBF kernel has been discretized
into r values, made a combined kernel through MKL and �nally learned SVM using
that combined kernel. The concluding remarks of this experiment are given below:

Experiment No 6:- Protein Subcellular Localization Prediction Using Multiple Kernel
Learning Based Support Vector Machine

Concluding Remarks

� Multiple kernel learning (MKL) has been used to overcome the problem of �nd-
ing actual sigma value for the RBF kernel (choice of kernel among the set of RBF
kernels).
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� Provided better performance than other top existing systems.

� Takes less execution time than single-kernel based SVM as well as other top
system.

5.1.4 Category 4: Use MKL to Fuse Multiple Data Sources

Both problems namely protein subcellular localization prediction prediction and post
translational modi�cations (PTMs) prediction can be solved using different sources of
information. In this thesis, we have shown that combination of these features from
various sources can produce better result than those systems using single information
source. MKL has been used to combine different features. Three experiments have
been done in this aspects. The concluding message of these experiments are given
below:

Experiment No 7:- Protein Subcellular Localization Prediction Using Kernel Based
Feature Fusion

Contributions

� MKL has been used to integrate multiple data sources in predicting protein sub-
cellular localization.

� Provided better performance than existing top systems.

� Developed the system considering multi-label issue.

Experiment No 8:- predHumPhos: Predicting Human Phosphorylated Proteins Using
Multiple Kernel Learning (MKL) Based Support Vector Machine

Concluding Remarks

� MKL has been used to integrate multiple data source in predicting human phos-
phorylated proteins. Here, single label issue (binary classi�cation) has been con-
sidered, i.e., the prediction will be whether a protein can be phosphorylated or
not.

� Provided better results than existing system.

� Established a web server for public use at http://research.ru.ac.bd/predHumPhos/

Experiment No 9:- iMulti-HumPhos: A Multi-Label Classi�er For Identifying Human
Phosphorylated Proteins Using Multiple Kernel Learning (MKL) Based Support Vector
Machine

Concluding Remarks

� MKL has been used to integrate multiple data source in predicting human phos-
phorylated proteins.
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� Developed the system considering multi-label issue.

� Performed better than existing system.

� Established a web server for public use at http://research.ru.ac.bd/iMulti-HumPhos/

5.2 Future Work

We believe that all of the �ngings of this thesis will be give some guidelines to the com-
putational intelligence and bioinformatics research communities to make the applica-
tions fo multiple kernel learning (MKL)to various problems of bioinformatics research.
The work described in this thesis serves as a starting point on which much more work
can be extended upon. Possible extension of the work includes:

1. In this thesis, we have applied MKL in the �led of protein subcellular localiza-
tion prediction and protein poststranslational modi�cations prediction. In future,
MKL can be used to solve other tasks of bioinformatics such as protein function
or structure prediction, protein-protein interaction prediction, drug-target inter-
action prediction, etc. in order to get better result.

2. In these thesis, we have used MKL in SVM to do supervised classi�cation or pre-
diction. In future, we can also use MKL in upsupervised case such as clustering
problem.

3. There are some other ways to combine multiple data sources, in future we will
make comparison among these integration methods.

4. In this work, we have used similarity based approach to �nd the kernel weights
and also used two stage approach to build the predictor. In future, we can use
structural risk based approach to develop predictor using MKL based SVM where
one stage technique will be used.

5. In future, we can make comparison among different techniques of similarity
based approaches of MKL which are usually used to �nd out kernel weights.
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