University of Rajshahi Rajshahi-6205 Bangladesh.

RUCL Institutional Repository http://rulrepository.ru.ac.bd
Department of Mathematics MPhil Thesis
2002

Study of Radicals and Semisimple
Classes of Rings

Dey, Kalyan Kumar

University of Rajshahi

http://rulrepository.ru.ac.bd/handle/123456789/1114
Copyright to the University of Rajshahi. All rights reserved. Downloaded from RUCL Institutional Repository.



Study of Radicals and Semisimple
Classes of Rings

THESIS SUBMITTED FOR THE DEGREE OF

Master of Philosophy

in
Mathematics
By
Kalyan Kumar Dey

Department of Mathematics
Rajshahi University
Rajshahi 6205
December 2002



Professor Subrata Majumdar
M .Sc.(Raj.) Ph.D.(Birmungham, U.K.)

Department of Mathematics
University of Rajshahi
Rajshahi -~ 6205, Bangladesh.
E-mail: rajucce @ citechco.net
Fax-0088-0721-750064

No.

Certified that the thesis entitle “ Study of Radicals and
Semisimple Classes of Rings ” submitted by Kalyan Kumar Dey in
fulfillment of the requirements for the degree of Master of
Philosophy in Mathematics, University of Rajshahi, Rajshahi, has
been completed under my supervision. 1 believe that this research
work contains exposition of others’ work and some original work,

and it has not been submitted elsewhere for any degree.

< s hbrrmd Mﬂw{w ek o1
( Subrata Majumdar )



Acknowledgements

I would like to express my deepest gratitude to. my respectable supervisor
Professor Subrata Majumdar for his sincere guidance, invaluable suggestions and
constant encouragement throughout my research work as well as the preparation

of this thesis.

My sincere gratitude is due to the Chairman, Department of Mathematics
and to Professor S.K.Bhattacharjee for his inspiration and constant
encouragement. I am thankful to my colleagues Dr. Mst. Nasima Akhter and Mrs.
Quazi Selina Sultana for help and encouragement. The latter corrected some errors

in the manuscript.

Facilities that I obtained from the Department of Mathematics are gratefully

acknowledged.



Statement of Originality

This thesis does not incorporate without acknowledgement any
material previously submitted for a degree or diploma in any University, and
to the best of my knowledge and belief, does not contain any material
previously published or written by another person except where due

reference is made in the text.

Weakgon Yeumar by

(Kalyan Kumar Dey)



SYNOPSIS

The concept of the radical of a ring was introduced by Artin for rings
with the descending chain condition with a view to obtaining a nice structure
theorem for the ring. The idea was to single out the troublesome part, of a
ring, called the radical of the ring, and factor out the original ring with
respect to the radical. The resulting ring, termed, semisimple has a nice
description. Radicals for rings without chain conditions were proposed by
Koethe, Jacobson, Brown, McCoy, Levitzki and others for a similar purpose
in an attempt to generalize Artin’s radical. All these attempts were later
further generalized by Kurosh and Amitsur to define the concept of a general
radical of a ring and the corresponding semisimple ring and study these in

their generalty. Andrunakievik advanced these studies further.

The class of rings which are radicals of themselves with respect to
some radical is called a radical class, or simply, a radical, and the
corresponding class of the semisimple rings is called a semisimple class. A
classo:gngs may be simultaneously a radical ring with respect to some radical
and a semisimple ring with respect to another radical. Such a class of rings is
called a semisimple radical class. In this thesis we have studied radical
classes, semisimple classes and semisimple radical classes of rings. We have
given an account of works of various mathematicians regarding these classes and

have incorporated some ol our own contribution in this context.

The first chapter introduces the fundamental concepts in ring theory
and those in the theory of radicals. Various definitions, constructions and

results have been stated, and sometimes, proved.



Different important radicals, viz., the nil radical, Baer lower radical,
Levitzki radical, Jacobson radical, Brown-McCoy radical, etc. have been
described in the second chapter. The concept of special radicals and their
semisimple classes due to Andrunakievic, too, has been introduced and

described. All of the above mentioned radicals are special.

In the third chapter the lower radical and the upper radical
constructions of Kurosh have been described. Leavitt’s, and independently
Majumdar’s, ideas of the join and the meet of two radicals have been
described with the use of the lower radical construction. Also radical pairs
due to Sulinsky and Divinsky and their generalized constructions due to
Majumdar and Paul, have been described. An account has been given of our

own study of a number of radicals arising from the join and the meet.

The fourth chapter discusses semisimple classes. Different properties

of this class have been proved and various characterizations have been

given.

The final chapter deals with semisimple radical classes.
Characterizations of these classes due to Stewart and Majumdar have been
given. Majumdar’s example of a family of such classes and Stewart’s

complete description of such classes have been described in details.
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Chapter-1
Radicals

Introduction 1.1

In this chapter we introduce the concept of radicals of rings. We start
with a few basic definitions and examples in ring theory which will be essential
for our development of the theory of radicals. We have given the specific
definitions in order to avoid any confusion as to the significance of the terms
used in the thesis, as some of these terms have also been used in the literature
with meanings different form ours. Many characterizations of radicals have
been stated and proved , and basic constructions connected with radicals and
fundamental results in the theory of rings needed to develop the theory of
radicals have been given in details so as to make the exposition self-sufficient.

We mostly follow the terminology of Divinsky [11].

2. Definitions and Examples of Rings and Related concepts

Definition 1.2.1

A nonempty set R is said to be an associative ring, or simply, a ring if

on R there are two binary operations, called addition (+) and multiplication (.),

defined such that for each a, b and ¢ in R

(1) atb = b+a, (ii) a+(b+c) = (atb)+c, (iii) a.(b.c) = (a.b).c, (iv) a.(b+c)=a.
bta.c, (ath).c = a.ct b.c, (v) there exists an element 0eR such that a+0=a,
for every aeR , (vi) for every a, there exists an clement (-a)c R such that

a+(-a) =0.
We shall write ab for a.b.

Definition 1.2.2

A ring R is said to be commutative if ab = ba for each a,beR.



Definition 1.2.3

If there exists an element 1 in a ring R such that 1.a = a for each aeR

then R is called a ring with a unity element . Such an element 1 when it exists

is unique and is called the unity element of R.

Examples 1.2.4

1;

The set Z of all integers, Q, the set of all rational numbers, R, the set of all
real numbers, C, the set of all complex numbers are commutative ring with

unity element under usual addition (+) and multiplication (.) of numbers.

. The set R[x] of all polynomials in x with real coefficients is a commutative

ring with unity under the usual addition and multiplication of polynomials.

. The set 2Z of all even integers is a commutative ring without a unity

element under the usual addition and multiplication of integers.

The set M™"(R) of all nxn matrices with real entries is a non-commutative
ring with unity, for each n>2 under the usual matrix addition and

multiplication.

. The set M™"(2Z) of all nxn matrices with entries in 2Z i.e. with even

integers entries is a non-commutative ring without unity element under the

usual matrix addition and multiplication.

The set Z, of residue classes of the integers modulo n, is a ring under the

usual addition and the multiplication of residue classes.

Definition 1.2.5

A non empty subset S of a ring R called a subring of R if S is itself a

ring under the operations of R.

Examples 1.2.6

1.

The set 27 of all even integers is a subring of Z.

2. Z[x] is a subring of R[x] . Here Z[x] is the set of all polynomials in x with

integer coefficients.



Definition 1.2.7
A non-empty subset I of a ring R is said to be a left (resp. right) ideal of
R if (i) I is a subgroup of R under addition and (ii) for every il and reR, ri

(resp. ir)el.

A non-empty subset [ of a ring R which is both a left and a right ideal of

R is called a two sided ideal or simply, an ideal of R.

Examples 1.2.8

1. The set M™(R) of all nxn matrices (a;;) with real entries for which a;=0, j
> 2 is a left ideal but not a right ideal of M™"(R).

2. 27 is an ideal of Z.

3. The set Py[x] of all polynomials in R[x] with zero constant term is an ideal

of R[x].

Definition 1.2.9

Let I and J be two ideals of a ring R. The union or the sum I+] is the set
of all i+j where i is in I and j is in J and the product 1.J or IJ is the set of all
finite sums  2iyjm Where iy isin I and j, is in J. In particular F = 1.I. Both
[+J and IJ are ideals of R. If C is a non-empty collection of ideals of a ring A,
then the union or the sum of the ideals in C written by 2.1 is defined as 21 =
{ij+17+ ... +i, lipely, Bl el 1, ... eC, reN}. The above sum is again an

ideal of A.

Definition 1.2.10

Let R be a ring and A, B two subrings of R. When R=A+B with
AMnB=0 or cquivalently, 0 is uniquely expressible as 0=0-+0, thcn R is the
supplementary sum of subrings A and B. Similarly R is the supplementary sum
of the subrings A;, A, ... A, if R=A+A,+ ... +A,, and 0 is uniquely

expressible as 0=0+0+ ... +0.

A ring R is a direct sum of A|,AyA;z ... A, if it is a supplementary -

sum and if each A; is an ideal of R and we write this as R=A;® A, @ ... ® A,,.



Let {A;} iel be a class of rings. Consider S={{a;} ;| a; €A;}. These are
infinite vectors. Addition and multiplication are defined coordinatewise as
(a1, ay, ...)Hby, by, ...) = (a;+by, aythy,........ )
(ay, az, ...) (by, ba,...) =(a;by, azby, ...). |
Then S is a ring and called the complete direct sum of A;'s.
Now, consider
A% = {(0, 0, ..., a;, 0..)}.It is a subring, which is isomorphic to A; and the
mapping.
(a), @y, ... 3;...) = (0,0, ... a;, ...) is a homomorphism of S onto A*,.

Definition 1.2.11

The subring which consists of all those elements of S which have only a

finite number of nonzero entries is called the weak direct sum or discrete

direct sum of the A;'s.

Definition 1.2.12

A subring S* of the complete direct sum S is a subdirect sum of the
rings A; if the natural homomorphism ¢; of S* to A*;, (ay, a,..., a;, ...) = (0,0,

..., 8j, 0 ...) is an onto mapping for every 1.

Moreover, if T is a subdirect sum of the rings A; then for every i, A*=
T/T; where T, is the kernel of the natural homomorphisms of T to A;. Also
NT=0 ;for if x=(a,, a, ...) has the property a; = 0, the zero element of A;, for
every i, then x = (0, 0...) the zero element of T. Thus if T has a set of ideals
{T;} such that N"T; = 0 and T/T; =A,.

Let A be any ring and let {A;} 1€l be the class of ideals o' A such that
MA1 = 0. Define B;=A/A; and consider the complete direct sum S of A;. Now
for every element xe A, we may associate the element (by, b, ...) of S where b
is the element x+A; of B; that is determined by x. Then A is isomorphic to a

subring 4 of S and A/A; is isomorphic to B;. Thus the natural homomorphism

from A to B; is onto, and so, A is isomorphic to a subdirect sum of the rings B;.

4



Thus we have
Theorem 1.2.13

A ring A is isomorphic to a subdirect sum of a collection of rings {B;}
if there is a collection {A;} of ideals of A such that (i)ﬂA,. = {0}, (i)A/A;=B,,
for each 1.

Definition 1.2.14
A ring R is called simple if R#0, its only ideals are itself and zero.

Definition 1.2.15

A r1ing R is said to be without zero-divisor if the product of no two

nonzero elements of R is zero i.e. if ab=0 implies a=0 or b=0.

Definition 1.2.16

A commutative ring R with unity is called an integral domain if the

cancellation laws hold i.e.ab=ac implies b=c for each a,b,ceR .In other words
,a commutative ring R with unity is called an integral domain if R is without

zero divisors.

Definition 1.2.17
A ring R with at least two elements is called a field if its non-zero

elements form an abelian group under multiplication.

Examples 1.2.18

1. Zis an integral domain .

2. Zgis not an integral domain since it has zero divisors i.e. 2 # 0, 3% 0 but
2.3=6=0.
3. Q, R, C are fields and also Z; is a field for each prime p. Z, is not a ficld

where n is not a prime.

Definition 1.2.19
A ring R with unity element and with at least two elements is called a

division ring or skew field if its nonzero elements form a multiplicative group.




Definition 1.2.20
A mapping ¢ from a ring R into a ring R’ is called a ring
homomorphism if (i) ¢(a+b)=d(a) + d(b)

(i) p(ab)=d(a)p(b) for each a,beR.

A homomorphism ¢ from a ring R into a ring R’ is called an ring

isomorphism if it is an one-one and onto mapping.

Two rings are said to be isomorphic if there exists an isomorphism of

one onto the other.

Examples 1.2.21
1. Zyisa simlple ring where p is a prime integer.
2. M™(R) is a simple ring.
In particular, every field is a simple ring.
3. Radicals

Definition 1.3.1 :
Let R be a nonempty class of rings. Any ring A in R is called an R-ring.
An ideal I of A which is in R, is called an R-ideal. (A ring which does not

contain any nonzero R-ideals, will be called a R-semisimple ring).

Definition 1.3.2

A nonempty class R of rings is called a radical if
(1) R is homomorphically closed i.e. if A is in R and [ is an ideal of A, then A/I
isin R,
(i1) Every ring A in R contains an R-ideal R(A) of A which contains cvery

other R-ideals of A.

(ii1) For every ring A in R, the factor ring contains no R-ideal

i.e.R(ﬁ) = 0.



Here R(A) is called the R-radical of A. If R(A)=A, A is called an R-
radical ring and if R(A) =0, A is called an R-semisimple ring.

A radical property or a radical class or simply, a radical in the category
of rings was first defined independently by A.G. Kurosh [33] and S. A.
Amitsur [15 ] .The above definition is due to Kurosh [33] . Later radical has
also been described and characterized by Divinisky [11], Weigandts [13],
Leavitt  [29], Majumdar (unpublished)). We  shall  give  these
characterizations below and prove their equivalence. We shall thus establish

that radical is the common concept described by them.

The following theorem gives a characterization of radicals due to
Kurosh ([33] ).

Theorem 1.3.3 (Divinsky [11])
Let C be a non empty class of rings in W then C is a radical if and only

if the following conditions are satisfied ;
(1) C is closed under homomorphism

and (iv) if every non zero homomorphic image of a ring A contains a non-zero

C-ideal, then AeC.

Proof;
First suppose that C is a radical. We have only to prove the condition

(iv).Let A be a ring such that every non zero homomorphic image of A

contains a non zero C-ideal .If A=C(A),then AeC. If A=C(A) then is a

. . /A . .. .
non zero homomorphic image of A and o contains a nonzero C-ideal. But

this contradicts the condition (ii) of definition 1.3.2. Hence A=C(A) and A is in
[

Conversely suppose that C satisfies the conditions (i) and (iv). Let A be
a ring and let B be the union of all C-ideals of A.



Let B be a non zero homomorphic image of B. Then B =B/ I where [ is

an ideal of B and B=I. If B=0. B is in C. So let B=0. Then there exists of least

I, +1
one C-ideal, say Iy such that Iy ¢I. Then ° 7 is a non zero ideal of B/I.
Since o+i . o The left hand side of this isomorphism is a non- zero

- Inlo

ideal of B/I while the right hand side is 2 homomorphic image of the C-ideal I,

and is therefore an C-ring by condition (i). Hence fo+1 is in C. Therefore

every homomorphic image of B contains a nonzero C-ideal. Hence by the
condition (iv), B is in C. Thus the condition (ii) of definition 1.3.2 holds with
C(A)=B.

If A/B has a nonzero C-ideal let 7 be an ideal such that an C-ideal I of
A such that IoB and I#B. Let K be an ideal of with KzI. If BoK then

I/Ks%. Since I/B is in C, then by the condition (iv) UK is in C. If BoK.

1s a non-zero ideal of I/K, and B;K = 4 . Since B is in C,

BnK

then st 8

B+K

by the condition (i) is in C. Thus every non zero homomorphic image
of I contains a non-zero C-ideal. Hence by the condition (iv), I in C. This

contradicts the fact I#B. Hence % has no nonzero C-ideal. Thus the condition

(111) of definition 1.3.2 holds.

We next state and prove a characterization of radicals due to

Amitsur([15]). The proof given here is due to Majumdar ([24]).

Theorem 1.3.4 (Amitsur [15] )
Let C be a nonempty class of rings in W, then C is a radical if and only

if the following conditions satisfy

(1) C is closed under homomorphisms



(v)  Cis closed under extensions i.e. for a ring A and an ideal Tof A, both I

and A/l are in C, then A is in C.
(vi) If Lich £ 15 € sonsnin is an ascending chain of C-ideals of a ring A, then
UIa is in C.
Proof (Majumdar [21])

First suppose that C is a radical . Then we need only to show that the
conditions (v) and (vi) hold. Now let A be a ring and I be an ideal of A such
that both I and A/T are in C. Let C(A) be the C-ideal of A. Then I < (A). Hence

is a homomorphic image of é, for ald
C(A) I C(A)/ T

=A/C(A) . Hence A/C(A) 1s

in C. By the condition (iii) of definition ( )%#) i.e. A=C(A). Hence A is in

G

By the condition (iii) of definition ( ) A/C(A)=0 1.e. A=C(A). Hence A

is in C. Thus condition (v) holds.

Now Let A be a ring and let I;cl,cl;c ... be an ascending chain of C-
ideals of A. Let I = Ul Let C(I) be the C-radical of I. If I #C(I), there exists
an ideal I, such that I, ¢ C (I). Then I+C(I)/C(I) is a nonzero ideal of I/C(I)
and since Ia+C(I)/C(I) = I/I,NC(I). The right hand side is a homomorphic
image of I, and is in C. Therefore I,+C(I)/C(I) is a nonzero C-ideal of I/C(I).
This contradicts the condition (iii) of definition 1.3.2. Hence I = C(I), and so I
is in C. Thus the condition (vi) holds.

We now prove the converse .The first condition is same. Now let R be
the class of all C-ideals of a ring A. Then R is nonempty since 0eR. R is
partially ordered with respect to inclusion (<) and by the condition (iv) every

totally ordered subset of R has a least upper bound in R. Hence by Zom's

lemma R has a maximal member, say M then M is in C. Let [ be any C-ideal of



A. Then I+M/M = I/InM. Since M is in C and I/ImM is in C. Then the
maximality of M implies that [+*McM ie. IcM. Then the condition (ii) of
definition 1.2.1 holds Let I is a C-ideal of A/M. Then I be an C-ideal of A/M.
Then I =1/M for some ideal [ of A such that I>M. Since [ is in C and M is in C,

the condition (v) implies that I is in C. Hence IcM. Then I=0. Hence the

condition (iii) of definition 1.3.2 holds.

Theorem 1.3.5 (Majumdar)
Let C be a non empty class of rings in W, then C is a radical if and only

if the following conditions are satisfied

(i) C is closed under homomorphism (ii) for each ring A, there exists a C-ideal
C(A) of A such that for every C-ideal I of A then ICC(A). (v) if a ring A has an
C-ideal I such that A/l is a C-ideal, then A is in C.

Proof:

Let C be a radical. Then the condition (i) are same. Let A be a ring
which has a C-ideal I such that A/I is a C-ring. We consider C to be the lower
radical L, determined by C. If I = A, then A is a C-ring. So Let I#A, Let J be
any ideal of A. If J > 1 then A/J is a homomorphic image of A/I., and so is a C-
ring. If IJ then I+J / J is a nonzero ideal of A/J, and the isomorphism I+J/] =
I/IN] shows that I+J / J is a C-ring , since I is a C-ring. Thus A is of degree 2
over C. Hence AeL=C. This implies AeC so that the condition (v) holds.

Conversely, Let the conditions (1), (it) and (v) hold. To only prove the
condition (iii), Let I be a C-ideal of A/C(A). Then I= I/C(A) for some ideal I of
A such that IDC(A). Since I and C(A) are C-rings, the condition (v) implies
that I is a C-ring. Therefore I < C(A). Hence I = C(A) and so I=0 thus A/C(A)

has no nonzero C-ideals . Hence C is a radical.

Theorem 1.3.6 (Weigandt [13])
Let C be a nonempty class of rings in W, then C is a radical if and only

if the following condition satisfy (i) C is closed under homomorphism (iii) the

10



factor ring A/C(A) has no nonzero C-ideal. (viii) the sum C(A) of all C-ideals
of aring A is an C-ideal of A.

Proof
Let C be a radical. Then C(A) the C-ideal of A containing each C-ideal
of A, is the sum of all C-ideals of A and C(A).

Hence the condition (viii) holds. Clearly the conditions (i) and (iii) are

identical.

Next, let C satisfy (i), (iii) and (viii). Since C(A), the sum of all C-ideals
of A, is a C-ideals of A, C(A) contains every C-ideal of A. Thus the condition
(i1) of definition () holds.

Theorem 1.3.7 (Leavitt [29] )
Let C be a nonempty class of rings in W, then C is a radical if and only

if the following conditions are satisfied.

(1) C is closed under homomorphism and (ix) for a ring AgC implies some 0=
A/l € S, where I is an ideal of A and S.\ {B eWl of I (0) is an ideal of B then
I¢ Cand C eW}.

Proof

Let C be a radical. By Theorem it satisfy the condition (i) and (1v) .Let
A ¢ C. Then by the condition (iv) then there exist an ideal I of A such that A/l
# 0 has no nonzero C-ideals i.e. 0A/l € S, where S;= {B ¢W | if 0+ be an
ideal of B, then J ¢ C}.

Then the condition (ix) holds.

Next let C satisfy the condition (i) and (ix). Let A € W such that cvery
nonzero homomorphic image of A contains a nonzero C-ideal. If A¢C, then by
the condition (ix), there exist an ideals I of A such that 0=A/I €S, where S, =

(B eW| 0«I be an ideal of B, then I C}. this is a condition to the condition (i).
Hence AeC. Thus C satisfies the condition (iv). The condition (i) is the same

as the condition of definition 1.3.2 . Hence the theorem proved.

11
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We need to define a construction, called the lower radical defined by
Kurosh ([33]). We have another construction due to Kurosh called the upper

radical . We shall describe this later.

Lower Radical

Let C be a nonempty class of rings. Write Cy=C. Let C; to be the
homomorphic closure of C i.e. C; to be the homomorphic images of the rings in
C. For any ordinal p>1, suppose C, has been defined for each a<f. If f is not a
limit ordinal, define Cy to be the class of all rings A such that every non-zero

homomorphic image of A contains a non zero ideal in Cp. If B is a limit

ordinal, define Cg =U C, .Thus Cg is defined o < B for each ordinal . The
lower radical determined by C written L. is defined by L, = UCy . The ring in
Y

C, are said to be of degree y over C.

Definition 1.3.8
L. is called the lower radical determined by the class C.

Theorem 1.3.9

Lc is a radical.

Proof
The construction of L¢ clearly shows that Lc satisfy the condition (i) of

Theorem 1.3.4.

Let A be a ring such that every nonzero homomorphic image of A has a
nonzero ideal in Lc.

Let B be a homomorphic image of A. Then B has a non zero ideal Tin
L.. So I belongs to C, for some ordinal o not a limit ordinal. By proposition
8, (Divinsky [ ], p.10) there exists an ordinal B which is not less than any
ordinal o , thus obtained. Then every nonzero ideal I which belongs to Cg.

Then A belongs to Cg+., and hence, to L. Thus Lc satisfy the condition (iv) of

Theorem 1. Hence by theorem 1, L¢ is a radical.

12



Definition 1.3.10

A subring B of a ring R 1s said to be accessible in R if there exists a |
finite set of subrings A|, Ag,..... A, in R suchthat B=Ajc Ajc A, c
A, A= R where A, is an ideal of A;, forevery1=0, 1.2.... n-1.
Lemma 1.3.11

Let S be the lower radical determined by a homomorphically closed

class M of rings. Then if R#0 is in S, R contains a nonzero accessible M-

subring B.

Proof:
Since R is in S= UM,, R is in M,, for some .. Take o to be minimal. We

proceed by induction on ¢, If a=1, R is in M; = M. Then B=R.

Assume that the lemma is true for rings T in M, for every y<o and take
R in M,, o minimal (i.e. R is not in if y<at). By definition, every nonzero
homomorphic image of R and in particular of itself (note that R#0 also R is in
M,) has a nonzero ideal I with I in M, for some y<a. By induction I has a
nonzero accessible subring B with B in M. Since I is an ideal of R, it is clear

that B is also an accessible subring of R. This ends the induction and the proof.

We now have the following characterization of a radical due to Yu_Lee

Lee([28]) .

Theorem 1.3.12

Let C be a non empty class of rings in W then C is a radical if and only
if the following conditions are satisfied (i) C is closed under homomorphism
(vii) if every nonzero homomorphic image of a ring A contains a nonzero

accessible subring which has nonzero C-ideal then A is in C.

Proof
We shall first prove that if B is an accessible subring of A. Then C(B) is

an accessible subring of C(A). Since B is an accessible subring of A, therefore

there exists a finite set of subrings A;, Az, A; ... Ay of A such that B= Ay CA

13



C ...C A < A= A, where A; is an ideal of A;,, for every i=0,1, 2. n-1. Now
(Yu-lee-lee [28], Theorem 2) A, is an ideal of A, implies that C (A,) is an C-
ring, therefore C(An.1) < C(A,) and C(A,.,) is an ideal of A, implies that C(A,.
1) is an ideal of C(A,). Similarly C(A,) is an ideal of C(A,,.;) and so on. Hence
the chain C(B) = C(Aq) ... € C(A,.)) € C(A,) = C(A) shows that C(B) is an
accessible subring of C(A). Now let C be a radical. Let A be a nonzero
homomorphic image of A and let A has an accessible subring K which has a
nonzero C-ideal. Then there exists a finite set of subring A, A,, ... Ay in A
such that K= Ay c A, < ... € A cA=A with C(K) # 0, Therefore C(A) #0
and A, contains a nonzero C-ideal .Hence by the condition (iv) of Theorem
1.3.3. Ais in C. Thus C satisfy the condition (vii).

Conversely, let the condition (i) and (vii) hold. Then C is a radical.
Examples

1. The class of Boolean rings is a radical.
(i) Let R be a Boolean ring, and let I be an ideal of R. Then clearly, R/

is Boolean.

(ii) Let I, and I, be two Boolean ideals of aring R. Let a € [, bel,.
Then, (abtba)a = (ab)at+ba’=a(ab) + ba=a’b + ba=ab+ba. Therefore,
(ab+ba)ab=(ab+ba)b = ab+ba. Similarly, (ab+ba)ba=ab+ba. Therefore,
(ab+ba)’=2(ab+ba) = 0, since ab+ba €A N B ,which is a Boolean ring .But
(ab+ba)2=(5b+ba) Hence (ab+ba) = 0. Therefore(atb)? =a’>+ab+ba+b’ =a+b
.Thus, I,+I, is Boolean. It therefore follows that the sum of a finite number of
Boolean ideals of R is a Boolean ideal.

Let S be the sum of all Boolean ideals of R. Let x€S. Then x can be
written in the form x=a,ta,*...... + a,, where a;, 1=1, ...... r, belongs to J;, a
Boolean ideal of R. Therefore, x € I+ ... J.. Thus, x’=x. Hence S is a Boolean

ideal. Clearly, S contains every Boolean ideal of R.
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(iii) Let J* be a Boolean ideal of S(R) . Then, J*=5(J) , where ] is
an ideal of R such that J © S. Let x*eJ*. Then x*=x+S, for some xe€J, Since
x*2 = x* we have x*+S = x+5, i.e., X*>-x€S.

Therefore x*-x =(x*-x)* =x* 233 +x? =2(x2-x)x* =x"+x=x*-x* Hence x= x*,

Since x° - X% = (x*-x) x€8, x> - x* = x’-x. Therefore, x* = x, i.e., xeS.
Hence, J=S, i.e., J*=0.

2. The class of rings with R*=R is a radical.

This is proved by the following.
(i)  LetR be aring with R*=R and let I be an ideal of R. Then

(5}2 _R*+I] R+I_R

I I I I

(i)  Let R be aring and let S be the sum of all ideals A of R such that
A*=A. We shall have to show that $>=S.

Let reS. Then, reA; + A, + ... + A, for some ideals A}, A,, ..., A; such
that A% = A, (i=1, 2, ..., t). We shall show that (A| + A, + ..., + A)* = A + Ayt
... A, That will imply thatr e S""; i.e., S=82. It will be sufficient to show that if
A and B are two ideals of R with A?=A and B? B, then (A+B)*=A+B. So, let A
and B be two ideals of R with A?>=A and B?=B. Then, A(A+B) =
A*+AB=A+AB=A. Similarly, B(A+B) oB. Therefore, (A+B)* DA (A+B) +B
(A+B) = A+B. Thus, (A+B)*= A+B.

(iii) Let A* be an ideal of S(R) such that A*? = A*. Then, A*=S(A) , for
some ideal A of R such that ADS. Since A*? = A*, we have

A4S . A A A
5 TATNS AN S

ﬁ > — =
S TANS S

where i is the inclusion map, j the canonical homomorphism and @ the usual

isomorphism. The composition map %—i—#;i given by the above sequence is

the identity map. Hence i is onto and j is 1-1. Thus, A=A*i.e., AC S, 1.¢., A=S.

Hence A*=0. The proof is complete.
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Chapter-2

A few important Radicals

Introduction 2.1

The most important among the radicals of rings are the Baer Lower
radical, the nil radical, the Jacobson radical the Levitzki radical and the Brown-
McCoy radical. In this chapter we shall describe those and other interesting
radicals which are important because of their close relation with the structure
theory of rings. These radicals developed by Baer, Koethe , Levitzki, and
Jacobson, Brown and McCoy in the 1940°s and 1950’s form pillars on which
the general theory of radicals due to Kurosh and Amitsur stands. Besides the
above-mentioned radicals we shall describe the special radicals of
Andrunakievic which generalize the above famous radicals and still retain
importance by being able to shed significant light on the structures of the
corresponding semisimple rings. Behrens radical and Thierrin’s radical are also
described. We first define a few terms and provide examples. These will be
needed for description of the radicals.
Definition 2.2.1

An element e of a ring is idempotent if e = 0 and e’ = ¢ .
Example:

Let M(R) denote the ring of all nxn matrices with real entrics. IF A =
(a;) with a;;=1, a; =0, i, j # 1, then A*=A, A= 0. Thus A is an 1dempotent
element. Also I, the identity matrix is an idempotent clement.
Definition : 2.2.2

An element x is said to be nilpotent if there exists a positive integer n

such that x" = 0.



Example:

If x=(0 ZJ, aeR then x* = 0. Thus X is a nilpotent element of My(R) .
0

0 is obviously a nilpotent element.

Definition 2.2.3
A ring R is said to be nil of every element if R is nilpotent i.e. x" = 0,

where n depends on the particular element x in R.
Examples

1. R={ [ ] acR} isanil ring.

Z. Lt RZlG—{ﬁi,i. .15 } and R'= {0,4 ,8,12 } then R’ is a nil

ring , since 4 = 8 =12"=0=0.

Definition 2.2.4

A ring R is called nilpotent if there exists a positive integer n such that
R" =0.
Example:

LetR=Zg={0,1,2...7 },then R'={ 0,2,4,6} is nilpotent .

In general if R =Z, then, R'=={0,n,2n,n" —n} is a nilpotent subring of

R ,for each n > 2 .Since R" =0 implies x" =0 for each xR, every nilpotent ring

is nil. However, every nil ring is not nilpotent as the following example shows :
Example :

Consider the set of symbols x, where o is any real number, 0 < a <I.
Let F be some field, and let 4 be the commutative algebra over F with these x,,

as a basis. Multiplication of the basal elements is defined as

=0  ifatp> 1

Thought of as a ring, 4 is the set of all finite sums »_a,x, where the aq

are elements in a field F. Addition is defined artificially as a,X,t+apxp just
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written together, if o B , and if o = B, then, of course, agX +a' (X = (2+8"¢) X
Multiplication is distributive and defined as above. The ring 4 is then

commutative.

It is clear that every element in A4 is nilpotent, for if we let n be any
integer >1/a, (X)" = Xne =0 and for any finite sum , the term with the smallest
x-subscript will yield an integer which as a power will yield zero. Thus, 4 is a

nil ring.

However, 4 is not nilpotent, for X,.X14.X15...X172-..#0. In fact A% = A, for

given any a., there exists a § such that xpxg = Xg.

Take any basal element x, and consider the ideal (x,) generated by it . this
is a nilpotent ideal , for (x)" = 0 for any integer n >1/a . The union of all of the
ideas () fills out all of A and , therefore , the union of the nilpotent ideal s of

A is not a nilpotent ideal.
Definition 2.2.5

A ring R is locally nilpotent if any finite set of elements of R generates
a nilpotent subring i.e., a ring is locally nilpotent if any finite set of element
generates a subring which is nilpotent. Thus every nilpotent ring is locally

nilpotent ring and every locally nilpotent ring is nil.
Definition 2.2.6

A right ideal V of a ring R is regular if there exists an element e in R

such that er-r is in V for every r in R.

An element x in a ring R is right quasi-regular if there exists an element
y in R such that x+y+xy =0. Thus cvery nilpotent clement is right quasi-

regular.

A ring R is right quasi-regular if every element in R is right quasi-
regular. The union or sum of two right quasi-regular ideals is a right quasi-

regular ideal.
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Definition 2.2.7
An element a is G-regular if a is in G(a), where G(a)={ar+r+2(xay; +

x;y;))} for each element a of aring R, and 1, X;, y; range over R, the summation

is finite.

If G (a) = R for some a, then a is in G (a) and a is G-regular. An ideal I
is G-regular if every element in I is G-regular.
Definition 2.2.8

An ideal P of a ring R is a prime ideal 1f AB < P implies Ac PorB c
P where A and B are ideals of R. We shall call a ring R a prime ring if 0 is a
prime ideal of R i.e. if A and B are ideals of R such that AB = 0 then either A =
OorB=0.
Definition 2.2.9

Let(M: A)= {a € A: AacM} where M be a regular maximal ideal

A ring A is right primitive if A contains a maximal right ideal M such

that (M : A) =0.

An ideal K of A is right. primitive ideal if A/K is right primitive. (M:A)

is a right primitive ideal of A if M is a maximal regular right ideal of A.
3. Important radicals

We are now ready to describe the most important radicals in the theory
of rings. Their importance lies in the fact that these were obtained by Koethe ,
Jacobson , Levitzki and Brown-McCoy as generalizations to arbitrary rings of
Artin’s radical for rings with d.c.c. with a view to obtaining semisimple rings
with nicely describable structures in terms of well-behaved classes of rings.
Among these the Jacobson radical is the best in the sense that the descriptions
of both the radical of a ring and that of the structure of a semi simple ring are
very good, and the best balance is maintained. Artin’s results on rings with

d.c.c were generalizations of Wedderburn's corresponding results on finite

dimensional algebras.
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Let N = The class of all nil rings,
J = The class of all right quasi-regular rings,
L = The class of all locally nilpotent rings ,
G = The class of all G-regular rings,
B = The lower radical determined by all nilpotent ring,

Then each of B, N, J, L and G is a radical (for proof see [ ]). B is called the
Baer lower radical , N the nil radical , J the Jacobson radical , L the

Levitzki radical and G the Brown-McCoy radical .
As a particular example, we verify here that

Theorem 2.3.1
N is a radical.
Proof:

Let A be a nil ring in N. Therefore every element in A is nilpotent. Let I
be an ideal of A. Now we have to show that A/I is nil. Let a € AJ/I then a =
a+], for some a €A. since A is nil, a" = 0, for some positive integer n. Hence
(a+])" =a"+I =0+I =I .Thus a = 0.

Let W be the sum of all nil ideals of A. If xeW, then x belongs to a
finite sum of nil ideals of A. Since the sum of any finite number of nilpotent

elements of a ring is nilpotent , x is nilpotent . Therefore W is a nil ideal of A

which contains every other nil ideal of A. Write W=N(A). Finally if possible,

let

T - -
2 have a nonzero nil ideal I, then 7= I_jvﬂ,i_ﬁ for an ideal 1 of A,

Iz N (A). Let xel, then x = a+N (A), ael and there exists a positive integer n
such that x" =0 ,i.e.,a" eN(A), Since N (A) is a nil ring a is nilpotent. Thus I is
a nil ring. Thus [ ¢ N (A) and so, I =N(A)/N(A) is the zero ideal of A/N(A). a
contradiction to the assumption on I. Hence A/N (A) has no non zero nil ideal.

Thus the conditions (i), (ii) and (iii) of the definition 1.3.2 are satisfied. Hence

N is a radical.
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Definition 2.3.2

Let a class M of rings is called a special class if it satisfies the following

three conditions:
(x) Every ring in the class M is a prime ring .
(y) Every nonzero ideal of a ring in M is itself a ring in M .
(z) If A is aring in M, and A is an ideal of a ring K, then K/A" is in M,
where A" is the annihilator of A, i.e., A={xeK: XA =Ax = 0}.

Definition 2.3.3

A special class M satisfies the condition (E) of Divinisky [11] so that M

determines an upper radical Sy . Sy is called a special radical .

Andrunakievic introduced and studied special radicals .His work is an
important and significant contribution to the extension of the general radical

theory.
Examples of Special radicals

B,N,L,J,G are special radicals .
1. B is the upper radical determined by the class of prime rings .

2. N is the upper radical determined by the class of all nil semisimple
prime rings.

3. L is the upper radical determined by the class of all L-semisimple
prime rings.

4. J is the upper radical determined by the class of all primitive rings.

5. G is the upper radical determined by the class of all simple rings with
unity .

There are a few more important special radicals which too arc very

useful and historically significant. These are briefly described here.

(1) N, the generalized nil radical, is the upper radical determined by the
class of rings without zero divisors . N, properly contains N (see
[11]).The radical N, was introduced simultaneously by Andrunakievic

and Thierrin [6] .The latter called it the compressive radical .
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(i) F is the upper radical determined by the class of all fields, it is the
largest special radical which reduces to the nil radical for the rings with

d.c.c (see [11])

(ili)  For any supernilpotent radical R, R, the upper radical determined by the

class of all subdirectly irreducible R-semisimple rings with idempotent

hearts is a special radical. If R = R, them R is called dual radical. R, is

a dual radical since (Ry), = R,. However, all special radicals are not

dual, nor is every dual radical special (see [11]). For example, B is not a

dual radical. B, is called the antisimple radical.

(vii) The class of all subdirectly irreducible rings with idempotent hearts
such that the heart contains an idempotent elements is a special class. This
~ special class determined by this special class is called Beheren's radical and is

denoted by Jp.

We prove here a new result: N, too is not dual. Thus, N, is a distinct

special radical.
Theorem 2.3.4

N is not a dual radical .

Proof:

Let A be the ring of all rational numbers of the form where x and

2y+1
y are integers with (x ,2y+1) =1. A is obviously N-semisimple.

Let I be any nonzero ideal A and let n, be the smallest positive integer
such that 2™ x/(2y+1) el, for some odd integer x . Let i =2% (2zt1) / (2y+1)
€l, for some integers y and z such that (2z+1, 2y+1) =1.

We note that (2z+1)2" =2y+1)iel and S0,
22" +2/(22+1).(2z+1)2" el. Since (2 , 2z+1) =1,there exist integers A and L
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such that 2A+(2z+1)u=1 and so 2™=A2. 2" +(2z+1) n.2™ el . Therefore
2" Acl
Also for each i€l,
i=2" u/(2v+1) , for some integers u and v with (u,2v+1)=1,
=2"" 2u/(2v+1) € 2"7'A.

Thus 2 Aclc2™'A.

Also for each non -negative integer n, 2"A is an ideal of A. Therefore it
follows that A is subdirectly irreducible and that every non-trivial
homomorphic image of A is nil. Thus A can not be mapped homomorphically
onto a subdirectly irreducible ring with a nil semisimple heart. So A is N,

radical. Hence N # N, and the proof is complete .
We only verify that N, is a special radical through the theorem below

Theorem ( Divinisky [11]) 2.3.5

The class of all non-zero rings without zero divisors is a special class of

rings.

Proof

Let M be he class of all non-zero rings without is also divisors. Clearly,
every ring in M is prime and every ideal of a ring in M is also zero-divisor-free
and thus in M. To show that M is a special class of rings, it is therefore
sufficient to establish property (z) of the definition of special class .

Suppose, then, that 4 is a ring without zero divisors, and that 4 is an
ideal of a ring K. Consider K/4* where , A* = {xeK : Ax = x4 = 0}. We¢ wish
to show that K/4* has no zero divisors. Suppose, then, that x.y is in A* and that
x1snotin A*

If w.A =0, then aw. aw = 0 and since aw is in 4 and 4 is zero-divisor-
free, aw = 0 for every a. Thus A.w = 0, Similarly, if Aw =0, then wA =0. Thus,

an element is in 4 * if it annihilates 4 on any one side.
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Since x is not in 4 * there must exist an element & in 4 such that bx = 0.
Then for any @ in 4 we have bxya =0, for xy is in 4*, Then bx.ya =0 and since
both bx and ya are in A and A is zero divisor free one of them is 0.Since by =0
we must have ya = 0 .This holds for any a in 4, and thus ya =0 and yisinA*
Therefore, K/A* has no zero divisors and (z) is established. The proof is

complete.
4. Alternative Description of the Baer Lower Radical

We know that the sum N, of all nilpotent ideals of ring A may not be

: : A :
nilpotent but it must be nil. Also ~ may have nilpotent ideal. Let N, be the

0

ideal of A such that o, is the sum of all nilpotent ideals of B . Letabe

0 0

an ordinal >1. If o is not a limit ordinal, define Na to be the ideal of A such

that N is the sum of all nilpotent ideals of

a-1 a-1

. If o 1s a limit ordinal,

define NQ:Zﬂ«z N, . Thus we obtain an ascending chain of ideals Ny ¢ N; ¢

N, Ns........ Consider the smallest ordinal ¢ such that N; =N ;. We denote
this by B(A). Here %;1) has no nonzero nilpotent ideal and B(A) is the

smallest ideal which gives such a factor ring.

B(A) has the following important property
Theorem 2.4.1

B(A) is the intersection of all ideal Q; of A such that 4 has no nonzero

nilpotent ideals.
Proof:

Let W= Qi. Then, since 4 has no nonzero nilpotent ideals, Wc
B(A

B(A) conversely, take any Q; such A4 has on nonzero nilpotent ideals. Then
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NocQ;, By transfinite induction assume that N.cQ; for every a<p. If B is limit

ordinal, then if B is not a limit ordinal then B-1 exists and Np.; exist and Nj., <

. If Np is not in Q; then some nilpotent idea] __[ of 4. O
Q P P is not in —<i_
Ny B(4) i '

Then consider some power L,c Nj.; <Q;, and therefore is a nilpotent

B(A)

I . . ]
ideal. Thus 5) 1s a nilpotent ideal of

A . u
3 Since I Q;, this is a nonzero

nilpotent ideal and this contradicts the fact that

has no such ideals.

Therefore NpcQ; and thus B(A) cW and B(A) = W, which proves the theorem.
Definition 2.4.2
A ring A 1s called a B-ring if A = B(A") for some ring A’

Theorem 2.4.3
The class of B-rings is a radical.

We first proof the following lemma

Lemma 2.4.4

If a ring R has no nonzero nilpotent ideals and C is an ideal of r, then C

has no nonzero nilpotent ideals.
Proof

Let J be a nilpotent ideal of C, with J"=0. Then the ideal RJR of R is
nilpotent and (RJR) *™! = 0. We can prove this by induction on n. If n=2, then
(RIR)’ =RJ (RRIRR)JR and RRIRRCC; therefore (RJR)’ < RICIR < RIIR =
0. Assume than that (RJR)*™' < RJ'R and consider
(RIR) ™ <(RJR)*! = RJ"R (RIRRIR) < RI'CJR < RI'RIR € RI™' R.
Thus for all n, we have (RJR)™™' < RI'R, and therefore, if J"=0, RIR is a
nilpotent ideal of R. Since R has no nonzero nilpotent ideals, RJR=0. Thus for

any xeJ, RxR=0. Let X be the ideal of R generated by x. Then X={ix*1ix¥Xr;

3
c
+ 2ryxr,}, where i is an integer and the terms Xrsxry must be 0. Then X° C
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RxR =0, as a straight forward computation shows. Thus X is a nilpotent ideal
" of R, and therefore X=0. Thus x=0 and J=0. Therefore, C has no nonzero

nilpotent ideals.

Proof of the theorem

Let A be a B-ring and assume that A/J is not a B-ring. Clearly 0 is a B-
ring from the definition of B-ring. Thus we may take A/J #0. Since A/J is not a
B-ring, it is not equal to B(A") for any ring A'. Let M/J be the B-ring of A/]J.
Then M/J # A/J and = has no nonzero nilpotent ideals, and it is not
equal to 0. Thus M contains a B-ring B(R) for a ring A by the lemma [ ] and in
particular, A is not equal to its own B-ring though it is the equal to B-ring for
some ring A’. As such, R=UN,. Let B be the Baer lower radical of R, B=R.
Then not all the Ny, are in B and in particular, there must exist an ordinal o, not
a limit ordinal, such that N, B but N,.; <B. Then B/N., does not contain
some nilpotent ideal I/N,.; of R'/N.;. Consequently I B, but some power I
CN,.1<B. Then if we consider the right hand side is nilpotent since I' € BN
Therefore the left hand side is a nilpotent ideal in R/B. It is nonzero for I ¢ B.
But R/B has not nonzero nilpotent ideals and therefore I must be in B; thus Not
C B and therefore B=R. Thus no such M can exist; in particular, R/J must be an
B-ring and the condition (i) of definition [ ] is established. Take any ring R and

consider its Baer lower radical B. If is clear that every ring contains an B-ideal.
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Chapter-3

A few new radicals and related constructions

Introduction 3.1

The Lower radical and the upper radical constructions of Kurosh have
paved the way for introducing new radicals. Leavitt introduce the idea of join
and meet of two or more radicals. Majumdar generalized the construction of
from the class of nilpotent rings. He discovered that certain properties on a

class C of rings ensure that the lower radical L, can be described in terms of C
exactly in the manner in which B is described in terms of the class nilpotent
rings. This led him to the concept of the join radical independently. Using these
construction;_ , a few new radicals have been obtained and studied in this
chapter .Radical pairs of Sulinsky and Divinsky [9] ,Majumdar and.Paul’s [17]
work and our own study of a number of new radicals
E+JEL,Lo +L¢,,L¢ Le,,Ug, +Ug,, Ue U, etc. both particular and general

have been described.

Definition 3.1.2

Let R, and R, be two radicals. Then the intersection R; N R is a radical .
We call R, "R, the meet radical or the product radical and denote it by RiaR;
or by RiR, It is the largest radical containing in both R; and Ry, In general, the
union R, UR, of two radicals is not a radical. As the smallest radical contained
R; and R,, construct Lgurs the lower radical determined by RjURy, We call
Lriura the join radical or the sum radical of R; and R, and denote it by Riv Ry
or by R+ R, . These were first defined by W.G. Leavitt.[29]. Majumdar [24]

also defined them independently.

We now describe the R;v R; radical of a ring A.



1. The (R;vRy)-radical of A

Let A; be the sum of all ideals of A which are either R;-ideals or R, -ideals

or both. Let o be an ordinal o 2. If o is not a limit ordinal, define A ¢ as the

ideal of A such that Ay is the sum of all ideals of Ay for which R;

a—1 -1
( AA )#0 at least one i=1 or 2 which are either R, -ideals or R, -ideals or both.
a—1
If o is a limit ordinal t, define Ay = ZAﬂ. Then AjcA;c As....... , all
Bxa

ordinals. A, = A, for some ordinal. Then the R;v R; radical of A is A;.In
general, let {R;} , j€J be a set of radical class .Let A|=0 and for a given ordinal

o assume that ideals A, have been defined for all ordinals .Then define A, =

> 4, when B is a limit ordinal. Otherwise by j“ =R; ( Ay ) for some i€J

B<a a—1 -1

(if such exists) for which Ri( Ay )#0 .Therefore there must exists some
a-1

ordinal 7 such that Rj(A/A ¢ ) =0 forall jel.

We have the following theorem

Theorem (Leavitt [29]) 3.2.2
For a ring A, A, < R(A), the sum of all ideal of A which belongs to
U,-E ,R; and if A is associative then A, =R(A).

This construction due to Leavitt reminds us of the B-radical of A. We
verify that the required radical has indeed such a structure. We proceed after

Majumdar as in [24], [25]. We define a general result and from there deduce

our required structure.

We begin with a few definitions:

Definition 3.2.3

Let C be a nonempty class of rings .We say that C satisfies
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(i)  P;.If Cis homomorphically closed,

(i) P, :If, for every ring A and for every ideal I of A, A has no nonzero C-

ideals implies that I has no nonzero C-ideal.

Let C be a nonempty class of rings, and let A be any ring. Let A, be the

sum of all C-ideals of A. For an ordinal 02, not a limit ordinal, define A, to

be the 1deal of A such that AAQ is the sum of all C-ideals of i Ifo>2 isa

=] -1

limit ordinal, define A = ZA/, . Then, A, has been defined for each ordinal Y.
B<a

The ascending chain A} ¢ A, c As.... C AyC Ag+1 C.. must terminate . Let Y

be the smallest ordinal such that Ay = Ayt We denote A, by A =
We then have
Theorem 3.2.4 (Majumdar)
Let C be a non empty class of rings satisfying the condition P, and let A

be aring. Then 4., is equal to the intersection Q all ideals Q; of A such that A

i

has no nonzero C-ideals.

Proof:

; A .
Since = has no nonzero C-ideals Q c 4,..
c

Now let Q; be an ideal of A such that 4

o

has no nonzero C-ideal of A,

: A ) . ¥ )
Then Qi 2 A, otherwise 2 would contain a nonzero ideal - where [ is a

= i

nonzero C-ideal of A, By P, L is a nonzero C-ideal of 4 which is a

i U

contradiction .Let B be any ordinal >2. Assume that AqcQ;, for each a< f . Ifp

is limit ordinal, then Ag= ZAa < Q;.If B is not a limit ordinal then ApacQ If
a<f
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. ! A
Ap.#Q;, there exists a C-ideal of y of ~ such that Iz Q; .Then
£-1 £-1

0¢I+Qf‘ = 4 ,a homomorphic image of L, since A 1cINQ;. By ( P))
o, Ing; Ap.

+ 0

. is a C-ring . Thus d
InQ;

is a nonzero C-ideal of iq- which is also

if i

contradiction. Hence A cQ; Thus A. < O, .This completes the proof .

We now arrive at generalization of Baer construction of the B-radical of

aring.

Theorem 3.2.5 (Majumdar)

Let C be a nonempty class of rings satisfying conditions P, and P, .

Then the class R¢ of all rings A such A=A, for some ring A’, is a radical.

Proof :

Let Ae R¢ and let J be an ideal of A. We shall show that fJi €Rc. We

may assume. J #A.

Suppose, if possible, that 0¢§ R.. Since §¢ (? )¢, then exists an ideal

Mof A, M= A, such that —11{:(é )c. By the isomorphism A = ﬂi does
o J M M/!J M
not contain any nonzero C-ideal. Hence M;ATr , through A = ?E, for some

other ring A’. Thus, A=YA’,. Clearly there exists an ordinal B>2 which is

not a limit ordinal and is such that ABgAC , but AB ¢ A'c. Then Ae does not

!

/-1

!

contain some C-ideal of % ,say ,L . Hence I A'pcA, and Iz Ac. By the
-1 -1

construction of A’c 1 be an ideal of A', since A c A, I be an ideal of A, Hence
Ac+1 T

the isomorphism = shows that Ac +1 is a non zero C-ideal of
A AN A,

30



!

. I : .
_._A_ ,——— being a homomorphic image of —— , is a C-ring. This being
A. AcNI Ay,

absurd —;1- —Rc . Thus R, is homomorphically closed.

It is clear from the proof in the last paragraph that A is an R¢-ring if and
only if A = E Hence a ring A has no nonzero Re-ideals if and only if A has

no nonzero C-ideals.

Hence for any ring A, the R.-ideal A'c contains all R-1deals of A with I

A . ; . ;
gtd i 3 1s a nonzero R.-ideal of ;,4_— which is a
A, ANI Ac

i

czz, then 0 =

- A .
contradiction. For the same reason, - has no nonzero R -ideals.
C

As consequence we get the following result.

Theorem 3.2.6 (Majumdar)

If C is a nonempty class of rings satisfying conditions P, and P, and if
L. is the lower radical of Kurosh determined by C, then L. =Rc.
Proof:

It 1s clear from the constructions of Aj and L that Z c L: (A), Re
being a radical containing C, Le = R¢ and so, Lc(A) Hence Lq = Re.

If R, and R; are two radicals R;UR, satisfies condition P, and P,. Here

Ry o, = The class of all rings A such that A =A’ (see ).

Therefore we immediately have from Theorem 3.2.5 & Theorem
3.2.6

Corollary 3.2.7
LR

(VR T RR,UR,

Corollary 3.2.8

A, 1s the (R;VR,) - radical of A.
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The (R;AR;)-radical of A
We shall now describe the (RjAR;)- radical of a ring A.

Let A be a ring. Define Aj=A. Let 022 be an ordinal . Define

A=(4, ifaisa limit ordinal and A g= Rij(Aq.;) for some i (if such exists)
pu

for which Ri(Aa-l) * Aa_] :
As particular cases of C; we may have C;=

(i) R,, a radical class,(ii)N, the class of all nilpotent rings(ii)l, the class
of all rings every ideal of which is idempotent,(iv), the class of rings A for

which every ideal of every ideal of A is an ideal of A .

Also as particular cases of C;, We may have C, = (1) R;, a hereditary radical,

(i) N, (ii1) I, or (iv) H.
We verify that I and H are hereditary.

Let Ael. Let I be an ideal of A and J an ideal of 1. Let J be the ideal of A
generated by J. Then, I’c J. Since I* = J' =J° J, i.e., I’ = J. Hence J? =J. Thus
Iel.

Next let A € H and let I be an ideal of A. Let J be an ideal of I and K
and ideal of J, Since AeH J is an ideal of K and so K is an ideal of A, and

hence, in ideal of I, L  radical rings

(o) If A is a nonzero C,-radical ring. Then by lemma 3 of Sulinsky ,Anderson
& Divinsky[9] either (i) A has a nonzero accessible C,-subring or (ii) there

exists a nonzero aceessible subring of A which can not be mapped

homomorphically onto a nonzero C, -ring.

It is clear that L -rings. and hence, in particular, Ci-rings and C,-rings
are L¢-rings.

We now consider the following particular situations. The result have

better and still better forms as we pass to special and more special situations.



(1) LetR, be a radical and R, a hereditary radical. We consider R, N R,-radical
rings

A is R;VvR,-radical ring either (i) A has a nonzero accessible R;-subring or
(ii) there exists a nonzero accessible subring of A which can not be mapped

onto a nonzero R,- ring.

(2) Let R be a hereditary radical

RVUB-radical rings

A is an (RvUg)-radical ring either (i) has a non-zero accessible R-

subring or (ii) there exists an accessible subring of A which can not be mapped

homomorphically onto a nonzero R-rings.
The (RvUy )-radical rings

(1) If aring A 1s R-radical then (i) A has a nonzero accessible C;-subring and

(i1) A can not be mapped homomorphically onto a nonzero C,-ring.
Since if A is (RvUg)-radical, then A is both L¢, radical and R-radical.

(2) (RvUpg )-radical rings.

A ring A 1s (RvUg)-radical if and only if (I) A is an R;-ring and (ii) A can

not be mapped homomorphically onto a non-zero R-ring.

We now consider the more special situations where C;=C,=R= a

hereditary radijcal.
e)) (RvUg)-radical rings

If aring A is (RvUyg)-radical, then cither (i) A has a nonzero a accessible
R-subring or (ii) there exists a non-zero assemble subring of A which can

not be mapped onto a non-zero R-ring .

3. Let C be a nonempty homomorphically closed class satisfying condition
(E) of Divinsky [11].

We shall StUdy LCVUC and LC/\UC :
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The radical rings and the semisimple rings for these radicals are described

below.

The radical rings

Theorem 3.3.1

The radical rings for LcaUg are precisely those rings A for which
(i) ?eCforeachlq AT #A,

(i) A has a nonzero accessible subring in C
The proof follows from the definition of Uc and theorem 2.1.

The radical rings for LovUc are precisely those rings A such that A has
a nonzero accessible subring B in LouUe. Thus, either B can not be mapped

homomorphically onto a nonzero ring in C, or B has a non-zero accessible

subring in C.

The proof follows from the definitions of Uc, v and Theorem 2.2, since

LcuUc is homomorphically closed.
(V) The semisimple rings

The semisimple rings for LeaUc are precisely those rings A which are
either Lc-semisimple or Ug-semisimple i.e., those rings A for which either

(1) every non-zero ideal of A can be homomorphically onto a non-

zero ring in C
(i) A has no non-zero accessible subring in C.
The semisimple rings for LeaUc are precisely those rings A which are
both L¢-semisimple and Uc-semisimple i.e., which are such that

(1) every non-zero ideal of A can be mapped homomorphically onto

a non-zero ring in C and

(i1) A has no non-zero accessible rings in C .
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The proofs follow from the definitions of the terms and theorem 3.1.of
[19].
Partition of simple rings

Each radical partitions simple rings into two disjoint classes: the upper

class consisting of all simple semisimple rings and the lower class consisting

all simple radical rings.

Upper class

For LcAUe the upper class consists of all simple rings A which are
either in C or not in C, i.e., the upper class consists of all simple rings. Since a
simple ring has no nonzero ideals except itself and no non-zero homomorphic

image except rings isomorphic to itself , the statements follows.

The lower class is thus empty in this case.
Let a and B be two radicals. Consider the following class of rings:-

I. (o B) = The class of all rings R such that for each ideal A of R, o
(R/A) 2B (R/A). |

IL. (o;B) = The class of all rings R such that for each ideal A of R and
for each ideal B of A, a(A/B)>B(A/B).

IIL. (of|B) = The class of all rings R such that for each ideal A of R
ARJA) = B(RIA).

IV. (0 ® B) = The class of all rings R such that for each ideal 4 of R, and
for each ideal B of 4, a(A/B)=B(A/B).

- Snider (1972) has studied (a::B). He has give some sufficient condition of
which (a:B) is a radical and has provided with a different characterization of"
(ou:B) in this situation. Divinsky and Sulinski [9] have made a deeper study of
(o:B) and have given a set of sufficient condition for which (ou:B) is hereditary

and a number of characterizations of (o:f) under a different set of conditions.
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With the same motivation at that of Snider, Divinsky and Sulinskiy [9] viz
search for now radical, we study the other classes i.e., the class II, III and I'V. In
this paper we have obtained conditions for which these classes are (i) radicals
and (ii) hereditary class, We have also established the analogues of the

characterization-theorems of Divinsky and Sulinsky [9] for these classes.

If o is the Baer lower radical, then (c:B) =(a;B) = (af|f) = (@ P)

represents the class of Jacobson rings or the class of Brown-McCoy rings

according as B is the Jacobson ring and Brown-McCoy rings are interesting

classes and have been studied by Kaplansky (1970) and in Processi [4], Watters
[7],[8]s.

We shall use the terminology of (Divinsky and Sulinsky 1977) and
(Snider 1972).

It is easily seen that the classes [-IV are all homomorphically closed. If 1
represents the radical for which all rings are radical and 0 the radical for which

the only radical ring is 0, then, evidently

M Bsa=(wp)=(xp)=l,

(i) (o 0)=(o;0)=1,

(i)  a=B=(c| B)= (x@p)=1,

() (fIB) < (e B), (@5 B) < (et : B), (@@®B) < (ct || B) and (a®B) < (B ).

The examples 1,2,3 given below show that the classes I-IV are all

distinct.

Example

Let a be the nil radical. Then Z& (o]l 0). Since (a: 0) = 1, this implies
that (o || 0) = (a: 0). Similarly, (a || 0) # (a; 0).
Example

Let o be the torsion radical, i.e., a(R) = the additive torsion subgroup of
R. Let R be a two-dimensional algebra over the field of rational numbers Q

with basis I and ¢ and. let the multiplication be defined by the table.
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1 1 a

a a 0

Then R is an associative ring and Ra is the only proper ideal of R. Let ] =Za,
then I is an ideal of Ra with I # Ra. Then, «(Ra/l) = Ra/l , and so, R is not
contained in (0;c). But, since a(R) = 0 and a(R/Ra) = 0, R is contained in (O :
a). Hence (0 : o) = (0 ; o).

The same example clearly shows that R is contained in (c|0) but not

contained in (o.@® 0) . Therefore, (¢||0) = (a® 0)
Example

We now consider Sasiada's example of a simple non-trivial Jacobson
radical ring. Let x and y be two non-commutative S be the set of all elements of
A with Zero constant term. Then S is the Jacobson radical of 4. It can be shown
that x is not contained in the ideal generated by x+yx2y. By Zom's lemma, there
1s an ideal 4 of 4 which is maximal with respect to inclusion of.x+ yx’y and
exclusion of x. Then S/M is subdirectly irreducible since x+M belongs to every
non-zero ideal S/M . Let J be the heart of /M .Then J is a simple non-trivial

Jacobson radical ring.

Now, let B = Baer lower radical and o = Jacobson radical. Then,

B)<a()). But B)# a(J).Hence Je(o;f).But Je (a®B). Thus
(:® B)(c;). Also J (ot || B), and so, (ot || B) = (ci:p).

We note that if o is hereditary, then o < (a;3) . The following cxample

shows that if o is not hereditary than o may not be contained in (o;B).

Example

Let R be an algebra over the field F'=Z, with a basis {1, a, b} where the
multiplication is defined by the table
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1 a b
1 I a b
a a a b
b b b a

Then R is an associative ring and a = F (a + b) is an ideal of R.

Let o be the radical for which a ring § is radical if and only if § =§°. Then o is
not hereditary, since Zea, but 2Z ¢ a. Let B be the Baer lower radical. Then, o

(A) = 4, so that R is not in (o;p ). However, R is in .

The radical a of this example is identical with the with the radical y for
which a ring S is radical if and only if .S cannot be mapped homomorphically
onto a non-zero nilpotent ring (Majumdar 1977). For, if S is an o.-ring then
every non-zero homomorphic image is again an o.-ring and so cannot be

nilpotent, and if S is not an cc-ring, then S/S* is a non-zero nilpotent

homomorphic image of S.

The radical y has been used by Anderson, Divinsky, and Sulinsky [9]

and the radical o (in case of na-rings) by Armerdariz and Leavitt (1967) for

construction of counter examples.

1. We now give certain conditions on « and B for which some of these classes

I-IV coincide with one another.
Theorem .3.3.1
If o is supernilpotent and § hereditary, then (o : ) = (ot ; B).
Proof. |
Itis sufTicient to prove that (a: B)< (o ). Let R be in (s ). Let A be
an ideal of R, B an ideal of 4, B* the ideal of R generated by B. Then, B™ < B,

by lemma 61 of Divinsky [11]due to Andrunakievic (Andruakievic 1958). Thus
B*/B is nilpotent. hence B*/B is in c. Let B(A/B)=I/B. Then B*/B

Similar arguments establish
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(A) Ifcand B are supernilpotent then (af}) = (0.® B). Also, we have evidently.
(B) Ifo<p,then (o B)=(c: p)and (a®P )= (e P).

2. Divinsky and Sulinski [9] have shown that although (0 : o) = (0® o) =
(a® 0) is closed under extensions it need not in general be a radical. We

similarly prove.
Theorem 3.3.2
(0;0)=(0 @a) = (0@ 0) is closed under extensions.
Proof.
Let R be a ring and I an ideal of R such that both I and R/I are in
(0; ). Let A be an ideal of R and B an ideal of A. However (0 ; o) = (0 :

) = (a ®0) is not in general a radical as is shown by the following

example.

Example

Let o be the radical for which a ring R is radical if and only if R2 = R,

and let R be the algebra over the field of real numbers, with a basis {x, : 0 <1}

and multiplication defined by
XaXp = Xgp; 1f 0+P<1,
= 0, otherwise.

Then R is an associative ring < x>, the ideal generated by X4, 1S a
nilpotent ideal of R and R is the union of these ideals. Each <x.> is in 0; ),
but R is not in (0 ; o) since R is in . Henee (0 ; o) = (0 @ o) = (a@0) is not a

radical.

The following theorem gives a set of sufficient conditions for which the

classes II-IV are radicals.
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Theorem 3.3.3

If oo and B are hereditary then (ci;p), (o || B) and (o0 @ B) are radicals.

Suppose R is a radical and 4 an ideal of a ring R. The radical closure of

A, written #/4 is defined as the ideal of 4 given by @/A
An ideal A of a ring R is called an ideal if o(R/A) = 0.

A radical is said to be superior if any o-semisimple ring can be

expressed as a subdirect sum of subdirectly irreducible ci-semisimple rings.

A class M of rings is called regular if every non-zero ideal of a ring in

M can be mapped homomorphically onto a non-zero ring in M.

Lemma . (Divinsky and Suliniski [9]) 3.3.4
If o is superior and P is hereditary, then the class M of all c-semisimple
subdirectly irreducible rings with B-radical hearts is regular.

Lemma 3.3.5
If o is superior, 8 hereditary, A an ideal of a ring R and B an ideal of A,
then if * B can be represented as an intersection of a-ideals I, of A such that

AJly is subdirectly irreducible withB-semisimple hearts, then R is in (o;B)).
Theorem 3.3.6
H is a radical.

Theorem 3.3.7

Let M be the class of subdirectly irreducible a-semisimple rings with B-

radical hearts and M the class of subdirectly irreducible B-semisimple rings

with radical hearts. Then,

(1) if o is superior and B hereditary, then (o;B) =HU), Uy, being the
upper radical determined by M;

(i)  if o and B are both superior and hereditary, then (o B) =UnnUye
and (oc B) = HUMﬁHUM' @
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Theorem 3.3.8
[fooand B are hereditary, then for any ring R,
Proof
We shall only prove that (e;B)(R) N B(R) < a(R) .The other proofs are

similar.

Let I be an ideal of R which is contained in (o;B)(R) m B(R) . Then, I is
an ideal of (;B)(R) which is an (o;)-ring. Hence o(R) = B(R) =I N B(R)=I.
Thus, I=a(R)=1n a(R) a(R).

Divinsky and Sulinisky [9] have introduced the concept of a mutagenic
radical — a radical which is very far form being hereditary — to decide when
(0;c)=(0| o) is a radical. Analogously, we define a radical o to be strongly

mutagenic if there exists a ring R such that (1) R is the union of an ascending

chain of ideals I,:

Oclichclc...... gR=U[k

where each I is in (0;c)=(0 ;) and a(R) =0 .

It is clear that every strongly mutagenic radical is mutagenic.

Let o be the radical of example 5 and R be the ring of the same example
with the only difference that the basis of the algebra now is the set of all
rationals r with 0 < r < 1. The basis being countable, we may write it as a

sequence {ry, 1y, 13, ...}. Let I, denote the ideal of R generated by {1}, rp, 13, ...

}.Then,0clichcl; c........ c R= U]k 1s an ascending chain of ideals of
k

R such that each I is in (0;0). Also we have a(R)=R. Hence o is strongly
mutagenic.
Theorem 3.3.9
(0;00) is a radical if and only if (0 @ ) is not strongly mutagenic.
Proof

Let (0;a) be a radical. If possible, Let o be strongly mutagenic. Then
there exists a ring satisfying (i) and (i). Then (i) implies that R is in (0;c) but
(if) contradicts this. Hence o is not strongly mutagenic.
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Conversely, let o be strongly mutagenic. Then there exists a ring R
satisfying (i) and (ii) Then every non-zero homomorphic image of R has a non-

I +A I,
L = , and
A £ 7 2

zero ideal in (0 ; ). For, if % # 0, then for some n, 0 #
the latter is in (0 ;o) . However R is not in (0 ; o). Hence (0,0 ) is not a
radical, by theorem 1 of (Divinsky [11]).

This theorem also shows that the radical o of example 5 of [18] is

strongly mutagenic.
Theorem 3.3.10

If o is a weakly supernilpotent radical, then o, is strongly mutagenic if

and only if there exists a non-zero a-ring R such that

Oclhichclc.... gR=UJk

where each J is an ideal of R and is in (0 ; o ).

Proof

The sufficiency of the condition is obvious from the definition of a

strongly mutagenic radical. We only prove the necessity.

Let o be strongly mutagenic. Then there exists a ring R with an

ascending chain of ideals.
el chel Cums cR=J7,
where I is in (0 ; o) and a(R) # 0 . Now, a(R)=RNa(R) =\ I, na(R)=
k
U(]k No(R)) .Write Ji =Iyma(R) By theorem 5, (0;c) is hereditary, and so
k
each Ji is in (0;a), Then, a(R) =|_JJ, , with each J in (0;c). Since a(R) is a
k

non-zero a.-ring, the proof is complete.
Corollary 3.3.11

If o is a weakly supernilpotent radical and if there does not exist an o-
ring which is not the union of an ascending chain of (0 ; &) ideals then (0;a)

is a hereditary radical.
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Chapter - 4
Semi-simple Classes

Introduction 4.1

In this chapter we study semisimple classes of rings . Different
interesting  properties of semisimple classes and a number of their
characterizations due to different authors have been given. Semisimple classes
corresponding to specific Interesting classes of radicals have been described
and structures of semisimple rings for certain important classes of radicals have
been determined . Conditions for which a semisimple class is minimal have

been described .
Properties of Semisimple Class 4.2.1

We recall that a non-empty class C of rings is called a semisimple class

if C is the class of all semisimple rings with respect to some radical R. We

denote C by S(R).

Every semisimple class is hereditary. To show this we proceed as

follows.
Lemma (Divinsky[11] ) 4.2.2

Let A be an ideal of a ring R and let B be an ideal of A .Let B* be the
ideal of R generated by B. Then B*® B.

Proof:
B*’C AB*A = A (B+RB+BR+RBR)ACABA cB.
Theorem (Divinisky [11]) 4.2.3

If R is any radical, then for any ring A and any ideal I of A , R() is an
ideal of A .



Proof :

If R(I) is not an ideal of A, then there exists an element x of A such that
either X.R(I) or R(I).x is not contained in R(I). Assume first that xR(I) & R(I).
Then xR(I+R() properly contains R(I). It is contained in I for I is an ideal of
A and R(I) cI . Furthermore XR(I)*+R(D) is an ideal of I, because R(I) is an
ideal of I and IxR(I) = Ix R(I) c I.R(I) < R(T).

Since I/R(I) is R-semisimple, the ideal [xR(I) + R(I)J/R(I) cannot be an
R-ring. But this ideal is a homomorphic image of the R-ring R(I) and is
therefore an R-ring, This contradiction proves that xR(T) ¢ R(I) for every x in

A. Similarly R(T).x < R(I) and R(I) is an ideal of A.

To set up the homomorphism, let y be any element in R(I) and define
6(y) =xy + R(I). Thus, 6 is a mapping from R(I) to [xR(D)+R(1))/ R(I). Clearly
¢ is an onto mapping, and 6 preserves addition. To see that 0(yiy2) =
8(y1).0 (y2). We shall show that both of these are the zero coset. First, 8 (y,v2)
= Xxy1 y2 * R(I). Since y, is in R(I) I, xy, €l and thus xy,y, €l. R({) < R(D).
Thus 8 (y,y,) =0+R(I). |

On the other hand,

8 (y1)-6 (y2) = [xyi+R@)] [xy,+R(D)] =xy,xy,+R(I). However, xyx is in
I and xyxy; is in LR(I) <R(D). Thus, 8(y,).0(ys) = 0+R(I) = 6(y1v2). This
proves that 6 is a homomorphism, that [xR(I)+R(1)}/R(]) is an R-radical ring,
and that xR(I) < R(I).Thus the theorem is proved.

Corollary 4.2.4

An ideal of an R-semisimple ring is R-semisimple. Thus, « semisimple
class is hereditary.

Our next result is

Theorem ( Wiegandt [13]) 4.2.5

Every semisimple class S in closed under subdirect sum i.e. If A,eS.

aeA. then subdirect 2 A €8).
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Proof :

If 0¢B<JZ(AQ: Ay€S) —fey Aq | then there exists an index « such

that me(B)#0 and To(B) < A, eS8 .Since, if AeS, then for every 0=B A there
exists a B—C such that 0£CeS: 0 To(B) has a nonzero homomorphic image of
B. Thus, if for a given A and every 0#B <A there exists a B—>C such that
02CeS, then AeS.

Theorem (Wiegandt [13]) 4.2.6

Every semisimple class S has the coinductive property: If [, oI,o......is a

descending chain of ideals of a ring A such that each A/l4€S, then also

A/NI,eS.
Proof :

Since A/nl,= > A/,

subdirect

Lemma (Wiegandt [13]) 4.2.7

Every semisimple class S is closed under extensions BeS,A/BeS

and B< A imply AeS.
Proof ;

Suppose that B, A/B €S. We have (B+US(A))/B = US(A)(BNUS(A))
€ US and (B+US(A))/B< A/B €S.

If (B+US(A))/B # 0, then by the condition (S,) if AeS. then for every 0
# B A there exists a B—>C such that 0CeS. it has a nonzero homomorphic
image in S which is impossible as (B+US(A)) /BeUS. Hence B+US(A) < B,
that US(A) < B € S. A similar arguments shows that US(A) = 0, hence A € S.
Lemma (Wiegandt [13]) 4.2.8

If S is a semisimple class then US(A)=(A)S  where
(A)S=n(I, < A;A/I,€S) .
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Proof:

Since R(A/R(A)=0 for every ring A where R is a radical,
US(A/US(A))=0, hence it follows A/S(A)eSUS =S. Thus (A)ScUS(A). Since
S is closed under subdirect sums we have A/(A)S €S. Since US(A)/(A)S €US
and US(A)/ (A)S < A/(A)SeS. Hence S(A)/(A)=0, i.e., S(A) =(A)S.

For a special class M every Sy, —semisimple ring is a subdirect sum of

rings from M. To see this we first prove

Theorem 4.2.9

The special radical Sy of any ring K is equal to the intersection of all

ideals Ty of K such that K/ T, is a ring in the special class M.

Proof:

If Ty is an ideal of K such that K/Ty is in M, then K/T, is an Sy-

semisimple ring, for all ring is M are Sm-semisimple. Therefore Sy < NT,

On the other hand, let T be defined and NTg. If T is Sy-radical, then Tc
Sm and Sy=T . However 'T is not Sy radical, then T can be mapped
homomorphically onto a ring of M. Let I be an ideal of T such that T/I is in M.
Then I is an ideal of K for (IK+I)/I.T/I is the zero ideal in T/I. However T/I
being in M is a prime ring and thus IKcT. Similarly KI c T and I is an ideal of
K. Thus K/I has an ideal of K/I which is in M. Thus (K/D)/T)" is itself in M
where T(I)" is the anhilator of T(D) .

Let Q ={xeK, xTcI and Tx clI}. Then K/Q=(K/I) (T/I). Clearly 1€Q.
Furthermore (T/I) is the set of elements of K/I which multiply T/I, on either
side into I/I. Thus (T/I)* = V/I where V={xeK:xTel and Txcl}. Thus V=Q

and (T/I) = Q/I. Then (K/1) (T/I) = (K/T) (Q/1) = K/Q

Since K/Q is in M, Q must be equal to one of T,s. Thus T=n T,cQ

However if TcQ, Then TTCT and this means that T/I is nilpotent ring. Since
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T/Lis in M, it is a prime ring and therefore this is impossible .Thus T must be

an Sy-radical ring. Tc S,

Then immediately we have
Corollary 4.2.10

Every Sy-semisimple ring is a subdirect sum of rings from M.
Characterizations of Semisimple Classes

We now give a few characterizations of semisimple classes .We start

with the following definitions .Let A be a ring .Let I;(A) denote the class of all
ideals of A. For each k21, define I, (A)=UI,(B). Define I(A) = |1, (A).
k

Let C be a nonempty class of rings .We consider the following

conditions on C :

(o) Every nonzero ideal of a ring in C can be mapped homomorphically

onto a nonzero ring in C.

(@) If AeC, every nonzero ring in I(A) can be mapped

homomorphically onto a non-zero ring in C .

(B) If every non zero ideal of a ring A can be mapped homomorphically

onto a non-zero ring in C, then AeC .

(B") If A is a ring such that every nonzero ring in I(A) can be mapped

homomorphically onto a non-zero ring in C, then AeC.

(B") If every non zero subring of a ring A can be mapped

homomorphically onto a non-zero ring in C, then AeC .

Theorem (Majumdar[23]) 4.3.1

A nonempty class C of rings is a semisimple class if and only if C

satisfies . Since (o) or (a') together with (B)or (B') .
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Proof :

Since (a) = (o) and (B) = (B) it will be sufficient to prove (i) if Cis a
semisimple class, then C satisfies (o) and if C satisfies (o ) and (B'), then C
satisfies (B).

First, let C be a semi-simple class, and let AeC. Using Corollary 2 of

Theorem 1 [ ]and induction, we see that I(A)=C. Hence C satisfies ().

Next let C satisfy (c) and (B'). Let A be a ring such that every non-zero
ideal of A can be mapped homoniorphically onto a non-zero ring in C. Then,
clearly, A is Uc-semi-simple, where Uc is the upper radical class determined
by C. Using Corollary 2 of Theorem I [ ] and induction, we see that of IeI(A),
then I is Uc-semi-simple. Therefore every non-zero ring in I (A) can be
mapped homomorphically onto a nonzero ring in C. By (B'), AeC. Thus C
satisfies ().

Theorem (Majumdar(23]) 4.3.2

A nonempty strongly hereditary class C of rings is a semi-simple class if

and only if C satisfies (B").

Proof :

It will be sufficient to prove that in the situation (B") implies (). So,
suppose C satisfies (B"") . Let A be a ring such that every non-zero ideal can be
mapped homomorphically onto a non-zero ring in C. Let S be a subring of A

and S be the ideal of A generated by S. Then there exists an ideal [ of § such

e C. Since S+ is generated

: . . S+1
that 0£S/1eC. since C is strongly hereditary, :

S+[,S+I¢O. Thus every non-zero subring of A can be mapped
7 7

by

homomorphically onto a non-zero ring in C. Hence (B"), AeC. Therefore C

satisfies ().
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Some conditions related to semisimple classes of rings are described
below

(S1)if AeS, then for every O#B < A there exists a B—C such that 0#CeS.

(S2) If for a given A and every OB g A there exists a B—C such that 0#CeS,
then AeS.

(a) R is homomorphically closed
(a*) S is hereditary i.e. Ia AeS§ implies Ie8.

(b) R has the inductive property, ifI;, CI,, C.. is ascending chair of ideals of A

such that It is in r, then also Ule €R.
(b*) R (A) =2 (Ia AA: 1o €eR) eR
(b*) R has the coinductive property:

It]; 21, > Ta 2 is a descending chain of ideals of a ring A such that each A/la

€ S then also. A/nIoeS.
(b*) S is closed under subdirect sums: If AaeS, aeA, then YAaq 8.
(¢) Ris closed under extensions, B €R, A/BeR and Ac A imply AeR.
(d) R(A/R(A)) = 0 for every ring A
Theor'em (Gardner and Wiegandt [3]) 4.3.3

The following conditions are equivalent for a class S

(I) S is the semisimple class of a supernilpotent radical which has the

intersection property relative to CNS .

(I) S is an essentially closed and subdirectly closed class of rings
satisfying (s) It AeS, then every nonzero ideal of A has a
nonzero C-ideal in S and the upper radical of S has the

intersection property of CNS.
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(II) S is essentially closed, subdirectly closed, regular class of rings

satisfying the condition (t) every S-ring is a subdirect product of
CNS rings.
Proof :

First suppose (i) holds. Since S is the semiprime class of a hereditary
radical, S is essentially closed as well ag subdirectly closed. If I be a nonzero
ideal of A in S, then IeS, so by the intersection property I is a subdirect
product of CnS-rings, in particular, I has nonzero CAS-factor. Thus the

condition (s) satisfied thus (1)=>(ii).

Suppose (ii) holds. It follows readily from the condition (s) that S is
regular. Let A be an S-ring. Let T=CAS. Then Ur(ay has no nonzero T-factors
5o (S) implies that Ury=0. Thus A is a subdirect products of T-rings and the

condition (t) has been established thus (11)=(iii).

Finally let (III) holds. By Corollary 2 ([ ]) an essentially closed, S of
rings is the semisimple class of the hereditary radical class U.S Since C
consists of semiprime rings by condition (t) Us is supernilpotent. Moreover (1)

also says that Us has the intersection property relative to CnS.
Theorem (Weigandt[13]) 4.3.4

The following conditions are equivalent
(1) S Is a semisimple class

(i) S satisfies the condition (a) it A € S, then for every 0 # B<a A there

exists a B>l suchthat0=1 e S.

(b) S is closed under subdirect sums if AqyeS, ae A, then ZA,€S.
(c) S is closed under extensions: BeS, A/B €S and AcA implies AeS
(d) ((A)S)S< A .

(iii) S satisfies conditions (S1) (b*), (C) and (e) if K « [<A, and I and K are
minimal with respect of A/I €S and I/K €S8, respectively, then K< A,
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Proof :

From propositions 8,10,11 and 12 of Weigandt [13] (i) =(ii).

Let (ii) holds. Since (b*) implies conductive property trivially. By (b*),
the ideal I=(A)S is the unique one which is minimal with respect to A/l €8, and
the corresponding assertion applies to K=()S< 1. Hence using coinductive (d),
the get K=(I)S = ((A)S) S« A.

Thus also condition (e) holds.

Finally let (III) holds. We have to show the show the validity of (S2).
Let A be a ring such that every nonzero ideal of A has a nonzero homomorphic
image in s. By condition (b*), Zorn's lemma is applicable and so there exists an
ideal I of A which is minimal relative to A/TeS. If I#0 then by assumption

there exist an ideal K of I such that 0=I/K 8.

Moreover, by (b*), K can be chosen such that K is minimal with respect

to /K €8. Then by condition (c), we have K < A, and so

Lo

I/'K

Using condition (c), me get A/K €S, and therefore by the chosen of I, it
following IcK, contradicting I/K#0 . Thus necessarily I=0 and AeC hold
proving the validity of condition (S2).

Theorem (Weigandt [13] ) 4.3.5

R and S are corresponding radical and semisimple classes if and only if
(1) RNS =0
(i)  AeRand A—>B#=0 imply BeS.
(i) AgSand0#B<A imply BgR .
(iv)  eachring A has an ideal B such that BeR and A/BeS.
Proof:

The necessity is obvious (in (iv) take B=R(A)). For the sufficiency, (ii)
= R ¢ US and (III) implies S < Sg. Let A€ Sg. By (iv) There is a B< A such
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that BER and A/B €8S, Since AeSy if follows B=0, hence AeS. Thus SgcS
holds implies S=Sg. Similarly one can conclude R=US and by (iii) R=US is a

radical class and hence S is its semisimple class.
Lemma (Weigandt [13]) 4.3.6

Let K<l <A and AcA. Then

(1) aK+K«I

(i)  The mapping ¢: K- (aK+K)/K defined by @(x) = ax + K ,VxeK is

onto homomorphism.
(i)  (aK+K)? cK
(1v) Ker® «I
Theorem (Weigandt [13]) 4.3.7

A class S of rings is a semisimple class if and only if S satisfies
conditions (S1). (b*) and (c).
Proof:

In view of Theorem [30] it suffices to show that condition (c) follows
from (S1), (B*) and (c). By (S1) and (b*) there exists ideals I of A and K of I
such that they are minimal relative to A/IeS and /K eS respectively. We have
to prove that K< A. Assume that this is not the case and that aK ¢ K for an

element ac A. By Lemma [31] we have
®: K— (aK+K)/K < T/KeS and (aK+K)? cK.

Hence Lemma [31] yields 0=K/Ker®= (aK+K)/KeS. By Lemma [31]
(iv) ker® « 1, and

1/ Ker®
O

————= I/K €S holds. Applying condition (c) we get I/Kerde$
K/ Ker®

and so by the minimality of K it follows Ker®=K contradicting K/Kerd 0.
Thus K< A.
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In view of Theorem [30] we have also proved that condition (d) is a
consequence of (S1), (b*) and (c).

Corollary (Weigandt [13]) 4.3.8

A class 8 is semisimple clasg if and only it S satisfies (a*), (b*) and (c).

Corollary (Weigandt [13]1)4.3.9
R and S are corresponding radical and semisimple class if and only if
(1)  RNS=0
(i)  Ris homomorphically closed
(i) Sis hereditary
(iv)  eachring A has an idea] B such that BeR and A/B €8S
Lemma (Wiegandt[13]) 4.3.10
IfR is a hereditary radical, then for any I 4 A, R()=R(A) M.
Theorem (Wiegandt[13 ]) 4.3.11

S is the semisimple class of a hereditary radical if and only if S satisfies
conditions (S1), (b*) and (A) S is closed under essential extensions: | A€ and I
€S imply AeS.

Corollary ( Weigandt [13]) 4.3.12

S is the semisimple class of a hereditary radical if and only of S satisfies
condition (a*), (b*) and (A).

Theorem (Wiegandt[13]) 4.3.13

A proper subclass S of associative ring is the semisimple class of a
supernilpotent radical if and only if S satisfies condition (S1), (b), (A) and (o) S
Is weakly homomorphically closed: [< AeS and 1>=0 imply A/leS.

53



Chapter - 5

Semisimple Radical Classes

Introduction 5.1

This chapter deals with semisimple radical classes. Characterizations of
such classes by Stewart and Majumdar have been described. Stewart has
obtained a complete description of semisimple radical classes .Majumdar too
has obtained a family of such classes .We have given a detailed description of

their works.

Definition 5.2.1

A non-empty class C of rings is called a semi-simple radical class if C is
both a semi-simple class and a radical. Thus C is a semi-simple radical class if
and only if C =R, and C= S(Ry), for some radicals R, and R,. Obyiously, if R,

= R,, then C contains only the zero rings.

In the discussion of semisimple radical classes a certain class of rings,
called B)-rings by Stewart [12], plays a very significant role. We give below a

detailed description and characterization of B -rings.

Definition 5.2.2
Let R be a ring and xeR. Let [x] = the subring of R generated by x. A

ring R is called a B,-ring if for all xeR and [x] = [x]~

Lemma 5.2.3

The class of B,-rings denoted by B, is a radical class.

Proof:
Let R be a ring and xeR. Clearly [x] = [x]* if and only if xe [x]% ie., if

and only if there are integers a,, 4, ... a such that x = Zax' Using this, it is



clear that every homomorphic images of By-rings are B,-rings and it A/B and B

are Bj-rings then A is a B\-rings. Thus by theorem 1.3.3 is a radical.

Lemma 5.2.4

A nonzero B-ting without proper divisor of zero is a field of prime

characteristic which is algebraic over its prime subfield.

Proof :

Let R be a nonzero Bi-ring without proper divisors of zero. If x is a

k
nonzero element of R there are integers a;, ... a, such that x=2a,.x‘
i=2

k
hence ex = > ax' is an identity for [x]. Since x is not a zero divisor ex is an
i=2

identity for R. If weR, w20 ew e [w] = [W]?, so ewe[w]. we Rw R=Rw.

Since R is nonzero, R is a division ring.

Let e be the identify of R. Then [2e] = [2e]* = 4e , so Ne =0 for some

positive integer N. Consequently the characteristic of R is a prime and since
e=ew €[w] for all nonzero weR, R is algebraic over its pnme subfield.

Therefore by Theorem 2 of Jacobson [10] R is a field.
Theorem (Strewart [12]) 5.2.5

A 1ing R is a B)-ring, if and only if every finitely generated subring of R

is isomorphic to a finite direct sum of finite fields.
Proof:

Let ReB,; and R’ be a finitely generated subring of R. Then R'e B, and
hence is commutative, so by the Hilbert Basis Theorem R’ has maximum
condition on ideals. If P’#R’ and P’ is a prime ideal of R’ then P’ is a maximal
ideal of R’ since by Lemma 3.2 of [12] R'/P' is a field. Since R’ is finitely
generated commutative and has an identify for each generator g of R’ R’ has

an identify. Then by Theorem 2 [32] R’ has minimum condition on ideals. But
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P ; : ;
then R" 1s a commutative Wedderburn rng. so R’ is isomorphic to a finite direct

sum of fields each of which must be finjte since they are finitely generated

algebraic and of prime characteristic,

The converse is obvious. In fact, if xeR and R s isomorphic to a finite

direct sum of finite fields then there is an integer n (x) 22 such that x"™ = x..

Corollary (Strewart[12]) 5.2.6

R is a B;-ring if and only if for each xeR there exists an integer n(x) >2
such that x"® = x.
Definition 5.2.7

A class of rings C is said to be strongly hereditary if S is a subring of
ReC then SeC.

Proposition 5.2.8
If F is a strongly hereditary finite set of finite fields then a ring R is
isomorphic to a subdirect sum of fields in F if and only if every finitely

generated subring of R is isomorphic to a finite direct sum of fields in F.
Proof:
Since F is a finite set of finite fields there exists an integer N>2 such that

xN=x for all xeFe F.

Let R have ideals I :a€A such that R/I, = F, €F and N { I;;aeA} =
(0). Let R’ be a finitely generated subring of R. Then R € B, since x"=x for all
Xx€RDR', so by lemma [12] R’ = A; @... ® Ay and A, are finite fields. Choose
a;eR’ such that [a;] = A;. Then a;#0 so a; €I B; for B; € A; but IB; N [a;]< [a] so
I/B; ™ [a;] = (0). Therefore, A= [a;] = [a;] + IB/IB; is isomorphic to a subring
FB;. Since F is strongly hereditary R’ is isomorphic to a finite direct sum of

fields in F.

Conversely if every finitely generated subring of R is isomorphic to a

. S . N
finite direct sum of fields in F, R must be a B,-ring since again x =x for all
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xeR. Thus by lemma 3.3 of [12] there are ideals I: cce A of R such that

N{le:o €A} = (0) and R/I, is a field of prime characteristic moreover, R/I,
must be a finite field since xN-x=0 €l for all xeR. Therefore for each aeA,
there exists x,€R such that [(xa] + I + I, = R/I,. but then R/, is a

homomorphic image of [x,] so R/l is isomorphic to a field in F,

Lemma (Strewart[12]) 5.2.9

If C is a class of rings such that subdirect sums of ring in C are in C and

C is closed under homomorphic image then C is strongly hereditary.

Proof

Let ReC and S be a subring of R. Set Ri=R for all ieZ"=the set of
positive integers. Now the direct sum 2{R; i€Z"} is an ideal of the direct
product IT{R;:ieZ"}. If Se§ let S(i) =S for all ieZ". Then S— « (s) = {S:SeS}
is an embedding of S into  {Ri : 1€Z'}. a(s) + {Ri : i €Z’} is a subdirect
sum of copies of R and hence in C so

S=z<(s)=<'(s)

Thus C is strongly hereditary we now state and prove the central result

of Stewart.

Theorem : []

If C is a semisimple radical class and C ¢ B, then C consists of all rings.

Proof:

Let C be a semisimple radical class. If C B, then there is a ReC and
x€R such that [x]# [x]* In Kurosh [33] shows that for any scmisimplc class F,
subdirect sums of rings in F are in F. Thus [x] €C and since [x]* < [x], [x]/[x]?
€C. Now [x] / [x]? is a zero ring on a cyclic group and since C satisfies (S2
property), C* = the zero ring on the infinite cyclic group is in C. This implies
that C contains all nilpotent rings. Since C is a semisimple class ([ ][], []) C is

hereditary,
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The following theorem gives a few characterizations, due to Stewart, of

semisimple radical classes other than the class of al] rings.

Theorem (Strewart[12]) 5.2.11

If C is not the class of all rings then the following are equivalent (I)Cis
a semisimple radical class (2) There is a strongly hereditary finite set C (F) of
finite fields such that ReC if and only if every finitely generated subrings of R

is isomorphic to a finite direct sum of fields in C(F).

Proof:
Assume that B satisfies condition (3). Clearly C satisfies (A) and (E).

If B < A and both A/B and B are in C and A’ is a finitely generated
subring of A then A’+B/B=A/ANB is isomorphic to a finite direct sum of fields
in C (F). A slight modification of the proof given for Proposition 1 on page 241
of Jacobson [10] shows that ANB is finitely generated as a ring. Thus AnB is
also isomorphic to a finite direct sum of fields in C)F) and so
A=A/ANBO®AMB. Therefore, AeC. From this it is easy to show that if C(R) =
the sum of all ideals of R which are in C then C(R) €C and C(R) / C(R) = (0).
Thus C satisfies (B) and (C).

If every nonzero ideal of a ring R can be homomorphically mapped onto
a nonzero ring in C then by 3.7, every nonzero ideal of R can be
homomorphically mapped onto a ring in C(F). Sulinsky [9] (see also [6],
Theorem 46) shows that this implies that R is isomorphic to a subdirect sum of
rings in C(F) and hence by 3.7 again, ReC. So C satisfies (F) and hence C is a

semisimple radical class.

Conversely, suppose C satisfies condition (1). Let C(F) = the class of all
fields which are in C and define A=II {ReC (F)}. Since C is a semi-simple

class subdirect sums of rings in C are in C; thus AeC. By hypothesis, Ccf, so

by 3.4 all elements of A must be torsion. From this it follows that there is a
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finite number of primes py, ..., py such fhat every field in C (F) is of

for some 1< i < N. For each finite field ReC (F) choose a(R)
= R and for each infinite field ReC (F) set a (R) = 0. Then

characteristic p;

such that [a(R)]

a={a(R)} Recry is in A and by 3.5 a*=a for some integer K>2. thus, for all -
finite fields R in C(F), the dimension of R over its prime subfield is < k-1.
Hence there is only a finite number of finjte fields in C(F). Suppose there is an
infinite field Re C(F). By 32ris of prime characteristic and is algebraic over
its prime subfleld so R has an infinite number of non-isomorphic finite
subfields. All these subfields are in C(F) since C is strongly hereditary by 4.1.
This is impossible since there is only a finite number of finite fields in C(F)..
Therefore, C(F) is a strongly hereditary finite set of finite fields. If R eC then
ReB; so by 3.3 R is isomorphic to a subdirect sum of fields all of which are in

C(F) since C satisfies (A). Conversely, any ring isomorphic to a subdirect sum

of rings in C(F) is in C since C is semisimple class. Thus C satisfies (2).

3. We shall conclude the chapter with Majumdar’s characterization of
semisimple radical classes and his example of a semisimple radical class. these

are given below :

For a ring A, define I(A) to be class of all intersections of non-empty

collections of rings in I(A).
Lemma 5.3.1

Let C be a non-trivial semi-simple radical class, and let AeC. Then,
LA)=I(A) =1)(A) .
Proof

Let B € Ik(A), k >1, Then there is a chain A=Ay D A2 A; D..0 A, =B,
where each A;,; is an ideal of A,. x €B and a €A. Since A belongs to the non-
trivial semi-simple radical class C it follows from corollary and Theorem 4.2
of (8) that [x]=[x]*=[x]*, where [x] is the subring of A generated by x. Thus,
X=P(x) Py(x).. Pi(x), where each P;(x) € [x]. Since each P;(x) belongs to each
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Aj, it follows that aP, (x) e A, aPi(x)Py(x) € A,....... ax=aP(x) P, (x).......
Py(x), €Ax=B. Similarly xa € B .Hence I(A) =I,(A) .Since the intersection of
every nonempty collection of ideals of A is an idea] of A, T(A)=I(A)=II(A).
Theorem 5.3.2

A non-empty class C of rings is a semi-simple radical class if and only if C

satisfies the following conditions:
(1) Cis homomorphically closed.
(2) Cis closed under extensions.
(3) Cis strongly hereditary.

(4) If AICACASC oo,

is an ascending chain of rings in I(A) for a ring A such that each AgeC,

then | J4, eC.
;

(5 If A2A;DA;D.... 1s a descending sequence of subrings of a ring

A such that (i) for each i, Ay, is an ideal of A and AA-:-I & C gnd (i)

!

() 4; €C, for some i.

Proof

Suppose C is semi-simple radical class. Without loss of generality, we
may assume that C is a non-trivial class. By Theorem 3, C satisfies (1) and (2)
since every semisimple class is closed under subdirect sums (7), Lemma 4.1 of

(8) shows that C satisfies (3), Suppose A;CA,CA;C.....is an ascending chain of

rings in 7 (A), for a ring A, such that each Ay eC. Let B =U 4, , and let C(B)
s

denote the C-radical of B. By lemma 1,Ay is an ideal of A, and so, Ay < C(B),
for each Aj. Hence B=C(B), i.e., B€C. Thus C satisfies (4). Now suppose

A12A;DA;D..... is descending sequence of subrings of a ring A such that (i) for
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} . . A.
each i, Aj; is an ideal of A, and y J‘r[ e C, and (i) ()4, € C. Let R denote

the upper radical class determined by C. Then, for each i | R(Aj) € Ay, since
4 _ |
‘_cC. Now R(A;) being ideal of A, )
A,+1 R(4,,,)

is R-semisimple, by

Corollary 2 to Theorem | of [3]. This implies R(A;) =R(A;+) . Thus R(A;)
=R, , for each i. Now [VR(4;) being a subring of ()4, , the former
i F i

belongs to C, by (ii) and (3). Thus for each i. R(A;) € C, so that R(A)=0,1, ¢,
A;jeC, Hence C satisfied (5).

Conversely, suppose C satisfied the conditions 1-5. Theorem 3 shows
that C is a radical class. Let A be a ring such that every non-zero subring of A
can be mapped homomorphically onto a non-zero ring in C. By Theorem 2 it

will be sufficient to show that AeC.

Define I;=A: Let 8 be any ordinal = 2, and assume that [, has been

defined for each ordinal o < B. If B is not a limit ordinal, either Ig.1=0, or there
I
exists an ideal I of Iy, such that w% eC. If I5.,=0, define I;=0 and if Ij_,

#0 define Ig=I. If B is a limit ordinal, define (77, =I, Then I, has been defined
acfl

for every ordinal. It follows from the construction that I,.C, for some ordinal t .

Define J1=I,. Let ¥ be any ordinal > 2. Assume that J, has been defined
to be some [;eC, for each ordinal o < y .First, let » be not a limit ordinal. Let

Jo1=Iq. If a=1, define Jy= Io. If o is not a limit ordinal and a=1, then define J,
=lp.; . By (2), I, €C. If o=@ , I, is the intersection of the descending
sequence of subrings 1,0 I, I;D..... of A, and hence by (5) there exists a< ®
such that I,€C. Define J, =I, . If a is a limit ordinal > , then I, can be
regarded as the intersection of all I,’s, where « is less than o but greater than

every limit ordinal less than «. such I,” s form a descending sequence of

61



subrings of A, and so, by (5), there exists an ordinal o, as described above such

that I, eC. Define J,=I,. Next, let ¥ be a limit ordinal. Define I=Js,  Ttis

a<y

easy to see by transfinite induction that each Is and hence each J,, belongs to
1(A). So, by (4). Jy €C. Also J=I, where o=min {a,:J=I, a<y} .Thus, for
every ordinal y ,J, has been defined as some I,eC. It follows from the

construction that J,=I,=A, for some ordinal y. Hence AeC. The proof is

complete.

We conclude by observing the following improvement .

A radical class R is a semi-simple class if and only if R is closed

under subdirect sums,

Since every semi-simple class is hereditary this is an immediate

consequence of Lemma 4.1 of [8] and Theorem 4.5 of [5].

Theorem 5.4.1

Let p be a prime greater than 2, and let C, be the class of all rings A

such that, for each xeA, x* = x and px = 0. Then, C, is a semisimple radical

class.

For proof we need the following lemmas

Lemma 5.4.2

Let a and b be two elements of a ring such that ab=ba. Then, for each n

>2,
(a-b)" = (-1) b+ (-1)™, "C,,.,. ab "* (b-a)
1™, (Crz - "Cry) 270" (b-a)
+(-1) ™ ("Cp3 - "Cpz + "Cp), 2°b™ (b-2)
N

+ ("Ci- "Cy +"C o + (1) ™ Cy), 2™ (b-a)
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the positive or the negative sign occurring according as n is odd or even.

Proof

An obvious rearrangement of the terms in the expansion of (a-b)"
yields (A), since "Cj- "C, +'C; ... +(-D"™, "C., =0 or2. according as n is
odd or even, as is easily seen by considering the expansion of the left-hand side

of the identity (1-1)" = 0.
We now prove
Lemma 5.4.3
C, is closed under extensions.
Proof
Let A be a ring and [ an ideal of A such that I and ? are in C,. Let
x€A. Then, x - xPe I, and so,
x-x" = (x-x")P =xP - x** by Lemma 1,
=x" 3 ,by Lemma 1,
»" | similarly
Hence, 0=p (x-x") = (x-x") + (x"-x"") +

=x-x""

b

Since ? is in C,, px €],

and so, px = p(px) = 0. Thus, (px)”" =px.x. (px)""? =0.

Hence by (1), pX =0 covcvviiivirirernn, (2)
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By virtue of (1) and (2), [x], the subring of A generated by x, is commutative,
finite and nil semisimple, and the number of elements in [x] divides p(p"-1).
Also, [x] is the direct sum of a finite number of finite fields, say, Fi, Fy, ...... Fr.
By (2), the number of element in F1 is pni, for some positive integer n;, i=1,2,
.., I., Hence  p"*"*"*" divides of (p"-1). Thus, n; +n, + ... + n,= 1, i.e., =1
and n,=1. Therefore, [x] is a field of p elements, and so, xP=x. ‘
Lemma 5.4.4

Cp 1s closed subdirect sums.

Proof

Let {A,} be a non-empty set of rings A, in Cqy and let A be the
subdirect sum of (Ay}. Let A' = HAa , the direct product of {A,}. Clearly, x"

= x and px = 0, for each x€A'. A being a subring of A’, it follows that A is in
G,
Proof of the Theorem

It is clear that (1) if a ring A 1s in C;, so are every subri.ng of A and

every homomorphic image of A and (ii) if every term in an ascending chain I

chclhc.... of ideals of a ring A is in C,, so is their union U]a . This

[24

completes the proof .
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